xref: /dragonfly/sys/vfs/hammer2/hammer2_vfsops.c (revision 2b7dbe20)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/buf.h>
43 #include <sys/uuid.h>
44 #include <sys/vfsops.h>
45 #include <sys/sysctl.h>
46 #include <sys/socket.h>
47 #include <sys/objcache.h>
48 
49 #include <sys/proc.h>
50 #include <sys/mountctl.h>
51 #include <sys/dirent.h>
52 #include <sys/uio.h>
53 
54 #include "hammer2.h"
55 #include "hammer2_disk.h"
56 #include "hammer2_mount.h"
57 #include "hammer2_lz4.h"
58 
59 #include "zlib/hammer2_zlib.h"
60 
61 #define REPORT_REFS_ERRORS 1	/* XXX remove me */
62 
63 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache");
64 
65 struct hammer2_sync_info {
66 	int error;
67 	int waitfor;
68 	int pass;
69 };
70 
71 TAILQ_HEAD(hammer2_mntlist, hammer2_dev);
72 static struct hammer2_mntlist hammer2_mntlist;
73 
74 struct hammer2_pfslist hammer2_pfslist;
75 struct hammer2_pfslist hammer2_spmplist;
76 struct lock hammer2_mntlk;
77 
78 int hammer2_supported_version = HAMMER2_VOL_VERSION_DEFAULT;
79 int hammer2_debug;
80 int hammer2_xopgroups;
81 long hammer2_debug_inode;
82 int hammer2_cluster_meta_read = 1;	/* physical read-ahead */
83 int hammer2_cluster_data_read = 4;	/* physical read-ahead */
84 int hammer2_cluster_write = 0;		/* physical write clustering */
85 int hammer2_dedup_enable = 1;
86 int hammer2_always_compress = 0;	/* always try to compress */
87 int hammer2_flush_pipe = 100;
88 int hammer2_dio_count;
89 int hammer2_dio_limit = 256;
90 int hammer2_bulkfree_tps = 5000;
91 int hammer2_worker_rmask = 3;
92 long hammer2_chain_allocs;
93 long hammer2_limit_dirty_chains;
94 long hammer2_limit_dirty_inodes;
95 long hammer2_count_modified_chains;
96 long hammer2_iod_file_read;
97 long hammer2_iod_meta_read;
98 long hammer2_iod_indr_read;
99 long hammer2_iod_fmap_read;
100 long hammer2_iod_volu_read;
101 long hammer2_iod_file_write;
102 long hammer2_iod_file_wembed;
103 long hammer2_iod_file_wzero;
104 long hammer2_iod_file_wdedup;
105 long hammer2_iod_meta_write;
106 long hammer2_iod_indr_write;
107 long hammer2_iod_fmap_write;
108 long hammer2_iod_volu_write;
109 static long hammer2_iod_inode_creates;
110 static long hammer2_iod_inode_deletes;
111 
112 long hammer2_process_icrc32;
113 long hammer2_process_xxhash64;
114 
115 MALLOC_DECLARE(M_HAMMER2_CBUFFER);
116 MALLOC_DEFINE(M_HAMMER2_CBUFFER, "HAMMER2-compbuffer",
117 		"Buffer used for compression.");
118 
119 MALLOC_DECLARE(M_HAMMER2_DEBUFFER);
120 MALLOC_DEFINE(M_HAMMER2_DEBUFFER, "HAMMER2-decompbuffer",
121 		"Buffer used for decompression.");
122 
123 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
124 
125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, supported_version, CTLFLAG_RD,
126 	   &hammer2_supported_version, 0, "");
127 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
128 	   &hammer2_debug, 0, "");
129 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, debug_inode, CTLFLAG_RW,
130 	   &hammer2_debug_inode, 0, "");
131 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_meta_read, CTLFLAG_RW,
132 	   &hammer2_cluster_meta_read, 0, "");
133 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_data_read, CTLFLAG_RW,
134 	   &hammer2_cluster_data_read, 0, "");
135 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_write, CTLFLAG_RW,
136 	   &hammer2_cluster_write, 0, "");
137 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dedup_enable, CTLFLAG_RW,
138 	   &hammer2_dedup_enable, 0, "");
139 SYSCTL_INT(_vfs_hammer2, OID_AUTO, always_compress, CTLFLAG_RW,
140 	   &hammer2_always_compress, 0, "");
141 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
142 	   &hammer2_flush_pipe, 0, "");
143 SYSCTL_INT(_vfs_hammer2, OID_AUTO, worker_rmask, CTLFLAG_RW,
144 	   &hammer2_worker_rmask, 0, "");
145 SYSCTL_INT(_vfs_hammer2, OID_AUTO, bulkfree_tps, CTLFLAG_RW,
146 	   &hammer2_bulkfree_tps, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_allocs, CTLFLAG_RW,
148 	   &hammer2_chain_allocs, 0, "");
149 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
150 	   &hammer2_limit_dirty_chains, 0, "");
151 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_inodes, CTLFLAG_RW,
152 	   &hammer2_limit_dirty_inodes, 0, "");
153 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, count_modified_chains, CTLFLAG_RW,
154 	   &hammer2_count_modified_chains, 0, "");
155 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
156 	   &hammer2_dio_count, 0, "");
157 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_limit, CTLFLAG_RW,
158 	   &hammer2_dio_limit, 0, "");
159 
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
161 	   &hammer2_iod_file_read, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
163 	   &hammer2_iod_meta_read, 0, "");
164 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
165 	   &hammer2_iod_indr_read, 0, "");
166 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
167 	   &hammer2_iod_fmap_read, 0, "");
168 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
169 	   &hammer2_iod_volu_read, 0, "");
170 
171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
172 	   &hammer2_iod_file_write, 0, "");
173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wembed, CTLFLAG_RW,
174 	   &hammer2_iod_file_wembed, 0, "");
175 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wzero, CTLFLAG_RW,
176 	   &hammer2_iod_file_wzero, 0, "");
177 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wdedup, CTLFLAG_RW,
178 	   &hammer2_iod_file_wdedup, 0, "");
179 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
180 	   &hammer2_iod_meta_write, 0, "");
181 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
182 	   &hammer2_iod_indr_write, 0, "");
183 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
184 	   &hammer2_iod_fmap_write, 0, "");
185 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
186 	   &hammer2_iod_volu_write, 0, "");
187 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_creates, CTLFLAG_RW,
188 	   &hammer2_iod_inode_creates, 0, "");
189 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_deletes, CTLFLAG_RW,
190 	   &hammer2_iod_inode_deletes, 0, "");
191 
192 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_icrc32, CTLFLAG_RW,
193 	   &hammer2_process_icrc32, 0, "");
194 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_xxhash64, CTLFLAG_RW,
195 	   &hammer2_process_xxhash64, 0, "");
196 
197 static int hammer2_vfs_init(struct vfsconf *conf);
198 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
199 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
200 				struct ucred *cred);
201 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *,
202 				struct vnode *, struct ucred *);
203 static int hammer2_recovery(hammer2_dev_t *hmp);
204 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
205 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
206 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
207 				struct ucred *cred);
208 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
209 				struct ucred *cred);
210 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
211 				struct fid *fhp, struct vnode **vpp);
212 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
213 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
214 				int *exflagsp, struct ucred **credanonp);
215 static int hammer2_vfs_modifying(struct mount *mp);
216 
217 static int hammer2_install_volume_header(hammer2_dev_t *hmp);
218 
219 static void hammer2_update_pmps(hammer2_dev_t *hmp);
220 
221 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp);
222 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp,
223 				hammer2_dev_t *hmp);
224 static int hammer2_fixup_pfses(hammer2_dev_t *hmp);
225 
226 /*
227  * HAMMER2 vfs operations.
228  */
229 static struct vfsops hammer2_vfsops = {
230 	.vfs_flags	= 0,
231 	.vfs_init	= hammer2_vfs_init,
232 	.vfs_uninit	= hammer2_vfs_uninit,
233 	.vfs_sync	= hammer2_vfs_sync,
234 	.vfs_mount	= hammer2_vfs_mount,
235 	.vfs_unmount	= hammer2_vfs_unmount,
236 	.vfs_root 	= hammer2_vfs_root,
237 	.vfs_statfs	= hammer2_vfs_statfs,
238 	.vfs_statvfs	= hammer2_vfs_statvfs,
239 	.vfs_vget	= hammer2_vfs_vget,
240 	.vfs_vptofh	= hammer2_vfs_vptofh,
241 	.vfs_fhtovp	= hammer2_vfs_fhtovp,
242 	.vfs_checkexp	= hammer2_vfs_checkexp,
243 	.vfs_modifying	= hammer2_vfs_modifying
244 };
245 
246 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
247 
248 VFS_SET(hammer2_vfsops, hammer2, VFCF_MPSAFE);
249 MODULE_VERSION(hammer2, 1);
250 
251 static
252 int
253 hammer2_vfs_init(struct vfsconf *conf)
254 {
255 	static struct objcache_malloc_args margs_read;
256 	static struct objcache_malloc_args margs_write;
257 	static struct objcache_malloc_args margs_vop;
258 
259 	int error;
260 
261 	error = 0;
262 	kmalloc_raise_limit(M_HAMMER2, 0);	/* unlimited */
263 
264 	/*
265 	 * hammer2_xopgroups must be even and is most optimal if
266 	 * 2 x ncpus so strategy functions can be queued to the same
267 	 * cpu.
268 	 */
269 	hammer2_xopgroups = HAMMER2_XOPGROUPS_MIN;
270 	if (hammer2_xopgroups < ncpus * 2)
271 		hammer2_xopgroups = ncpus * 2;
272 
273 	/*
274 	 * A large DIO cache is needed to retain dedup enablement masks.
275 	 * The bulkfree code clears related masks as part of the disk block
276 	 * recycling algorithm, preventing it from being used for a later
277 	 * dedup.
278 	 *
279 	 * NOTE: A large buffer cache can actually interfere with dedup
280 	 *	 operation because we dedup based on media physical buffers
281 	 *	 and not logical buffers.  Try to make the DIO case large
282 	 *	 enough to avoid this problem, but also cap it.
283 	 */
284 	hammer2_dio_limit = nbuf * 2;
285 	if (hammer2_dio_limit > 100000)
286 		hammer2_dio_limit = 100000;
287 
288 	if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
289 		error = EINVAL;
290 	if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
291 		error = EINVAL;
292 	if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
293 		error = EINVAL;
294 
295 	if (error)
296 		kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
297 
298 	margs_read.objsize = 65536;
299 	margs_read.mtype = M_HAMMER2_DEBUFFER;
300 
301 	margs_write.objsize = 32768;
302 	margs_write.mtype = M_HAMMER2_CBUFFER;
303 
304 	margs_vop.objsize = sizeof(hammer2_xop_t);
305 	margs_vop.mtype = M_HAMMER2;
306 
307 	/*
308 	 * Note thaht for the XOPS cache we want backing store allocations
309 	 * to use M_ZERO.  This is not allowed in objcache_get() (to avoid
310 	 * confusion), so use the backing store function that does it.  This
311 	 * means that initial XOPS objects are zerod but REUSED objects are
312 	 * not.  So we are responsible for cleaning the object up sufficiently
313 	 * for our needs before objcache_put()ing it back (typically just the
314 	 * FIFO indices).
315 	 */
316 	cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
317 				0, 1, NULL, NULL, NULL,
318 				objcache_malloc_alloc,
319 				objcache_malloc_free,
320 				&margs_read);
321 	cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
322 				0, 1, NULL, NULL, NULL,
323 				objcache_malloc_alloc,
324 				objcache_malloc_free,
325 				&margs_write);
326 	cache_xops = objcache_create(margs_vop.mtype->ks_shortdesc,
327 				0, 1, NULL, NULL, NULL,
328 				objcache_malloc_alloc_zero,
329 				objcache_malloc_free,
330 				&margs_vop);
331 
332 
333 	lockinit(&hammer2_mntlk, "mntlk", 0, 0);
334 	TAILQ_INIT(&hammer2_mntlist);
335 	TAILQ_INIT(&hammer2_pfslist);
336 	TAILQ_INIT(&hammer2_spmplist);
337 
338 	hammer2_limit_dirty_chains = maxvnodes / 10;
339 	if (hammer2_limit_dirty_chains > HAMMER2_LIMIT_DIRTY_CHAINS)
340 		hammer2_limit_dirty_chains = HAMMER2_LIMIT_DIRTY_CHAINS;
341 	if (hammer2_limit_dirty_chains < 1000)
342 		hammer2_limit_dirty_chains = 1000;
343 
344 	hammer2_limit_dirty_inodes = maxvnodes / 25;
345 	if (hammer2_limit_dirty_inodes < 100)
346 		hammer2_limit_dirty_inodes = 100;
347 	if (hammer2_limit_dirty_inodes > HAMMER2_LIMIT_DIRTY_INODES)
348 		hammer2_limit_dirty_inodes = HAMMER2_LIMIT_DIRTY_INODES;
349 
350 	return (error);
351 }
352 
353 static
354 int
355 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
356 {
357 	objcache_destroy(cache_buffer_read);
358 	objcache_destroy(cache_buffer_write);
359 	objcache_destroy(cache_xops);
360 	return 0;
361 }
362 
363 /*
364  * Core PFS allocator.  Used to allocate or reference the pmp structure
365  * for PFS cluster mounts and the spmp structure for media (hmp) structures.
366  * The pmp can be passed in or loaded by this function using the chain and
367  * inode data.
368  *
369  * pmp->modify_tid tracks new modify_tid transaction ids for front-end
370  * transactions.  Note that synchronization does not use this field.
371  * (typically frontend operations and synchronization cannot run on the
372  * same PFS node at the same time).
373  *
374  * XXX check locking
375  */
376 hammer2_pfs_t *
377 hammer2_pfsalloc(hammer2_chain_t *chain,
378 		 const hammer2_inode_data_t *ripdata,
379 		 hammer2_tid_t modify_tid, hammer2_dev_t *force_local)
380 {
381 	hammer2_pfs_t *pmp;
382 	hammer2_inode_t *iroot;
383 	int count;
384 	int i;
385 	int j;
386 
387 	pmp = NULL;
388 
389 	/*
390 	 * Locate or create the PFS based on the cluster id.  If ripdata
391 	 * is NULL this is a spmp which is unique and is always allocated.
392 	 *
393 	 * If the device is mounted in local mode all PFSs are considered
394 	 * independent and not part of any cluster (for debugging only).
395 	 */
396 	if (ripdata) {
397 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
398 			if (force_local != pmp->force_local)
399 				continue;
400 			if (force_local == NULL &&
401 			    bcmp(&pmp->pfs_clid, &ripdata->meta.pfs_clid,
402 				 sizeof(pmp->pfs_clid)) == 0) {
403 					break;
404 			} else if (force_local && pmp->pfs_names[0] &&
405 			    strcmp(pmp->pfs_names[0], ripdata->filename) == 0) {
406 					break;
407 			}
408 		}
409 	}
410 
411 	if (pmp == NULL) {
412 		pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
413 		pmp->force_local = force_local;
414 		hammer2_trans_manage_init(pmp);
415 		kmalloc_create(&pmp->minode, "HAMMER2-inodes");
416 		kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg");
417 		lockinit(&pmp->lock, "pfslk", 0, 0);
418 		lockinit(&pmp->lock_nlink, "h2nlink", 0, 0);
419 		spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
420 		spin_init(&pmp->xop_spin, "h2xop");
421 		spin_init(&pmp->lru_spin, "h2lru");
422 		RB_INIT(&pmp->inum_tree);
423 		TAILQ_INIT(&pmp->syncq);
424 		TAILQ_INIT(&pmp->depq);
425 		TAILQ_INIT(&pmp->lru_list);
426 		spin_init(&pmp->list_spin, "h2pfsalloc_list");
427 
428 		/*
429 		 * Save the last media transaction id for the flusher.  Set
430 		 * initial
431 		 */
432 		if (ripdata) {
433 			pmp->pfs_clid = ripdata->meta.pfs_clid;
434 			TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
435 		} else {
436 			pmp->flags |= HAMMER2_PMPF_SPMP;
437 			TAILQ_INSERT_TAIL(&hammer2_spmplist, pmp, mntentry);
438 		}
439 
440 		/*
441 		 * The synchronization thread may start too early, make
442 		 * sure it stays frozen until we are ready to let it go.
443 		 * XXX
444 		 */
445 		/*
446 		pmp->primary_thr.flags = HAMMER2_THREAD_FROZEN |
447 					 HAMMER2_THREAD_REMASTER;
448 		*/
449 	}
450 
451 	/*
452 	 * Create the PFS's root inode and any missing XOP helper threads.
453 	 */
454 	if ((iroot = pmp->iroot) == NULL) {
455 		iroot = hammer2_inode_get(pmp, NULL, 1, -1);
456 		if (ripdata)
457 			iroot->meta = ripdata->meta;
458 		pmp->iroot = iroot;
459 		hammer2_inode_ref(iroot);
460 		hammer2_inode_unlock(iroot);
461 	}
462 
463 	/*
464 	 * Stop here if no chain is passed in.
465 	 */
466 	if (chain == NULL)
467 		goto done;
468 
469 	/*
470 	 * When a chain is passed in we must add it to the PFS's root
471 	 * inode, update pmp->pfs_types[], and update the syncronization
472 	 * threads.
473 	 *
474 	 * When forcing local mode, mark the PFS as a MASTER regardless.
475 	 *
476 	 * At the moment empty spots can develop due to removals or failures.
477 	 * Ultimately we want to re-fill these spots but doing so might
478 	 * confused running code. XXX
479 	 */
480 	hammer2_inode_ref(iroot);
481 	hammer2_mtx_ex(&iroot->lock);
482 	j = iroot->cluster.nchains;
483 
484 	if (j == HAMMER2_MAXCLUSTER) {
485 		kprintf("hammer2_pfsalloc: cluster full!\n");
486 		/* XXX fatal error? */
487 	} else {
488 		KKASSERT(chain->pmp == NULL);
489 		chain->pmp = pmp;
490 		hammer2_chain_ref(chain);
491 		iroot->cluster.array[j].chain = chain;
492 		if (force_local)
493 			pmp->pfs_types[j] = HAMMER2_PFSTYPE_MASTER;
494 		else
495 			pmp->pfs_types[j] = ripdata->meta.pfs_type;
496 		pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2);
497 		pmp->pfs_hmps[j] = chain->hmp;
498 		hammer2_spin_ex(&pmp->inum_spin);
499 		pmp->pfs_iroot_blocksets[j] = chain->data->ipdata.u.blockset;
500 		hammer2_spin_unex(&pmp->inum_spin);
501 
502 		/*
503 		 * If the PFS is already mounted we must account
504 		 * for the mount_count here.
505 		 */
506 		if (pmp->mp)
507 			++chain->hmp->mount_count;
508 
509 		/*
510 		 * May have to fixup dirty chain tracking.  Previous
511 		 * pmp was NULL so nothing to undo.
512 		 */
513 		if (chain->flags & HAMMER2_CHAIN_MODIFIED)
514 			hammer2_pfs_memory_inc(pmp);
515 		++j;
516 	}
517 	iroot->cluster.nchains = j;
518 
519 	/*
520 	 * Update nmasters from any PFS inode which is part of the cluster.
521 	 * It is possible that this will result in a value which is too
522 	 * high.  MASTER PFSs are authoritative for pfs_nmasters and will
523 	 * override this value later on.
524 	 *
525 	 * (This informs us of masters that might not currently be
526 	 *  discoverable by this mount).
527 	 */
528 	if (ripdata && pmp->pfs_nmasters < ripdata->meta.pfs_nmasters) {
529 		pmp->pfs_nmasters = ripdata->meta.pfs_nmasters;
530 	}
531 
532 	/*
533 	 * Count visible masters.  Masters are usually added with
534 	 * ripdata->meta.pfs_nmasters set to 1.  This detects when there
535 	 * are more (XXX and must update the master inodes).
536 	 */
537 	count = 0;
538 	for (i = 0; i < iroot->cluster.nchains; ++i) {
539 		if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)
540 			++count;
541 	}
542 	if (pmp->pfs_nmasters < count)
543 		pmp->pfs_nmasters = count;
544 
545 	/*
546 	 * Create missing synchronization and support threads.
547 	 *
548 	 * Single-node masters (including snapshots) have nothing to
549 	 * synchronize and do not require this thread.
550 	 *
551 	 * Multi-node masters or any number of soft masters, slaves, copy,
552 	 * or other PFS types need the thread.
553 	 *
554 	 * Each thread is responsible for its particular cluster index.
555 	 * We use independent threads so stalls or mismatches related to
556 	 * any given target do not affect other targets.
557 	 */
558 	for (i = 0; i < iroot->cluster.nchains; ++i) {
559 		/*
560 		 * Single-node masters (including snapshots) have nothing
561 		 * to synchronize and will make direct xops support calls,
562 		 * thus they do not require this thread.
563 		 *
564 		 * Note that there can be thousands of snapshots.  We do not
565 		 * want to create thousands of threads.
566 		 */
567 		if (pmp->pfs_nmasters <= 1 &&
568 		    pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) {
569 			continue;
570 		}
571 
572 		/*
573 		 * Sync support thread
574 		 */
575 		if (pmp->sync_thrs[i].td == NULL) {
576 			hammer2_thr_create(&pmp->sync_thrs[i], pmp, NULL,
577 					   "h2nod", i, -1,
578 					   hammer2_primary_sync_thread);
579 		}
580 	}
581 
582 	/*
583 	 * Create missing Xop threads
584 	 *
585 	 * NOTE: We create helper threads for all mounted PFSs or any
586 	 *	 PFSs with 2+ nodes (so the sync thread can update them,
587 	 *	 even if not mounted).
588 	 */
589 	if (pmp->mp || iroot->cluster.nchains >= 2)
590 		hammer2_xop_helper_create(pmp);
591 
592 	hammer2_mtx_unlock(&iroot->lock);
593 	hammer2_inode_drop(iroot);
594 done:
595 	return pmp;
596 }
597 
598 /*
599  * Deallocate an element of a probed PFS.  If destroying and this is a
600  * MASTER, adjust nmasters.
601  *
602  * This function does not physically destroy the PFS element in its device
603  * under the super-root  (see hammer2_ioctl_pfs_delete()).
604  */
605 void
606 hammer2_pfsdealloc(hammer2_pfs_t *pmp, int clindex, int destroying)
607 {
608 	hammer2_inode_t *iroot;
609 	hammer2_chain_t *chain;
610 	int j;
611 
612 	/*
613 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
614 	 * by the flush code.
615 	 */
616 	iroot = pmp->iroot;
617 	if (iroot) {
618 		/*
619 		 * Stop synchronizing
620 		 *
621 		 * XXX flush after acquiring the iroot lock.
622 		 * XXX clean out the cluster index from all inode structures.
623 		 */
624 		hammer2_thr_delete(&pmp->sync_thrs[clindex]);
625 
626 		/*
627 		 * Remove the cluster index from the group.  If destroying
628 		 * the PFS and this is a master, adjust pfs_nmasters.
629 		 */
630 		hammer2_mtx_ex(&iroot->lock);
631 		chain = iroot->cluster.array[clindex].chain;
632 		iroot->cluster.array[clindex].chain = NULL;
633 
634 		switch(pmp->pfs_types[clindex]) {
635 		case HAMMER2_PFSTYPE_MASTER:
636 			if (destroying && pmp->pfs_nmasters > 0)
637 				--pmp->pfs_nmasters;
638 			/* XXX adjust ripdata->meta.pfs_nmasters */
639 			break;
640 		default:
641 			break;
642 		}
643 		pmp->pfs_types[clindex] = HAMMER2_PFSTYPE_NONE;
644 
645 		hammer2_mtx_unlock(&iroot->lock);
646 
647 		/*
648 		 * Release the chain.
649 		 */
650 		if (chain) {
651 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
652 			hammer2_chain_drop(chain);
653 		}
654 
655 		/*
656 		 * Terminate all XOP threads for the cluster index.
657 		 */
658 		if (pmp->xop_groups) {
659 			for (j = 0; j < hammer2_xopgroups; ++j) {
660 				hammer2_thr_delete(
661 					&pmp->xop_groups[j].thrs[clindex]);
662 			}
663 		}
664 	}
665 }
666 
667 /*
668  * Destroy a PFS, typically only occurs after the last mount on a device
669  * has gone away.
670  */
671 static void
672 hammer2_pfsfree(hammer2_pfs_t *pmp)
673 {
674 	hammer2_inode_t *iroot;
675 	hammer2_chain_t *chain;
676 	int chains_still_present = 0;
677 	int i;
678 	int j;
679 
680 	/*
681 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
682 	 * by the flush code.
683 	 */
684 	if (pmp->flags & HAMMER2_PMPF_SPMP)
685 		TAILQ_REMOVE(&hammer2_spmplist, pmp, mntentry);
686 	else
687 		TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
688 
689 	/*
690 	 * Cleanup chains remaining on LRU list.
691 	 */
692 	hammer2_spin_ex(&pmp->lru_spin);
693 	while ((chain = TAILQ_FIRST(&pmp->lru_list)) != NULL) {
694 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONLRU);
695 		atomic_add_int(&pmp->lru_count, -1);
696 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
697 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
698 		hammer2_chain_ref(chain);
699 		hammer2_spin_unex(&pmp->lru_spin);
700 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
701 		hammer2_chain_drop(chain);
702 		hammer2_spin_ex(&pmp->lru_spin);
703 	}
704 	hammer2_spin_unex(&pmp->lru_spin);
705 
706 	/*
707 	 * Clean up iroot
708 	 */
709 	iroot = pmp->iroot;
710 	if (iroot) {
711 		for (i = 0; i < iroot->cluster.nchains; ++i) {
712 			hammer2_thr_delete(&pmp->sync_thrs[i]);
713 			if (pmp->xop_groups) {
714 				for (j = 0; j < hammer2_xopgroups; ++j)
715 					hammer2_thr_delete(
716 						&pmp->xop_groups[j].thrs[i]);
717 			}
718 			chain = iroot->cluster.array[i].chain;
719 			if (chain && !RB_EMPTY(&chain->core.rbtree)) {
720 				kprintf("hammer2: Warning pmp %p still "
721 					"has active chains\n", pmp);
722 				chains_still_present = 1;
723 			}
724 		}
725 #if REPORT_REFS_ERRORS
726 		if (iroot->refs != 1)
727 			kprintf("PMP->IROOT %p REFS WRONG %d\n",
728 				iroot, iroot->refs);
729 #else
730 		KKASSERT(iroot->refs == 1);
731 #endif
732 		/* ref for iroot */
733 		hammer2_inode_drop(iroot);
734 		pmp->iroot = NULL;
735 	}
736 
737 	/*
738 	 * Free remaining pmp resources
739 	 */
740 	if (chains_still_present) {
741 		kprintf("hammer2: cannot free pmp %p, still in use\n", pmp);
742 	} else {
743 		kmalloc_destroy(&pmp->mmsg);
744 		kmalloc_destroy(&pmp->minode);
745 		kfree(pmp, M_HAMMER2);
746 	}
747 }
748 
749 /*
750  * Remove all references to hmp from the pfs list.  Any PFS which becomes
751  * empty is terminated and freed.
752  *
753  * XXX inefficient.
754  */
755 static void
756 hammer2_pfsfree_scan(hammer2_dev_t *hmp, int which)
757 {
758 	hammer2_pfs_t *pmp;
759 	hammer2_inode_t *iroot;
760 	hammer2_chain_t *rchain;
761 	int i;
762 	int j;
763 	struct hammer2_pfslist *wlist;
764 
765 	if (which == 0)
766 		wlist = &hammer2_pfslist;
767 	else
768 		wlist = &hammer2_spmplist;
769 again:
770 	TAILQ_FOREACH(pmp, wlist, mntentry) {
771 		if ((iroot = pmp->iroot) == NULL)
772 			continue;
773 
774 		/*
775 		 * Determine if this PFS is affected.  If it is we must
776 		 * freeze all management threads and lock its iroot.
777 		 *
778 		 * Freezing a management thread forces it idle, operations
779 		 * in-progress will be aborted and it will have to start
780 		 * over again when unfrozen, or exit if told to exit.
781 		 */
782 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
783 			if (pmp->pfs_hmps[i] == hmp)
784 				break;
785 		}
786 		if (i == HAMMER2_MAXCLUSTER)
787 			continue;
788 
789 		hammer2_vfs_sync_pmp(pmp, MNT_WAIT);
790 
791 		/*
792 		 * Make sure all synchronization threads are locked
793 		 * down.
794 		 */
795 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
796 			if (pmp->pfs_hmps[i] == NULL)
797 				continue;
798 			hammer2_thr_freeze_async(&pmp->sync_thrs[i]);
799 			if (pmp->xop_groups) {
800 				for (j = 0; j < hammer2_xopgroups; ++j) {
801 					hammer2_thr_freeze_async(
802 						&pmp->xop_groups[j].thrs[i]);
803 				}
804 			}
805 		}
806 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
807 			if (pmp->pfs_hmps[i] == NULL)
808 				continue;
809 			hammer2_thr_freeze(&pmp->sync_thrs[i]);
810 			if (pmp->xop_groups) {
811 				for (j = 0; j < hammer2_xopgroups; ++j) {
812 					hammer2_thr_freeze(
813 						&pmp->xop_groups[j].thrs[i]);
814 				}
815 			}
816 		}
817 
818 		/*
819 		 * Lock the inode and clean out matching chains.
820 		 * Note that we cannot use hammer2_inode_lock_*()
821 		 * here because that would attempt to validate the
822 		 * cluster that we are in the middle of ripping
823 		 * apart.
824 		 *
825 		 * WARNING! We are working directly on the inodes
826 		 *	    embedded cluster.
827 		 */
828 		hammer2_mtx_ex(&iroot->lock);
829 
830 		/*
831 		 * Remove the chain from matching elements of the PFS.
832 		 */
833 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
834 			if (pmp->pfs_hmps[i] != hmp)
835 				continue;
836 			hammer2_thr_delete(&pmp->sync_thrs[i]);
837 			if (pmp->xop_groups) {
838 				for (j = 0; j < hammer2_xopgroups; ++j) {
839 					hammer2_thr_delete(
840 						&pmp->xop_groups[j].thrs[i]);
841 				}
842 			}
843 			rchain = iroot->cluster.array[i].chain;
844 			iroot->cluster.array[i].chain = NULL;
845 			pmp->pfs_types[i] = 0;
846 			if (pmp->pfs_names[i]) {
847 				kfree(pmp->pfs_names[i], M_HAMMER2);
848 				pmp->pfs_names[i] = NULL;
849 			}
850 			if (rchain) {
851 				hammer2_chain_drop(rchain);
852 				/* focus hint */
853 				if (iroot->cluster.focus == rchain)
854 					iroot->cluster.focus = NULL;
855 			}
856 			pmp->pfs_hmps[i] = NULL;
857 		}
858 		hammer2_mtx_unlock(&iroot->lock);
859 
860 		/*
861 		 * Cleanup trailing chains.  Gaps may remain.
862 		 */
863 		for (i = HAMMER2_MAXCLUSTER - 1; i >= 0; --i) {
864 			if (pmp->pfs_hmps[i])
865 				break;
866 		}
867 		iroot->cluster.nchains = i + 1;
868 
869 		/*
870 		 * If the PMP has no elements remaining we can destroy it.
871 		 * (this will transition management threads from frozen->exit).
872 		 */
873 		if (iroot->cluster.nchains == 0) {
874 			/*
875 			 * If this was the hmp's spmp, we need to clean
876 			 * a little more stuff out.
877 			 */
878 			if (hmp->spmp == pmp) {
879 				hmp->spmp = NULL;
880 				hmp->vchain.pmp = NULL;
881 				hmp->fchain.pmp = NULL;
882 			}
883 
884 			/*
885 			 * Free the pmp and restart the loop
886 			 */
887 			KKASSERT(TAILQ_EMPTY(&pmp->syncq));
888 			KKASSERT(TAILQ_EMPTY(&pmp->depq));
889 			hammer2_pfsfree(pmp);
890 			goto again;
891 		}
892 
893 		/*
894 		 * If elements still remain we need to set the REMASTER
895 		 * flag and unfreeze it.
896 		 */
897 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
898 			if (pmp->pfs_hmps[i] == NULL)
899 				continue;
900 			hammer2_thr_remaster(&pmp->sync_thrs[i]);
901 			hammer2_thr_unfreeze(&pmp->sync_thrs[i]);
902 			if (pmp->xop_groups) {
903 				for (j = 0; j < hammer2_xopgroups; ++j) {
904 					hammer2_thr_remaster(
905 						&pmp->xop_groups[j].thrs[i]);
906 					hammer2_thr_unfreeze(
907 						&pmp->xop_groups[j].thrs[i]);
908 				}
909 			}
910 		}
911 	}
912 }
913 
914 /*
915  * Mount or remount HAMMER2 fileystem from physical media
916  *
917  *	mountroot
918  *		mp		mount point structure
919  *		path		NULL
920  *		data		<unused>
921  *		cred		<unused>
922  *
923  *	mount
924  *		mp		mount point structure
925  *		path		path to mount point
926  *		data		pointer to argument structure in user space
927  *			volume	volume path (device@LABEL form)
928  *			hflags	user mount flags
929  *		cred		user credentials
930  *
931  * RETURNS:	0	Success
932  *		!0	error number
933  */
934 static
935 int
936 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
937 		  struct ucred *cred)
938 {
939 	struct hammer2_mount_info info;
940 	hammer2_pfs_t *pmp;
941 	hammer2_pfs_t *spmp;
942 	hammer2_dev_t *hmp;
943 	hammer2_dev_t *force_local;
944 	hammer2_key_t key_next;
945 	hammer2_key_t key_dummy;
946 	hammer2_key_t lhc;
947 	struct vnode *devvp;
948 	struct nlookupdata nd;
949 	hammer2_chain_t *parent;
950 	hammer2_chain_t *chain;
951 	const hammer2_inode_data_t *ripdata;
952 	hammer2_blockref_t bref;
953 	struct file *fp;
954 	char devstr[MNAMELEN];
955 	size_t size;
956 	size_t done;
957 	char *dev;
958 	char *label;
959 	int ronly = 1;
960 	int error;
961 	int i;
962 
963 	hmp = NULL;
964 	pmp = NULL;
965 	dev = NULL;
966 	label = NULL;
967 	devvp = NULL;
968 	bzero(&info, sizeof(info));
969 
970 	if (path) {
971 		/*
972 		 * Non-root mount or updating a mount
973 		 */
974 		error = copyin(data, &info, sizeof(info));
975 		if (error)
976 			return (error);
977 	}
978 
979 	if (mp->mnt_flag & MNT_UPDATE) {
980 		/*
981 		 * Update mount.  Note that pmp->iroot->cluster is
982 		 * an inode-embedded cluster and thus cannot be
983 		 * directly locked.
984 		 *
985 		 * XXX HAMMER2 needs to implement NFS export via
986 		 *     mountctl.
987 		 */
988 		hammer2_cluster_t *cluster;
989 
990 		pmp = MPTOPMP(mp);
991 		pmp->hflags = info.hflags;
992 		cluster = &pmp->iroot->cluster;
993 		for (i = 0; i < cluster->nchains; ++i) {
994 			if (cluster->array[i].chain == NULL)
995 				continue;
996 			hmp = cluster->array[i].chain->hmp;
997 			devvp = hmp->devvp;
998 			error = hammer2_remount(hmp, mp, path,
999 						devvp, cred);
1000 			if (error)
1001 				break;
1002 		}
1003 
1004 		return error;
1005 	}
1006 
1007 	if (path == NULL) {
1008 		/*
1009 		 * Root mount
1010 		 */
1011 		info.cluster_fd = -1;
1012 		ksnprintf(devstr, sizeof(devstr), "%s",
1013 			  mp->mnt_stat.f_mntfromname);
1014 		done = strlen(devstr) + 1;
1015 		kprintf("hammer2_mount: root devstr=\"%s\"\n", devstr);
1016 	} else {
1017 		error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
1018 		if (error)
1019 			return (error);
1020 		kprintf("hammer2_mount: devstr=\"%s\"\n", devstr);
1021 	}
1022 
1023 	/*
1024 	 * Extract device and label, automatically mount @BOOT, @ROOT, or @DATA
1025 	 * if no label specified, based on the partition id.  Error out if no
1026 	 * label or device (with partition id) is specified.  This is strictly
1027 	 * a convenience to match the default label created by newfs_hammer2,
1028 	 * our preference is that a label always be specified.
1029 	 *
1030 	 * NOTE: We allow 'mount @LABEL <blah>'... that is, a mount command
1031 	 *	 that does not specify a device, as long as some H2 label
1032 	 *	 has already been mounted from that device.  This makes
1033 	 *	 mounting snapshots a lot easier.
1034 	 */
1035 	dev = devstr;
1036 	label = strchr(devstr, '@');
1037 	if (label && ((label + 1) - dev) > done) {
1038 		kprintf("hammer2: mount: bad label %s/%zd\n", devstr, done);
1039 		return (EINVAL);
1040 	}
1041 	if (label == NULL || label[1] == 0) {
1042 		char slice;
1043 
1044 		if (label == NULL)
1045 			label = devstr + strlen(devstr);
1046 		else
1047 			*label = '\0';		/* clean up trailing @ */
1048 
1049 		slice = label[-1];
1050 		switch(slice) {
1051 		case 'a':
1052 			label = "BOOT";
1053 			break;
1054 		case 'd':
1055 			label = "ROOT";
1056 			break;
1057 		default:
1058 			label = "DATA";
1059 			break;
1060 		}
1061 	} else {
1062 		*label = '\0';
1063 		label++;
1064 	}
1065 
1066 	kprintf("hammer2_mount: dev=\"%s\" label=\"%s\" rdonly=%d\n",
1067 		dev, label, (mp->mnt_flag & MNT_RDONLY));
1068 
1069 	/*
1070 	 * HMP device mount
1071 	 *
1072 	 * If a path is specified and dev is not an empty string, lookup the
1073 	 * name and verify that it referes to a block device.
1074 	 *
1075 	 * If a path is specified and dev is an empty string we fall through
1076 	 * and locate the label in the hmp search.
1077 	 */
1078 	if (path && *dev != 0) {
1079 		error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW);
1080 		if (error == 0)
1081 			error = nlookup(&nd);
1082 		if (error == 0)
1083 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp);
1084 		nlookup_done(&nd);
1085 	} else if (path == NULL) {
1086 		/* root mount */
1087 		cdev_t cdev = kgetdiskbyname(dev);
1088 		error = bdevvp(cdev, &devvp);
1089 		if (error)
1090 			kprintf("hammer2: cannot find '%s'\n", dev);
1091 	} else {
1092 		/*
1093 		 * We will locate the hmp using the label in the hmp loop.
1094 		 */
1095 		error = 0;
1096 	}
1097 
1098 	/*
1099 	 * Make sure its a block device.  Do not check to see if it is
1100 	 * already mounted until we determine that its a fresh H2 device.
1101 	 */
1102 	if (error == 0 && devvp) {
1103 		vn_isdisk(devvp, &error);
1104 	}
1105 
1106 	/*
1107 	 * Determine if the device has already been mounted.  After this
1108 	 * check hmp will be non-NULL if we are doing the second or more
1109 	 * hammer2 mounts from the same device.
1110 	 */
1111 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1112 	if (devvp) {
1113 		/*
1114 		 * Match the device.  Due to the way devfs works,
1115 		 * we may not be able to directly match the vnode pointer,
1116 		 * so also check to see if the underlying device matches.
1117 		 */
1118 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1119 			if (hmp->devvp == devvp)
1120 				break;
1121 			if (devvp->v_rdev &&
1122 			    hmp->devvp->v_rdev == devvp->v_rdev) {
1123 				break;
1124 			}
1125 		}
1126 
1127 		/*
1128 		 * If no match this may be a fresh H2 mount, make sure
1129 		 * the device is not mounted on anything else.
1130 		 */
1131 		if (hmp == NULL)
1132 			error = vfs_mountedon(devvp);
1133 	} else if (error == 0) {
1134 		/*
1135 		 * Match the label to a pmp already probed.
1136 		 */
1137 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
1138 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
1139 				if (pmp->pfs_names[i] &&
1140 				    strcmp(pmp->pfs_names[i], label) == 0) {
1141 					hmp = pmp->pfs_hmps[i];
1142 					break;
1143 				}
1144 			}
1145 			if (hmp)
1146 				break;
1147 		}
1148 		if (hmp == NULL) {
1149 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1150 			kprintf("hammer2_mount: PFS label \"%s\" not found\n",
1151 				label);
1152 			return ENOENT;
1153 		}
1154 	}
1155 
1156 	/*
1157 	 * Open the device if this isn't a secondary mount and construct
1158 	 * the H2 device mount (hmp).
1159 	 */
1160 	if (hmp == NULL) {
1161 		hammer2_chain_t *schain;
1162 		hammer2_xid_t xid;
1163 		hammer2_xop_head_t xop;
1164 
1165 		if (error == 0 && vcount(devvp) > 0) {
1166 			kprintf("Primary device already has references\n");
1167 			error = EBUSY;
1168 		}
1169 
1170 		/*
1171 		 * Now open the device
1172 		 */
1173 		if (error == 0) {
1174 			ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
1175 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1176 			error = vinvalbuf(devvp, V_SAVE, 0, 0);
1177 			if (error == 0) {
1178 				error = VOP_OPEN(devvp,
1179 					     (ronly ? FREAD : FREAD | FWRITE),
1180 					     FSCRED, NULL);
1181 			}
1182 			vn_unlock(devvp);
1183 		}
1184 		if (error && devvp) {
1185 			vrele(devvp);
1186 			devvp = NULL;
1187 		}
1188 		if (error) {
1189 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1190 			return error;
1191 		}
1192 		hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
1193 		ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", dev);
1194 		hmp->ronly = ronly;
1195 		hmp->devvp = devvp;
1196 		hmp->hflags = info.hflags & HMNT2_DEVFLAGS;
1197 		kmalloc_create(&hmp->mchain, "HAMMER2-chains");
1198 		TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
1199 		RB_INIT(&hmp->iotree);
1200 		spin_init(&hmp->io_spin, "h2mount_io");
1201 		spin_init(&hmp->list_spin, "h2mount_list");
1202 
1203 		lockinit(&hmp->vollk, "h2vol", 0, 0);
1204 		lockinit(&hmp->bulklk, "h2bulk", 0, 0);
1205 		lockinit(&hmp->bflock, "h2bflk", 0, 0);
1206 
1207 		/*
1208 		 * vchain setup. vchain.data is embedded.
1209 		 * vchain.refs is initialized and will never drop to 0.
1210 		 *
1211 		 * NOTE! voldata is not yet loaded.
1212 		 */
1213 		hmp->vchain.hmp = hmp;
1214 		hmp->vchain.refs = 1;
1215 		hmp->vchain.data = (void *)&hmp->voldata;
1216 		hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
1217 		hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1218 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1219 		hammer2_chain_core_init(&hmp->vchain);
1220 
1221 		/*
1222 		 * fchain setup.  fchain.data is embedded.
1223 		 * fchain.refs is initialized and will never drop to 0.
1224 		 *
1225 		 * The data is not used but needs to be initialized to
1226 		 * pass assertion muster.  We use this chain primarily
1227 		 * as a placeholder for the freemap's top-level radix tree
1228 		 * so it does not interfere with the volume's topology
1229 		 * radix tree.
1230 		 */
1231 		hmp->fchain.hmp = hmp;
1232 		hmp->fchain.refs = 1;
1233 		hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
1234 		hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
1235 		hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1236 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1237 		hmp->fchain.bref.methods =
1238 			HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
1239 			HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
1240 		hammer2_chain_core_init(&hmp->fchain);
1241 
1242 		/*
1243 		 * Install the volume header and initialize fields from
1244 		 * voldata.
1245 		 */
1246 		error = hammer2_install_volume_header(hmp);
1247 		if (error) {
1248 			hammer2_unmount_helper(mp, NULL, hmp);
1249 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1250 			hammer2_vfs_unmount(mp, MNT_FORCE);
1251 			return error;
1252 		}
1253 
1254 		/*
1255 		 * Really important to get these right or the flush and
1256 		 * teardown code will get confused.
1257 		 */
1258 		hmp->spmp = hammer2_pfsalloc(NULL, NULL, 0, NULL);
1259 		spmp = hmp->spmp;
1260 		spmp->pfs_hmps[0] = hmp;
1261 
1262 		/*
1263 		 * Dummy-up vchain and fchain's modify_tid.  mirror_tid
1264 		 * is inherited from the volume header.
1265 		 */
1266 		xid = 0;
1267 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1268 		hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
1269 		hmp->vchain.pmp = spmp;
1270 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1271 		hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
1272 		hmp->fchain.pmp = spmp;
1273 
1274 		/*
1275 		 * First locate the super-root inode, which is key 0
1276 		 * relative to the volume header's blockset.
1277 		 *
1278 		 * Then locate the root inode by scanning the directory keyspace
1279 		 * represented by the label.
1280 		 */
1281 		parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1282 		schain = hammer2_chain_lookup(&parent, &key_dummy,
1283 				      HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
1284 				      &error, 0);
1285 		hammer2_chain_lookup_done(parent);
1286 		if (schain == NULL) {
1287 			kprintf("hammer2_mount: invalid super-root\n");
1288 			hammer2_unmount_helper(mp, NULL, hmp);
1289 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1290 			hammer2_vfs_unmount(mp, MNT_FORCE);
1291 			return EINVAL;
1292 		}
1293 		if (schain->error) {
1294 			kprintf("hammer2_mount: error %s reading super-root\n",
1295 				hammer2_error_str(schain->error));
1296 			hammer2_chain_unlock(schain);
1297 			hammer2_chain_drop(schain);
1298 			schain = NULL;
1299 			hammer2_unmount_helper(mp, NULL, hmp);
1300 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1301 			hammer2_vfs_unmount(mp, MNT_FORCE);
1302 			return EINVAL;
1303 		}
1304 
1305 		/*
1306 		 * The super-root always uses an inode_tid of 1 when
1307 		 * creating PFSs.
1308 		 */
1309 		spmp->inode_tid = 1;
1310 		spmp->modify_tid = schain->bref.modify_tid + 1;
1311 
1312 		/*
1313 		 * Sanity-check schain's pmp and finish initialization.
1314 		 * Any chain belonging to the super-root topology should
1315 		 * have a NULL pmp (not even set to spmp).
1316 		 */
1317 		ripdata = &schain->data->ipdata;
1318 		KKASSERT(schain->pmp == NULL);
1319 		spmp->pfs_clid = ripdata->meta.pfs_clid;
1320 
1321 		/*
1322 		 * Replace the dummy spmp->iroot with a real one.  It's
1323 		 * easier to just do a wholesale replacement than to try
1324 		 * to update the chain and fixup the iroot fields.
1325 		 *
1326 		 * The returned inode is locked with the supplied cluster.
1327 		 */
1328 		hammer2_dummy_xop_from_chain(&xop, schain);
1329 		hammer2_inode_drop(spmp->iroot);
1330 		spmp->iroot = NULL;
1331 		spmp->iroot = hammer2_inode_get(spmp, &xop, -1, -1);
1332 		spmp->spmp_hmp = hmp;
1333 		spmp->pfs_types[0] = ripdata->meta.pfs_type;
1334 		spmp->pfs_hmps[0] = hmp;
1335 		hammer2_inode_ref(spmp->iroot);
1336 		hammer2_inode_unlock(spmp->iroot);
1337 		hammer2_cluster_unlock(&xop.cluster);
1338 		hammer2_chain_drop(schain);
1339 		/* do not call hammer2_cluster_drop() on an embedded cluster */
1340 		schain = NULL;	/* now invalid */
1341 		/* leave spmp->iroot with one ref */
1342 
1343 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
1344 			error = hammer2_recovery(hmp);
1345 			if (error == 0)
1346 				error |= hammer2_fixup_pfses(hmp);
1347 			/* XXX do something with error */
1348 		}
1349 		hammer2_update_pmps(hmp);
1350 		hammer2_iocom_init(hmp);
1351 		hammer2_bulkfree_init(hmp);
1352 
1353 		/*
1354 		 * Ref the cluster management messaging descriptor.  The mount
1355 		 * program deals with the other end of the communications pipe.
1356 		 *
1357 		 * Root mounts typically do not supply one.
1358 		 */
1359 		if (info.cluster_fd >= 0) {
1360 			fp = holdfp(curthread, info.cluster_fd, -1);
1361 			if (fp) {
1362 				hammer2_cluster_reconnect(hmp, fp);
1363 			} else {
1364 				kprintf("hammer2_mount: bad cluster_fd!\n");
1365 			}
1366 		}
1367 	} else {
1368 		spmp = hmp->spmp;
1369 		if (info.hflags & HMNT2_DEVFLAGS) {
1370 			kprintf("hammer2: Warning: mount flags pertaining "
1371 				"to the whole device may only be specified "
1372 				"on the first mount of the device: %08x\n",
1373 				info.hflags & HMNT2_DEVFLAGS);
1374 		}
1375 	}
1376 
1377 	/*
1378 	 * Force local mount (disassociate all PFSs from their clusters).
1379 	 * Used primarily for debugging.
1380 	 */
1381 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1382 
1383 	/*
1384 	 * Lookup the mount point under the media-localized super-root.
1385 	 * Scanning hammer2_pfslist doesn't help us because it represents
1386 	 * PFS cluster ids which can aggregate several named PFSs together.
1387 	 *
1388 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1389 	 * up later on.
1390 	 */
1391 	hammer2_inode_lock(spmp->iroot, 0);
1392 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1393 	lhc = hammer2_dirhash(label, strlen(label));
1394 	chain = hammer2_chain_lookup(&parent, &key_next,
1395 				     lhc, lhc + HAMMER2_DIRHASH_LOMASK,
1396 				     &error, 0);
1397 	while (chain) {
1398 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
1399 		    strcmp(label, chain->data->ipdata.filename) == 0) {
1400 			break;
1401 		}
1402 		chain = hammer2_chain_next(&parent, chain, &key_next,
1403 					    key_next,
1404 					    lhc + HAMMER2_DIRHASH_LOMASK,
1405 					    &error, 0);
1406 	}
1407 	if (parent) {
1408 		hammer2_chain_unlock(parent);
1409 		hammer2_chain_drop(parent);
1410 	}
1411 	hammer2_inode_unlock(spmp->iroot);
1412 
1413 	/*
1414 	 * PFS could not be found?
1415 	 */
1416 	if (chain == NULL) {
1417 		hammer2_unmount_helper(mp, NULL, hmp);
1418 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1419 		hammer2_vfs_unmount(mp, MNT_FORCE);
1420 
1421 		if (error) {
1422 			kprintf("hammer2_mount: PFS label I/O error\n");
1423 			return EINVAL;
1424 		} else {
1425 			kprintf("hammer2_mount: PFS label \"%s\" not found\n",
1426 				label);
1427 			return ENOENT;
1428 		}
1429 	}
1430 
1431 	/*
1432 	 * Acquire the pmp structure (it should have already been allocated
1433 	 * via hammer2_update_pmps() so do not pass cluster in to add to
1434 	 * available chains).
1435 	 *
1436 	 * Check if the cluster has already been mounted.  A cluster can
1437 	 * only be mounted once, use null mounts to mount additional copies.
1438 	 */
1439 	if (chain->error) {
1440 		kprintf("hammer2_mount: PFS label I/O error\n");
1441 	} else {
1442 		ripdata = &chain->data->ipdata;
1443 		bref = chain->bref;
1444 		pmp = hammer2_pfsalloc(NULL, ripdata,
1445 				       bref.modify_tid, force_local);
1446 	}
1447 	hammer2_chain_unlock(chain);
1448 	hammer2_chain_drop(chain);
1449 
1450 	/*
1451 	 * Finish the mount
1452 	 */
1453         kprintf("hammer2_mount hmp=%p pmp=%p\n", hmp, pmp);
1454 
1455 	if (pmp->mp) {
1456 		kprintf("hammer2_mount: PFS already mounted!\n");
1457 		hammer2_unmount_helper(mp, NULL, hmp);
1458 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1459 		hammer2_vfs_unmount(mp, MNT_FORCE);
1460 
1461 		return EBUSY;
1462 	}
1463 
1464 	pmp->hflags = info.hflags;
1465         mp->mnt_flag |= MNT_LOCAL;
1466         mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;   /* all entry pts are SMP */
1467         mp->mnt_kern_flag |= MNTK_THR_SYNC;     /* new vsyncscan semantics */
1468 
1469         /*
1470          * required mount structure initializations
1471          */
1472         mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
1473         mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
1474 
1475         mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
1476         mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1477 
1478         /*
1479          * Optional fields
1480          */
1481         mp->mnt_iosize_max = MAXPHYS;
1482 
1483 	/*
1484 	 * Connect up mount pointers.
1485 	 */
1486 	hammer2_mount_helper(mp, pmp);
1487 	hmp->devvp->v_rdev->si_mountpoint = mp;
1488 
1489         lockmgr(&hammer2_mntlk, LK_RELEASE);
1490 
1491 	/*
1492 	 * Finish setup
1493 	 */
1494 	vfs_getnewfsid(mp);
1495 	vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
1496 	vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
1497 	vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
1498 
1499 	if (path) {
1500 		copyinstr(info.volume, mp->mnt_stat.f_mntfromname,
1501 			  MNAMELEN - 1, &size);
1502 		bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
1503 	} /* else root mount, already in there */
1504 
1505 	bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
1506 	if (path) {
1507 		copyinstr(path, mp->mnt_stat.f_mntonname,
1508 			  sizeof(mp->mnt_stat.f_mntonname) - 1,
1509 			  &size);
1510 	} else {
1511 		/* root mount */
1512 		mp->mnt_stat.f_mntonname[0] = '/';
1513 	}
1514 
1515 	/*
1516 	 * Initial statfs to prime mnt_stat.
1517 	 */
1518 	hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
1519 
1520 	return 0;
1521 }
1522 
1523 /*
1524  * Scan PFSs under the super-root and create hammer2_pfs structures.
1525  */
1526 static
1527 void
1528 hammer2_update_pmps(hammer2_dev_t *hmp)
1529 {
1530 	const hammer2_inode_data_t *ripdata;
1531 	hammer2_chain_t *parent;
1532 	hammer2_chain_t *chain;
1533 	hammer2_blockref_t bref;
1534 	hammer2_dev_t *force_local;
1535 	hammer2_pfs_t *spmp;
1536 	hammer2_pfs_t *pmp;
1537 	hammer2_key_t key_next;
1538 	int error;
1539 
1540 	/*
1541 	 * Force local mount (disassociate all PFSs from their clusters).
1542 	 * Used primarily for debugging.
1543 	 */
1544 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1545 
1546 	/*
1547 	 * Lookup mount point under the media-localized super-root.
1548 	 *
1549 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1550 	 * up later on.
1551 	 */
1552 	spmp = hmp->spmp;
1553 	hammer2_inode_lock(spmp->iroot, 0);
1554 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1555 	chain = hammer2_chain_lookup(&parent, &key_next,
1556 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
1557 					 &error, 0);
1558 	while (chain) {
1559 		if (chain->error) {
1560 			kprintf("I/O error scanning PFS labels\n");
1561 		} else if (chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
1562 			kprintf("Non inode chain type %d under super-root\n",
1563 				chain->bref.type);
1564 		} else {
1565 			ripdata = &chain->data->ipdata;
1566 			bref = chain->bref;
1567 			pmp = hammer2_pfsalloc(chain, ripdata,
1568 					       bref.modify_tid, force_local);
1569 		}
1570 		chain = hammer2_chain_next(&parent, chain, &key_next,
1571 					   key_next, HAMMER2_KEY_MAX,
1572 					   &error, 0);
1573 	}
1574 	if (parent) {
1575 		hammer2_chain_unlock(parent);
1576 		hammer2_chain_drop(parent);
1577 	}
1578 	hammer2_inode_unlock(spmp->iroot);
1579 }
1580 
1581 static
1582 int
1583 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path __unused,
1584 		struct vnode *devvp, struct ucred *cred)
1585 {
1586 	int error;
1587 
1588 	if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) {
1589 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1590 		VOP_OPEN(devvp, FREAD | FWRITE, FSCRED, NULL);
1591 		vn_unlock(devvp);
1592 		error = hammer2_recovery(hmp);
1593 		if (error == 0)
1594 			error |= hammer2_fixup_pfses(hmp);
1595 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1596 		if (error == 0) {
1597 			VOP_CLOSE(devvp, FREAD, NULL);
1598 			hmp->ronly = 0;
1599 		} else {
1600 			VOP_CLOSE(devvp, FREAD | FWRITE, NULL);
1601 		}
1602 		vn_unlock(devvp);
1603 	} else {
1604 		error = 0;
1605 	}
1606 	return error;
1607 }
1608 
1609 static
1610 int
1611 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1612 {
1613 	hammer2_pfs_t *pmp;
1614 	int flags;
1615 	int error = 0;
1616 
1617 	pmp = MPTOPMP(mp);
1618 
1619 	if (pmp == NULL)
1620 		return(0);
1621 
1622 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1623 
1624 	/*
1625 	 * If mount initialization proceeded far enough we must flush
1626 	 * its vnodes and sync the underlying mount points.  Three syncs
1627 	 * are required to fully flush the filesystem (freemap updates lag
1628 	 * by one flush, and one extra for safety).
1629 	 */
1630 	if (mntflags & MNT_FORCE)
1631 		flags = FORCECLOSE;
1632 	else
1633 		flags = 0;
1634 	if (pmp->iroot) {
1635 		error = vflush(mp, 0, flags);
1636 		if (error)
1637 			goto failed;
1638 		hammer2_vfs_sync(mp, MNT_WAIT);
1639 		hammer2_vfs_sync(mp, MNT_WAIT);
1640 		hammer2_vfs_sync(mp, MNT_WAIT);
1641 	}
1642 
1643 	/*
1644 	 * Cleanup the frontend support XOPS threads
1645 	 */
1646 	hammer2_xop_helper_cleanup(pmp);
1647 
1648 	if (pmp->mp)
1649 		hammer2_unmount_helper(mp, pmp, NULL);
1650 
1651 	error = 0;
1652 failed:
1653 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1654 
1655 	return (error);
1656 }
1657 
1658 /*
1659  * Mount helper, hook the system mount into our PFS.
1660  * The mount lock is held.
1661  *
1662  * We must bump the mount_count on related devices for any
1663  * mounted PFSs.
1664  */
1665 static
1666 void
1667 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp)
1668 {
1669 	hammer2_cluster_t *cluster;
1670 	hammer2_chain_t *rchain;
1671 	int i;
1672 
1673         mp->mnt_data = (qaddr_t)pmp;
1674 	pmp->mp = mp;
1675 
1676 	/*
1677 	 * After pmp->mp is set we have to adjust hmp->mount_count.
1678 	 */
1679 	cluster = &pmp->iroot->cluster;
1680 	for (i = 0; i < cluster->nchains; ++i) {
1681 		rchain = cluster->array[i].chain;
1682 		if (rchain == NULL)
1683 			continue;
1684 		++rchain->hmp->mount_count;
1685 	}
1686 
1687 	/*
1688 	 * Create missing Xop threads
1689 	 */
1690 	hammer2_xop_helper_create(pmp);
1691 }
1692 
1693 /*
1694  * Mount helper, unhook the system mount from our PFS.
1695  * The mount lock is held.
1696  *
1697  * If hmp is supplied a mount responsible for being the first to open
1698  * the block device failed and the block device and all PFSs using the
1699  * block device must be cleaned up.
1700  *
1701  * If pmp is supplied multiple devices might be backing the PFS and each
1702  * must be disconnected.  This might not be the last PFS using some of the
1703  * underlying devices.  Also, we have to adjust our hmp->mount_count
1704  * accounting for the devices backing the pmp which is now undergoing an
1705  * unmount.
1706  */
1707 static
1708 void
1709 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp)
1710 {
1711 	hammer2_cluster_t *cluster;
1712 	hammer2_chain_t *rchain;
1713 	struct vnode *devvp;
1714 	int dumpcnt;
1715 	int ronly;
1716 	int i;
1717 
1718 	/*
1719 	 * If no device supplied this is a high-level unmount and we have to
1720 	 * to disconnect the mount, adjust mount_count, and locate devices
1721 	 * that might now have no mounts.
1722 	 */
1723 	if (pmp) {
1724 		KKASSERT(hmp == NULL);
1725 		KKASSERT((void *)(intptr_t)mp->mnt_data == pmp);
1726 		pmp->mp = NULL;
1727 		mp->mnt_data = NULL;
1728 
1729 		/*
1730 		 * After pmp->mp is cleared we have to account for
1731 		 * mount_count.
1732 		 */
1733 		cluster = &pmp->iroot->cluster;
1734 		for (i = 0; i < cluster->nchains; ++i) {
1735 			rchain = cluster->array[i].chain;
1736 			if (rchain == NULL)
1737 				continue;
1738 			--rchain->hmp->mount_count;
1739 			/* scrapping hmp now may invalidate the pmp */
1740 		}
1741 again:
1742 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1743 			if (hmp->mount_count == 0) {
1744 				hammer2_unmount_helper(NULL, NULL, hmp);
1745 				goto again;
1746 			}
1747 		}
1748 		return;
1749 	}
1750 
1751 	/*
1752 	 * Try to terminate the block device.  We can't terminate it if
1753 	 * there are still PFSs referencing it.
1754 	 */
1755 	if (hmp->mount_count)
1756 		return;
1757 
1758 	/*
1759 	 * Decomission the network before we start messing with the
1760 	 * device and PFS.
1761 	 */
1762 	hammer2_iocom_uninit(hmp);
1763 
1764 	hammer2_bulkfree_uninit(hmp);
1765 	hammer2_pfsfree_scan(hmp, 0);
1766 
1767 	/*
1768 	 * Cycle the volume data lock as a safety (probably not needed any
1769 	 * more).  To ensure everything is out we need to flush at least
1770 	 * three times.  (1) The running of the sideq can dirty the
1771 	 * filesystem, (2) A normal flush can dirty the freemap, and
1772 	 * (3) ensure that the freemap is fully synchronized.
1773 	 *
1774 	 * The next mount's recovery scan can clean everything up but we want
1775 	 * to leave the filesystem in a 100% clean state on a normal unmount.
1776 	 */
1777 #if 0
1778 	hammer2_voldata_lock(hmp);
1779 	hammer2_voldata_unlock(hmp);
1780 #endif
1781 
1782 	/*
1783 	 * Flush whatever is left.  Unmounted but modified PFS's might still
1784 	 * have some dirty chains on them.
1785 	 */
1786 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1787 	hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1788 
1789 	if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1790 		hammer2_voldata_modify(hmp);
1791 		hammer2_flush(&hmp->fchain, HAMMER2_FLUSH_TOP |
1792 					    HAMMER2_FLUSH_ALL);
1793 	}
1794 	hammer2_chain_unlock(&hmp->fchain);
1795 
1796 	if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1797 		hammer2_flush(&hmp->vchain, HAMMER2_FLUSH_TOP |
1798 					    HAMMER2_FLUSH_ALL);
1799 	}
1800 	hammer2_chain_unlock(&hmp->vchain);
1801 
1802 	if ((hmp->vchain.flags | hmp->fchain.flags) &
1803 	    HAMMER2_CHAIN_FLUSH_MASK) {
1804 		kprintf("hammer2_unmount: chains left over after final sync\n");
1805 		kprintf("    vchain %08x\n", hmp->vchain.flags);
1806 		kprintf("    fchain %08x\n", hmp->fchain.flags);
1807 
1808 		if (hammer2_debug & 0x0010)
1809 			Debugger("entered debugger");
1810 	}
1811 
1812 	hammer2_pfsfree_scan(hmp, 1);
1813 
1814 	KKASSERT(hmp->spmp == NULL);
1815 
1816 	/*
1817 	 * Finish up with the device vnode
1818 	 */
1819 	if ((devvp = hmp->devvp) != NULL) {
1820 		ronly = hmp->ronly;
1821 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1822 		kprintf("hammer2_unmount(A): devvp %s rbdirty %p ronly=%d\n",
1823 			hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree),
1824 			ronly);
1825 		vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0);
1826 		kprintf("hammer2_unmount(B): devvp %s rbdirty %p\n",
1827 			hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree));
1828 		devvp->v_rdev->si_mountpoint = NULL;
1829 		hmp->devvp = NULL;
1830 		VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL);
1831 		vn_unlock(devvp);
1832 		vrele(devvp);
1833 		devvp = NULL;
1834 	}
1835 
1836 	/*
1837 	 * Clear vchain/fchain flags that might prevent final cleanup
1838 	 * of these chains.
1839 	 */
1840 	if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1841 		atomic_add_long(&hammer2_count_modified_chains, -1);
1842 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1843 		hammer2_pfs_memory_wakeup(hmp->vchain.pmp, -1);
1844 	}
1845 	if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1846 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_UPDATE);
1847 	}
1848 
1849 	if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1850 		atomic_add_long(&hammer2_count_modified_chains, -1);
1851 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_MODIFIED);
1852 		hammer2_pfs_memory_wakeup(hmp->fchain.pmp, -1);
1853 	}
1854 	if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1855 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_UPDATE);
1856 	}
1857 
1858 	/*
1859 	 * Final drop of embedded freemap root chain to
1860 	 * clean up fchain.core (fchain structure is not
1861 	 * flagged ALLOCATED so it is cleaned out and then
1862 	 * left to rot).
1863 	 */
1864 	hammer2_chain_drop(&hmp->fchain);
1865 
1866 	/*
1867 	 * Final drop of embedded volume root chain to clean
1868 	 * up vchain.core (vchain structure is not flagged
1869 	 * ALLOCATED so it is cleaned out and then left to
1870 	 * rot).
1871 	 */
1872 	dumpcnt = 50;
1873 	hammer2_dump_chain(&hmp->vchain, 0, 0, &dumpcnt, 'v', (u_int)-1);
1874 	dumpcnt = 50;
1875 	hammer2_dump_chain(&hmp->fchain, 0, 0, &dumpcnt, 'f', (u_int)-1);
1876 
1877 	hammer2_chain_drop(&hmp->vchain);
1878 
1879 	hammer2_io_cleanup(hmp, &hmp->iotree);
1880 	if (hmp->iofree_count) {
1881 		kprintf("io_cleanup: %d I/O's left hanging\n",
1882 			hmp->iofree_count);
1883 	}
1884 
1885 	TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1886 	kmalloc_destroy(&hmp->mchain);
1887 	kfree(hmp, M_HAMMER2);
1888 }
1889 
1890 int
1891 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1892 		 ino_t ino, struct vnode **vpp)
1893 {
1894 	hammer2_xop_lookup_t *xop;
1895 	hammer2_pfs_t *pmp;
1896 	hammer2_inode_t *ip;
1897 	hammer2_tid_t inum;
1898 	int error;
1899 
1900 	inum = (hammer2_tid_t)ino & HAMMER2_DIRHASH_USERMSK;
1901 
1902 	error = 0;
1903 	pmp = MPTOPMP(mp);
1904 
1905 	/*
1906 	 * Easy if we already have it cached
1907 	 */
1908 	ip = hammer2_inode_lookup(pmp, inum);
1909 	if (ip) {
1910 		hammer2_inode_lock(ip, HAMMER2_RESOLVE_SHARED);
1911 		*vpp = hammer2_igetv(ip, &error);
1912 		hammer2_inode_unlock(ip);
1913 		hammer2_inode_drop(ip);		/* from lookup */
1914 
1915 		return error;
1916 	}
1917 
1918 	/*
1919 	 * Otherwise we have to find the inode
1920 	 */
1921 	xop = hammer2_xop_alloc(pmp->iroot, 0);
1922 	xop->lhc = inum;
1923 	hammer2_xop_start(&xop->head, &hammer2_lookup_desc);
1924 	error = hammer2_xop_collect(&xop->head, 0);
1925 
1926 	if (error == 0)
1927 		ip = hammer2_inode_get(pmp, &xop->head, -1, -1);
1928 	hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1929 
1930 	if (ip) {
1931 		*vpp = hammer2_igetv(ip, &error);
1932 		hammer2_inode_unlock(ip);
1933 	} else {
1934 		*vpp = NULL;
1935 		error = ENOENT;
1936 	}
1937 	return (error);
1938 }
1939 
1940 static
1941 int
1942 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1943 {
1944 	hammer2_pfs_t *pmp;
1945 	struct vnode *vp;
1946 	int error;
1947 
1948 	pmp = MPTOPMP(mp);
1949 	if (pmp->iroot == NULL) {
1950 		kprintf("hammer2 (%s): no root inode\n",
1951 			mp->mnt_stat.f_mntfromname);
1952 		*vpp = NULL;
1953 		return EINVAL;
1954 	}
1955 
1956 	error = 0;
1957 	hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1958 
1959 	while (pmp->inode_tid == 0) {
1960 		hammer2_xop_ipcluster_t *xop;
1961 		const hammer2_inode_meta_t *meta;
1962 
1963 		xop = hammer2_xop_alloc(pmp->iroot, HAMMER2_XOP_MODIFYING);
1964 		hammer2_xop_start(&xop->head, &hammer2_ipcluster_desc);
1965 		error = hammer2_xop_collect(&xop->head, 0);
1966 
1967 		if (error == 0) {
1968 			meta = &hammer2_xop_gdata(&xop->head)->ipdata.meta;
1969 			pmp->iroot->meta = *meta;
1970 			pmp->inode_tid = meta->pfs_inum + 1;
1971 			hammer2_xop_pdata(&xop->head);
1972 			/* meta invalid */
1973 
1974 			if (pmp->inode_tid < HAMMER2_INODE_START)
1975 				pmp->inode_tid = HAMMER2_INODE_START;
1976 			pmp->modify_tid =
1977 				xop->head.cluster.focus->bref.modify_tid + 1;
1978 #if 0
1979 			kprintf("PFS: Starting inode %jd\n",
1980 				(intmax_t)pmp->inode_tid);
1981 			kprintf("PMP focus good set nextino=%ld mod=%016jx\n",
1982 				pmp->inode_tid, pmp->modify_tid);
1983 #endif
1984 			wakeup(&pmp->iroot);
1985 
1986 			hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1987 
1988 			/*
1989 			 * Prime the mount info.
1990 			 */
1991 			hammer2_vfs_statfs(mp, &mp->mnt_stat, NULL);
1992 			break;
1993 		}
1994 
1995 		/*
1996 		 * Loop, try again
1997 		 */
1998 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1999 		hammer2_inode_unlock(pmp->iroot);
2000 		error = tsleep(&pmp->iroot, PCATCH, "h2root", hz);
2001 		hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
2002 		if (error == EINTR)
2003 			break;
2004 	}
2005 
2006 	if (error) {
2007 		hammer2_inode_unlock(pmp->iroot);
2008 		*vpp = NULL;
2009 	} else {
2010 		vp = hammer2_igetv(pmp->iroot, &error);
2011 		hammer2_inode_unlock(pmp->iroot);
2012 		*vpp = vp;
2013 	}
2014 
2015 	return (error);
2016 }
2017 
2018 /*
2019  * Filesystem status
2020  *
2021  * XXX incorporate ipdata->meta.inode_quota and data_quota
2022  */
2023 static
2024 int
2025 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
2026 {
2027 	hammer2_pfs_t *pmp;
2028 	hammer2_dev_t *hmp;
2029 	hammer2_blockref_t bref;
2030 	struct statfs tmp;
2031 	int i;
2032 
2033 	/*
2034 	 * NOTE: iroot might not have validated the cluster yet.
2035 	 */
2036 	pmp = MPTOPMP(mp);
2037 
2038 	bzero(&tmp, sizeof(tmp));
2039 
2040 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2041 		hmp = pmp->pfs_hmps[i];
2042 		if (hmp == NULL)
2043 			continue;
2044 		if (pmp->iroot->cluster.array[i].chain)
2045 			bref = pmp->iroot->cluster.array[i].chain->bref;
2046 		else
2047 			bzero(&bref, sizeof(bref));
2048 
2049 		tmp.f_files = bref.embed.stats.inode_count;
2050 		tmp.f_ffree = 0;
2051 		tmp.f_blocks = hmp->voldata.allocator_size /
2052 			       mp->mnt_vstat.f_bsize;
2053 		tmp.f_bfree = hmp->voldata.allocator_free /
2054 			      mp->mnt_vstat.f_bsize;
2055 		tmp.f_bavail = tmp.f_bfree;
2056 
2057 		if (cred && cred->cr_uid != 0) {
2058 			uint64_t adj;
2059 
2060 			/* 5% */
2061 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2062 			tmp.f_blocks -= adj;
2063 			tmp.f_bfree -= adj;
2064 			tmp.f_bavail -= adj;
2065 		}
2066 
2067 		mp->mnt_stat.f_blocks = tmp.f_blocks;
2068 		mp->mnt_stat.f_bfree = tmp.f_bfree;
2069 		mp->mnt_stat.f_bavail = tmp.f_bavail;
2070 		mp->mnt_stat.f_files = tmp.f_files;
2071 		mp->mnt_stat.f_ffree = tmp.f_ffree;
2072 
2073 		*sbp = mp->mnt_stat;
2074 	}
2075 	return (0);
2076 }
2077 
2078 static
2079 int
2080 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
2081 {
2082 	hammer2_pfs_t *pmp;
2083 	hammer2_dev_t *hmp;
2084 	hammer2_blockref_t bref;
2085 	struct statvfs tmp;
2086 	int i;
2087 
2088 	/*
2089 	 * NOTE: iroot might not have validated the cluster yet.
2090 	 */
2091 	pmp = MPTOPMP(mp);
2092 	bzero(&tmp, sizeof(tmp));
2093 
2094 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2095 		hmp = pmp->pfs_hmps[i];
2096 		if (hmp == NULL)
2097 			continue;
2098 		if (pmp->iroot->cluster.array[i].chain)
2099 			bref = pmp->iroot->cluster.array[i].chain->bref;
2100 		else
2101 			bzero(&bref, sizeof(bref));
2102 
2103 		tmp.f_files = bref.embed.stats.inode_count;
2104 		tmp.f_ffree = 0;
2105 		tmp.f_blocks = hmp->voldata.allocator_size /
2106 			       mp->mnt_vstat.f_bsize;
2107 		tmp.f_bfree = hmp->voldata.allocator_free /
2108 			      mp->mnt_vstat.f_bsize;
2109 		tmp.f_bavail = tmp.f_bfree;
2110 
2111 		if (cred && cred->cr_uid != 0) {
2112 			uint64_t adj;
2113 
2114 			/* 5% */
2115 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2116 			tmp.f_blocks -= adj;
2117 			tmp.f_bfree -= adj;
2118 			tmp.f_bavail -= adj;
2119 		}
2120 
2121 		mp->mnt_vstat.f_blocks = tmp.f_blocks;
2122 		mp->mnt_vstat.f_bfree = tmp.f_bfree;
2123 		mp->mnt_vstat.f_bavail = tmp.f_bavail;
2124 		mp->mnt_vstat.f_files = tmp.f_files;
2125 		mp->mnt_vstat.f_ffree = tmp.f_ffree;
2126 
2127 		*sbp = mp->mnt_vstat;
2128 	}
2129 	return (0);
2130 }
2131 
2132 /*
2133  * Mount-time recovery (RW mounts)
2134  *
2135  * Updates to the free block table are allowed to lag flushes by one
2136  * transaction.  In case of a crash, then on a fresh mount we must do an
2137  * incremental scan of the last committed transaction id and make sure that
2138  * all related blocks have been marked allocated.
2139  */
2140 struct hammer2_recovery_elm {
2141 	TAILQ_ENTRY(hammer2_recovery_elm) entry;
2142 	hammer2_chain_t *chain;
2143 	hammer2_tid_t sync_tid;
2144 };
2145 
2146 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
2147 
2148 struct hammer2_recovery_info {
2149 	struct hammer2_recovery_list list;
2150 	hammer2_tid_t	mtid;
2151 	int	depth;
2152 };
2153 
2154 static int hammer2_recovery_scan(hammer2_dev_t *hmp,
2155 			hammer2_chain_t *parent,
2156 			struct hammer2_recovery_info *info,
2157 			hammer2_tid_t sync_tid);
2158 
2159 #define HAMMER2_RECOVERY_MAXDEPTH	10
2160 
2161 static
2162 int
2163 hammer2_recovery(hammer2_dev_t *hmp)
2164 {
2165 	struct hammer2_recovery_info info;
2166 	struct hammer2_recovery_elm *elm;
2167 	hammer2_chain_t *parent;
2168 	hammer2_tid_t sync_tid;
2169 	hammer2_tid_t mirror_tid;
2170 	int error;
2171 
2172 	hammer2_trans_init(hmp->spmp, 0);
2173 
2174 	sync_tid = hmp->voldata.freemap_tid;
2175 	mirror_tid = hmp->voldata.mirror_tid;
2176 
2177 	kprintf("hammer2_mount \"%s\": ", hmp->devrepname);
2178 	if (sync_tid >= mirror_tid) {
2179 		kprintf("no recovery needed\n");
2180 	} else {
2181 		kprintf("freemap recovery %016jx-%016jx\n",
2182 			sync_tid + 1, mirror_tid);
2183 	}
2184 
2185 	TAILQ_INIT(&info.list);
2186 	info.depth = 0;
2187 	parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
2188 	error = hammer2_recovery_scan(hmp, parent, &info, sync_tid);
2189 	hammer2_chain_lookup_done(parent);
2190 
2191 	while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
2192 		TAILQ_REMOVE(&info.list, elm, entry);
2193 		parent = elm->chain;
2194 		sync_tid = elm->sync_tid;
2195 		kfree(elm, M_HAMMER2);
2196 
2197 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2198 		error |= hammer2_recovery_scan(hmp, parent, &info,
2199 					      hmp->voldata.freemap_tid);
2200 		hammer2_chain_unlock(parent);
2201 		hammer2_chain_drop(parent);	/* drop elm->chain ref */
2202 	}
2203 
2204 	hammer2_trans_done(hmp->spmp, 0);
2205 
2206 	return error;
2207 }
2208 
2209 static
2210 int
2211 hammer2_recovery_scan(hammer2_dev_t *hmp, hammer2_chain_t *parent,
2212 		      struct hammer2_recovery_info *info,
2213 		      hammer2_tid_t sync_tid)
2214 {
2215 	const hammer2_inode_data_t *ripdata;
2216 	hammer2_chain_t *chain;
2217 	hammer2_blockref_t bref;
2218 	int tmp_error;
2219 	int rup_error;
2220 	int error;
2221 	int first;
2222 
2223 	/*
2224 	 * Adjust freemap to ensure that the block(s) are marked allocated.
2225 	 */
2226 	if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
2227 		hammer2_freemap_adjust(hmp, &parent->bref,
2228 				       HAMMER2_FREEMAP_DORECOVER);
2229 	}
2230 
2231 	/*
2232 	 * Check type for recursive scan
2233 	 */
2234 	switch(parent->bref.type) {
2235 	case HAMMER2_BREF_TYPE_VOLUME:
2236 		/* data already instantiated */
2237 		break;
2238 	case HAMMER2_BREF_TYPE_INODE:
2239 		/*
2240 		 * Must instantiate data for DIRECTDATA test and also
2241 		 * for recursion.
2242 		 */
2243 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2244 		ripdata = &parent->data->ipdata;
2245 		if (ripdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2246 			/* not applicable to recovery scan */
2247 			hammer2_chain_unlock(parent);
2248 			return 0;
2249 		}
2250 		hammer2_chain_unlock(parent);
2251 		break;
2252 	case HAMMER2_BREF_TYPE_INDIRECT:
2253 		/*
2254 		 * Must instantiate data for recursion
2255 		 */
2256 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2257 		hammer2_chain_unlock(parent);
2258 		break;
2259 	case HAMMER2_BREF_TYPE_DIRENT:
2260 	case HAMMER2_BREF_TYPE_DATA:
2261 	case HAMMER2_BREF_TYPE_FREEMAP:
2262 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2263 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2264 		/* not applicable to recovery scan */
2265 		return 0;
2266 		break;
2267 	default:
2268 		return HAMMER2_ERROR_BADBREF;
2269 	}
2270 
2271 	/*
2272 	 * Defer operation if depth limit reached.
2273 	 */
2274 	if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) {
2275 		struct hammer2_recovery_elm *elm;
2276 
2277 		elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2278 		elm->chain = parent;
2279 		elm->sync_tid = sync_tid;
2280 		hammer2_chain_ref(parent);
2281 		TAILQ_INSERT_TAIL(&info->list, elm, entry);
2282 		/* unlocked by caller */
2283 
2284 		return(0);
2285 	}
2286 
2287 
2288 	/*
2289 	 * Recursive scan of the last flushed transaction only.  We are
2290 	 * doing this without pmp assignments so don't leave the chains
2291 	 * hanging around after we are done with them.
2292 	 *
2293 	 * error	Cumulative error this level only
2294 	 * rup_error	Cumulative error for recursion
2295 	 * tmp_error	Specific non-cumulative recursion error
2296 	 */
2297 	chain = NULL;
2298 	first = 1;
2299 	rup_error = 0;
2300 	error = 0;
2301 
2302 	for (;;) {
2303 		error |= hammer2_chain_scan(parent, &chain, &bref,
2304 					    &first,
2305 					    HAMMER2_LOOKUP_NODATA);
2306 
2307 		/*
2308 		 * Problem during scan or EOF
2309 		 */
2310 		if (error)
2311 			break;
2312 
2313 		/*
2314 		 * If this is a leaf
2315 		 */
2316 		if (chain == NULL) {
2317 			if (bref.mirror_tid > sync_tid) {
2318 				hammer2_freemap_adjust(hmp, &bref,
2319 						     HAMMER2_FREEMAP_DORECOVER);
2320 			}
2321 			continue;
2322 		}
2323 
2324 		/*
2325 		 * This may or may not be a recursive node.
2326 		 */
2327 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2328 		if (bref.mirror_tid > sync_tid) {
2329 			++info->depth;
2330 			tmp_error = hammer2_recovery_scan(hmp, chain,
2331 							   info, sync_tid);
2332 			--info->depth;
2333 		} else {
2334 			tmp_error = 0;
2335 		}
2336 
2337 		/*
2338 		 * Flush the recovery at the PFS boundary to stage it for
2339 		 * the final flush of the super-root topology.
2340 		 */
2341 		if (tmp_error == 0 &&
2342 		    (bref.flags & HAMMER2_BREF_FLAG_PFSROOT) &&
2343 		    (chain->flags & HAMMER2_CHAIN_ONFLUSH)) {
2344 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2345 					     HAMMER2_FLUSH_ALL);
2346 		}
2347 		rup_error |= tmp_error;
2348 	}
2349 	return ((error | rup_error) & ~HAMMER2_ERROR_EOF);
2350 }
2351 
2352 /*
2353  * This fixes up an error introduced in earlier H2 implementations where
2354  * moving a PFS inode into an indirect block wound up causing the
2355  * HAMMER2_BREF_FLAG_PFSROOT flag in the bref to get cleared.
2356  */
2357 static
2358 int
2359 hammer2_fixup_pfses(hammer2_dev_t *hmp)
2360 {
2361 	const hammer2_inode_data_t *ripdata;
2362 	hammer2_chain_t *parent;
2363 	hammer2_chain_t *chain;
2364 	hammer2_key_t key_next;
2365 	hammer2_pfs_t *spmp;
2366 	int error;
2367 
2368 	error = 0;
2369 
2370 	/*
2371 	 * Lookup mount point under the media-localized super-root.
2372 	 *
2373 	 * cluster->pmp will incorrectly point to spmp and must be fixed
2374 	 * up later on.
2375 	 */
2376 	spmp = hmp->spmp;
2377 	hammer2_inode_lock(spmp->iroot, 0);
2378 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
2379 	chain = hammer2_chain_lookup(&parent, &key_next,
2380 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
2381 					 &error, 0);
2382 	while (chain) {
2383 		if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
2384 			continue;
2385 		if (chain->error) {
2386 			kprintf("I/O error scanning PFS labels\n");
2387 			error |= chain->error;
2388 		} else if ((chain->bref.flags &
2389 			    HAMMER2_BREF_FLAG_PFSROOT) == 0) {
2390 			int error2;
2391 
2392 			ripdata = &chain->data->ipdata;
2393 			hammer2_trans_init(hmp->spmp, 0);
2394 			error2 = hammer2_chain_modify(chain,
2395 						      chain->bref.modify_tid,
2396 						      0, 0);
2397 			if (error2 == 0) {
2398 				kprintf("hammer2: Correct mis-flagged PFS %s\n",
2399 					ripdata->filename);
2400 				chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2401 			} else {
2402 				error |= error2;
2403 			}
2404 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2405 					     HAMMER2_FLUSH_ALL);
2406 			hammer2_trans_done(hmp->spmp, 0);
2407 		}
2408 		chain = hammer2_chain_next(&parent, chain, &key_next,
2409 					   key_next, HAMMER2_KEY_MAX,
2410 					   &error, 0);
2411 	}
2412 	if (parent) {
2413 		hammer2_chain_unlock(parent);
2414 		hammer2_chain_drop(parent);
2415 	}
2416 	hammer2_inode_unlock(spmp->iroot);
2417 
2418 	return error;
2419 }
2420 
2421 /*
2422  * Sync a mount point; this is called periodically on a per-mount basis from
2423  * the filesystem syncer, and whenever a user issues a sync.
2424  */
2425 int
2426 hammer2_vfs_sync(struct mount *mp, int waitfor)
2427 {
2428 	int error;
2429 
2430 	error = hammer2_vfs_sync_pmp(MPTOPMP(mp), waitfor);
2431 
2432 	return error;
2433 }
2434 
2435 /*
2436  * Because frontend operations lock vnodes before we get a chance to
2437  * lock the related inode, we can't just acquire a vnode lock without
2438  * risking a deadlock.  The frontend may be holding a vnode lock while
2439  * also blocked on our SYNCQ flag while trying to get the inode lock.
2440  *
2441  * To deal with this situation we can check the vnode lock situation
2442  * after locking the inode and perform a work-around.
2443  */
2444 int
2445 hammer2_vfs_sync_pmp(hammer2_pfs_t *pmp, int waitfor)
2446 {
2447 	struct mount *mp;
2448 	/*hammer2_xop_flush_t *xop;*/
2449 	/*struct hammer2_sync_info info;*/
2450 	hammer2_inode_t *ip;
2451 	hammer2_depend_t *depend;
2452 	hammer2_depend_t *depend_next;
2453 	struct vnode *vp;
2454 	uint32_t pass2;
2455 	int error;
2456 	int wakecount;
2457 	int dorestart;
2458 
2459 	mp = pmp->mp;
2460 
2461 	/*
2462 	 * Move all inodes on sideq to syncq.  This will clear sideq.
2463 	 * This should represent all flushable inodes.  These inodes
2464 	 * will already have refs due to being on syncq or sideq.  We
2465 	 * must do this all at once with the spinlock held to ensure that
2466 	 * all inode dependencies are part of the same flush.
2467 	 *
2468 	 * We should be able to do this asynchronously from frontend
2469 	 * operations because we will be locking the inodes later on
2470 	 * to actually flush them, and that will partition any frontend
2471 	 * op using the same inode.  Either it has already locked the
2472 	 * inode and we will block, or it has not yet locked the inode
2473 	 * and it will block until we are finished flushing that inode.
2474 	 *
2475 	 * When restarting, only move the inodes flagged as PASS2 from
2476 	 * SIDEQ to SYNCQ.  PASS2 propagation by inode_lock4() and
2477 	 * inode_depend() are atomic with the spin-lock.
2478 	 */
2479 	hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
2480 #ifdef HAMMER2_DEBUG_SYNC
2481 	kprintf("FILESYSTEM SYNC BOUNDARY\n");
2482 #endif
2483 	dorestart = 0;
2484 
2485 	/*
2486 	 * Move inodes from depq to syncq, releasing the related
2487 	 * depend structures.
2488 	 */
2489 restart:
2490 #ifdef HAMMER2_DEBUG_SYNC
2491 	kprintf("FILESYSTEM SYNC RESTART (%d)\n", dorestart);
2492 #endif
2493 	hammer2_trans_setflags(pmp, 0/*HAMMER2_TRANS_COPYQ*/);
2494 	hammer2_trans_clearflags(pmp, HAMMER2_TRANS_RESCAN);
2495 
2496 	/*
2497 	 * Move inodes from depq to syncq.  When restarting, only depq's
2498 	 * marked pass2 are moved.
2499 	 */
2500 	hammer2_spin_ex(&pmp->list_spin);
2501 	depend_next = TAILQ_FIRST(&pmp->depq);
2502 	wakecount = 0;
2503 
2504 	while ((depend = depend_next) != NULL) {
2505 		depend_next = TAILQ_NEXT(depend, entry);
2506 		if (dorestart && depend->pass2 == 0)
2507 			continue;
2508 		TAILQ_FOREACH(ip, &depend->sideq, entry) {
2509 			KKASSERT(ip->flags & HAMMER2_INODE_SIDEQ);
2510 			atomic_set_int(&ip->flags, HAMMER2_INODE_SYNCQ);
2511 			atomic_clear_int(&ip->flags, HAMMER2_INODE_SIDEQ);
2512 			ip->depend = NULL;
2513 		}
2514 
2515 		/*
2516 		 * NOTE: pmp->sideq_count includes both sideq and syncq
2517 		 */
2518 		TAILQ_CONCAT(&pmp->syncq, &depend->sideq, entry);
2519 
2520 		depend->count = 0;
2521 		depend->pass2 = 0;
2522 		TAILQ_REMOVE(&pmp->depq, depend, entry);
2523 	}
2524 
2525 	hammer2_spin_unex(&pmp->list_spin);
2526 	hammer2_trans_clearflags(pmp, /*HAMMER2_TRANS_COPYQ |*/
2527 				      HAMMER2_TRANS_WAITING);
2528 	dorestart = 0;
2529 
2530 	/*
2531 	 * sideq_count may have dropped enough to allow us to unstall
2532 	 * the frontend.
2533 	 */
2534 	hammer2_pfs_memory_wakeup(pmp, 0);
2535 
2536 	/*
2537 	 * Now run through all inodes on syncq.
2538 	 *
2539 	 * Flush transactions only interlock with other flush transactions.
2540 	 * Any conflicting frontend operations will block on the inode, but
2541 	 * may hold a vnode lock while doing so.
2542 	 */
2543 	hammer2_spin_ex(&pmp->list_spin);
2544 	while ((ip = TAILQ_FIRST(&pmp->syncq)) != NULL) {
2545 		/*
2546 		 * Remove the inode from the SYNCQ, transfer the syncq ref
2547 		 * to us.  We must clear SYNCQ to allow any potential
2548 		 * front-end deadlock to proceed.  We must set PASS2 so
2549 		 * the dependency code knows what to do.
2550 		 */
2551 		pass2 = ip->flags;
2552 		cpu_ccfence();
2553 		if (atomic_cmpset_int(&ip->flags,
2554 			      pass2,
2555 			      (pass2 & ~(HAMMER2_INODE_SYNCQ |
2556 					 HAMMER2_INODE_SYNCQ_WAKEUP)) |
2557 			      HAMMER2_INODE_SYNCQ_PASS2) == 0) {
2558 			continue;
2559 		}
2560 		TAILQ_REMOVE(&pmp->syncq, ip, entry);
2561 		--pmp->sideq_count;
2562 		hammer2_spin_unex(&pmp->list_spin);
2563 
2564 		/*
2565 		 * Tickle anyone waiting on ip->flags or the hysteresis
2566 		 * on the dirty inode count.
2567 		 */
2568 		if (pass2 & HAMMER2_INODE_SYNCQ_WAKEUP)
2569 			wakeup(&ip->flags);
2570 		if (++wakecount >= hammer2_limit_dirty_inodes / 20 + 1) {
2571 			wakecount = 0;
2572 			hammer2_pfs_memory_wakeup(pmp, 0);
2573 		}
2574 
2575 		/*
2576 		 * Relock the inode, and we inherit a ref from the above.
2577 		 * We will check for a race after we acquire the vnode.
2578 		 */
2579 		hammer2_mtx_ex(&ip->lock);
2580 
2581 		/*
2582 		 * We need the vp in order to vfsync() dirty buffers, so if
2583 		 * one isn't attached we can skip it.
2584 		 *
2585 		 * Ordering the inode lock and then the vnode lock has the
2586 		 * potential to deadlock.  If we had left SYNCQ set that could
2587 		 * also deadlock us against the frontend even if we don't hold
2588 		 * any locks, but the latter is not a problem now since we
2589 		 * cleared it.  igetv will temporarily release the inode lock
2590 		 * in a safe manner to work-around the deadlock.
2591 		 *
2592 		 * Unfortunately it is still possible to deadlock when the
2593 		 * frontend obtains multiple inode locks, because all the
2594 		 * related vnodes are already locked (nor can the vnode locks
2595 		 * be released and reacquired without messing up RECLAIM and
2596 		 * INACTIVE sequencing).
2597 		 *
2598 		 * The solution for now is to move the vp back onto SIDEQ
2599 		 * and set dorestart, which will restart the flush after we
2600 		 * exhaust the current SYNCQ.  Note that additional
2601 		 * dependencies may build up, so we definitely need to move
2602 		 * the whole SIDEQ back to SYNCQ when we restart.
2603 		 */
2604 		vp = ip->vp;
2605 		if (vp) {
2606 			if (vget(vp, LK_EXCLUSIVE|LK_NOWAIT)) {
2607 				/*
2608 				 * Failed to get the vnode, requeue the inode
2609 				 * (PASS2 is already set so it will be found
2610 				 * again on the restart).
2611 				 *
2612 				 * Then unlock, possibly sleep, and retry
2613 				 * later.  We sleep if PASS2 was *previously*
2614 				 * set, before we set it again above.
2615 				 */
2616 				vp = NULL;
2617 				dorestart = 1;
2618 #ifdef HAMMER2_DEBUG_SYNC
2619 				kprintf("inum %ld (sync delayed by vnode)\n",
2620 					(long)ip->meta.inum);
2621 #endif
2622 				hammer2_inode_delayed_sideq(ip);
2623 
2624 				hammer2_mtx_unlock(&ip->lock);
2625 				hammer2_inode_drop(ip);
2626 
2627 				if (pass2 & HAMMER2_INODE_SYNCQ_PASS2) {
2628 					tsleep(&dorestart, 0, "h2syndel", 2);
2629 				}
2630 				hammer2_spin_ex(&pmp->list_spin);
2631 				continue;
2632 			}
2633 		} else {
2634 			vp = NULL;
2635 		}
2636 
2637 		/*
2638 		 * If the inode wound up on a SIDEQ again it will already be
2639 		 * prepped for another PASS2.  In this situation if we flush
2640 		 * it now we will just wind up flushing it again in the same
2641 		 * syncer run, so we might as well not flush it now.
2642 		 */
2643 		if (ip->flags & HAMMER2_INODE_SIDEQ) {
2644 			hammer2_mtx_unlock(&ip->lock);
2645 			hammer2_inode_drop(ip);
2646 			if (vp)
2647 				vput(vp);
2648 			dorestart = 1;
2649 			hammer2_spin_ex(&pmp->list_spin);
2650 			continue;
2651 		}
2652 
2653 		/*
2654 		 * Ok we have the inode exclusively locked and if vp is
2655 		 * not NULL that will also be exclusively locked.  Do the
2656 		 * meat of the flush.
2657 		 *
2658 		 * vp token needed for v_rbdirty_tree check / vclrisdirty
2659 		 * sequencing.  Though we hold the vnode exclusively so
2660 		 * we shouldn't need to hold the token also in this case.
2661 		 */
2662 		if (vp) {
2663 			vfsync(vp, MNT_WAIT, 1, NULL, NULL);
2664 			bio_track_wait(&vp->v_track_write, 0, 0); /* XXX */
2665 		}
2666 
2667 		/*
2668 		 * If the inode has not yet been inserted into the tree
2669 		 * we must do so.  Then sync and flush it.  The flush should
2670 		 * update the parent.
2671 		 */
2672 		if (ip->flags & HAMMER2_INODE_DELETING) {
2673 #ifdef HAMMER2_DEBUG_SYNC
2674 			kprintf("inum %ld destroy\n", (long)ip->meta.inum);
2675 #endif
2676 			hammer2_inode_chain_des(ip);
2677 			atomic_add_long(&hammer2_iod_inode_deletes, 1);
2678 		} else if (ip->flags & HAMMER2_INODE_CREATING) {
2679 #ifdef HAMMER2_DEBUG_SYNC
2680 			kprintf("inum %ld insert\n", (long)ip->meta.inum);
2681 #endif
2682 			hammer2_inode_chain_ins(ip);
2683 			atomic_add_long(&hammer2_iod_inode_creates, 1);
2684 		}
2685 #ifdef HAMMER2_DEBUG_SYNC
2686 		kprintf("inum %ld chain-sync\n", (long)ip->meta.inum);
2687 #endif
2688 
2689 		/*
2690 		 * Because I kinda messed up the design and index the inodes
2691 		 * under the root inode, along side the directory entries,
2692 		 * we can't flush the inode index under the iroot until the
2693 		 * end.  If we do it now we might miss effects created by
2694 		 * other inodes on the SYNCQ.
2695 		 *
2696 		 * Do a normal (non-FSSYNC) flush instead, which allows the
2697 		 * vnode code to work the same.  We don't want to force iroot
2698 		 * back onto the SIDEQ, and we also don't want the flush code
2699 		 * to update pfs_iroot_blocksets until the final flush later.
2700 		 *
2701 		 * XXX at the moment this will likely result in a double-flush
2702 		 * of the iroot chain.
2703 		 */
2704 		hammer2_inode_chain_sync(ip);
2705 		if (ip == pmp->iroot) {
2706 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP);
2707 		} else {
2708 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2709 						      HAMMER2_XOP_FSSYNC);
2710 		}
2711 		if (vp) {
2712 			lwkt_gettoken(&vp->v_token);
2713 			if ((ip->flags & (HAMMER2_INODE_MODIFIED |
2714 					  HAMMER2_INODE_RESIZED |
2715 					  HAMMER2_INODE_DIRTYDATA)) == 0 &&
2716 			    RB_EMPTY(&vp->v_rbdirty_tree) &&
2717 			    !bio_track_active(&vp->v_track_write)) {
2718 				vclrisdirty(vp);
2719 			} else {
2720 				hammer2_inode_delayed_sideq(ip);
2721 			}
2722 			lwkt_reltoken(&vp->v_token);
2723 			vput(vp);
2724 			vp = NULL;	/* safety */
2725 		}
2726 		atomic_clear_int(&ip->flags, HAMMER2_INODE_SYNCQ_PASS2);
2727 		hammer2_inode_unlock(ip);	/* unlock+drop */
2728 		/* ip pointer invalid */
2729 
2730 		/*
2731 		 * If the inode got dirted after we dropped our locks,
2732 		 * it will have already been moved back to the SIDEQ.
2733 		 */
2734 		hammer2_spin_ex(&pmp->list_spin);
2735 	}
2736 	hammer2_spin_unex(&pmp->list_spin);
2737 	hammer2_pfs_memory_wakeup(pmp, 0);
2738 
2739 	if (dorestart || (pmp->trans.flags & HAMMER2_TRANS_RESCAN)) {
2740 #ifdef HAMMER2_DEBUG_SYNC
2741 		kprintf("FILESYSTEM SYNC STAGE 1 RESTART\n");
2742 		/*tsleep(&dorestart, 0, "h2STG1-R", hz*20);*/
2743 #endif
2744 		dorestart = 1;
2745 		goto restart;
2746 	}
2747 #ifdef HAMMER2_DEBUG_SYNC
2748 	kprintf("FILESYSTEM SYNC STAGE 2 BEGIN\n");
2749 	/*tsleep(&dorestart, 0, "h2STG2", hz*20);*/
2750 #endif
2751 
2752 	/*
2753 	 * We have to flush the PFS root last, even if it does not appear to
2754 	 * be dirty, because all the inodes in the PFS are indexed under it.
2755 	 * The normal flushing of iroot above would only occur if directory
2756 	 * entries under the root were changed.
2757 	 *
2758 	 * Specifying VOLHDR will cause an additionl flush of hmp->spmp
2759 	 * for the media making up the cluster.
2760 	 */
2761 	if ((ip = pmp->iroot) != NULL) {
2762 		hammer2_inode_ref(ip);
2763 		hammer2_mtx_ex(&ip->lock);
2764 		hammer2_inode_chain_sync(ip);
2765 		hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2766 					      HAMMER2_XOP_FSSYNC |
2767 					      HAMMER2_XOP_VOLHDR);
2768 		hammer2_inode_unlock(ip);	/* unlock+drop */
2769 	}
2770 #ifdef HAMMER2_DEBUG_SYNC
2771 	kprintf("FILESYSTEM SYNC STAGE 2 DONE\n");
2772 #endif
2773 
2774 	/*
2775 	 * device bioq sync
2776 	 */
2777 	hammer2_bioq_sync(pmp);
2778 
2779 #if 0
2780 	/*
2781 	 * Generally speaking we now want to flush the media topology from
2782 	 * the iroot through to the inodes.  The flush stops at any inode
2783 	 * boundary, which allows the frontend to continue running concurrent
2784 	 * modifying operations on inodes (including kernel flushes of
2785 	 * buffers) without interfering with the main sync.
2786 	 *
2787 	 * Use the XOP interface to concurrently flush all nodes to
2788 	 * synchronize the PFSROOT subtopology to the media.  A standard
2789 	 * end-of-scan ENOENT error indicates cluster sufficiency.
2790 	 *
2791 	 * Note that this flush will not be visible on crash recovery until
2792 	 * we flush the super-root topology in the next loop.
2793 	 *
2794 	 * XXX For now wait for all flushes to complete.
2795 	 */
2796 	if (mp && (ip = pmp->iroot) != NULL) {
2797 		/*
2798 		 * If unmounting try to flush everything including any
2799 		 * sub-trees under inodes, just in case there is dangling
2800 		 * modified data, as a safety.  Otherwise just flush up to
2801 		 * the inodes in this stage.
2802 		 */
2803 		kprintf("MP & IROOT\n");
2804 #ifdef HAMMER2_DEBUG_SYNC
2805 		kprintf("FILESYSTEM SYNC STAGE 3 IROOT BEGIN\n");
2806 #endif
2807 		if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
2808 			xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
2809 						    HAMMER2_XOP_VOLHDR |
2810 						    HAMMER2_XOP_FSSYNC |
2811 						    HAMMER2_XOP_INODE_STOP);
2812 		} else {
2813 			xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
2814 						    HAMMER2_XOP_INODE_STOP |
2815 						    HAMMER2_XOP_VOLHDR |
2816 						    HAMMER2_XOP_FSSYNC |
2817 						    HAMMER2_XOP_INODE_STOP);
2818 		}
2819 		hammer2_xop_start(&xop->head, &hammer2_inode_flush_desc);
2820 		error = hammer2_xop_collect(&xop->head,
2821 					    HAMMER2_XOP_COLLECT_WAITALL);
2822 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2823 #ifdef HAMMER2_DEBUG_SYNC
2824 		kprintf("FILESYSTEM SYNC STAGE 3 IROOT END\n");
2825 #endif
2826 		if (error == HAMMER2_ERROR_ENOENT)
2827 			error = 0;
2828 		else
2829 			error = hammer2_error_to_errno(error);
2830 	} else {
2831 		error = 0;
2832 	}
2833 #endif
2834 	error = 0;	/* XXX */
2835 	hammer2_trans_done(pmp, HAMMER2_TRANS_ISFLUSH);
2836 
2837 	return (error);
2838 }
2839 
2840 static
2841 int
2842 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2843 {
2844 	hammer2_inode_t *ip;
2845 
2846 	KKASSERT(MAXFIDSZ >= 16);
2847 	ip = VTOI(vp);
2848 	fhp->fid_len = offsetof(struct fid, fid_data[16]);
2849 	fhp->fid_ext = 0;
2850 	((hammer2_tid_t *)fhp->fid_data)[0] = ip->meta.inum;
2851 	((hammer2_tid_t *)fhp->fid_data)[1] = 0;
2852 
2853 	return 0;
2854 }
2855 
2856 static
2857 int
2858 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2859 	       struct fid *fhp, struct vnode **vpp)
2860 {
2861 	hammer2_pfs_t *pmp;
2862 	hammer2_tid_t inum;
2863 	int error;
2864 
2865 	pmp = MPTOPMP(mp);
2866 	inum = ((hammer2_tid_t *)fhp->fid_data)[0] & HAMMER2_DIRHASH_USERMSK;
2867 	if (vpp) {
2868 		if (inum == 1)
2869 			error = hammer2_vfs_root(mp, vpp);
2870 		else
2871 			error = hammer2_vfs_vget(mp, NULL, inum, vpp);
2872 	} else {
2873 		error = 0;
2874 	}
2875 	if (error)
2876 		kprintf("fhtovp: %016jx -> %p, %d\n", inum, *vpp, error);
2877 	return error;
2878 }
2879 
2880 static
2881 int
2882 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2883 		 int *exflagsp, struct ucred **credanonp)
2884 {
2885 	hammer2_pfs_t *pmp;
2886 	struct netcred *np;
2887 	int error;
2888 
2889 	pmp = MPTOPMP(mp);
2890 	np = vfs_export_lookup(mp, &pmp->export, nam);
2891 	if (np) {
2892 		*exflagsp = np->netc_exflags;
2893 		*credanonp = &np->netc_anon;
2894 		error = 0;
2895 	} else {
2896 		error = EACCES;
2897 	}
2898 	return error;
2899 }
2900 
2901 /*
2902  * Support code for hammer2_vfs_mount().  Read, verify, and install the volume
2903  * header into the HMP
2904  */
2905 static
2906 int
2907 hammer2_install_volume_header(hammer2_dev_t *hmp)
2908 {
2909 	hammer2_volume_data_t *vd;
2910 	struct buf *bp;
2911 	hammer2_crc32_t crc0, crc, bcrc0, bcrc;
2912 	int error_reported;
2913 	int error;
2914 	int valid;
2915 	int i;
2916 
2917 	error_reported = 0;
2918 	error = 0;
2919 	valid = 0;
2920 	bp = NULL;
2921 
2922 	/*
2923 	 * There are up to 4 copies of the volume header (syncs iterate
2924 	 * between them so there is no single master).  We don't trust the
2925 	 * volu_size field so we don't know precisely how large the filesystem
2926 	 * is, so depend on the OS to return an error if we go beyond the
2927 	 * block device's EOF.
2928 	 */
2929 	for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) {
2930 		error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2931 			      HAMMER2_VOLUME_BYTES, &bp);
2932 		if (error) {
2933 			brelse(bp);
2934 			bp = NULL;
2935 			continue;
2936 		}
2937 
2938 		vd = (struct hammer2_volume_data *) bp->b_data;
2939 		if ((vd->magic != HAMMER2_VOLUME_ID_HBO) &&
2940 		    (vd->magic != HAMMER2_VOLUME_ID_ABO)) {
2941 			kprintf("hammer2: volume header #%d: bad magic\n", i);
2942 			brelse(bp);
2943 			bp = NULL;
2944 			continue;
2945 		}
2946 
2947 		if (vd->magic == HAMMER2_VOLUME_ID_ABO) {
2948 			/* XXX: Reversed-endianness filesystem */
2949 			kprintf("hammer2: volume header #%d: reverse-endian "
2950 				"filesystem detected\n", i);
2951 			brelse(bp);
2952 			bp = NULL;
2953 			continue;
2954 		}
2955 
2956 		crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0];
2957 		crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF,
2958 				      HAMMER2_VOLUME_ICRC0_SIZE);
2959 		bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1];
2960 		bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF,
2961 				       HAMMER2_VOLUME_ICRC1_SIZE);
2962 		if ((crc0 != crc) || (bcrc0 != bcrc)) {
2963 			kprintf("hammer2: volume header #%d: volume header crc "
2964 				"mismatch %08x/%08x\n",
2965 				i, crc0, crc);
2966 			error_reported = 1;
2967 			brelse(bp);
2968 			bp = NULL;
2969 			continue;
2970 		}
2971 		if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) {
2972 			valid = 1;
2973 			hmp->voldata = *vd;
2974 			hmp->volhdrno = i;
2975 		}
2976 		brelse(bp);
2977 		bp = NULL;
2978 	}
2979 	if (valid) {
2980 		hmp->volsync = hmp->voldata;
2981 		hmp->free_reserved = hmp->voldata.allocator_size / 20;
2982 		error = 0;
2983 		if (error_reported || bootverbose || 1) { /* 1/DEBUG */
2984 			kprintf("hammer2: using volume header #%d\n",
2985 				hmp->volhdrno);
2986 		}
2987 	} else {
2988 		error = EINVAL;
2989 		kprintf("hammer2: no valid volume headers found!\n");
2990 	}
2991 	return (error);
2992 }
2993 
2994 /*
2995  * This handles hysteresis on regular file flushes.  Because the BIOs are
2996  * routed to a thread it is possible for an excessive number to build up
2997  * and cause long front-end stalls long before the runningbuffspace limit
2998  * is hit, so we implement hammer2_flush_pipe to control the
2999  * hysteresis.
3000  *
3001  * This is a particular problem when compression is used.
3002  */
3003 void
3004 hammer2_lwinprog_ref(hammer2_pfs_t *pmp)
3005 {
3006 	atomic_add_int(&pmp->count_lwinprog, 1);
3007 }
3008 
3009 void
3010 hammer2_lwinprog_drop(hammer2_pfs_t *pmp)
3011 {
3012 	int lwinprog;
3013 
3014 	lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
3015 	if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
3016 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
3017 		atomic_clear_int(&pmp->count_lwinprog,
3018 				 HAMMER2_LWINPROG_WAITING);
3019 		wakeup(&pmp->count_lwinprog);
3020 	}
3021 	if ((lwinprog & HAMMER2_LWINPROG_WAITING0) &&
3022 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= 0) {
3023 		atomic_clear_int(&pmp->count_lwinprog,
3024 				 HAMMER2_LWINPROG_WAITING0);
3025 		wakeup(&pmp->count_lwinprog);
3026 	}
3027 }
3028 
3029 void
3030 hammer2_lwinprog_wait(hammer2_pfs_t *pmp, int flush_pipe)
3031 {
3032 	int lwinprog;
3033 	int lwflag = (flush_pipe) ? HAMMER2_LWINPROG_WAITING :
3034 				    HAMMER2_LWINPROG_WAITING0;
3035 
3036 	for (;;) {
3037 		lwinprog = pmp->count_lwinprog;
3038 		cpu_ccfence();
3039 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
3040 			break;
3041 		tsleep_interlock(&pmp->count_lwinprog, 0);
3042 		atomic_set_int(&pmp->count_lwinprog, lwflag);
3043 		lwinprog = pmp->count_lwinprog;
3044 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
3045 			break;
3046 		tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
3047 	}
3048 }
3049 
3050 /*
3051  * It is possible for an excessive number of dirty chains or dirty inodes
3052  * to build up.  When this occurs we start an asynchronous filesystem sync.
3053  * If the level continues to build up, we stall, waiting for it to drop,
3054  * with some hysteresis.
3055  *
3056  * This relies on the kernel calling hammer2_vfs_modifying() prior to
3057  * obtaining any vnode locks before making a modifying VOP call.
3058  */
3059 static int
3060 hammer2_vfs_modifying(struct mount *mp)
3061 {
3062 	if (mp->mnt_flag & MNT_RDONLY)
3063 		return EROFS;
3064 	hammer2_pfs_memory_wait(MPTOPMP(mp));
3065 
3066 	return 0;
3067 }
3068 
3069 /*
3070  * Initiate an asynchronous filesystem sync and, with hysteresis,
3071  * stall if the internal data structure count becomes too bloated.
3072  */
3073 void
3074 hammer2_pfs_memory_wait(hammer2_pfs_t *pmp)
3075 {
3076 	uint32_t waiting;
3077 	int pcatch;
3078 	int error;
3079 
3080 	if (pmp == NULL || pmp->mp == NULL)
3081 		return;
3082 
3083 	for (;;) {
3084 		waiting = pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK;
3085 		cpu_ccfence();
3086 
3087 		/*
3088 		 * Start the syncer running at 1/2 the limit
3089 		 */
3090 		if (waiting > hammer2_limit_dirty_chains / 2 ||
3091 		    pmp->sideq_count > hammer2_limit_dirty_inodes / 2) {
3092 			trigger_syncer(pmp->mp);
3093 		}
3094 
3095 		/*
3096 		 * Stall at the limit waiting for the counts to drop.
3097 		 * This code will typically be woken up once the count
3098 		 * drops below 3/4 the limit, or in one second.
3099 		 */
3100 		if (waiting < hammer2_limit_dirty_chains &&
3101 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
3102 			break;
3103 		}
3104 
3105 		pcatch = curthread->td_proc ? PCATCH : 0;
3106 
3107 		tsleep_interlock(&pmp->inmem_dirty_chains, pcatch);
3108 		atomic_set_int(&pmp->inmem_dirty_chains,
3109 			       HAMMER2_DIRTYCHAIN_WAITING);
3110 		if (waiting < hammer2_limit_dirty_chains &&
3111 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
3112 			break;
3113 		}
3114 		trigger_syncer(pmp->mp);
3115 		error = tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED | pcatch,
3116 			       "h2memw", hz);
3117 		if (error == ERESTART)
3118 			break;
3119 	}
3120 }
3121 
3122 /*
3123  * Wake up any stalled frontend ops waiting, with hysteresis, using
3124  * 2/3 of the limit.
3125  */
3126 void
3127 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp, int count)
3128 {
3129 	uint32_t waiting;
3130 
3131 	if (pmp) {
3132 		waiting = atomic_fetchadd_int(&pmp->inmem_dirty_chains, count);
3133 		/* don't need --waiting to test flag */
3134 
3135 		if ((waiting & HAMMER2_DIRTYCHAIN_WAITING) &&
3136 		    (pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK) <=
3137 		    hammer2_limit_dirty_chains * 2 / 3 &&
3138 		    pmp->sideq_count <= hammer2_limit_dirty_inodes * 2 / 3) {
3139 			atomic_clear_int(&pmp->inmem_dirty_chains,
3140 					 HAMMER2_DIRTYCHAIN_WAITING);
3141 			wakeup(&pmp->inmem_dirty_chains);
3142 		}
3143 	}
3144 }
3145 
3146 void
3147 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp)
3148 {
3149 	if (pmp) {
3150 		atomic_add_int(&pmp->inmem_dirty_chains, 1);
3151 	}
3152 }
3153 
3154 /*
3155  * Volume header data locks
3156  */
3157 void
3158 hammer2_voldata_lock(hammer2_dev_t *hmp)
3159 {
3160 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
3161 }
3162 
3163 void
3164 hammer2_voldata_unlock(hammer2_dev_t *hmp)
3165 {
3166 	lockmgr(&hmp->vollk, LK_RELEASE);
3167 }
3168 
3169 void
3170 hammer2_voldata_modify(hammer2_dev_t *hmp)
3171 {
3172 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
3173 		atomic_add_long(&hammer2_count_modified_chains, 1);
3174 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
3175 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
3176 	}
3177 }
3178 
3179 /*
3180  * Returns 0 if the filesystem has tons of free space
3181  * Returns 1 if the filesystem has less than 10% remaining
3182  * Returns 2 if the filesystem has less than 2%/5% (user/root) remaining.
3183  */
3184 int
3185 hammer2_vfs_enospace(hammer2_inode_t *ip, off_t bytes, struct ucred *cred)
3186 {
3187 	hammer2_pfs_t *pmp;
3188 	hammer2_dev_t *hmp;
3189 	hammer2_off_t free_reserved;
3190 	hammer2_off_t free_nominal;
3191 	int i;
3192 
3193 	pmp = ip->pmp;
3194 
3195 	if (pmp->free_ticks == 0 || pmp->free_ticks != ticks) {
3196 		free_reserved = HAMMER2_SEGSIZE;
3197 		free_nominal = 0x7FFFFFFFFFFFFFFFLLU;
3198 		for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
3199 			hmp = pmp->pfs_hmps[i];
3200 			if (hmp == NULL)
3201 				continue;
3202 			if (pmp->pfs_types[i] != HAMMER2_PFSTYPE_MASTER &&
3203 			    pmp->pfs_types[i] != HAMMER2_PFSTYPE_SOFT_MASTER)
3204 				continue;
3205 
3206 			if (free_nominal > hmp->voldata.allocator_free)
3207 				free_nominal = hmp->voldata.allocator_free;
3208 			if (free_reserved < hmp->free_reserved)
3209 				free_reserved = hmp->free_reserved;
3210 		}
3211 
3212 		/*
3213 		 * SMP races ok
3214 		 */
3215 		pmp->free_reserved = free_reserved;
3216 		pmp->free_nominal = free_nominal;
3217 		pmp->free_ticks = ticks;
3218 	} else {
3219 		free_reserved = pmp->free_reserved;
3220 		free_nominal = pmp->free_nominal;
3221 	}
3222 	if (cred && cred->cr_uid != 0) {
3223 		if ((int64_t)(free_nominal - bytes) <
3224 		    (int64_t)free_reserved) {
3225 			return 2;
3226 		}
3227 	} else {
3228 		if ((int64_t)(free_nominal - bytes) <
3229 		    (int64_t)free_reserved / 2) {
3230 			return 2;
3231 		}
3232 	}
3233 	if ((int64_t)(free_nominal - bytes) < (int64_t)free_reserved * 2)
3234 		return 1;
3235 	return 0;
3236 }
3237 
3238 /*
3239  * Debugging
3240  */
3241 void
3242 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int bi, int *countp,
3243 		   char pfx, u_int flags)
3244 {
3245 	hammer2_chain_t *scan;
3246 	hammer2_chain_t *parent;
3247 
3248 	--*countp;
3249 	if (*countp == 0) {
3250 		kprintf("%*.*s...\n", tab, tab, "");
3251 		return;
3252 	}
3253 	if (*countp < 0)
3254 		return;
3255 	kprintf("%*.*s%c-chain %p %s.%-3d %016jx %016jx/%-2d mir=%016jx\n",
3256 		tab, tab, "", pfx, chain,
3257 		hammer2_bref_type_str(chain->bref.type), bi,
3258 		chain->bref.data_off, chain->bref.key, chain->bref.keybits,
3259 		chain->bref.mirror_tid);
3260 
3261 	kprintf("%*.*s      [%08x] (%s) refs=%d",
3262 		tab, tab, "",
3263 		chain->flags,
3264 		((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
3265 		chain->data) ?  (char *)chain->data->ipdata.filename : "?"),
3266 		chain->refs);
3267 
3268 	parent = chain->parent;
3269 	if (parent)
3270 		kprintf("\n%*.*s      p=%p [pflags %08x prefs %d]",
3271 			tab, tab, "",
3272 			parent, parent->flags, parent->refs);
3273 	if (RB_EMPTY(&chain->core.rbtree)) {
3274 		kprintf("\n");
3275 	} else {
3276 		int bi = 0;
3277 		kprintf(" {\n");
3278 		RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree) {
3279 			if ((scan->flags & flags) || flags == (u_int)-1) {
3280 				hammer2_dump_chain(scan, tab + 4, bi, countp,
3281 						   'a', flags);
3282 			}
3283 			bi++;
3284 		}
3285 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
3286 			kprintf("%*.*s}(%s)\n", tab, tab, "",
3287 				chain->data->ipdata.filename);
3288 		else
3289 			kprintf("%*.*s}\n", tab, tab, "");
3290 	}
3291 }
3292