1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 /*
37  * This module handles low level logical file I/O (strategy) which backs
38  * the logical buffer cache.
39  *
40  * [De]compression, zero-block, check codes, and buffer cache operations
41  * for file data is handled here.
42  *
43  * Live dedup makes its home here as well.
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/fcntl.h>
50 #include <sys/buf.h>
51 #include <sys/proc.h>
52 #include <sys/namei.h>
53 #include <sys/mount.h>
54 #include <sys/vnode.h>
55 #include <sys/mountctl.h>
56 #include <sys/dirent.h>
57 #include <sys/uio.h>
58 #include <sys/objcache.h>
59 #include <sys/event.h>
60 #include <sys/file.h>
61 #include <vfs/fifofs/fifo.h>
62 
63 #include "hammer2.h"
64 #include "hammer2_lz4.h"
65 
66 #include "zlib/hammer2_zlib.h"
67 
68 struct objcache *cache_buffer_read;
69 struct objcache *cache_buffer_write;
70 
71 /*
72  * Strategy code (async logical file buffer I/O from system)
73  *
74  * Except for the transaction init (which should normally not block),
75  * we essentially run the strategy operation asynchronously via a XOP.
76  *
77  * WARNING! The XOP deals with buffer synchronization.  It is not synchronized
78  *	    to the current cpu.
79  *
80  * XXX This isn't supposed to be able to deadlock against vfs_sync vfsync()
81  *     calls but it has in the past when multiple flushes are queued.
82  *
83  * XXX We currently terminate the transaction once we get a quorum, otherwise
84  *     the frontend can stall, but this can leave the remaining nodes with
85  *     a potential flush conflict.  We need to delay flushes on those nodes
86  *     until running transactions complete separately from the normal
87  *     transaction sequencing.  FIXME TODO.
88  */
89 static int hammer2_strategy_read(struct vop_strategy_args *ap);
90 static int hammer2_strategy_write(struct vop_strategy_args *ap);
91 static void hammer2_strategy_read_completion(hammer2_chain_t *focus,
92 				const char *data, struct bio *bio);
93 
94 static hammer2_off_t hammer2_dedup_lookup(hammer2_dev_t *hmp,
95 			char **datap, int pblksize);
96 
97 int
98 hammer2_vop_strategy(struct vop_strategy_args *ap)
99 {
100 	struct bio *biop;
101 	struct buf *bp;
102 	int error;
103 
104 	biop = ap->a_bio;
105 	bp = biop->bio_buf;
106 
107 	switch(bp->b_cmd) {
108 	case BUF_CMD_READ:
109 		error = hammer2_strategy_read(ap);
110 		++hammer2_iod_file_read;
111 		break;
112 	case BUF_CMD_WRITE:
113 		error = hammer2_strategy_write(ap);
114 		++hammer2_iod_file_write;
115 		break;
116 	default:
117 		bp->b_error = error = EINVAL;
118 		bp->b_flags |= B_ERROR;
119 		biodone(biop);
120 		break;
121 	}
122 	return (error);
123 }
124 
125 /*
126  * Return the largest contiguous physical disk range for the logical
127  * request, in bytes.
128  *
129  * (struct vnode *vp, off_t loffset, off_t *doffsetp, int *runp, int *runb)
130  *
131  * Basically disabled, the logical buffer write thread has to deal with
132  * buffers one-at-a-time.  Note that this should not prevent cluster_read()
133  * from reading-ahead, it simply prevents it from trying form a single
134  * cluster buffer for the logical request.  H2 already uses 64KB buffers!
135  */
136 int
137 hammer2_vop_bmap(struct vop_bmap_args *ap)
138 {
139 	*ap->a_doffsetp = NOOFFSET;
140 	if (ap->a_runp)
141 		*ap->a_runp = 0;
142 	if (ap->a_runb)
143 		*ap->a_runb = 0;
144 	return (EOPNOTSUPP);
145 }
146 
147 /****************************************************************************
148  *				READ SUPPORT				    *
149  ****************************************************************************/
150 /*
151  * Callback used in read path in case that a block is compressed with LZ4.
152  */
153 static
154 void
155 hammer2_decompress_LZ4_callback(const char *data, u_int bytes, struct bio *bio)
156 {
157 	struct buf *bp;
158 	char *compressed_buffer;
159 	int compressed_size;
160 	int result;
161 
162 	bp = bio->bio_buf;
163 
164 #if 0
165 	if bio->bio_caller_info2.index &&
166 	      bio->bio_caller_info1.uvalue32 !=
167 	      crc32(bp->b_data, bp->b_bufsize) --- return error
168 #endif
169 
170 	KKASSERT(bp->b_bufsize <= HAMMER2_PBUFSIZE);
171 	compressed_size = *(const int *)data;
172 	KKASSERT((uint32_t)compressed_size <= bytes - sizeof(int));
173 
174 	compressed_buffer = objcache_get(cache_buffer_read, M_INTWAIT);
175 	result = LZ4_decompress_safe(__DECONST(char *, &data[sizeof(int)]),
176 				     compressed_buffer,
177 				     compressed_size,
178 				     bp->b_bufsize);
179 	if (result < 0) {
180 		kprintf("READ PATH: Error during decompression."
181 			"bio %016jx/%d\n",
182 			(intmax_t)bio->bio_offset, bytes);
183 		/* make sure it isn't random garbage */
184 		bzero(compressed_buffer, bp->b_bufsize);
185 	}
186 	KKASSERT(result <= bp->b_bufsize);
187 	bcopy(compressed_buffer, bp->b_data, bp->b_bufsize);
188 	if (result < bp->b_bufsize)
189 		bzero(bp->b_data + result, bp->b_bufsize - result);
190 	objcache_put(cache_buffer_read, compressed_buffer);
191 	bp->b_resid = 0;
192 	bp->b_flags |= B_AGE;
193 }
194 
195 /*
196  * Callback used in read path in case that a block is compressed with ZLIB.
197  * It is almost identical to LZ4 callback, so in theory they can be unified,
198  * but we didn't want to make changes in bio structure for that.
199  */
200 static
201 void
202 hammer2_decompress_ZLIB_callback(const char *data, u_int bytes, struct bio *bio)
203 {
204 	struct buf *bp;
205 	char *compressed_buffer;
206 	z_stream strm_decompress;
207 	int result;
208 	int ret;
209 
210 	bp = bio->bio_buf;
211 
212 	KKASSERT(bp->b_bufsize <= HAMMER2_PBUFSIZE);
213 	strm_decompress.avail_in = 0;
214 	strm_decompress.next_in = Z_NULL;
215 
216 	ret = inflateInit(&strm_decompress);
217 
218 	if (ret != Z_OK)
219 		kprintf("HAMMER2 ZLIB: Fatal error in inflateInit.\n");
220 
221 	compressed_buffer = objcache_get(cache_buffer_read, M_INTWAIT);
222 	strm_decompress.next_in = __DECONST(char *, data);
223 
224 	/* XXX supply proper size, subset of device bp */
225 	strm_decompress.avail_in = bytes;
226 	strm_decompress.next_out = compressed_buffer;
227 	strm_decompress.avail_out = bp->b_bufsize;
228 
229 	ret = inflate(&strm_decompress, Z_FINISH);
230 	if (ret != Z_STREAM_END) {
231 		kprintf("HAMMER2 ZLIB: Fatar error during decompression.\n");
232 		bzero(compressed_buffer, bp->b_bufsize);
233 	}
234 	bcopy(compressed_buffer, bp->b_data, bp->b_bufsize);
235 	result = bp->b_bufsize - strm_decompress.avail_out;
236 	if (result < bp->b_bufsize)
237 		bzero(bp->b_data + result, strm_decompress.avail_out);
238 	objcache_put(cache_buffer_read, compressed_buffer);
239 	ret = inflateEnd(&strm_decompress);
240 
241 	bp->b_resid = 0;
242 	bp->b_flags |= B_AGE;
243 }
244 
245 /*
246  * Logical buffer I/O, async read.
247  */
248 static
249 int
250 hammer2_strategy_read(struct vop_strategy_args *ap)
251 {
252 	hammer2_xop_strategy_t *xop;
253 	struct bio *bio;
254 	hammer2_inode_t *ip;
255 	hammer2_key_t lbase;
256 
257 	bio = ap->a_bio;
258 	ip = VTOI(ap->a_vp);
259 
260 	lbase = bio->bio_offset;
261 	KKASSERT(((int)lbase & HAMMER2_PBUFMASK) == 0);
262 
263 	xop = hammer2_xop_alloc(ip, HAMMER2_XOP_STRATEGY);
264 	xop->finished = 0;
265 	xop->bio = bio;
266 	xop->lbase = lbase;
267 	hammer2_mtx_init(&xop->lock, "h2bior");
268 	hammer2_xop_start(&xop->head, &hammer2_strategy_read_desc);
269 	/* asynchronous completion */
270 
271 	return(0);
272 }
273 
274 /*
275  * Per-node XOP (threaded), do a synchronous lookup of the chain and
276  * its data.  The frontend is asynchronous, so we are also responsible
277  * for racing to terminate the frontend.
278  */
279 void
280 hammer2_xop_strategy_read(hammer2_xop_t *arg, void *scratch, int clindex)
281 {
282 	hammer2_xop_strategy_t *xop = &arg->xop_strategy;
283 	hammer2_chain_t *parent;
284 	hammer2_chain_t *chain;
285 	hammer2_chain_t *focus;
286 	hammer2_key_t key_dummy;
287 	hammer2_key_t lbase;
288 	struct bio *bio;
289 	struct buf *bp;
290 	const char *data;
291 	int error;
292 
293 	/*
294 	 * Note that we can race completion of the bio supplied by
295 	 * the front-end so we cannot access it until we determine
296 	 * that we are the ones finishing it up.
297 	 */
298 	lbase = xop->lbase;
299 
300 	/*
301 	 * This is difficult to optimize.  The logical buffer might be
302 	 * partially dirty (contain dummy zero-fill pages), which would
303 	 * mess up our crc calculation if we were to try a direct read.
304 	 * So for now we always double-buffer through the underlying
305 	 * storage.
306 	 *
307 	 * If not for the above problem we could conditionalize on
308 	 * (1) 64KB buffer, (2) one chain (not multi-master) and
309 	 * (3) !hammer2_double_buffer, and issue a direct read into the
310 	 * logical buffer.
311 	 */
312 	parent = hammer2_inode_chain(xop->head.ip1, clindex,
313 				     HAMMER2_RESOLVE_ALWAYS |
314 				     HAMMER2_RESOLVE_SHARED);
315 	if (parent) {
316 		chain = hammer2_chain_lookup(&parent, &key_dummy,
317 					     lbase, lbase,
318 					     &error,
319 					     HAMMER2_LOOKUP_ALWAYS |
320 					     HAMMER2_LOOKUP_SHARED);
321 		if (chain)
322 			error = chain->error;
323 	} else {
324 		error = HAMMER2_ERROR_EIO;
325 		chain = NULL;
326 	}
327 	error = hammer2_xop_feed(&xop->head, chain, clindex, error);
328 	if (chain) {
329 		hammer2_chain_unlock(chain);
330 		hammer2_chain_drop(chain);
331 	}
332 	if (parent) {
333 		hammer2_chain_unlock(parent);
334 		hammer2_chain_drop(parent);
335 	}
336 	chain = NULL;	/* safety */
337 	parent = NULL;	/* safety */
338 
339 	/*
340 	 * Race to finish the frontend.  First-to-complete.  bio is only
341 	 * valid if we are determined to be the ones able to complete
342 	 * the operation.
343 	 */
344 	if (xop->finished)
345 		return;
346 	hammer2_mtx_ex(&xop->lock);
347 	if (xop->finished) {
348 		hammer2_mtx_unlock(&xop->lock);
349 		return;
350 	}
351 	bio = xop->bio;
352 	bp = bio->bio_buf;
353 	bkvasync(bp);
354 
355 	/*
356 	 * Async operation has not completed and we now own the lock.
357 	 * Determine if we can complete the operation by issuing the
358 	 * frontend collection non-blocking.
359 	 *
360 	 * H2 double-buffers the data, setting B_NOTMETA on the logical
361 	 * buffer hints to the OS that the logical buffer should not be
362 	 * swapcached (since the device buffer can be).
363 	 *
364 	 * Also note that even for compressed data we would rather the
365 	 * kernel cache/swapcache device buffers more and (decompressed)
366 	 * logical buffers less, since that will significantly improve
367 	 * the amount of end-user data that can be cached.
368 	 *
369 	 * NOTE: The chain->data for xop->head.cluster.focus will be
370 	 *	 synchronized to the current cpu by xop_collect(),
371 	 *	 but other chains in the cluster might not be.
372 	 */
373 	error = hammer2_xop_collect(&xop->head, HAMMER2_XOP_COLLECT_NOWAIT);
374 
375 	switch(error) {
376 	case 0:
377 		xop->finished = 1;
378 		hammer2_mtx_unlock(&xop->lock);
379 		bp->b_flags |= B_NOTMETA;
380 		focus = xop->head.cluster.focus;
381 		data = hammer2_xop_gdata(&xop->head)->buf;
382 		hammer2_strategy_read_completion(focus, data, xop->bio);
383 		hammer2_xop_pdata(&xop->head);
384 		biodone(bio);
385 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
386 		break;
387 	case HAMMER2_ERROR_ENOENT:
388 		xop->finished = 1;
389 		hammer2_mtx_unlock(&xop->lock);
390 		bp->b_flags |= B_NOTMETA;
391 		bp->b_resid = 0;
392 		bp->b_error = 0;
393 		bzero(bp->b_data, bp->b_bcount);
394 		biodone(bio);
395 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
396 		break;
397 	case HAMMER2_ERROR_EINPROGRESS:
398 		hammer2_mtx_unlock(&xop->lock);
399 		break;
400 	default:
401 		kprintf("xop_strategy_read: error %08x loff=%016jx\n",
402 			error, bp->b_loffset);
403 		xop->finished = 1;
404 		hammer2_mtx_unlock(&xop->lock);
405 		bp->b_flags |= B_ERROR;
406 		bp->b_error = EIO;
407 		biodone(bio);
408 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
409 		break;
410 	}
411 }
412 
413 static
414 void
415 hammer2_strategy_read_completion(hammer2_chain_t *focus, const char *data,
416 				 struct bio *bio)
417 {
418 	struct buf *bp = bio->bio_buf;
419 
420 	if (focus->bref.type == HAMMER2_BREF_TYPE_INODE) {
421 		/*
422 		 * Copy from in-memory inode structure.
423 		 */
424 		bcopy(((const hammer2_inode_data_t *)data)->u.data,
425 		      bp->b_data, HAMMER2_EMBEDDED_BYTES);
426 		bzero(bp->b_data + HAMMER2_EMBEDDED_BYTES,
427 		      bp->b_bcount - HAMMER2_EMBEDDED_BYTES);
428 		bp->b_resid = 0;
429 		bp->b_error = 0;
430 	} else if (focus->bref.type == HAMMER2_BREF_TYPE_DATA) {
431 		/*
432 		 * Data is on-media, record for live dedup.  Release the
433 		 * chain (try to free it) when done.  The data is still
434 		 * cached by both the buffer cache in front and the
435 		 * block device behind us.  This leaves more room in the
436 		 * LRU chain cache for meta-data chains which we really
437 		 * want to retain.
438 		 *
439 		 * NOTE: Deduplication cannot be safely recorded for
440 		 *	 records without a check code.
441 		 */
442 		hammer2_dedup_record(focus, NULL, data);
443 		atomic_set_int(&focus->flags, HAMMER2_CHAIN_RELEASE);
444 
445 		/*
446 		 * Decompression and copy.
447 		 */
448 		switch (HAMMER2_DEC_COMP(focus->bref.methods)) {
449 		case HAMMER2_COMP_LZ4:
450 			hammer2_decompress_LZ4_callback(data, focus->bytes,
451 							bio);
452 			/* b_resid set by call */
453 			break;
454 		case HAMMER2_COMP_ZLIB:
455 			hammer2_decompress_ZLIB_callback(data, focus->bytes,
456 							 bio);
457 			/* b_resid set by call */
458 			break;
459 		case HAMMER2_COMP_NONE:
460 			KKASSERT(focus->bytes <= bp->b_bcount);
461 			bcopy(data, bp->b_data, focus->bytes);
462 			if (focus->bytes < bp->b_bcount) {
463 				bzero(bp->b_data + focus->bytes,
464 				      bp->b_bcount - focus->bytes);
465 			}
466 			bp->b_resid = 0;
467 			bp->b_error = 0;
468 			break;
469 		default:
470 			panic("hammer2_strategy_read_completion: "
471 			      "unknown compression type");
472 		}
473 	} else {
474 		panic("hammer2_strategy_read_completion: unknown bref type");
475 	}
476 }
477 
478 /****************************************************************************
479  *				WRITE SUPPORT				    *
480  ****************************************************************************/
481 
482 /*
483  * Functions for compression in threads,
484  * from hammer2_vnops.c
485  */
486 static void hammer2_write_file_core(char *data, hammer2_inode_t *ip,
487 				hammer2_chain_t **parentp,
488 				hammer2_key_t lbase, int ioflag, int pblksize,
489 				hammer2_tid_t mtid, int *errorp);
490 static void hammer2_compress_and_write(char *data, hammer2_inode_t *ip,
491 				hammer2_chain_t **parentp,
492 				hammer2_key_t lbase, int ioflag, int pblksize,
493 				hammer2_tid_t mtid, int *errorp,
494 				int comp_algo, int check_algo);
495 static void hammer2_zero_check_and_write(char *data, hammer2_inode_t *ip,
496 				hammer2_chain_t **parentp,
497 				hammer2_key_t lbase, int ioflag, int pblksize,
498 				hammer2_tid_t mtid, int *errorp,
499 				int check_algo);
500 static int test_block_zeros(const char *buf, size_t bytes);
501 static void zero_write(char *data, hammer2_inode_t *ip,
502 				hammer2_chain_t **parentp,
503 				hammer2_key_t lbase,
504 				hammer2_tid_t mtid, int *errorp);
505 static void hammer2_write_bp(hammer2_chain_t *chain, char *data,
506 				int ioflag, int pblksize,
507 				hammer2_tid_t mtid, int *errorp,
508 				int check_algo);
509 
510 int
511 hammer2_strategy_write(struct vop_strategy_args *ap)
512 {
513 	hammer2_xop_strategy_t *xop;
514 	hammer2_pfs_t *pmp;
515 	struct bio *bio;
516 	hammer2_inode_t *ip;
517 
518 	bio = ap->a_bio;
519 	ip = VTOI(ap->a_vp);
520 	pmp = ip->pmp;
521 
522 	atomic_set_int(&ip->flags, HAMMER2_INODE_DIRTYDATA);
523 	hammer2_lwinprog_ref(pmp);
524 	hammer2_trans_assert_strategy(pmp);
525 	hammer2_trans_init(pmp, HAMMER2_TRANS_BUFCACHE);
526 
527 	xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
528 				    HAMMER2_XOP_STRATEGY);
529 	xop->finished = 0;
530 	xop->bio = bio;
531 	xop->lbase = bio->bio_offset;
532 	hammer2_mtx_init(&xop->lock, "h2biow");
533 	hammer2_xop_start(&xop->head, &hammer2_strategy_write_desc);
534 	/* asynchronous completion */
535 
536 	hammer2_lwinprog_wait(pmp, hammer2_flush_pipe);
537 
538 	return(0);
539 }
540 
541 /*
542  * Per-node XOP (threaded).  Write the logical buffer to the media.
543  *
544  * This is a bit problematic because there may be multiple target and
545  * any of them may be able to release the bp.  In addition, if our
546  * particulr target is offline we don't want to block the bp (and thus
547  * the frontend).  To accomplish this we copy the data to the per-thr
548  * scratch buffer.
549  */
550 void
551 hammer2_xop_strategy_write(hammer2_xop_t *arg, void *scratch, int clindex)
552 {
553 	hammer2_xop_strategy_t *xop = &arg->xop_strategy;
554 	hammer2_chain_t *parent;
555 	hammer2_key_t lbase;
556 	hammer2_inode_t *ip;
557 	struct bio *bio;
558 	struct buf *bp;
559 	int error;
560 	int lblksize;
561 	int pblksize;
562 	hammer2_off_t bio_offset;
563 	char *bio_data;
564 
565 	/*
566 	 * We can only access the bp/bio if the frontend has not yet
567 	 * completed.
568 	 */
569 	if (xop->finished)
570 		return;
571 	hammer2_mtx_sh(&xop->lock);
572 	if (xop->finished) {
573 		hammer2_mtx_unlock(&xop->lock);
574 		return;
575 	}
576 
577 	lbase = xop->lbase;
578 	bio = xop->bio;			/* ephermal */
579 	bp = bio->bio_buf;		/* ephermal */
580 	ip = xop->head.ip1;		/* retained by ref */
581 	bio_offset = bio->bio_offset;
582 	bio_data = scratch;
583 
584 	/* hammer2_trans_init(parent->hmp->spmp, HAMMER2_TRANS_BUFCACHE); */
585 
586 	lblksize = hammer2_calc_logical(ip, bio->bio_offset, &lbase, NULL);
587 	pblksize = hammer2_calc_physical(ip, lbase);
588 	bkvasync(bp);
589 	KKASSERT(lblksize <= MAXPHYS);
590 	bcopy(bp->b_data, bio_data, lblksize);
591 
592 	hammer2_mtx_unlock(&xop->lock);
593 	bp = NULL;	/* safety, illegal to access after unlock */
594 	bio = NULL;	/* safety, illegal to access after unlock */
595 
596 	/*
597 	 * Actual operation
598 	 */
599 	parent = hammer2_inode_chain(ip, clindex, HAMMER2_RESOLVE_ALWAYS);
600 	hammer2_write_file_core(bio_data, ip, &parent,
601 				lbase, IO_ASYNC, pblksize,
602 				xop->head.mtid, &error);
603 	if (parent) {
604 		hammer2_chain_unlock(parent);
605 		hammer2_chain_drop(parent);
606 		parent = NULL;	/* safety */
607 	}
608 	hammer2_xop_feed(&xop->head, NULL, clindex, error);
609 
610 	/*
611 	 * Try to complete the operation on behalf of the front-end.
612 	 */
613 	if (xop->finished)
614 		return;
615 	hammer2_mtx_ex(&xop->lock);
616 	if (xop->finished) {
617 		hammer2_mtx_unlock(&xop->lock);
618 		return;
619 	}
620 
621 	/*
622 	 * Async operation has not completed and we now own the lock.
623 	 * Determine if we can complete the operation by issuing the
624 	 * frontend collection non-blocking.
625 	 *
626 	 * H2 double-buffers the data, setting B_NOTMETA on the logical
627 	 * buffer hints to the OS that the logical buffer should not be
628 	 * swapcached (since the device buffer can be).
629 	 */
630 	error = hammer2_xop_collect(&xop->head, HAMMER2_XOP_COLLECT_NOWAIT);
631 
632 	if (error == HAMMER2_ERROR_EINPROGRESS) {
633 		hammer2_mtx_unlock(&xop->lock);
634 		return;
635 	}
636 
637 	/*
638 	 * Async operation has completed.
639 	 */
640 	xop->finished = 1;
641 	hammer2_mtx_unlock(&xop->lock);
642 
643 	bio = xop->bio;		/* now owned by us */
644 	bp = bio->bio_buf;	/* now owned by us */
645 
646 	if (error == HAMMER2_ERROR_ENOENT || error == 0) {
647 		bp->b_flags |= B_NOTMETA;
648 		bp->b_resid = 0;
649 		bp->b_error = 0;
650 		biodone(bio);
651 	} else {
652 		kprintf("xop_strategy_write: error %d loff=%016jx\n",
653 			error, bp->b_loffset);
654 		bp->b_flags |= B_ERROR;
655 		bp->b_error = EIO;
656 		biodone(bio);
657 	}
658 	hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
659 	hammer2_trans_assert_strategy(ip->pmp);
660 	hammer2_lwinprog_drop(ip->pmp);
661 	hammer2_trans_done(ip->pmp, HAMMER2_TRANS_BUFCACHE);
662 }
663 
664 /*
665  * Wait for pending I/O to complete
666  */
667 void
668 hammer2_bioq_sync(hammer2_pfs_t *pmp)
669 {
670 	hammer2_lwinprog_wait(pmp, 0);
671 }
672 
673 /*
674  * Assign physical storage at (cparent, lbase), returning a suitable chain
675  * and setting *errorp appropriately.
676  *
677  * If no error occurs, the returned chain will be in a modified state.
678  *
679  * If an error occurs, the returned chain may or may not be NULL.  If
680  * not-null any chain->error (if not 0) will also be rolled up into *errorp.
681  * So the caller only needs to test *errorp.
682  *
683  * cparent can wind up being anything.
684  *
685  * If datap is not NULL, *datap points to the real data we intend to write.
686  * If we can dedup the storage location we set *datap to NULL to indicate
687  * to the caller that a dedup occurred.
688  *
689  * NOTE: Special case for data embedded in inode.
690  */
691 static
692 hammer2_chain_t *
693 hammer2_assign_physical(hammer2_inode_t *ip, hammer2_chain_t **parentp,
694 			hammer2_key_t lbase, int pblksize,
695 			hammer2_tid_t mtid, char **datap, int *errorp)
696 {
697 	hammer2_chain_t *chain;
698 	hammer2_key_t key_dummy;
699 	hammer2_off_t dedup_off;
700 	int pradix = hammer2_getradix(pblksize);
701 
702 	/*
703 	 * Locate the chain associated with lbase, return a locked chain.
704 	 * However, do not instantiate any data reference (which utilizes a
705 	 * device buffer) because we will be using direct IO via the
706 	 * logical buffer cache buffer.
707 	 */
708 	KKASSERT(pblksize >= HAMMER2_ALLOC_MIN);
709 
710 	chain = hammer2_chain_lookup(parentp, &key_dummy,
711 				     lbase, lbase,
712 				     errorp,
713 				     HAMMER2_LOOKUP_NODATA);
714 
715 	/*
716 	 * The lookup code should not return a DELETED chain to us, unless
717 	 * its a short-file embedded in the inode.  Then it is possible for
718 	 * the lookup to return a deleted inode.
719 	 */
720 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED) &&
721 	    chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
722 		kprintf("assign physical deleted chain @ "
723 			"%016jx (%016jx.%02x) ip %016jx\n",
724 			lbase, chain->bref.data_off, chain->bref.type,
725 			ip->meta.inum);
726 		Debugger("bleh");
727 	}
728 
729 	if (chain == NULL) {
730 		/*
731 		 * We found a hole, create a new chain entry.
732 		 *
733 		 * NOTE: DATA chains are created without device backing
734 		 *	 store (nor do we want any).
735 		 */
736 		dedup_off = hammer2_dedup_lookup((*parentp)->hmp, datap,
737 						 pblksize);
738 		*errorp |= hammer2_chain_create(parentp, &chain, NULL, ip->pmp,
739 				       HAMMER2_ENC_CHECK(ip->meta.check_algo) |
740 				       HAMMER2_ENC_COMP(HAMMER2_COMP_NONE),
741 					        lbase, HAMMER2_PBUFRADIX,
742 					        HAMMER2_BREF_TYPE_DATA,
743 					        pblksize, mtid,
744 					        dedup_off, 0);
745 		if (chain == NULL)
746 			goto failed;
747 		/*ip->delta_dcount += pblksize;*/
748 	} else if (chain->error == 0) {
749 		switch (chain->bref.type) {
750 		case HAMMER2_BREF_TYPE_INODE:
751 			/*
752 			 * The data is embedded in the inode, which requires
753 			 * a bit more finess.
754 			 */
755 			*errorp |= hammer2_chain_modify_ip(ip, chain, mtid, 0);
756 			break;
757 		case HAMMER2_BREF_TYPE_DATA:
758 			dedup_off = hammer2_dedup_lookup(chain->hmp, datap,
759 							 pblksize);
760 			if (chain->bytes != pblksize) {
761 				*errorp |= hammer2_chain_resize(chain,
762 						     mtid, dedup_off,
763 						     pradix,
764 						     HAMMER2_MODIFY_OPTDATA);
765 				if (*errorp)
766 					break;
767 			}
768 
769 			/*
770 			 * DATA buffers must be marked modified whether the
771 			 * data is in a logical buffer or not.  We also have
772 			 * to make this call to fixup the chain data pointers
773 			 * after resizing in case this is an encrypted or
774 			 * compressed buffer.
775 			 */
776 			*errorp |= hammer2_chain_modify(chain, mtid, dedup_off,
777 						        HAMMER2_MODIFY_OPTDATA);
778 			break;
779 		default:
780 			panic("hammer2_assign_physical: bad type");
781 			/* NOT REACHED */
782 			break;
783 		}
784 	} else {
785 		*errorp = chain->error;
786 	}
787 	atomic_set_int(&ip->flags, HAMMER2_INODE_DIRTYDATA);
788 failed:
789 	return (chain);
790 }
791 
792 /*
793  * hammer2_write_file_core() - hammer2_write_thread() helper
794  *
795  * The core write function which determines which path to take
796  * depending on compression settings.  We also have to locate the
797  * related chains so we can calculate and set the check data for
798  * the blockref.
799  */
800 static
801 void
802 hammer2_write_file_core(char *data, hammer2_inode_t *ip,
803 			hammer2_chain_t **parentp,
804 			hammer2_key_t lbase, int ioflag, int pblksize,
805 			hammer2_tid_t mtid, int *errorp)
806 {
807 	hammer2_chain_t *chain;
808 	char *bdata;
809 
810 	*errorp = 0;
811 
812 	switch(HAMMER2_DEC_ALGO(ip->meta.comp_algo)) {
813 	case HAMMER2_COMP_NONE:
814 		/*
815 		 * We have to assign physical storage to the buffer
816 		 * we intend to dirty or write now to avoid deadlocks
817 		 * in the strategy code later.
818 		 *
819 		 * This can return NOOFFSET for inode-embedded data.
820 		 * The strategy code will take care of it in that case.
821 		 */
822 		bdata = data;
823 		chain = hammer2_assign_physical(ip, parentp, lbase, pblksize,
824 						mtid, &bdata, errorp);
825 		if (*errorp) {
826 			/* skip modifications */
827 		} else if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
828 			hammer2_inode_data_t *wipdata;
829 
830 			wipdata = &chain->data->ipdata;
831 			KKASSERT(wipdata->meta.op_flags &
832 				 HAMMER2_OPFLAG_DIRECTDATA);
833 			bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
834 			++hammer2_iod_file_wembed;
835 		} else if (bdata == NULL) {
836 			/*
837 			 * Copy of data already present on-media.
838 			 */
839 			chain->bref.methods =
840 				HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
841 				HAMMER2_ENC_CHECK(ip->meta.check_algo);
842 			hammer2_chain_setcheck(chain, data);
843 		} else {
844 			hammer2_write_bp(chain, data, ioflag, pblksize,
845 					 mtid, errorp, ip->meta.check_algo);
846 		}
847 		if (chain) {
848 			hammer2_chain_unlock(chain);
849 			hammer2_chain_drop(chain);
850 		}
851 		break;
852 	case HAMMER2_COMP_AUTOZERO:
853 		/*
854 		 * Check for zero-fill only
855 		 */
856 		hammer2_zero_check_and_write(data, ip, parentp,
857 					     lbase, ioflag, pblksize,
858 					     mtid, errorp,
859 					     ip->meta.check_algo);
860 		break;
861 	case HAMMER2_COMP_LZ4:
862 	case HAMMER2_COMP_ZLIB:
863 	default:
864 		/*
865 		 * Check for zero-fill and attempt compression.
866 		 */
867 		hammer2_compress_and_write(data, ip, parentp,
868 					   lbase, ioflag, pblksize,
869 					   mtid, errorp,
870 					   ip->meta.comp_algo,
871 					   ip->meta.check_algo);
872 		break;
873 	}
874 }
875 
876 /*
877  * Helper
878  *
879  * Generic function that will perform the compression in compression
880  * write path. The compression algorithm is determined by the settings
881  * obtained from inode.
882  */
883 static
884 void
885 hammer2_compress_and_write(char *data, hammer2_inode_t *ip,
886 	hammer2_chain_t **parentp,
887 	hammer2_key_t lbase, int ioflag, int pblksize,
888 	hammer2_tid_t mtid, int *errorp, int comp_algo, int check_algo)
889 {
890 	hammer2_chain_t *chain;
891 	int comp_size;
892 	int comp_block_size;
893 	char *comp_buffer;
894 	char *bdata;
895 
896 	/*
897 	 * An all-zeros write creates a hole unless the check code
898 	 * is disabled.  When the check code is disabled all writes
899 	 * are done in-place, including any all-zeros writes.
900 	 *
901 	 * NOTE: A snapshot will still force a copy-on-write
902 	 *	 (see the HAMMER2_CHECK_NONE in hammer2_chain.c).
903 	 */
904 	if (check_algo != HAMMER2_CHECK_NONE &&
905 	    test_block_zeros(data, pblksize)) {
906 		zero_write(data, ip, parentp, lbase, mtid, errorp);
907 		return;
908 	}
909 
910 	/*
911 	 * Compression requested.  Try to compress the block.  We store
912 	 * the data normally if we cannot sufficiently compress it.
913 	 *
914 	 * We have a heuristic to detect files which are mostly
915 	 * uncompressable and avoid the compression attempt in that
916 	 * case.  If the compression heuristic is turned off, we always
917 	 * try to compress.
918 	 */
919 	comp_size = 0;
920 	comp_buffer = NULL;
921 
922 	KKASSERT(pblksize / 2 <= 32768);
923 
924 	if (ip->comp_heuristic < 8 || (ip->comp_heuristic & 7) == 0 ||
925 	    hammer2_always_compress) {
926 		z_stream strm_compress;
927 		int comp_level;
928 		int ret;
929 
930 		switch(HAMMER2_DEC_ALGO(comp_algo)) {
931 		case HAMMER2_COMP_LZ4:
932 			/*
933 			 * We need to prefix with the size, LZ4
934 			 * doesn't do it for us.  Add the related
935 			 * overhead.
936 			 *
937 			 * NOTE: The LZ4 code seems to assume at least an
938 			 *	 8-byte buffer size granularity and may
939 			 *	 overrun the buffer if given a 4-byte
940 			 *	 granularity.
941 			 */
942 			comp_buffer = objcache_get(cache_buffer_write,
943 						   M_INTWAIT);
944 			comp_size = LZ4_compress_limitedOutput(
945 					data,
946 					&comp_buffer[sizeof(int)],
947 					pblksize,
948 					pblksize / 2 - sizeof(int64_t));
949 			*(int *)comp_buffer = comp_size;
950 			if (comp_size)
951 				comp_size += sizeof(int);
952 			break;
953 		case HAMMER2_COMP_ZLIB:
954 			comp_level = HAMMER2_DEC_LEVEL(comp_algo);
955 			if (comp_level == 0)
956 				comp_level = 6;	/* default zlib compression */
957 			else if (comp_level < 6)
958 				comp_level = 6;
959 			else if (comp_level > 9)
960 				comp_level = 9;
961 			ret = deflateInit(&strm_compress, comp_level);
962 			if (ret != Z_OK) {
963 				kprintf("HAMMER2 ZLIB: fatal error "
964 					"on deflateInit.\n");
965 			}
966 
967 			comp_buffer = objcache_get(cache_buffer_write,
968 						   M_INTWAIT);
969 			strm_compress.next_in = data;
970 			strm_compress.avail_in = pblksize;
971 			strm_compress.next_out = comp_buffer;
972 			strm_compress.avail_out = pblksize / 2;
973 			ret = deflate(&strm_compress, Z_FINISH);
974 			if (ret == Z_STREAM_END) {
975 				comp_size = pblksize / 2 -
976 					    strm_compress.avail_out;
977 			} else {
978 				comp_size = 0;
979 			}
980 			ret = deflateEnd(&strm_compress);
981 			break;
982 		default:
983 			kprintf("Error: Unknown compression method.\n");
984 			kprintf("Comp_method = %d.\n", comp_algo);
985 			break;
986 		}
987 	}
988 
989 	if (comp_size == 0) {
990 		/*
991 		 * compression failed or turned off
992 		 */
993 		comp_block_size = pblksize;	/* safety */
994 		if (++ip->comp_heuristic > 128)
995 			ip->comp_heuristic = 8;
996 	} else {
997 		/*
998 		 * compression succeeded
999 		 */
1000 		ip->comp_heuristic = 0;
1001 		if (comp_size <= 1024) {
1002 			comp_block_size = 1024;
1003 		} else if (comp_size <= 2048) {
1004 			comp_block_size = 2048;
1005 		} else if (comp_size <= 4096) {
1006 			comp_block_size = 4096;
1007 		} else if (comp_size <= 8192) {
1008 			comp_block_size = 8192;
1009 		} else if (comp_size <= 16384) {
1010 			comp_block_size = 16384;
1011 		} else if (comp_size <= 32768) {
1012 			comp_block_size = 32768;
1013 		} else {
1014 			panic("hammer2: WRITE PATH: "
1015 			      "Weird comp_size value.");
1016 			/* NOT REACHED */
1017 			comp_block_size = pblksize;
1018 		}
1019 
1020 		/*
1021 		 * Must zero the remainder or dedup (which operates on a
1022 		 * physical block basis) will not find matches.
1023 		 */
1024 		if (comp_size < comp_block_size) {
1025 			bzero(comp_buffer + comp_size,
1026 			      comp_block_size - comp_size);
1027 		}
1028 	}
1029 
1030 	/*
1031 	 * Assign physical storage, data will be set to NULL if a live-dedup
1032 	 * was successful.
1033 	 */
1034 	bdata = comp_size ? comp_buffer : data;
1035 	chain = hammer2_assign_physical(ip, parentp, lbase, comp_block_size,
1036 					mtid, &bdata, errorp);
1037 
1038 	if (*errorp) {
1039 		goto done;
1040 	}
1041 
1042 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
1043 		hammer2_inode_data_t *wipdata;
1044 
1045 		*errorp = hammer2_chain_modify_ip(ip, chain, mtid, 0);
1046 		if (*errorp == 0) {
1047 			wipdata = &chain->data->ipdata;
1048 			KKASSERT(wipdata->meta.op_flags &
1049 				 HAMMER2_OPFLAG_DIRECTDATA);
1050 			bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1051 			++hammer2_iod_file_wembed;
1052 		}
1053 	} else if (bdata == NULL) {
1054 		/*
1055 		 * Live deduplication, a copy of the data is already present
1056 		 * on the media.
1057 		 */
1058 		if (comp_size) {
1059 			chain->bref.methods =
1060 				HAMMER2_ENC_COMP(comp_algo) +
1061 				HAMMER2_ENC_CHECK(check_algo);
1062 		} else {
1063 			chain->bref.methods =
1064 				HAMMER2_ENC_COMP(
1065 					HAMMER2_COMP_NONE) +
1066 				HAMMER2_ENC_CHECK(check_algo);
1067 		}
1068 		bdata = comp_size ? comp_buffer : data;
1069 		hammer2_chain_setcheck(chain, bdata);
1070 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1071 	} else {
1072 		hammer2_io_t *dio;
1073 
1074 		KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1075 
1076 		switch(chain->bref.type) {
1077 		case HAMMER2_BREF_TYPE_INODE:
1078 			panic("hammer2_compress_and_write: unexpected inode\n");
1079 			break;
1080 		case HAMMER2_BREF_TYPE_DATA:
1081 			/*
1082 			 * Optimize out the read-before-write
1083 			 * if possible.
1084 			 */
1085 			*errorp = hammer2_io_newnz(chain->hmp,
1086 						   chain->bref.type,
1087 						   chain->bref.data_off,
1088 						   chain->bytes,
1089 						   &dio);
1090 			if (*errorp) {
1091 				hammer2_io_brelse(&dio);
1092 				kprintf("hammer2: WRITE PATH: "
1093 					"dbp bread error\n");
1094 				break;
1095 			}
1096 			bdata = hammer2_io_data(dio, chain->bref.data_off);
1097 
1098 			/*
1099 			 * When loading the block make sure we don't
1100 			 * leave garbage after the compressed data.
1101 			 */
1102 			if (comp_size) {
1103 				chain->bref.methods =
1104 					HAMMER2_ENC_COMP(comp_algo) +
1105 					HAMMER2_ENC_CHECK(check_algo);
1106 				bcopy(comp_buffer, bdata, comp_size);
1107 			} else {
1108 				chain->bref.methods =
1109 					HAMMER2_ENC_COMP(
1110 						HAMMER2_COMP_NONE) +
1111 					HAMMER2_ENC_CHECK(check_algo);
1112 				bcopy(data, bdata, pblksize);
1113 			}
1114 
1115 			/*
1116 			 * The flush code doesn't calculate check codes for
1117 			 * file data (doing so can result in excessive I/O),
1118 			 * so we do it here.
1119 			 */
1120 			hammer2_chain_setcheck(chain, bdata);
1121 
1122 			/*
1123 			 * Device buffer is now valid, chain is no longer in
1124 			 * the initial state.
1125 			 *
1126 			 * (No blockref table worries with file data)
1127 			 */
1128 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1129 			hammer2_dedup_record(chain, dio, bdata);
1130 
1131 			/* Now write the related bdp. */
1132 			if (ioflag & IO_SYNC) {
1133 				/*
1134 				 * Synchronous I/O requested.
1135 				 */
1136 				hammer2_io_bwrite(&dio);
1137 			/*
1138 			} else if ((ioflag & IO_DIRECT) &&
1139 				   loff + n == pblksize) {
1140 				hammer2_io_bdwrite(&dio);
1141 			*/
1142 			} else if (ioflag & IO_ASYNC) {
1143 				hammer2_io_bawrite(&dio);
1144 			} else {
1145 				hammer2_io_bdwrite(&dio);
1146 			}
1147 			break;
1148 		default:
1149 			panic("hammer2_compress_and_write: bad chain type %d\n",
1150 				chain->bref.type);
1151 			/* NOT REACHED */
1152 			break;
1153 		}
1154 	}
1155 done:
1156 	if (chain) {
1157 		hammer2_chain_unlock(chain);
1158 		hammer2_chain_drop(chain);
1159 	}
1160 	if (comp_buffer)
1161 		objcache_put(cache_buffer_write, comp_buffer);
1162 }
1163 
1164 /*
1165  * Helper
1166  *
1167  * Function that performs zero-checking and writing without compression,
1168  * it corresponds to default zero-checking path.
1169  */
1170 static
1171 void
1172 hammer2_zero_check_and_write(char *data, hammer2_inode_t *ip,
1173 	hammer2_chain_t **parentp,
1174 	hammer2_key_t lbase, int ioflag, int pblksize,
1175 	hammer2_tid_t mtid, int *errorp,
1176 	int check_algo)
1177 {
1178 	hammer2_chain_t *chain;
1179 	char *bdata;
1180 
1181 	if (check_algo != HAMMER2_CHECK_NONE &&
1182 	    test_block_zeros(data, pblksize)) {
1183 		/*
1184 		 * An all-zeros write creates a hole unless the check code
1185 		 * is disabled.  When the check code is disabled all writes
1186 		 * are done in-place, including any all-zeros writes.
1187 		 *
1188 		 * NOTE: A snapshot will still force a copy-on-write
1189 		 *	 (see the HAMMER2_CHECK_NONE in hammer2_chain.c).
1190 		 */
1191 		zero_write(data, ip, parentp, lbase, mtid, errorp);
1192 	} else {
1193 		/*
1194 		 * Normal write
1195 		 */
1196 		bdata = data;
1197 		chain = hammer2_assign_physical(ip, parentp, lbase, pblksize,
1198 						mtid, &bdata, errorp);
1199 		if (*errorp) {
1200 			/* do nothing */
1201 		} else if (bdata) {
1202 			hammer2_write_bp(chain, data, ioflag, pblksize,
1203 					 mtid, errorp, check_algo);
1204 		} else {
1205 			/* dedup occurred */
1206 			chain->bref.methods =
1207 				HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
1208 				HAMMER2_ENC_CHECK(check_algo);
1209 			hammer2_chain_setcheck(chain, data);
1210 		}
1211 		if (chain) {
1212 			hammer2_chain_unlock(chain);
1213 			hammer2_chain_drop(chain);
1214 		}
1215 	}
1216 }
1217 
1218 /*
1219  * Helper
1220  *
1221  * A function to test whether a block of data contains only zeros,
1222  * returns TRUE (non-zero) if the block is all zeros.
1223  */
1224 static
1225 int
1226 test_block_zeros(const char *buf, size_t bytes)
1227 {
1228 	size_t i;
1229 
1230 	for (i = 0; i < bytes; i += sizeof(long)) {
1231 		if (*(const long *)(buf + i) != 0)
1232 			return (0);
1233 	}
1234 	return (1);
1235 }
1236 
1237 /*
1238  * Helper
1239  *
1240  * Function to "write" a block that contains only zeros.
1241  */
1242 static
1243 void
1244 zero_write(char *data, hammer2_inode_t *ip,
1245 	   hammer2_chain_t **parentp,
1246 	   hammer2_key_t lbase, hammer2_tid_t mtid, int *errorp)
1247 {
1248 	hammer2_chain_t *chain;
1249 	hammer2_key_t key_dummy;
1250 
1251 	chain = hammer2_chain_lookup(parentp, &key_dummy,
1252 				     lbase, lbase,
1253 				     errorp,
1254 				     HAMMER2_LOOKUP_NODATA);
1255 	if (chain) {
1256 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
1257 			hammer2_inode_data_t *wipdata;
1258 
1259 			if (*errorp == 0) {
1260 				*errorp = hammer2_chain_modify_ip(ip, chain,
1261 								  mtid, 0);
1262 			}
1263 			if (*errorp == 0) {
1264 				wipdata = &chain->data->ipdata;
1265 				KKASSERT(wipdata->meta.op_flags &
1266 					 HAMMER2_OPFLAG_DIRECTDATA);
1267 				bzero(wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1268 				++hammer2_iod_file_wembed;
1269 			}
1270 		} else {
1271 			/* chain->error ok for deletion */
1272 			hammer2_chain_delete(*parentp, chain,
1273 					     mtid, HAMMER2_DELETE_PERMANENT);
1274 			++hammer2_iod_file_wzero;
1275 		}
1276 		atomic_set_int(&ip->flags, HAMMER2_INODE_DIRTYDATA);
1277 		hammer2_chain_unlock(chain);
1278 		hammer2_chain_drop(chain);
1279 	} else {
1280 		++hammer2_iod_file_wzero;
1281 	}
1282 }
1283 
1284 /*
1285  * Helper
1286  *
1287  * Function to write the data as it is, without performing any sort of
1288  * compression. This function is used in path without compression and
1289  * default zero-checking path.
1290  */
1291 static
1292 void
1293 hammer2_write_bp(hammer2_chain_t *chain, char *data, int ioflag,
1294 		 int pblksize,
1295 		 hammer2_tid_t mtid, int *errorp, int check_algo)
1296 {
1297 	hammer2_inode_data_t *wipdata;
1298 	hammer2_io_t *dio;
1299 	char *bdata;
1300 	int error;
1301 
1302 	error = 0;	/* XXX TODO below */
1303 
1304 	KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1305 
1306 	switch(chain->bref.type) {
1307 	case HAMMER2_BREF_TYPE_INODE:
1308 		wipdata = &chain->data->ipdata;
1309 		KKASSERT(wipdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1310 		bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1311 		error = 0;
1312 		++hammer2_iod_file_wembed;
1313 		break;
1314 	case HAMMER2_BREF_TYPE_DATA:
1315 		error = hammer2_io_newnz(chain->hmp,
1316 					 chain->bref.type,
1317 					 chain->bref.data_off,
1318 					 chain->bytes, &dio);
1319 		if (error) {
1320 			hammer2_io_bqrelse(&dio);
1321 			kprintf("hammer2: WRITE PATH: "
1322 				"dbp bread error\n");
1323 			break;
1324 		}
1325 		bdata = hammer2_io_data(dio, chain->bref.data_off);
1326 
1327 		chain->bref.methods = HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
1328 				      HAMMER2_ENC_CHECK(check_algo);
1329 		bcopy(data, bdata, chain->bytes);
1330 
1331 		/*
1332 		 * The flush code doesn't calculate check codes for
1333 		 * file data (doing so can result in excessive I/O),
1334 		 * so we do it here.
1335 		 */
1336 		hammer2_chain_setcheck(chain, bdata);
1337 
1338 		/*
1339 		 * Device buffer is now valid, chain is no longer in
1340 		 * the initial state.
1341 		 *
1342 		 * (No blockref table worries with file data)
1343 		 */
1344 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1345 		hammer2_dedup_record(chain, dio, bdata);
1346 
1347 		if (ioflag & IO_SYNC) {
1348 			/*
1349 			 * Synchronous I/O requested.
1350 			 */
1351 			hammer2_io_bwrite(&dio);
1352 		/*
1353 		} else if ((ioflag & IO_DIRECT) &&
1354 			   loff + n == pblksize) {
1355 			hammer2_io_bdwrite(&dio);
1356 		*/
1357 		} else if (ioflag & IO_ASYNC) {
1358 			hammer2_io_bawrite(&dio);
1359 		} else {
1360 			hammer2_io_bdwrite(&dio);
1361 		}
1362 		break;
1363 	default:
1364 		panic("hammer2_write_bp: bad chain type %d\n",
1365 		      chain->bref.type);
1366 		/* NOT REACHED */
1367 		error = 0;
1368 		break;
1369 	}
1370 	*errorp = error;
1371 }
1372 
1373 /*
1374  * LIVE DEDUP HEURISTICS
1375  *
1376  * Record media and crc information for possible dedup operation.  Note
1377  * that the dedup mask bits must also be set in the related DIO for a dedup
1378  * to be fully validated (which is handled in the freemap allocation code).
1379  *
1380  * WARNING! This code is SMP safe but the heuristic allows SMP collisions.
1381  *	    All fields must be loaded into locals and validated.
1382  *
1383  * WARNING! Should only be used for file data and directory entries,
1384  *	    hammer2_chain_modify() only checks for the dedup case on data
1385  *	    chains.  Also, dedup data can only be recorded for committed
1386  *	    chains (so NOT strategy writes which can undergo further
1387  *	    modification after the fact!).
1388  */
1389 void
1390 hammer2_dedup_record(hammer2_chain_t *chain, hammer2_io_t *dio,
1391 		     const char *data)
1392 {
1393 	hammer2_dev_t *hmp;
1394 	hammer2_dedup_t *dedup;
1395 	uint64_t crc;
1396 	uint64_t mask;
1397 	int best = 0;
1398 	int i;
1399 	int dticks;
1400 
1401 	/*
1402 	 * We can only record a dedup if we have media data to test against.
1403 	 * If dedup is not enabled, return early, which allows a chain to
1404 	 * remain marked MODIFIED (which might have benefits in special
1405 	 * situations, though typically it does not).
1406 	 */
1407 	if (hammer2_dedup_enable == 0)
1408 		return;
1409 	if (dio == NULL) {
1410 		dio = chain->dio;
1411 		if (dio == NULL)
1412 			return;
1413 	}
1414 
1415 	hmp = chain->hmp;
1416 
1417 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
1418 	case HAMMER2_CHECK_ISCSI32:
1419 		/*
1420 		 * XXX use the built-in crc (the dedup lookup sequencing
1421 		 * needs to be fixed so the check code is already present
1422 		 * when dedup_lookup is called)
1423 		 */
1424 #if 0
1425 		crc = (uint64_t)(uint32_t)chain->bref.check.iscsi32.value;
1426 #endif
1427 		crc = XXH64(data, chain->bytes, XXH_HAMMER2_SEED);
1428 		break;
1429 	case HAMMER2_CHECK_XXHASH64:
1430 		crc = chain->bref.check.xxhash64.value;
1431 		break;
1432 	case HAMMER2_CHECK_SHA192:
1433 		/*
1434 		 * XXX use the built-in crc (the dedup lookup sequencing
1435 		 * needs to be fixed so the check code is already present
1436 		 * when dedup_lookup is called)
1437 		 */
1438 #if 0
1439 		crc = ((uint64_t *)chain->bref.check.sha192.data)[0] ^
1440 		      ((uint64_t *)chain->bref.check.sha192.data)[1] ^
1441 		      ((uint64_t *)chain->bref.check.sha192.data)[2];
1442 #endif
1443 		crc = XXH64(data, chain->bytes, XXH_HAMMER2_SEED);
1444 		break;
1445 	default:
1446 		/*
1447 		 * Cannot dedup without a check code
1448 		 *
1449 		 * NOTE: In particular, CHECK_NONE allows a sector to be
1450 		 *	 overwritten without copy-on-write, recording
1451 		 *	 a dedup block for a CHECK_NONE object would be
1452 		 *	 a disaster!
1453 		 */
1454 		return;
1455 	}
1456 
1457 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_DEDUPABLE);
1458 
1459 	dedup = &hmp->heur_dedup[crc & (HAMMER2_DEDUP_HEUR_MASK & ~3)];
1460 	for (i = 0; i < 4; ++i) {
1461 		if (dedup[i].data_crc == crc) {
1462 			best = i;
1463 			break;
1464 		}
1465 		dticks = (int)(dedup[i].ticks - dedup[best].ticks);
1466 		if (dticks < 0 || dticks > hz * 60 * 30)
1467 			best = i;
1468 	}
1469 	dedup += best;
1470 	if (hammer2_debug & 0x40000) {
1471 		kprintf("REC %04x %016jx %016jx\n",
1472 			(int)(dedup - hmp->heur_dedup),
1473 			crc,
1474 			chain->bref.data_off);
1475 	}
1476 	dedup->ticks = ticks;
1477 	dedup->data_off = chain->bref.data_off;
1478 	dedup->data_crc = crc;
1479 
1480 	/*
1481 	 * Set the valid bits for the dedup only after we know the data
1482 	 * buffer has been updated.  The alloc bits were set (and the valid
1483 	 * bits cleared) when the media was allocated.
1484 	 *
1485 	 * This is done in two stages becuase the bulkfree code can race
1486 	 * the gap between allocation and data population.  Both masks must
1487 	 * be set before a bcmp/dedup operation is able to use the block.
1488 	 */
1489 	mask = hammer2_dedup_mask(dio, chain->bref.data_off, chain->bytes);
1490 	atomic_set_64(&dio->dedup_valid, mask);
1491 
1492 #if 0
1493 	/*
1494 	 * XXX removed. MODIFIED is an integral part of the flush code,
1495 	 * lets not just clear it
1496 	 */
1497 	/*
1498 	 * Once we record the dedup the chain must be marked clean to
1499 	 * prevent reuse of the underlying block.   Remember that this
1500 	 * write occurs when the buffer cache is flushed (i.e. on sync(),
1501 	 * fsync(), filesystem periodic sync, or when the kernel needs to
1502 	 * flush a buffer), and not whenever the user write()s.
1503 	 */
1504 	if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1505 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1506 		atomic_add_long(&hammer2_count_modified_chains, -1);
1507 		if (chain->pmp)
1508 			hammer2_pfs_memory_wakeup(chain->pmp, -1);
1509 	}
1510 #endif
1511 }
1512 
1513 static
1514 hammer2_off_t
1515 hammer2_dedup_lookup(hammer2_dev_t *hmp, char **datap, int pblksize)
1516 {
1517 	hammer2_dedup_t *dedup;
1518 	hammer2_io_t *dio;
1519 	hammer2_off_t off;
1520 	uint64_t crc;
1521 	uint64_t mask;
1522 	char *data;
1523 	char *dtmp;
1524 	int i;
1525 
1526 	if (hammer2_dedup_enable == 0)
1527 		return 0;
1528 	data = *datap;
1529 	if (data == NULL)
1530 		return 0;
1531 
1532 	/*
1533 	 * XXX use the built-in crc (the dedup lookup sequencing
1534 	 * needs to be fixed so the check code is already present
1535 	 * when dedup_lookup is called)
1536 	 */
1537 	crc = XXH64(data, pblksize, XXH_HAMMER2_SEED);
1538 	dedup = &hmp->heur_dedup[crc & (HAMMER2_DEDUP_HEUR_MASK & ~3)];
1539 
1540 	if (hammer2_debug & 0x40000) {
1541 		kprintf("LOC %04x/4 %016jx\n",
1542 			(int)(dedup - hmp->heur_dedup),
1543 			crc);
1544 	}
1545 
1546 	for (i = 0; i < 4; ++i) {
1547 		off = dedup[i].data_off;
1548 		cpu_ccfence();
1549 		if (dedup[i].data_crc != crc)
1550 			continue;
1551 		if ((1 << (int)(off & HAMMER2_OFF_MASK_RADIX)) != pblksize)
1552 			continue;
1553 		dio = hammer2_io_getquick(hmp, off, pblksize);
1554 		if (dio) {
1555 			dtmp = hammer2_io_data(dio, off),
1556 			mask = hammer2_dedup_mask(dio, off, pblksize);
1557 			if ((dio->dedup_alloc & mask) == mask &&
1558 			    (dio->dedup_valid & mask) == mask &&
1559 			    bcmp(data, dtmp, pblksize) == 0) {
1560 				if (hammer2_debug & 0x40000) {
1561 					kprintf("DEDUP SUCCESS %016jx\n",
1562 						(intmax_t)off);
1563 				}
1564 				hammer2_io_putblk(&dio);
1565 				*datap = NULL;
1566 				dedup[i].ticks = ticks;   /* update use */
1567 				atomic_add_long(&hammer2_iod_file_wdedup,
1568 						pblksize);
1569 
1570 				return off;		/* RETURN */
1571 			}
1572 			hammer2_io_putblk(&dio);
1573 		}
1574 	}
1575 	return 0;
1576 }
1577 
1578 /*
1579  * Poof.  Races are ok, if someone gets in and reuses a dedup offset
1580  * before or while we are clearing it they will also recover the freemap
1581  * entry (set it to fully allocated), so a bulkfree race can only set it
1582  * to a possibly-free state.
1583  *
1584  * XXX ok, well, not really sure races are ok but going to run with it
1585  *     for the moment.
1586  */
1587 void
1588 hammer2_dedup_clear(hammer2_dev_t *hmp)
1589 {
1590 	int i;
1591 
1592 	for (i = 0; i < HAMMER2_DEDUP_HEUR_SIZE; ++i) {
1593 		hmp->heur_dedup[i].data_off = 0;
1594 		hmp->heur_dedup[i].ticks = ticks - 1;
1595 	}
1596 }
1597