xref: /dragonfly/sys/vfs/hammer2/hammer2_vfsops.c (revision 0982c5b8)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/vfsops.h>
43 #include <sys/sysctl.h>
44 #include <sys/socket.h>
45 #include <sys/objcache.h>
46 #include <sys/proc.h>
47 #include <sys/lock.h>
48 #include <sys/file.h>
49 
50 #include "hammer2.h"
51 
52 TAILQ_HEAD(hammer2_mntlist, hammer2_dev);
53 static struct hammer2_mntlist hammer2_mntlist;
54 
55 struct hammer2_pfslist hammer2_pfslist;
56 struct hammer2_pfslist hammer2_spmplist;
57 struct lock hammer2_mntlk;
58 
59 int hammer2_supported_version = HAMMER2_VOL_VERSION_DEFAULT;
60 int hammer2_debug;
61 int hammer2_xop_nthreads;
62 int hammer2_xop_sgroups;
63 int hammer2_xop_xgroups;
64 int hammer2_xop_xbase;
65 int hammer2_xop_mod;
66 long hammer2_debug_inode;
67 int hammer2_cluster_meta_read = 1;	/* physical read-ahead */
68 int hammer2_cluster_data_read = 4;	/* physical read-ahead */
69 int hammer2_cluster_write = 0;		/* physical write clustering */
70 int hammer2_dedup_enable = 1;
71 int hammer2_always_compress = 0;	/* always try to compress */
72 int hammer2_flush_pipe = 100;
73 int hammer2_dio_count;
74 int hammer2_dio_limit = 256;
75 int hammer2_bulkfree_tps = 5000;
76 int hammer2_spread_workers;
77 long hammer2_chain_allocs;
78 long hammer2_limit_dirty_chains;
79 long hammer2_limit_dirty_inodes;
80 long hammer2_count_modified_chains;
81 long hammer2_iod_file_read;
82 long hammer2_iod_meta_read;
83 long hammer2_iod_indr_read;
84 long hammer2_iod_fmap_read;
85 long hammer2_iod_volu_read;
86 long hammer2_iod_file_write;
87 long hammer2_iod_file_wembed;
88 long hammer2_iod_file_wzero;
89 long hammer2_iod_file_wdedup;
90 long hammer2_iod_meta_write;
91 long hammer2_iod_indr_write;
92 long hammer2_iod_fmap_write;
93 long hammer2_iod_volu_write;
94 static long hammer2_iod_inode_creates;
95 static long hammer2_iod_inode_deletes;
96 
97 long hammer2_process_icrc32;
98 long hammer2_process_xxhash64;
99 
100 MALLOC_DECLARE(M_HAMMER2_CBUFFER);
101 MALLOC_DEFINE(M_HAMMER2_CBUFFER, "HAMMER2-compbuffer",
102 		"Buffer used for compression.");
103 
104 MALLOC_DECLARE(M_HAMMER2_DEBUFFER);
105 MALLOC_DEFINE(M_HAMMER2_DEBUFFER, "HAMMER2-decompbuffer",
106 		"Buffer used for decompression.");
107 
108 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
109 
110 SYSCTL_INT(_vfs_hammer2, OID_AUTO, supported_version, CTLFLAG_RD,
111 	   &hammer2_supported_version, 0, "");
112 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
113 	   &hammer2_debug, 0, "");
114 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, debug_inode, CTLFLAG_RW,
115 	   &hammer2_debug_inode, 0, "");
116 SYSCTL_INT(_vfs_hammer2, OID_AUTO, spread_workers, CTLFLAG_RW,
117 	   &hammer2_spread_workers, 0, "");
118 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_meta_read, CTLFLAG_RW,
119 	   &hammer2_cluster_meta_read, 0, "");
120 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_data_read, CTLFLAG_RW,
121 	   &hammer2_cluster_data_read, 0, "");
122 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_write, CTLFLAG_RW,
123 	   &hammer2_cluster_write, 0, "");
124 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dedup_enable, CTLFLAG_RW,
125 	   &hammer2_dedup_enable, 0, "");
126 SYSCTL_INT(_vfs_hammer2, OID_AUTO, always_compress, CTLFLAG_RW,
127 	   &hammer2_always_compress, 0, "");
128 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
129 	   &hammer2_flush_pipe, 0, "");
130 SYSCTL_INT(_vfs_hammer2, OID_AUTO, bulkfree_tps, CTLFLAG_RW,
131 	   &hammer2_bulkfree_tps, 0, "");
132 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_allocs, CTLFLAG_RW,
133 	   &hammer2_chain_allocs, 0, "");
134 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
135 	   &hammer2_limit_dirty_chains, 0, "");
136 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_inodes, CTLFLAG_RW,
137 	   &hammer2_limit_dirty_inodes, 0, "");
138 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, count_modified_chains, CTLFLAG_RW,
139 	   &hammer2_count_modified_chains, 0, "");
140 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
141 	   &hammer2_dio_count, 0, "");
142 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_limit, CTLFLAG_RW,
143 	   &hammer2_dio_limit, 0, "");
144 
145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
146 	   &hammer2_iod_file_read, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
148 	   &hammer2_iod_meta_read, 0, "");
149 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
150 	   &hammer2_iod_indr_read, 0, "");
151 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
152 	   &hammer2_iod_fmap_read, 0, "");
153 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
154 	   &hammer2_iod_volu_read, 0, "");
155 
156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
157 	   &hammer2_iod_file_write, 0, "");
158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wembed, CTLFLAG_RW,
159 	   &hammer2_iod_file_wembed, 0, "");
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wzero, CTLFLAG_RW,
161 	   &hammer2_iod_file_wzero, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wdedup, CTLFLAG_RW,
163 	   &hammer2_iod_file_wdedup, 0, "");
164 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
165 	   &hammer2_iod_meta_write, 0, "");
166 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
167 	   &hammer2_iod_indr_write, 0, "");
168 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
169 	   &hammer2_iod_fmap_write, 0, "");
170 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
171 	   &hammer2_iod_volu_write, 0, "");
172 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_creates, CTLFLAG_RW,
173 	   &hammer2_iod_inode_creates, 0, "");
174 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_deletes, CTLFLAG_RW,
175 	   &hammer2_iod_inode_deletes, 0, "");
176 
177 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_icrc32, CTLFLAG_RW,
178 	   &hammer2_process_icrc32, 0, "");
179 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_xxhash64, CTLFLAG_RW,
180 	   &hammer2_process_xxhash64, 0, "");
181 
182 static int hammer2_vfs_init(struct vfsconf *conf);
183 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
184 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
185 				struct ucred *cred);
186 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *,
187 				struct ucred *);
188 static int hammer2_recovery(hammer2_dev_t *hmp);
189 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
190 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
191 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
192 				struct ucred *cred);
193 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
194 				struct ucred *cred);
195 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
196 				struct fid *fhp, struct vnode **vpp);
197 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
198 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
199 				int *exflagsp, struct ucred **credanonp);
200 static int hammer2_vfs_modifying(struct mount *mp);
201 
202 static void hammer2_update_pmps(hammer2_dev_t *hmp);
203 
204 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp);
205 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp,
206 				hammer2_dev_t *hmp);
207 static int hammer2_fixup_pfses(hammer2_dev_t *hmp);
208 
209 /*
210  * HAMMER2 vfs operations.
211  */
212 static struct vfsops hammer2_vfsops = {
213 	.vfs_flags	= 0,
214 	.vfs_init	= hammer2_vfs_init,
215 	.vfs_uninit	= hammer2_vfs_uninit,
216 	.vfs_sync	= hammer2_vfs_sync,
217 	.vfs_mount	= hammer2_vfs_mount,
218 	.vfs_unmount	= hammer2_vfs_unmount,
219 	.vfs_root 	= hammer2_vfs_root,
220 	.vfs_statfs	= hammer2_vfs_statfs,
221 	.vfs_statvfs	= hammer2_vfs_statvfs,
222 	.vfs_vget	= hammer2_vfs_vget,
223 	.vfs_vptofh	= hammer2_vfs_vptofh,
224 	.vfs_fhtovp	= hammer2_vfs_fhtovp,
225 	.vfs_checkexp	= hammer2_vfs_checkexp,
226 	.vfs_modifying	= hammer2_vfs_modifying
227 };
228 
229 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
230 
231 VFS_SET(hammer2_vfsops, hammer2, VFCF_MPSAFE);
232 MODULE_VERSION(hammer2, 1);
233 
234 static
235 int
236 hammer2_vfs_init(struct vfsconf *conf)
237 {
238 	static struct objcache_malloc_args margs_read;
239 	static struct objcache_malloc_args margs_write;
240 	static struct objcache_malloc_args margs_vop;
241 
242 	int error;
243 	int mod;
244 
245 	error = 0;
246 	kmalloc_raise_limit(M_HAMMER2, 0);	/* unlimited */
247 
248 	/*
249 	 * hammer2_xop_nthreads must be a multiple of ncpus,
250 	 * minimum 2 * ncpus.
251 	 */
252 	mod = ncpus;
253 	hammer2_xop_mod = mod;
254 	hammer2_xop_nthreads = mod * 2;
255 	while (hammer2_xop_nthreads / mod < HAMMER2_XOPGROUPS_MIN ||
256 	       hammer2_xop_nthreads < HAMMER2_XOPTHREADS_MIN)
257         {
258 		hammer2_xop_nthreads += mod;
259 	}
260 	hammer2_xop_sgroups = hammer2_xop_nthreads / mod / 2;
261 	hammer2_xop_xgroups = hammer2_xop_nthreads / mod - hammer2_xop_sgroups;
262 	hammer2_xop_xbase = hammer2_xop_sgroups * mod;
263 
264 	/*
265 	 * A large DIO cache is needed to retain dedup enablement masks.
266 	 * The bulkfree code clears related masks as part of the disk block
267 	 * recycling algorithm, preventing it from being used for a later
268 	 * dedup.
269 	 *
270 	 * NOTE: A large buffer cache can actually interfere with dedup
271 	 *	 operation because we dedup based on media physical buffers
272 	 *	 and not logical buffers.  Try to make the DIO case large
273 	 *	 enough to avoid this problem, but also cap it.
274 	 */
275 	hammer2_dio_limit = nbuf * 2;
276 	if (hammer2_dio_limit > 100000)
277 		hammer2_dio_limit = 100000;
278 
279 	if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
280 		error = EINVAL;
281 	if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
282 		error = EINVAL;
283 	if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
284 		error = EINVAL;
285 
286 	if (error)
287 		kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
288 
289 	margs_read.objsize = 65536;
290 	margs_read.mtype = M_HAMMER2_DEBUFFER;
291 
292 	margs_write.objsize = 32768;
293 	margs_write.mtype = M_HAMMER2_CBUFFER;
294 
295 	margs_vop.objsize = sizeof(hammer2_xop_t);
296 	margs_vop.mtype = M_HAMMER2;
297 
298 	/*
299 	 * Note thaht for the XOPS cache we want backing store allocations
300 	 * to use M_ZERO.  This is not allowed in objcache_get() (to avoid
301 	 * confusion), so use the backing store function that does it.  This
302 	 * means that initial XOPS objects are zerod but REUSED objects are
303 	 * not.  So we are responsible for cleaning the object up sufficiently
304 	 * for our needs before objcache_put()ing it back (typically just the
305 	 * FIFO indices).
306 	 */
307 	cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
308 				0, 1, NULL, NULL, NULL,
309 				objcache_malloc_alloc,
310 				objcache_malloc_free,
311 				&margs_read);
312 	cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
313 				0, 1, NULL, NULL, NULL,
314 				objcache_malloc_alloc,
315 				objcache_malloc_free,
316 				&margs_write);
317 	cache_xops = objcache_create(margs_vop.mtype->ks_shortdesc,
318 				0, 1, NULL, NULL, NULL,
319 				objcache_malloc_alloc_zero,
320 				objcache_malloc_free,
321 				&margs_vop);
322 
323 
324 	lockinit(&hammer2_mntlk, "mntlk", 0, 0);
325 	TAILQ_INIT(&hammer2_mntlist);
326 	TAILQ_INIT(&hammer2_pfslist);
327 	TAILQ_INIT(&hammer2_spmplist);
328 
329 	hammer2_limit_dirty_chains = maxvnodes / 10;
330 	if (hammer2_limit_dirty_chains > HAMMER2_LIMIT_DIRTY_CHAINS)
331 		hammer2_limit_dirty_chains = HAMMER2_LIMIT_DIRTY_CHAINS;
332 	if (hammer2_limit_dirty_chains < 1000)
333 		hammer2_limit_dirty_chains = 1000;
334 
335 	hammer2_limit_dirty_inodes = maxvnodes / 25;
336 	if (hammer2_limit_dirty_inodes < 100)
337 		hammer2_limit_dirty_inodes = 100;
338 	if (hammer2_limit_dirty_inodes > HAMMER2_LIMIT_DIRTY_INODES)
339 		hammer2_limit_dirty_inodes = HAMMER2_LIMIT_DIRTY_INODES;
340 
341 	return (error);
342 }
343 
344 static
345 int
346 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
347 {
348 	objcache_destroy(cache_buffer_read);
349 	objcache_destroy(cache_buffer_write);
350 	objcache_destroy(cache_xops);
351 	return 0;
352 }
353 
354 /*
355  * Core PFS allocator.  Used to allocate or reference the pmp structure
356  * for PFS cluster mounts and the spmp structure for media (hmp) structures.
357  * The pmp can be passed in or loaded by this function using the chain and
358  * inode data.
359  *
360  * pmp->modify_tid tracks new modify_tid transaction ids for front-end
361  * transactions.  Note that synchronization does not use this field.
362  * (typically frontend operations and synchronization cannot run on the
363  * same PFS node at the same time).
364  *
365  * XXX check locking
366  */
367 hammer2_pfs_t *
368 hammer2_pfsalloc(hammer2_chain_t *chain,
369 		 const hammer2_inode_data_t *ripdata,
370 		 hammer2_tid_t modify_tid, hammer2_dev_t *force_local)
371 {
372 	hammer2_pfs_t *pmp;
373 	hammer2_inode_t *iroot;
374 	int count;
375 	int i;
376 	int j;
377 
378 	pmp = NULL;
379 
380 	/*
381 	 * Locate or create the PFS based on the cluster id.  If ripdata
382 	 * is NULL this is a spmp which is unique and is always allocated.
383 	 *
384 	 * If the device is mounted in local mode all PFSs are considered
385 	 * independent and not part of any cluster (for debugging only).
386 	 */
387 	if (ripdata) {
388 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
389 			if (force_local != pmp->force_local)
390 				continue;
391 			if (force_local == NULL &&
392 			    bcmp(&pmp->pfs_clid, &ripdata->meta.pfs_clid,
393 				 sizeof(pmp->pfs_clid)) == 0) {
394 					break;
395 			} else if (force_local && pmp->pfs_names[0] &&
396 			    strcmp(pmp->pfs_names[0], ripdata->filename) == 0) {
397 					break;
398 			}
399 		}
400 	}
401 
402 	if (pmp == NULL) {
403 		pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
404 		pmp->force_local = force_local;
405 		hammer2_trans_manage_init(pmp);
406 		kmalloc_create_obj(&pmp->minode, "HAMMER2-inodes",
407 				   sizeof(struct hammer2_inode));
408 		lockinit(&pmp->lock, "pfslk", 0, 0);
409 		spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
410 		spin_init(&pmp->xop_spin, "h2xop");
411 		spin_init(&pmp->lru_spin, "h2lru");
412 		RB_INIT(&pmp->inum_tree);
413 		TAILQ_INIT(&pmp->syncq);
414 		TAILQ_INIT(&pmp->depq);
415 		TAILQ_INIT(&pmp->lru_list);
416 		spin_init(&pmp->list_spin, "h2pfsalloc_list");
417 
418 		/*
419 		 * Save the last media transaction id for the flusher.  Set
420 		 * initial
421 		 */
422 		if (ripdata) {
423 			pmp->pfs_clid = ripdata->meta.pfs_clid;
424 			TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
425 		} else {
426 			pmp->flags |= HAMMER2_PMPF_SPMP;
427 			TAILQ_INSERT_TAIL(&hammer2_spmplist, pmp, mntentry);
428 		}
429 
430 		/*
431 		 * The synchronization thread may start too early, make
432 		 * sure it stays frozen until we are ready to let it go.
433 		 * XXX
434 		 */
435 		/*
436 		pmp->primary_thr.flags = HAMMER2_THREAD_FROZEN |
437 					 HAMMER2_THREAD_REMASTER;
438 		*/
439 	}
440 
441 	/*
442 	 * Create the PFS's root inode and any missing XOP helper threads.
443 	 */
444 	if ((iroot = pmp->iroot) == NULL) {
445 		iroot = hammer2_inode_get(pmp, NULL, 1, -1);
446 		if (ripdata)
447 			iroot->meta = ripdata->meta;
448 		pmp->iroot = iroot;
449 		hammer2_inode_ref(iroot);
450 		hammer2_inode_unlock(iroot);
451 	}
452 
453 	/*
454 	 * Stop here if no chain is passed in.
455 	 */
456 	if (chain == NULL)
457 		goto done;
458 
459 	/*
460 	 * When a chain is passed in we must add it to the PFS's root
461 	 * inode, update pmp->pfs_types[], and update the syncronization
462 	 * threads.
463 	 *
464 	 * When forcing local mode, mark the PFS as a MASTER regardless.
465 	 *
466 	 * At the moment empty spots can develop due to removals or failures.
467 	 * Ultimately we want to re-fill these spots but doing so might
468 	 * confused running code. XXX
469 	 */
470 	hammer2_inode_ref(iroot);
471 	hammer2_mtx_ex(&iroot->lock);
472 	j = iroot->cluster.nchains;
473 
474 	if (j == HAMMER2_MAXCLUSTER) {
475 		kprintf("hammer2_pfsalloc: cluster full!\n");
476 		/* XXX fatal error? */
477 	} else {
478 		KKASSERT(chain->pmp == NULL);
479 		chain->pmp = pmp;
480 		hammer2_chain_ref(chain);
481 		iroot->cluster.array[j].chain = chain;
482 		if (force_local)
483 			pmp->pfs_types[j] = HAMMER2_PFSTYPE_MASTER;
484 		else
485 			pmp->pfs_types[j] = ripdata->meta.pfs_type;
486 		pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2);
487 		pmp->pfs_hmps[j] = chain->hmp;
488 		hammer2_spin_ex(&pmp->inum_spin);
489 		pmp->pfs_iroot_blocksets[j] = chain->data->ipdata.u.blockset;
490 		hammer2_spin_unex(&pmp->inum_spin);
491 
492 		/*
493 		 * If the PFS is already mounted we must account
494 		 * for the mount_count here.
495 		 */
496 		if (pmp->mp)
497 			++chain->hmp->mount_count;
498 
499 		/*
500 		 * May have to fixup dirty chain tracking.  Previous
501 		 * pmp was NULL so nothing to undo.
502 		 */
503 		if (chain->flags & HAMMER2_CHAIN_MODIFIED)
504 			hammer2_pfs_memory_inc(pmp);
505 		++j;
506 	}
507 	iroot->cluster.nchains = j;
508 
509 	/*
510 	 * Update nmasters from any PFS inode which is part of the cluster.
511 	 * It is possible that this will result in a value which is too
512 	 * high.  MASTER PFSs are authoritative for pfs_nmasters and will
513 	 * override this value later on.
514 	 *
515 	 * (This informs us of masters that might not currently be
516 	 *  discoverable by this mount).
517 	 */
518 	if (ripdata && pmp->pfs_nmasters < ripdata->meta.pfs_nmasters) {
519 		pmp->pfs_nmasters = ripdata->meta.pfs_nmasters;
520 	}
521 
522 	/*
523 	 * Count visible masters.  Masters are usually added with
524 	 * ripdata->meta.pfs_nmasters set to 1.  This detects when there
525 	 * are more (XXX and must update the master inodes).
526 	 */
527 	count = 0;
528 	for (i = 0; i < iroot->cluster.nchains; ++i) {
529 		if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)
530 			++count;
531 	}
532 	if (pmp->pfs_nmasters < count)
533 		pmp->pfs_nmasters = count;
534 
535 	/*
536 	 * Create missing synchronization and support threads.
537 	 *
538 	 * Single-node masters (including snapshots) have nothing to
539 	 * synchronize and do not require this thread.
540 	 *
541 	 * Multi-node masters or any number of soft masters, slaves, copy,
542 	 * or other PFS types need the thread.
543 	 *
544 	 * Each thread is responsible for its particular cluster index.
545 	 * We use independent threads so stalls or mismatches related to
546 	 * any given target do not affect other targets.
547 	 */
548 	for (i = 0; i < iroot->cluster.nchains; ++i) {
549 		/*
550 		 * Single-node masters (including snapshots) have nothing
551 		 * to synchronize and will make direct xops support calls,
552 		 * thus they do not require this thread.
553 		 *
554 		 * Note that there can be thousands of snapshots.  We do not
555 		 * want to create thousands of threads.
556 		 */
557 		if (pmp->pfs_nmasters <= 1 &&
558 		    pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) {
559 			continue;
560 		}
561 
562 		/*
563 		 * Sync support thread
564 		 */
565 		if (pmp->sync_thrs[i].td == NULL) {
566 			hammer2_thr_create(&pmp->sync_thrs[i], pmp, NULL,
567 					   "h2nod", i, -1,
568 					   hammer2_primary_sync_thread);
569 		}
570 	}
571 
572 	/*
573 	 * Create missing Xop threads
574 	 *
575 	 * NOTE: We create helper threads for all mounted PFSs or any
576 	 *	 PFSs with 2+ nodes (so the sync thread can update them,
577 	 *	 even if not mounted).
578 	 */
579 	if (pmp->mp || iroot->cluster.nchains >= 2)
580 		hammer2_xop_helper_create(pmp);
581 
582 	hammer2_mtx_unlock(&iroot->lock);
583 	hammer2_inode_drop(iroot);
584 done:
585 	return pmp;
586 }
587 
588 /*
589  * Deallocate an element of a probed PFS.  If destroying and this is a
590  * MASTER, adjust nmasters.
591  *
592  * This function does not physically destroy the PFS element in its device
593  * under the super-root  (see hammer2_ioctl_pfs_delete()).
594  */
595 void
596 hammer2_pfsdealloc(hammer2_pfs_t *pmp, int clindex, int destroying)
597 {
598 	hammer2_inode_t *iroot;
599 	hammer2_chain_t *chain;
600 	int j;
601 
602 	/*
603 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
604 	 * by the flush code.
605 	 */
606 	iroot = pmp->iroot;
607 	if (iroot) {
608 		/*
609 		 * Stop synchronizing
610 		 *
611 		 * XXX flush after acquiring the iroot lock.
612 		 * XXX clean out the cluster index from all inode structures.
613 		 */
614 		hammer2_thr_delete(&pmp->sync_thrs[clindex]);
615 
616 		/*
617 		 * Remove the cluster index from the group.  If destroying
618 		 * the PFS and this is a master, adjust pfs_nmasters.
619 		 */
620 		hammer2_mtx_ex(&iroot->lock);
621 		chain = iroot->cluster.array[clindex].chain;
622 		iroot->cluster.array[clindex].chain = NULL;
623 
624 		switch(pmp->pfs_types[clindex]) {
625 		case HAMMER2_PFSTYPE_MASTER:
626 			if (destroying && pmp->pfs_nmasters > 0)
627 				--pmp->pfs_nmasters;
628 			/* XXX adjust ripdata->meta.pfs_nmasters */
629 			break;
630 		default:
631 			break;
632 		}
633 		pmp->pfs_types[clindex] = HAMMER2_PFSTYPE_NONE;
634 
635 		hammer2_mtx_unlock(&iroot->lock);
636 
637 		/*
638 		 * Release the chain.
639 		 */
640 		if (chain) {
641 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
642 			hammer2_chain_drop(chain);
643 		}
644 
645 		/*
646 		 * Terminate all XOP threads for the cluster index.
647 		 */
648 		if (pmp->xop_groups) {
649 			for (j = 0; j < hammer2_xop_nthreads; ++j) {
650 				hammer2_thr_delete(
651 					&pmp->xop_groups[j].thrs[clindex]);
652 			}
653 		}
654 	}
655 }
656 
657 /*
658  * Destroy a PFS, typically only occurs after the last mount on a device
659  * has gone away.
660  */
661 static void
662 hammer2_pfsfree(hammer2_pfs_t *pmp)
663 {
664 	hammer2_inode_t *iroot;
665 	hammer2_chain_t *chain;
666 	int chains_still_present = 0;
667 	int i;
668 	int j;
669 
670 	/*
671 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
672 	 * by the flush code.
673 	 */
674 	if (pmp->flags & HAMMER2_PMPF_SPMP)
675 		TAILQ_REMOVE(&hammer2_spmplist, pmp, mntentry);
676 	else
677 		TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
678 
679 	/*
680 	 * Cleanup chains remaining on LRU list.
681 	 */
682 	hammer2_spin_ex(&pmp->lru_spin);
683 	while ((chain = TAILQ_FIRST(&pmp->lru_list)) != NULL) {
684 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONLRU);
685 		atomic_add_int(&pmp->lru_count, -1);
686 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
687 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
688 		hammer2_chain_ref(chain);
689 		hammer2_spin_unex(&pmp->lru_spin);
690 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
691 		hammer2_chain_drop(chain);
692 		hammer2_spin_ex(&pmp->lru_spin);
693 	}
694 	hammer2_spin_unex(&pmp->lru_spin);
695 
696 	/*
697 	 * Clean up iroot
698 	 */
699 	iroot = pmp->iroot;
700 	if (iroot) {
701 		for (i = 0; i < iroot->cluster.nchains; ++i) {
702 			hammer2_thr_delete(&pmp->sync_thrs[i]);
703 			if (pmp->xop_groups) {
704 				for (j = 0; j < hammer2_xop_nthreads; ++j)
705 					hammer2_thr_delete(
706 						&pmp->xop_groups[j].thrs[i]);
707 			}
708 			chain = iroot->cluster.array[i].chain;
709 			if (chain && !RB_EMPTY(&chain->core.rbtree)) {
710 				kprintf("hammer2: Warning pmp %p still "
711 					"has active chains\n", pmp);
712 				chains_still_present = 1;
713 			}
714 		}
715 		KASSERT(iroot->refs == 1,
716 			("PMP->IROOT %p REFS WRONG %d", iroot, iroot->refs));
717 
718 		/* ref for iroot */
719 		hammer2_inode_drop(iroot);
720 		pmp->iroot = NULL;
721 	}
722 
723 	/*
724 	 * Free remaining pmp resources
725 	 */
726 	if (chains_still_present) {
727 		kprintf("hammer2: cannot free pmp %p, still in use\n", pmp);
728 	} else {
729 		kmalloc_destroy_obj(&pmp->minode);
730 		kfree(pmp, M_HAMMER2);
731 	}
732 }
733 
734 /*
735  * Remove all references to hmp from the pfs list.  Any PFS which becomes
736  * empty is terminated and freed.
737  *
738  * XXX inefficient.
739  */
740 static void
741 hammer2_pfsfree_scan(hammer2_dev_t *hmp, int which)
742 {
743 	hammer2_pfs_t *pmp;
744 	hammer2_inode_t *iroot;
745 	hammer2_chain_t *rchain;
746 	int i;
747 	int j;
748 	struct hammer2_pfslist *wlist;
749 
750 	if (which == 0)
751 		wlist = &hammer2_pfslist;
752 	else
753 		wlist = &hammer2_spmplist;
754 again:
755 	TAILQ_FOREACH(pmp, wlist, mntentry) {
756 		if ((iroot = pmp->iroot) == NULL)
757 			continue;
758 
759 		/*
760 		 * Determine if this PFS is affected.  If it is we must
761 		 * freeze all management threads and lock its iroot.
762 		 *
763 		 * Freezing a management thread forces it idle, operations
764 		 * in-progress will be aborted and it will have to start
765 		 * over again when unfrozen, or exit if told to exit.
766 		 */
767 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
768 			if (pmp->pfs_hmps[i] == hmp)
769 				break;
770 		}
771 		if (i == HAMMER2_MAXCLUSTER)
772 			continue;
773 
774 		hammer2_vfs_sync_pmp(pmp, MNT_WAIT);
775 
776 		/*
777 		 * Make sure all synchronization threads are locked
778 		 * down.
779 		 */
780 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
781 			if (pmp->pfs_hmps[i] == NULL)
782 				continue;
783 			hammer2_thr_freeze_async(&pmp->sync_thrs[i]);
784 			if (pmp->xop_groups) {
785 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
786 					hammer2_thr_freeze_async(
787 						&pmp->xop_groups[j].thrs[i]);
788 				}
789 			}
790 		}
791 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
792 			if (pmp->pfs_hmps[i] == NULL)
793 				continue;
794 			hammer2_thr_freeze(&pmp->sync_thrs[i]);
795 			if (pmp->xop_groups) {
796 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
797 					hammer2_thr_freeze(
798 						&pmp->xop_groups[j].thrs[i]);
799 				}
800 			}
801 		}
802 
803 		/*
804 		 * Lock the inode and clean out matching chains.
805 		 * Note that we cannot use hammer2_inode_lock_*()
806 		 * here because that would attempt to validate the
807 		 * cluster that we are in the middle of ripping
808 		 * apart.
809 		 *
810 		 * WARNING! We are working directly on the inodes
811 		 *	    embedded cluster.
812 		 */
813 		hammer2_mtx_ex(&iroot->lock);
814 
815 		/*
816 		 * Remove the chain from matching elements of the PFS.
817 		 */
818 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
819 			if (pmp->pfs_hmps[i] != hmp)
820 				continue;
821 			hammer2_thr_delete(&pmp->sync_thrs[i]);
822 			if (pmp->xop_groups) {
823 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
824 					hammer2_thr_delete(
825 						&pmp->xop_groups[j].thrs[i]);
826 				}
827 			}
828 			rchain = iroot->cluster.array[i].chain;
829 			iroot->cluster.array[i].chain = NULL;
830 			pmp->pfs_types[i] = 0;
831 			if (pmp->pfs_names[i]) {
832 				kfree(pmp->pfs_names[i], M_HAMMER2);
833 				pmp->pfs_names[i] = NULL;
834 			}
835 			if (rchain) {
836 				hammer2_chain_drop(rchain);
837 				/* focus hint */
838 				if (iroot->cluster.focus == rchain)
839 					iroot->cluster.focus = NULL;
840 			}
841 			pmp->pfs_hmps[i] = NULL;
842 		}
843 		hammer2_mtx_unlock(&iroot->lock);
844 
845 		/*
846 		 * Cleanup trailing chains.  Gaps may remain.
847 		 */
848 		for (i = HAMMER2_MAXCLUSTER - 1; i >= 0; --i) {
849 			if (pmp->pfs_hmps[i])
850 				break;
851 		}
852 		iroot->cluster.nchains = i + 1;
853 
854 		/*
855 		 * If the PMP has no elements remaining we can destroy it.
856 		 * (this will transition management threads from frozen->exit).
857 		 */
858 		if (iroot->cluster.nchains == 0) {
859 			/*
860 			 * If this was the hmp's spmp, we need to clean
861 			 * a little more stuff out.
862 			 */
863 			if (hmp->spmp == pmp) {
864 				hmp->spmp = NULL;
865 				hmp->vchain.pmp = NULL;
866 				hmp->fchain.pmp = NULL;
867 			}
868 
869 			/*
870 			 * Free the pmp and restart the loop
871 			 */
872 			KKASSERT(TAILQ_EMPTY(&pmp->syncq));
873 			KKASSERT(TAILQ_EMPTY(&pmp->depq));
874 			hammer2_pfsfree(pmp);
875 			goto again;
876 		}
877 
878 		/*
879 		 * If elements still remain we need to set the REMASTER
880 		 * flag and unfreeze it.
881 		 */
882 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
883 			if (pmp->pfs_hmps[i] == NULL)
884 				continue;
885 			hammer2_thr_remaster(&pmp->sync_thrs[i]);
886 			hammer2_thr_unfreeze(&pmp->sync_thrs[i]);
887 			if (pmp->xop_groups) {
888 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
889 					hammer2_thr_remaster(
890 						&pmp->xop_groups[j].thrs[i]);
891 					hammer2_thr_unfreeze(
892 						&pmp->xop_groups[j].thrs[i]);
893 				}
894 			}
895 		}
896 	}
897 }
898 
899 /*
900  * Mount or remount HAMMER2 fileystem from physical media
901  *
902  *	mountroot
903  *		mp		mount point structure
904  *		path		NULL
905  *		data		<unused>
906  *		cred		<unused>
907  *
908  *	mount
909  *		mp		mount point structure
910  *		path		path to mount point
911  *		data		pointer to argument structure in user space
912  *			volume	volume path (device@LABEL form)
913  *			hflags	user mount flags
914  *		cred		user credentials
915  *
916  * RETURNS:	0	Success
917  *		!0	error number
918  */
919 static
920 int
921 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
922 		  struct ucred *cred)
923 {
924 	struct hammer2_mount_info info;
925 	hammer2_pfs_t *pmp;
926 	hammer2_pfs_t *spmp;
927 	hammer2_dev_t *hmp, *hmp_tmp;
928 	hammer2_dev_t *force_local;
929 	hammer2_key_t key_next;
930 	hammer2_key_t key_dummy;
931 	hammer2_key_t lhc;
932 	hammer2_chain_t *parent;
933 	hammer2_chain_t *chain;
934 	const hammer2_inode_data_t *ripdata;
935 	hammer2_blockref_t bref;
936 	hammer2_devvp_list_t devvpl;
937 	hammer2_devvp_t *e, *e_tmp;
938 	struct file *fp;
939 	char devstr[MNAMELEN];
940 	size_t size;
941 	size_t done;
942 	char *dev;
943 	char *label;
944 	int ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
945 	int error;
946 	int i;
947 
948 	hmp = NULL;
949 	pmp = NULL;
950 	dev = NULL;
951 	label = NULL;
952 	bzero(&info, sizeof(info));
953 
954 	if (path) {
955 		/*
956 		 * Non-root mount or updating a mount
957 		 */
958 		error = copyin(data, &info, sizeof(info));
959 		if (error)
960 			return (error);
961 	}
962 
963 	if (mp->mnt_flag & MNT_UPDATE) {
964 		/*
965 		 * Update mount.  Note that pmp->iroot->cluster is
966 		 * an inode-embedded cluster and thus cannot be
967 		 * directly locked.
968 		 *
969 		 * XXX HAMMER2 needs to implement NFS export via
970 		 *     mountctl.
971 		 */
972 		hammer2_cluster_t *cluster;
973 
974 		pmp = MPTOPMP(mp);
975 		pmp->hflags = info.hflags;
976 		cluster = &pmp->iroot->cluster;
977 		for (i = 0; i < cluster->nchains; ++i) {
978 			if (cluster->array[i].chain == NULL)
979 				continue;
980 			hmp = cluster->array[i].chain->hmp;
981 			error = hammer2_remount(hmp, mp, path, cred);
982 			if (error)
983 				break;
984 		}
985 
986 		return error;
987 	}
988 
989 	if (path == NULL) {
990 		/*
991 		 * Root mount
992 		 */
993 		info.cluster_fd = -1;
994 		ksnprintf(devstr, sizeof(devstr), "%s",
995 			  mp->mnt_stat.f_mntfromname);
996 		done = strlen(devstr) + 1;
997 		kprintf("hammer2_mount: root devstr=\"%s\"\n", devstr);
998 	} else {
999 		error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
1000 		if (error)
1001 			return (error);
1002 		kprintf("hammer2_mount: devstr=\"%s\"\n", devstr);
1003 	}
1004 
1005 	/*
1006 	 * Extract device and label, automatically mount @BOOT, @ROOT, or @DATA
1007 	 * if no label specified, based on the partition id.  Error out if no
1008 	 * label or device (with partition id) is specified.  This is strictly
1009 	 * a convenience to match the default label created by newfs_hammer2,
1010 	 * our preference is that a label always be specified.
1011 	 *
1012 	 * NOTE: We allow 'mount @LABEL <blah>'... that is, a mount command
1013 	 *	 that does not specify a device, as long as some H2 label
1014 	 *	 has already been mounted from that device.  This makes
1015 	 *	 mounting snapshots a lot easier.
1016 	 */
1017 	dev = devstr;
1018 	label = strchr(devstr, '@');
1019 	if (label && ((label + 1) - dev) > done) {
1020 		kprintf("hammer2_mount: bad label %s/%zd\n", devstr, done);
1021 		return (EINVAL);
1022 	}
1023 	if (label == NULL || label[1] == 0) {
1024 		char slice;
1025 
1026 		if (label == NULL)
1027 			label = devstr + strlen(devstr);
1028 		else
1029 			*label = '\0';		/* clean up trailing @ */
1030 
1031 		slice = label[-1];
1032 		switch(slice) {
1033 		case 'a':
1034 			label = "BOOT";
1035 			break;
1036 		case 'd':
1037 			label = "ROOT";
1038 			break;
1039 		default:
1040 			label = "DATA";
1041 			break;
1042 		}
1043 	} else {
1044 		*label = '\0';
1045 		label++;
1046 	}
1047 
1048 	kprintf("hammer2_mount: dev=\"%s\" label=\"%s\" rdonly=%d\n",
1049 		dev, label, ronly);
1050 
1051 	/*
1052 	 * Initialize all device vnodes.
1053 	 */
1054 	TAILQ_INIT(&devvpl);
1055 	error = hammer2_init_devvp(dev, path == NULL, &devvpl);
1056 	if (error) {
1057 		kprintf("hammer2: failed to initialize devvp in %s\n", dev);
1058 		hammer2_cleanup_devvp(&devvpl);
1059 		return error;
1060 	}
1061 
1062 	/*
1063 	 * Determine if the device has already been mounted.  After this
1064 	 * check hmp will be non-NULL if we are doing the second or more
1065 	 * hammer2 mounts from the same device.
1066 	 */
1067 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1068 	if (!TAILQ_EMPTY(&devvpl)) {
1069 		/*
1070 		 * Match the device.  Due to the way devfs works,
1071 		 * we may not be able to directly match the vnode pointer,
1072 		 * so also check to see if the underlying device matches.
1073 		 */
1074 		TAILQ_FOREACH(hmp_tmp, &hammer2_mntlist, mntentry) {
1075 			TAILQ_FOREACH(e_tmp, &hmp_tmp->devvpl, entry) {
1076 				int devvp_found = 0;
1077 				TAILQ_FOREACH(e, &devvpl, entry) {
1078 					KKASSERT(e->devvp);
1079 					if (e_tmp->devvp == e->devvp)
1080 						devvp_found = 1;
1081 					if (e_tmp->devvp->v_rdev &&
1082 					    e_tmp->devvp->v_rdev == e->devvp->v_rdev)
1083 						devvp_found = 1;
1084 				}
1085 				if (!devvp_found)
1086 					goto next_hmp;
1087 			}
1088 			hmp = hmp_tmp;
1089 			kprintf("hammer2_mount: hmp=%p matched\n", hmp);
1090 			break;
1091 next_hmp:
1092 			continue;
1093 		}
1094 
1095 		/*
1096 		 * If no match this may be a fresh H2 mount, make sure
1097 		 * the device is not mounted on anything else.
1098 		 */
1099 		if (hmp == NULL) {
1100 			TAILQ_FOREACH(e, &devvpl, entry) {
1101 				struct vnode *devvp = e->devvp;
1102 				KKASSERT(devvp);
1103 				error = vfs_mountedon(devvp);
1104 				if (error) {
1105 					kprintf("hammer2_mount: %s mounted %d\n",
1106 						e->path, error);
1107 					hammer2_cleanup_devvp(&devvpl);
1108 					lockmgr(&hammer2_mntlk, LK_RELEASE);
1109 					return error;
1110 				}
1111 			}
1112 		}
1113 	} else {
1114 		/*
1115 		 * Match the label to a pmp already probed.
1116 		 */
1117 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
1118 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
1119 				if (pmp->pfs_names[i] &&
1120 				    strcmp(pmp->pfs_names[i], label) == 0) {
1121 					hmp = pmp->pfs_hmps[i];
1122 					break;
1123 				}
1124 			}
1125 			if (hmp)
1126 				break;
1127 		}
1128 		if (hmp == NULL) {
1129 			kprintf("hammer2_mount: PFS label \"%s\" not found\n",
1130 				label);
1131 			hammer2_cleanup_devvp(&devvpl);
1132 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1133 			return ENOENT;
1134 		}
1135 	}
1136 
1137 	/*
1138 	 * Open the device if this isn't a secondary mount and construct
1139 	 * the H2 device mount (hmp).
1140 	 */
1141 	if (hmp == NULL) {
1142 		hammer2_chain_t *schain;
1143 		hammer2_xop_head_t xop;
1144 
1145 		/*
1146 		 * Now open the device
1147 		 */
1148 		KKASSERT(!TAILQ_EMPTY(&devvpl));
1149 		if (error == 0) {
1150 			error = hammer2_open_devvp(&devvpl, ronly);
1151 			if (error) {
1152 				hammer2_close_devvp(&devvpl, ronly);
1153 				hammer2_cleanup_devvp(&devvpl);
1154 				lockmgr(&hammer2_mntlk, LK_RELEASE);
1155 				return error;
1156 			}
1157 		}
1158 
1159 		/*
1160 		 * Construct volumes and link with device vnodes.
1161 		 */
1162 		hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
1163 		hmp->devvp = NULL;
1164 		error = hammer2_init_volumes(mp, &devvpl, hmp->volumes,
1165 					     &hmp->voldata, &hmp->devvp);
1166 		if (error) {
1167 			hammer2_close_devvp(&devvpl, ronly);
1168 			hammer2_cleanup_devvp(&devvpl);
1169 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1170 			kfree(hmp, M_HAMMER2);
1171 			return error;
1172 		}
1173 		if (!hmp->devvp) {
1174 			kprintf("hammer2: failed to initialize root volume\n");
1175 			hammer2_unmount_helper(mp, NULL, hmp);
1176 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1177 			hammer2_vfs_unmount(mp, MNT_FORCE);
1178 			return EINVAL;
1179 		}
1180 
1181 		ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", dev);
1182 		hmp->ronly = ronly;
1183 		hmp->hflags = info.hflags & HMNT2_DEVFLAGS;
1184 		kmalloc_create_obj(&hmp->mchain, "HAMMER2-chains",
1185 				   sizeof(struct hammer2_chain));
1186 		kmalloc_create_obj(&hmp->mio, "HAMMER2-dio",
1187 				   sizeof(struct hammer2_io));
1188 		kmalloc_create(&hmp->mmsg, "HAMMER2-msg");
1189 		TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
1190 		RB_INIT(&hmp->iotree);
1191 		spin_init(&hmp->io_spin, "h2mount_io");
1192 		spin_init(&hmp->list_spin, "h2mount_list");
1193 
1194 		lockinit(&hmp->vollk, "h2vol", 0, 0);
1195 		lockinit(&hmp->bulklk, "h2bulk", 0, 0);
1196 		lockinit(&hmp->bflock, "h2bflk", 0, 0);
1197 
1198 		/*
1199 		 * vchain setup. vchain.data is embedded.
1200 		 * vchain.refs is initialized and will never drop to 0.
1201 		 *
1202 		 * NOTE! voldata is not yet loaded.
1203 		 */
1204 		hmp->vchain.hmp = hmp;
1205 		hmp->vchain.refs = 1;
1206 		hmp->vchain.data = (void *)&hmp->voldata;
1207 		hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
1208 		hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1209 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1210 		hammer2_chain_core_init(&hmp->vchain);
1211 
1212 		/*
1213 		 * fchain setup.  fchain.data is embedded.
1214 		 * fchain.refs is initialized and will never drop to 0.
1215 		 *
1216 		 * The data is not used but needs to be initialized to
1217 		 * pass assertion muster.  We use this chain primarily
1218 		 * as a placeholder for the freemap's top-level radix tree
1219 		 * so it does not interfere with the volume's topology
1220 		 * radix tree.
1221 		 */
1222 		hmp->fchain.hmp = hmp;
1223 		hmp->fchain.refs = 1;
1224 		hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
1225 		hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
1226 		hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1227 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1228 		hmp->fchain.bref.methods =
1229 			HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
1230 			HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
1231 		hammer2_chain_core_init(&hmp->fchain);
1232 
1233 		/*
1234 		 * Initialize volume header related fields.
1235 		 */
1236 		KKASSERT(hmp->voldata.magic == HAMMER2_VOLUME_ID_HBO ||
1237 			 hmp->voldata.magic == HAMMER2_VOLUME_ID_ABO);
1238 		hmp->volhdrno = error;
1239 		hmp->volsync = hmp->voldata;
1240 		hmp->free_reserved = hmp->voldata.allocator_size / 20;
1241 		/*
1242 		 * Must use hmp instead of volume header for these two
1243 		 * in order to handle volume versions transparently.
1244 		 */
1245 		if (hmp->voldata.version >= HAMMER2_VOL_VERSION_MULTI_VOLUMES) {
1246 			hmp->nvolumes = hmp->voldata.nvolumes;
1247 			hmp->total_size = hmp->voldata.total_size;
1248 		} else {
1249 			hmp->nvolumes = 1;
1250 			hmp->total_size = hmp->voldata.volu_size;
1251 		}
1252 		KKASSERT(hmp->nvolumes > 0);
1253 
1254 		/*
1255 		 * Move devvpl entries to hmp.
1256 		 */
1257 		TAILQ_INIT(&hmp->devvpl);
1258 		while ((e = TAILQ_FIRST(&devvpl)) != NULL) {
1259 			TAILQ_REMOVE(&devvpl, e, entry);
1260 			TAILQ_INSERT_TAIL(&hmp->devvpl, e, entry);
1261 		}
1262 		KKASSERT(TAILQ_EMPTY(&devvpl));
1263 		KKASSERT(!TAILQ_EMPTY(&hmp->devvpl));
1264 
1265 		/*
1266 		 * Really important to get these right or the flush and
1267 		 * teardown code will get confused.
1268 		 */
1269 		hmp->spmp = hammer2_pfsalloc(NULL, NULL, 0, NULL);
1270 		spmp = hmp->spmp;
1271 		spmp->pfs_hmps[0] = hmp;
1272 
1273 		/*
1274 		 * Dummy-up vchain and fchain's modify_tid.  mirror_tid
1275 		 * is inherited from the volume header.
1276 		 */
1277 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1278 		hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
1279 		hmp->vchain.pmp = spmp;
1280 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1281 		hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
1282 		hmp->fchain.pmp = spmp;
1283 
1284 		/*
1285 		 * First locate the super-root inode, which is key 0
1286 		 * relative to the volume header's blockset.
1287 		 *
1288 		 * Then locate the root inode by scanning the directory keyspace
1289 		 * represented by the label.
1290 		 */
1291 		parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1292 		schain = hammer2_chain_lookup(&parent, &key_dummy,
1293 				      HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
1294 				      &error, 0);
1295 		hammer2_chain_lookup_done(parent);
1296 		if (schain == NULL) {
1297 			kprintf("hammer2_mount: invalid super-root\n");
1298 			hammer2_unmount_helper(mp, NULL, hmp);
1299 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1300 			hammer2_vfs_unmount(mp, MNT_FORCE);
1301 			return EINVAL;
1302 		}
1303 		if (schain->error) {
1304 			kprintf("hammer2_mount: error %s reading super-root\n",
1305 				hammer2_error_str(schain->error));
1306 			hammer2_chain_unlock(schain);
1307 			hammer2_chain_drop(schain);
1308 			schain = NULL;
1309 			hammer2_unmount_helper(mp, NULL, hmp);
1310 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1311 			hammer2_vfs_unmount(mp, MNT_FORCE);
1312 			return EINVAL;
1313 		}
1314 
1315 		/*
1316 		 * The super-root always uses an inode_tid of 1 when
1317 		 * creating PFSs.
1318 		 */
1319 		spmp->inode_tid = 1;
1320 		spmp->modify_tid = schain->bref.modify_tid + 1;
1321 
1322 		/*
1323 		 * Sanity-check schain's pmp and finish initialization.
1324 		 * Any chain belonging to the super-root topology should
1325 		 * have a NULL pmp (not even set to spmp).
1326 		 */
1327 		ripdata = &schain->data->ipdata;
1328 		KKASSERT(schain->pmp == NULL);
1329 		spmp->pfs_clid = ripdata->meta.pfs_clid;
1330 
1331 		/*
1332 		 * Replace the dummy spmp->iroot with a real one.  It's
1333 		 * easier to just do a wholesale replacement than to try
1334 		 * to update the chain and fixup the iroot fields.
1335 		 *
1336 		 * The returned inode is locked with the supplied cluster.
1337 		 */
1338 		hammer2_dummy_xop_from_chain(&xop, schain);
1339 		hammer2_inode_drop(spmp->iroot);
1340 		spmp->iroot = NULL;
1341 		spmp->iroot = hammer2_inode_get(spmp, &xop, -1, -1);
1342 		spmp->spmp_hmp = hmp;
1343 		spmp->pfs_types[0] = ripdata->meta.pfs_type;
1344 		spmp->pfs_hmps[0] = hmp;
1345 		hammer2_inode_ref(spmp->iroot);
1346 		hammer2_inode_unlock(spmp->iroot);
1347 		hammer2_cluster_unlock(&xop.cluster);
1348 		hammer2_chain_drop(schain);
1349 		/* do not call hammer2_cluster_drop() on an embedded cluster */
1350 		schain = NULL;	/* now invalid */
1351 		/* leave spmp->iroot with one ref */
1352 
1353 		if (!hmp->ronly) {
1354 			error = hammer2_recovery(hmp);
1355 			if (error == 0)
1356 				error |= hammer2_fixup_pfses(hmp);
1357 			/* XXX do something with error */
1358 		}
1359 		hammer2_update_pmps(hmp);
1360 		hammer2_iocom_init(hmp);
1361 		hammer2_bulkfree_init(hmp);
1362 
1363 		/*
1364 		 * Ref the cluster management messaging descriptor.  The mount
1365 		 * program deals with the other end of the communications pipe.
1366 		 *
1367 		 * Root mounts typically do not supply one.
1368 		 */
1369 		if (info.cluster_fd >= 0) {
1370 			fp = holdfp(curthread, info.cluster_fd, -1);
1371 			if (fp) {
1372 				hammer2_cluster_reconnect(hmp, fp);
1373 			} else {
1374 				kprintf("hammer2_mount: bad cluster_fd!\n");
1375 			}
1376 		}
1377 	} else {
1378 		spmp = hmp->spmp;
1379 		if (info.hflags & HMNT2_DEVFLAGS) {
1380 			kprintf("hammer2_mount: Warning: mount flags pertaining "
1381 				"to the whole device may only be specified "
1382 				"on the first mount of the device: %08x\n",
1383 				info.hflags & HMNT2_DEVFLAGS);
1384 		}
1385 	}
1386 
1387 	/*
1388 	 * Force local mount (disassociate all PFSs from their clusters).
1389 	 * Used primarily for debugging.
1390 	 */
1391 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1392 
1393 	/*
1394 	 * Lookup the mount point under the media-localized super-root.
1395 	 * Scanning hammer2_pfslist doesn't help us because it represents
1396 	 * PFS cluster ids which can aggregate several named PFSs together.
1397 	 *
1398 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1399 	 * up later on.
1400 	 */
1401 	hammer2_inode_lock(spmp->iroot, 0);
1402 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1403 	lhc = hammer2_dirhash(label, strlen(label));
1404 	chain = hammer2_chain_lookup(&parent, &key_next,
1405 				     lhc, lhc + HAMMER2_DIRHASH_LOMASK,
1406 				     &error, 0);
1407 	while (chain) {
1408 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
1409 		    strcmp(label, chain->data->ipdata.filename) == 0) {
1410 			break;
1411 		}
1412 		chain = hammer2_chain_next(&parent, chain, &key_next,
1413 					    key_next,
1414 					    lhc + HAMMER2_DIRHASH_LOMASK,
1415 					    &error, 0);
1416 	}
1417 	if (parent) {
1418 		hammer2_chain_unlock(parent);
1419 		hammer2_chain_drop(parent);
1420 	}
1421 	hammer2_inode_unlock(spmp->iroot);
1422 
1423 	/*
1424 	 * PFS could not be found?
1425 	 */
1426 	if (chain == NULL) {
1427 		hammer2_unmount_helper(mp, NULL, hmp);
1428 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1429 		hammer2_vfs_unmount(mp, MNT_FORCE);
1430 
1431 		if (error) {
1432 			kprintf("hammer2_mount: PFS label I/O error\n");
1433 			return EINVAL;
1434 		} else {
1435 			kprintf("hammer2_mount: PFS label \"%s\" not found\n",
1436 				label);
1437 			return ENOENT;
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * Acquire the pmp structure (it should have already been allocated
1443 	 * via hammer2_update_pmps() so do not pass cluster in to add to
1444 	 * available chains).
1445 	 *
1446 	 * Check if the cluster has already been mounted.  A cluster can
1447 	 * only be mounted once, use null mounts to mount additional copies.
1448 	 */
1449 	if (chain->error) {
1450 		kprintf("hammer2_mount: PFS label I/O error\n");
1451 	} else {
1452 		ripdata = &chain->data->ipdata;
1453 		bref = chain->bref;
1454 		pmp = hammer2_pfsalloc(NULL, ripdata,
1455 				       bref.modify_tid, force_local);
1456 	}
1457 	hammer2_chain_unlock(chain);
1458 	hammer2_chain_drop(chain);
1459 
1460 	/*
1461 	 * Finish the mount
1462 	 */
1463         kprintf("hammer2_mount: hmp=%p pmp=%p\n", hmp, pmp);
1464 
1465 	if (pmp->mp) {
1466 		kprintf("hammer2_mount: PFS already mounted!\n");
1467 		hammer2_unmount_helper(mp, NULL, hmp);
1468 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1469 		hammer2_vfs_unmount(mp, MNT_FORCE);
1470 
1471 		return EBUSY;
1472 	}
1473 
1474 	pmp->hflags = info.hflags;
1475         mp->mnt_flag |= MNT_LOCAL;
1476         mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;   /* all entry pts are SMP */
1477         mp->mnt_kern_flag |= MNTK_THR_SYNC;     /* new vsyncscan semantics */
1478 
1479         /*
1480          * required mount structure initializations
1481          */
1482         mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
1483         mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
1484 
1485         mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
1486         mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1487 
1488         /*
1489          * Optional fields
1490          */
1491         mp->mnt_iosize_max = MAXPHYS;
1492 
1493 	/*
1494 	 * Connect up mount pointers.
1495 	 */
1496 	hammer2_mount_helper(mp, pmp);
1497         lockmgr(&hammer2_mntlk, LK_RELEASE);
1498 
1499 	/*
1500 	 * Finish setup
1501 	 */
1502 	vfs_getnewfsid(mp);
1503 	vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
1504 	vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
1505 	vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
1506 
1507 	if (path) {
1508 		copyinstr(info.volume, mp->mnt_stat.f_mntfromname,
1509 			  MNAMELEN - 1, &size);
1510 		bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
1511 	} /* else root mount, already in there */
1512 
1513 	bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
1514 	if (path) {
1515 		copyinstr(path, mp->mnt_stat.f_mntonname,
1516 			  sizeof(mp->mnt_stat.f_mntonname) - 1,
1517 			  &size);
1518 	} else {
1519 		/* root mount */
1520 		mp->mnt_stat.f_mntonname[0] = '/';
1521 	}
1522 
1523 	/*
1524 	 * Initial statfs to prime mnt_stat.
1525 	 */
1526 	hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
1527 
1528 	return 0;
1529 }
1530 
1531 /*
1532  * Scan PFSs under the super-root and create hammer2_pfs structures.
1533  */
1534 static
1535 void
1536 hammer2_update_pmps(hammer2_dev_t *hmp)
1537 {
1538 	const hammer2_inode_data_t *ripdata;
1539 	hammer2_chain_t *parent;
1540 	hammer2_chain_t *chain;
1541 	hammer2_blockref_t bref;
1542 	hammer2_dev_t *force_local;
1543 	hammer2_pfs_t *spmp;
1544 	hammer2_pfs_t *pmp;
1545 	hammer2_key_t key_next;
1546 	int error;
1547 
1548 	/*
1549 	 * Force local mount (disassociate all PFSs from their clusters).
1550 	 * Used primarily for debugging.
1551 	 */
1552 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1553 
1554 	/*
1555 	 * Lookup mount point under the media-localized super-root.
1556 	 *
1557 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1558 	 * up later on.
1559 	 */
1560 	spmp = hmp->spmp;
1561 	hammer2_inode_lock(spmp->iroot, 0);
1562 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1563 	chain = hammer2_chain_lookup(&parent, &key_next,
1564 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
1565 					 &error, 0);
1566 	while (chain) {
1567 		if (chain->error) {
1568 			kprintf("I/O error scanning PFS labels\n");
1569 		} else if (chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
1570 			kprintf("Non inode chain type %d under super-root\n",
1571 				chain->bref.type);
1572 		} else {
1573 			ripdata = &chain->data->ipdata;
1574 			bref = chain->bref;
1575 			pmp = hammer2_pfsalloc(chain, ripdata,
1576 					       bref.modify_tid, force_local);
1577 		}
1578 		chain = hammer2_chain_next(&parent, chain, &key_next,
1579 					   key_next, HAMMER2_KEY_MAX,
1580 					   &error, 0);
1581 	}
1582 	if (parent) {
1583 		hammer2_chain_unlock(parent);
1584 		hammer2_chain_drop(parent);
1585 	}
1586 	hammer2_inode_unlock(spmp->iroot);
1587 }
1588 
1589 static
1590 int
1591 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path __unused,
1592 		struct ucred *cred)
1593 {
1594 	hammer2_volume_t *vol;
1595 	struct vnode *devvp;
1596 	int i, error, result = 0;
1597 
1598 	if (!(hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)))
1599 		return 0;
1600 
1601 	for (i = 0; i < hmp->nvolumes; ++i) {
1602 		vol = &hmp->volumes[i];
1603 		devvp = vol->dev->devvp;
1604 		KKASSERT(devvp);
1605 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1606 		VOP_OPEN(devvp, FREAD | FWRITE, FSCRED, NULL);
1607 		vn_unlock(devvp);
1608 		error = 0;
1609 		if (vol->id == HAMMER2_ROOT_VOLUME) {
1610 			error = hammer2_recovery(hmp);
1611 			if (error == 0)
1612 				error |= hammer2_fixup_pfses(hmp);
1613 		}
1614 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1615 		if (error == 0) {
1616 			VOP_CLOSE(devvp, FREAD, NULL);
1617 		} else {
1618 			VOP_CLOSE(devvp, FREAD | FWRITE, NULL);
1619 		}
1620 		vn_unlock(devvp);
1621 		result |= error;
1622 	}
1623 	if (result == 0) {
1624 		kprintf("hammer2: enable read/write\n");
1625 		hmp->ronly = 0;
1626 	}
1627 
1628 	return result;
1629 }
1630 
1631 static
1632 int
1633 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1634 {
1635 	hammer2_pfs_t *pmp;
1636 	int flags;
1637 	int error = 0;
1638 
1639 	pmp = MPTOPMP(mp);
1640 
1641 	if (pmp == NULL)
1642 		return(0);
1643 
1644 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1645 
1646 	/*
1647 	 * If mount initialization proceeded far enough we must flush
1648 	 * its vnodes and sync the underlying mount points.  Three syncs
1649 	 * are required to fully flush the filesystem (freemap updates lag
1650 	 * by one flush, and one extra for safety).
1651 	 */
1652 	if (mntflags & MNT_FORCE)
1653 		flags = FORCECLOSE;
1654 	else
1655 		flags = 0;
1656 	if (pmp->iroot) {
1657 		error = vflush(mp, 0, flags);
1658 		if (error)
1659 			goto failed;
1660 		hammer2_vfs_sync(mp, MNT_WAIT);
1661 		hammer2_vfs_sync(mp, MNT_WAIT);
1662 		hammer2_vfs_sync(mp, MNT_WAIT);
1663 	}
1664 
1665 	/*
1666 	 * Cleanup the frontend support XOPS threads
1667 	 */
1668 	hammer2_xop_helper_cleanup(pmp);
1669 
1670 	if (pmp->mp)
1671 		hammer2_unmount_helper(mp, pmp, NULL);
1672 
1673 	error = 0;
1674 failed:
1675 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1676 
1677 	return (error);
1678 }
1679 
1680 /*
1681  * Mount helper, hook the system mount into our PFS.
1682  * The mount lock is held.
1683  *
1684  * We must bump the mount_count on related devices for any
1685  * mounted PFSs.
1686  */
1687 static
1688 void
1689 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp)
1690 {
1691 	hammer2_cluster_t *cluster;
1692 	hammer2_chain_t *rchain;
1693 	int i;
1694 
1695         mp->mnt_data = (qaddr_t)pmp;
1696 	pmp->mp = mp;
1697 
1698 	/*
1699 	 * After pmp->mp is set we have to adjust hmp->mount_count.
1700 	 */
1701 	cluster = &pmp->iroot->cluster;
1702 	for (i = 0; i < cluster->nchains; ++i) {
1703 		rchain = cluster->array[i].chain;
1704 		if (rchain == NULL)
1705 			continue;
1706 		++rchain->hmp->mount_count;
1707 	}
1708 
1709 	/*
1710 	 * Create missing Xop threads
1711 	 */
1712 	hammer2_xop_helper_create(pmp);
1713 }
1714 
1715 /*
1716  * Mount helper, unhook the system mount from our PFS.
1717  * The mount lock is held.
1718  *
1719  * If hmp is supplied a mount responsible for being the first to open
1720  * the block device failed and the block device and all PFSs using the
1721  * block device must be cleaned up.
1722  *
1723  * If pmp is supplied multiple devices might be backing the PFS and each
1724  * must be disconnected.  This might not be the last PFS using some of the
1725  * underlying devices.  Also, we have to adjust our hmp->mount_count
1726  * accounting for the devices backing the pmp which is now undergoing an
1727  * unmount.
1728  */
1729 static
1730 void
1731 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp)
1732 {
1733 	hammer2_cluster_t *cluster;
1734 	hammer2_chain_t *rchain;
1735 	int dumpcnt;
1736 	int i;
1737 
1738 	/*
1739 	 * If no device supplied this is a high-level unmount and we have to
1740 	 * to disconnect the mount, adjust mount_count, and locate devices
1741 	 * that might now have no mounts.
1742 	 */
1743 	if (pmp) {
1744 		KKASSERT(hmp == NULL);
1745 		KKASSERT(MPTOPMP(mp) == pmp);
1746 		pmp->mp = NULL;
1747 		mp->mnt_data = NULL;
1748 
1749 		/*
1750 		 * After pmp->mp is cleared we have to account for
1751 		 * mount_count.
1752 		 */
1753 		cluster = &pmp->iroot->cluster;
1754 		for (i = 0; i < cluster->nchains; ++i) {
1755 			rchain = cluster->array[i].chain;
1756 			if (rchain == NULL)
1757 				continue;
1758 			--rchain->hmp->mount_count;
1759 			/* scrapping hmp now may invalidate the pmp */
1760 		}
1761 again:
1762 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1763 			if (hmp->mount_count == 0) {
1764 				hammer2_unmount_helper(NULL, NULL, hmp);
1765 				goto again;
1766 			}
1767 		}
1768 		return;
1769 	}
1770 
1771 	/*
1772 	 * Try to terminate the block device.  We can't terminate it if
1773 	 * there are still PFSs referencing it.
1774 	 */
1775 	if (hmp->mount_count)
1776 		return;
1777 
1778 	/*
1779 	 * Decomission the network before we start messing with the
1780 	 * device and PFS.
1781 	 */
1782 	hammer2_iocom_uninit(hmp);
1783 
1784 	hammer2_bulkfree_uninit(hmp);
1785 	hammer2_pfsfree_scan(hmp, 0);
1786 
1787 	/*
1788 	 * Cycle the volume data lock as a safety (probably not needed any
1789 	 * more).  To ensure everything is out we need to flush at least
1790 	 * three times.  (1) The running of the sideq can dirty the
1791 	 * filesystem, (2) A normal flush can dirty the freemap, and
1792 	 * (3) ensure that the freemap is fully synchronized.
1793 	 *
1794 	 * The next mount's recovery scan can clean everything up but we want
1795 	 * to leave the filesystem in a 100% clean state on a normal unmount.
1796 	 */
1797 #if 0
1798 	hammer2_voldata_lock(hmp);
1799 	hammer2_voldata_unlock(hmp);
1800 #endif
1801 
1802 	/*
1803 	 * Flush whatever is left.  Unmounted but modified PFS's might still
1804 	 * have some dirty chains on them.
1805 	 */
1806 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1807 	hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1808 
1809 	if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1810 		hammer2_voldata_modify(hmp);
1811 		hammer2_flush(&hmp->fchain, HAMMER2_FLUSH_TOP |
1812 					    HAMMER2_FLUSH_ALL);
1813 	}
1814 	hammer2_chain_unlock(&hmp->fchain);
1815 
1816 	if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1817 		hammer2_flush(&hmp->vchain, HAMMER2_FLUSH_TOP |
1818 					    HAMMER2_FLUSH_ALL);
1819 	}
1820 	hammer2_chain_unlock(&hmp->vchain);
1821 
1822 	if ((hmp->vchain.flags | hmp->fchain.flags) &
1823 	    HAMMER2_CHAIN_FLUSH_MASK) {
1824 		kprintf("hammer2_unmount: chains left over after final sync\n");
1825 		kprintf("    vchain %08x\n", hmp->vchain.flags);
1826 		kprintf("    fchain %08x\n", hmp->fchain.flags);
1827 
1828 		if (hammer2_debug & 0x0010)
1829 			Debugger("entered debugger");
1830 	}
1831 
1832 	hammer2_pfsfree_scan(hmp, 1);
1833 
1834 	KKASSERT(hmp->spmp == NULL);
1835 
1836 	/*
1837 	 * Finish up with the device vnode
1838 	 */
1839 	if (!TAILQ_EMPTY(&hmp->devvpl)) {
1840 		hammer2_close_devvp(&hmp->devvpl, hmp->ronly);
1841 		hammer2_cleanup_devvp(&hmp->devvpl);
1842 	}
1843 	KKASSERT(TAILQ_EMPTY(&hmp->devvpl));
1844 
1845 	/*
1846 	 * Clear vchain/fchain flags that might prevent final cleanup
1847 	 * of these chains.
1848 	 */
1849 	if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1850 		atomic_add_long(&hammer2_count_modified_chains, -1);
1851 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1852 		hammer2_pfs_memory_wakeup(hmp->vchain.pmp, -1);
1853 	}
1854 	if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1855 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_UPDATE);
1856 	}
1857 
1858 	if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1859 		atomic_add_long(&hammer2_count_modified_chains, -1);
1860 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_MODIFIED);
1861 		hammer2_pfs_memory_wakeup(hmp->fchain.pmp, -1);
1862 	}
1863 	if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1864 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_UPDATE);
1865 	}
1866 
1867 	/*
1868 	 * Final drop of embedded freemap root chain to
1869 	 * clean up fchain.core (fchain structure is not
1870 	 * flagged ALLOCATED so it is cleaned out and then
1871 	 * left to rot).
1872 	 */
1873 	hammer2_chain_drop(&hmp->fchain);
1874 
1875 	/*
1876 	 * Final drop of embedded volume root chain to clean
1877 	 * up vchain.core (vchain structure is not flagged
1878 	 * ALLOCATED so it is cleaned out and then left to
1879 	 * rot).
1880 	 */
1881 	dumpcnt = 50;
1882 	hammer2_dump_chain(&hmp->vchain, 0, 0, &dumpcnt, 'v', (u_int)-1);
1883 	dumpcnt = 50;
1884 	hammer2_dump_chain(&hmp->fchain, 0, 0, &dumpcnt, 'f', (u_int)-1);
1885 
1886 	hammer2_chain_drop(&hmp->vchain);
1887 
1888 	hammer2_io_cleanup(hmp, &hmp->iotree);
1889 	if (hmp->iofree_count) {
1890 		kprintf("io_cleanup: %d I/O's left hanging\n",
1891 			hmp->iofree_count);
1892 	}
1893 
1894 	TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1895 	kmalloc_destroy_obj(&hmp->mchain);
1896 	kmalloc_destroy_obj(&hmp->mio);
1897 	kmalloc_destroy(&hmp->mmsg);
1898 	kfree(hmp, M_HAMMER2);
1899 }
1900 
1901 int
1902 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1903 		 ino_t ino, struct vnode **vpp)
1904 {
1905 	hammer2_xop_lookup_t *xop;
1906 	hammer2_pfs_t *pmp;
1907 	hammer2_inode_t *ip;
1908 	hammer2_tid_t inum;
1909 	int error;
1910 
1911 	inum = (hammer2_tid_t)ino & HAMMER2_DIRHASH_USERMSK;
1912 
1913 	error = 0;
1914 	pmp = MPTOPMP(mp);
1915 
1916 	/*
1917 	 * Easy if we already have it cached
1918 	 */
1919 	ip = hammer2_inode_lookup(pmp, inum);
1920 	if (ip) {
1921 		hammer2_inode_lock(ip, HAMMER2_RESOLVE_SHARED);
1922 		*vpp = hammer2_igetv(ip, &error);
1923 		hammer2_inode_unlock(ip);
1924 		hammer2_inode_drop(ip);		/* from lookup */
1925 
1926 		return error;
1927 	}
1928 
1929 	/*
1930 	 * Otherwise we have to find the inode
1931 	 */
1932 	xop = hammer2_xop_alloc(pmp->iroot, 0);
1933 	xop->lhc = inum;
1934 	hammer2_xop_start(&xop->head, &hammer2_lookup_desc);
1935 	error = hammer2_xop_collect(&xop->head, 0);
1936 
1937 	if (error == 0)
1938 		ip = hammer2_inode_get(pmp, &xop->head, -1, -1);
1939 	hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1940 
1941 	if (ip) {
1942 		*vpp = hammer2_igetv(ip, &error);
1943 		hammer2_inode_unlock(ip);
1944 	} else {
1945 		*vpp = NULL;
1946 		error = ENOENT;
1947 	}
1948 	return (error);
1949 }
1950 
1951 static
1952 int
1953 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1954 {
1955 	hammer2_pfs_t *pmp;
1956 	struct vnode *vp;
1957 	int error;
1958 
1959 	pmp = MPTOPMP(mp);
1960 	if (pmp->iroot == NULL) {
1961 		kprintf("hammer2 (%s): no root inode\n",
1962 			mp->mnt_stat.f_mntfromname);
1963 		*vpp = NULL;
1964 		return EINVAL;
1965 	}
1966 
1967 	error = 0;
1968 	hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1969 
1970 	while (pmp->inode_tid == 0) {
1971 		hammer2_xop_ipcluster_t *xop;
1972 		const hammer2_inode_meta_t *meta;
1973 
1974 		xop = hammer2_xop_alloc(pmp->iroot, HAMMER2_XOP_MODIFYING);
1975 		hammer2_xop_start(&xop->head, &hammer2_ipcluster_desc);
1976 		error = hammer2_xop_collect(&xop->head, 0);
1977 
1978 		if (error == 0) {
1979 			meta = &hammer2_xop_gdata(&xop->head)->ipdata.meta;
1980 			pmp->iroot->meta = *meta;
1981 			pmp->inode_tid = meta->pfs_inum + 1;
1982 			hammer2_xop_pdata(&xop->head);
1983 			/* meta invalid */
1984 
1985 			if (pmp->inode_tid < HAMMER2_INODE_START)
1986 				pmp->inode_tid = HAMMER2_INODE_START;
1987 			pmp->modify_tid =
1988 				xop->head.cluster.focus->bref.modify_tid + 1;
1989 #if 0
1990 			kprintf("PFS: Starting inode %jd\n",
1991 				(intmax_t)pmp->inode_tid);
1992 			kprintf("PMP focus good set nextino=%ld mod=%016jx\n",
1993 				pmp->inode_tid, pmp->modify_tid);
1994 #endif
1995 			wakeup(&pmp->iroot);
1996 
1997 			hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1998 
1999 			/*
2000 			 * Prime the mount info.
2001 			 */
2002 			hammer2_vfs_statfs(mp, &mp->mnt_stat, NULL);
2003 			break;
2004 		}
2005 
2006 		/*
2007 		 * Loop, try again
2008 		 */
2009 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2010 		hammer2_inode_unlock(pmp->iroot);
2011 		error = tsleep(&pmp->iroot, PCATCH, "h2root", hz);
2012 		hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
2013 		if (error == EINTR)
2014 			break;
2015 	}
2016 
2017 	if (error) {
2018 		hammer2_inode_unlock(pmp->iroot);
2019 		*vpp = NULL;
2020 	} else {
2021 		vp = hammer2_igetv(pmp->iroot, &error);
2022 		hammer2_inode_unlock(pmp->iroot);
2023 		*vpp = vp;
2024 	}
2025 
2026 	return (error);
2027 }
2028 
2029 /*
2030  * Filesystem status
2031  *
2032  * XXX incorporate ipdata->meta.inode_quota and data_quota
2033  */
2034 static
2035 int
2036 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
2037 {
2038 	hammer2_pfs_t *pmp;
2039 	hammer2_dev_t *hmp;
2040 	hammer2_blockref_t bref;
2041 	struct statfs tmp;
2042 	int i;
2043 
2044 	/*
2045 	 * NOTE: iroot might not have validated the cluster yet.
2046 	 */
2047 	pmp = MPTOPMP(mp);
2048 
2049 	bzero(&tmp, sizeof(tmp));
2050 
2051 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2052 		hmp = pmp->pfs_hmps[i];
2053 		if (hmp == NULL)
2054 			continue;
2055 		if (pmp->iroot->cluster.array[i].chain)
2056 			bref = pmp->iroot->cluster.array[i].chain->bref;
2057 		else
2058 			bzero(&bref, sizeof(bref));
2059 
2060 		tmp.f_files = bref.embed.stats.inode_count;
2061 		tmp.f_ffree = 0;
2062 		tmp.f_blocks = hmp->voldata.allocator_size /
2063 			       mp->mnt_vstat.f_bsize;
2064 		tmp.f_bfree = hmp->voldata.allocator_free /
2065 			      mp->mnt_vstat.f_bsize;
2066 		tmp.f_bavail = tmp.f_bfree;
2067 
2068 		if (cred && cred->cr_uid != 0) {
2069 			uint64_t adj;
2070 
2071 			/* 5% */
2072 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2073 			tmp.f_blocks -= adj;
2074 			tmp.f_bfree -= adj;
2075 			tmp.f_bavail -= adj;
2076 		}
2077 
2078 		mp->mnt_stat.f_blocks = tmp.f_blocks;
2079 		mp->mnt_stat.f_bfree = tmp.f_bfree;
2080 		mp->mnt_stat.f_bavail = tmp.f_bavail;
2081 		mp->mnt_stat.f_files = tmp.f_files;
2082 		mp->mnt_stat.f_ffree = tmp.f_ffree;
2083 
2084 		*sbp = mp->mnt_stat;
2085 	}
2086 	return (0);
2087 }
2088 
2089 static
2090 int
2091 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
2092 {
2093 	hammer2_pfs_t *pmp;
2094 	hammer2_dev_t *hmp;
2095 	hammer2_blockref_t bref;
2096 	struct statvfs tmp;
2097 	int i;
2098 
2099 	/*
2100 	 * NOTE: iroot might not have validated the cluster yet.
2101 	 */
2102 	pmp = MPTOPMP(mp);
2103 	bzero(&tmp, sizeof(tmp));
2104 
2105 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2106 		hmp = pmp->pfs_hmps[i];
2107 		if (hmp == NULL)
2108 			continue;
2109 		if (pmp->iroot->cluster.array[i].chain)
2110 			bref = pmp->iroot->cluster.array[i].chain->bref;
2111 		else
2112 			bzero(&bref, sizeof(bref));
2113 
2114 		tmp.f_files = bref.embed.stats.inode_count;
2115 		tmp.f_ffree = 0;
2116 		tmp.f_blocks = hmp->voldata.allocator_size /
2117 			       mp->mnt_vstat.f_bsize;
2118 		tmp.f_bfree = hmp->voldata.allocator_free /
2119 			      mp->mnt_vstat.f_bsize;
2120 		tmp.f_bavail = tmp.f_bfree;
2121 
2122 		if (cred && cred->cr_uid != 0) {
2123 			uint64_t adj;
2124 
2125 			/* 5% */
2126 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2127 			tmp.f_blocks -= adj;
2128 			tmp.f_bfree -= adj;
2129 			tmp.f_bavail -= adj;
2130 		}
2131 
2132 		mp->mnt_vstat.f_blocks = tmp.f_blocks;
2133 		mp->mnt_vstat.f_bfree = tmp.f_bfree;
2134 		mp->mnt_vstat.f_bavail = tmp.f_bavail;
2135 		mp->mnt_vstat.f_files = tmp.f_files;
2136 		mp->mnt_vstat.f_ffree = tmp.f_ffree;
2137 
2138 		*sbp = mp->mnt_vstat;
2139 	}
2140 	return (0);
2141 }
2142 
2143 /*
2144  * Mount-time recovery (RW mounts)
2145  *
2146  * Updates to the free block table are allowed to lag flushes by one
2147  * transaction.  In case of a crash, then on a fresh mount we must do an
2148  * incremental scan of the last committed transaction id and make sure that
2149  * all related blocks have been marked allocated.
2150  */
2151 struct hammer2_recovery_elm {
2152 	TAILQ_ENTRY(hammer2_recovery_elm) entry;
2153 	hammer2_chain_t *chain;
2154 	hammer2_tid_t sync_tid;
2155 };
2156 
2157 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
2158 
2159 struct hammer2_recovery_info {
2160 	struct hammer2_recovery_list list;
2161 	hammer2_tid_t	mtid;
2162 	int	depth;
2163 };
2164 
2165 static int hammer2_recovery_scan(hammer2_dev_t *hmp,
2166 			hammer2_chain_t *parent,
2167 			struct hammer2_recovery_info *info,
2168 			hammer2_tid_t sync_tid);
2169 
2170 #define HAMMER2_RECOVERY_MAXDEPTH	10
2171 
2172 static
2173 int
2174 hammer2_recovery(hammer2_dev_t *hmp)
2175 {
2176 	struct hammer2_recovery_info info;
2177 	struct hammer2_recovery_elm *elm;
2178 	hammer2_chain_t *parent;
2179 	hammer2_tid_t sync_tid;
2180 	hammer2_tid_t mirror_tid;
2181 	int error;
2182 
2183 	hammer2_trans_init(hmp->spmp, 0);
2184 
2185 	sync_tid = hmp->voldata.freemap_tid;
2186 	mirror_tid = hmp->voldata.mirror_tid;
2187 
2188 	kprintf("hammer2_mount: \"%s\": ", hmp->devrepname);
2189 	if (sync_tid >= mirror_tid) {
2190 		kprintf("no recovery needed\n");
2191 	} else {
2192 		kprintf("freemap recovery %016jx-%016jx\n",
2193 			sync_tid + 1, mirror_tid);
2194 	}
2195 
2196 	TAILQ_INIT(&info.list);
2197 	info.depth = 0;
2198 	parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
2199 	error = hammer2_recovery_scan(hmp, parent, &info, sync_tid);
2200 	hammer2_chain_lookup_done(parent);
2201 
2202 	while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
2203 		TAILQ_REMOVE(&info.list, elm, entry);
2204 		parent = elm->chain;
2205 		sync_tid = elm->sync_tid;
2206 		kfree(elm, M_HAMMER2);
2207 
2208 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2209 		error |= hammer2_recovery_scan(hmp, parent, &info,
2210 					      hmp->voldata.freemap_tid);
2211 		hammer2_chain_unlock(parent);
2212 		hammer2_chain_drop(parent);	/* drop elm->chain ref */
2213 	}
2214 
2215 	hammer2_trans_done(hmp->spmp, 0);
2216 
2217 	return error;
2218 }
2219 
2220 static
2221 int
2222 hammer2_recovery_scan(hammer2_dev_t *hmp, hammer2_chain_t *parent,
2223 		      struct hammer2_recovery_info *info,
2224 		      hammer2_tid_t sync_tid)
2225 {
2226 	const hammer2_inode_data_t *ripdata;
2227 	hammer2_chain_t *chain;
2228 	hammer2_blockref_t bref;
2229 	int tmp_error;
2230 	int rup_error;
2231 	int error;
2232 	int first;
2233 
2234 	/*
2235 	 * Adjust freemap to ensure that the block(s) are marked allocated.
2236 	 */
2237 	if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
2238 		hammer2_freemap_adjust(hmp, &parent->bref,
2239 				       HAMMER2_FREEMAP_DORECOVER);
2240 	}
2241 
2242 	/*
2243 	 * Check type for recursive scan
2244 	 */
2245 	switch(parent->bref.type) {
2246 	case HAMMER2_BREF_TYPE_VOLUME:
2247 		/* data already instantiated */
2248 		break;
2249 	case HAMMER2_BREF_TYPE_INODE:
2250 		/*
2251 		 * Must instantiate data for DIRECTDATA test and also
2252 		 * for recursion.
2253 		 */
2254 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2255 		ripdata = &parent->data->ipdata;
2256 		if (ripdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2257 			/* not applicable to recovery scan */
2258 			hammer2_chain_unlock(parent);
2259 			return 0;
2260 		}
2261 		hammer2_chain_unlock(parent);
2262 		break;
2263 	case HAMMER2_BREF_TYPE_INDIRECT:
2264 		/*
2265 		 * Must instantiate data for recursion
2266 		 */
2267 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2268 		hammer2_chain_unlock(parent);
2269 		break;
2270 	case HAMMER2_BREF_TYPE_DIRENT:
2271 	case HAMMER2_BREF_TYPE_DATA:
2272 	case HAMMER2_BREF_TYPE_FREEMAP:
2273 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2274 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2275 		/* not applicable to recovery scan */
2276 		return 0;
2277 		break;
2278 	default:
2279 		return HAMMER2_ERROR_BADBREF;
2280 	}
2281 
2282 	/*
2283 	 * Defer operation if depth limit reached.
2284 	 */
2285 	if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) {
2286 		struct hammer2_recovery_elm *elm;
2287 
2288 		elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2289 		elm->chain = parent;
2290 		elm->sync_tid = sync_tid;
2291 		hammer2_chain_ref(parent);
2292 		TAILQ_INSERT_TAIL(&info->list, elm, entry);
2293 		/* unlocked by caller */
2294 
2295 		return(0);
2296 	}
2297 
2298 
2299 	/*
2300 	 * Recursive scan of the last flushed transaction only.  We are
2301 	 * doing this without pmp assignments so don't leave the chains
2302 	 * hanging around after we are done with them.
2303 	 *
2304 	 * error	Cumulative error this level only
2305 	 * rup_error	Cumulative error for recursion
2306 	 * tmp_error	Specific non-cumulative recursion error
2307 	 */
2308 	chain = NULL;
2309 	first = 1;
2310 	rup_error = 0;
2311 	error = 0;
2312 
2313 	for (;;) {
2314 		error |= hammer2_chain_scan(parent, &chain, &bref,
2315 					    &first,
2316 					    HAMMER2_LOOKUP_NODATA);
2317 
2318 		/*
2319 		 * Problem during scan or EOF
2320 		 */
2321 		if (error)
2322 			break;
2323 
2324 		/*
2325 		 * If this is a leaf
2326 		 */
2327 		if (chain == NULL) {
2328 			if (bref.mirror_tid > sync_tid) {
2329 				hammer2_freemap_adjust(hmp, &bref,
2330 						     HAMMER2_FREEMAP_DORECOVER);
2331 			}
2332 			continue;
2333 		}
2334 
2335 		/*
2336 		 * This may or may not be a recursive node.
2337 		 */
2338 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2339 		if (bref.mirror_tid > sync_tid) {
2340 			++info->depth;
2341 			tmp_error = hammer2_recovery_scan(hmp, chain,
2342 							   info, sync_tid);
2343 			--info->depth;
2344 		} else {
2345 			tmp_error = 0;
2346 		}
2347 
2348 		/*
2349 		 * Flush the recovery at the PFS boundary to stage it for
2350 		 * the final flush of the super-root topology.
2351 		 */
2352 		if (tmp_error == 0 &&
2353 		    (bref.flags & HAMMER2_BREF_FLAG_PFSROOT) &&
2354 		    (chain->flags & HAMMER2_CHAIN_ONFLUSH)) {
2355 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2356 					     HAMMER2_FLUSH_ALL);
2357 		}
2358 		rup_error |= tmp_error;
2359 	}
2360 	return ((error | rup_error) & ~HAMMER2_ERROR_EOF);
2361 }
2362 
2363 /*
2364  * This fixes up an error introduced in earlier H2 implementations where
2365  * moving a PFS inode into an indirect block wound up causing the
2366  * HAMMER2_BREF_FLAG_PFSROOT flag in the bref to get cleared.
2367  */
2368 static
2369 int
2370 hammer2_fixup_pfses(hammer2_dev_t *hmp)
2371 {
2372 	const hammer2_inode_data_t *ripdata;
2373 	hammer2_chain_t *parent;
2374 	hammer2_chain_t *chain;
2375 	hammer2_key_t key_next;
2376 	hammer2_pfs_t *spmp;
2377 	int error;
2378 
2379 	error = 0;
2380 
2381 	/*
2382 	 * Lookup mount point under the media-localized super-root.
2383 	 *
2384 	 * cluster->pmp will incorrectly point to spmp and must be fixed
2385 	 * up later on.
2386 	 */
2387 	spmp = hmp->spmp;
2388 	hammer2_inode_lock(spmp->iroot, 0);
2389 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
2390 	chain = hammer2_chain_lookup(&parent, &key_next,
2391 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
2392 					 &error, 0);
2393 	while (chain) {
2394 		if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
2395 			continue;
2396 		if (chain->error) {
2397 			kprintf("I/O error scanning PFS labels\n");
2398 			error |= chain->error;
2399 		} else if ((chain->bref.flags &
2400 			    HAMMER2_BREF_FLAG_PFSROOT) == 0) {
2401 			int error2;
2402 
2403 			ripdata = &chain->data->ipdata;
2404 			hammer2_trans_init(hmp->spmp, 0);
2405 			error2 = hammer2_chain_modify(chain,
2406 						      chain->bref.modify_tid,
2407 						      0, 0);
2408 			if (error2 == 0) {
2409 				kprintf("hammer2: Correct mis-flagged PFS %s\n",
2410 					ripdata->filename);
2411 				chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2412 			} else {
2413 				error |= error2;
2414 			}
2415 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2416 					     HAMMER2_FLUSH_ALL);
2417 			hammer2_trans_done(hmp->spmp, 0);
2418 		}
2419 		chain = hammer2_chain_next(&parent, chain, &key_next,
2420 					   key_next, HAMMER2_KEY_MAX,
2421 					   &error, 0);
2422 	}
2423 	if (parent) {
2424 		hammer2_chain_unlock(parent);
2425 		hammer2_chain_drop(parent);
2426 	}
2427 	hammer2_inode_unlock(spmp->iroot);
2428 
2429 	return error;
2430 }
2431 
2432 /*
2433  * Sync a mount point; this is called periodically on a per-mount basis from
2434  * the filesystem syncer, and whenever a user issues a sync.
2435  */
2436 int
2437 hammer2_vfs_sync(struct mount *mp, int waitfor)
2438 {
2439 	int error;
2440 
2441 	error = hammer2_vfs_sync_pmp(MPTOPMP(mp), waitfor);
2442 
2443 	return error;
2444 }
2445 
2446 /*
2447  * Because frontend operations lock vnodes before we get a chance to
2448  * lock the related inode, we can't just acquire a vnode lock without
2449  * risking a deadlock.  The frontend may be holding a vnode lock while
2450  * also blocked on our SYNCQ flag while trying to get the inode lock.
2451  *
2452  * To deal with this situation we can check the vnode lock situation
2453  * after locking the inode and perform a work-around.
2454  */
2455 int
2456 hammer2_vfs_sync_pmp(hammer2_pfs_t *pmp, int waitfor)
2457 {
2458 	struct mount *mp;
2459 	/*hammer2_xop_flush_t *xop;*/
2460 	hammer2_inode_t *ip;
2461 	hammer2_depend_t *depend;
2462 	hammer2_depend_t *depend_next;
2463 	struct vnode *vp;
2464 	uint32_t pass2;
2465 	int error;
2466 	int wakecount;
2467 	int dorestart;
2468 
2469 	mp = pmp->mp;
2470 
2471 	/*
2472 	 * Move all inodes on sideq to syncq.  This will clear sideq.
2473 	 * This should represent all flushable inodes.  These inodes
2474 	 * will already have refs due to being on syncq or sideq.  We
2475 	 * must do this all at once with the spinlock held to ensure that
2476 	 * all inode dependencies are part of the same flush.
2477 	 *
2478 	 * We should be able to do this asynchronously from frontend
2479 	 * operations because we will be locking the inodes later on
2480 	 * to actually flush them, and that will partition any frontend
2481 	 * op using the same inode.  Either it has already locked the
2482 	 * inode and we will block, or it has not yet locked the inode
2483 	 * and it will block until we are finished flushing that inode.
2484 	 *
2485 	 * When restarting, only move the inodes flagged as PASS2 from
2486 	 * SIDEQ to SYNCQ.  PASS2 propagation by inode_lock4() and
2487 	 * inode_depend() are atomic with the spin-lock.
2488 	 */
2489 	hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
2490 #ifdef HAMMER2_DEBUG_SYNC
2491 	kprintf("FILESYSTEM SYNC BOUNDARY\n");
2492 #endif
2493 	dorestart = 0;
2494 
2495 	/*
2496 	 * Move inodes from depq to syncq, releasing the related
2497 	 * depend structures.
2498 	 */
2499 restart:
2500 #ifdef HAMMER2_DEBUG_SYNC
2501 	kprintf("FILESYSTEM SYNC RESTART (%d)\n", dorestart);
2502 #endif
2503 	hammer2_trans_setflags(pmp, 0/*HAMMER2_TRANS_COPYQ*/);
2504 	hammer2_trans_clearflags(pmp, HAMMER2_TRANS_RESCAN);
2505 
2506 	/*
2507 	 * Move inodes from depq to syncq.  When restarting, only depq's
2508 	 * marked pass2 are moved.
2509 	 */
2510 	hammer2_spin_ex(&pmp->list_spin);
2511 	depend_next = TAILQ_FIRST(&pmp->depq);
2512 	wakecount = 0;
2513 
2514 	while ((depend = depend_next) != NULL) {
2515 		depend_next = TAILQ_NEXT(depend, entry);
2516 		if (dorestart && depend->pass2 == 0)
2517 			continue;
2518 		TAILQ_FOREACH(ip, &depend->sideq, entry) {
2519 			KKASSERT(ip->flags & HAMMER2_INODE_SIDEQ);
2520 			atomic_set_int(&ip->flags, HAMMER2_INODE_SYNCQ);
2521 			atomic_clear_int(&ip->flags, HAMMER2_INODE_SIDEQ);
2522 			ip->depend = NULL;
2523 		}
2524 
2525 		/*
2526 		 * NOTE: pmp->sideq_count includes both sideq and syncq
2527 		 */
2528 		TAILQ_CONCAT(&pmp->syncq, &depend->sideq, entry);
2529 
2530 		depend->count = 0;
2531 		depend->pass2 = 0;
2532 		TAILQ_REMOVE(&pmp->depq, depend, entry);
2533 	}
2534 
2535 	hammer2_spin_unex(&pmp->list_spin);
2536 	hammer2_trans_clearflags(pmp, /*HAMMER2_TRANS_COPYQ |*/
2537 				      HAMMER2_TRANS_WAITING);
2538 	dorestart = 0;
2539 
2540 	/*
2541 	 * sideq_count may have dropped enough to allow us to unstall
2542 	 * the frontend.
2543 	 */
2544 	hammer2_pfs_memory_wakeup(pmp, 0);
2545 
2546 	/*
2547 	 * Now run through all inodes on syncq.
2548 	 *
2549 	 * Flush transactions only interlock with other flush transactions.
2550 	 * Any conflicting frontend operations will block on the inode, but
2551 	 * may hold a vnode lock while doing so.
2552 	 */
2553 	hammer2_spin_ex(&pmp->list_spin);
2554 	while ((ip = TAILQ_FIRST(&pmp->syncq)) != NULL) {
2555 		/*
2556 		 * Remove the inode from the SYNCQ, transfer the syncq ref
2557 		 * to us.  We must clear SYNCQ to allow any potential
2558 		 * front-end deadlock to proceed.  We must set PASS2 so
2559 		 * the dependency code knows what to do.
2560 		 */
2561 		pass2 = ip->flags;
2562 		cpu_ccfence();
2563 		if (atomic_cmpset_int(&ip->flags,
2564 			      pass2,
2565 			      (pass2 & ~(HAMMER2_INODE_SYNCQ |
2566 					 HAMMER2_INODE_SYNCQ_WAKEUP)) |
2567 			      HAMMER2_INODE_SYNCQ_PASS2) == 0) {
2568 			continue;
2569 		}
2570 		TAILQ_REMOVE(&pmp->syncq, ip, entry);
2571 		--pmp->sideq_count;
2572 		hammer2_spin_unex(&pmp->list_spin);
2573 
2574 		/*
2575 		 * Tickle anyone waiting on ip->flags or the hysteresis
2576 		 * on the dirty inode count.
2577 		 */
2578 		if (pass2 & HAMMER2_INODE_SYNCQ_WAKEUP)
2579 			wakeup(&ip->flags);
2580 		if (++wakecount >= hammer2_limit_dirty_inodes / 20 + 1) {
2581 			wakecount = 0;
2582 			hammer2_pfs_memory_wakeup(pmp, 0);
2583 		}
2584 
2585 		/*
2586 		 * Relock the inode, and we inherit a ref from the above.
2587 		 * We will check for a race after we acquire the vnode.
2588 		 */
2589 		hammer2_mtx_ex(&ip->lock);
2590 
2591 		/*
2592 		 * We need the vp in order to vfsync() dirty buffers, so if
2593 		 * one isn't attached we can skip it.
2594 		 *
2595 		 * Ordering the inode lock and then the vnode lock has the
2596 		 * potential to deadlock.  If we had left SYNCQ set that could
2597 		 * also deadlock us against the frontend even if we don't hold
2598 		 * any locks, but the latter is not a problem now since we
2599 		 * cleared it.  igetv will temporarily release the inode lock
2600 		 * in a safe manner to work-around the deadlock.
2601 		 *
2602 		 * Unfortunately it is still possible to deadlock when the
2603 		 * frontend obtains multiple inode locks, because all the
2604 		 * related vnodes are already locked (nor can the vnode locks
2605 		 * be released and reacquired without messing up RECLAIM and
2606 		 * INACTIVE sequencing).
2607 		 *
2608 		 * The solution for now is to move the vp back onto SIDEQ
2609 		 * and set dorestart, which will restart the flush after we
2610 		 * exhaust the current SYNCQ.  Note that additional
2611 		 * dependencies may build up, so we definitely need to move
2612 		 * the whole SIDEQ back to SYNCQ when we restart.
2613 		 */
2614 		vp = ip->vp;
2615 		if (vp) {
2616 			if (vget(vp, LK_EXCLUSIVE|LK_NOWAIT)) {
2617 				/*
2618 				 * Failed to get the vnode, requeue the inode
2619 				 * (PASS2 is already set so it will be found
2620 				 * again on the restart).
2621 				 *
2622 				 * Then unlock, possibly sleep, and retry
2623 				 * later.  We sleep if PASS2 was *previously*
2624 				 * set, before we set it again above.
2625 				 */
2626 				vp = NULL;
2627 				dorestart = 1;
2628 #ifdef HAMMER2_DEBUG_SYNC
2629 				kprintf("inum %ld (sync delayed by vnode)\n",
2630 					(long)ip->meta.inum);
2631 #endif
2632 				hammer2_inode_delayed_sideq(ip);
2633 
2634 				hammer2_mtx_unlock(&ip->lock);
2635 				hammer2_inode_drop(ip);
2636 
2637 				if (pass2 & HAMMER2_INODE_SYNCQ_PASS2) {
2638 					tsleep(&dorestart, 0, "h2syndel", 2);
2639 				}
2640 				hammer2_spin_ex(&pmp->list_spin);
2641 				continue;
2642 			}
2643 		} else {
2644 			vp = NULL;
2645 		}
2646 
2647 		/*
2648 		 * If the inode wound up on a SIDEQ again it will already be
2649 		 * prepped for another PASS2.  In this situation if we flush
2650 		 * it now we will just wind up flushing it again in the same
2651 		 * syncer run, so we might as well not flush it now.
2652 		 */
2653 		if (ip->flags & HAMMER2_INODE_SIDEQ) {
2654 			hammer2_mtx_unlock(&ip->lock);
2655 			hammer2_inode_drop(ip);
2656 			if (vp)
2657 				vput(vp);
2658 			dorestart = 1;
2659 			hammer2_spin_ex(&pmp->list_spin);
2660 			continue;
2661 		}
2662 
2663 		/*
2664 		 * Ok we have the inode exclusively locked and if vp is
2665 		 * not NULL that will also be exclusively locked.  Do the
2666 		 * meat of the flush.
2667 		 *
2668 		 * vp token needed for v_rbdirty_tree check / vclrisdirty
2669 		 * sequencing.  Though we hold the vnode exclusively so
2670 		 * we shouldn't need to hold the token also in this case.
2671 		 */
2672 		if (vp) {
2673 			vfsync(vp, MNT_WAIT, 1, NULL, NULL);
2674 			bio_track_wait(&vp->v_track_write, 0, 0); /* XXX */
2675 		}
2676 
2677 		/*
2678 		 * If the inode has not yet been inserted into the tree
2679 		 * we must do so.  Then sync and flush it.  The flush should
2680 		 * update the parent.
2681 		 */
2682 		if (ip->flags & HAMMER2_INODE_DELETING) {
2683 #ifdef HAMMER2_DEBUG_SYNC
2684 			kprintf("inum %ld destroy\n", (long)ip->meta.inum);
2685 #endif
2686 			hammer2_inode_chain_des(ip);
2687 			atomic_add_long(&hammer2_iod_inode_deletes, 1);
2688 		} else if (ip->flags & HAMMER2_INODE_CREATING) {
2689 #ifdef HAMMER2_DEBUG_SYNC
2690 			kprintf("inum %ld insert\n", (long)ip->meta.inum);
2691 #endif
2692 			hammer2_inode_chain_ins(ip);
2693 			atomic_add_long(&hammer2_iod_inode_creates, 1);
2694 		}
2695 #ifdef HAMMER2_DEBUG_SYNC
2696 		kprintf("inum %ld chain-sync\n", (long)ip->meta.inum);
2697 #endif
2698 
2699 		/*
2700 		 * Because I kinda messed up the design and index the inodes
2701 		 * under the root inode, along side the directory entries,
2702 		 * we can't flush the inode index under the iroot until the
2703 		 * end.  If we do it now we might miss effects created by
2704 		 * other inodes on the SYNCQ.
2705 		 *
2706 		 * Do a normal (non-FSSYNC) flush instead, which allows the
2707 		 * vnode code to work the same.  We don't want to force iroot
2708 		 * back onto the SIDEQ, and we also don't want the flush code
2709 		 * to update pfs_iroot_blocksets until the final flush later.
2710 		 *
2711 		 * XXX at the moment this will likely result in a double-flush
2712 		 * of the iroot chain.
2713 		 */
2714 		hammer2_inode_chain_sync(ip);
2715 		if (ip == pmp->iroot) {
2716 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP);
2717 		} else {
2718 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2719 						      HAMMER2_XOP_FSSYNC);
2720 		}
2721 		if (vp) {
2722 			lwkt_gettoken(&vp->v_token);
2723 			if ((ip->flags & (HAMMER2_INODE_MODIFIED |
2724 					  HAMMER2_INODE_RESIZED |
2725 					  HAMMER2_INODE_DIRTYDATA)) == 0 &&
2726 			    RB_EMPTY(&vp->v_rbdirty_tree) &&
2727 			    !bio_track_active(&vp->v_track_write)) {
2728 				vclrisdirty(vp);
2729 			} else {
2730 				hammer2_inode_delayed_sideq(ip);
2731 			}
2732 			lwkt_reltoken(&vp->v_token);
2733 			vput(vp);
2734 			vp = NULL;	/* safety */
2735 		}
2736 		atomic_clear_int(&ip->flags, HAMMER2_INODE_SYNCQ_PASS2);
2737 		hammer2_inode_unlock(ip);	/* unlock+drop */
2738 		/* ip pointer invalid */
2739 
2740 		/*
2741 		 * If the inode got dirted after we dropped our locks,
2742 		 * it will have already been moved back to the SIDEQ.
2743 		 */
2744 		hammer2_spin_ex(&pmp->list_spin);
2745 	}
2746 	hammer2_spin_unex(&pmp->list_spin);
2747 	hammer2_pfs_memory_wakeup(pmp, 0);
2748 
2749 	if (dorestart || (pmp->trans.flags & HAMMER2_TRANS_RESCAN)) {
2750 #ifdef HAMMER2_DEBUG_SYNC
2751 		kprintf("FILESYSTEM SYNC STAGE 1 RESTART\n");
2752 		/*tsleep(&dorestart, 0, "h2STG1-R", hz*20);*/
2753 #endif
2754 		dorestart = 1;
2755 		goto restart;
2756 	}
2757 #ifdef HAMMER2_DEBUG_SYNC
2758 	kprintf("FILESYSTEM SYNC STAGE 2 BEGIN\n");
2759 	/*tsleep(&dorestart, 0, "h2STG2", hz*20);*/
2760 #endif
2761 
2762 	/*
2763 	 * We have to flush the PFS root last, even if it does not appear to
2764 	 * be dirty, because all the inodes in the PFS are indexed under it.
2765 	 * The normal flushing of iroot above would only occur if directory
2766 	 * entries under the root were changed.
2767 	 *
2768 	 * Specifying VOLHDR will cause an additionl flush of hmp->spmp
2769 	 * for the media making up the cluster.
2770 	 */
2771 	if ((ip = pmp->iroot) != NULL) {
2772 		hammer2_inode_ref(ip);
2773 		hammer2_mtx_ex(&ip->lock);
2774 		hammer2_inode_chain_sync(ip);
2775 		hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2776 					      HAMMER2_XOP_FSSYNC |
2777 					      HAMMER2_XOP_VOLHDR);
2778 		hammer2_inode_unlock(ip);	/* unlock+drop */
2779 	}
2780 #ifdef HAMMER2_DEBUG_SYNC
2781 	kprintf("FILESYSTEM SYNC STAGE 2 DONE\n");
2782 #endif
2783 
2784 	/*
2785 	 * device bioq sync
2786 	 */
2787 	hammer2_bioq_sync(pmp);
2788 
2789 #if 0
2790 	/*
2791 	 * Generally speaking we now want to flush the media topology from
2792 	 * the iroot through to the inodes.  The flush stops at any inode
2793 	 * boundary, which allows the frontend to continue running concurrent
2794 	 * modifying operations on inodes (including kernel flushes of
2795 	 * buffers) without interfering with the main sync.
2796 	 *
2797 	 * Use the XOP interface to concurrently flush all nodes to
2798 	 * synchronize the PFSROOT subtopology to the media.  A standard
2799 	 * end-of-scan ENOENT error indicates cluster sufficiency.
2800 	 *
2801 	 * Note that this flush will not be visible on crash recovery until
2802 	 * we flush the super-root topology in the next loop.
2803 	 *
2804 	 * XXX For now wait for all flushes to complete.
2805 	 */
2806 	if (mp && (ip = pmp->iroot) != NULL) {
2807 		/*
2808 		 * If unmounting try to flush everything including any
2809 		 * sub-trees under inodes, just in case there is dangling
2810 		 * modified data, as a safety.  Otherwise just flush up to
2811 		 * the inodes in this stage.
2812 		 */
2813 		kprintf("MP & IROOT\n");
2814 #ifdef HAMMER2_DEBUG_SYNC
2815 		kprintf("FILESYSTEM SYNC STAGE 3 IROOT BEGIN\n");
2816 #endif
2817 		if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
2818 			xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
2819 						    HAMMER2_XOP_VOLHDR |
2820 						    HAMMER2_XOP_FSSYNC |
2821 						    HAMMER2_XOP_INODE_STOP);
2822 		} else {
2823 			xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
2824 						    HAMMER2_XOP_INODE_STOP |
2825 						    HAMMER2_XOP_VOLHDR |
2826 						    HAMMER2_XOP_FSSYNC |
2827 						    HAMMER2_XOP_INODE_STOP);
2828 		}
2829 		hammer2_xop_start(&xop->head, &hammer2_inode_flush_desc);
2830 		error = hammer2_xop_collect(&xop->head,
2831 					    HAMMER2_XOP_COLLECT_WAITALL);
2832 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2833 #ifdef HAMMER2_DEBUG_SYNC
2834 		kprintf("FILESYSTEM SYNC STAGE 3 IROOT END\n");
2835 #endif
2836 		if (error == HAMMER2_ERROR_ENOENT)
2837 			error = 0;
2838 		else
2839 			error = hammer2_error_to_errno(error);
2840 	} else {
2841 		error = 0;
2842 	}
2843 #endif
2844 	error = 0;	/* XXX */
2845 	hammer2_trans_done(pmp, HAMMER2_TRANS_ISFLUSH);
2846 
2847 	return (error);
2848 }
2849 
2850 static
2851 int
2852 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2853 {
2854 	hammer2_inode_t *ip;
2855 
2856 	KKASSERT(MAXFIDSZ >= 16);
2857 	ip = VTOI(vp);
2858 	fhp->fid_len = offsetof(struct fid, fid_data[16]);
2859 	fhp->fid_ext = 0;
2860 	((hammer2_tid_t *)fhp->fid_data)[0] = ip->meta.inum;
2861 	((hammer2_tid_t *)fhp->fid_data)[1] = 0;
2862 
2863 	return 0;
2864 }
2865 
2866 static
2867 int
2868 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2869 	       struct fid *fhp, struct vnode **vpp)
2870 {
2871 	hammer2_pfs_t *pmp;
2872 	hammer2_tid_t inum;
2873 	int error;
2874 
2875 	pmp = MPTOPMP(mp);
2876 	inum = ((hammer2_tid_t *)fhp->fid_data)[0] & HAMMER2_DIRHASH_USERMSK;
2877 	if (vpp) {
2878 		if (inum == 1)
2879 			error = hammer2_vfs_root(mp, vpp);
2880 		else
2881 			error = hammer2_vfs_vget(mp, NULL, inum, vpp);
2882 	} else {
2883 		error = 0;
2884 	}
2885 	if (error)
2886 		kprintf("fhtovp: %016jx -> %p, %d\n", inum, *vpp, error);
2887 	return error;
2888 }
2889 
2890 static
2891 int
2892 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2893 		 int *exflagsp, struct ucred **credanonp)
2894 {
2895 	hammer2_pfs_t *pmp;
2896 	struct netcred *np;
2897 	int error;
2898 
2899 	pmp = MPTOPMP(mp);
2900 	np = vfs_export_lookup(mp, &pmp->export, nam);
2901 	if (np) {
2902 		*exflagsp = np->netc_exflags;
2903 		*credanonp = &np->netc_anon;
2904 		error = 0;
2905 	} else {
2906 		error = EACCES;
2907 	}
2908 	return error;
2909 }
2910 
2911 /*
2912  * This handles hysteresis on regular file flushes.  Because the BIOs are
2913  * routed to a thread it is possible for an excessive number to build up
2914  * and cause long front-end stalls long before the runningbuffspace limit
2915  * is hit, so we implement hammer2_flush_pipe to control the
2916  * hysteresis.
2917  *
2918  * This is a particular problem when compression is used.
2919  */
2920 void
2921 hammer2_lwinprog_ref(hammer2_pfs_t *pmp)
2922 {
2923 	atomic_add_int(&pmp->count_lwinprog, 1);
2924 }
2925 
2926 void
2927 hammer2_lwinprog_drop(hammer2_pfs_t *pmp)
2928 {
2929 	int lwinprog;
2930 
2931 	lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
2932 	if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
2933 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
2934 		atomic_clear_int(&pmp->count_lwinprog,
2935 				 HAMMER2_LWINPROG_WAITING);
2936 		wakeup(&pmp->count_lwinprog);
2937 	}
2938 	if ((lwinprog & HAMMER2_LWINPROG_WAITING0) &&
2939 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= 0) {
2940 		atomic_clear_int(&pmp->count_lwinprog,
2941 				 HAMMER2_LWINPROG_WAITING0);
2942 		wakeup(&pmp->count_lwinprog);
2943 	}
2944 }
2945 
2946 void
2947 hammer2_lwinprog_wait(hammer2_pfs_t *pmp, int flush_pipe)
2948 {
2949 	int lwinprog;
2950 	int lwflag = (flush_pipe) ? HAMMER2_LWINPROG_WAITING :
2951 				    HAMMER2_LWINPROG_WAITING0;
2952 
2953 	for (;;) {
2954 		lwinprog = pmp->count_lwinprog;
2955 		cpu_ccfence();
2956 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2957 			break;
2958 		tsleep_interlock(&pmp->count_lwinprog, 0);
2959 		atomic_set_int(&pmp->count_lwinprog, lwflag);
2960 		lwinprog = pmp->count_lwinprog;
2961 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2962 			break;
2963 		tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
2964 	}
2965 }
2966 
2967 /*
2968  * It is possible for an excessive number of dirty chains or dirty inodes
2969  * to build up.  When this occurs we start an asynchronous filesystem sync.
2970  * If the level continues to build up, we stall, waiting for it to drop,
2971  * with some hysteresis.
2972  *
2973  * This relies on the kernel calling hammer2_vfs_modifying() prior to
2974  * obtaining any vnode locks before making a modifying VOP call.
2975  */
2976 static int
2977 hammer2_vfs_modifying(struct mount *mp)
2978 {
2979 	if (mp->mnt_flag & MNT_RDONLY)
2980 		return EROFS;
2981 	hammer2_pfs_memory_wait(MPTOPMP(mp));
2982 
2983 	return 0;
2984 }
2985 
2986 /*
2987  * Initiate an asynchronous filesystem sync and, with hysteresis,
2988  * stall if the internal data structure count becomes too bloated.
2989  */
2990 void
2991 hammer2_pfs_memory_wait(hammer2_pfs_t *pmp)
2992 {
2993 	uint32_t waiting;
2994 	int pcatch;
2995 	int error;
2996 
2997 	if (pmp == NULL || pmp->mp == NULL)
2998 		return;
2999 
3000 	for (;;) {
3001 		waiting = pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK;
3002 		cpu_ccfence();
3003 
3004 		/*
3005 		 * Start the syncer running at 1/2 the limit
3006 		 */
3007 		if (waiting > hammer2_limit_dirty_chains / 2 ||
3008 		    pmp->sideq_count > hammer2_limit_dirty_inodes / 2) {
3009 			trigger_syncer(pmp->mp);
3010 		}
3011 
3012 		/*
3013 		 * Stall at the limit waiting for the counts to drop.
3014 		 * This code will typically be woken up once the count
3015 		 * drops below 3/4 the limit, or in one second.
3016 		 */
3017 		if (waiting < hammer2_limit_dirty_chains &&
3018 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
3019 			break;
3020 		}
3021 
3022 		pcatch = curthread->td_proc ? PCATCH : 0;
3023 
3024 		tsleep_interlock(&pmp->inmem_dirty_chains, pcatch);
3025 		atomic_set_int(&pmp->inmem_dirty_chains,
3026 			       HAMMER2_DIRTYCHAIN_WAITING);
3027 		if (waiting < hammer2_limit_dirty_chains &&
3028 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
3029 			break;
3030 		}
3031 		trigger_syncer(pmp->mp);
3032 		error = tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED | pcatch,
3033 			       "h2memw", hz);
3034 		if (error == ERESTART)
3035 			break;
3036 	}
3037 }
3038 
3039 /*
3040  * Wake up any stalled frontend ops waiting, with hysteresis, using
3041  * 2/3 of the limit.
3042  */
3043 void
3044 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp, int count)
3045 {
3046 	uint32_t waiting;
3047 
3048 	if (pmp) {
3049 		waiting = atomic_fetchadd_int(&pmp->inmem_dirty_chains, count);
3050 		/* don't need --waiting to test flag */
3051 
3052 		if ((waiting & HAMMER2_DIRTYCHAIN_WAITING) &&
3053 		    (pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK) <=
3054 		    hammer2_limit_dirty_chains * 2 / 3 &&
3055 		    pmp->sideq_count <= hammer2_limit_dirty_inodes * 2 / 3) {
3056 			atomic_clear_int(&pmp->inmem_dirty_chains,
3057 					 HAMMER2_DIRTYCHAIN_WAITING);
3058 			wakeup(&pmp->inmem_dirty_chains);
3059 		}
3060 	}
3061 }
3062 
3063 void
3064 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp)
3065 {
3066 	if (pmp) {
3067 		atomic_add_int(&pmp->inmem_dirty_chains, 1);
3068 	}
3069 }
3070 
3071 /*
3072  * Volume header data locks
3073  */
3074 void
3075 hammer2_voldata_lock(hammer2_dev_t *hmp)
3076 {
3077 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
3078 }
3079 
3080 void
3081 hammer2_voldata_unlock(hammer2_dev_t *hmp)
3082 {
3083 	lockmgr(&hmp->vollk, LK_RELEASE);
3084 }
3085 
3086 /*
3087  * Caller indicates that the volume header is being modified.  Flag
3088  * the related chain and adjust its transaction id.
3089  *
3090  * The transaction id is set to voldata.mirror_tid + 1, similar to
3091  * what hammer2_chain_modify() does.  Be very careful here, volume
3092  * data can be updated independently of the rest of the filesystem.
3093  */
3094 void
3095 hammer2_voldata_modify(hammer2_dev_t *hmp)
3096 {
3097 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
3098 		atomic_add_long(&hammer2_count_modified_chains, 1);
3099 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
3100 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
3101 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid + 1;
3102 	}
3103 }
3104 
3105 /*
3106  * Returns 0 if the filesystem has tons of free space
3107  * Returns 1 if the filesystem has less than 10% remaining
3108  * Returns 2 if the filesystem has less than 2%/5% (user/root) remaining.
3109  */
3110 int
3111 hammer2_vfs_enospace(hammer2_inode_t *ip, off_t bytes, struct ucred *cred)
3112 {
3113 	hammer2_pfs_t *pmp;
3114 	hammer2_dev_t *hmp;
3115 	hammer2_off_t free_reserved;
3116 	hammer2_off_t free_nominal;
3117 	int i;
3118 
3119 	pmp = ip->pmp;
3120 
3121 	if (pmp->free_ticks == 0 || pmp->free_ticks != ticks) {
3122 		free_reserved = HAMMER2_SEGSIZE;
3123 		free_nominal = 0x7FFFFFFFFFFFFFFFLLU;
3124 		for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
3125 			hmp = pmp->pfs_hmps[i];
3126 			if (hmp == NULL)
3127 				continue;
3128 			if (pmp->pfs_types[i] != HAMMER2_PFSTYPE_MASTER &&
3129 			    pmp->pfs_types[i] != HAMMER2_PFSTYPE_SOFT_MASTER)
3130 				continue;
3131 
3132 			if (free_nominal > hmp->voldata.allocator_free)
3133 				free_nominal = hmp->voldata.allocator_free;
3134 			if (free_reserved < hmp->free_reserved)
3135 				free_reserved = hmp->free_reserved;
3136 		}
3137 
3138 		/*
3139 		 * SMP races ok
3140 		 */
3141 		pmp->free_reserved = free_reserved;
3142 		pmp->free_nominal = free_nominal;
3143 		pmp->free_ticks = ticks;
3144 	} else {
3145 		free_reserved = pmp->free_reserved;
3146 		free_nominal = pmp->free_nominal;
3147 	}
3148 	if (cred && cred->cr_uid != 0) {
3149 		if ((int64_t)(free_nominal - bytes) <
3150 		    (int64_t)free_reserved) {
3151 			return 2;
3152 		}
3153 	} else {
3154 		if ((int64_t)(free_nominal - bytes) <
3155 		    (int64_t)free_reserved / 2) {
3156 			return 2;
3157 		}
3158 	}
3159 	if ((int64_t)(free_nominal - bytes) < (int64_t)free_reserved * 2)
3160 		return 1;
3161 	return 0;
3162 }
3163 
3164 /*
3165  * Debugging
3166  */
3167 void
3168 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int bi, int *countp,
3169 		   char pfx, u_int flags)
3170 {
3171 	hammer2_chain_t *scan;
3172 	hammer2_chain_t *parent;
3173 
3174 	--*countp;
3175 	if (*countp == 0) {
3176 		kprintf("%*.*s...\n", tab, tab, "");
3177 		return;
3178 	}
3179 	if (*countp < 0)
3180 		return;
3181 	kprintf("%*.*s%c-chain %p %s.%-3d %016jx %016jx/%-2d mir=%016jx\n",
3182 		tab, tab, "", pfx, chain,
3183 		hammer2_bref_type_str(chain->bref.type), bi,
3184 		chain->bref.data_off, chain->bref.key, chain->bref.keybits,
3185 		chain->bref.mirror_tid);
3186 
3187 	kprintf("%*.*s      [%08x] (%s) refs=%d",
3188 		tab, tab, "",
3189 		chain->flags,
3190 		((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
3191 		chain->data) ?  (char *)chain->data->ipdata.filename : "?"),
3192 		chain->refs);
3193 
3194 	parent = chain->parent;
3195 	if (parent)
3196 		kprintf("\n%*.*s      p=%p [pflags %08x prefs %d]",
3197 			tab, tab, "",
3198 			parent, parent->flags, parent->refs);
3199 	if (RB_EMPTY(&chain->core.rbtree)) {
3200 		kprintf("\n");
3201 	} else {
3202 		int bi = 0;
3203 		kprintf(" {\n");
3204 		RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree) {
3205 			if ((scan->flags & flags) || flags == (u_int)-1) {
3206 				hammer2_dump_chain(scan, tab + 4, bi, countp,
3207 						   'a', flags);
3208 			}
3209 			bi++;
3210 		}
3211 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
3212 			kprintf("%*.*s}(%s)\n", tab, tab, "",
3213 				chain->data->ipdata.filename);
3214 		else
3215 			kprintf("%*.*s}\n", tab, tab, "");
3216 	}
3217 }
3218