1 /*
2  * Copyright (c) 2011-2015 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 /*
37  * This module handles low level logical file I/O (strategy) which backs
38  * the logical buffer cache.
39  *
40  * [De]compression, zero-block, check codes, and buffer cache operations
41  * for file data is handled here.
42  *
43  * Live dedup makes its home here as well.
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/fcntl.h>
50 #include <sys/buf.h>
51 #include <sys/proc.h>
52 #include <sys/namei.h>
53 #include <sys/mount.h>
54 #include <sys/vnode.h>
55 #include <sys/mountctl.h>
56 #include <sys/dirent.h>
57 #include <sys/uio.h>
58 #include <sys/objcache.h>
59 #include <sys/event.h>
60 #include <sys/file.h>
61 #include <vfs/fifofs/fifo.h>
62 
63 #include "hammer2.h"
64 #include "hammer2_lz4.h"
65 
66 #include "zlib/hammer2_zlib.h"
67 
68 struct objcache *cache_buffer_read;
69 struct objcache *cache_buffer_write;
70 
71 /*
72  * Strategy code (async logical file buffer I/O from system)
73  *
74  * Except for the transaction init (which should normally not block),
75  * we essentially run the strategy operation asynchronously via a XOP.
76  *
77  * XXX This isn't supposed to be able to deadlock against vfs_sync vfsync()
78  *     calls but it has in the past when multiple flushes are queued.
79  *
80  * XXX We currently terminate the transaction once we get a quorum, otherwise
81  *     the frontend can stall, but this can leave the remaining nodes with
82  *     a potential flush conflict.  We need to delay flushes on those nodes
83  *     until running transactions complete separately from the normal
84  *     transaction sequencing.  FIXME TODO.
85  */
86 static void hammer2_strategy_xop_read(hammer2_thread_t *thr,
87 				hammer2_xop_t *arg);
88 static void hammer2_strategy_xop_write(hammer2_thread_t *thr,
89 				hammer2_xop_t *arg);
90 static int hammer2_strategy_read(struct vop_strategy_args *ap);
91 static int hammer2_strategy_write(struct vop_strategy_args *ap);
92 static void hammer2_strategy_read_completion(hammer2_chain_t *chain,
93 				char *data, struct bio *bio);
94 
95 static hammer2_off_t hammer2_dedup_lookup(hammer2_dev_t *hmp,
96 			char **datap, int pblksize);
97 
98 int
99 hammer2_vop_strategy(struct vop_strategy_args *ap)
100 {
101 	struct bio *biop;
102 	struct buf *bp;
103 	int error;
104 
105 	biop = ap->a_bio;
106 	bp = biop->bio_buf;
107 
108 	switch(bp->b_cmd) {
109 	case BUF_CMD_READ:
110 		error = hammer2_strategy_read(ap);
111 		++hammer2_iod_file_read;
112 		break;
113 	case BUF_CMD_WRITE:
114 		error = hammer2_strategy_write(ap);
115 		++hammer2_iod_file_write;
116 		break;
117 	default:
118 		bp->b_error = error = EINVAL;
119 		bp->b_flags |= B_ERROR;
120 		biodone(biop);
121 		break;
122 	}
123 	return (error);
124 }
125 
126 /*
127  * Return the largest contiguous physical disk range for the logical
128  * request, in bytes.
129  *
130  * (struct vnode *vp, off_t loffset, off_t *doffsetp, int *runp, int *runb)
131  *
132  * Basically disabled, the logical buffer write thread has to deal with
133  * buffers one-at-a-time.  Note that this should not prevent cluster_read()
134  * from reading-ahead, it simply prevents it from trying form a single
135  * cluster buffer for the logical request.  H2 already uses 64KB buffers!
136  */
137 int
138 hammer2_vop_bmap(struct vop_bmap_args *ap)
139 {
140 	*ap->a_doffsetp = NOOFFSET;
141 	if (ap->a_runp)
142 		*ap->a_runp = 0;
143 	if (ap->a_runb)
144 		*ap->a_runb = 0;
145 	return (EOPNOTSUPP);
146 }
147 
148 /****************************************************************************
149  *				READ SUPPORT				    *
150  ****************************************************************************/
151 /*
152  * Callback used in read path in case that a block is compressed with LZ4.
153  */
154 static
155 void
156 hammer2_decompress_LZ4_callback(const char *data, u_int bytes, struct bio *bio)
157 {
158 	struct buf *bp;
159 	char *compressed_buffer;
160 	int compressed_size;
161 	int result;
162 
163 	bp = bio->bio_buf;
164 
165 #if 0
166 	if bio->bio_caller_info2.index &&
167 	      bio->bio_caller_info1.uvalue32 !=
168 	      crc32(bp->b_data, bp->b_bufsize) --- return error
169 #endif
170 
171 	KKASSERT(bp->b_bufsize <= HAMMER2_PBUFSIZE);
172 	compressed_size = *(const int *)data;
173 	KKASSERT((uint32_t)compressed_size <= bytes - sizeof(int));
174 
175 	compressed_buffer = objcache_get(cache_buffer_read, M_INTWAIT);
176 	result = LZ4_decompress_safe(__DECONST(char *, &data[sizeof(int)]),
177 				     compressed_buffer,
178 				     compressed_size,
179 				     bp->b_bufsize);
180 	if (result < 0) {
181 		kprintf("READ PATH: Error during decompression."
182 			"bio %016jx/%d\n",
183 			(intmax_t)bio->bio_offset, bytes);
184 		/* make sure it isn't random garbage */
185 		bzero(compressed_buffer, bp->b_bufsize);
186 	}
187 	KKASSERT(result <= bp->b_bufsize);
188 	bcopy(compressed_buffer, bp->b_data, bp->b_bufsize);
189 	if (result < bp->b_bufsize)
190 		bzero(bp->b_data + result, bp->b_bufsize - result);
191 	objcache_put(cache_buffer_read, compressed_buffer);
192 	bp->b_resid = 0;
193 	bp->b_flags |= B_AGE;
194 }
195 
196 /*
197  * Callback used in read path in case that a block is compressed with ZLIB.
198  * It is almost identical to LZ4 callback, so in theory they can be unified,
199  * but we didn't want to make changes in bio structure for that.
200  */
201 static
202 void
203 hammer2_decompress_ZLIB_callback(const char *data, u_int bytes, struct bio *bio)
204 {
205 	struct buf *bp;
206 	char *compressed_buffer;
207 	z_stream strm_decompress;
208 	int result;
209 	int ret;
210 
211 	bp = bio->bio_buf;
212 
213 	KKASSERT(bp->b_bufsize <= HAMMER2_PBUFSIZE);
214 	strm_decompress.avail_in = 0;
215 	strm_decompress.next_in = Z_NULL;
216 
217 	ret = inflateInit(&strm_decompress);
218 
219 	if (ret != Z_OK)
220 		kprintf("HAMMER2 ZLIB: Fatal error in inflateInit.\n");
221 
222 	compressed_buffer = objcache_get(cache_buffer_read, M_INTWAIT);
223 	strm_decompress.next_in = __DECONST(char *, data);
224 
225 	/* XXX supply proper size, subset of device bp */
226 	strm_decompress.avail_in = bytes;
227 	strm_decompress.next_out = compressed_buffer;
228 	strm_decompress.avail_out = bp->b_bufsize;
229 
230 	ret = inflate(&strm_decompress, Z_FINISH);
231 	if (ret != Z_STREAM_END) {
232 		kprintf("HAMMER2 ZLIB: Fatar error during decompression.\n");
233 		bzero(compressed_buffer, bp->b_bufsize);
234 	}
235 	bcopy(compressed_buffer, bp->b_data, bp->b_bufsize);
236 	result = bp->b_bufsize - strm_decompress.avail_out;
237 	if (result < bp->b_bufsize)
238 		bzero(bp->b_data + result, strm_decompress.avail_out);
239 	objcache_put(cache_buffer_read, compressed_buffer);
240 	ret = inflateEnd(&strm_decompress);
241 
242 	bp->b_resid = 0;
243 	bp->b_flags |= B_AGE;
244 }
245 
246 /*
247  * Logical buffer I/O, async read.
248  */
249 static
250 int
251 hammer2_strategy_read(struct vop_strategy_args *ap)
252 {
253 	hammer2_xop_strategy_t *xop;
254 	struct buf *bp;
255 	struct bio *bio;
256 	struct bio *nbio;
257 	hammer2_inode_t *ip;
258 	hammer2_key_t lbase;
259 
260 	bio = ap->a_bio;
261 	bp = bio->bio_buf;
262 	ip = VTOI(ap->a_vp);
263 	nbio = push_bio(bio);
264 
265 	lbase = bio->bio_offset;
266 	KKASSERT(((int)lbase & HAMMER2_PBUFMASK) == 0);
267 
268 	xop = hammer2_xop_alloc(ip, HAMMER2_XOP_STRATEGY);
269 	xop->finished = 0;
270 	xop->bio = bio;
271 	xop->lbase = lbase;
272 	hammer2_mtx_init(&xop->lock, "h2bior");
273 	hammer2_xop_start(&xop->head, hammer2_strategy_xop_read);
274 	/* asynchronous completion */
275 
276 	return(0);
277 }
278 
279 /*
280  * Per-node XOP (threaded), do a synchronous lookup of the chain and
281  * its data.  The frontend is asynchronous, so we are also responsible
282  * for racing to terminate the frontend.
283  */
284 static
285 void
286 hammer2_strategy_xop_read(hammer2_thread_t *thr, hammer2_xop_t *arg)
287 {
288 	hammer2_xop_strategy_t *xop = &arg->xop_strategy;
289 	hammer2_chain_t *parent;
290 	hammer2_chain_t *chain;
291 	hammer2_key_t key_dummy;
292 	hammer2_key_t lbase;
293 	struct bio *bio;
294 	struct buf *bp;
295 	int error;
296 
297 	/*
298 	 * Note that we can race completion of the bio supplied by
299 	 * the front-end so we cannot access it until we determine
300 	 * that we are the ones finishing it up.
301 	 */
302 	lbase = xop->lbase;
303 
304 	/*
305 	 * This is difficult to optimize.  The logical buffer might be
306 	 * partially dirty (contain dummy zero-fill pages), which would
307 	 * mess up our crc calculation if we were to try a direct read.
308 	 * So for now we always double-buffer through the underlying
309 	 * storage.
310 	 *
311 	 * If not for the above problem we could conditionalize on
312 	 * (1) 64KB buffer, (2) one chain (not multi-master) and
313 	 * (3) !hammer2_double_buffer, and issue a direct read into the
314 	 * logical buffer.
315 	 */
316 	parent = hammer2_inode_chain(xop->head.ip1, thr->clindex,
317 				     HAMMER2_RESOLVE_ALWAYS |
318 				     HAMMER2_RESOLVE_SHARED);
319 	if (parent) {
320 		chain = hammer2_chain_lookup(&parent, &key_dummy,
321 					     lbase, lbase,
322 					     &error,
323 					     HAMMER2_LOOKUP_ALWAYS |
324 					     HAMMER2_LOOKUP_SHARED);
325 		if (chain)
326 			error = chain->error;
327 		error = hammer2_error_to_errno(error);
328 	} else {
329 		error = EIO;
330 		chain = NULL;
331 	}
332 	error = hammer2_xop_feed(&xop->head, chain, thr->clindex, error);
333 	if (chain) {
334 		hammer2_chain_unlock(chain);
335 		hammer2_chain_drop(chain);
336 	}
337 	if (parent) {
338 		hammer2_chain_unlock(parent);
339 		hammer2_chain_drop(parent);
340 	}
341 	chain = NULL;	/* safety */
342 	parent = NULL;	/* safety */
343 
344 	/*
345 	 * Race to finish the frontend.  First-to-complete.  bio is only
346 	 * valid if we are determined to be the ones able to complete
347 	 * the operation.
348 	 */
349 	if (xop->finished)
350 		return;
351 	hammer2_mtx_ex(&xop->lock);
352 	if (xop->finished) {
353 		hammer2_mtx_unlock(&xop->lock);
354 		return;
355 	}
356 	bio = xop->bio;
357 	bp = bio->bio_buf;
358 
359 	/*
360 	 * Async operation has not completed and we now own the lock.
361 	 * Determine if we can complete the operation by issuing the
362 	 * frontend collection non-blocking.
363 	 *
364 	 * H2 double-buffers the data, setting B_NOTMETA on the logical
365 	 * buffer hints to the OS that the logical buffer should not be
366 	 * swapcached (since the device buffer can be).
367 	 *
368 	 * Also note that even for compressed data we would rather the
369 	 * kernel cache/swapcache device buffers more and (decompressed)
370 	 * logical buffers less, since that will significantly improve
371 	 * the amount of end-user data that can be cached.
372 	 */
373 	error = hammer2_xop_collect(&xop->head, HAMMER2_XOP_COLLECT_NOWAIT);
374 
375 	switch(error) {
376 	case 0:
377 		xop->finished = 1;
378 		hammer2_mtx_unlock(&xop->lock);
379 		bp->b_flags |= B_NOTMETA;
380 		chain = xop->head.cluster.focus;
381 		hammer2_strategy_read_completion(chain, (char *)chain->data,
382 						 xop->bio);
383 		biodone(bio);
384 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
385 		break;
386 	case ENOENT:
387 		xop->finished = 1;
388 		hammer2_mtx_unlock(&xop->lock);
389 		bp->b_flags |= B_NOTMETA;
390 		bp->b_resid = 0;
391 		bp->b_error = 0;
392 		bzero(bp->b_data, bp->b_bcount);
393 		biodone(bio);
394 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
395 		break;
396 	case EINPROGRESS:
397 		hammer2_mtx_unlock(&xop->lock);
398 		break;
399 	default:
400 		kprintf("strategy_xop_read: error %d loff=%016jx\n",
401 			error, bp->b_loffset);
402 		xop->finished = 1;
403 		hammer2_mtx_unlock(&xop->lock);
404 		bp->b_flags |= B_ERROR;
405 		bp->b_error = EIO;
406 		biodone(bio);
407 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
408 		break;
409 	}
410 }
411 
412 static
413 void
414 hammer2_strategy_read_completion(hammer2_chain_t *chain, char *data,
415 				 struct bio *bio)
416 {
417 	struct buf *bp = bio->bio_buf;
418 
419 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
420 		/*
421 		 * Copy from in-memory inode structure.
422 		 */
423 		bcopy(((hammer2_inode_data_t *)data)->u.data,
424 		      bp->b_data, HAMMER2_EMBEDDED_BYTES);
425 		bzero(bp->b_data + HAMMER2_EMBEDDED_BYTES,
426 		      bp->b_bcount - HAMMER2_EMBEDDED_BYTES);
427 		bp->b_resid = 0;
428 		bp->b_error = 0;
429 	} else if (chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
430 		/*
431 		 * Data is on-media, record for live dedup.  Release the
432 		 * chain (try to free it) when done.  The data is still
433 		 * cached by both the buffer cache in front and the
434 		 * block device behind us.  This leaves more room in the
435 		 * LRU chain cache for meta-data chains which we really
436 		 * want to retain.
437 		 *
438 		 * NOTE: Deduplication cannot be safely recorded for
439 		 *	 records without a check code.
440 		 */
441 		hammer2_dedup_record(chain, NULL, data);
442 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
443 
444 		/*
445 		 * Decompression and copy.
446 		 */
447 		switch (HAMMER2_DEC_COMP(chain->bref.methods)) {
448 		case HAMMER2_COMP_LZ4:
449 			hammer2_decompress_LZ4_callback(data, chain->bytes,
450 							bio);
451 			/* b_resid set by call */
452 			break;
453 		case HAMMER2_COMP_ZLIB:
454 			hammer2_decompress_ZLIB_callback(data, chain->bytes,
455 							 bio);
456 			/* b_resid set by call */
457 			break;
458 		case HAMMER2_COMP_NONE:
459 			KKASSERT(chain->bytes <= bp->b_bcount);
460 			bcopy(data, bp->b_data, chain->bytes);
461 			if (chain->bytes < bp->b_bcount) {
462 				bzero(bp->b_data + chain->bytes,
463 				      bp->b_bcount - chain->bytes);
464 			}
465 			bp->b_resid = 0;
466 			bp->b_error = 0;
467 			break;
468 		default:
469 			panic("hammer2_strategy_read: "
470 			      "unknown compression type");
471 		}
472 	} else {
473 		panic("hammer2_strategy_read: unknown bref type");
474 	}
475 }
476 
477 /****************************************************************************
478  *				WRITE SUPPORT				    *
479  ****************************************************************************/
480 
481 /*
482  * Functions for compression in threads,
483  * from hammer2_vnops.c
484  */
485 static void hammer2_write_file_core(char *data, hammer2_inode_t *ip,
486 				hammer2_chain_t **parentp,
487 				hammer2_key_t lbase, int ioflag, int pblksize,
488 				hammer2_tid_t mtid, int *errorp);
489 static void hammer2_compress_and_write(char *data, hammer2_inode_t *ip,
490 				hammer2_chain_t **parentp,
491 				hammer2_key_t lbase, int ioflag, int pblksize,
492 				hammer2_tid_t mtid, int *errorp,
493 				int comp_algo, int check_algo);
494 static void hammer2_zero_check_and_write(char *data, hammer2_inode_t *ip,
495 				hammer2_chain_t **parentp,
496 				hammer2_key_t lbase, int ioflag, int pblksize,
497 				hammer2_tid_t mtid, int *errorp,
498 				int check_algo);
499 static int test_block_zeros(const char *buf, size_t bytes);
500 static void zero_write(char *data, hammer2_inode_t *ip,
501 				hammer2_chain_t **parentp,
502 				hammer2_key_t lbase,
503 				hammer2_tid_t mtid, int *errorp);
504 static void hammer2_write_bp(hammer2_chain_t *chain, char *data,
505 				int ioflag, int pblksize,
506 				hammer2_tid_t mtid, int *errorp,
507 				int check_algo);
508 
509 static
510 int
511 hammer2_strategy_write(struct vop_strategy_args *ap)
512 {
513 	hammer2_xop_strategy_t *xop;
514 	hammer2_pfs_t *pmp;
515 	struct bio *bio;
516 	struct buf *bp;
517 	hammer2_inode_t *ip;
518 
519 	bio = ap->a_bio;
520 	bp = bio->bio_buf;
521 	ip = VTOI(ap->a_vp);
522 	pmp = ip->pmp;
523 
524 	hammer2_lwinprog_ref(pmp);
525 	hammer2_trans_assert_strategy(pmp);
526 	hammer2_trans_init(pmp, HAMMER2_TRANS_BUFCACHE);
527 
528 	xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
529 				    HAMMER2_XOP_STRATEGY);
530 	xop->finished = 0;
531 	xop->bio = bio;
532 	xop->lbase = bio->bio_offset;
533 	hammer2_mtx_init(&xop->lock, "h2biow");
534 	hammer2_xop_start(&xop->head, hammer2_strategy_xop_write);
535 	/* asynchronous completion */
536 
537 	hammer2_lwinprog_wait(pmp, hammer2_flush_pipe);
538 
539 	return(0);
540 }
541 
542 /*
543  * Per-node XOP (threaded).  Write the logical buffer to the media.
544  *
545  * This is a bit problematic because there may be multiple target and
546  * any of them may be able to release the bp.  In addition, if our
547  * particulr target is offline we don't want to block the bp (and thus
548  * the frontend).  To accomplish this we copy the data to the per-thr
549  * scratch buffer.
550  */
551 static
552 void
553 hammer2_strategy_xop_write(hammer2_thread_t *thr, hammer2_xop_t *arg)
554 {
555 	hammer2_xop_strategy_t *xop = &arg->xop_strategy;
556 	hammer2_chain_t *parent;
557 	hammer2_key_t lbase;
558 	hammer2_inode_t *ip;
559 	struct bio *bio;
560 	struct buf *bp;
561 	int error;
562 	int lblksize;
563 	int pblksize;
564 	hammer2_off_t bio_offset;
565 	char *bio_data;
566 
567 	/*
568 	 * We can only access the bp/bio if the frontend has not yet
569 	 * completed.
570 	 */
571 	if (xop->finished)
572 		return;
573 	hammer2_mtx_sh(&xop->lock);
574 	if (xop->finished) {
575 		hammer2_mtx_unlock(&xop->lock);
576 		return;
577 	}
578 
579 	lbase = xop->lbase;
580 	bio = xop->bio;			/* ephermal */
581 	bp = bio->bio_buf;		/* ephermal */
582 	ip = xop->head.ip1;		/* retained by ref */
583 	bio_offset = bio->bio_offset;
584 	bio_data = thr->scratch;
585 
586 	/* hammer2_trans_init(parent->hmp->spmp, HAMMER2_TRANS_BUFCACHE); */
587 
588 	lblksize = hammer2_calc_logical(ip, bio->bio_offset, &lbase, NULL);
589 	pblksize = hammer2_calc_physical(ip, lbase);
590 	bcopy(bp->b_data, bio_data, lblksize);
591 
592 	hammer2_mtx_unlock(&xop->lock);
593 	bp = NULL;	/* safety, illegal to access after unlock */
594 	bio = NULL;	/* safety, illegal to access after unlock */
595 
596 	/*
597 	 * Actual operation
598 	 */
599 	parent = hammer2_inode_chain(ip, thr->clindex, HAMMER2_RESOLVE_ALWAYS);
600 	hammer2_write_file_core(bio_data, ip, &parent,
601 				lbase, IO_ASYNC, pblksize,
602 				xop->head.mtid, &error);
603 	error = hammer2_error_to_errno(error);
604 	if (parent) {
605 		hammer2_chain_unlock(parent);
606 		hammer2_chain_drop(parent);
607 		parent = NULL;	/* safety */
608 	}
609 	hammer2_xop_feed(&xop->head, NULL, thr->clindex, error);
610 
611 	/*
612 	 * Try to complete the operation on behalf of the front-end.
613 	 */
614 	if (xop->finished)
615 		return;
616 	hammer2_mtx_ex(&xop->lock);
617 	if (xop->finished) {
618 		hammer2_mtx_unlock(&xop->lock);
619 		return;
620 	}
621 
622 	/*
623 	 * Async operation has not completed and we now own the lock.
624 	 * Determine if we can complete the operation by issuing the
625 	 * frontend collection non-blocking.
626 	 *
627 	 * H2 double-buffers the data, setting B_NOTMETA on the logical
628 	 * buffer hints to the OS that the logical buffer should not be
629 	 * swapcached (since the device buffer can be).
630 	 */
631 	error = hammer2_xop_collect(&xop->head, HAMMER2_XOP_COLLECT_NOWAIT);
632 
633 	if (error == EINPROGRESS) {
634 		hammer2_mtx_unlock(&xop->lock);
635 		return;
636 	}
637 
638 	/*
639 	 * Async operation has completed.
640 	 */
641 	xop->finished = 1;
642 	hammer2_mtx_unlock(&xop->lock);
643 
644 	bio = xop->bio;		/* now owned by us */
645 	bp = bio->bio_buf;	/* now owned by us */
646 
647 	if (error == ENOENT || error == 0) {
648 		bp->b_flags |= B_NOTMETA;
649 		bp->b_resid = 0;
650 		bp->b_error = 0;
651 		biodone(bio);
652 	} else {
653 		kprintf("strategy_xop_write: error %d loff=%016jx\n",
654 			error, bp->b_loffset);
655 		bp->b_flags |= B_ERROR;
656 		bp->b_error = EIO;
657 		biodone(bio);
658 	}
659 	hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
660 	hammer2_trans_assert_strategy(ip->pmp);
661 	hammer2_lwinprog_drop(ip->pmp);
662 	hammer2_trans_done(ip->pmp);
663 }
664 
665 /*
666  * Wait for pending I/O to complete
667  */
668 void
669 hammer2_bioq_sync(hammer2_pfs_t *pmp)
670 {
671 	hammer2_lwinprog_wait(pmp, 0);
672 }
673 
674 /*
675  * Create a new cluster at (cparent, lbase) and assign physical storage,
676  * returning a cluster suitable for I/O.  The cluster will be in a modified
677  * state.  Any chain->error will be rolled up into *errorp, but still
678  * returned.  Caller must check *errorp.  Caller need not check chain->error.
679  *
680  * cparent can wind up being anything.
681  *
682  * If datap is not NULL, *datap points to the real data we intend to write.
683  * If we can dedup the storage location we set *datap to NULL to indicate
684  * to the caller that a dedup occurred.
685  *
686  * NOTE: Special case for data embedded in inode.
687  */
688 static
689 hammer2_chain_t *
690 hammer2_assign_physical(hammer2_inode_t *ip, hammer2_chain_t **parentp,
691 			hammer2_key_t lbase, int pblksize,
692 			hammer2_tid_t mtid, char **datap, int *errorp)
693 {
694 	hammer2_chain_t *chain;
695 	hammer2_key_t key_dummy;
696 	hammer2_off_t dedup_off;
697 	int pradix = hammer2_getradix(pblksize);
698 
699 	/*
700 	 * Locate the chain associated with lbase, return a locked chain.
701 	 * However, do not instantiate any data reference (which utilizes a
702 	 * device buffer) because we will be using direct IO via the
703 	 * logical buffer cache buffer.
704 	 */
705 	KKASSERT(pblksize >= HAMMER2_ALLOC_MIN);
706 retry:
707 	chain = hammer2_chain_lookup(parentp, &key_dummy,
708 				     lbase, lbase,
709 				     errorp,
710 				     HAMMER2_LOOKUP_NODATA);
711 
712 	/*
713 	 * The lookup code should not return a DELETED chain to us, unless
714 	 * its a short-file embedded in the inode.  Then it is possible for
715 	 * the lookup to return a deleted inode.
716 	 */
717 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED) &&
718 	    chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
719 		kprintf("assign physical deleted chain @ "
720 			"%016jx (%016jx.%02x) ip %016jx\n",
721 			lbase, chain->bref.data_off, chain->bref.type,
722 			ip->meta.inum);
723 		Debugger("bleh");
724 	}
725 
726 	if (chain == NULL) {
727 		/*
728 		 * We found a hole, create a new chain entry.
729 		 *
730 		 * NOTE: DATA chains are created without device backing
731 		 *	 store (nor do we want any).
732 		 */
733 		dedup_off = hammer2_dedup_lookup((*parentp)->hmp, datap,
734 						 pblksize);
735 		*errorp = hammer2_chain_create(parentp, &chain,
736 					       ip->pmp,
737 				       HAMMER2_ENC_CHECK(ip->meta.check_algo) |
738 				       HAMMER2_ENC_COMP(HAMMER2_COMP_NONE),
739 					       lbase, HAMMER2_PBUFRADIX,
740 					       HAMMER2_BREF_TYPE_DATA,
741 					       pblksize, mtid,
742 					       dedup_off, 0);
743 		if (chain == NULL) {
744 			panic("hammer2_chain_create: par=%p error=%d\n",
745 			      *parentp, *errorp);
746 			goto retry;
747 		}
748 		/*ip->delta_dcount += pblksize;*/
749 	} else if (chain->error == 0) {
750 		switch (chain->bref.type) {
751 		case HAMMER2_BREF_TYPE_INODE:
752 			/*
753 			 * The data is embedded in the inode, which requires
754 			 * a bit more finess.
755 			 */
756 			hammer2_chain_modify_ip(ip, chain, mtid, 0);
757 			break;
758 		case HAMMER2_BREF_TYPE_DATA:
759 			dedup_off = hammer2_dedup_lookup(chain->hmp, datap,
760 							 pblksize);
761 			if (chain->bytes != pblksize) {
762 				hammer2_chain_resize(chain,
763 						     mtid, dedup_off,
764 						     pradix,
765 						     HAMMER2_MODIFY_OPTDATA);
766 			}
767 
768 			/*
769 			 * DATA buffers must be marked modified whether the
770 			 * data is in a logical buffer or not.  We also have
771 			 * to make this call to fixup the chain data pointers
772 			 * after resizing in case this is an encrypted or
773 			 * compressed buffer.
774 			 */
775 			hammer2_chain_modify(chain, mtid, dedup_off,
776 					     HAMMER2_MODIFY_OPTDATA);
777 			break;
778 		default:
779 			panic("hammer2_assign_physical: bad type");
780 			/* NOT REACHED */
781 			break;
782 		}
783 	} else {
784 		*errorp = chain->error;
785 	}
786 	return (chain);
787 }
788 
789 /*
790  * hammer2_write_file_core() - hammer2_write_thread() helper
791  *
792  * The core write function which determines which path to take
793  * depending on compression settings.  We also have to locate the
794  * related chains so we can calculate and set the check data for
795  * the blockref.
796  */
797 static
798 void
799 hammer2_write_file_core(char *data, hammer2_inode_t *ip,
800 			hammer2_chain_t **parentp,
801 			hammer2_key_t lbase, int ioflag, int pblksize,
802 			hammer2_tid_t mtid, int *errorp)
803 {
804 	hammer2_chain_t *chain;
805 	char *bdata;
806 
807 	*errorp = 0;
808 
809 	switch(HAMMER2_DEC_ALGO(ip->meta.comp_algo)) {
810 	case HAMMER2_COMP_NONE:
811 		/*
812 		 * We have to assign physical storage to the buffer
813 		 * we intend to dirty or write now to avoid deadlocks
814 		 * in the strategy code later.
815 		 *
816 		 * This can return NOOFFSET for inode-embedded data.
817 		 * The strategy code will take care of it in that case.
818 		 */
819 		bdata = data;
820 		chain = hammer2_assign_physical(ip, parentp, lbase, pblksize,
821 						mtid, &bdata, errorp);
822 		if (*errorp) {
823 			/* skip modifications */
824 		} else if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
825 			hammer2_inode_data_t *wipdata;
826 
827 			wipdata = &chain->data->ipdata;
828 			KKASSERT(wipdata->meta.op_flags &
829 				 HAMMER2_OPFLAG_DIRECTDATA);
830 			bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
831 			++hammer2_iod_file_wembed;
832 		} else if (bdata == NULL) {
833 			/*
834 			 * Copy of data already present on-media.
835 			 */
836 			chain->bref.methods =
837 				HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
838 				HAMMER2_ENC_CHECK(ip->meta.check_algo);
839 			hammer2_chain_setcheck(chain, data);
840 		} else {
841 			hammer2_write_bp(chain, data, ioflag, pblksize,
842 					 mtid, errorp, ip->meta.check_algo);
843 		}
844 		if (chain) {
845 			hammer2_chain_unlock(chain);
846 			hammer2_chain_drop(chain);
847 		}
848 		break;
849 	case HAMMER2_COMP_AUTOZERO:
850 		/*
851 		 * Check for zero-fill only
852 		 */
853 		hammer2_zero_check_and_write(data, ip, parentp,
854 					     lbase, ioflag, pblksize,
855 					     mtid, errorp,
856 					     ip->meta.check_algo);
857 		break;
858 	case HAMMER2_COMP_LZ4:
859 	case HAMMER2_COMP_ZLIB:
860 	default:
861 		/*
862 		 * Check for zero-fill and attempt compression.
863 		 */
864 		hammer2_compress_and_write(data, ip, parentp,
865 					   lbase, ioflag, pblksize,
866 					   mtid, errorp,
867 					   ip->meta.comp_algo,
868 					   ip->meta.check_algo);
869 		break;
870 	}
871 }
872 
873 /*
874  * Helper
875  *
876  * Generic function that will perform the compression in compression
877  * write path. The compression algorithm is determined by the settings
878  * obtained from inode.
879  */
880 static
881 void
882 hammer2_compress_and_write(char *data, hammer2_inode_t *ip,
883 	hammer2_chain_t **parentp,
884 	hammer2_key_t lbase, int ioflag, int pblksize,
885 	hammer2_tid_t mtid, int *errorp, int comp_algo, int check_algo)
886 {
887 	hammer2_chain_t *chain;
888 	int comp_size;
889 	int comp_block_size;
890 	char *comp_buffer;
891 	char *bdata;
892 
893 	/*
894 	 * An all-zeros write creates a hole unless the check code
895 	 * is disabled.  When the check code is disabled all writes
896 	 * are done in-place, including any all-zeros writes.
897 	 *
898 	 * NOTE: A snapshot will still force a copy-on-write
899 	 *	 (see the HAMMER2_CHECK_NONE in hammer2_chain.c).
900 	 */
901 	if (check_algo != HAMMER2_CHECK_NONE &&
902 	    test_block_zeros(data, pblksize)) {
903 		zero_write(data, ip, parentp, lbase, mtid, errorp);
904 		return;
905 	}
906 
907 	/*
908 	 * Compression requested.  Try to compress the block.  We store
909 	 * the data normally if we cannot sufficiently compress it.
910 	 *
911 	 * We have a heuristic to detect files which are mostly
912 	 * uncompressable and avoid the compression attempt in that
913 	 * case.  If the compression heuristic is turned off, we always
914 	 * try to compress.
915 	 */
916 	comp_size = 0;
917 	comp_buffer = NULL;
918 
919 	KKASSERT(pblksize / 2 <= 32768);
920 
921 	if (ip->comp_heuristic < 8 || (ip->comp_heuristic & 7) == 0 ||
922 	    hammer2_always_compress) {
923 		z_stream strm_compress;
924 		int comp_level;
925 		int ret;
926 
927 		switch(HAMMER2_DEC_ALGO(comp_algo)) {
928 		case HAMMER2_COMP_LZ4:
929 			comp_buffer = objcache_get(cache_buffer_write,
930 						   M_INTWAIT);
931 			comp_size = LZ4_compress_limitedOutput(
932 					data,
933 					&comp_buffer[sizeof(int)],
934 					pblksize,
935 					pblksize / 2 - sizeof(int));
936 			/*
937 			 * We need to prefix with the size, LZ4
938 			 * doesn't do it for us.  Add the related
939 			 * overhead.
940 			 */
941 			*(int *)comp_buffer = comp_size;
942 			if (comp_size)
943 				comp_size += sizeof(int);
944 			break;
945 		case HAMMER2_COMP_ZLIB:
946 			comp_level = HAMMER2_DEC_LEVEL(comp_algo);
947 			if (comp_level == 0)
948 				comp_level = 6;	/* default zlib compression */
949 			else if (comp_level < 6)
950 				comp_level = 6;
951 			else if (comp_level > 9)
952 				comp_level = 9;
953 			ret = deflateInit(&strm_compress, comp_level);
954 			if (ret != Z_OK) {
955 				kprintf("HAMMER2 ZLIB: fatal error "
956 					"on deflateInit.\n");
957 			}
958 
959 			comp_buffer = objcache_get(cache_buffer_write,
960 						   M_INTWAIT);
961 			strm_compress.next_in = data;
962 			strm_compress.avail_in = pblksize;
963 			strm_compress.next_out = comp_buffer;
964 			strm_compress.avail_out = pblksize / 2;
965 			ret = deflate(&strm_compress, Z_FINISH);
966 			if (ret == Z_STREAM_END) {
967 				comp_size = pblksize / 2 -
968 					    strm_compress.avail_out;
969 			} else {
970 				comp_size = 0;
971 			}
972 			ret = deflateEnd(&strm_compress);
973 			break;
974 		default:
975 			kprintf("Error: Unknown compression method.\n");
976 			kprintf("Comp_method = %d.\n", comp_algo);
977 			break;
978 		}
979 	}
980 
981 	if (comp_size == 0) {
982 		/*
983 		 * compression failed or turned off
984 		 */
985 		comp_block_size = pblksize;	/* safety */
986 		if (++ip->comp_heuristic > 128)
987 			ip->comp_heuristic = 8;
988 	} else {
989 		/*
990 		 * compression succeeded
991 		 */
992 		ip->comp_heuristic = 0;
993 		if (comp_size <= 1024) {
994 			comp_block_size = 1024;
995 		} else if (comp_size <= 2048) {
996 			comp_block_size = 2048;
997 		} else if (comp_size <= 4096) {
998 			comp_block_size = 4096;
999 		} else if (comp_size <= 8192) {
1000 			comp_block_size = 8192;
1001 		} else if (comp_size <= 16384) {
1002 			comp_block_size = 16384;
1003 		} else if (comp_size <= 32768) {
1004 			comp_block_size = 32768;
1005 		} else {
1006 			panic("hammer2: WRITE PATH: "
1007 			      "Weird comp_size value.");
1008 			/* NOT REACHED */
1009 			comp_block_size = pblksize;
1010 		}
1011 
1012 		/*
1013 		 * Must zero the remainder or dedup (which operates on a
1014 		 * physical block basis) will not find matches.
1015 		 */
1016 		if (comp_size < comp_block_size) {
1017 			bzero(comp_buffer + comp_size,
1018 			      comp_block_size - comp_size);
1019 		}
1020 	}
1021 
1022 	/*
1023 	 * Assign physical storage, data will be set to NULL if a live-dedup
1024 	 * was successful.
1025 	 */
1026 	bdata = comp_size ? comp_buffer : data;
1027 	chain = hammer2_assign_physical(ip, parentp, lbase, comp_block_size,
1028 					mtid, &bdata, errorp);
1029 
1030 	if (*errorp) {
1031 		kprintf("WRITE PATH: An error occurred while "
1032 			"assigning physical space.\n");
1033 		KKASSERT(chain == NULL);
1034 		goto done;
1035 	}
1036 
1037 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
1038 		hammer2_inode_data_t *wipdata;
1039 
1040 		hammer2_chain_modify_ip(ip, chain, mtid, 0);
1041 		wipdata = &chain->data->ipdata;
1042 		KKASSERT(wipdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1043 		bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1044 		++hammer2_iod_file_wembed;
1045 	} else if (bdata == NULL) {
1046 		/*
1047 		 * Live deduplication, a copy of the data is already present
1048 		 * on the media.
1049 		 */
1050 		if (comp_size) {
1051 			chain->bref.methods =
1052 				HAMMER2_ENC_COMP(comp_algo) +
1053 				HAMMER2_ENC_CHECK(check_algo);
1054 		} else {
1055 			chain->bref.methods =
1056 				HAMMER2_ENC_COMP(
1057 					HAMMER2_COMP_NONE) +
1058 				HAMMER2_ENC_CHECK(check_algo);
1059 		}
1060 		bdata = comp_size ? comp_buffer : data;
1061 		hammer2_chain_setcheck(chain, bdata);
1062 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1063 	} else {
1064 		hammer2_io_t *dio;
1065 
1066 		KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1067 
1068 		switch(chain->bref.type) {
1069 		case HAMMER2_BREF_TYPE_INODE:
1070 			panic("hammer2_write_bp: unexpected inode\n");
1071 			break;
1072 		case HAMMER2_BREF_TYPE_DATA:
1073 			/*
1074 			 * Optimize out the read-before-write
1075 			 * if possible.
1076 			 */
1077 			*errorp = hammer2_io_newnz(chain->hmp,
1078 						   chain->bref.type,
1079 						   chain->bref.data_off,
1080 						   chain->bytes,
1081 						   &dio);
1082 			if (*errorp) {
1083 				hammer2_io_brelse(&dio);
1084 				kprintf("hammer2: WRITE PATH: "
1085 					"dbp bread error\n");
1086 				break;
1087 			}
1088 			bdata = hammer2_io_data(dio, chain->bref.data_off);
1089 
1090 			/*
1091 			 * When loading the block make sure we don't
1092 			 * leave garbage after the compressed data.
1093 			 */
1094 			if (comp_size) {
1095 				chain->bref.methods =
1096 					HAMMER2_ENC_COMP(comp_algo) +
1097 					HAMMER2_ENC_CHECK(check_algo);
1098 				bcopy(comp_buffer, bdata, comp_size);
1099 			} else {
1100 				chain->bref.methods =
1101 					HAMMER2_ENC_COMP(
1102 						HAMMER2_COMP_NONE) +
1103 					HAMMER2_ENC_CHECK(check_algo);
1104 				bcopy(data, bdata, pblksize);
1105 			}
1106 
1107 			/*
1108 			 * The flush code doesn't calculate check codes for
1109 			 * file data (doing so can result in excessive I/O),
1110 			 * so we do it here.
1111 			 */
1112 			hammer2_chain_setcheck(chain, bdata);
1113 
1114 			/*
1115 			 * Device buffer is now valid, chain is no longer in
1116 			 * the initial state.
1117 			 *
1118 			 * (No blockref table worries with file data)
1119 			 */
1120 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1121 			hammer2_dedup_record(chain, dio, bdata);
1122 
1123 			/* Now write the related bdp. */
1124 			if (ioflag & IO_SYNC) {
1125 				/*
1126 				 * Synchronous I/O requested.
1127 				 */
1128 				hammer2_io_bwrite(&dio);
1129 			/*
1130 			} else if ((ioflag & IO_DIRECT) &&
1131 				   loff + n == pblksize) {
1132 				hammer2_io_bdwrite(&dio);
1133 			*/
1134 			} else if (ioflag & IO_ASYNC) {
1135 				hammer2_io_bawrite(&dio);
1136 			} else {
1137 				hammer2_io_bdwrite(&dio);
1138 			}
1139 			break;
1140 		default:
1141 			panic("hammer2_write_bp: bad chain type %d\n",
1142 				chain->bref.type);
1143 			/* NOT REACHED */
1144 			break;
1145 		}
1146 	}
1147 done:
1148 	if (chain) {
1149 		hammer2_chain_unlock(chain);
1150 		hammer2_chain_drop(chain);
1151 	}
1152 	if (comp_buffer)
1153 		objcache_put(cache_buffer_write, comp_buffer);
1154 }
1155 
1156 /*
1157  * Helper
1158  *
1159  * Function that performs zero-checking and writing without compression,
1160  * it corresponds to default zero-checking path.
1161  */
1162 static
1163 void
1164 hammer2_zero_check_and_write(char *data, hammer2_inode_t *ip,
1165 	hammer2_chain_t **parentp,
1166 	hammer2_key_t lbase, int ioflag, int pblksize,
1167 	hammer2_tid_t mtid, int *errorp,
1168 	int check_algo)
1169 {
1170 	hammer2_chain_t *chain;
1171 	char *bdata;
1172 
1173 	if (check_algo != HAMMER2_CHECK_NONE &&
1174 	    test_block_zeros(data, pblksize)) {
1175 		/*
1176 		 * An all-zeros write creates a hole unless the check code
1177 		 * is disabled.  When the check code is disabled all writes
1178 		 * are done in-place, including any all-zeros writes.
1179 		 *
1180 		 * NOTE: A snapshot will still force a copy-on-write
1181 		 *	 (see the HAMMER2_CHECK_NONE in hammer2_chain.c).
1182 		 */
1183 		zero_write(data, ip, parentp, lbase, mtid, errorp);
1184 	} else {
1185 		/*
1186 		 * Normal write
1187 		 */
1188 		bdata = data;
1189 		chain = hammer2_assign_physical(ip, parentp, lbase, pblksize,
1190 						mtid, &bdata, errorp);
1191 		if (*errorp) {
1192 			/* do nothing */
1193 		} else if (bdata) {
1194 			hammer2_write_bp(chain, data, ioflag, pblksize,
1195 					 mtid, errorp, check_algo);
1196 		} else {
1197 			/* dedup occurred */
1198 			chain->bref.methods =
1199 				HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
1200 				HAMMER2_ENC_CHECK(check_algo);
1201 			hammer2_chain_setcheck(chain, data);
1202 		}
1203 		if (chain) {
1204 			hammer2_chain_unlock(chain);
1205 			hammer2_chain_drop(chain);
1206 		}
1207 	}
1208 }
1209 
1210 /*
1211  * Helper
1212  *
1213  * A function to test whether a block of data contains only zeros,
1214  * returns TRUE (non-zero) if the block is all zeros.
1215  */
1216 static
1217 int
1218 test_block_zeros(const char *buf, size_t bytes)
1219 {
1220 	size_t i;
1221 
1222 	for (i = 0; i < bytes; i += sizeof(long)) {
1223 		if (*(const long *)(buf + i) != 0)
1224 			return (0);
1225 	}
1226 	return (1);
1227 }
1228 
1229 /*
1230  * Helper
1231  *
1232  * Function to "write" a block that contains only zeros.
1233  */
1234 static
1235 void
1236 zero_write(char *data, hammer2_inode_t *ip,
1237 	   hammer2_chain_t **parentp,
1238 	   hammer2_key_t lbase, hammer2_tid_t mtid, int *errorp)
1239 {
1240 	hammer2_chain_t *chain;
1241 	hammer2_key_t key_dummy;
1242 
1243 	chain = hammer2_chain_lookup(parentp, &key_dummy,
1244 				     lbase, lbase,
1245 				     errorp,
1246 				     HAMMER2_LOOKUP_NODATA);
1247 	if (chain) {
1248 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
1249 			hammer2_inode_data_t *wipdata;
1250 
1251 			hammer2_chain_modify_ip(ip, chain, mtid, 0);
1252 			wipdata = &chain->data->ipdata;
1253 			KKASSERT(wipdata->meta.op_flags &
1254 				 HAMMER2_OPFLAG_DIRECTDATA);
1255 			bzero(wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1256 			++hammer2_iod_file_wembed;
1257 		} else {
1258 			hammer2_chain_delete(*parentp, chain,
1259 					     mtid, HAMMER2_DELETE_PERMANENT);
1260 			++hammer2_iod_file_wzero;
1261 		}
1262 		hammer2_chain_unlock(chain);
1263 		hammer2_chain_drop(chain);
1264 	} else {
1265 		++hammer2_iod_file_wzero;
1266 	}
1267 }
1268 
1269 /*
1270  * Helper
1271  *
1272  * Function to write the data as it is, without performing any sort of
1273  * compression. This function is used in path without compression and
1274  * default zero-checking path.
1275  */
1276 static
1277 void
1278 hammer2_write_bp(hammer2_chain_t *chain, char *data, int ioflag,
1279 		 int pblksize,
1280 		 hammer2_tid_t mtid, int *errorp, int check_algo)
1281 {
1282 	hammer2_inode_data_t *wipdata;
1283 	hammer2_io_t *dio;
1284 	char *bdata;
1285 	int error;
1286 
1287 	error = 0;	/* XXX TODO below */
1288 
1289 	KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1290 
1291 	switch(chain->bref.type) {
1292 	case HAMMER2_BREF_TYPE_INODE:
1293 		wipdata = &chain->data->ipdata;
1294 		KKASSERT(wipdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1295 		bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1296 		error = 0;
1297 		++hammer2_iod_file_wembed;
1298 		break;
1299 	case HAMMER2_BREF_TYPE_DATA:
1300 		error = hammer2_io_newnz(chain->hmp,
1301 					 chain->bref.type,
1302 					 chain->bref.data_off,
1303 					 chain->bytes, &dio);
1304 		if (error) {
1305 			hammer2_io_bqrelse(&dio);
1306 			kprintf("hammer2: WRITE PATH: "
1307 				"dbp bread error\n");
1308 			break;
1309 		}
1310 		bdata = hammer2_io_data(dio, chain->bref.data_off);
1311 
1312 		chain->bref.methods = HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
1313 				      HAMMER2_ENC_CHECK(check_algo);
1314 		bcopy(data, bdata, chain->bytes);
1315 
1316 		/*
1317 		 * The flush code doesn't calculate check codes for
1318 		 * file data (doing so can result in excessive I/O),
1319 		 * so we do it here.
1320 		 */
1321 		hammer2_chain_setcheck(chain, bdata);
1322 
1323 		/*
1324 		 * Device buffer is now valid, chain is no longer in
1325 		 * the initial state.
1326 		 *
1327 		 * (No blockref table worries with file data)
1328 		 */
1329 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1330 		hammer2_dedup_record(chain, dio, bdata);
1331 
1332 		if (ioflag & IO_SYNC) {
1333 			/*
1334 			 * Synchronous I/O requested.
1335 			 */
1336 			hammer2_io_bwrite(&dio);
1337 		/*
1338 		} else if ((ioflag & IO_DIRECT) &&
1339 			   loff + n == pblksize) {
1340 			hammer2_io_bdwrite(&dio);
1341 		*/
1342 		} else if (ioflag & IO_ASYNC) {
1343 			hammer2_io_bawrite(&dio);
1344 		} else {
1345 			hammer2_io_bdwrite(&dio);
1346 		}
1347 		break;
1348 	default:
1349 		panic("hammer2_write_bp: bad chain type %d\n",
1350 		      chain->bref.type);
1351 		/* NOT REACHED */
1352 		error = 0;
1353 		break;
1354 	}
1355 	KKASSERT(error == 0);	/* XXX TODO */
1356 	*errorp = error;
1357 }
1358 
1359 /*
1360  * LIVE DEDUP HEURISTICS
1361  *
1362  * Record media and crc information for possible dedup operation.  Note
1363  * that the dedup mask bits must also be set in the related DIO for a dedup
1364  * to be fully validated (which is handled in the freemap allocation code).
1365  *
1366  * WARNING! This code is SMP safe but the heuristic allows SMP collisions.
1367  *	    All fields must be loaded into locals and validated.
1368  *
1369  * WARNING! Should only be used for file data and directory entries,
1370  *	    hammer2_chain_modify() only checks for the dedup case on data
1371  *	    chains.  Also, dedup data can only be recorded for committed
1372  *	    chains (so NOT strategy writes which can undergo further
1373  *	    modification after the fact!).
1374  */
1375 void
1376 hammer2_dedup_record(hammer2_chain_t *chain, hammer2_io_t *dio, char *data)
1377 {
1378 	hammer2_dev_t *hmp;
1379 	hammer2_dedup_t *dedup;
1380 	uint64_t crc;
1381 	uint64_t mask;
1382 	int best = 0;
1383 	int i;
1384 	int dticks;
1385 
1386 	/*
1387 	 * We can only record a dedup if we have media data to test against.
1388 	 * If dedup is not enabled, return early, which allows a chain to
1389 	 * remain marked MODIFIED (which might have benefits in special
1390 	 * situations, though typically it does not).
1391 	 */
1392 	if (hammer2_dedup_enable == 0)
1393 		return;
1394 	if (dio == NULL) {
1395 		dio = chain->dio;
1396 		if (dio == NULL)
1397 			return;
1398 	}
1399 
1400 	hmp = chain->hmp;
1401 
1402 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
1403 	case HAMMER2_CHECK_ISCSI32:
1404 		/*
1405 		 * XXX use the built-in crc (the dedup lookup sequencing
1406 		 * needs to be fixed so the check code is already present
1407 		 * when dedup_lookup is called)
1408 		 */
1409 #if 0
1410 		crc = (uint64_t)(uint32_t)chain->bref.check.iscsi32.value;
1411 #endif
1412 		crc = XXH64(data, chain->bytes, XXH_HAMMER2_SEED);
1413 		break;
1414 	case HAMMER2_CHECK_XXHASH64:
1415 		crc = chain->bref.check.xxhash64.value;
1416 		break;
1417 	case HAMMER2_CHECK_SHA192:
1418 		/*
1419 		 * XXX use the built-in crc (the dedup lookup sequencing
1420 		 * needs to be fixed so the check code is already present
1421 		 * when dedup_lookup is called)
1422 		 */
1423 #if 0
1424 		crc = ((uint64_t *)chain->bref.check.sha192.data)[0] ^
1425 		      ((uint64_t *)chain->bref.check.sha192.data)[1] ^
1426 		      ((uint64_t *)chain->bref.check.sha192.data)[2];
1427 #endif
1428 		crc = XXH64(data, chain->bytes, XXH_HAMMER2_SEED);
1429 		break;
1430 	default:
1431 		/*
1432 		 * Cannot dedup without a check code
1433 		 *
1434 		 * NOTE: In particular, CHECK_NONE allows a sector to be
1435 		 *	 overwritten without copy-on-write, recording
1436 		 *	 a dedup block for a CHECK_NONE object would be
1437 		 *	 a disaster!
1438 		 */
1439 		return;
1440 	}
1441 
1442 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_DEDUPABLE);
1443 
1444 	dedup = &hmp->heur_dedup[crc & (HAMMER2_DEDUP_HEUR_MASK & ~3)];
1445 	for (i = 0; i < 4; ++i) {
1446 		if (dedup[i].data_crc == crc) {
1447 			best = i;
1448 			break;
1449 		}
1450 		dticks = (int)(dedup[i].ticks - dedup[best].ticks);
1451 		if (dticks < 0 || dticks > hz * 60 * 30)
1452 			best = i;
1453 	}
1454 	dedup += best;
1455 	if (hammer2_debug & 0x40000) {
1456 		kprintf("REC %04x %016jx %016jx\n",
1457 			(int)(dedup - hmp->heur_dedup),
1458 			crc,
1459 			chain->bref.data_off);
1460 	}
1461 	dedup->ticks = ticks;
1462 	dedup->data_off = chain->bref.data_off;
1463 	dedup->data_crc = crc;
1464 
1465 	/*
1466 	 * Set the valid bits for the dedup only after we know the data
1467 	 * buffer has been updated.  The alloc bits were set (and the valid
1468 	 * bits cleared) when the media was allocated.
1469 	 *
1470 	 * This is done in two stages becuase the bulkfree code can race
1471 	 * the gap between allocation and data population.  Both masks must
1472 	 * be set before a bcmp/dedup operation is able to use the block.
1473 	 */
1474 	mask = hammer2_dedup_mask(dio, chain->bref.data_off, chain->bytes);
1475 	atomic_set_64(&dio->dedup_valid, mask);
1476 
1477 #if 0
1478 	/*
1479 	 * XXX removed. MODIFIED is an integral part of the flush code,
1480 	 * lets not just clear it
1481 	 */
1482 	/*
1483 	 * Once we record the dedup the chain must be marked clean to
1484 	 * prevent reuse of the underlying block.   Remember that this
1485 	 * write occurs when the buffer cache is flushed (i.e. on sync(),
1486 	 * fsync(), filesystem periodic sync, or when the kernel needs to
1487 	 * flush a buffer), and not whenever the user write()s.
1488 	 */
1489 	if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1490 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1491 		atomic_add_long(&hammer2_count_modified_chains, -1);
1492 		if (chain->pmp)
1493 			hammer2_pfs_memory_wakeup(chain->pmp);
1494 	}
1495 #endif
1496 }
1497 
1498 static
1499 hammer2_off_t
1500 hammer2_dedup_lookup(hammer2_dev_t *hmp, char **datap, int pblksize)
1501 {
1502 	hammer2_dedup_t *dedup;
1503 	hammer2_io_t *dio;
1504 	hammer2_off_t off;
1505 	uint64_t crc;
1506 	uint64_t mask;
1507 	char *data;
1508 	char *dtmp;
1509 	int i;
1510 
1511 	if (hammer2_dedup_enable == 0)
1512 		return 0;
1513 	data = *datap;
1514 	if (data == NULL)
1515 		return 0;
1516 
1517 	/*
1518 	 * XXX use the built-in crc (the dedup lookup sequencing
1519 	 * needs to be fixed so the check code is already present
1520 	 * when dedup_lookup is called)
1521 	 */
1522 	crc = XXH64(data, pblksize, XXH_HAMMER2_SEED);
1523 	dedup = &hmp->heur_dedup[crc & (HAMMER2_DEDUP_HEUR_MASK & ~3)];
1524 
1525 	if (hammer2_debug & 0x40000) {
1526 		kprintf("LOC %04x/4 %016jx\n",
1527 			(int)(dedup - hmp->heur_dedup),
1528 			crc);
1529 	}
1530 
1531 	for (i = 0; i < 4; ++i) {
1532 		off = dedup[i].data_off;
1533 		cpu_ccfence();
1534 		if (dedup[i].data_crc != crc)
1535 			continue;
1536 		if ((1 << (int)(off & HAMMER2_OFF_MASK_RADIX)) != pblksize)
1537 			continue;
1538 		dio = hammer2_io_getquick(hmp, off, pblksize);
1539 		if (dio) {
1540 			dtmp = hammer2_io_data(dio, off),
1541 			mask = hammer2_dedup_mask(dio, off, pblksize);
1542 			if ((dio->dedup_alloc & mask) == mask &&
1543 			    (dio->dedup_valid & mask) == mask &&
1544 			    bcmp(data, dtmp, pblksize) == 0) {
1545 				if (hammer2_debug & 0x40000) {
1546 					kprintf("DEDUP SUCCESS %016jx\n",
1547 						(intmax_t)off);
1548 				}
1549 				hammer2_io_putblk(&dio);
1550 				*datap = NULL;
1551 				dedup[i].ticks = ticks;   /* update use */
1552 				atomic_add_long(&hammer2_iod_file_wdedup,
1553 						pblksize);
1554 
1555 				return off;		/* RETURN */
1556 			}
1557 			hammer2_io_putblk(&dio);
1558 		}
1559 	}
1560 	return 0;
1561 }
1562 
1563 /*
1564  * Poof.  Races are ok, if someone gets in and reuses a dedup offset
1565  * before or while we are clearing it they will also recover the freemap
1566  * entry (set it to fully allocated), so a bulkfree race can only set it
1567  * to a possibly-free state.
1568  *
1569  * XXX ok, well, not really sure races are ok but going to run with it
1570  *     for the moment.
1571  */
1572 void
1573 hammer2_dedup_clear(hammer2_dev_t *hmp)
1574 {
1575 	int i;
1576 
1577 	for (i = 0; i < HAMMER2_DEDUP_HEUR_SIZE; ++i) {
1578 		hmp->heur_dedup[i].data_off = 0;
1579 		hmp->heur_dedup[i].ticks = ticks - 1;
1580 	}
1581 }
1582