xref: /dragonfly/sys/vfs/hammer2/hammer2_vfsops.c (revision 0b2c5ee3)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/buf.h>
43 #include <sys/uuid.h>
44 #include <sys/vfsops.h>
45 #include <sys/sysctl.h>
46 #include <sys/socket.h>
47 #include <sys/objcache.h>
48 
49 #include <sys/proc.h>
50 #include <sys/mountctl.h>
51 #include <sys/dirent.h>
52 #include <sys/uio.h>
53 
54 #include "hammer2.h"
55 #include "hammer2_disk.h"
56 #include "hammer2_mount.h"
57 #include "hammer2_lz4.h"
58 
59 #include "zlib/hammer2_zlib.h"
60 
61 #define REPORT_REFS_ERRORS 1	/* XXX remove me */
62 
63 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache");
64 
65 struct hammer2_sync_info {
66 	int error;
67 	int waitfor;
68 	int pass;
69 };
70 
71 TAILQ_HEAD(hammer2_mntlist, hammer2_dev);
72 static struct hammer2_mntlist hammer2_mntlist;
73 
74 struct hammer2_pfslist hammer2_pfslist;
75 struct hammer2_pfslist hammer2_spmplist;
76 struct lock hammer2_mntlk;
77 
78 int hammer2_supported_version = HAMMER2_VOL_VERSION_DEFAULT;
79 int hammer2_debug;
80 int hammer2_xopgroups;
81 long hammer2_debug_inode;
82 int hammer2_cluster_meta_read = 1;	/* physical read-ahead */
83 int hammer2_cluster_data_read = 4;	/* physical read-ahead */
84 int hammer2_cluster_write = 0;		/* physical write clustering */
85 int hammer2_dedup_enable = 1;
86 int hammer2_always_compress = 0;	/* always try to compress */
87 int hammer2_flush_pipe = 100;
88 int hammer2_dio_count;
89 int hammer2_dio_limit = 256;
90 int hammer2_bulkfree_tps = 5000;
91 int hammer2_worker_rmask = 3;
92 long hammer2_chain_allocs;
93 long hammer2_limit_dirty_chains;
94 long hammer2_limit_dirty_inodes;
95 long hammer2_count_modified_chains;
96 long hammer2_iod_file_read;
97 long hammer2_iod_meta_read;
98 long hammer2_iod_indr_read;
99 long hammer2_iod_fmap_read;
100 long hammer2_iod_volu_read;
101 long hammer2_iod_file_write;
102 long hammer2_iod_file_wembed;
103 long hammer2_iod_file_wzero;
104 long hammer2_iod_file_wdedup;
105 long hammer2_iod_meta_write;
106 long hammer2_iod_indr_write;
107 long hammer2_iod_fmap_write;
108 long hammer2_iod_volu_write;
109 static long hammer2_iod_inode_creates;
110 static long hammer2_iod_inode_deletes;
111 
112 long hammer2_process_icrc32;
113 long hammer2_process_xxhash64;
114 
115 MALLOC_DECLARE(M_HAMMER2_CBUFFER);
116 MALLOC_DEFINE(M_HAMMER2_CBUFFER, "HAMMER2-compbuffer",
117 		"Buffer used for compression.");
118 
119 MALLOC_DECLARE(M_HAMMER2_DEBUFFER);
120 MALLOC_DEFINE(M_HAMMER2_DEBUFFER, "HAMMER2-decompbuffer",
121 		"Buffer used for decompression.");
122 
123 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
124 
125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, supported_version, CTLFLAG_RD,
126 	   &hammer2_supported_version, 0, "");
127 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
128 	   &hammer2_debug, 0, "");
129 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, debug_inode, CTLFLAG_RW,
130 	   &hammer2_debug_inode, 0, "");
131 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_meta_read, CTLFLAG_RW,
132 	   &hammer2_cluster_meta_read, 0, "");
133 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_data_read, CTLFLAG_RW,
134 	   &hammer2_cluster_data_read, 0, "");
135 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_write, CTLFLAG_RW,
136 	   &hammer2_cluster_write, 0, "");
137 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dedup_enable, CTLFLAG_RW,
138 	   &hammer2_dedup_enable, 0, "");
139 SYSCTL_INT(_vfs_hammer2, OID_AUTO, always_compress, CTLFLAG_RW,
140 	   &hammer2_always_compress, 0, "");
141 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
142 	   &hammer2_flush_pipe, 0, "");
143 SYSCTL_INT(_vfs_hammer2, OID_AUTO, worker_rmask, CTLFLAG_RW,
144 	   &hammer2_worker_rmask, 0, "");
145 SYSCTL_INT(_vfs_hammer2, OID_AUTO, bulkfree_tps, CTLFLAG_RW,
146 	   &hammer2_bulkfree_tps, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_allocs, CTLFLAG_RW,
148 	   &hammer2_chain_allocs, 0, "");
149 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
150 	   &hammer2_limit_dirty_chains, 0, "");
151 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_inodes, CTLFLAG_RW,
152 	   &hammer2_limit_dirty_inodes, 0, "");
153 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, count_modified_chains, CTLFLAG_RW,
154 	   &hammer2_count_modified_chains, 0, "");
155 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
156 	   &hammer2_dio_count, 0, "");
157 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_limit, CTLFLAG_RW,
158 	   &hammer2_dio_limit, 0, "");
159 
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
161 	   &hammer2_iod_file_read, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
163 	   &hammer2_iod_meta_read, 0, "");
164 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
165 	   &hammer2_iod_indr_read, 0, "");
166 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
167 	   &hammer2_iod_fmap_read, 0, "");
168 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
169 	   &hammer2_iod_volu_read, 0, "");
170 
171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
172 	   &hammer2_iod_file_write, 0, "");
173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wembed, CTLFLAG_RW,
174 	   &hammer2_iod_file_wembed, 0, "");
175 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wzero, CTLFLAG_RW,
176 	   &hammer2_iod_file_wzero, 0, "");
177 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wdedup, CTLFLAG_RW,
178 	   &hammer2_iod_file_wdedup, 0, "");
179 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
180 	   &hammer2_iod_meta_write, 0, "");
181 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
182 	   &hammer2_iod_indr_write, 0, "");
183 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
184 	   &hammer2_iod_fmap_write, 0, "");
185 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
186 	   &hammer2_iod_volu_write, 0, "");
187 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_creates, CTLFLAG_RW,
188 	   &hammer2_iod_inode_creates, 0, "");
189 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_deletes, CTLFLAG_RW,
190 	   &hammer2_iod_inode_deletes, 0, "");
191 
192 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_icrc32, CTLFLAG_RW,
193 	   &hammer2_process_icrc32, 0, "");
194 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_xxhash64, CTLFLAG_RW,
195 	   &hammer2_process_xxhash64, 0, "");
196 
197 static int hammer2_vfs_init(struct vfsconf *conf);
198 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
199 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
200 				struct ucred *cred);
201 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *,
202 				struct ucred *);
203 static int hammer2_recovery(hammer2_dev_t *hmp);
204 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
205 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
206 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
207 				struct ucred *cred);
208 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
209 				struct ucred *cred);
210 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
211 				struct fid *fhp, struct vnode **vpp);
212 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
213 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
214 				int *exflagsp, struct ucred **credanonp);
215 static int hammer2_vfs_modifying(struct mount *mp);
216 
217 static void hammer2_update_pmps(hammer2_dev_t *hmp);
218 
219 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp);
220 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp,
221 				hammer2_dev_t *hmp);
222 static int hammer2_fixup_pfses(hammer2_dev_t *hmp);
223 
224 /*
225  * HAMMER2 vfs operations.
226  */
227 static struct vfsops hammer2_vfsops = {
228 	.vfs_flags	= 0,
229 	.vfs_init	= hammer2_vfs_init,
230 	.vfs_uninit	= hammer2_vfs_uninit,
231 	.vfs_sync	= hammer2_vfs_sync,
232 	.vfs_mount	= hammer2_vfs_mount,
233 	.vfs_unmount	= hammer2_vfs_unmount,
234 	.vfs_root 	= hammer2_vfs_root,
235 	.vfs_statfs	= hammer2_vfs_statfs,
236 	.vfs_statvfs	= hammer2_vfs_statvfs,
237 	.vfs_vget	= hammer2_vfs_vget,
238 	.vfs_vptofh	= hammer2_vfs_vptofh,
239 	.vfs_fhtovp	= hammer2_vfs_fhtovp,
240 	.vfs_checkexp	= hammer2_vfs_checkexp,
241 	.vfs_modifying	= hammer2_vfs_modifying
242 };
243 
244 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
245 
246 VFS_SET(hammer2_vfsops, hammer2, VFCF_MPSAFE);
247 MODULE_VERSION(hammer2, 1);
248 
249 static
250 int
251 hammer2_vfs_init(struct vfsconf *conf)
252 {
253 	static struct objcache_malloc_args margs_read;
254 	static struct objcache_malloc_args margs_write;
255 	static struct objcache_malloc_args margs_vop;
256 
257 	int error;
258 
259 	error = 0;
260 	kmalloc_raise_limit(M_HAMMER2, 0);	/* unlimited */
261 
262 	/*
263 	 * hammer2_xopgroups must be even and is most optimal if
264 	 * 2 x ncpus so strategy functions can be queued to the same
265 	 * cpu.
266 	 */
267 	hammer2_xopgroups = HAMMER2_XOPGROUPS_MIN;
268 	if (hammer2_xopgroups < ncpus * 2)
269 		hammer2_xopgroups = ncpus * 2;
270 
271 	/*
272 	 * A large DIO cache is needed to retain dedup enablement masks.
273 	 * The bulkfree code clears related masks as part of the disk block
274 	 * recycling algorithm, preventing it from being used for a later
275 	 * dedup.
276 	 *
277 	 * NOTE: A large buffer cache can actually interfere with dedup
278 	 *	 operation because we dedup based on media physical buffers
279 	 *	 and not logical buffers.  Try to make the DIO case large
280 	 *	 enough to avoid this problem, but also cap it.
281 	 */
282 	hammer2_dio_limit = nbuf * 2;
283 	if (hammer2_dio_limit > 100000)
284 		hammer2_dio_limit = 100000;
285 
286 	if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
287 		error = EINVAL;
288 	if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
289 		error = EINVAL;
290 	if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
291 		error = EINVAL;
292 
293 	if (error)
294 		kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
295 
296 	margs_read.objsize = 65536;
297 	margs_read.mtype = M_HAMMER2_DEBUFFER;
298 
299 	margs_write.objsize = 32768;
300 	margs_write.mtype = M_HAMMER2_CBUFFER;
301 
302 	margs_vop.objsize = sizeof(hammer2_xop_t);
303 	margs_vop.mtype = M_HAMMER2;
304 
305 	/*
306 	 * Note thaht for the XOPS cache we want backing store allocations
307 	 * to use M_ZERO.  This is not allowed in objcache_get() (to avoid
308 	 * confusion), so use the backing store function that does it.  This
309 	 * means that initial XOPS objects are zerod but REUSED objects are
310 	 * not.  So we are responsible for cleaning the object up sufficiently
311 	 * for our needs before objcache_put()ing it back (typically just the
312 	 * FIFO indices).
313 	 */
314 	cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
315 				0, 1, NULL, NULL, NULL,
316 				objcache_malloc_alloc,
317 				objcache_malloc_free,
318 				&margs_read);
319 	cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
320 				0, 1, NULL, NULL, NULL,
321 				objcache_malloc_alloc,
322 				objcache_malloc_free,
323 				&margs_write);
324 	cache_xops = objcache_create(margs_vop.mtype->ks_shortdesc,
325 				0, 1, NULL, NULL, NULL,
326 				objcache_malloc_alloc_zero,
327 				objcache_malloc_free,
328 				&margs_vop);
329 
330 
331 	lockinit(&hammer2_mntlk, "mntlk", 0, 0);
332 	TAILQ_INIT(&hammer2_mntlist);
333 	TAILQ_INIT(&hammer2_pfslist);
334 	TAILQ_INIT(&hammer2_spmplist);
335 
336 	hammer2_limit_dirty_chains = maxvnodes / 10;
337 	if (hammer2_limit_dirty_chains > HAMMER2_LIMIT_DIRTY_CHAINS)
338 		hammer2_limit_dirty_chains = HAMMER2_LIMIT_DIRTY_CHAINS;
339 	if (hammer2_limit_dirty_chains < 1000)
340 		hammer2_limit_dirty_chains = 1000;
341 
342 	hammer2_limit_dirty_inodes = maxvnodes / 25;
343 	if (hammer2_limit_dirty_inodes < 100)
344 		hammer2_limit_dirty_inodes = 100;
345 	if (hammer2_limit_dirty_inodes > HAMMER2_LIMIT_DIRTY_INODES)
346 		hammer2_limit_dirty_inodes = HAMMER2_LIMIT_DIRTY_INODES;
347 
348 	return (error);
349 }
350 
351 static
352 int
353 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
354 {
355 	objcache_destroy(cache_buffer_read);
356 	objcache_destroy(cache_buffer_write);
357 	objcache_destroy(cache_xops);
358 	return 0;
359 }
360 
361 /*
362  * Core PFS allocator.  Used to allocate or reference the pmp structure
363  * for PFS cluster mounts and the spmp structure for media (hmp) structures.
364  * The pmp can be passed in or loaded by this function using the chain and
365  * inode data.
366  *
367  * pmp->modify_tid tracks new modify_tid transaction ids for front-end
368  * transactions.  Note that synchronization does not use this field.
369  * (typically frontend operations and synchronization cannot run on the
370  * same PFS node at the same time).
371  *
372  * XXX check locking
373  */
374 hammer2_pfs_t *
375 hammer2_pfsalloc(hammer2_chain_t *chain,
376 		 const hammer2_inode_data_t *ripdata,
377 		 hammer2_tid_t modify_tid, hammer2_dev_t *force_local)
378 {
379 	hammer2_pfs_t *pmp;
380 	hammer2_inode_t *iroot;
381 	int count;
382 	int i;
383 	int j;
384 
385 	pmp = NULL;
386 
387 	/*
388 	 * Locate or create the PFS based on the cluster id.  If ripdata
389 	 * is NULL this is a spmp which is unique and is always allocated.
390 	 *
391 	 * If the device is mounted in local mode all PFSs are considered
392 	 * independent and not part of any cluster (for debugging only).
393 	 */
394 	if (ripdata) {
395 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
396 			if (force_local != pmp->force_local)
397 				continue;
398 			if (force_local == NULL &&
399 			    bcmp(&pmp->pfs_clid, &ripdata->meta.pfs_clid,
400 				 sizeof(pmp->pfs_clid)) == 0) {
401 					break;
402 			} else if (force_local && pmp->pfs_names[0] &&
403 			    strcmp(pmp->pfs_names[0], ripdata->filename) == 0) {
404 					break;
405 			}
406 		}
407 	}
408 
409 	if (pmp == NULL) {
410 		pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
411 		pmp->force_local = force_local;
412 		hammer2_trans_manage_init(pmp);
413 		kmalloc_create_obj(&pmp->minode, "HAMMER2-inodes",
414 				   sizeof(struct hammer2_inode));
415 		lockinit(&pmp->lock, "pfslk", 0, 0);
416 		lockinit(&pmp->lock_nlink, "h2nlink", 0, 0);
417 		spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
418 		spin_init(&pmp->xop_spin, "h2xop");
419 		spin_init(&pmp->lru_spin, "h2lru");
420 		RB_INIT(&pmp->inum_tree);
421 		TAILQ_INIT(&pmp->syncq);
422 		TAILQ_INIT(&pmp->depq);
423 		TAILQ_INIT(&pmp->lru_list);
424 		spin_init(&pmp->list_spin, "h2pfsalloc_list");
425 
426 		/*
427 		 * Save the last media transaction id for the flusher.  Set
428 		 * initial
429 		 */
430 		if (ripdata) {
431 			pmp->pfs_clid = ripdata->meta.pfs_clid;
432 			TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
433 		} else {
434 			pmp->flags |= HAMMER2_PMPF_SPMP;
435 			TAILQ_INSERT_TAIL(&hammer2_spmplist, pmp, mntentry);
436 		}
437 
438 		/*
439 		 * The synchronization thread may start too early, make
440 		 * sure it stays frozen until we are ready to let it go.
441 		 * XXX
442 		 */
443 		/*
444 		pmp->primary_thr.flags = HAMMER2_THREAD_FROZEN |
445 					 HAMMER2_THREAD_REMASTER;
446 		*/
447 	}
448 
449 	/*
450 	 * Create the PFS's root inode and any missing XOP helper threads.
451 	 */
452 	if ((iroot = pmp->iroot) == NULL) {
453 		iroot = hammer2_inode_get(pmp, NULL, 1, -1);
454 		if (ripdata)
455 			iroot->meta = ripdata->meta;
456 		pmp->iroot = iroot;
457 		hammer2_inode_ref(iroot);
458 		hammer2_inode_unlock(iroot);
459 	}
460 
461 	/*
462 	 * Stop here if no chain is passed in.
463 	 */
464 	if (chain == NULL)
465 		goto done;
466 
467 	/*
468 	 * When a chain is passed in we must add it to the PFS's root
469 	 * inode, update pmp->pfs_types[], and update the syncronization
470 	 * threads.
471 	 *
472 	 * When forcing local mode, mark the PFS as a MASTER regardless.
473 	 *
474 	 * At the moment empty spots can develop due to removals or failures.
475 	 * Ultimately we want to re-fill these spots but doing so might
476 	 * confused running code. XXX
477 	 */
478 	hammer2_inode_ref(iroot);
479 	hammer2_mtx_ex(&iroot->lock);
480 	j = iroot->cluster.nchains;
481 
482 	if (j == HAMMER2_MAXCLUSTER) {
483 		kprintf("hammer2_pfsalloc: cluster full!\n");
484 		/* XXX fatal error? */
485 	} else {
486 		KKASSERT(chain->pmp == NULL);
487 		chain->pmp = pmp;
488 		hammer2_chain_ref(chain);
489 		iroot->cluster.array[j].chain = chain;
490 		if (force_local)
491 			pmp->pfs_types[j] = HAMMER2_PFSTYPE_MASTER;
492 		else
493 			pmp->pfs_types[j] = ripdata->meta.pfs_type;
494 		pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2);
495 		pmp->pfs_hmps[j] = chain->hmp;
496 		hammer2_spin_ex(&pmp->inum_spin);
497 		pmp->pfs_iroot_blocksets[j] = chain->data->ipdata.u.blockset;
498 		hammer2_spin_unex(&pmp->inum_spin);
499 
500 		/*
501 		 * If the PFS is already mounted we must account
502 		 * for the mount_count here.
503 		 */
504 		if (pmp->mp)
505 			++chain->hmp->mount_count;
506 
507 		/*
508 		 * May have to fixup dirty chain tracking.  Previous
509 		 * pmp was NULL so nothing to undo.
510 		 */
511 		if (chain->flags & HAMMER2_CHAIN_MODIFIED)
512 			hammer2_pfs_memory_inc(pmp);
513 		++j;
514 	}
515 	iroot->cluster.nchains = j;
516 
517 	/*
518 	 * Update nmasters from any PFS inode which is part of the cluster.
519 	 * It is possible that this will result in a value which is too
520 	 * high.  MASTER PFSs are authoritative for pfs_nmasters and will
521 	 * override this value later on.
522 	 *
523 	 * (This informs us of masters that might not currently be
524 	 *  discoverable by this mount).
525 	 */
526 	if (ripdata && pmp->pfs_nmasters < ripdata->meta.pfs_nmasters) {
527 		pmp->pfs_nmasters = ripdata->meta.pfs_nmasters;
528 	}
529 
530 	/*
531 	 * Count visible masters.  Masters are usually added with
532 	 * ripdata->meta.pfs_nmasters set to 1.  This detects when there
533 	 * are more (XXX and must update the master inodes).
534 	 */
535 	count = 0;
536 	for (i = 0; i < iroot->cluster.nchains; ++i) {
537 		if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)
538 			++count;
539 	}
540 	if (pmp->pfs_nmasters < count)
541 		pmp->pfs_nmasters = count;
542 
543 	/*
544 	 * Create missing synchronization and support threads.
545 	 *
546 	 * Single-node masters (including snapshots) have nothing to
547 	 * synchronize and do not require this thread.
548 	 *
549 	 * Multi-node masters or any number of soft masters, slaves, copy,
550 	 * or other PFS types need the thread.
551 	 *
552 	 * Each thread is responsible for its particular cluster index.
553 	 * We use independent threads so stalls or mismatches related to
554 	 * any given target do not affect other targets.
555 	 */
556 	for (i = 0; i < iroot->cluster.nchains; ++i) {
557 		/*
558 		 * Single-node masters (including snapshots) have nothing
559 		 * to synchronize and will make direct xops support calls,
560 		 * thus they do not require this thread.
561 		 *
562 		 * Note that there can be thousands of snapshots.  We do not
563 		 * want to create thousands of threads.
564 		 */
565 		if (pmp->pfs_nmasters <= 1 &&
566 		    pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) {
567 			continue;
568 		}
569 
570 		/*
571 		 * Sync support thread
572 		 */
573 		if (pmp->sync_thrs[i].td == NULL) {
574 			hammer2_thr_create(&pmp->sync_thrs[i], pmp, NULL,
575 					   "h2nod", i, -1,
576 					   hammer2_primary_sync_thread);
577 		}
578 	}
579 
580 	/*
581 	 * Create missing Xop threads
582 	 *
583 	 * NOTE: We create helper threads for all mounted PFSs or any
584 	 *	 PFSs with 2+ nodes (so the sync thread can update them,
585 	 *	 even if not mounted).
586 	 */
587 	if (pmp->mp || iroot->cluster.nchains >= 2)
588 		hammer2_xop_helper_create(pmp);
589 
590 	hammer2_mtx_unlock(&iroot->lock);
591 	hammer2_inode_drop(iroot);
592 done:
593 	return pmp;
594 }
595 
596 /*
597  * Deallocate an element of a probed PFS.  If destroying and this is a
598  * MASTER, adjust nmasters.
599  *
600  * This function does not physically destroy the PFS element in its device
601  * under the super-root  (see hammer2_ioctl_pfs_delete()).
602  */
603 void
604 hammer2_pfsdealloc(hammer2_pfs_t *pmp, int clindex, int destroying)
605 {
606 	hammer2_inode_t *iroot;
607 	hammer2_chain_t *chain;
608 	int j;
609 
610 	/*
611 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
612 	 * by the flush code.
613 	 */
614 	iroot = pmp->iroot;
615 	if (iroot) {
616 		/*
617 		 * Stop synchronizing
618 		 *
619 		 * XXX flush after acquiring the iroot lock.
620 		 * XXX clean out the cluster index from all inode structures.
621 		 */
622 		hammer2_thr_delete(&pmp->sync_thrs[clindex]);
623 
624 		/*
625 		 * Remove the cluster index from the group.  If destroying
626 		 * the PFS and this is a master, adjust pfs_nmasters.
627 		 */
628 		hammer2_mtx_ex(&iroot->lock);
629 		chain = iroot->cluster.array[clindex].chain;
630 		iroot->cluster.array[clindex].chain = NULL;
631 
632 		switch(pmp->pfs_types[clindex]) {
633 		case HAMMER2_PFSTYPE_MASTER:
634 			if (destroying && pmp->pfs_nmasters > 0)
635 				--pmp->pfs_nmasters;
636 			/* XXX adjust ripdata->meta.pfs_nmasters */
637 			break;
638 		default:
639 			break;
640 		}
641 		pmp->pfs_types[clindex] = HAMMER2_PFSTYPE_NONE;
642 
643 		hammer2_mtx_unlock(&iroot->lock);
644 
645 		/*
646 		 * Release the chain.
647 		 */
648 		if (chain) {
649 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
650 			hammer2_chain_drop(chain);
651 		}
652 
653 		/*
654 		 * Terminate all XOP threads for the cluster index.
655 		 */
656 		if (pmp->xop_groups) {
657 			for (j = 0; j < hammer2_xopgroups; ++j) {
658 				hammer2_thr_delete(
659 					&pmp->xop_groups[j].thrs[clindex]);
660 			}
661 		}
662 	}
663 }
664 
665 /*
666  * Destroy a PFS, typically only occurs after the last mount on a device
667  * has gone away.
668  */
669 static void
670 hammer2_pfsfree(hammer2_pfs_t *pmp)
671 {
672 	hammer2_inode_t *iroot;
673 	hammer2_chain_t *chain;
674 	int chains_still_present = 0;
675 	int i;
676 	int j;
677 
678 	/*
679 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
680 	 * by the flush code.
681 	 */
682 	if (pmp->flags & HAMMER2_PMPF_SPMP)
683 		TAILQ_REMOVE(&hammer2_spmplist, pmp, mntentry);
684 	else
685 		TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
686 
687 	/*
688 	 * Cleanup chains remaining on LRU list.
689 	 */
690 	hammer2_spin_ex(&pmp->lru_spin);
691 	while ((chain = TAILQ_FIRST(&pmp->lru_list)) != NULL) {
692 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONLRU);
693 		atomic_add_int(&pmp->lru_count, -1);
694 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
695 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
696 		hammer2_chain_ref(chain);
697 		hammer2_spin_unex(&pmp->lru_spin);
698 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
699 		hammer2_chain_drop(chain);
700 		hammer2_spin_ex(&pmp->lru_spin);
701 	}
702 	hammer2_spin_unex(&pmp->lru_spin);
703 
704 	/*
705 	 * Clean up iroot
706 	 */
707 	iroot = pmp->iroot;
708 	if (iroot) {
709 		for (i = 0; i < iroot->cluster.nchains; ++i) {
710 			hammer2_thr_delete(&pmp->sync_thrs[i]);
711 			if (pmp->xop_groups) {
712 				for (j = 0; j < hammer2_xopgroups; ++j)
713 					hammer2_thr_delete(
714 						&pmp->xop_groups[j].thrs[i]);
715 			}
716 			chain = iroot->cluster.array[i].chain;
717 			if (chain && !RB_EMPTY(&chain->core.rbtree)) {
718 				kprintf("hammer2: Warning pmp %p still "
719 					"has active chains\n", pmp);
720 				chains_still_present = 1;
721 			}
722 		}
723 #if REPORT_REFS_ERRORS
724 		if (iroot->refs != 1)
725 			kprintf("PMP->IROOT %p REFS WRONG %d\n",
726 				iroot, iroot->refs);
727 #else
728 		KKASSERT(iroot->refs == 1);
729 #endif
730 		/* ref for iroot */
731 		hammer2_inode_drop(iroot);
732 		pmp->iroot = NULL;
733 	}
734 
735 	/*
736 	 * Free remaining pmp resources
737 	 */
738 	if (chains_still_present) {
739 		kprintf("hammer2: cannot free pmp %p, still in use\n", pmp);
740 	} else {
741 		kmalloc_destroy_obj(&pmp->minode);
742 		kfree(pmp, M_HAMMER2);
743 	}
744 }
745 
746 /*
747  * Remove all references to hmp from the pfs list.  Any PFS which becomes
748  * empty is terminated and freed.
749  *
750  * XXX inefficient.
751  */
752 static void
753 hammer2_pfsfree_scan(hammer2_dev_t *hmp, int which)
754 {
755 	hammer2_pfs_t *pmp;
756 	hammer2_inode_t *iroot;
757 	hammer2_chain_t *rchain;
758 	int i;
759 	int j;
760 	struct hammer2_pfslist *wlist;
761 
762 	if (which == 0)
763 		wlist = &hammer2_pfslist;
764 	else
765 		wlist = &hammer2_spmplist;
766 again:
767 	TAILQ_FOREACH(pmp, wlist, mntentry) {
768 		if ((iroot = pmp->iroot) == NULL)
769 			continue;
770 
771 		/*
772 		 * Determine if this PFS is affected.  If it is we must
773 		 * freeze all management threads and lock its iroot.
774 		 *
775 		 * Freezing a management thread forces it idle, operations
776 		 * in-progress will be aborted and it will have to start
777 		 * over again when unfrozen, or exit if told to exit.
778 		 */
779 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
780 			if (pmp->pfs_hmps[i] == hmp)
781 				break;
782 		}
783 		if (i == HAMMER2_MAXCLUSTER)
784 			continue;
785 
786 		hammer2_vfs_sync_pmp(pmp, MNT_WAIT);
787 
788 		/*
789 		 * Make sure all synchronization threads are locked
790 		 * down.
791 		 */
792 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
793 			if (pmp->pfs_hmps[i] == NULL)
794 				continue;
795 			hammer2_thr_freeze_async(&pmp->sync_thrs[i]);
796 			if (pmp->xop_groups) {
797 				for (j = 0; j < hammer2_xopgroups; ++j) {
798 					hammer2_thr_freeze_async(
799 						&pmp->xop_groups[j].thrs[i]);
800 				}
801 			}
802 		}
803 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
804 			if (pmp->pfs_hmps[i] == NULL)
805 				continue;
806 			hammer2_thr_freeze(&pmp->sync_thrs[i]);
807 			if (pmp->xop_groups) {
808 				for (j = 0; j < hammer2_xopgroups; ++j) {
809 					hammer2_thr_freeze(
810 						&pmp->xop_groups[j].thrs[i]);
811 				}
812 			}
813 		}
814 
815 		/*
816 		 * Lock the inode and clean out matching chains.
817 		 * Note that we cannot use hammer2_inode_lock_*()
818 		 * here because that would attempt to validate the
819 		 * cluster that we are in the middle of ripping
820 		 * apart.
821 		 *
822 		 * WARNING! We are working directly on the inodes
823 		 *	    embedded cluster.
824 		 */
825 		hammer2_mtx_ex(&iroot->lock);
826 
827 		/*
828 		 * Remove the chain from matching elements of the PFS.
829 		 */
830 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
831 			if (pmp->pfs_hmps[i] != hmp)
832 				continue;
833 			hammer2_thr_delete(&pmp->sync_thrs[i]);
834 			if (pmp->xop_groups) {
835 				for (j = 0; j < hammer2_xopgroups; ++j) {
836 					hammer2_thr_delete(
837 						&pmp->xop_groups[j].thrs[i]);
838 				}
839 			}
840 			rchain = iroot->cluster.array[i].chain;
841 			iroot->cluster.array[i].chain = NULL;
842 			pmp->pfs_types[i] = 0;
843 			if (pmp->pfs_names[i]) {
844 				kfree(pmp->pfs_names[i], M_HAMMER2);
845 				pmp->pfs_names[i] = NULL;
846 			}
847 			if (rchain) {
848 				hammer2_chain_drop(rchain);
849 				/* focus hint */
850 				if (iroot->cluster.focus == rchain)
851 					iroot->cluster.focus = NULL;
852 			}
853 			pmp->pfs_hmps[i] = NULL;
854 		}
855 		hammer2_mtx_unlock(&iroot->lock);
856 
857 		/*
858 		 * Cleanup trailing chains.  Gaps may remain.
859 		 */
860 		for (i = HAMMER2_MAXCLUSTER - 1; i >= 0; --i) {
861 			if (pmp->pfs_hmps[i])
862 				break;
863 		}
864 		iroot->cluster.nchains = i + 1;
865 
866 		/*
867 		 * If the PMP has no elements remaining we can destroy it.
868 		 * (this will transition management threads from frozen->exit).
869 		 */
870 		if (iroot->cluster.nchains == 0) {
871 			/*
872 			 * If this was the hmp's spmp, we need to clean
873 			 * a little more stuff out.
874 			 */
875 			if (hmp->spmp == pmp) {
876 				hmp->spmp = NULL;
877 				hmp->vchain.pmp = NULL;
878 				hmp->fchain.pmp = NULL;
879 			}
880 
881 			/*
882 			 * Free the pmp and restart the loop
883 			 */
884 			KKASSERT(TAILQ_EMPTY(&pmp->syncq));
885 			KKASSERT(TAILQ_EMPTY(&pmp->depq));
886 			hammer2_pfsfree(pmp);
887 			goto again;
888 		}
889 
890 		/*
891 		 * If elements still remain we need to set the REMASTER
892 		 * flag and unfreeze it.
893 		 */
894 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
895 			if (pmp->pfs_hmps[i] == NULL)
896 				continue;
897 			hammer2_thr_remaster(&pmp->sync_thrs[i]);
898 			hammer2_thr_unfreeze(&pmp->sync_thrs[i]);
899 			if (pmp->xop_groups) {
900 				for (j = 0; j < hammer2_xopgroups; ++j) {
901 					hammer2_thr_remaster(
902 						&pmp->xop_groups[j].thrs[i]);
903 					hammer2_thr_unfreeze(
904 						&pmp->xop_groups[j].thrs[i]);
905 				}
906 			}
907 		}
908 	}
909 }
910 
911 /*
912  * Mount or remount HAMMER2 fileystem from physical media
913  *
914  *	mountroot
915  *		mp		mount point structure
916  *		path		NULL
917  *		data		<unused>
918  *		cred		<unused>
919  *
920  *	mount
921  *		mp		mount point structure
922  *		path		path to mount point
923  *		data		pointer to argument structure in user space
924  *			volume	volume path (device@LABEL form)
925  *			hflags	user mount flags
926  *		cred		user credentials
927  *
928  * RETURNS:	0	Success
929  *		!0	error number
930  */
931 static
932 int
933 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
934 		  struct ucred *cred)
935 {
936 	struct hammer2_mount_info info;
937 	hammer2_pfs_t *pmp;
938 	hammer2_pfs_t *spmp;
939 	hammer2_dev_t *hmp, *hmp_tmp;
940 	hammer2_dev_t *force_local;
941 	hammer2_key_t key_next;
942 	hammer2_key_t key_dummy;
943 	hammer2_key_t lhc;
944 	hammer2_chain_t *parent;
945 	hammer2_chain_t *chain;
946 	const hammer2_inode_data_t *ripdata;
947 	hammer2_blockref_t bref;
948 	hammer2_devvp_list_t devvpl;
949 	hammer2_devvp_t *e, *e_tmp;
950 	struct file *fp;
951 	char devstr[MNAMELEN];
952 	size_t size;
953 	size_t done;
954 	char *dev;
955 	char *label;
956 	int ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
957 	int error;
958 	int i;
959 
960 	hmp = NULL;
961 	pmp = NULL;
962 	dev = NULL;
963 	label = NULL;
964 	bzero(&info, sizeof(info));
965 
966 	if (path) {
967 		/*
968 		 * Non-root mount or updating a mount
969 		 */
970 		error = copyin(data, &info, sizeof(info));
971 		if (error)
972 			return (error);
973 	}
974 
975 	if (mp->mnt_flag & MNT_UPDATE) {
976 		/*
977 		 * Update mount.  Note that pmp->iroot->cluster is
978 		 * an inode-embedded cluster and thus cannot be
979 		 * directly locked.
980 		 *
981 		 * XXX HAMMER2 needs to implement NFS export via
982 		 *     mountctl.
983 		 */
984 		hammer2_cluster_t *cluster;
985 
986 		pmp = MPTOPMP(mp);
987 		pmp->hflags = info.hflags;
988 		cluster = &pmp->iroot->cluster;
989 		for (i = 0; i < cluster->nchains; ++i) {
990 			if (cluster->array[i].chain == NULL)
991 				continue;
992 			hmp = cluster->array[i].chain->hmp;
993 			error = hammer2_remount(hmp, mp, path, cred);
994 			if (error)
995 				break;
996 		}
997 
998 		return error;
999 	}
1000 
1001 	if (path == NULL) {
1002 		/*
1003 		 * Root mount
1004 		 */
1005 		info.cluster_fd = -1;
1006 		ksnprintf(devstr, sizeof(devstr), "%s",
1007 			  mp->mnt_stat.f_mntfromname);
1008 		done = strlen(devstr) + 1;
1009 		kprintf("hammer2_mount: root devstr=\"%s\"\n", devstr);
1010 	} else {
1011 		error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
1012 		if (error)
1013 			return (error);
1014 		kprintf("hammer2_mount: devstr=\"%s\"\n", devstr);
1015 	}
1016 
1017 	/*
1018 	 * Extract device and label, automatically mount @BOOT, @ROOT, or @DATA
1019 	 * if no label specified, based on the partition id.  Error out if no
1020 	 * label or device (with partition id) is specified.  This is strictly
1021 	 * a convenience to match the default label created by newfs_hammer2,
1022 	 * our preference is that a label always be specified.
1023 	 *
1024 	 * NOTE: We allow 'mount @LABEL <blah>'... that is, a mount command
1025 	 *	 that does not specify a device, as long as some H2 label
1026 	 *	 has already been mounted from that device.  This makes
1027 	 *	 mounting snapshots a lot easier.
1028 	 */
1029 	dev = devstr;
1030 	label = strchr(devstr, '@');
1031 	if (label && ((label + 1) - dev) > done) {
1032 		kprintf("hammer2_mount: bad label %s/%zd\n", devstr, done);
1033 		return (EINVAL);
1034 	}
1035 	if (label == NULL || label[1] == 0) {
1036 		char slice;
1037 
1038 		if (label == NULL)
1039 			label = devstr + strlen(devstr);
1040 		else
1041 			*label = '\0';		/* clean up trailing @ */
1042 
1043 		slice = label[-1];
1044 		switch(slice) {
1045 		case 'a':
1046 			label = "BOOT";
1047 			break;
1048 		case 'd':
1049 			label = "ROOT";
1050 			break;
1051 		default:
1052 			label = "DATA";
1053 			break;
1054 		}
1055 	} else {
1056 		*label = '\0';
1057 		label++;
1058 	}
1059 
1060 	kprintf("hammer2_mount: dev=\"%s\" label=\"%s\" rdonly=%d\n",
1061 		dev, label, ronly);
1062 
1063 	/*
1064 	 * Initialize all device vnodes.
1065 	 */
1066 	TAILQ_INIT(&devvpl);
1067 	error = hammer2_init_devvp(dev, path == NULL, &devvpl);
1068 	if (error) {
1069 		kprintf("hammer2: failed to initialize devvp in %s\n", dev);
1070 		hammer2_cleanup_devvp(&devvpl);
1071 		return error;
1072 	}
1073 
1074 	/*
1075 	 * Determine if the device has already been mounted.  After this
1076 	 * check hmp will be non-NULL if we are doing the second or more
1077 	 * hammer2 mounts from the same device.
1078 	 */
1079 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1080 	if (!TAILQ_EMPTY(&devvpl)) {
1081 		/*
1082 		 * Match the device.  Due to the way devfs works,
1083 		 * we may not be able to directly match the vnode pointer,
1084 		 * so also check to see if the underlying device matches.
1085 		 */
1086 		TAILQ_FOREACH(hmp_tmp, &hammer2_mntlist, mntentry) {
1087 			TAILQ_FOREACH(e_tmp, &hmp_tmp->devvpl, entry) {
1088 				int devvp_found = 0;
1089 				TAILQ_FOREACH(e, &devvpl, entry) {
1090 					KKASSERT(e->devvp);
1091 					if (e_tmp->devvp == e->devvp)
1092 						devvp_found = 1;
1093 					if (e_tmp->devvp->v_rdev &&
1094 					    e_tmp->devvp->v_rdev == e->devvp->v_rdev)
1095 						devvp_found = 1;
1096 				}
1097 				if (!devvp_found)
1098 					goto next_hmp;
1099 			}
1100 			hmp = hmp_tmp;
1101 			kprintf("hammer2_mount: hmp=%p matched\n", hmp);
1102 			break;
1103 next_hmp:
1104 			continue;
1105 		}
1106 
1107 		/*
1108 		 * If no match this may be a fresh H2 mount, make sure
1109 		 * the device is not mounted on anything else.
1110 		 */
1111 		if (hmp == NULL) {
1112 			TAILQ_FOREACH(e, &devvpl, entry) {
1113 				struct vnode *devvp = e->devvp;
1114 				KKASSERT(devvp);
1115 				error = vfs_mountedon(devvp);
1116 				if (error) {
1117 					kprintf("hammer2_mount: %s mounted %d\n",
1118 						e->path, error);
1119 					hammer2_cleanup_devvp(&devvpl);
1120 					lockmgr(&hammer2_mntlk, LK_RELEASE);
1121 					return error;
1122 				}
1123 			}
1124 		}
1125 	} else {
1126 		/*
1127 		 * Match the label to a pmp already probed.
1128 		 */
1129 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
1130 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
1131 				if (pmp->pfs_names[i] &&
1132 				    strcmp(pmp->pfs_names[i], label) == 0) {
1133 					hmp = pmp->pfs_hmps[i];
1134 					break;
1135 				}
1136 			}
1137 			if (hmp)
1138 				break;
1139 		}
1140 		if (hmp == NULL) {
1141 			kprintf("hammer2_mount: PFS label \"%s\" not found\n",
1142 				label);
1143 			hammer2_cleanup_devvp(&devvpl);
1144 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1145 			return ENOENT;
1146 		}
1147 	}
1148 
1149 	/*
1150 	 * Open the device if this isn't a secondary mount and construct
1151 	 * the H2 device mount (hmp).
1152 	 */
1153 	if (hmp == NULL) {
1154 		hammer2_chain_t *schain;
1155 		hammer2_xid_t xid;
1156 		hammer2_xop_head_t xop;
1157 
1158 		/*
1159 		 * Now open the device
1160 		 */
1161 		KKASSERT(!TAILQ_EMPTY(&devvpl));
1162 		if (error == 0) {
1163 			error = hammer2_open_devvp(&devvpl, ronly);
1164 			if (error) {
1165 				hammer2_close_devvp(&devvpl, ronly);
1166 				hammer2_cleanup_devvp(&devvpl);
1167 				lockmgr(&hammer2_mntlk, LK_RELEASE);
1168 				return error;
1169 			}
1170 		}
1171 
1172 		/*
1173 		 * Construct volumes and link with device vnodes.
1174 		 */
1175 		hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
1176 		hmp->devvp = NULL;
1177 		error = hammer2_init_volumes(mp, &devvpl, hmp->volumes,
1178 					     &hmp->voldata, &hmp->devvp);
1179 		if (error) {
1180 			hammer2_close_devvp(&devvpl, ronly);
1181 			hammer2_cleanup_devvp(&devvpl);
1182 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1183 			kfree(hmp, M_HAMMER2);
1184 			return error;
1185 		}
1186 		if (!hmp->devvp) {
1187 			kprintf("hammer2: failed to initialize root volume\n");
1188 			hammer2_unmount_helper(mp, NULL, hmp);
1189 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1190 			hammer2_vfs_unmount(mp, MNT_FORCE);
1191 			return EINVAL;
1192 		}
1193 
1194 		ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", dev);
1195 		hmp->ronly = ronly;
1196 		hmp->hflags = info.hflags & HMNT2_DEVFLAGS;
1197 		kmalloc_create_obj(&hmp->mchain, "HAMMER2-chains",
1198 				   sizeof(struct hammer2_chain));
1199 		kmalloc_create_obj(&hmp->mio, "HAMMER2-dio",
1200 				   sizeof(struct hammer2_io));
1201 		kmalloc_create(&hmp->mmsg, "HAMMER2-msg");
1202 		TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
1203 		RB_INIT(&hmp->iotree);
1204 		spin_init(&hmp->io_spin, "h2mount_io");
1205 		spin_init(&hmp->list_spin, "h2mount_list");
1206 
1207 		lockinit(&hmp->vollk, "h2vol", 0, 0);
1208 		lockinit(&hmp->bulklk, "h2bulk", 0, 0);
1209 		lockinit(&hmp->bflock, "h2bflk", 0, 0);
1210 
1211 		/*
1212 		 * vchain setup. vchain.data is embedded.
1213 		 * vchain.refs is initialized and will never drop to 0.
1214 		 *
1215 		 * NOTE! voldata is not yet loaded.
1216 		 */
1217 		hmp->vchain.hmp = hmp;
1218 		hmp->vchain.refs = 1;
1219 		hmp->vchain.data = (void *)&hmp->voldata;
1220 		hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
1221 		hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1222 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1223 		hammer2_chain_core_init(&hmp->vchain);
1224 
1225 		/*
1226 		 * fchain setup.  fchain.data is embedded.
1227 		 * fchain.refs is initialized and will never drop to 0.
1228 		 *
1229 		 * The data is not used but needs to be initialized to
1230 		 * pass assertion muster.  We use this chain primarily
1231 		 * as a placeholder for the freemap's top-level radix tree
1232 		 * so it does not interfere with the volume's topology
1233 		 * radix tree.
1234 		 */
1235 		hmp->fchain.hmp = hmp;
1236 		hmp->fchain.refs = 1;
1237 		hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
1238 		hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
1239 		hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1240 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1241 		hmp->fchain.bref.methods =
1242 			HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
1243 			HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
1244 		hammer2_chain_core_init(&hmp->fchain);
1245 
1246 		/*
1247 		 * Initialize volume header related fields.
1248 		 */
1249 		KKASSERT(hmp->voldata.magic == HAMMER2_VOLUME_ID_HBO ||
1250 			 hmp->voldata.magic == HAMMER2_VOLUME_ID_ABO);
1251 		hmp->volhdrno = error;
1252 		hmp->volsync = hmp->voldata;
1253 		hmp->free_reserved = hmp->voldata.allocator_size / 20;
1254 		/*
1255 		 * Must use hmp instead of volume header for these two
1256 		 * in order to handle volume versions transparently.
1257 		 */
1258 		if (hmp->voldata.version >= HAMMER2_VOL_VERSION_MULTI_VOLUMES) {
1259 			hmp->nvolumes = hmp->voldata.nvolumes;
1260 			hmp->total_size = hmp->voldata.total_size;
1261 		} else {
1262 			hmp->nvolumes = 1;
1263 			hmp->total_size = hmp->voldata.volu_size;
1264 		}
1265 		KKASSERT(hmp->nvolumes > 0);
1266 
1267 		/*
1268 		 * Move devvpl entries to hmp.
1269 		 */
1270 		TAILQ_INIT(&hmp->devvpl);
1271 		while ((e = TAILQ_FIRST(&devvpl)) != NULL) {
1272 			TAILQ_REMOVE(&devvpl, e, entry);
1273 			TAILQ_INSERT_TAIL(&hmp->devvpl, e, entry);
1274 		}
1275 		KKASSERT(TAILQ_EMPTY(&devvpl));
1276 		KKASSERT(!TAILQ_EMPTY(&hmp->devvpl));
1277 
1278 		/*
1279 		 * Really important to get these right or the flush and
1280 		 * teardown code will get confused.
1281 		 */
1282 		hmp->spmp = hammer2_pfsalloc(NULL, NULL, 0, NULL);
1283 		spmp = hmp->spmp;
1284 		spmp->pfs_hmps[0] = hmp;
1285 
1286 		/*
1287 		 * Dummy-up vchain and fchain's modify_tid.  mirror_tid
1288 		 * is inherited from the volume header.
1289 		 */
1290 		xid = 0;
1291 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1292 		hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
1293 		hmp->vchain.pmp = spmp;
1294 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1295 		hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
1296 		hmp->fchain.pmp = spmp;
1297 
1298 		/*
1299 		 * First locate the super-root inode, which is key 0
1300 		 * relative to the volume header's blockset.
1301 		 *
1302 		 * Then locate the root inode by scanning the directory keyspace
1303 		 * represented by the label.
1304 		 */
1305 		parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1306 		schain = hammer2_chain_lookup(&parent, &key_dummy,
1307 				      HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
1308 				      &error, 0);
1309 		hammer2_chain_lookup_done(parent);
1310 		if (schain == NULL) {
1311 			kprintf("hammer2_mount: invalid super-root\n");
1312 			hammer2_unmount_helper(mp, NULL, hmp);
1313 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1314 			hammer2_vfs_unmount(mp, MNT_FORCE);
1315 			return EINVAL;
1316 		}
1317 		if (schain->error) {
1318 			kprintf("hammer2_mount: error %s reading super-root\n",
1319 				hammer2_error_str(schain->error));
1320 			hammer2_chain_unlock(schain);
1321 			hammer2_chain_drop(schain);
1322 			schain = NULL;
1323 			hammer2_unmount_helper(mp, NULL, hmp);
1324 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1325 			hammer2_vfs_unmount(mp, MNT_FORCE);
1326 			return EINVAL;
1327 		}
1328 
1329 		/*
1330 		 * The super-root always uses an inode_tid of 1 when
1331 		 * creating PFSs.
1332 		 */
1333 		spmp->inode_tid = 1;
1334 		spmp->modify_tid = schain->bref.modify_tid + 1;
1335 
1336 		/*
1337 		 * Sanity-check schain's pmp and finish initialization.
1338 		 * Any chain belonging to the super-root topology should
1339 		 * have a NULL pmp (not even set to spmp).
1340 		 */
1341 		ripdata = &schain->data->ipdata;
1342 		KKASSERT(schain->pmp == NULL);
1343 		spmp->pfs_clid = ripdata->meta.pfs_clid;
1344 
1345 		/*
1346 		 * Replace the dummy spmp->iroot with a real one.  It's
1347 		 * easier to just do a wholesale replacement than to try
1348 		 * to update the chain and fixup the iroot fields.
1349 		 *
1350 		 * The returned inode is locked with the supplied cluster.
1351 		 */
1352 		hammer2_dummy_xop_from_chain(&xop, schain);
1353 		hammer2_inode_drop(spmp->iroot);
1354 		spmp->iroot = NULL;
1355 		spmp->iroot = hammer2_inode_get(spmp, &xop, -1, -1);
1356 		spmp->spmp_hmp = hmp;
1357 		spmp->pfs_types[0] = ripdata->meta.pfs_type;
1358 		spmp->pfs_hmps[0] = hmp;
1359 		hammer2_inode_ref(spmp->iroot);
1360 		hammer2_inode_unlock(spmp->iroot);
1361 		hammer2_cluster_unlock(&xop.cluster);
1362 		hammer2_chain_drop(schain);
1363 		/* do not call hammer2_cluster_drop() on an embedded cluster */
1364 		schain = NULL;	/* now invalid */
1365 		/* leave spmp->iroot with one ref */
1366 
1367 		if (!hmp->ronly) {
1368 			error = hammer2_recovery(hmp);
1369 			if (error == 0)
1370 				error |= hammer2_fixup_pfses(hmp);
1371 			/* XXX do something with error */
1372 		}
1373 		hammer2_update_pmps(hmp);
1374 		hammer2_iocom_init(hmp);
1375 		hammer2_bulkfree_init(hmp);
1376 
1377 		/*
1378 		 * Ref the cluster management messaging descriptor.  The mount
1379 		 * program deals with the other end of the communications pipe.
1380 		 *
1381 		 * Root mounts typically do not supply one.
1382 		 */
1383 		if (info.cluster_fd >= 0) {
1384 			fp = holdfp(curthread, info.cluster_fd, -1);
1385 			if (fp) {
1386 				hammer2_cluster_reconnect(hmp, fp);
1387 			} else {
1388 				kprintf("hammer2_mount: bad cluster_fd!\n");
1389 			}
1390 		}
1391 	} else {
1392 		spmp = hmp->spmp;
1393 		if (info.hflags & HMNT2_DEVFLAGS) {
1394 			kprintf("hammer2_mount: Warning: mount flags pertaining "
1395 				"to the whole device may only be specified "
1396 				"on the first mount of the device: %08x\n",
1397 				info.hflags & HMNT2_DEVFLAGS);
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * Force local mount (disassociate all PFSs from their clusters).
1403 	 * Used primarily for debugging.
1404 	 */
1405 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1406 
1407 	/*
1408 	 * Lookup the mount point under the media-localized super-root.
1409 	 * Scanning hammer2_pfslist doesn't help us because it represents
1410 	 * PFS cluster ids which can aggregate several named PFSs together.
1411 	 *
1412 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1413 	 * up later on.
1414 	 */
1415 	hammer2_inode_lock(spmp->iroot, 0);
1416 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1417 	lhc = hammer2_dirhash(label, strlen(label));
1418 	chain = hammer2_chain_lookup(&parent, &key_next,
1419 				     lhc, lhc + HAMMER2_DIRHASH_LOMASK,
1420 				     &error, 0);
1421 	while (chain) {
1422 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
1423 		    strcmp(label, chain->data->ipdata.filename) == 0) {
1424 			break;
1425 		}
1426 		chain = hammer2_chain_next(&parent, chain, &key_next,
1427 					    key_next,
1428 					    lhc + HAMMER2_DIRHASH_LOMASK,
1429 					    &error, 0);
1430 	}
1431 	if (parent) {
1432 		hammer2_chain_unlock(parent);
1433 		hammer2_chain_drop(parent);
1434 	}
1435 	hammer2_inode_unlock(spmp->iroot);
1436 
1437 	/*
1438 	 * PFS could not be found?
1439 	 */
1440 	if (chain == NULL) {
1441 		hammer2_unmount_helper(mp, NULL, hmp);
1442 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1443 		hammer2_vfs_unmount(mp, MNT_FORCE);
1444 
1445 		if (error) {
1446 			kprintf("hammer2_mount: PFS label I/O error\n");
1447 			return EINVAL;
1448 		} else {
1449 			kprintf("hammer2_mount: PFS label \"%s\" not found\n",
1450 				label);
1451 			return ENOENT;
1452 		}
1453 	}
1454 
1455 	/*
1456 	 * Acquire the pmp structure (it should have already been allocated
1457 	 * via hammer2_update_pmps() so do not pass cluster in to add to
1458 	 * available chains).
1459 	 *
1460 	 * Check if the cluster has already been mounted.  A cluster can
1461 	 * only be mounted once, use null mounts to mount additional copies.
1462 	 */
1463 	if (chain->error) {
1464 		kprintf("hammer2_mount: PFS label I/O error\n");
1465 	} else {
1466 		ripdata = &chain->data->ipdata;
1467 		bref = chain->bref;
1468 		pmp = hammer2_pfsalloc(NULL, ripdata,
1469 				       bref.modify_tid, force_local);
1470 	}
1471 	hammer2_chain_unlock(chain);
1472 	hammer2_chain_drop(chain);
1473 
1474 	/*
1475 	 * Finish the mount
1476 	 */
1477         kprintf("hammer2_mount: hmp=%p pmp=%p\n", hmp, pmp);
1478 
1479 	if (pmp->mp) {
1480 		kprintf("hammer2_mount: PFS already mounted!\n");
1481 		hammer2_unmount_helper(mp, NULL, hmp);
1482 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1483 		hammer2_vfs_unmount(mp, MNT_FORCE);
1484 
1485 		return EBUSY;
1486 	}
1487 
1488 	pmp->hflags = info.hflags;
1489         mp->mnt_flag |= MNT_LOCAL;
1490         mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;   /* all entry pts are SMP */
1491         mp->mnt_kern_flag |= MNTK_THR_SYNC;     /* new vsyncscan semantics */
1492 
1493         /*
1494          * required mount structure initializations
1495          */
1496         mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
1497         mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
1498 
1499         mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
1500         mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1501 
1502         /*
1503          * Optional fields
1504          */
1505         mp->mnt_iosize_max = MAXPHYS;
1506 
1507 	/*
1508 	 * Connect up mount pointers.
1509 	 */
1510 	hammer2_mount_helper(mp, pmp);
1511         lockmgr(&hammer2_mntlk, LK_RELEASE);
1512 
1513 	/*
1514 	 * Finish setup
1515 	 */
1516 	vfs_getnewfsid(mp);
1517 	vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
1518 	vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
1519 	vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
1520 
1521 	if (path) {
1522 		copyinstr(info.volume, mp->mnt_stat.f_mntfromname,
1523 			  MNAMELEN - 1, &size);
1524 		bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
1525 	} /* else root mount, already in there */
1526 
1527 	bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
1528 	if (path) {
1529 		copyinstr(path, mp->mnt_stat.f_mntonname,
1530 			  sizeof(mp->mnt_stat.f_mntonname) - 1,
1531 			  &size);
1532 	} else {
1533 		/* root mount */
1534 		mp->mnt_stat.f_mntonname[0] = '/';
1535 	}
1536 
1537 	/*
1538 	 * Initial statfs to prime mnt_stat.
1539 	 */
1540 	hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
1541 
1542 	return 0;
1543 }
1544 
1545 /*
1546  * Scan PFSs under the super-root and create hammer2_pfs structures.
1547  */
1548 static
1549 void
1550 hammer2_update_pmps(hammer2_dev_t *hmp)
1551 {
1552 	const hammer2_inode_data_t *ripdata;
1553 	hammer2_chain_t *parent;
1554 	hammer2_chain_t *chain;
1555 	hammer2_blockref_t bref;
1556 	hammer2_dev_t *force_local;
1557 	hammer2_pfs_t *spmp;
1558 	hammer2_pfs_t *pmp;
1559 	hammer2_key_t key_next;
1560 	int error;
1561 
1562 	/*
1563 	 * Force local mount (disassociate all PFSs from their clusters).
1564 	 * Used primarily for debugging.
1565 	 */
1566 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1567 
1568 	/*
1569 	 * Lookup mount point under the media-localized super-root.
1570 	 *
1571 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1572 	 * up later on.
1573 	 */
1574 	spmp = hmp->spmp;
1575 	hammer2_inode_lock(spmp->iroot, 0);
1576 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1577 	chain = hammer2_chain_lookup(&parent, &key_next,
1578 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
1579 					 &error, 0);
1580 	while (chain) {
1581 		if (chain->error) {
1582 			kprintf("I/O error scanning PFS labels\n");
1583 		} else if (chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
1584 			kprintf("Non inode chain type %d under super-root\n",
1585 				chain->bref.type);
1586 		} else {
1587 			ripdata = &chain->data->ipdata;
1588 			bref = chain->bref;
1589 			pmp = hammer2_pfsalloc(chain, ripdata,
1590 					       bref.modify_tid, force_local);
1591 		}
1592 		chain = hammer2_chain_next(&parent, chain, &key_next,
1593 					   key_next, HAMMER2_KEY_MAX,
1594 					   &error, 0);
1595 	}
1596 	if (parent) {
1597 		hammer2_chain_unlock(parent);
1598 		hammer2_chain_drop(parent);
1599 	}
1600 	hammer2_inode_unlock(spmp->iroot);
1601 }
1602 
1603 static
1604 int
1605 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path __unused,
1606 		struct ucred *cred)
1607 {
1608 	hammer2_volume_t *vol;
1609 	struct vnode *devvp;
1610 	int i, error, result = 0;
1611 
1612 	if (!(hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)))
1613 		return 0;
1614 
1615 	for (i = 0; i < hmp->nvolumes; ++i) {
1616 		vol = &hmp->volumes[i];
1617 		devvp = vol->dev->devvp;
1618 		KKASSERT(devvp);
1619 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1620 		VOP_OPEN(devvp, FREAD | FWRITE, FSCRED, NULL);
1621 		vn_unlock(devvp);
1622 		error = 0;
1623 		if (vol->id == HAMMER2_ROOT_VOLUME) {
1624 			error = hammer2_recovery(hmp);
1625 			if (error == 0)
1626 				error |= hammer2_fixup_pfses(hmp);
1627 		}
1628 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1629 		if (error == 0) {
1630 			VOP_CLOSE(devvp, FREAD, NULL);
1631 		} else {
1632 			VOP_CLOSE(devvp, FREAD | FWRITE, NULL);
1633 		}
1634 		vn_unlock(devvp);
1635 		result |= error;
1636 	}
1637 	if (result == 0) {
1638 		kprintf("hammer2: enable read/write\n");
1639 		hmp->ronly = 0;
1640 	}
1641 
1642 	return result;
1643 }
1644 
1645 static
1646 int
1647 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1648 {
1649 	hammer2_pfs_t *pmp;
1650 	int flags;
1651 	int error = 0;
1652 
1653 	pmp = MPTOPMP(mp);
1654 
1655 	if (pmp == NULL)
1656 		return(0);
1657 
1658 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1659 
1660 	/*
1661 	 * If mount initialization proceeded far enough we must flush
1662 	 * its vnodes and sync the underlying mount points.  Three syncs
1663 	 * are required to fully flush the filesystem (freemap updates lag
1664 	 * by one flush, and one extra for safety).
1665 	 */
1666 	if (mntflags & MNT_FORCE)
1667 		flags = FORCECLOSE;
1668 	else
1669 		flags = 0;
1670 	if (pmp->iroot) {
1671 		error = vflush(mp, 0, flags);
1672 		if (error)
1673 			goto failed;
1674 		hammer2_vfs_sync(mp, MNT_WAIT);
1675 		hammer2_vfs_sync(mp, MNT_WAIT);
1676 		hammer2_vfs_sync(mp, MNT_WAIT);
1677 	}
1678 
1679 	/*
1680 	 * Cleanup the frontend support XOPS threads
1681 	 */
1682 	hammer2_xop_helper_cleanup(pmp);
1683 
1684 	if (pmp->mp)
1685 		hammer2_unmount_helper(mp, pmp, NULL);
1686 
1687 	error = 0;
1688 failed:
1689 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1690 
1691 	return (error);
1692 }
1693 
1694 /*
1695  * Mount helper, hook the system mount into our PFS.
1696  * The mount lock is held.
1697  *
1698  * We must bump the mount_count on related devices for any
1699  * mounted PFSs.
1700  */
1701 static
1702 void
1703 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp)
1704 {
1705 	hammer2_cluster_t *cluster;
1706 	hammer2_chain_t *rchain;
1707 	int i;
1708 
1709         mp->mnt_data = (qaddr_t)pmp;
1710 	pmp->mp = mp;
1711 
1712 	/*
1713 	 * After pmp->mp is set we have to adjust hmp->mount_count.
1714 	 */
1715 	cluster = &pmp->iroot->cluster;
1716 	for (i = 0; i < cluster->nchains; ++i) {
1717 		rchain = cluster->array[i].chain;
1718 		if (rchain == NULL)
1719 			continue;
1720 		++rchain->hmp->mount_count;
1721 	}
1722 
1723 	/*
1724 	 * Create missing Xop threads
1725 	 */
1726 	hammer2_xop_helper_create(pmp);
1727 }
1728 
1729 /*
1730  * Mount helper, unhook the system mount from our PFS.
1731  * The mount lock is held.
1732  *
1733  * If hmp is supplied a mount responsible for being the first to open
1734  * the block device failed and the block device and all PFSs using the
1735  * block device must be cleaned up.
1736  *
1737  * If pmp is supplied multiple devices might be backing the PFS and each
1738  * must be disconnected.  This might not be the last PFS using some of the
1739  * underlying devices.  Also, we have to adjust our hmp->mount_count
1740  * accounting for the devices backing the pmp which is now undergoing an
1741  * unmount.
1742  */
1743 static
1744 void
1745 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp)
1746 {
1747 	hammer2_cluster_t *cluster;
1748 	hammer2_chain_t *rchain;
1749 	int dumpcnt;
1750 	int i;
1751 
1752 	/*
1753 	 * If no device supplied this is a high-level unmount and we have to
1754 	 * to disconnect the mount, adjust mount_count, and locate devices
1755 	 * that might now have no mounts.
1756 	 */
1757 	if (pmp) {
1758 		KKASSERT(hmp == NULL);
1759 		KKASSERT((void *)(intptr_t)mp->mnt_data == pmp);
1760 		pmp->mp = NULL;
1761 		mp->mnt_data = NULL;
1762 
1763 		/*
1764 		 * After pmp->mp is cleared we have to account for
1765 		 * mount_count.
1766 		 */
1767 		cluster = &pmp->iroot->cluster;
1768 		for (i = 0; i < cluster->nchains; ++i) {
1769 			rchain = cluster->array[i].chain;
1770 			if (rchain == NULL)
1771 				continue;
1772 			--rchain->hmp->mount_count;
1773 			/* scrapping hmp now may invalidate the pmp */
1774 		}
1775 again:
1776 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1777 			if (hmp->mount_count == 0) {
1778 				hammer2_unmount_helper(NULL, NULL, hmp);
1779 				goto again;
1780 			}
1781 		}
1782 		return;
1783 	}
1784 
1785 	/*
1786 	 * Try to terminate the block device.  We can't terminate it if
1787 	 * there are still PFSs referencing it.
1788 	 */
1789 	if (hmp->mount_count)
1790 		return;
1791 
1792 	/*
1793 	 * Decomission the network before we start messing with the
1794 	 * device and PFS.
1795 	 */
1796 	hammer2_iocom_uninit(hmp);
1797 
1798 	hammer2_bulkfree_uninit(hmp);
1799 	hammer2_pfsfree_scan(hmp, 0);
1800 
1801 	/*
1802 	 * Cycle the volume data lock as a safety (probably not needed any
1803 	 * more).  To ensure everything is out we need to flush at least
1804 	 * three times.  (1) The running of the sideq can dirty the
1805 	 * filesystem, (2) A normal flush can dirty the freemap, and
1806 	 * (3) ensure that the freemap is fully synchronized.
1807 	 *
1808 	 * The next mount's recovery scan can clean everything up but we want
1809 	 * to leave the filesystem in a 100% clean state on a normal unmount.
1810 	 */
1811 #if 0
1812 	hammer2_voldata_lock(hmp);
1813 	hammer2_voldata_unlock(hmp);
1814 #endif
1815 
1816 	/*
1817 	 * Flush whatever is left.  Unmounted but modified PFS's might still
1818 	 * have some dirty chains on them.
1819 	 */
1820 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1821 	hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1822 
1823 	if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1824 		hammer2_voldata_modify(hmp);
1825 		hammer2_flush(&hmp->fchain, HAMMER2_FLUSH_TOP |
1826 					    HAMMER2_FLUSH_ALL);
1827 	}
1828 	hammer2_chain_unlock(&hmp->fchain);
1829 
1830 	if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1831 		hammer2_flush(&hmp->vchain, HAMMER2_FLUSH_TOP |
1832 					    HAMMER2_FLUSH_ALL);
1833 	}
1834 	hammer2_chain_unlock(&hmp->vchain);
1835 
1836 	if ((hmp->vchain.flags | hmp->fchain.flags) &
1837 	    HAMMER2_CHAIN_FLUSH_MASK) {
1838 		kprintf("hammer2_unmount: chains left over after final sync\n");
1839 		kprintf("    vchain %08x\n", hmp->vchain.flags);
1840 		kprintf("    fchain %08x\n", hmp->fchain.flags);
1841 
1842 		if (hammer2_debug & 0x0010)
1843 			Debugger("entered debugger");
1844 	}
1845 
1846 	hammer2_pfsfree_scan(hmp, 1);
1847 
1848 	KKASSERT(hmp->spmp == NULL);
1849 
1850 	/*
1851 	 * Finish up with the device vnode
1852 	 */
1853 	if (!TAILQ_EMPTY(&hmp->devvpl)) {
1854 		hammer2_close_devvp(&hmp->devvpl, hmp->ronly);
1855 		hammer2_cleanup_devvp(&hmp->devvpl);
1856 	}
1857 	KKASSERT(TAILQ_EMPTY(&hmp->devvpl));
1858 
1859 	/*
1860 	 * Clear vchain/fchain flags that might prevent final cleanup
1861 	 * of these chains.
1862 	 */
1863 	if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1864 		atomic_add_long(&hammer2_count_modified_chains, -1);
1865 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1866 		hammer2_pfs_memory_wakeup(hmp->vchain.pmp, -1);
1867 	}
1868 	if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1869 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_UPDATE);
1870 	}
1871 
1872 	if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1873 		atomic_add_long(&hammer2_count_modified_chains, -1);
1874 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_MODIFIED);
1875 		hammer2_pfs_memory_wakeup(hmp->fchain.pmp, -1);
1876 	}
1877 	if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1878 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_UPDATE);
1879 	}
1880 
1881 	/*
1882 	 * Final drop of embedded freemap root chain to
1883 	 * clean up fchain.core (fchain structure is not
1884 	 * flagged ALLOCATED so it is cleaned out and then
1885 	 * left to rot).
1886 	 */
1887 	hammer2_chain_drop(&hmp->fchain);
1888 
1889 	/*
1890 	 * Final drop of embedded volume root chain to clean
1891 	 * up vchain.core (vchain structure is not flagged
1892 	 * ALLOCATED so it is cleaned out and then left to
1893 	 * rot).
1894 	 */
1895 	dumpcnt = 50;
1896 	hammer2_dump_chain(&hmp->vchain, 0, 0, &dumpcnt, 'v', (u_int)-1);
1897 	dumpcnt = 50;
1898 	hammer2_dump_chain(&hmp->fchain, 0, 0, &dumpcnt, 'f', (u_int)-1);
1899 
1900 	hammer2_chain_drop(&hmp->vchain);
1901 
1902 	hammer2_io_cleanup(hmp, &hmp->iotree);
1903 	if (hmp->iofree_count) {
1904 		kprintf("io_cleanup: %d I/O's left hanging\n",
1905 			hmp->iofree_count);
1906 	}
1907 
1908 	TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1909 	kmalloc_destroy_obj(&hmp->mchain);
1910 	kmalloc_destroy_obj(&hmp->mio);
1911 	kmalloc_destroy(&hmp->mmsg);
1912 	kfree(hmp, M_HAMMER2);
1913 }
1914 
1915 int
1916 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1917 		 ino_t ino, struct vnode **vpp)
1918 {
1919 	hammer2_xop_lookup_t *xop;
1920 	hammer2_pfs_t *pmp;
1921 	hammer2_inode_t *ip;
1922 	hammer2_tid_t inum;
1923 	int error;
1924 
1925 	inum = (hammer2_tid_t)ino & HAMMER2_DIRHASH_USERMSK;
1926 
1927 	error = 0;
1928 	pmp = MPTOPMP(mp);
1929 
1930 	/*
1931 	 * Easy if we already have it cached
1932 	 */
1933 	ip = hammer2_inode_lookup(pmp, inum);
1934 	if (ip) {
1935 		hammer2_inode_lock(ip, HAMMER2_RESOLVE_SHARED);
1936 		*vpp = hammer2_igetv(ip, &error);
1937 		hammer2_inode_unlock(ip);
1938 		hammer2_inode_drop(ip);		/* from lookup */
1939 
1940 		return error;
1941 	}
1942 
1943 	/*
1944 	 * Otherwise we have to find the inode
1945 	 */
1946 	xop = hammer2_xop_alloc(pmp->iroot, 0);
1947 	xop->lhc = inum;
1948 	hammer2_xop_start(&xop->head, &hammer2_lookup_desc);
1949 	error = hammer2_xop_collect(&xop->head, 0);
1950 
1951 	if (error == 0)
1952 		ip = hammer2_inode_get(pmp, &xop->head, -1, -1);
1953 	hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1954 
1955 	if (ip) {
1956 		*vpp = hammer2_igetv(ip, &error);
1957 		hammer2_inode_unlock(ip);
1958 	} else {
1959 		*vpp = NULL;
1960 		error = ENOENT;
1961 	}
1962 	return (error);
1963 }
1964 
1965 static
1966 int
1967 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1968 {
1969 	hammer2_pfs_t *pmp;
1970 	struct vnode *vp;
1971 	int error;
1972 
1973 	pmp = MPTOPMP(mp);
1974 	if (pmp->iroot == NULL) {
1975 		kprintf("hammer2 (%s): no root inode\n",
1976 			mp->mnt_stat.f_mntfromname);
1977 		*vpp = NULL;
1978 		return EINVAL;
1979 	}
1980 
1981 	error = 0;
1982 	hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1983 
1984 	while (pmp->inode_tid == 0) {
1985 		hammer2_xop_ipcluster_t *xop;
1986 		const hammer2_inode_meta_t *meta;
1987 
1988 		xop = hammer2_xop_alloc(pmp->iroot, HAMMER2_XOP_MODIFYING);
1989 		hammer2_xop_start(&xop->head, &hammer2_ipcluster_desc);
1990 		error = hammer2_xop_collect(&xop->head, 0);
1991 
1992 		if (error == 0) {
1993 			meta = &hammer2_xop_gdata(&xop->head)->ipdata.meta;
1994 			pmp->iroot->meta = *meta;
1995 			pmp->inode_tid = meta->pfs_inum + 1;
1996 			hammer2_xop_pdata(&xop->head);
1997 			/* meta invalid */
1998 
1999 			if (pmp->inode_tid < HAMMER2_INODE_START)
2000 				pmp->inode_tid = HAMMER2_INODE_START;
2001 			pmp->modify_tid =
2002 				xop->head.cluster.focus->bref.modify_tid + 1;
2003 #if 0
2004 			kprintf("PFS: Starting inode %jd\n",
2005 				(intmax_t)pmp->inode_tid);
2006 			kprintf("PMP focus good set nextino=%ld mod=%016jx\n",
2007 				pmp->inode_tid, pmp->modify_tid);
2008 #endif
2009 			wakeup(&pmp->iroot);
2010 
2011 			hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2012 
2013 			/*
2014 			 * Prime the mount info.
2015 			 */
2016 			hammer2_vfs_statfs(mp, &mp->mnt_stat, NULL);
2017 			break;
2018 		}
2019 
2020 		/*
2021 		 * Loop, try again
2022 		 */
2023 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2024 		hammer2_inode_unlock(pmp->iroot);
2025 		error = tsleep(&pmp->iroot, PCATCH, "h2root", hz);
2026 		hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
2027 		if (error == EINTR)
2028 			break;
2029 	}
2030 
2031 	if (error) {
2032 		hammer2_inode_unlock(pmp->iroot);
2033 		*vpp = NULL;
2034 	} else {
2035 		vp = hammer2_igetv(pmp->iroot, &error);
2036 		hammer2_inode_unlock(pmp->iroot);
2037 		*vpp = vp;
2038 	}
2039 
2040 	return (error);
2041 }
2042 
2043 /*
2044  * Filesystem status
2045  *
2046  * XXX incorporate ipdata->meta.inode_quota and data_quota
2047  */
2048 static
2049 int
2050 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
2051 {
2052 	hammer2_pfs_t *pmp;
2053 	hammer2_dev_t *hmp;
2054 	hammer2_blockref_t bref;
2055 	struct statfs tmp;
2056 	int i;
2057 
2058 	/*
2059 	 * NOTE: iroot might not have validated the cluster yet.
2060 	 */
2061 	pmp = MPTOPMP(mp);
2062 
2063 	bzero(&tmp, sizeof(tmp));
2064 
2065 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2066 		hmp = pmp->pfs_hmps[i];
2067 		if (hmp == NULL)
2068 			continue;
2069 		if (pmp->iroot->cluster.array[i].chain)
2070 			bref = pmp->iroot->cluster.array[i].chain->bref;
2071 		else
2072 			bzero(&bref, sizeof(bref));
2073 
2074 		tmp.f_files = bref.embed.stats.inode_count;
2075 		tmp.f_ffree = 0;
2076 		tmp.f_blocks = hmp->voldata.allocator_size /
2077 			       mp->mnt_vstat.f_bsize;
2078 		tmp.f_bfree = hmp->voldata.allocator_free /
2079 			      mp->mnt_vstat.f_bsize;
2080 		tmp.f_bavail = tmp.f_bfree;
2081 
2082 		if (cred && cred->cr_uid != 0) {
2083 			uint64_t adj;
2084 
2085 			/* 5% */
2086 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2087 			tmp.f_blocks -= adj;
2088 			tmp.f_bfree -= adj;
2089 			tmp.f_bavail -= adj;
2090 		}
2091 
2092 		mp->mnt_stat.f_blocks = tmp.f_blocks;
2093 		mp->mnt_stat.f_bfree = tmp.f_bfree;
2094 		mp->mnt_stat.f_bavail = tmp.f_bavail;
2095 		mp->mnt_stat.f_files = tmp.f_files;
2096 		mp->mnt_stat.f_ffree = tmp.f_ffree;
2097 
2098 		*sbp = mp->mnt_stat;
2099 	}
2100 	return (0);
2101 }
2102 
2103 static
2104 int
2105 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
2106 {
2107 	hammer2_pfs_t *pmp;
2108 	hammer2_dev_t *hmp;
2109 	hammer2_blockref_t bref;
2110 	struct statvfs tmp;
2111 	int i;
2112 
2113 	/*
2114 	 * NOTE: iroot might not have validated the cluster yet.
2115 	 */
2116 	pmp = MPTOPMP(mp);
2117 	bzero(&tmp, sizeof(tmp));
2118 
2119 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2120 		hmp = pmp->pfs_hmps[i];
2121 		if (hmp == NULL)
2122 			continue;
2123 		if (pmp->iroot->cluster.array[i].chain)
2124 			bref = pmp->iroot->cluster.array[i].chain->bref;
2125 		else
2126 			bzero(&bref, sizeof(bref));
2127 
2128 		tmp.f_files = bref.embed.stats.inode_count;
2129 		tmp.f_ffree = 0;
2130 		tmp.f_blocks = hmp->voldata.allocator_size /
2131 			       mp->mnt_vstat.f_bsize;
2132 		tmp.f_bfree = hmp->voldata.allocator_free /
2133 			      mp->mnt_vstat.f_bsize;
2134 		tmp.f_bavail = tmp.f_bfree;
2135 
2136 		if (cred && cred->cr_uid != 0) {
2137 			uint64_t adj;
2138 
2139 			/* 5% */
2140 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2141 			tmp.f_blocks -= adj;
2142 			tmp.f_bfree -= adj;
2143 			tmp.f_bavail -= adj;
2144 		}
2145 
2146 		mp->mnt_vstat.f_blocks = tmp.f_blocks;
2147 		mp->mnt_vstat.f_bfree = tmp.f_bfree;
2148 		mp->mnt_vstat.f_bavail = tmp.f_bavail;
2149 		mp->mnt_vstat.f_files = tmp.f_files;
2150 		mp->mnt_vstat.f_ffree = tmp.f_ffree;
2151 
2152 		*sbp = mp->mnt_vstat;
2153 	}
2154 	return (0);
2155 }
2156 
2157 /*
2158  * Mount-time recovery (RW mounts)
2159  *
2160  * Updates to the free block table are allowed to lag flushes by one
2161  * transaction.  In case of a crash, then on a fresh mount we must do an
2162  * incremental scan of the last committed transaction id and make sure that
2163  * all related blocks have been marked allocated.
2164  */
2165 struct hammer2_recovery_elm {
2166 	TAILQ_ENTRY(hammer2_recovery_elm) entry;
2167 	hammer2_chain_t *chain;
2168 	hammer2_tid_t sync_tid;
2169 };
2170 
2171 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
2172 
2173 struct hammer2_recovery_info {
2174 	struct hammer2_recovery_list list;
2175 	hammer2_tid_t	mtid;
2176 	int	depth;
2177 };
2178 
2179 static int hammer2_recovery_scan(hammer2_dev_t *hmp,
2180 			hammer2_chain_t *parent,
2181 			struct hammer2_recovery_info *info,
2182 			hammer2_tid_t sync_tid);
2183 
2184 #define HAMMER2_RECOVERY_MAXDEPTH	10
2185 
2186 static
2187 int
2188 hammer2_recovery(hammer2_dev_t *hmp)
2189 {
2190 	struct hammer2_recovery_info info;
2191 	struct hammer2_recovery_elm *elm;
2192 	hammer2_chain_t *parent;
2193 	hammer2_tid_t sync_tid;
2194 	hammer2_tid_t mirror_tid;
2195 	int error;
2196 
2197 	hammer2_trans_init(hmp->spmp, 0);
2198 
2199 	sync_tid = hmp->voldata.freemap_tid;
2200 	mirror_tid = hmp->voldata.mirror_tid;
2201 
2202 	kprintf("hammer2_mount: \"%s\": ", hmp->devrepname);
2203 	if (sync_tid >= mirror_tid) {
2204 		kprintf("no recovery needed\n");
2205 	} else {
2206 		kprintf("freemap recovery %016jx-%016jx\n",
2207 			sync_tid + 1, mirror_tid);
2208 	}
2209 
2210 	TAILQ_INIT(&info.list);
2211 	info.depth = 0;
2212 	parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
2213 	error = hammer2_recovery_scan(hmp, parent, &info, sync_tid);
2214 	hammer2_chain_lookup_done(parent);
2215 
2216 	while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
2217 		TAILQ_REMOVE(&info.list, elm, entry);
2218 		parent = elm->chain;
2219 		sync_tid = elm->sync_tid;
2220 		kfree(elm, M_HAMMER2);
2221 
2222 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2223 		error |= hammer2_recovery_scan(hmp, parent, &info,
2224 					      hmp->voldata.freemap_tid);
2225 		hammer2_chain_unlock(parent);
2226 		hammer2_chain_drop(parent);	/* drop elm->chain ref */
2227 	}
2228 
2229 	hammer2_trans_done(hmp->spmp, 0);
2230 
2231 	return error;
2232 }
2233 
2234 static
2235 int
2236 hammer2_recovery_scan(hammer2_dev_t *hmp, hammer2_chain_t *parent,
2237 		      struct hammer2_recovery_info *info,
2238 		      hammer2_tid_t sync_tid)
2239 {
2240 	const hammer2_inode_data_t *ripdata;
2241 	hammer2_chain_t *chain;
2242 	hammer2_blockref_t bref;
2243 	int tmp_error;
2244 	int rup_error;
2245 	int error;
2246 	int first;
2247 
2248 	/*
2249 	 * Adjust freemap to ensure that the block(s) are marked allocated.
2250 	 */
2251 	if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
2252 		hammer2_freemap_adjust(hmp, &parent->bref,
2253 				       HAMMER2_FREEMAP_DORECOVER);
2254 	}
2255 
2256 	/*
2257 	 * Check type for recursive scan
2258 	 */
2259 	switch(parent->bref.type) {
2260 	case HAMMER2_BREF_TYPE_VOLUME:
2261 		/* data already instantiated */
2262 		break;
2263 	case HAMMER2_BREF_TYPE_INODE:
2264 		/*
2265 		 * Must instantiate data for DIRECTDATA test and also
2266 		 * for recursion.
2267 		 */
2268 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2269 		ripdata = &parent->data->ipdata;
2270 		if (ripdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2271 			/* not applicable to recovery scan */
2272 			hammer2_chain_unlock(parent);
2273 			return 0;
2274 		}
2275 		hammer2_chain_unlock(parent);
2276 		break;
2277 	case HAMMER2_BREF_TYPE_INDIRECT:
2278 		/*
2279 		 * Must instantiate data for recursion
2280 		 */
2281 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2282 		hammer2_chain_unlock(parent);
2283 		break;
2284 	case HAMMER2_BREF_TYPE_DIRENT:
2285 	case HAMMER2_BREF_TYPE_DATA:
2286 	case HAMMER2_BREF_TYPE_FREEMAP:
2287 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2288 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2289 		/* not applicable to recovery scan */
2290 		return 0;
2291 		break;
2292 	default:
2293 		return HAMMER2_ERROR_BADBREF;
2294 	}
2295 
2296 	/*
2297 	 * Defer operation if depth limit reached.
2298 	 */
2299 	if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) {
2300 		struct hammer2_recovery_elm *elm;
2301 
2302 		elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2303 		elm->chain = parent;
2304 		elm->sync_tid = sync_tid;
2305 		hammer2_chain_ref(parent);
2306 		TAILQ_INSERT_TAIL(&info->list, elm, entry);
2307 		/* unlocked by caller */
2308 
2309 		return(0);
2310 	}
2311 
2312 
2313 	/*
2314 	 * Recursive scan of the last flushed transaction only.  We are
2315 	 * doing this without pmp assignments so don't leave the chains
2316 	 * hanging around after we are done with them.
2317 	 *
2318 	 * error	Cumulative error this level only
2319 	 * rup_error	Cumulative error for recursion
2320 	 * tmp_error	Specific non-cumulative recursion error
2321 	 */
2322 	chain = NULL;
2323 	first = 1;
2324 	rup_error = 0;
2325 	error = 0;
2326 
2327 	for (;;) {
2328 		error |= hammer2_chain_scan(parent, &chain, &bref,
2329 					    &first,
2330 					    HAMMER2_LOOKUP_NODATA);
2331 
2332 		/*
2333 		 * Problem during scan or EOF
2334 		 */
2335 		if (error)
2336 			break;
2337 
2338 		/*
2339 		 * If this is a leaf
2340 		 */
2341 		if (chain == NULL) {
2342 			if (bref.mirror_tid > sync_tid) {
2343 				hammer2_freemap_adjust(hmp, &bref,
2344 						     HAMMER2_FREEMAP_DORECOVER);
2345 			}
2346 			continue;
2347 		}
2348 
2349 		/*
2350 		 * This may or may not be a recursive node.
2351 		 */
2352 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2353 		if (bref.mirror_tid > sync_tid) {
2354 			++info->depth;
2355 			tmp_error = hammer2_recovery_scan(hmp, chain,
2356 							   info, sync_tid);
2357 			--info->depth;
2358 		} else {
2359 			tmp_error = 0;
2360 		}
2361 
2362 		/*
2363 		 * Flush the recovery at the PFS boundary to stage it for
2364 		 * the final flush of the super-root topology.
2365 		 */
2366 		if (tmp_error == 0 &&
2367 		    (bref.flags & HAMMER2_BREF_FLAG_PFSROOT) &&
2368 		    (chain->flags & HAMMER2_CHAIN_ONFLUSH)) {
2369 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2370 					     HAMMER2_FLUSH_ALL);
2371 		}
2372 		rup_error |= tmp_error;
2373 	}
2374 	return ((error | rup_error) & ~HAMMER2_ERROR_EOF);
2375 }
2376 
2377 /*
2378  * This fixes up an error introduced in earlier H2 implementations where
2379  * moving a PFS inode into an indirect block wound up causing the
2380  * HAMMER2_BREF_FLAG_PFSROOT flag in the bref to get cleared.
2381  */
2382 static
2383 int
2384 hammer2_fixup_pfses(hammer2_dev_t *hmp)
2385 {
2386 	const hammer2_inode_data_t *ripdata;
2387 	hammer2_chain_t *parent;
2388 	hammer2_chain_t *chain;
2389 	hammer2_key_t key_next;
2390 	hammer2_pfs_t *spmp;
2391 	int error;
2392 
2393 	error = 0;
2394 
2395 	/*
2396 	 * Lookup mount point under the media-localized super-root.
2397 	 *
2398 	 * cluster->pmp will incorrectly point to spmp and must be fixed
2399 	 * up later on.
2400 	 */
2401 	spmp = hmp->spmp;
2402 	hammer2_inode_lock(spmp->iroot, 0);
2403 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
2404 	chain = hammer2_chain_lookup(&parent, &key_next,
2405 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
2406 					 &error, 0);
2407 	while (chain) {
2408 		if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
2409 			continue;
2410 		if (chain->error) {
2411 			kprintf("I/O error scanning PFS labels\n");
2412 			error |= chain->error;
2413 		} else if ((chain->bref.flags &
2414 			    HAMMER2_BREF_FLAG_PFSROOT) == 0) {
2415 			int error2;
2416 
2417 			ripdata = &chain->data->ipdata;
2418 			hammer2_trans_init(hmp->spmp, 0);
2419 			error2 = hammer2_chain_modify(chain,
2420 						      chain->bref.modify_tid,
2421 						      0, 0);
2422 			if (error2 == 0) {
2423 				kprintf("hammer2: Correct mis-flagged PFS %s\n",
2424 					ripdata->filename);
2425 				chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2426 			} else {
2427 				error |= error2;
2428 			}
2429 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2430 					     HAMMER2_FLUSH_ALL);
2431 			hammer2_trans_done(hmp->spmp, 0);
2432 		}
2433 		chain = hammer2_chain_next(&parent, chain, &key_next,
2434 					   key_next, HAMMER2_KEY_MAX,
2435 					   &error, 0);
2436 	}
2437 	if (parent) {
2438 		hammer2_chain_unlock(parent);
2439 		hammer2_chain_drop(parent);
2440 	}
2441 	hammer2_inode_unlock(spmp->iroot);
2442 
2443 	return error;
2444 }
2445 
2446 /*
2447  * Sync a mount point; this is called periodically on a per-mount basis from
2448  * the filesystem syncer, and whenever a user issues a sync.
2449  */
2450 int
2451 hammer2_vfs_sync(struct mount *mp, int waitfor)
2452 {
2453 	int error;
2454 
2455 	error = hammer2_vfs_sync_pmp(MPTOPMP(mp), waitfor);
2456 
2457 	return error;
2458 }
2459 
2460 /*
2461  * Because frontend operations lock vnodes before we get a chance to
2462  * lock the related inode, we can't just acquire a vnode lock without
2463  * risking a deadlock.  The frontend may be holding a vnode lock while
2464  * also blocked on our SYNCQ flag while trying to get the inode lock.
2465  *
2466  * To deal with this situation we can check the vnode lock situation
2467  * after locking the inode and perform a work-around.
2468  */
2469 int
2470 hammer2_vfs_sync_pmp(hammer2_pfs_t *pmp, int waitfor)
2471 {
2472 	struct mount *mp;
2473 	/*hammer2_xop_flush_t *xop;*/
2474 	/*struct hammer2_sync_info info;*/
2475 	hammer2_inode_t *ip;
2476 	hammer2_depend_t *depend;
2477 	hammer2_depend_t *depend_next;
2478 	struct vnode *vp;
2479 	uint32_t pass2;
2480 	int error;
2481 	int wakecount;
2482 	int dorestart;
2483 
2484 	mp = pmp->mp;
2485 
2486 	/*
2487 	 * Move all inodes on sideq to syncq.  This will clear sideq.
2488 	 * This should represent all flushable inodes.  These inodes
2489 	 * will already have refs due to being on syncq or sideq.  We
2490 	 * must do this all at once with the spinlock held to ensure that
2491 	 * all inode dependencies are part of the same flush.
2492 	 *
2493 	 * We should be able to do this asynchronously from frontend
2494 	 * operations because we will be locking the inodes later on
2495 	 * to actually flush them, and that will partition any frontend
2496 	 * op using the same inode.  Either it has already locked the
2497 	 * inode and we will block, or it has not yet locked the inode
2498 	 * and it will block until we are finished flushing that inode.
2499 	 *
2500 	 * When restarting, only move the inodes flagged as PASS2 from
2501 	 * SIDEQ to SYNCQ.  PASS2 propagation by inode_lock4() and
2502 	 * inode_depend() are atomic with the spin-lock.
2503 	 */
2504 	hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
2505 #ifdef HAMMER2_DEBUG_SYNC
2506 	kprintf("FILESYSTEM SYNC BOUNDARY\n");
2507 #endif
2508 	dorestart = 0;
2509 
2510 	/*
2511 	 * Move inodes from depq to syncq, releasing the related
2512 	 * depend structures.
2513 	 */
2514 restart:
2515 #ifdef HAMMER2_DEBUG_SYNC
2516 	kprintf("FILESYSTEM SYNC RESTART (%d)\n", dorestart);
2517 #endif
2518 	hammer2_trans_setflags(pmp, 0/*HAMMER2_TRANS_COPYQ*/);
2519 	hammer2_trans_clearflags(pmp, HAMMER2_TRANS_RESCAN);
2520 
2521 	/*
2522 	 * Move inodes from depq to syncq.  When restarting, only depq's
2523 	 * marked pass2 are moved.
2524 	 */
2525 	hammer2_spin_ex(&pmp->list_spin);
2526 	depend_next = TAILQ_FIRST(&pmp->depq);
2527 	wakecount = 0;
2528 
2529 	while ((depend = depend_next) != NULL) {
2530 		depend_next = TAILQ_NEXT(depend, entry);
2531 		if (dorestart && depend->pass2 == 0)
2532 			continue;
2533 		TAILQ_FOREACH(ip, &depend->sideq, entry) {
2534 			KKASSERT(ip->flags & HAMMER2_INODE_SIDEQ);
2535 			atomic_set_int(&ip->flags, HAMMER2_INODE_SYNCQ);
2536 			atomic_clear_int(&ip->flags, HAMMER2_INODE_SIDEQ);
2537 			ip->depend = NULL;
2538 		}
2539 
2540 		/*
2541 		 * NOTE: pmp->sideq_count includes both sideq and syncq
2542 		 */
2543 		TAILQ_CONCAT(&pmp->syncq, &depend->sideq, entry);
2544 
2545 		depend->count = 0;
2546 		depend->pass2 = 0;
2547 		TAILQ_REMOVE(&pmp->depq, depend, entry);
2548 	}
2549 
2550 	hammer2_spin_unex(&pmp->list_spin);
2551 	hammer2_trans_clearflags(pmp, /*HAMMER2_TRANS_COPYQ |*/
2552 				      HAMMER2_TRANS_WAITING);
2553 	dorestart = 0;
2554 
2555 	/*
2556 	 * sideq_count may have dropped enough to allow us to unstall
2557 	 * the frontend.
2558 	 */
2559 	hammer2_pfs_memory_wakeup(pmp, 0);
2560 
2561 	/*
2562 	 * Now run through all inodes on syncq.
2563 	 *
2564 	 * Flush transactions only interlock with other flush transactions.
2565 	 * Any conflicting frontend operations will block on the inode, but
2566 	 * may hold a vnode lock while doing so.
2567 	 */
2568 	hammer2_spin_ex(&pmp->list_spin);
2569 	while ((ip = TAILQ_FIRST(&pmp->syncq)) != NULL) {
2570 		/*
2571 		 * Remove the inode from the SYNCQ, transfer the syncq ref
2572 		 * to us.  We must clear SYNCQ to allow any potential
2573 		 * front-end deadlock to proceed.  We must set PASS2 so
2574 		 * the dependency code knows what to do.
2575 		 */
2576 		pass2 = ip->flags;
2577 		cpu_ccfence();
2578 		if (atomic_cmpset_int(&ip->flags,
2579 			      pass2,
2580 			      (pass2 & ~(HAMMER2_INODE_SYNCQ |
2581 					 HAMMER2_INODE_SYNCQ_WAKEUP)) |
2582 			      HAMMER2_INODE_SYNCQ_PASS2) == 0) {
2583 			continue;
2584 		}
2585 		TAILQ_REMOVE(&pmp->syncq, ip, entry);
2586 		--pmp->sideq_count;
2587 		hammer2_spin_unex(&pmp->list_spin);
2588 
2589 		/*
2590 		 * Tickle anyone waiting on ip->flags or the hysteresis
2591 		 * on the dirty inode count.
2592 		 */
2593 		if (pass2 & HAMMER2_INODE_SYNCQ_WAKEUP)
2594 			wakeup(&ip->flags);
2595 		if (++wakecount >= hammer2_limit_dirty_inodes / 20 + 1) {
2596 			wakecount = 0;
2597 			hammer2_pfs_memory_wakeup(pmp, 0);
2598 		}
2599 
2600 		/*
2601 		 * Relock the inode, and we inherit a ref from the above.
2602 		 * We will check for a race after we acquire the vnode.
2603 		 */
2604 		hammer2_mtx_ex(&ip->lock);
2605 
2606 		/*
2607 		 * We need the vp in order to vfsync() dirty buffers, so if
2608 		 * one isn't attached we can skip it.
2609 		 *
2610 		 * Ordering the inode lock and then the vnode lock has the
2611 		 * potential to deadlock.  If we had left SYNCQ set that could
2612 		 * also deadlock us against the frontend even if we don't hold
2613 		 * any locks, but the latter is not a problem now since we
2614 		 * cleared it.  igetv will temporarily release the inode lock
2615 		 * in a safe manner to work-around the deadlock.
2616 		 *
2617 		 * Unfortunately it is still possible to deadlock when the
2618 		 * frontend obtains multiple inode locks, because all the
2619 		 * related vnodes are already locked (nor can the vnode locks
2620 		 * be released and reacquired without messing up RECLAIM and
2621 		 * INACTIVE sequencing).
2622 		 *
2623 		 * The solution for now is to move the vp back onto SIDEQ
2624 		 * and set dorestart, which will restart the flush after we
2625 		 * exhaust the current SYNCQ.  Note that additional
2626 		 * dependencies may build up, so we definitely need to move
2627 		 * the whole SIDEQ back to SYNCQ when we restart.
2628 		 */
2629 		vp = ip->vp;
2630 		if (vp) {
2631 			if (vget(vp, LK_EXCLUSIVE|LK_NOWAIT)) {
2632 				/*
2633 				 * Failed to get the vnode, requeue the inode
2634 				 * (PASS2 is already set so it will be found
2635 				 * again on the restart).
2636 				 *
2637 				 * Then unlock, possibly sleep, and retry
2638 				 * later.  We sleep if PASS2 was *previously*
2639 				 * set, before we set it again above.
2640 				 */
2641 				vp = NULL;
2642 				dorestart = 1;
2643 #ifdef HAMMER2_DEBUG_SYNC
2644 				kprintf("inum %ld (sync delayed by vnode)\n",
2645 					(long)ip->meta.inum);
2646 #endif
2647 				hammer2_inode_delayed_sideq(ip);
2648 
2649 				hammer2_mtx_unlock(&ip->lock);
2650 				hammer2_inode_drop(ip);
2651 
2652 				if (pass2 & HAMMER2_INODE_SYNCQ_PASS2) {
2653 					tsleep(&dorestart, 0, "h2syndel", 2);
2654 				}
2655 				hammer2_spin_ex(&pmp->list_spin);
2656 				continue;
2657 			}
2658 		} else {
2659 			vp = NULL;
2660 		}
2661 
2662 		/*
2663 		 * If the inode wound up on a SIDEQ again it will already be
2664 		 * prepped for another PASS2.  In this situation if we flush
2665 		 * it now we will just wind up flushing it again in the same
2666 		 * syncer run, so we might as well not flush it now.
2667 		 */
2668 		if (ip->flags & HAMMER2_INODE_SIDEQ) {
2669 			hammer2_mtx_unlock(&ip->lock);
2670 			hammer2_inode_drop(ip);
2671 			if (vp)
2672 				vput(vp);
2673 			dorestart = 1;
2674 			hammer2_spin_ex(&pmp->list_spin);
2675 			continue;
2676 		}
2677 
2678 		/*
2679 		 * Ok we have the inode exclusively locked and if vp is
2680 		 * not NULL that will also be exclusively locked.  Do the
2681 		 * meat of the flush.
2682 		 *
2683 		 * vp token needed for v_rbdirty_tree check / vclrisdirty
2684 		 * sequencing.  Though we hold the vnode exclusively so
2685 		 * we shouldn't need to hold the token also in this case.
2686 		 */
2687 		if (vp) {
2688 			vfsync(vp, MNT_WAIT, 1, NULL, NULL);
2689 			bio_track_wait(&vp->v_track_write, 0, 0); /* XXX */
2690 		}
2691 
2692 		/*
2693 		 * If the inode has not yet been inserted into the tree
2694 		 * we must do so.  Then sync and flush it.  The flush should
2695 		 * update the parent.
2696 		 */
2697 		if (ip->flags & HAMMER2_INODE_DELETING) {
2698 #ifdef HAMMER2_DEBUG_SYNC
2699 			kprintf("inum %ld destroy\n", (long)ip->meta.inum);
2700 #endif
2701 			hammer2_inode_chain_des(ip);
2702 			atomic_add_long(&hammer2_iod_inode_deletes, 1);
2703 		} else if (ip->flags & HAMMER2_INODE_CREATING) {
2704 #ifdef HAMMER2_DEBUG_SYNC
2705 			kprintf("inum %ld insert\n", (long)ip->meta.inum);
2706 #endif
2707 			hammer2_inode_chain_ins(ip);
2708 			atomic_add_long(&hammer2_iod_inode_creates, 1);
2709 		}
2710 #ifdef HAMMER2_DEBUG_SYNC
2711 		kprintf("inum %ld chain-sync\n", (long)ip->meta.inum);
2712 #endif
2713 
2714 		/*
2715 		 * Because I kinda messed up the design and index the inodes
2716 		 * under the root inode, along side the directory entries,
2717 		 * we can't flush the inode index under the iroot until the
2718 		 * end.  If we do it now we might miss effects created by
2719 		 * other inodes on the SYNCQ.
2720 		 *
2721 		 * Do a normal (non-FSSYNC) flush instead, which allows the
2722 		 * vnode code to work the same.  We don't want to force iroot
2723 		 * back onto the SIDEQ, and we also don't want the flush code
2724 		 * to update pfs_iroot_blocksets until the final flush later.
2725 		 *
2726 		 * XXX at the moment this will likely result in a double-flush
2727 		 * of the iroot chain.
2728 		 */
2729 		hammer2_inode_chain_sync(ip);
2730 		if (ip == pmp->iroot) {
2731 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP);
2732 		} else {
2733 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2734 						      HAMMER2_XOP_FSSYNC);
2735 		}
2736 		if (vp) {
2737 			lwkt_gettoken(&vp->v_token);
2738 			if ((ip->flags & (HAMMER2_INODE_MODIFIED |
2739 					  HAMMER2_INODE_RESIZED |
2740 					  HAMMER2_INODE_DIRTYDATA)) == 0 &&
2741 			    RB_EMPTY(&vp->v_rbdirty_tree) &&
2742 			    !bio_track_active(&vp->v_track_write)) {
2743 				vclrisdirty(vp);
2744 			} else {
2745 				hammer2_inode_delayed_sideq(ip);
2746 			}
2747 			lwkt_reltoken(&vp->v_token);
2748 			vput(vp);
2749 			vp = NULL;	/* safety */
2750 		}
2751 		atomic_clear_int(&ip->flags, HAMMER2_INODE_SYNCQ_PASS2);
2752 		hammer2_inode_unlock(ip);	/* unlock+drop */
2753 		/* ip pointer invalid */
2754 
2755 		/*
2756 		 * If the inode got dirted after we dropped our locks,
2757 		 * it will have already been moved back to the SIDEQ.
2758 		 */
2759 		hammer2_spin_ex(&pmp->list_spin);
2760 	}
2761 	hammer2_spin_unex(&pmp->list_spin);
2762 	hammer2_pfs_memory_wakeup(pmp, 0);
2763 
2764 	if (dorestart || (pmp->trans.flags & HAMMER2_TRANS_RESCAN)) {
2765 #ifdef HAMMER2_DEBUG_SYNC
2766 		kprintf("FILESYSTEM SYNC STAGE 1 RESTART\n");
2767 		/*tsleep(&dorestart, 0, "h2STG1-R", hz*20);*/
2768 #endif
2769 		dorestart = 1;
2770 		goto restart;
2771 	}
2772 #ifdef HAMMER2_DEBUG_SYNC
2773 	kprintf("FILESYSTEM SYNC STAGE 2 BEGIN\n");
2774 	/*tsleep(&dorestart, 0, "h2STG2", hz*20);*/
2775 #endif
2776 
2777 	/*
2778 	 * We have to flush the PFS root last, even if it does not appear to
2779 	 * be dirty, because all the inodes in the PFS are indexed under it.
2780 	 * The normal flushing of iroot above would only occur if directory
2781 	 * entries under the root were changed.
2782 	 *
2783 	 * Specifying VOLHDR will cause an additionl flush of hmp->spmp
2784 	 * for the media making up the cluster.
2785 	 */
2786 	if ((ip = pmp->iroot) != NULL) {
2787 		hammer2_inode_ref(ip);
2788 		hammer2_mtx_ex(&ip->lock);
2789 		hammer2_inode_chain_sync(ip);
2790 		hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2791 					      HAMMER2_XOP_FSSYNC |
2792 					      HAMMER2_XOP_VOLHDR);
2793 		hammer2_inode_unlock(ip);	/* unlock+drop */
2794 	}
2795 #ifdef HAMMER2_DEBUG_SYNC
2796 	kprintf("FILESYSTEM SYNC STAGE 2 DONE\n");
2797 #endif
2798 
2799 	/*
2800 	 * device bioq sync
2801 	 */
2802 	hammer2_bioq_sync(pmp);
2803 
2804 #if 0
2805 	/*
2806 	 * Generally speaking we now want to flush the media topology from
2807 	 * the iroot through to the inodes.  The flush stops at any inode
2808 	 * boundary, which allows the frontend to continue running concurrent
2809 	 * modifying operations on inodes (including kernel flushes of
2810 	 * buffers) without interfering with the main sync.
2811 	 *
2812 	 * Use the XOP interface to concurrently flush all nodes to
2813 	 * synchronize the PFSROOT subtopology to the media.  A standard
2814 	 * end-of-scan ENOENT error indicates cluster sufficiency.
2815 	 *
2816 	 * Note that this flush will not be visible on crash recovery until
2817 	 * we flush the super-root topology in the next loop.
2818 	 *
2819 	 * XXX For now wait for all flushes to complete.
2820 	 */
2821 	if (mp && (ip = pmp->iroot) != NULL) {
2822 		/*
2823 		 * If unmounting try to flush everything including any
2824 		 * sub-trees under inodes, just in case there is dangling
2825 		 * modified data, as a safety.  Otherwise just flush up to
2826 		 * the inodes in this stage.
2827 		 */
2828 		kprintf("MP & IROOT\n");
2829 #ifdef HAMMER2_DEBUG_SYNC
2830 		kprintf("FILESYSTEM SYNC STAGE 3 IROOT BEGIN\n");
2831 #endif
2832 		if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
2833 			xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
2834 						    HAMMER2_XOP_VOLHDR |
2835 						    HAMMER2_XOP_FSSYNC |
2836 						    HAMMER2_XOP_INODE_STOP);
2837 		} else {
2838 			xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
2839 						    HAMMER2_XOP_INODE_STOP |
2840 						    HAMMER2_XOP_VOLHDR |
2841 						    HAMMER2_XOP_FSSYNC |
2842 						    HAMMER2_XOP_INODE_STOP);
2843 		}
2844 		hammer2_xop_start(&xop->head, &hammer2_inode_flush_desc);
2845 		error = hammer2_xop_collect(&xop->head,
2846 					    HAMMER2_XOP_COLLECT_WAITALL);
2847 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2848 #ifdef HAMMER2_DEBUG_SYNC
2849 		kprintf("FILESYSTEM SYNC STAGE 3 IROOT END\n");
2850 #endif
2851 		if (error == HAMMER2_ERROR_ENOENT)
2852 			error = 0;
2853 		else
2854 			error = hammer2_error_to_errno(error);
2855 	} else {
2856 		error = 0;
2857 	}
2858 #endif
2859 	error = 0;	/* XXX */
2860 	hammer2_trans_done(pmp, HAMMER2_TRANS_ISFLUSH);
2861 
2862 	return (error);
2863 }
2864 
2865 static
2866 int
2867 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2868 {
2869 	hammer2_inode_t *ip;
2870 
2871 	KKASSERT(MAXFIDSZ >= 16);
2872 	ip = VTOI(vp);
2873 	fhp->fid_len = offsetof(struct fid, fid_data[16]);
2874 	fhp->fid_ext = 0;
2875 	((hammer2_tid_t *)fhp->fid_data)[0] = ip->meta.inum;
2876 	((hammer2_tid_t *)fhp->fid_data)[1] = 0;
2877 
2878 	return 0;
2879 }
2880 
2881 static
2882 int
2883 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2884 	       struct fid *fhp, struct vnode **vpp)
2885 {
2886 	hammer2_pfs_t *pmp;
2887 	hammer2_tid_t inum;
2888 	int error;
2889 
2890 	pmp = MPTOPMP(mp);
2891 	inum = ((hammer2_tid_t *)fhp->fid_data)[0] & HAMMER2_DIRHASH_USERMSK;
2892 	if (vpp) {
2893 		if (inum == 1)
2894 			error = hammer2_vfs_root(mp, vpp);
2895 		else
2896 			error = hammer2_vfs_vget(mp, NULL, inum, vpp);
2897 	} else {
2898 		error = 0;
2899 	}
2900 	if (error)
2901 		kprintf("fhtovp: %016jx -> %p, %d\n", inum, *vpp, error);
2902 	return error;
2903 }
2904 
2905 static
2906 int
2907 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2908 		 int *exflagsp, struct ucred **credanonp)
2909 {
2910 	hammer2_pfs_t *pmp;
2911 	struct netcred *np;
2912 	int error;
2913 
2914 	pmp = MPTOPMP(mp);
2915 	np = vfs_export_lookup(mp, &pmp->export, nam);
2916 	if (np) {
2917 		*exflagsp = np->netc_exflags;
2918 		*credanonp = &np->netc_anon;
2919 		error = 0;
2920 	} else {
2921 		error = EACCES;
2922 	}
2923 	return error;
2924 }
2925 
2926 /*
2927  * This handles hysteresis on regular file flushes.  Because the BIOs are
2928  * routed to a thread it is possible for an excessive number to build up
2929  * and cause long front-end stalls long before the runningbuffspace limit
2930  * is hit, so we implement hammer2_flush_pipe to control the
2931  * hysteresis.
2932  *
2933  * This is a particular problem when compression is used.
2934  */
2935 void
2936 hammer2_lwinprog_ref(hammer2_pfs_t *pmp)
2937 {
2938 	atomic_add_int(&pmp->count_lwinprog, 1);
2939 }
2940 
2941 void
2942 hammer2_lwinprog_drop(hammer2_pfs_t *pmp)
2943 {
2944 	int lwinprog;
2945 
2946 	lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
2947 	if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
2948 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
2949 		atomic_clear_int(&pmp->count_lwinprog,
2950 				 HAMMER2_LWINPROG_WAITING);
2951 		wakeup(&pmp->count_lwinprog);
2952 	}
2953 	if ((lwinprog & HAMMER2_LWINPROG_WAITING0) &&
2954 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= 0) {
2955 		atomic_clear_int(&pmp->count_lwinprog,
2956 				 HAMMER2_LWINPROG_WAITING0);
2957 		wakeup(&pmp->count_lwinprog);
2958 	}
2959 }
2960 
2961 void
2962 hammer2_lwinprog_wait(hammer2_pfs_t *pmp, int flush_pipe)
2963 {
2964 	int lwinprog;
2965 	int lwflag = (flush_pipe) ? HAMMER2_LWINPROG_WAITING :
2966 				    HAMMER2_LWINPROG_WAITING0;
2967 
2968 	for (;;) {
2969 		lwinprog = pmp->count_lwinprog;
2970 		cpu_ccfence();
2971 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2972 			break;
2973 		tsleep_interlock(&pmp->count_lwinprog, 0);
2974 		atomic_set_int(&pmp->count_lwinprog, lwflag);
2975 		lwinprog = pmp->count_lwinprog;
2976 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2977 			break;
2978 		tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
2979 	}
2980 }
2981 
2982 /*
2983  * It is possible for an excessive number of dirty chains or dirty inodes
2984  * to build up.  When this occurs we start an asynchronous filesystem sync.
2985  * If the level continues to build up, we stall, waiting for it to drop,
2986  * with some hysteresis.
2987  *
2988  * This relies on the kernel calling hammer2_vfs_modifying() prior to
2989  * obtaining any vnode locks before making a modifying VOP call.
2990  */
2991 static int
2992 hammer2_vfs_modifying(struct mount *mp)
2993 {
2994 	if (mp->mnt_flag & MNT_RDONLY)
2995 		return EROFS;
2996 	hammer2_pfs_memory_wait(MPTOPMP(mp));
2997 
2998 	return 0;
2999 }
3000 
3001 /*
3002  * Initiate an asynchronous filesystem sync and, with hysteresis,
3003  * stall if the internal data structure count becomes too bloated.
3004  */
3005 void
3006 hammer2_pfs_memory_wait(hammer2_pfs_t *pmp)
3007 {
3008 	uint32_t waiting;
3009 	int pcatch;
3010 	int error;
3011 
3012 	if (pmp == NULL || pmp->mp == NULL)
3013 		return;
3014 
3015 	for (;;) {
3016 		waiting = pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK;
3017 		cpu_ccfence();
3018 
3019 		/*
3020 		 * Start the syncer running at 1/2 the limit
3021 		 */
3022 		if (waiting > hammer2_limit_dirty_chains / 2 ||
3023 		    pmp->sideq_count > hammer2_limit_dirty_inodes / 2) {
3024 			trigger_syncer(pmp->mp);
3025 		}
3026 
3027 		/*
3028 		 * Stall at the limit waiting for the counts to drop.
3029 		 * This code will typically be woken up once the count
3030 		 * drops below 3/4 the limit, or in one second.
3031 		 */
3032 		if (waiting < hammer2_limit_dirty_chains &&
3033 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
3034 			break;
3035 		}
3036 
3037 		pcatch = curthread->td_proc ? PCATCH : 0;
3038 
3039 		tsleep_interlock(&pmp->inmem_dirty_chains, pcatch);
3040 		atomic_set_int(&pmp->inmem_dirty_chains,
3041 			       HAMMER2_DIRTYCHAIN_WAITING);
3042 		if (waiting < hammer2_limit_dirty_chains &&
3043 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
3044 			break;
3045 		}
3046 		trigger_syncer(pmp->mp);
3047 		error = tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED | pcatch,
3048 			       "h2memw", hz);
3049 		if (error == ERESTART)
3050 			break;
3051 	}
3052 }
3053 
3054 /*
3055  * Wake up any stalled frontend ops waiting, with hysteresis, using
3056  * 2/3 of the limit.
3057  */
3058 void
3059 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp, int count)
3060 {
3061 	uint32_t waiting;
3062 
3063 	if (pmp) {
3064 		waiting = atomic_fetchadd_int(&pmp->inmem_dirty_chains, count);
3065 		/* don't need --waiting to test flag */
3066 
3067 		if ((waiting & HAMMER2_DIRTYCHAIN_WAITING) &&
3068 		    (pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK) <=
3069 		    hammer2_limit_dirty_chains * 2 / 3 &&
3070 		    pmp->sideq_count <= hammer2_limit_dirty_inodes * 2 / 3) {
3071 			atomic_clear_int(&pmp->inmem_dirty_chains,
3072 					 HAMMER2_DIRTYCHAIN_WAITING);
3073 			wakeup(&pmp->inmem_dirty_chains);
3074 		}
3075 	}
3076 }
3077 
3078 void
3079 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp)
3080 {
3081 	if (pmp) {
3082 		atomic_add_int(&pmp->inmem_dirty_chains, 1);
3083 	}
3084 }
3085 
3086 /*
3087  * Volume header data locks
3088  */
3089 void
3090 hammer2_voldata_lock(hammer2_dev_t *hmp)
3091 {
3092 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
3093 }
3094 
3095 void
3096 hammer2_voldata_unlock(hammer2_dev_t *hmp)
3097 {
3098 	lockmgr(&hmp->vollk, LK_RELEASE);
3099 }
3100 
3101 void
3102 hammer2_voldata_modify(hammer2_dev_t *hmp)
3103 {
3104 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
3105 		atomic_add_long(&hammer2_count_modified_chains, 1);
3106 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
3107 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
3108 	}
3109 }
3110 
3111 /*
3112  * Returns 0 if the filesystem has tons of free space
3113  * Returns 1 if the filesystem has less than 10% remaining
3114  * Returns 2 if the filesystem has less than 2%/5% (user/root) remaining.
3115  */
3116 int
3117 hammer2_vfs_enospace(hammer2_inode_t *ip, off_t bytes, struct ucred *cred)
3118 {
3119 	hammer2_pfs_t *pmp;
3120 	hammer2_dev_t *hmp;
3121 	hammer2_off_t free_reserved;
3122 	hammer2_off_t free_nominal;
3123 	int i;
3124 
3125 	pmp = ip->pmp;
3126 
3127 	if (pmp->free_ticks == 0 || pmp->free_ticks != ticks) {
3128 		free_reserved = HAMMER2_SEGSIZE;
3129 		free_nominal = 0x7FFFFFFFFFFFFFFFLLU;
3130 		for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
3131 			hmp = pmp->pfs_hmps[i];
3132 			if (hmp == NULL)
3133 				continue;
3134 			if (pmp->pfs_types[i] != HAMMER2_PFSTYPE_MASTER &&
3135 			    pmp->pfs_types[i] != HAMMER2_PFSTYPE_SOFT_MASTER)
3136 				continue;
3137 
3138 			if (free_nominal > hmp->voldata.allocator_free)
3139 				free_nominal = hmp->voldata.allocator_free;
3140 			if (free_reserved < hmp->free_reserved)
3141 				free_reserved = hmp->free_reserved;
3142 		}
3143 
3144 		/*
3145 		 * SMP races ok
3146 		 */
3147 		pmp->free_reserved = free_reserved;
3148 		pmp->free_nominal = free_nominal;
3149 		pmp->free_ticks = ticks;
3150 	} else {
3151 		free_reserved = pmp->free_reserved;
3152 		free_nominal = pmp->free_nominal;
3153 	}
3154 	if (cred && cred->cr_uid != 0) {
3155 		if ((int64_t)(free_nominal - bytes) <
3156 		    (int64_t)free_reserved) {
3157 			return 2;
3158 		}
3159 	} else {
3160 		if ((int64_t)(free_nominal - bytes) <
3161 		    (int64_t)free_reserved / 2) {
3162 			return 2;
3163 		}
3164 	}
3165 	if ((int64_t)(free_nominal - bytes) < (int64_t)free_reserved * 2)
3166 		return 1;
3167 	return 0;
3168 }
3169 
3170 /*
3171  * Debugging
3172  */
3173 void
3174 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int bi, int *countp,
3175 		   char pfx, u_int flags)
3176 {
3177 	hammer2_chain_t *scan;
3178 	hammer2_chain_t *parent;
3179 
3180 	--*countp;
3181 	if (*countp == 0) {
3182 		kprintf("%*.*s...\n", tab, tab, "");
3183 		return;
3184 	}
3185 	if (*countp < 0)
3186 		return;
3187 	kprintf("%*.*s%c-chain %p %s.%-3d %016jx %016jx/%-2d mir=%016jx\n",
3188 		tab, tab, "", pfx, chain,
3189 		hammer2_bref_type_str(chain->bref.type), bi,
3190 		chain->bref.data_off, chain->bref.key, chain->bref.keybits,
3191 		chain->bref.mirror_tid);
3192 
3193 	kprintf("%*.*s      [%08x] (%s) refs=%d",
3194 		tab, tab, "",
3195 		chain->flags,
3196 		((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
3197 		chain->data) ?  (char *)chain->data->ipdata.filename : "?"),
3198 		chain->refs);
3199 
3200 	parent = chain->parent;
3201 	if (parent)
3202 		kprintf("\n%*.*s      p=%p [pflags %08x prefs %d]",
3203 			tab, tab, "",
3204 			parent, parent->flags, parent->refs);
3205 	if (RB_EMPTY(&chain->core.rbtree)) {
3206 		kprintf("\n");
3207 	} else {
3208 		int bi = 0;
3209 		kprintf(" {\n");
3210 		RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree) {
3211 			if ((scan->flags & flags) || flags == (u_int)-1) {
3212 				hammer2_dump_chain(scan, tab + 4, bi, countp,
3213 						   'a', flags);
3214 			}
3215 			bi++;
3216 		}
3217 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
3218 			kprintf("%*.*s}(%s)\n", tab, tab, "",
3219 				chain->data->ipdata.filename);
3220 		else
3221 			kprintf("%*.*s}\n", tab, tab, "");
3222 	}
3223 }
3224