xref: /dragonfly/sys/vfs/hammer2/hammer2_vfsops.c (revision 40657594)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/buf.h>
43 #include <sys/uuid.h>
44 #include <sys/vfsops.h>
45 #include <sys/sysctl.h>
46 #include <sys/socket.h>
47 #include <sys/objcache.h>
48 
49 #include <sys/proc.h>
50 #include <sys/namei.h>
51 #include <sys/mountctl.h>
52 #include <sys/dirent.h>
53 #include <sys/uio.h>
54 
55 #include <sys/mutex.h>
56 #include <sys/mutex2.h>
57 
58 #include "hammer2.h"
59 #include "hammer2_disk.h"
60 #include "hammer2_mount.h"
61 #include "hammer2_lz4.h"
62 
63 #include "zlib/hammer2_zlib.h"
64 
65 #define REPORT_REFS_ERRORS 1	/* XXX remove me */
66 
67 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache");
68 
69 struct hammer2_sync_info {
70 	int error;
71 	int waitfor;
72 	int pass;
73 };
74 
75 TAILQ_HEAD(hammer2_mntlist, hammer2_dev);
76 static struct hammer2_mntlist hammer2_mntlist;
77 
78 struct hammer2_pfslist hammer2_pfslist;
79 struct hammer2_pfslist hammer2_spmplist;
80 struct lock hammer2_mntlk;
81 
82 int hammer2_supported_version = HAMMER2_VOL_VERSION_DEFAULT;
83 int hammer2_debug;
84 int hammer2_xopgroups;
85 long hammer2_debug_inode;
86 int hammer2_cluster_meta_read = 1;	/* physical read-ahead */
87 int hammer2_cluster_data_read = 4;	/* physical read-ahead */
88 int hammer2_cluster_write = 0;		/* physical write clustering */
89 int hammer2_dedup_enable = 1;
90 int hammer2_always_compress = 0;	/* always try to compress */
91 int hammer2_inval_enable = 0;
92 int hammer2_flush_pipe = 100;
93 int hammer2_dio_count;
94 int hammer2_dio_limit = 256;
95 int hammer2_bulkfree_tps = 5000;
96 int hammer2_worker_rmask = 3;
97 long hammer2_chain_allocs;
98 long hammer2_chain_frees;
99 long hammer2_limit_dirty_chains;
100 long hammer2_limit_dirty_inodes;
101 long hammer2_count_modified_chains;
102 long hammer2_iod_invals;
103 long hammer2_iod_file_read;
104 long hammer2_iod_meta_read;
105 long hammer2_iod_indr_read;
106 long hammer2_iod_fmap_read;
107 long hammer2_iod_volu_read;
108 long hammer2_iod_file_write;
109 long hammer2_iod_file_wembed;
110 long hammer2_iod_file_wzero;
111 long hammer2_iod_file_wdedup;
112 long hammer2_iod_meta_write;
113 long hammer2_iod_indr_write;
114 long hammer2_iod_fmap_write;
115 long hammer2_iod_volu_write;
116 long hammer2_iod_inode_creates;
117 long hammer2_iod_inode_deletes;
118 
119 MALLOC_DECLARE(M_HAMMER2_CBUFFER);
120 MALLOC_DEFINE(M_HAMMER2_CBUFFER, "HAMMER2-compbuffer",
121 		"Buffer used for compression.");
122 
123 MALLOC_DECLARE(M_HAMMER2_DEBUFFER);
124 MALLOC_DEFINE(M_HAMMER2_DEBUFFER, "HAMMER2-decompbuffer",
125 		"Buffer used for decompression.");
126 
127 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
128 
129 SYSCTL_INT(_vfs_hammer2, OID_AUTO, supported_version, CTLFLAG_RD,
130 	   &hammer2_supported_version, 0, "");
131 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
132 	   &hammer2_debug, 0, "");
133 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, debug_inode, CTLFLAG_RW,
134 	   &hammer2_debug_inode, 0, "");
135 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_meta_read, CTLFLAG_RW,
136 	   &hammer2_cluster_meta_read, 0, "");
137 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_data_read, CTLFLAG_RW,
138 	   &hammer2_cluster_data_read, 0, "");
139 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_write, CTLFLAG_RW,
140 	   &hammer2_cluster_write, 0, "");
141 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dedup_enable, CTLFLAG_RW,
142 	   &hammer2_dedup_enable, 0, "");
143 SYSCTL_INT(_vfs_hammer2, OID_AUTO, always_compress, CTLFLAG_RW,
144 	   &hammer2_always_compress, 0, "");
145 SYSCTL_INT(_vfs_hammer2, OID_AUTO, inval_enable, CTLFLAG_RW,
146 	   &hammer2_inval_enable, 0, "");
147 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
148 	   &hammer2_flush_pipe, 0, "");
149 SYSCTL_INT(_vfs_hammer2, OID_AUTO, worker_rmask, CTLFLAG_RW,
150 	   &hammer2_worker_rmask, 0, "");
151 SYSCTL_INT(_vfs_hammer2, OID_AUTO, bulkfree_tps, CTLFLAG_RW,
152 	   &hammer2_bulkfree_tps, 0, "");
153 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_allocs, CTLFLAG_RW,
154 	   &hammer2_chain_allocs, 0, "");
155 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_frees, CTLFLAG_RW,
156 	   &hammer2_chain_frees, 0, "");
157 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
158 	   &hammer2_limit_dirty_chains, 0, "");
159 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_inodes, CTLFLAG_RW,
160 	   &hammer2_limit_dirty_inodes, 0, "");
161 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, count_modified_chains, CTLFLAG_RW,
162 	   &hammer2_count_modified_chains, 0, "");
163 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
164 	   &hammer2_dio_count, 0, "");
165 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_limit, CTLFLAG_RW,
166 	   &hammer2_dio_limit, 0, "");
167 
168 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_invals, CTLFLAG_RW,
169 	   &hammer2_iod_invals, 0, "");
170 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
171 	   &hammer2_iod_file_read, 0, "");
172 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
173 	   &hammer2_iod_meta_read, 0, "");
174 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
175 	   &hammer2_iod_indr_read, 0, "");
176 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
177 	   &hammer2_iod_fmap_read, 0, "");
178 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
179 	   &hammer2_iod_volu_read, 0, "");
180 
181 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
182 	   &hammer2_iod_file_write, 0, "");
183 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wembed, CTLFLAG_RW,
184 	   &hammer2_iod_file_wembed, 0, "");
185 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wzero, CTLFLAG_RW,
186 	   &hammer2_iod_file_wzero, 0, "");
187 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wdedup, CTLFLAG_RW,
188 	   &hammer2_iod_file_wdedup, 0, "");
189 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
190 	   &hammer2_iod_meta_write, 0, "");
191 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
192 	   &hammer2_iod_indr_write, 0, "");
193 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
194 	   &hammer2_iod_fmap_write, 0, "");
195 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
196 	   &hammer2_iod_volu_write, 0, "");
197 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_creates, CTLFLAG_RW,
198 	   &hammer2_iod_inode_creates, 0, "");
199 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_deletes, CTLFLAG_RW,
200 	   &hammer2_iod_inode_deletes, 0, "");
201 
202 long hammer2_process_icrc32;
203 long hammer2_process_xxhash64;
204 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_icrc32, CTLFLAG_RW,
205 	   &hammer2_process_icrc32, 0, "");
206 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_xxhash64, CTLFLAG_RW,
207 	   &hammer2_process_xxhash64, 0, "");
208 
209 static int hammer2_vfs_init(struct vfsconf *conf);
210 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
211 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
212 				struct ucred *cred);
213 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *,
214 				struct vnode *, struct ucred *);
215 static int hammer2_recovery(hammer2_dev_t *hmp);
216 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
217 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
218 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
219 				struct ucred *cred);
220 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
221 				struct ucred *cred);
222 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
223 				struct fid *fhp, struct vnode **vpp);
224 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
225 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
226 				int *exflagsp, struct ucred **credanonp);
227 static int hammer2_vfs_modifying(struct mount *mp);
228 
229 static int hammer2_install_volume_header(hammer2_dev_t *hmp);
230 #if 0
231 static int hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
232 #endif
233 
234 static void hammer2_update_pmps(hammer2_dev_t *hmp);
235 
236 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp);
237 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp,
238 				hammer2_dev_t *hmp);
239 static int hammer2_fixup_pfses(hammer2_dev_t *hmp);
240 
241 /*
242  * HAMMER2 vfs operations.
243  */
244 static struct vfsops hammer2_vfsops = {
245 	.vfs_flags	= 0,
246 	.vfs_init	= hammer2_vfs_init,
247 	.vfs_uninit	= hammer2_vfs_uninit,
248 	.vfs_sync	= hammer2_vfs_sync,
249 	.vfs_mount	= hammer2_vfs_mount,
250 	.vfs_unmount	= hammer2_vfs_unmount,
251 	.vfs_root 	= hammer2_vfs_root,
252 	.vfs_statfs	= hammer2_vfs_statfs,
253 	.vfs_statvfs	= hammer2_vfs_statvfs,
254 	.vfs_vget	= hammer2_vfs_vget,
255 	.vfs_vptofh	= hammer2_vfs_vptofh,
256 	.vfs_fhtovp	= hammer2_vfs_fhtovp,
257 	.vfs_checkexp	= hammer2_vfs_checkexp,
258 	.vfs_modifying	= hammer2_vfs_modifying
259 };
260 
261 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
262 
263 VFS_SET(hammer2_vfsops, hammer2, VFCF_MPSAFE);
264 MODULE_VERSION(hammer2, 1);
265 
266 static
267 int
268 hammer2_vfs_init(struct vfsconf *conf)
269 {
270 	static struct objcache_malloc_args margs_read;
271 	static struct objcache_malloc_args margs_write;
272 	static struct objcache_malloc_args margs_vop;
273 
274 	int error;
275 
276 	error = 0;
277 	kmalloc_raise_limit(M_HAMMER2, 0);	/* unlimited */
278 
279 	/*
280 	 * hammer2_xopgroups must be even and is most optimal if
281 	 * 2 x ncpus so strategy functions can be queued to the same
282 	 * cpu.
283 	 */
284 	hammer2_xopgroups = HAMMER2_XOPGROUPS_MIN;
285 	if (hammer2_xopgroups < ncpus * 2)
286 		hammer2_xopgroups = ncpus * 2;
287 
288 	/*
289 	 * A large DIO cache is needed to retain dedup enablement masks.
290 	 * The bulkfree code clears related masks as part of the disk block
291 	 * recycling algorithm, preventing it from being used for a later
292 	 * dedup.
293 	 *
294 	 * NOTE: A large buffer cache can actually interfere with dedup
295 	 *	 operation because we dedup based on media physical buffers
296 	 *	 and not logical buffers.  Try to make the DIO case large
297 	 *	 enough to avoid this problem, but also cap it.
298 	 */
299 	hammer2_dio_limit = nbuf * 2;
300 	if (hammer2_dio_limit > 100000)
301 		hammer2_dio_limit = 100000;
302 
303 	if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
304 		error = EINVAL;
305 	if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
306 		error = EINVAL;
307 	if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
308 		error = EINVAL;
309 
310 	if (error)
311 		kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
312 
313 	margs_read.objsize = 65536;
314 	margs_read.mtype = M_HAMMER2_DEBUFFER;
315 
316 	margs_write.objsize = 32768;
317 	margs_write.mtype = M_HAMMER2_CBUFFER;
318 
319 	margs_vop.objsize = sizeof(hammer2_xop_t);
320 	margs_vop.mtype = M_HAMMER2;
321 
322 	/*
323 	 * Note thaht for the XOPS cache we want backing store allocations
324 	 * to use M_ZERO.  This is not allowed in objcache_get() (to avoid
325 	 * confusion), so use the backing store function that does it.  This
326 	 * means that initial XOPS objects are zerod but REUSED objects are
327 	 * not.  So we are responsible for cleaning the object up sufficiently
328 	 * for our needs before objcache_put()ing it back (typically just the
329 	 * FIFO indices).
330 	 */
331 	cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
332 				0, 1, NULL, NULL, NULL,
333 				objcache_malloc_alloc,
334 				objcache_malloc_free,
335 				&margs_read);
336 	cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
337 				0, 1, NULL, NULL, NULL,
338 				objcache_malloc_alloc,
339 				objcache_malloc_free,
340 				&margs_write);
341 	cache_xops = objcache_create(margs_vop.mtype->ks_shortdesc,
342 				0, 1, NULL, NULL, NULL,
343 				objcache_malloc_alloc_zero,
344 				objcache_malloc_free,
345 				&margs_vop);
346 
347 
348 	lockinit(&hammer2_mntlk, "mntlk", 0, 0);
349 	TAILQ_INIT(&hammer2_mntlist);
350 	TAILQ_INIT(&hammer2_pfslist);
351 	TAILQ_INIT(&hammer2_spmplist);
352 
353 	hammer2_limit_dirty_chains = maxvnodes / 10;
354 	if (hammer2_limit_dirty_chains > HAMMER2_LIMIT_DIRTY_CHAINS)
355 		hammer2_limit_dirty_chains = HAMMER2_LIMIT_DIRTY_CHAINS;
356 	if (hammer2_limit_dirty_chains < 1000)
357 		hammer2_limit_dirty_chains = 1000;
358 
359 	hammer2_limit_dirty_inodes = maxvnodes / 25;
360 	if (hammer2_limit_dirty_inodes < 100)
361 		hammer2_limit_dirty_inodes = 100;
362 	if (hammer2_limit_dirty_inodes > HAMMER2_LIMIT_DIRTY_INODES)
363 		hammer2_limit_dirty_inodes = HAMMER2_LIMIT_DIRTY_INODES;
364 
365 	return (error);
366 }
367 
368 static
369 int
370 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
371 {
372 	objcache_destroy(cache_buffer_read);
373 	objcache_destroy(cache_buffer_write);
374 	objcache_destroy(cache_xops);
375 	return 0;
376 }
377 
378 /*
379  * Core PFS allocator.  Used to allocate or reference the pmp structure
380  * for PFS cluster mounts and the spmp structure for media (hmp) structures.
381  * The pmp can be passed in or loaded by this function using the chain and
382  * inode data.
383  *
384  * pmp->modify_tid tracks new modify_tid transaction ids for front-end
385  * transactions.  Note that synchronization does not use this field.
386  * (typically frontend operations and synchronization cannot run on the
387  * same PFS node at the same time).
388  *
389  * XXX check locking
390  */
391 hammer2_pfs_t *
392 hammer2_pfsalloc(hammer2_chain_t *chain,
393 		 const hammer2_inode_data_t *ripdata,
394 		 hammer2_tid_t modify_tid, hammer2_dev_t *force_local)
395 {
396 	hammer2_pfs_t *pmp;
397 	hammer2_inode_t *iroot;
398 	int count;
399 	int i;
400 	int j;
401 
402 	pmp = NULL;
403 
404 	/*
405 	 * Locate or create the PFS based on the cluster id.  If ripdata
406 	 * is NULL this is a spmp which is unique and is always allocated.
407 	 *
408 	 * If the device is mounted in local mode all PFSs are considered
409 	 * independent and not part of any cluster (for debugging only).
410 	 */
411 	if (ripdata) {
412 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
413 			if (force_local != pmp->force_local)
414 				continue;
415 			if (force_local == NULL &&
416 			    bcmp(&pmp->pfs_clid, &ripdata->meta.pfs_clid,
417 				 sizeof(pmp->pfs_clid)) == 0) {
418 					break;
419 			} else if (force_local && pmp->pfs_names[0] &&
420 			    strcmp(pmp->pfs_names[0], ripdata->filename) == 0) {
421 					break;
422 			}
423 		}
424 	}
425 
426 	if (pmp == NULL) {
427 		pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
428 		pmp->force_local = force_local;
429 		hammer2_trans_manage_init(pmp);
430 		kmalloc_create(&pmp->minode, "HAMMER2-inodes");
431 		kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg");
432 		lockinit(&pmp->lock, "pfslk", 0, 0);
433 		lockinit(&pmp->lock_nlink, "h2nlink", 0, 0);
434 		spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
435 		spin_init(&pmp->xop_spin, "h2xop");
436 		spin_init(&pmp->lru_spin, "h2lru");
437 		RB_INIT(&pmp->inum_tree);
438 		TAILQ_INIT(&pmp->syncq);
439 		TAILQ_INIT(&pmp->depq);
440 		TAILQ_INIT(&pmp->lru_list);
441 		spin_init(&pmp->list_spin, "h2pfsalloc_list");
442 
443 		/*
444 		 * Save the last media transaction id for the flusher.  Set
445 		 * initial
446 		 */
447 		if (ripdata) {
448 			pmp->pfs_clid = ripdata->meta.pfs_clid;
449 			TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
450 		} else {
451 			pmp->flags |= HAMMER2_PMPF_SPMP;
452 			TAILQ_INSERT_TAIL(&hammer2_spmplist, pmp, mntentry);
453 		}
454 
455 		/*
456 		 * The synchronization thread may start too early, make
457 		 * sure it stays frozen until we are ready to let it go.
458 		 * XXX
459 		 */
460 		/*
461 		pmp->primary_thr.flags = HAMMER2_THREAD_FROZEN |
462 					 HAMMER2_THREAD_REMASTER;
463 		*/
464 	}
465 
466 	/*
467 	 * Create the PFS's root inode and any missing XOP helper threads.
468 	 */
469 	if ((iroot = pmp->iroot) == NULL) {
470 		iroot = hammer2_inode_get(pmp, NULL, 1, -1);
471 		if (ripdata)
472 			iroot->meta = ripdata->meta;
473 		pmp->iroot = iroot;
474 		hammer2_inode_ref(iroot);
475 		hammer2_inode_unlock(iroot);
476 	}
477 
478 	/*
479 	 * Stop here if no chain is passed in.
480 	 */
481 	if (chain == NULL)
482 		goto done;
483 
484 	/*
485 	 * When a chain is passed in we must add it to the PFS's root
486 	 * inode, update pmp->pfs_types[], and update the syncronization
487 	 * threads.
488 	 *
489 	 * When forcing local mode, mark the PFS as a MASTER regardless.
490 	 *
491 	 * At the moment empty spots can develop due to removals or failures.
492 	 * Ultimately we want to re-fill these spots but doing so might
493 	 * confused running code. XXX
494 	 */
495 	hammer2_inode_ref(iroot);
496 	hammer2_mtx_ex(&iroot->lock);
497 	j = iroot->cluster.nchains;
498 
499 	if (j == HAMMER2_MAXCLUSTER) {
500 		kprintf("hammer2_mount: cluster full!\n");
501 		/* XXX fatal error? */
502 	} else {
503 		KKASSERT(chain->pmp == NULL);
504 		chain->pmp = pmp;
505 		hammer2_chain_ref(chain);
506 		iroot->cluster.array[j].chain = chain;
507 		if (force_local)
508 			pmp->pfs_types[j] = HAMMER2_PFSTYPE_MASTER;
509 		else
510 			pmp->pfs_types[j] = ripdata->meta.pfs_type;
511 		pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2);
512 		pmp->pfs_hmps[j] = chain->hmp;
513 		hammer2_spin_ex(&pmp->inum_spin);
514 		pmp->pfs_iroot_blocksets[j] = chain->data->ipdata.u.blockset;
515 		hammer2_spin_unex(&pmp->inum_spin);
516 
517 		/*
518 		 * If the PFS is already mounted we must account
519 		 * for the mount_count here.
520 		 */
521 		if (pmp->mp)
522 			++chain->hmp->mount_count;
523 
524 		/*
525 		 * May have to fixup dirty chain tracking.  Previous
526 		 * pmp was NULL so nothing to undo.
527 		 */
528 		if (chain->flags & HAMMER2_CHAIN_MODIFIED)
529 			hammer2_pfs_memory_inc(pmp);
530 		++j;
531 	}
532 	iroot->cluster.nchains = j;
533 
534 	/*
535 	 * Update nmasters from any PFS inode which is part of the cluster.
536 	 * It is possible that this will result in a value which is too
537 	 * high.  MASTER PFSs are authoritative for pfs_nmasters and will
538 	 * override this value later on.
539 	 *
540 	 * (This informs us of masters that might not currently be
541 	 *  discoverable by this mount).
542 	 */
543 	if (ripdata && pmp->pfs_nmasters < ripdata->meta.pfs_nmasters) {
544 		pmp->pfs_nmasters = ripdata->meta.pfs_nmasters;
545 	}
546 
547 	/*
548 	 * Count visible masters.  Masters are usually added with
549 	 * ripdata->meta.pfs_nmasters set to 1.  This detects when there
550 	 * are more (XXX and must update the master inodes).
551 	 */
552 	count = 0;
553 	for (i = 0; i < iroot->cluster.nchains; ++i) {
554 		if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)
555 			++count;
556 	}
557 	if (pmp->pfs_nmasters < count)
558 		pmp->pfs_nmasters = count;
559 
560 	/*
561 	 * Create missing synchronization and support threads.
562 	 *
563 	 * Single-node masters (including snapshots) have nothing to
564 	 * synchronize and do not require this thread.
565 	 *
566 	 * Multi-node masters or any number of soft masters, slaves, copy,
567 	 * or other PFS types need the thread.
568 	 *
569 	 * Each thread is responsible for its particular cluster index.
570 	 * We use independent threads so stalls or mismatches related to
571 	 * any given target do not affect other targets.
572 	 */
573 	for (i = 0; i < iroot->cluster.nchains; ++i) {
574 		/*
575 		 * Single-node masters (including snapshots) have nothing
576 		 * to synchronize and will make direct xops support calls,
577 		 * thus they do not require this thread.
578 		 *
579 		 * Note that there can be thousands of snapshots.  We do not
580 		 * want to create thousands of threads.
581 		 */
582 		if (pmp->pfs_nmasters <= 1 &&
583 		    pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) {
584 			continue;
585 		}
586 
587 		/*
588 		 * Sync support thread
589 		 */
590 		if (pmp->sync_thrs[i].td == NULL) {
591 			hammer2_thr_create(&pmp->sync_thrs[i], pmp, NULL,
592 					   "h2nod", i, -1,
593 					   hammer2_primary_sync_thread);
594 		}
595 	}
596 
597 	/*
598 	 * Create missing Xop threads
599 	 *
600 	 * NOTE: We create helper threads for all mounted PFSs or any
601 	 *	 PFSs with 2+ nodes (so the sync thread can update them,
602 	 *	 even if not mounted).
603 	 */
604 	if (pmp->mp || iroot->cluster.nchains >= 2)
605 		hammer2_xop_helper_create(pmp);
606 
607 	hammer2_mtx_unlock(&iroot->lock);
608 	hammer2_inode_drop(iroot);
609 done:
610 	return pmp;
611 }
612 
613 /*
614  * Deallocate an element of a probed PFS.  If destroying and this is a
615  * MASTER, adjust nmasters.
616  *
617  * This function does not physically destroy the PFS element in its device
618  * under the super-root  (see hammer2_ioctl_pfs_delete()).
619  */
620 void
621 hammer2_pfsdealloc(hammer2_pfs_t *pmp, int clindex, int destroying)
622 {
623 	hammer2_inode_t *iroot;
624 	hammer2_chain_t *chain;
625 	int j;
626 
627 	/*
628 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
629 	 * by the flush code.
630 	 */
631 	iroot = pmp->iroot;
632 	if (iroot) {
633 		/*
634 		 * Stop synchronizing
635 		 *
636 		 * XXX flush after acquiring the iroot lock.
637 		 * XXX clean out the cluster index from all inode structures.
638 		 */
639 		hammer2_thr_delete(&pmp->sync_thrs[clindex]);
640 
641 		/*
642 		 * Remove the cluster index from the group.  If destroying
643 		 * the PFS and this is a master, adjust pfs_nmasters.
644 		 */
645 		hammer2_mtx_ex(&iroot->lock);
646 		chain = iroot->cluster.array[clindex].chain;
647 		iroot->cluster.array[clindex].chain = NULL;
648 
649 		switch(pmp->pfs_types[clindex]) {
650 		case HAMMER2_PFSTYPE_MASTER:
651 			if (destroying && pmp->pfs_nmasters > 0)
652 				--pmp->pfs_nmasters;
653 			/* XXX adjust ripdata->meta.pfs_nmasters */
654 			break;
655 		default:
656 			break;
657 		}
658 		pmp->pfs_types[clindex] = HAMMER2_PFSTYPE_NONE;
659 
660 		hammer2_mtx_unlock(&iroot->lock);
661 
662 		/*
663 		 * Release the chain.
664 		 */
665 		if (chain) {
666 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
667 			hammer2_chain_drop(chain);
668 		}
669 
670 		/*
671 		 * Terminate all XOP threads for the cluster index.
672 		 */
673 		if (pmp->xop_groups) {
674 			for (j = 0; j < hammer2_xopgroups; ++j) {
675 				hammer2_thr_delete(
676 					&pmp->xop_groups[j].thrs[clindex]);
677 			}
678 		}
679 	}
680 }
681 
682 /*
683  * Destroy a PFS, typically only occurs after the last mount on a device
684  * has gone away.
685  */
686 static void
687 hammer2_pfsfree(hammer2_pfs_t *pmp)
688 {
689 	hammer2_inode_t *iroot;
690 	hammer2_chain_t *chain;
691 	int chains_still_present = 0;
692 	int i;
693 	int j;
694 
695 	/*
696 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
697 	 * by the flush code.
698 	 */
699 	if (pmp->flags & HAMMER2_PMPF_SPMP)
700 		TAILQ_REMOVE(&hammer2_spmplist, pmp, mntentry);
701 	else
702 		TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
703 
704 	/*
705 	 * Cleanup chains remaining on LRU list.
706 	 */
707 	hammer2_spin_ex(&pmp->lru_spin);
708 	while ((chain = TAILQ_FIRST(&pmp->lru_list)) != NULL) {
709 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONLRU);
710 		atomic_add_int(&pmp->lru_count, -1);
711 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
712 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
713 		hammer2_chain_ref(chain);
714 		hammer2_spin_unex(&pmp->lru_spin);
715 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
716 		hammer2_chain_drop(chain);
717 		hammer2_spin_ex(&pmp->lru_spin);
718 	}
719 	hammer2_spin_unex(&pmp->lru_spin);
720 
721 	/*
722 	 * Clean up iroot
723 	 */
724 	iroot = pmp->iroot;
725 	if (iroot) {
726 		for (i = 0; i < iroot->cluster.nchains; ++i) {
727 			hammer2_thr_delete(&pmp->sync_thrs[i]);
728 			if (pmp->xop_groups) {
729 				for (j = 0; j < hammer2_xopgroups; ++j)
730 					hammer2_thr_delete(
731 						&pmp->xop_groups[j].thrs[i]);
732 			}
733 			chain = iroot->cluster.array[i].chain;
734 			if (chain && !RB_EMPTY(&chain->core.rbtree)) {
735 				kprintf("hammer2: Warning pmp %p still "
736 					"has active chains\n", pmp);
737 				chains_still_present = 1;
738 			}
739 		}
740 #if REPORT_REFS_ERRORS
741 		if (iroot->refs != 1)
742 			kprintf("PMP->IROOT %p REFS WRONG %d\n",
743 				iroot, iroot->refs);
744 #else
745 		KKASSERT(iroot->refs == 1);
746 #endif
747 		/* ref for iroot */
748 		hammer2_inode_drop(iroot);
749 		pmp->iroot = NULL;
750 	}
751 
752 	/*
753 	 * Free remaining pmp resources
754 	 */
755 	if (chains_still_present) {
756 		kprintf("hammer2: cannot free pmp %p, still in use\n", pmp);
757 	} else {
758 		kmalloc_destroy(&pmp->mmsg);
759 		kmalloc_destroy(&pmp->minode);
760 		kfree(pmp, M_HAMMER2);
761 	}
762 }
763 
764 /*
765  * Remove all references to hmp from the pfs list.  Any PFS which becomes
766  * empty is terminated and freed.
767  *
768  * XXX inefficient.
769  */
770 static void
771 hammer2_pfsfree_scan(hammer2_dev_t *hmp, int which)
772 {
773 	hammer2_pfs_t *pmp;
774 	hammer2_inode_t *iroot;
775 	hammer2_chain_t *rchain;
776 	int i;
777 	int j;
778 	struct hammer2_pfslist *wlist;
779 
780 	if (which == 0)
781 		wlist = &hammer2_pfslist;
782 	else
783 		wlist = &hammer2_spmplist;
784 again:
785 	TAILQ_FOREACH(pmp, wlist, mntentry) {
786 		if ((iroot = pmp->iroot) == NULL)
787 			continue;
788 
789 		/*
790 		 * Determine if this PFS is affected.  If it is we must
791 		 * freeze all management threads and lock its iroot.
792 		 *
793 		 * Freezing a management thread forces it idle, operations
794 		 * in-progress will be aborted and it will have to start
795 		 * over again when unfrozen, or exit if told to exit.
796 		 */
797 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
798 			if (pmp->pfs_hmps[i] == hmp)
799 				break;
800 		}
801 		if (i == HAMMER2_MAXCLUSTER)
802 			continue;
803 
804 		hammer2_vfs_sync_pmp(pmp, MNT_WAIT);
805 
806 		/*
807 		 * Make sure all synchronization threads are locked
808 		 * down.
809 		 */
810 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
811 			if (pmp->pfs_hmps[i] == NULL)
812 				continue;
813 			hammer2_thr_freeze_async(&pmp->sync_thrs[i]);
814 			if (pmp->xop_groups) {
815 				for (j = 0; j < hammer2_xopgroups; ++j) {
816 					hammer2_thr_freeze_async(
817 						&pmp->xop_groups[j].thrs[i]);
818 				}
819 			}
820 		}
821 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
822 			if (pmp->pfs_hmps[i] == NULL)
823 				continue;
824 			hammer2_thr_freeze(&pmp->sync_thrs[i]);
825 			if (pmp->xop_groups) {
826 				for (j = 0; j < hammer2_xopgroups; ++j) {
827 					hammer2_thr_freeze(
828 						&pmp->xop_groups[j].thrs[i]);
829 				}
830 			}
831 		}
832 
833 		/*
834 		 * Lock the inode and clean out matching chains.
835 		 * Note that we cannot use hammer2_inode_lock_*()
836 		 * here because that would attempt to validate the
837 		 * cluster that we are in the middle of ripping
838 		 * apart.
839 		 *
840 		 * WARNING! We are working directly on the inodes
841 		 *	    embedded cluster.
842 		 */
843 		hammer2_mtx_ex(&iroot->lock);
844 
845 		/*
846 		 * Remove the chain from matching elements of the PFS.
847 		 */
848 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
849 			if (pmp->pfs_hmps[i] != hmp)
850 				continue;
851 			hammer2_thr_delete(&pmp->sync_thrs[i]);
852 			if (pmp->xop_groups) {
853 				for (j = 0; j < hammer2_xopgroups; ++j) {
854 					hammer2_thr_delete(
855 						&pmp->xop_groups[j].thrs[i]);
856 				}
857 			}
858 			rchain = iroot->cluster.array[i].chain;
859 			iroot->cluster.array[i].chain = NULL;
860 			pmp->pfs_types[i] = 0;
861 			if (pmp->pfs_names[i]) {
862 				kfree(pmp->pfs_names[i], M_HAMMER2);
863 				pmp->pfs_names[i] = NULL;
864 			}
865 			if (rchain) {
866 				hammer2_chain_drop(rchain);
867 				/* focus hint */
868 				if (iroot->cluster.focus == rchain)
869 					iroot->cluster.focus = NULL;
870 			}
871 			pmp->pfs_hmps[i] = NULL;
872 		}
873 		hammer2_mtx_unlock(&iroot->lock);
874 
875 		/*
876 		 * Cleanup trailing chains.  Gaps may remain.
877 		 */
878 		for (i = HAMMER2_MAXCLUSTER - 1; i >= 0; --i) {
879 			if (pmp->pfs_hmps[i])
880 				break;
881 		}
882 		iroot->cluster.nchains = i + 1;
883 
884 		/*
885 		 * If the PMP has no elements remaining we can destroy it.
886 		 * (this will transition management threads from frozen->exit).
887 		 */
888 		if (iroot->cluster.nchains == 0) {
889 			/*
890 			 * If this was the hmp's spmp, we need to clean
891 			 * a little more stuff out.
892 			 */
893 			if (hmp->spmp == pmp) {
894 				hmp->spmp = NULL;
895 				hmp->vchain.pmp = NULL;
896 				hmp->fchain.pmp = NULL;
897 			}
898 
899 			/*
900 			 * Free the pmp and restart the loop
901 			 */
902 			KKASSERT(TAILQ_EMPTY(&pmp->syncq));
903 			KKASSERT(TAILQ_EMPTY(&pmp->depq));
904 			hammer2_pfsfree(pmp);
905 			goto again;
906 		}
907 
908 		/*
909 		 * If elements still remain we need to set the REMASTER
910 		 * flag and unfreeze it.
911 		 */
912 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
913 			if (pmp->pfs_hmps[i] == NULL)
914 				continue;
915 			hammer2_thr_remaster(&pmp->sync_thrs[i]);
916 			hammer2_thr_unfreeze(&pmp->sync_thrs[i]);
917 			if (pmp->xop_groups) {
918 				for (j = 0; j < hammer2_xopgroups; ++j) {
919 					hammer2_thr_remaster(
920 						&pmp->xop_groups[j].thrs[i]);
921 					hammer2_thr_unfreeze(
922 						&pmp->xop_groups[j].thrs[i]);
923 				}
924 			}
925 		}
926 	}
927 }
928 
929 /*
930  * Mount or remount HAMMER2 fileystem from physical media
931  *
932  *	mountroot
933  *		mp		mount point structure
934  *		path		NULL
935  *		data		<unused>
936  *		cred		<unused>
937  *
938  *	mount
939  *		mp		mount point structure
940  *		path		path to mount point
941  *		data		pointer to argument structure in user space
942  *			volume	volume path (device@LABEL form)
943  *			hflags	user mount flags
944  *		cred		user credentials
945  *
946  * RETURNS:	0	Success
947  *		!0	error number
948  */
949 static
950 int
951 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
952 		  struct ucred *cred)
953 {
954 	struct hammer2_mount_info info;
955 	hammer2_pfs_t *pmp;
956 	hammer2_pfs_t *spmp;
957 	hammer2_dev_t *hmp;
958 	hammer2_dev_t *force_local;
959 	hammer2_key_t key_next;
960 	hammer2_key_t key_dummy;
961 	hammer2_key_t lhc;
962 	struct vnode *devvp;
963 	struct nlookupdata nd;
964 	hammer2_chain_t *parent;
965 	hammer2_chain_t *chain;
966 	const hammer2_inode_data_t *ripdata;
967 	hammer2_blockref_t bref;
968 	struct file *fp;
969 	char devstr[MNAMELEN];
970 	size_t size;
971 	size_t done;
972 	char *dev;
973 	char *label;
974 	int ronly = 1;
975 	int error;
976 	int i;
977 
978 	hmp = NULL;
979 	pmp = NULL;
980 	dev = NULL;
981 	label = NULL;
982 	devvp = NULL;
983 
984 	if (path == NULL) {
985 		/*
986 		 * Root mount
987 		 */
988 		bzero(&info, sizeof(info));
989 		info.cluster_fd = -1;
990 		ksnprintf(devstr, sizeof(devstr), "%s",
991 			  mp->mnt_stat.f_mntfromname);
992 		kprintf("hammer2_mount: root '%s'\n", devstr);
993 		done = strlen(devstr) + 1;
994 	} else {
995 		/*
996 		 * Non-root mount or updating a mount
997 		 */
998 		error = copyin(data, &info, sizeof(info));
999 		if (error)
1000 			return (error);
1001 
1002 		error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
1003 		if (error)
1004 			return (error);
1005 		kprintf("hammer2_mount: '%s'\n", devstr);
1006 	}
1007 
1008 	/*
1009 	 * Extract device and label, automatically mount @BOOT, @ROOT, or @DATA
1010 	 * if no label specified, based on the partition id.  Error out if no
1011 	 * label or device (with partition id) is specified.  This is strictly
1012 	 * a convenience to match the default label created by newfs_hammer2,
1013 	 * our preference is that a label always be specified.
1014 	 *
1015 	 * NOTE: We allow 'mount @LABEL <blah>'... that is, a mount command
1016 	 *	 that does not specify a device, as long as some H2 label
1017 	 *	 has already been mounted from that device.  This makes
1018 	 *	 mounting snapshots a lot easier.
1019 	 */
1020 	dev = devstr;
1021 	label = strchr(devstr, '@');
1022 	if (label && ((label + 1) - dev) > done) {
1023 		kprintf("hammer2: mount: bad label %s/%zd\n",
1024 			devstr, done);
1025 		return (EINVAL);
1026 	}
1027 	if (label == NULL || label[1] == 0) {
1028 		char slice;
1029 
1030 		if (label == NULL)
1031 			label = devstr + strlen(devstr);
1032 		else
1033 			*label = '\0';		/* clean up trailing @ */
1034 
1035 		slice = label[-1];
1036 		switch(slice) {
1037 		case 'a':
1038 			label = "BOOT";
1039 			break;
1040 		case 'd':
1041 			label = "ROOT";
1042 			break;
1043 		default:
1044 			label = "DATA";
1045 			break;
1046 		}
1047 	} else {
1048 		*label = '\0';
1049 		label++;
1050 	}
1051 
1052 	kprintf("hammer2_mount: dev=\"%s\" label=\"%s\" rdonly=%d\n",
1053 		dev, label, (mp->mnt_flag & MNT_RDONLY));
1054 
1055 	if (mp->mnt_flag & MNT_UPDATE) {
1056 		/*
1057 		 * Update mount.  Note that pmp->iroot->cluster is
1058 		 * an inode-embedded cluster and thus cannot be
1059 		 * directly locked.
1060 		 *
1061 		 * XXX HAMMER2 needs to implement NFS export via
1062 		 *     mountctl.
1063 		 */
1064 		hammer2_cluster_t *cluster;
1065 
1066 		pmp = MPTOPMP(mp);
1067 		pmp->hflags = info.hflags;
1068 		cluster = &pmp->iroot->cluster;
1069 		for (i = 0; i < cluster->nchains; ++i) {
1070 			if (cluster->array[i].chain == NULL)
1071 				continue;
1072 			hmp = cluster->array[i].chain->hmp;
1073 			devvp = hmp->devvp;
1074 			error = hammer2_remount(hmp, mp, path,
1075 						devvp, cred);
1076 			if (error)
1077 				break;
1078 		}
1079 
1080 		return error;
1081 	}
1082 
1083 	/*
1084 	 * HMP device mount
1085 	 *
1086 	 * If a path is specified and dev is not an empty string, lookup the
1087 	 * name and verify that it referes to a block device.
1088 	 *
1089 	 * If a path is specified and dev is an empty string we fall through
1090 	 * and locate the label in the hmp search.
1091 	 */
1092 	if (path && *dev != 0) {
1093 		error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW);
1094 		if (error == 0)
1095 			error = nlookup(&nd);
1096 		if (error == 0)
1097 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp);
1098 		nlookup_done(&nd);
1099 	} else if (path == NULL) {
1100 		/* root mount */
1101 		cdev_t cdev = kgetdiskbyname(dev);
1102 		error = bdevvp(cdev, &devvp);
1103 		if (error)
1104 			kprintf("hammer2: cannot find '%s'\n", dev);
1105 	} else {
1106 		/*
1107 		 * We will locate the hmp using the label in the hmp loop.
1108 		 */
1109 		error = 0;
1110 	}
1111 
1112 	/*
1113 	 * Make sure its a block device.  Do not check to see if it is
1114 	 * already mounted until we determine that its a fresh H2 device.
1115 	 */
1116 	if (error == 0 && devvp) {
1117 		vn_isdisk(devvp, &error);
1118 	}
1119 
1120 	/*
1121 	 * Determine if the device has already been mounted.  After this
1122 	 * check hmp will be non-NULL if we are doing the second or more
1123 	 * hammer2 mounts from the same device.
1124 	 */
1125 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1126 	if (devvp) {
1127 		/*
1128 		 * Match the device.  Due to the way devfs works,
1129 		 * we may not be able to directly match the vnode pointer,
1130 		 * so also check to see if the underlying device matches.
1131 		 */
1132 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1133 			if (hmp->devvp == devvp)
1134 				break;
1135 			if (devvp->v_rdev &&
1136 			    hmp->devvp->v_rdev == devvp->v_rdev) {
1137 				break;
1138 			}
1139 		}
1140 
1141 		/*
1142 		 * If no match this may be a fresh H2 mount, make sure
1143 		 * the device is not mounted on anything else.
1144 		 */
1145 		if (hmp == NULL)
1146 			error = vfs_mountedon(devvp);
1147 	} else if (error == 0) {
1148 		/*
1149 		 * Match the label to a pmp already probed.
1150 		 */
1151 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
1152 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
1153 				if (pmp->pfs_names[i] &&
1154 				    strcmp(pmp->pfs_names[i], label) == 0) {
1155 					hmp = pmp->pfs_hmps[i];
1156 					break;
1157 				}
1158 			}
1159 			if (hmp)
1160 				break;
1161 		}
1162 		if (hmp == NULL)
1163 			error = ENOENT;
1164 	}
1165 
1166 	/*
1167 	 * Open the device if this isn't a secondary mount and construct
1168 	 * the H2 device mount (hmp).
1169 	 */
1170 	if (hmp == NULL) {
1171 		hammer2_chain_t *schain;
1172 		hammer2_xid_t xid;
1173 		hammer2_xop_head_t xop;
1174 
1175 		if (error == 0 && vcount(devvp) > 0) {
1176 			kprintf("Primary device already has references\n");
1177 			error = EBUSY;
1178 		}
1179 
1180 		/*
1181 		 * Now open the device
1182 		 */
1183 		if (error == 0) {
1184 			ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
1185 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1186 			error = vinvalbuf(devvp, V_SAVE, 0, 0);
1187 			if (error == 0) {
1188 				error = VOP_OPEN(devvp,
1189 					     (ronly ? FREAD : FREAD | FWRITE),
1190 					     FSCRED, NULL);
1191 			}
1192 			vn_unlock(devvp);
1193 		}
1194 		if (error && devvp) {
1195 			vrele(devvp);
1196 			devvp = NULL;
1197 		}
1198 		if (error) {
1199 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1200 			return error;
1201 		}
1202 		hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
1203 		ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", dev);
1204 		hmp->ronly = ronly;
1205 		hmp->devvp = devvp;
1206 		hmp->hflags = info.hflags & HMNT2_DEVFLAGS;
1207 		kmalloc_create(&hmp->mchain, "HAMMER2-chains");
1208 		TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
1209 		RB_INIT(&hmp->iotree);
1210 		spin_init(&hmp->io_spin, "h2mount_io");
1211 		spin_init(&hmp->list_spin, "h2mount_list");
1212 
1213 		lockinit(&hmp->vollk, "h2vol", 0, 0);
1214 		lockinit(&hmp->bulklk, "h2bulk", 0, 0);
1215 		lockinit(&hmp->bflock, "h2bflk", 0, 0);
1216 
1217 		/*
1218 		 * vchain setup. vchain.data is embedded.
1219 		 * vchain.refs is initialized and will never drop to 0.
1220 		 *
1221 		 * NOTE! voldata is not yet loaded.
1222 		 */
1223 		hmp->vchain.hmp = hmp;
1224 		hmp->vchain.refs = 1;
1225 		hmp->vchain.data = (void *)&hmp->voldata;
1226 		hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
1227 		hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1228 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1229 
1230 		hammer2_chain_core_init(&hmp->vchain);
1231 		/* hmp->vchain.u.xxx is left NULL */
1232 
1233 		/*
1234 		 * fchain setup.  fchain.data is embedded.
1235 		 * fchain.refs is initialized and will never drop to 0.
1236 		 *
1237 		 * The data is not used but needs to be initialized to
1238 		 * pass assertion muster.  We use this chain primarily
1239 		 * as a placeholder for the freemap's top-level RBTREE
1240 		 * so it does not interfere with the volume's topology
1241 		 * RBTREE.
1242 		 */
1243 		hmp->fchain.hmp = hmp;
1244 		hmp->fchain.refs = 1;
1245 		hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
1246 		hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
1247 		hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1248 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1249 		hmp->fchain.bref.methods =
1250 			HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
1251 			HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
1252 
1253 		hammer2_chain_core_init(&hmp->fchain);
1254 		/* hmp->fchain.u.xxx is left NULL */
1255 
1256 		/*
1257 		 * Install the volume header and initialize fields from
1258 		 * voldata.
1259 		 */
1260 		error = hammer2_install_volume_header(hmp);
1261 		if (error) {
1262 			hammer2_unmount_helper(mp, NULL, hmp);
1263 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1264 			hammer2_vfs_unmount(mp, MNT_FORCE);
1265 			return error;
1266 		}
1267 
1268 		/*
1269 		 * Really important to get these right or the flush and
1270 		 * teardown code will get confused.
1271 		 */
1272 		hmp->spmp = hammer2_pfsalloc(NULL, NULL, 0, NULL);
1273 		spmp = hmp->spmp;
1274 		spmp->pfs_hmps[0] = hmp;
1275 
1276 		/*
1277 		 * Dummy-up vchain and fchain's modify_tid.  mirror_tid
1278 		 * is inherited from the volume header.
1279 		 */
1280 		xid = 0;
1281 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1282 		hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
1283 		hmp->vchain.pmp = spmp;
1284 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1285 		hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
1286 		hmp->fchain.pmp = spmp;
1287 
1288 		/*
1289 		 * First locate the super-root inode, which is key 0
1290 		 * relative to the volume header's blockset.
1291 		 *
1292 		 * Then locate the root inode by scanning the directory keyspace
1293 		 * represented by the label.
1294 		 */
1295 		parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1296 		schain = hammer2_chain_lookup(&parent, &key_dummy,
1297 				      HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
1298 				      &error, 0);
1299 		hammer2_chain_lookup_done(parent);
1300 		if (schain == NULL) {
1301 			kprintf("hammer2_mount: invalid super-root\n");
1302 			hammer2_unmount_helper(mp, NULL, hmp);
1303 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1304 			hammer2_vfs_unmount(mp, MNT_FORCE);
1305 			return EINVAL;
1306 		}
1307 		if (schain->error) {
1308 			kprintf("hammer2_mount: error %s reading super-root\n",
1309 				hammer2_error_str(schain->error));
1310 			hammer2_chain_unlock(schain);
1311 			hammer2_chain_drop(schain);
1312 			schain = NULL;
1313 			hammer2_unmount_helper(mp, NULL, hmp);
1314 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1315 			hammer2_vfs_unmount(mp, MNT_FORCE);
1316 			return EINVAL;
1317 		}
1318 
1319 		/*
1320 		 * The super-root always uses an inode_tid of 1 when
1321 		 * creating PFSs.
1322 		 */
1323 		spmp->inode_tid = 1;
1324 		spmp->modify_tid = schain->bref.modify_tid + 1;
1325 
1326 		/*
1327 		 * Sanity-check schain's pmp and finish initialization.
1328 		 * Any chain belonging to the super-root topology should
1329 		 * have a NULL pmp (not even set to spmp).
1330 		 */
1331 		ripdata = &hammer2_chain_rdata(schain)->ipdata;
1332 		KKASSERT(schain->pmp == NULL);
1333 		spmp->pfs_clid = ripdata->meta.pfs_clid;
1334 
1335 		/*
1336 		 * Replace the dummy spmp->iroot with a real one.  It's
1337 		 * easier to just do a wholesale replacement than to try
1338 		 * to update the chain and fixup the iroot fields.
1339 		 *
1340 		 * The returned inode is locked with the supplied cluster.
1341 		 */
1342 		hammer2_dummy_xop_from_chain(&xop, schain);
1343 		hammer2_inode_drop(spmp->iroot);
1344 		spmp->iroot = NULL;
1345 		spmp->iroot = hammer2_inode_get(spmp, &xop, -1, -1);
1346 		spmp->spmp_hmp = hmp;
1347 		spmp->pfs_types[0] = ripdata->meta.pfs_type;
1348 		spmp->pfs_hmps[0] = hmp;
1349 		hammer2_inode_ref(spmp->iroot);
1350 		hammer2_inode_unlock(spmp->iroot);
1351 		hammer2_cluster_unlock(&xop.cluster);
1352 		hammer2_chain_drop(schain);
1353 		/* do not call hammer2_cluster_drop() on an embedded cluster */
1354 		schain = NULL;	/* now invalid */
1355 		/* leave spmp->iroot with one ref */
1356 
1357 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
1358 			error = hammer2_recovery(hmp);
1359 			if (error == 0)
1360 				error |= hammer2_fixup_pfses(hmp);
1361 			/* XXX do something with error */
1362 		}
1363 		hammer2_update_pmps(hmp);
1364 		hammer2_iocom_init(hmp);
1365 		hammer2_bulkfree_init(hmp);
1366 
1367 		/*
1368 		 * Ref the cluster management messaging descriptor.  The mount
1369 		 * program deals with the other end of the communications pipe.
1370 		 *
1371 		 * Root mounts typically do not supply one.
1372 		 */
1373 		if (info.cluster_fd >= 0) {
1374 			fp = holdfp(curthread, info.cluster_fd, -1);
1375 			if (fp) {
1376 				hammer2_cluster_reconnect(hmp, fp);
1377 			} else {
1378 				kprintf("hammer2_mount: bad cluster_fd!\n");
1379 			}
1380 		}
1381 	} else {
1382 		spmp = hmp->spmp;
1383 		if (info.hflags & HMNT2_DEVFLAGS) {
1384 			kprintf("hammer2: Warning: mount flags pertaining "
1385 				"to the whole device may only be specified "
1386 				"on the first mount of the device: %08x\n",
1387 				info.hflags & HMNT2_DEVFLAGS);
1388 		}
1389 	}
1390 
1391 	/*
1392 	 * Force local mount (disassociate all PFSs from their clusters).
1393 	 * Used primarily for debugging.
1394 	 */
1395 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1396 
1397 	/*
1398 	 * Lookup the mount point under the media-localized super-root.
1399 	 * Scanning hammer2_pfslist doesn't help us because it represents
1400 	 * PFS cluster ids which can aggregate several named PFSs together.
1401 	 *
1402 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1403 	 * up later on.
1404 	 */
1405 	hammer2_inode_lock(spmp->iroot, 0);
1406 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1407 	lhc = hammer2_dirhash(label, strlen(label));
1408 	chain = hammer2_chain_lookup(&parent, &key_next,
1409 				     lhc, lhc + HAMMER2_DIRHASH_LOMASK,
1410 				     &error, 0);
1411 	while (chain) {
1412 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
1413 		    strcmp(label, chain->data->ipdata.filename) == 0) {
1414 			break;
1415 		}
1416 		chain = hammer2_chain_next(&parent, chain, &key_next,
1417 					    key_next,
1418 					    lhc + HAMMER2_DIRHASH_LOMASK,
1419 					    &error, 0);
1420 	}
1421 	if (parent) {
1422 		hammer2_chain_unlock(parent);
1423 		hammer2_chain_drop(parent);
1424 	}
1425 	hammer2_inode_unlock(spmp->iroot);
1426 
1427 	/*
1428 	 * PFS could not be found?
1429 	 */
1430 	if (chain == NULL) {
1431 		if (error)
1432 			kprintf("hammer2_mount: PFS label I/O error\n");
1433 		else
1434 			kprintf("hammer2_mount: PFS label not found\n");
1435 		hammer2_unmount_helper(mp, NULL, hmp);
1436 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1437 		hammer2_vfs_unmount(mp, MNT_FORCE);
1438 
1439 		return EINVAL;
1440 	}
1441 
1442 	/*
1443 	 * Acquire the pmp structure (it should have already been allocated
1444 	 * via hammer2_update_pmps() so do not pass cluster in to add to
1445 	 * available chains).
1446 	 *
1447 	 * Check if the cluster has already been mounted.  A cluster can
1448 	 * only be mounted once, use null mounts to mount additional copies.
1449 	 */
1450 	if (chain->error) {
1451 		kprintf("hammer2_mount: PFS label I/O error\n");
1452 	} else {
1453 		ripdata = &chain->data->ipdata;
1454 		bref = chain->bref;
1455 		pmp = hammer2_pfsalloc(NULL, ripdata,
1456 				       bref.modify_tid, force_local);
1457 	}
1458 	hammer2_chain_unlock(chain);
1459 	hammer2_chain_drop(chain);
1460 
1461 	/*
1462 	 * Finish the mount
1463 	 */
1464         kprintf("hammer2_mount hmp=%p pmp=%p\n", hmp, pmp);
1465 
1466 	if (pmp->mp) {
1467 		kprintf("hammer2_mount: PFS already mounted!\n");
1468 		hammer2_unmount_helper(mp, NULL, hmp);
1469 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1470 		hammer2_vfs_unmount(mp, MNT_FORCE);
1471 
1472 		return EBUSY;
1473 	}
1474 
1475 	pmp->hflags = info.hflags;
1476         mp->mnt_flag |= MNT_LOCAL;
1477         mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;   /* all entry pts are SMP */
1478         mp->mnt_kern_flag |= MNTK_THR_SYNC;     /* new vsyncscan semantics */
1479 
1480         /*
1481          * required mount structure initializations
1482          */
1483         mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
1484         mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
1485 
1486         mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
1487         mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1488 
1489         /*
1490          * Optional fields
1491          */
1492         mp->mnt_iosize_max = MAXPHYS;
1493 
1494 	/*
1495 	 * Connect up mount pointers.
1496 	 */
1497 	hammer2_mount_helper(mp, pmp);
1498 
1499         lockmgr(&hammer2_mntlk, LK_RELEASE);
1500 
1501 	/*
1502 	 * Finish setup
1503 	 */
1504 	vfs_getnewfsid(mp);
1505 	vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
1506 	vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
1507 	vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
1508 
1509 	if (path) {
1510 		copyinstr(info.volume, mp->mnt_stat.f_mntfromname,
1511 			  MNAMELEN - 1, &size);
1512 		bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
1513 	} /* else root mount, already in there */
1514 
1515 	bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
1516 	if (path) {
1517 		copyinstr(path, mp->mnt_stat.f_mntonname,
1518 			  sizeof(mp->mnt_stat.f_mntonname) - 1,
1519 			  &size);
1520 	} else {
1521 		/* root mount */
1522 		mp->mnt_stat.f_mntonname[0] = '/';
1523 	}
1524 
1525 	/*
1526 	 * Initial statfs to prime mnt_stat.
1527 	 */
1528 	hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
1529 
1530 	return 0;
1531 }
1532 
1533 /*
1534  * Scan PFSs under the super-root and create hammer2_pfs structures.
1535  */
1536 static
1537 void
1538 hammer2_update_pmps(hammer2_dev_t *hmp)
1539 {
1540 	const hammer2_inode_data_t *ripdata;
1541 	hammer2_chain_t *parent;
1542 	hammer2_chain_t *chain;
1543 	hammer2_blockref_t bref;
1544 	hammer2_dev_t *force_local;
1545 	hammer2_pfs_t *spmp;
1546 	hammer2_pfs_t *pmp;
1547 	hammer2_key_t key_next;
1548 	int error;
1549 
1550 	/*
1551 	 * Force local mount (disassociate all PFSs from their clusters).
1552 	 * Used primarily for debugging.
1553 	 */
1554 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1555 
1556 	/*
1557 	 * Lookup mount point under the media-localized super-root.
1558 	 *
1559 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1560 	 * up later on.
1561 	 */
1562 	spmp = hmp->spmp;
1563 	hammer2_inode_lock(spmp->iroot, 0);
1564 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1565 	chain = hammer2_chain_lookup(&parent, &key_next,
1566 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
1567 					 &error, 0);
1568 	while (chain) {
1569 		if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
1570 			continue;
1571 		if (chain->error) {
1572 			kprintf("I/O error scanning PFS labels\n");
1573 		} else {
1574 			ripdata = &chain->data->ipdata;
1575 			bref = chain->bref;
1576 
1577 			pmp = hammer2_pfsalloc(chain, ripdata,
1578 					       bref.modify_tid, force_local);
1579 		}
1580 		chain = hammer2_chain_next(&parent, chain, &key_next,
1581 					   key_next, HAMMER2_KEY_MAX,
1582 					   &error, 0);
1583 	}
1584 	if (parent) {
1585 		hammer2_chain_unlock(parent);
1586 		hammer2_chain_drop(parent);
1587 	}
1588 	hammer2_inode_unlock(spmp->iroot);
1589 }
1590 
1591 static
1592 int
1593 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path __unused,
1594 		struct vnode *devvp, struct ucred *cred)
1595 {
1596 	int error;
1597 
1598 	if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) {
1599 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1600 		VOP_OPEN(devvp, FREAD | FWRITE, FSCRED, NULL);
1601 		vn_unlock(devvp);
1602 		error = hammer2_recovery(hmp);
1603 		if (error == 0)
1604 			error |= hammer2_fixup_pfses(hmp);
1605 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1606 		if (error == 0) {
1607 			VOP_CLOSE(devvp, FREAD, NULL);
1608 			hmp->ronly = 0;
1609 		} else {
1610 			VOP_CLOSE(devvp, FREAD | FWRITE, NULL);
1611 		}
1612 		vn_unlock(devvp);
1613 	} else {
1614 		error = 0;
1615 	}
1616 	return error;
1617 }
1618 
1619 static
1620 int
1621 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1622 {
1623 	hammer2_pfs_t *pmp;
1624 	int flags;
1625 	int error = 0;
1626 
1627 	pmp = MPTOPMP(mp);
1628 
1629 	if (pmp == NULL)
1630 		return(0);
1631 
1632 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1633 
1634 	/*
1635 	 * If mount initialization proceeded far enough we must flush
1636 	 * its vnodes and sync the underlying mount points.  Three syncs
1637 	 * are required to fully flush the filesystem (freemap updates lag
1638 	 * by one flush, and one extra for safety).
1639 	 */
1640 	if (mntflags & MNT_FORCE)
1641 		flags = FORCECLOSE;
1642 	else
1643 		flags = 0;
1644 	if (pmp->iroot) {
1645 		error = vflush(mp, 0, flags);
1646 		if (error)
1647 			goto failed;
1648 		hammer2_vfs_sync(mp, MNT_WAIT);
1649 		hammer2_vfs_sync(mp, MNT_WAIT);
1650 		hammer2_vfs_sync(mp, MNT_WAIT);
1651 	}
1652 
1653 	/*
1654 	 * Cleanup the frontend support XOPS threads
1655 	 */
1656 	hammer2_xop_helper_cleanup(pmp);
1657 
1658 	if (pmp->mp)
1659 		hammer2_unmount_helper(mp, pmp, NULL);
1660 
1661 	error = 0;
1662 failed:
1663 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1664 
1665 	return (error);
1666 }
1667 
1668 /*
1669  * Mount helper, hook the system mount into our PFS.
1670  * The mount lock is held.
1671  *
1672  * We must bump the mount_count on related devices for any
1673  * mounted PFSs.
1674  */
1675 static
1676 void
1677 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp)
1678 {
1679 	hammer2_cluster_t *cluster;
1680 	hammer2_chain_t *rchain;
1681 	int i;
1682 
1683         mp->mnt_data = (qaddr_t)pmp;
1684 	pmp->mp = mp;
1685 
1686 	/*
1687 	 * After pmp->mp is set we have to adjust hmp->mount_count.
1688 	 */
1689 	cluster = &pmp->iroot->cluster;
1690 	for (i = 0; i < cluster->nchains; ++i) {
1691 		rchain = cluster->array[i].chain;
1692 		if (rchain == NULL)
1693 			continue;
1694 		++rchain->hmp->mount_count;
1695 	}
1696 
1697 	/*
1698 	 * Create missing Xop threads
1699 	 */
1700 	hammer2_xop_helper_create(pmp);
1701 }
1702 
1703 /*
1704  * Mount helper, unhook the system mount from our PFS.
1705  * The mount lock is held.
1706  *
1707  * If hmp is supplied a mount responsible for being the first to open
1708  * the block device failed and the block device and all PFSs using the
1709  * block device must be cleaned up.
1710  *
1711  * If pmp is supplied multiple devices might be backing the PFS and each
1712  * must be disconnected.  This might not be the last PFS using some of the
1713  * underlying devices.  Also, we have to adjust our hmp->mount_count
1714  * accounting for the devices backing the pmp which is now undergoing an
1715  * unmount.
1716  */
1717 static
1718 void
1719 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp)
1720 {
1721 	hammer2_cluster_t *cluster;
1722 	hammer2_chain_t *rchain;
1723 	struct vnode *devvp;
1724 	int dumpcnt;
1725 	int ronly;
1726 	int i;
1727 
1728 	/*
1729 	 * If no device supplied this is a high-level unmount and we have to
1730 	 * to disconnect the mount, adjust mount_count, and locate devices
1731 	 * that might now have no mounts.
1732 	 */
1733 	if (pmp) {
1734 		KKASSERT(hmp == NULL);
1735 		KKASSERT((void *)(intptr_t)mp->mnt_data == pmp);
1736 		pmp->mp = NULL;
1737 		mp->mnt_data = NULL;
1738 
1739 		/*
1740 		 * After pmp->mp is cleared we have to account for
1741 		 * mount_count.
1742 		 */
1743 		cluster = &pmp->iroot->cluster;
1744 		for (i = 0; i < cluster->nchains; ++i) {
1745 			rchain = cluster->array[i].chain;
1746 			if (rchain == NULL)
1747 				continue;
1748 			--rchain->hmp->mount_count;
1749 			/* scrapping hmp now may invalidate the pmp */
1750 		}
1751 again:
1752 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1753 			if (hmp->mount_count == 0) {
1754 				hammer2_unmount_helper(NULL, NULL, hmp);
1755 				goto again;
1756 			}
1757 		}
1758 		return;
1759 	}
1760 
1761 	/*
1762 	 * Try to terminate the block device.  We can't terminate it if
1763 	 * there are still PFSs referencing it.
1764 	 */
1765 	if (hmp->mount_count)
1766 		return;
1767 
1768 	/*
1769 	 * Decomission the network before we start messing with the
1770 	 * device and PFS.
1771 	 */
1772 	hammer2_iocom_uninit(hmp);
1773 
1774 	hammer2_bulkfree_uninit(hmp);
1775 	hammer2_pfsfree_scan(hmp, 0);
1776 #if 0
1777 	hammer2_dev_exlock(hmp);	/* XXX order */
1778 #endif
1779 
1780 	/*
1781 	 * Cycle the volume data lock as a safety (probably not needed any
1782 	 * more).  To ensure everything is out we need to flush at least
1783 	 * three times.  (1) The running of the sideq can dirty the
1784 	 * filesystem, (2) A normal flush can dirty the freemap, and
1785 	 * (3) ensure that the freemap is fully synchronized.
1786 	 *
1787 	 * The next mount's recovery scan can clean everything up but we want
1788 	 * to leave the filesystem in a 100% clean state on a normal unmount.
1789 	 */
1790 #if 0
1791 	hammer2_voldata_lock(hmp);
1792 	hammer2_voldata_unlock(hmp);
1793 #endif
1794 
1795 	/*
1796 	 * Flush whatever is left.  Unmounted but modified PFS's might still
1797 	 * have some dirty chains on them.
1798 	 */
1799 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1800 	hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1801 
1802 	if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1803 		hammer2_voldata_modify(hmp);
1804 		hammer2_flush(&hmp->fchain, HAMMER2_FLUSH_TOP |
1805 					    HAMMER2_FLUSH_ALL);
1806 	}
1807 	hammer2_chain_unlock(&hmp->fchain);
1808 
1809 	if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1810 		hammer2_flush(&hmp->vchain, HAMMER2_FLUSH_TOP |
1811 					    HAMMER2_FLUSH_ALL);
1812 	}
1813 	hammer2_chain_unlock(&hmp->vchain);
1814 
1815 	if ((hmp->vchain.flags | hmp->fchain.flags) &
1816 	    HAMMER2_CHAIN_FLUSH_MASK) {
1817 		kprintf("hammer2_unmount: chains left over "
1818 			"after final sync\n");
1819 		kprintf("    vchain %08x\n", hmp->vchain.flags);
1820 		kprintf("    fchain %08x\n", hmp->fchain.flags);
1821 
1822 		if (hammer2_debug & 0x0010)
1823 			Debugger("entered debugger");
1824 	}
1825 
1826 	hammer2_pfsfree_scan(hmp, 1);
1827 
1828 	KKASSERT(hmp->spmp == NULL);
1829 
1830 	/*
1831 	 * Finish up with the device vnode
1832 	 */
1833 	if ((devvp = hmp->devvp) != NULL) {
1834 		ronly = hmp->ronly;
1835 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1836 		kprintf("hammer2_unmount(A): devvp %s rbdirty %p ronly=%d\n",
1837 			hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree),
1838 			ronly);
1839 		vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0);
1840 		kprintf("hammer2_unmount(B): devvp %s rbdirty %p\n",
1841 			hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree));
1842 		hmp->devvp = NULL;
1843 		VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL);
1844 		vn_unlock(devvp);
1845 		vrele(devvp);
1846 		devvp = NULL;
1847 	}
1848 
1849 	/*
1850 	 * Clear vchain/fchain flags that might prevent final cleanup
1851 	 * of these chains.
1852 	 */
1853 	if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1854 		atomic_add_long(&hammer2_count_modified_chains, -1);
1855 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1856 		hammer2_pfs_memory_wakeup(hmp->vchain.pmp, -1);
1857 	}
1858 	if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1859 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_UPDATE);
1860 	}
1861 
1862 	if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1863 		atomic_add_long(&hammer2_count_modified_chains, -1);
1864 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_MODIFIED);
1865 		hammer2_pfs_memory_wakeup(hmp->fchain.pmp, -1);
1866 	}
1867 	if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1868 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_UPDATE);
1869 	}
1870 
1871 	/*
1872 	 * Final drop of embedded freemap root chain to
1873 	 * clean up fchain.core (fchain structure is not
1874 	 * flagged ALLOCATED so it is cleaned out and then
1875 	 * left to rot).
1876 	 */
1877 	hammer2_chain_drop(&hmp->fchain);
1878 
1879 	/*
1880 	 * Final drop of embedded volume root chain to clean
1881 	 * up vchain.core (vchain structure is not flagged
1882 	 * ALLOCATED so it is cleaned out and then left to
1883 	 * rot).
1884 	 */
1885 	dumpcnt = 50;
1886 	hammer2_dump_chain(&hmp->vchain, 0, &dumpcnt, 'v', (u_int)-1);
1887 	dumpcnt = 50;
1888 	hammer2_dump_chain(&hmp->fchain, 0, &dumpcnt, 'f', (u_int)-1);
1889 #if 0
1890 	hammer2_dev_unlock(hmp);
1891 #endif
1892 	hammer2_chain_drop(&hmp->vchain);
1893 
1894 	hammer2_io_cleanup(hmp, &hmp->iotree);
1895 	if (hmp->iofree_count) {
1896 		kprintf("io_cleanup: %d I/O's left hanging\n",
1897 			hmp->iofree_count);
1898 	}
1899 
1900 	TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1901 	kmalloc_destroy(&hmp->mchain);
1902 	kfree(hmp, M_HAMMER2);
1903 }
1904 
1905 int
1906 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1907 		 ino_t ino, struct vnode **vpp)
1908 {
1909 	hammer2_xop_lookup_t *xop;
1910 	hammer2_pfs_t *pmp;
1911 	hammer2_inode_t *ip;
1912 	hammer2_tid_t inum;
1913 	int error;
1914 
1915 	inum = (hammer2_tid_t)ino & HAMMER2_DIRHASH_USERMSK;
1916 
1917 	error = 0;
1918 	pmp = MPTOPMP(mp);
1919 
1920 	/*
1921 	 * Easy if we already have it cached
1922 	 */
1923 	ip = hammer2_inode_lookup(pmp, inum);
1924 	if (ip) {
1925 		hammer2_inode_lock(ip, HAMMER2_RESOLVE_SHARED);
1926 		*vpp = hammer2_igetv(ip, &error);
1927 		hammer2_inode_unlock(ip);
1928 		hammer2_inode_drop(ip);		/* from lookup */
1929 
1930 		return error;
1931 	}
1932 
1933 	/*
1934 	 * Otherwise we have to find the inode
1935 	 */
1936 	xop = hammer2_xop_alloc(pmp->iroot, 0);
1937 	xop->lhc = inum;
1938 	hammer2_xop_start(&xop->head, &hammer2_lookup_desc);
1939 	error = hammer2_xop_collect(&xop->head, 0);
1940 
1941 	if (error == 0)
1942 		ip = hammer2_inode_get(pmp, &xop->head, -1, -1);
1943 	hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1944 
1945 	if (ip) {
1946 		*vpp = hammer2_igetv(ip, &error);
1947 		hammer2_inode_unlock(ip);
1948 	} else {
1949 		*vpp = NULL;
1950 		error = ENOENT;
1951 	}
1952 	return (error);
1953 }
1954 
1955 static
1956 int
1957 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1958 {
1959 	hammer2_pfs_t *pmp;
1960 	struct vnode *vp;
1961 	int error;
1962 
1963 	pmp = MPTOPMP(mp);
1964 	if (pmp->iroot == NULL) {
1965 		kprintf("hammer2 (%s): no root inode\n",
1966 			mp->mnt_stat.f_mntfromname);
1967 		*vpp = NULL;
1968 		return EINVAL;
1969 	}
1970 
1971 	error = 0;
1972 	hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1973 
1974 	while (pmp->inode_tid == 0) {
1975 		hammer2_xop_ipcluster_t *xop;
1976 		const hammer2_inode_meta_t *meta;
1977 
1978 		xop = hammer2_xop_alloc(pmp->iroot, HAMMER2_XOP_MODIFYING);
1979 		hammer2_xop_start(&xop->head, &hammer2_ipcluster_desc);
1980 		error = hammer2_xop_collect(&xop->head, 0);
1981 
1982 		if (error == 0) {
1983 			meta = &hammer2_xop_gdata(&xop->head)->ipdata.meta;
1984 			pmp->iroot->meta = *meta;
1985 			pmp->inode_tid = meta->pfs_inum + 1;
1986 			hammer2_xop_pdata(&xop->head);
1987 			/* meta invalid */
1988 
1989 			if (pmp->inode_tid < HAMMER2_INODE_START)
1990 				pmp->inode_tid = HAMMER2_INODE_START;
1991 			pmp->modify_tid =
1992 				xop->head.cluster.focus->bref.modify_tid + 1;
1993 #if 0
1994 			kprintf("PFS: Starting inode %jd\n",
1995 				(intmax_t)pmp->inode_tid);
1996 			kprintf("PMP focus good set nextino=%ld mod=%016jx\n",
1997 				pmp->inode_tid, pmp->modify_tid);
1998 #endif
1999 			wakeup(&pmp->iroot);
2000 
2001 			hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2002 
2003 			/*
2004 			 * Prime the mount info.
2005 			 */
2006 			hammer2_vfs_statfs(mp, &mp->mnt_stat, NULL);
2007 			break;
2008 		}
2009 
2010 		/*
2011 		 * Loop, try again
2012 		 */
2013 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2014 		hammer2_inode_unlock(pmp->iroot);
2015 		error = tsleep(&pmp->iroot, PCATCH, "h2root", hz);
2016 		hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
2017 		if (error == EINTR)
2018 			break;
2019 	}
2020 
2021 	if (error) {
2022 		hammer2_inode_unlock(pmp->iroot);
2023 		*vpp = NULL;
2024 	} else {
2025 		vp = hammer2_igetv(pmp->iroot, &error);
2026 		hammer2_inode_unlock(pmp->iroot);
2027 		*vpp = vp;
2028 	}
2029 
2030 	return (error);
2031 }
2032 
2033 /*
2034  * Filesystem status
2035  *
2036  * XXX incorporate ipdata->meta.inode_quota and data_quota
2037  */
2038 static
2039 int
2040 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
2041 {
2042 	hammer2_pfs_t *pmp;
2043 	hammer2_dev_t *hmp;
2044 	hammer2_blockref_t bref;
2045 	struct statfs tmp;
2046 	int i;
2047 
2048 	/*
2049 	 * NOTE: iroot might not have validated the cluster yet.
2050 	 */
2051 	pmp = MPTOPMP(mp);
2052 
2053 	bzero(&tmp, sizeof(tmp));
2054 
2055 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2056 		hmp = pmp->pfs_hmps[i];
2057 		if (hmp == NULL)
2058 			continue;
2059 		if (pmp->iroot->cluster.array[i].chain)
2060 			bref = pmp->iroot->cluster.array[i].chain->bref;
2061 		else
2062 			bzero(&bref, sizeof(bref));
2063 
2064 		tmp.f_files = bref.embed.stats.inode_count;
2065 		tmp.f_ffree = 0;
2066 		tmp.f_blocks = hmp->voldata.allocator_size /
2067 			       mp->mnt_vstat.f_bsize;
2068 		tmp.f_bfree = hmp->voldata.allocator_free /
2069 			      mp->mnt_vstat.f_bsize;
2070 		tmp.f_bavail = tmp.f_bfree;
2071 
2072 		if (cred && cred->cr_uid != 0) {
2073 			uint64_t adj;
2074 
2075 			/* 5% */
2076 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2077 			tmp.f_blocks -= adj;
2078 			tmp.f_bfree -= adj;
2079 			tmp.f_bavail -= adj;
2080 		}
2081 
2082 		mp->mnt_stat.f_blocks = tmp.f_blocks;
2083 		mp->mnt_stat.f_bfree = tmp.f_bfree;
2084 		mp->mnt_stat.f_bavail = tmp.f_bavail;
2085 		mp->mnt_stat.f_files = tmp.f_files;
2086 		mp->mnt_stat.f_ffree = tmp.f_ffree;
2087 
2088 		*sbp = mp->mnt_stat;
2089 	}
2090 	return (0);
2091 }
2092 
2093 static
2094 int
2095 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
2096 {
2097 	hammer2_pfs_t *pmp;
2098 	hammer2_dev_t *hmp;
2099 	hammer2_blockref_t bref;
2100 	struct statvfs tmp;
2101 	int i;
2102 
2103 	/*
2104 	 * NOTE: iroot might not have validated the cluster yet.
2105 	 */
2106 	pmp = MPTOPMP(mp);
2107 	bzero(&tmp, sizeof(tmp));
2108 
2109 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2110 		hmp = pmp->pfs_hmps[i];
2111 		if (hmp == NULL)
2112 			continue;
2113 		if (pmp->iroot->cluster.array[i].chain)
2114 			bref = pmp->iroot->cluster.array[i].chain->bref;
2115 		else
2116 			bzero(&bref, sizeof(bref));
2117 
2118 		tmp.f_files = bref.embed.stats.inode_count;
2119 		tmp.f_ffree = 0;
2120 		tmp.f_blocks = hmp->voldata.allocator_size /
2121 			       mp->mnt_vstat.f_bsize;
2122 		tmp.f_bfree = hmp->voldata.allocator_free /
2123 			      mp->mnt_vstat.f_bsize;
2124 		tmp.f_bavail = tmp.f_bfree;
2125 
2126 		if (cred && cred->cr_uid != 0) {
2127 			uint64_t adj;
2128 
2129 			/* 5% */
2130 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2131 			tmp.f_blocks -= adj;
2132 			tmp.f_bfree -= adj;
2133 			tmp.f_bavail -= adj;
2134 		}
2135 
2136 		mp->mnt_vstat.f_blocks = tmp.f_blocks;
2137 		mp->mnt_vstat.f_bfree = tmp.f_bfree;
2138 		mp->mnt_vstat.f_bavail = tmp.f_bavail;
2139 		mp->mnt_vstat.f_files = tmp.f_files;
2140 		mp->mnt_vstat.f_ffree = tmp.f_ffree;
2141 
2142 		*sbp = mp->mnt_vstat;
2143 	}
2144 	return (0);
2145 }
2146 
2147 /*
2148  * Mount-time recovery (RW mounts)
2149  *
2150  * Updates to the free block table are allowed to lag flushes by one
2151  * transaction.  In case of a crash, then on a fresh mount we must do an
2152  * incremental scan of the last committed transaction id and make sure that
2153  * all related blocks have been marked allocated.
2154  *
2155  * The super-root topology and each PFS has its own transaction id domain,
2156  * so we must track PFS boundary transitions.
2157  */
2158 struct hammer2_recovery_elm {
2159 	TAILQ_ENTRY(hammer2_recovery_elm) entry;
2160 	hammer2_chain_t *chain;
2161 	hammer2_tid_t sync_tid;
2162 };
2163 
2164 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
2165 
2166 struct hammer2_recovery_info {
2167 	struct hammer2_recovery_list list;
2168 	hammer2_tid_t	mtid;
2169 	int	depth;
2170 };
2171 
2172 static int hammer2_recovery_scan(hammer2_dev_t *hmp,
2173 			hammer2_chain_t *parent,
2174 			struct hammer2_recovery_info *info,
2175 			hammer2_tid_t sync_tid);
2176 
2177 #define HAMMER2_RECOVERY_MAXDEPTH	10
2178 
2179 static
2180 int
2181 hammer2_recovery(hammer2_dev_t *hmp)
2182 {
2183 	struct hammer2_recovery_info info;
2184 	struct hammer2_recovery_elm *elm;
2185 	hammer2_chain_t *parent;
2186 	hammer2_tid_t sync_tid;
2187 	hammer2_tid_t mirror_tid;
2188 	int error;
2189 
2190 	hammer2_trans_init(hmp->spmp, 0);
2191 
2192 	sync_tid = hmp->voldata.freemap_tid;
2193 	mirror_tid = hmp->voldata.mirror_tid;
2194 
2195 	kprintf("hammer2 mount \"%s\": ", hmp->devrepname);
2196 	if (sync_tid >= mirror_tid) {
2197 		kprintf(" no recovery needed\n");
2198 	} else {
2199 		kprintf(" freemap recovery %016jx-%016jx\n",
2200 			sync_tid + 1, mirror_tid);
2201 	}
2202 
2203 	TAILQ_INIT(&info.list);
2204 	info.depth = 0;
2205 	parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
2206 	error = hammer2_recovery_scan(hmp, parent, &info, sync_tid);
2207 	hammer2_chain_lookup_done(parent);
2208 
2209 	while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
2210 		TAILQ_REMOVE(&info.list, elm, entry);
2211 		parent = elm->chain;
2212 		sync_tid = elm->sync_tid;
2213 		kfree(elm, M_HAMMER2);
2214 
2215 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2216 		error |= hammer2_recovery_scan(hmp, parent, &info,
2217 					      hmp->voldata.freemap_tid);
2218 		hammer2_chain_unlock(parent);
2219 		hammer2_chain_drop(parent);	/* drop elm->chain ref */
2220 	}
2221 
2222 	hammer2_trans_done(hmp->spmp, 0);
2223 
2224 	return error;
2225 }
2226 
2227 static
2228 int
2229 hammer2_recovery_scan(hammer2_dev_t *hmp, hammer2_chain_t *parent,
2230 		      struct hammer2_recovery_info *info,
2231 		      hammer2_tid_t sync_tid)
2232 {
2233 	const hammer2_inode_data_t *ripdata;
2234 	hammer2_chain_t *chain;
2235 	hammer2_blockref_t bref;
2236 	int tmp_error;
2237 	int rup_error;
2238 	int error;
2239 	int first;
2240 
2241 	/*
2242 	 * Adjust freemap to ensure that the block(s) are marked allocated.
2243 	 */
2244 	if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
2245 		hammer2_freemap_adjust(hmp, &parent->bref,
2246 				       HAMMER2_FREEMAP_DORECOVER);
2247 	}
2248 
2249 	/*
2250 	 * Check type for recursive scan
2251 	 */
2252 	switch(parent->bref.type) {
2253 	case HAMMER2_BREF_TYPE_VOLUME:
2254 		/* data already instantiated */
2255 		break;
2256 	case HAMMER2_BREF_TYPE_INODE:
2257 		/*
2258 		 * Must instantiate data for DIRECTDATA test and also
2259 		 * for recursion.
2260 		 */
2261 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2262 		ripdata = &hammer2_chain_rdata(parent)->ipdata;
2263 		if (ripdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2264 			/* not applicable to recovery scan */
2265 			hammer2_chain_unlock(parent);
2266 			return 0;
2267 		}
2268 		hammer2_chain_unlock(parent);
2269 		break;
2270 	case HAMMER2_BREF_TYPE_INDIRECT:
2271 		/*
2272 		 * Must instantiate data for recursion
2273 		 */
2274 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2275 		hammer2_chain_unlock(parent);
2276 		break;
2277 	case HAMMER2_BREF_TYPE_DIRENT:
2278 	case HAMMER2_BREF_TYPE_DATA:
2279 	case HAMMER2_BREF_TYPE_FREEMAP:
2280 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2281 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2282 		/* not applicable to recovery scan */
2283 		return 0;
2284 		break;
2285 	default:
2286 		return HAMMER2_ERROR_BADBREF;
2287 	}
2288 
2289 	/*
2290 	 * Defer operation if depth limit reached or if we are crossing a
2291 	 * PFS boundary.
2292 	 */
2293 	if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) {
2294 		struct hammer2_recovery_elm *elm;
2295 
2296 		elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2297 		elm->chain = parent;
2298 		elm->sync_tid = sync_tid;
2299 		hammer2_chain_ref(parent);
2300 		TAILQ_INSERT_TAIL(&info->list, elm, entry);
2301 		/* unlocked by caller */
2302 
2303 		return(0);
2304 	}
2305 
2306 
2307 	/*
2308 	 * Recursive scan of the last flushed transaction only.  We are
2309 	 * doing this without pmp assignments so don't leave the chains
2310 	 * hanging around after we are done with them.
2311 	 *
2312 	 * error	Cumulative error this level only
2313 	 * rup_error	Cumulative error for recursion
2314 	 * tmp_error	Specific non-cumulative recursion error
2315 	 */
2316 	chain = NULL;
2317 	first = 1;
2318 	rup_error = 0;
2319 	error = 0;
2320 
2321 	for (;;) {
2322 		error |= hammer2_chain_scan(parent, &chain, &bref,
2323 					    &first,
2324 					    HAMMER2_LOOKUP_NODATA);
2325 
2326 		/*
2327 		 * Problem during scan or EOF
2328 		 */
2329 		if (error)
2330 			break;
2331 
2332 		/*
2333 		 * If this is a leaf
2334 		 */
2335 		if (chain == NULL) {
2336 			if (bref.mirror_tid > sync_tid) {
2337 				hammer2_freemap_adjust(hmp, &bref,
2338 						     HAMMER2_FREEMAP_DORECOVER);
2339 			}
2340 			continue;
2341 		}
2342 
2343 		/*
2344 		 * This may or may not be a recursive node.
2345 		 */
2346 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2347 		if (bref.mirror_tid > sync_tid) {
2348 			++info->depth;
2349 			tmp_error = hammer2_recovery_scan(hmp, chain,
2350 							   info, sync_tid);
2351 			--info->depth;
2352 		} else {
2353 			tmp_error = 0;
2354 		}
2355 
2356 		/*
2357 		 * Flush the recovery at the PFS boundary to stage it for
2358 		 * the final flush of the super-root topology.
2359 		 */
2360 		if (tmp_error == 0 &&
2361 		    (bref.flags & HAMMER2_BREF_FLAG_PFSROOT) &&
2362 		    (chain->flags & HAMMER2_CHAIN_ONFLUSH)) {
2363 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2364 					     HAMMER2_FLUSH_ALL);
2365 		}
2366 		rup_error |= tmp_error;
2367 	}
2368 	return ((error | rup_error) & ~HAMMER2_ERROR_EOF);
2369 }
2370 
2371 /*
2372  * This fixes up an error introduced in earlier H2 implementations where
2373  * moving a PFS inode into an indirect block wound up causing the
2374  * HAMMER2_BREF_FLAG_PFSROOT flag in the bref to get cleared.
2375  */
2376 static
2377 int
2378 hammer2_fixup_pfses(hammer2_dev_t *hmp)
2379 {
2380 	const hammer2_inode_data_t *ripdata;
2381 	hammer2_chain_t *parent;
2382 	hammer2_chain_t *chain;
2383 	hammer2_key_t key_next;
2384 	hammer2_pfs_t *spmp;
2385 	int error;
2386 
2387 	error = 0;
2388 
2389 	/*
2390 	 * Lookup mount point under the media-localized super-root.
2391 	 *
2392 	 * cluster->pmp will incorrectly point to spmp and must be fixed
2393 	 * up later on.
2394 	 */
2395 	spmp = hmp->spmp;
2396 	hammer2_inode_lock(spmp->iroot, 0);
2397 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
2398 	chain = hammer2_chain_lookup(&parent, &key_next,
2399 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
2400 					 &error, 0);
2401 	while (chain) {
2402 		if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
2403 			continue;
2404 		if (chain->error) {
2405 			kprintf("I/O error scanning PFS labels\n");
2406 			error |= chain->error;
2407 		} else if ((chain->bref.flags &
2408 			    HAMMER2_BREF_FLAG_PFSROOT) == 0) {
2409 			int error2;
2410 
2411 			ripdata = &chain->data->ipdata;
2412 			hammer2_trans_init(hmp->spmp, 0);
2413 			error2 = hammer2_chain_modify(chain,
2414 						      chain->bref.modify_tid,
2415 						      0, 0);
2416 			if (error2 == 0) {
2417 				kprintf("hammer2: Correct mis-flagged PFS %s\n",
2418 					ripdata->filename);
2419 				chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2420 			} else {
2421 				error |= error2;
2422 			}
2423 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2424 					     HAMMER2_FLUSH_ALL);
2425 			hammer2_trans_done(hmp->spmp, 0);
2426 		}
2427 		chain = hammer2_chain_next(&parent, chain, &key_next,
2428 					   key_next, HAMMER2_KEY_MAX,
2429 					   &error, 0);
2430 	}
2431 	if (parent) {
2432 		hammer2_chain_unlock(parent);
2433 		hammer2_chain_drop(parent);
2434 	}
2435 	hammer2_inode_unlock(spmp->iroot);
2436 
2437 	return error;
2438 }
2439 
2440 /*
2441  * Sync a mount point; this is called periodically on a per-mount basis from
2442  * the filesystem syncer, and whenever a user issues a sync.
2443  */
2444 int
2445 hammer2_vfs_sync(struct mount *mp, int waitfor)
2446 {
2447 	int error;
2448 
2449 	error = hammer2_vfs_sync_pmp(MPTOPMP(mp), waitfor);
2450 
2451 	return error;
2452 }
2453 
2454 /*
2455  * Because frontend operations lock vnodes before we get a chance to
2456  * lock the related inode, we can't just acquire a vnode lock without
2457  * risking a deadlock.  The frontend may be holding a vnode lock while
2458  * also blocked on our SYNCQ flag while trying to get the inode lock.
2459  *
2460  * To deal with this situation we can check the vnode lock situation
2461  * after locking the inode and perform a work-around.
2462  */
2463 int
2464 hammer2_vfs_sync_pmp(hammer2_pfs_t *pmp, int waitfor)
2465 {
2466 	struct mount *mp;
2467 	/*hammer2_xop_flush_t *xop;*/
2468 	/*struct hammer2_sync_info info;*/
2469 	hammer2_inode_t *ip;
2470 	hammer2_depend_t *depend;
2471 	hammer2_depend_t *depend_next;
2472 	struct vnode *vp;
2473 	uint32_t pass2;
2474 	int error;
2475 	int wakecount;
2476 	int dorestart;
2477 
2478 	mp = pmp->mp;
2479 
2480 	/*
2481 	 * Move all inodes on sideq to syncq.  This will clear sideq.
2482 	 * This should represent all flushable inodes.  These inodes
2483 	 * will already have refs due to being on syncq or sideq.  We
2484 	 * must do this all at once with the spinlock held to ensure that
2485 	 * all inode dependencies are part of the same flush.
2486 	 *
2487 	 * We should be able to do this asynchronously from frontend
2488 	 * operations because we will be locking the inodes later on
2489 	 * to actually flush them, and that will partition any frontend
2490 	 * op using the same inode.  Either it has already locked the
2491 	 * inode and we will block, or it has not yet locked the inode
2492 	 * and it will block until we are finished flushing that inode.
2493 	 *
2494 	 * When restarting, only move the inodes flagged as PASS2 from
2495 	 * SIDEQ to SYNCQ.  PASS2 propagation by inode_lock4() and
2496 	 * inode_depend() are atomic with the spin-lock.
2497 	 */
2498 	hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
2499 #ifdef HAMMER2_DEBUG_SYNC
2500 	kprintf("FILESYSTEM SYNC BOUNDARY\n");
2501 #endif
2502 	dorestart = 0;
2503 
2504 	/*
2505 	 * Move inodes from depq to syncq, releasing the related
2506 	 * depend structures.
2507 	 */
2508 restart:
2509 #ifdef HAMMER2_DEBUG_SYNC
2510 	kprintf("FILESYSTEM SYNC RESTART (%d)\n", dorestart);
2511 #endif
2512 	hammer2_trans_setflags(pmp, 0/*HAMMER2_TRANS_COPYQ*/);
2513 	hammer2_trans_clearflags(pmp, HAMMER2_TRANS_RESCAN);
2514 
2515 	/*
2516 	 * Move inodes from depq to syncq.  When restarting, only depq's
2517 	 * marked pass2 are moved.
2518 	 */
2519 	hammer2_spin_ex(&pmp->list_spin);
2520 	depend_next = TAILQ_FIRST(&pmp->depq);
2521 	wakecount = 0;
2522 
2523 	while ((depend = depend_next) != NULL) {
2524 		depend_next = TAILQ_NEXT(depend, entry);
2525 		if (dorestart && depend->pass2 == 0)
2526 			continue;
2527 		TAILQ_FOREACH(ip, &depend->sideq, entry) {
2528 			KKASSERT(ip->flags & HAMMER2_INODE_SIDEQ);
2529 			atomic_set_int(&ip->flags, HAMMER2_INODE_SYNCQ);
2530 			atomic_clear_int(&ip->flags, HAMMER2_INODE_SIDEQ);
2531 			ip->depend = NULL;
2532 		}
2533 
2534 		/*
2535 		 * NOTE: pmp->sideq_count includes both sideq and syncq
2536 		 */
2537 		TAILQ_CONCAT(&pmp->syncq, &depend->sideq, entry);
2538 
2539 		depend->count = 0;
2540 		depend->pass2 = 0;
2541 		TAILQ_REMOVE(&pmp->depq, depend, entry);
2542 	}
2543 
2544 	hammer2_spin_unex(&pmp->list_spin);
2545 	hammer2_trans_clearflags(pmp, /*HAMMER2_TRANS_COPYQ |*/
2546 				      HAMMER2_TRANS_WAITING);
2547 	dorestart = 0;
2548 
2549 	/*
2550 	 * sideq_count may have dropped enough to allow us to unstall
2551 	 * the frontend.
2552 	 */
2553 	hammer2_pfs_memory_wakeup(pmp, 0);
2554 
2555 	/*
2556 	 * Now run through all inodes on syncq.
2557 	 *
2558 	 * Flush transactions only interlock with other flush transactions.
2559 	 * Any conflicting frontend operations will block on the inode, but
2560 	 * may hold a vnode lock while doing so.
2561 	 */
2562 	hammer2_spin_ex(&pmp->list_spin);
2563 	while ((ip = TAILQ_FIRST(&pmp->syncq)) != NULL) {
2564 		/*
2565 		 * Remove the inode from the SYNCQ, transfer the syncq ref
2566 		 * to us.  We must clear SYNCQ to allow any potential
2567 		 * front-end deadlock to proceed.  We must set PASS2 so
2568 		 * the dependency code knows what to do.
2569 		 */
2570 		pass2 = ip->flags;
2571 		cpu_ccfence();
2572 		if (atomic_cmpset_int(&ip->flags,
2573 			      pass2,
2574 			      (pass2 & ~(HAMMER2_INODE_SYNCQ |
2575 					 HAMMER2_INODE_SYNCQ_WAKEUP)) |
2576 			      HAMMER2_INODE_SYNCQ_PASS2) == 0) {
2577 			continue;
2578 		}
2579 		TAILQ_REMOVE(&pmp->syncq, ip, entry);
2580 		--pmp->sideq_count;
2581 		hammer2_spin_unex(&pmp->list_spin);
2582 
2583 		/*
2584 		 * Tickle anyone waiting on ip->flags or the hysteresis
2585 		 * on the dirty inode count.
2586 		 */
2587 		if (pass2 & HAMMER2_INODE_SYNCQ_WAKEUP)
2588 			wakeup(&ip->flags);
2589 		if (++wakecount >= hammer2_limit_dirty_inodes / 20 + 1) {
2590 			wakecount = 0;
2591 			hammer2_pfs_memory_wakeup(pmp, 0);
2592 		}
2593 
2594 		/*
2595 		 * Relock the inode, and we inherit a ref from the above.
2596 		 * We will check for a race after we acquire the vnode.
2597 		 */
2598 		hammer2_mtx_ex(&ip->lock);
2599 
2600 		/*
2601 		 * We need the vp in order to vfsync() dirty buffers, so if
2602 		 * one isn't attached we can skip it.
2603 		 *
2604 		 * Ordering the inode lock and then the vnode lock has the
2605 		 * potential to deadlock.  If we had left SYNCQ set that could
2606 		 * also deadlock us against the frontend even if we don't hold
2607 		 * any locks, but the latter is not a problem now since we
2608 		 * cleared it.  igetv will temporarily release the inode lock
2609 		 * in a safe manner to work-around the deadlock.
2610 		 *
2611 		 * Unfortunately it is still possible to deadlock when the
2612 		 * frontend obtains multiple inode locks, because all the
2613 		 * related vnodes are already locked (nor can the vnode locks
2614 		 * be released and reacquired without messing up RECLAIM and
2615 		 * INACTIVE sequencing).
2616 		 *
2617 		 * The solution for now is to move the vp back onto SIDEQ
2618 		 * and set dorestart, which will restart the flush after we
2619 		 * exhaust the current SYNCQ.  Note that additional
2620 		 * dependencies may build up, so we definitely need to move
2621 		 * the whole SIDEQ back to SYNCQ when we restart.
2622 		 */
2623 		vp = ip->vp;
2624 		if (vp) {
2625 			if (vget(vp, LK_EXCLUSIVE|LK_NOWAIT)) {
2626 				/*
2627 				 * Failed to get the vnode, requeue the inode
2628 				 * (PASS2 is already set so it will be found
2629 				 * again on the restart).
2630 				 *
2631 				 * Then unlock, possibly sleep, and retry
2632 				 * later.  We sleep if PASS2 was *previously*
2633 				 * set, before we set it again above.
2634 				 */
2635 				vp = NULL;
2636 				dorestart = 1;
2637 #ifdef HAMMER2_DEBUG_SYNC
2638 				kprintf("inum %ld (sync delayed by vnode)\n",
2639 					(long)ip->meta.inum);
2640 #endif
2641 				hammer2_inode_delayed_sideq(ip);
2642 
2643 				hammer2_mtx_unlock(&ip->lock);
2644 				hammer2_inode_drop(ip);
2645 
2646 				if (pass2 & HAMMER2_INODE_SYNCQ_PASS2) {
2647 					tsleep(&dorestart, 0, "h2syndel", 2);
2648 				}
2649 				hammer2_spin_ex(&pmp->list_spin);
2650 				continue;
2651 			}
2652 		} else {
2653 			vp = NULL;
2654 		}
2655 
2656 		/*
2657 		 * If the inode wound up on a SIDEQ again it will already be
2658 		 * prepped for another PASS2.  In this situation if we flush
2659 		 * it now we will just wind up flushing it again in the same
2660 		 * syncer run, so we might as well not flush it now.
2661 		 */
2662 		if (ip->flags & HAMMER2_INODE_SIDEQ) {
2663 			hammer2_mtx_unlock(&ip->lock);
2664 			hammer2_inode_drop(ip);
2665 			if (vp)
2666 				vput(vp);
2667 			dorestart = 1;
2668 			hammer2_spin_ex(&pmp->list_spin);
2669 			continue;
2670 		}
2671 
2672 		/*
2673 		 * Ok we have the inode exclusively locked and if vp is
2674 		 * not NULL that will also be exclusively locked.  Do the
2675 		 * meat of the flush.
2676 		 *
2677 		 * vp token needed for v_rbdirty_tree check / vclrisdirty
2678 		 * sequencing.  Though we hold the vnode exclusively so
2679 		 * we shouldn't need to hold the token also in this case.
2680 		 */
2681 		if (vp) {
2682 			vfsync(vp, MNT_WAIT, 1, NULL, NULL);
2683 			bio_track_wait(&vp->v_track_write, 0, 0); /* XXX */
2684 		}
2685 
2686 		/*
2687 		 * If the inode has not yet been inserted into the tree
2688 		 * we must do so.  Then sync and flush it.  The flush should
2689 		 * update the parent.
2690 		 */
2691 		if (ip->flags & HAMMER2_INODE_DELETING) {
2692 #ifdef HAMMER2_DEBUG_SYNC
2693 			kprintf("inum %ld destroy\n", (long)ip->meta.inum);
2694 #endif
2695 			hammer2_inode_chain_des(ip);
2696 			atomic_add_long(&hammer2_iod_inode_deletes, 1);
2697 		} else if (ip->flags & HAMMER2_INODE_CREATING) {
2698 #ifdef HAMMER2_DEBUG_SYNC
2699 			kprintf("inum %ld insert\n", (long)ip->meta.inum);
2700 #endif
2701 			hammer2_inode_chain_ins(ip);
2702 			atomic_add_long(&hammer2_iod_inode_creates, 1);
2703 		}
2704 #ifdef HAMMER2_DEBUG_SYNC
2705 		kprintf("inum %ld chain-sync\n", (long)ip->meta.inum);
2706 #endif
2707 
2708 		/*
2709 		 * Because I kinda messed up the design and index the inodes
2710 		 * under the root inode, along side the directory entries,
2711 		 * we can't flush the inode index under the iroot until the
2712 		 * end.  If we do it now we might miss effects created by
2713 		 * other inodes on the SYNCQ.
2714 		 *
2715 		 * Do a normal (non-FSSYNC) flush instead, which allows the
2716 		 * vnode code to work the same.  We don't want to force iroot
2717 		 * back onto the SIDEQ, and we also don't want the flush code
2718 		 * to update pfs_iroot_blocksets until the final flush later.
2719 		 *
2720 		 * XXX at the moment this will likely result in a double-flush
2721 		 * of the iroot chain.
2722 		 */
2723 		hammer2_inode_chain_sync(ip);
2724 		if (ip == pmp->iroot) {
2725 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP);
2726 		} else {
2727 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2728 						      HAMMER2_XOP_FSSYNC);
2729 		}
2730 		if (vp) {
2731 			lwkt_gettoken(&vp->v_token);
2732 			if ((ip->flags & (HAMMER2_INODE_MODIFIED |
2733 					  HAMMER2_INODE_RESIZED |
2734 					  HAMMER2_INODE_DIRTYDATA)) == 0 &&
2735 			    RB_EMPTY(&vp->v_rbdirty_tree) &&
2736 			    !bio_track_active(&vp->v_track_write)) {
2737 				vclrisdirty(vp);
2738 			} else {
2739 				hammer2_inode_delayed_sideq(ip);
2740 			}
2741 			lwkt_reltoken(&vp->v_token);
2742 			vput(vp);
2743 			vp = NULL;	/* safety */
2744 		}
2745 		atomic_clear_int(&ip->flags, HAMMER2_INODE_SYNCQ_PASS2);
2746 		hammer2_inode_unlock(ip);	/* unlock+drop */
2747 		/* ip pointer invalid */
2748 
2749 		/*
2750 		 * If the inode got dirted after we dropped our locks,
2751 		 * it will have already been moved back to the SIDEQ.
2752 		 */
2753 		hammer2_spin_ex(&pmp->list_spin);
2754 	}
2755 	hammer2_spin_unex(&pmp->list_spin);
2756 	hammer2_pfs_memory_wakeup(pmp, 0);
2757 
2758 	if (dorestart || (pmp->trans.flags & HAMMER2_TRANS_RESCAN)) {
2759 #ifdef HAMMER2_DEBUG_SYNC
2760 		kprintf("FILESYSTEM SYNC STAGE 1 RESTART\n");
2761 		/*tsleep(&dorestart, 0, "h2STG1-R", hz*20);*/
2762 #endif
2763 		dorestart = 1;
2764 		goto restart;
2765 	}
2766 #ifdef HAMMER2_DEBUG_SYNC
2767 	kprintf("FILESYSTEM SYNC STAGE 2 BEGIN\n");
2768 	/*tsleep(&dorestart, 0, "h2STG2", hz*20);*/
2769 #endif
2770 
2771 	/*
2772 	 * We have to flush the PFS root last, even if it does not appear to
2773 	 * be dirty, because all the inodes in the PFS are indexed under it.
2774 	 * The normal flushing of iroot above would only occur if directory
2775 	 * entries under the root were changed.
2776 	 *
2777 	 * Specifying VOLHDR will cause an additionl flush of hmp->spmp
2778 	 * for the media making up the cluster.
2779 	 */
2780 	if ((ip = pmp->iroot) != NULL) {
2781 		hammer2_inode_ref(ip);
2782 		hammer2_mtx_ex(&ip->lock);
2783 		hammer2_inode_chain_sync(ip);
2784 		hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2785 					      HAMMER2_XOP_FSSYNC |
2786 					      HAMMER2_XOP_VOLHDR);
2787 		hammer2_inode_unlock(ip);	/* unlock+drop */
2788 	}
2789 #ifdef HAMMER2_DEBUG_SYNC
2790 	kprintf("FILESYSTEM SYNC STAGE 2 DONE\n");
2791 #endif
2792 
2793 	/*
2794 	 * device bioq sync
2795 	 */
2796 	hammer2_bioq_sync(pmp);
2797 
2798 #if 0
2799 	info.pass = 1;
2800 	info.waitfor = MNT_WAIT;
2801 	vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2802 
2803 	info.pass = 2;
2804 	info.waitfor = MNT_WAIT;
2805 	vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2806 #endif
2807 #if 0
2808 	/*
2809 	 * Generally speaking we now want to flush the media topology from
2810 	 * the iroot through to the inodes.  The flush stops at any inode
2811 	 * boundary, which allows the frontend to continue running concurrent
2812 	 * modifying operations on inodes (including kernel flushes of
2813 	 * buffers) without interfering with the main sync.
2814 	 *
2815 	 * Use the XOP interface to concurrently flush all nodes to
2816 	 * synchronize the PFSROOT subtopology to the media.  A standard
2817 	 * end-of-scan ENOENT error indicates cluster sufficiency.
2818 	 *
2819 	 * Note that this flush will not be visible on crash recovery until
2820 	 * we flush the super-root topology in the next loop.
2821 	 *
2822 	 * XXX For now wait for all flushes to complete.
2823 	 */
2824 	if (mp && (ip = pmp->iroot) != NULL) {
2825 		/*
2826 		 * If unmounting try to flush everything including any
2827 		 * sub-trees under inodes, just in case there is dangling
2828 		 * modified data, as a safety.  Otherwise just flush up to
2829 		 * the inodes in this stage.
2830 		 */
2831 		kprintf("MP & IROOT\n");
2832 #ifdef HAMMER2_DEBUG_SYNC
2833 		kprintf("FILESYSTEM SYNC STAGE 3 IROOT BEGIN\n");
2834 #endif
2835 		if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
2836 			xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
2837 						    HAMMER2_XOP_VOLHDR |
2838 						    HAMMER2_XOP_FSSYNC |
2839 						    HAMMER2_XOP_INODE_STOP);
2840 		} else {
2841 			xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
2842 						    HAMMER2_XOP_INODE_STOP |
2843 						    HAMMER2_XOP_VOLHDR |
2844 						    HAMMER2_XOP_FSSYNC |
2845 						    HAMMER2_XOP_INODE_STOP);
2846 		}
2847 		hammer2_xop_start(&xop->head, &hammer2_inode_flush_desc);
2848 		error = hammer2_xop_collect(&xop->head,
2849 					    HAMMER2_XOP_COLLECT_WAITALL);
2850 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2851 #ifdef HAMMER2_DEBUG_SYNC
2852 		kprintf("FILESYSTEM SYNC STAGE 3 IROOT END\n");
2853 #endif
2854 		if (error == HAMMER2_ERROR_ENOENT)
2855 			error = 0;
2856 		else
2857 			error = hammer2_error_to_errno(error);
2858 	} else {
2859 		error = 0;
2860 	}
2861 #endif
2862 	error = 0;	/* XXX */
2863 	hammer2_trans_done(pmp, HAMMER2_TRANS_ISFLUSH);
2864 
2865 	return (error);
2866 }
2867 
2868 static
2869 int
2870 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2871 {
2872 	hammer2_inode_t *ip;
2873 
2874 	KKASSERT(MAXFIDSZ >= 16);
2875 	ip = VTOI(vp);
2876 	fhp->fid_len = offsetof(struct fid, fid_data[16]);
2877 	fhp->fid_ext = 0;
2878 	((hammer2_tid_t *)fhp->fid_data)[0] = ip->meta.inum;
2879 	((hammer2_tid_t *)fhp->fid_data)[1] = 0;
2880 
2881 	return 0;
2882 }
2883 
2884 static
2885 int
2886 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2887 	       struct fid *fhp, struct vnode **vpp)
2888 {
2889 	hammer2_pfs_t *pmp;
2890 	hammer2_tid_t inum;
2891 	int error;
2892 
2893 	pmp = MPTOPMP(mp);
2894 	inum = ((hammer2_tid_t *)fhp->fid_data)[0] & HAMMER2_DIRHASH_USERMSK;
2895 	if (vpp) {
2896 		if (inum == 1)
2897 			error = hammer2_vfs_root(mp, vpp);
2898 		else
2899 			error = hammer2_vfs_vget(mp, NULL, inum, vpp);
2900 	} else {
2901 		error = 0;
2902 	}
2903 	if (error)
2904 		kprintf("fhtovp: %016jx -> %p, %d\n", inum, *vpp, error);
2905 	return error;
2906 }
2907 
2908 static
2909 int
2910 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2911 		 int *exflagsp, struct ucred **credanonp)
2912 {
2913 	hammer2_pfs_t *pmp;
2914 	struct netcred *np;
2915 	int error;
2916 
2917 	pmp = MPTOPMP(mp);
2918 	np = vfs_export_lookup(mp, &pmp->export, nam);
2919 	if (np) {
2920 		*exflagsp = np->netc_exflags;
2921 		*credanonp = &np->netc_anon;
2922 		error = 0;
2923 	} else {
2924 		error = EACCES;
2925 	}
2926 	return error;
2927 }
2928 
2929 /*
2930  * Support code for hammer2_vfs_mount().  Read, verify, and install the volume
2931  * header into the HMP
2932  *
2933  * XXX read four volhdrs and use the one with the highest TID whos CRC
2934  *     matches.
2935  *
2936  * XXX check iCRCs.
2937  *
2938  * XXX For filesystems w/ less than 4 volhdrs, make sure to not write to
2939  *     nonexistant locations.
2940  *
2941  * XXX Record selected volhdr and ring updates to each of 4 volhdrs
2942  */
2943 static
2944 int
2945 hammer2_install_volume_header(hammer2_dev_t *hmp)
2946 {
2947 	hammer2_volume_data_t *vd;
2948 	struct buf *bp;
2949 	hammer2_crc32_t crc0, crc, bcrc0, bcrc;
2950 	int error_reported;
2951 	int error;
2952 	int valid;
2953 	int i;
2954 
2955 	error_reported = 0;
2956 	error = 0;
2957 	valid = 0;
2958 	bp = NULL;
2959 
2960 	/*
2961 	 * There are up to 4 copies of the volume header (syncs iterate
2962 	 * between them so there is no single master).  We don't trust the
2963 	 * volu_size field so we don't know precisely how large the filesystem
2964 	 * is, so depend on the OS to return an error if we go beyond the
2965 	 * block device's EOF.
2966 	 */
2967 	for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) {
2968 		error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2969 			      HAMMER2_VOLUME_BYTES, &bp);
2970 		if (error) {
2971 			brelse(bp);
2972 			bp = NULL;
2973 			continue;
2974 		}
2975 
2976 		vd = (struct hammer2_volume_data *) bp->b_data;
2977 		if ((vd->magic != HAMMER2_VOLUME_ID_HBO) &&
2978 		    (vd->magic != HAMMER2_VOLUME_ID_ABO)) {
2979 			brelse(bp);
2980 			bp = NULL;
2981 			continue;
2982 		}
2983 
2984 		if (vd->magic == HAMMER2_VOLUME_ID_ABO) {
2985 			/* XXX: Reversed-endianness filesystem */
2986 			kprintf("hammer2: reverse-endian filesystem detected");
2987 			brelse(bp);
2988 			bp = NULL;
2989 			continue;
2990 		}
2991 
2992 		crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0];
2993 		crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF,
2994 				      HAMMER2_VOLUME_ICRC0_SIZE);
2995 		bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1];
2996 		bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF,
2997 				       HAMMER2_VOLUME_ICRC1_SIZE);
2998 		if ((crc0 != crc) || (bcrc0 != bcrc)) {
2999 			kprintf("hammer2 volume header crc "
3000 				"mismatch copy #%d %08x/%08x\n",
3001 				i, crc0, crc);
3002 			error_reported = 1;
3003 			brelse(bp);
3004 			bp = NULL;
3005 			continue;
3006 		}
3007 		if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) {
3008 			valid = 1;
3009 			hmp->voldata = *vd;
3010 			hmp->volhdrno = i;
3011 		}
3012 		brelse(bp);
3013 		bp = NULL;
3014 	}
3015 	if (valid) {
3016 		hmp->volsync = hmp->voldata;
3017 		hmp->free_reserved = hmp->voldata.allocator_size / 20;
3018 		error = 0;
3019 		if (error_reported || bootverbose || 1) { /* 1/DEBUG */
3020 			kprintf("hammer2: using volume header #%d\n",
3021 				hmp->volhdrno);
3022 		}
3023 	} else {
3024 		error = EINVAL;
3025 		kprintf("hammer2: no valid volume headers found!\n");
3026 	}
3027 	return (error);
3028 }
3029 
3030 /*
3031  * This handles hysteresis on regular file flushes.  Because the BIOs are
3032  * routed to a thread it is possible for an excessive number to build up
3033  * and cause long front-end stalls long before the runningbuffspace limit
3034  * is hit, so we implement hammer2_flush_pipe to control the
3035  * hysteresis.
3036  *
3037  * This is a particular problem when compression is used.
3038  */
3039 void
3040 hammer2_lwinprog_ref(hammer2_pfs_t *pmp)
3041 {
3042 	atomic_add_int(&pmp->count_lwinprog, 1);
3043 }
3044 
3045 void
3046 hammer2_lwinprog_drop(hammer2_pfs_t *pmp)
3047 {
3048 	int lwinprog;
3049 
3050 	lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
3051 	if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
3052 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
3053 		atomic_clear_int(&pmp->count_lwinprog,
3054 				 HAMMER2_LWINPROG_WAITING);
3055 		wakeup(&pmp->count_lwinprog);
3056 	}
3057 	if ((lwinprog & HAMMER2_LWINPROG_WAITING0) &&
3058 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= 0) {
3059 		atomic_clear_int(&pmp->count_lwinprog,
3060 				 HAMMER2_LWINPROG_WAITING0);
3061 		wakeup(&pmp->count_lwinprog);
3062 	}
3063 }
3064 
3065 void
3066 hammer2_lwinprog_wait(hammer2_pfs_t *pmp, int flush_pipe)
3067 {
3068 	int lwinprog;
3069 	int lwflag = (flush_pipe) ? HAMMER2_LWINPROG_WAITING :
3070 				    HAMMER2_LWINPROG_WAITING0;
3071 
3072 	for (;;) {
3073 		lwinprog = pmp->count_lwinprog;
3074 		cpu_ccfence();
3075 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
3076 			break;
3077 		tsleep_interlock(&pmp->count_lwinprog, 0);
3078 		atomic_set_int(&pmp->count_lwinprog, lwflag);
3079 		lwinprog = pmp->count_lwinprog;
3080 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
3081 			break;
3082 		tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
3083 	}
3084 }
3085 
3086 /*
3087  * It is possible for an excessive number of dirty chains or dirty inodes
3088  * to build up.  When this occurs we start an asynchronous filesystem sync.
3089  * If the level continues to build up, we stall, waiting for it to drop,
3090  * with some hysteresis.
3091  *
3092  * This relies on the kernel calling hammer2_vfs_modifying() prior to
3093  * obtaining any vnode locks before making a modifying VOP call.
3094  */
3095 static int
3096 hammer2_vfs_modifying(struct mount *mp)
3097 {
3098 	if (mp->mnt_flag & MNT_RDONLY)
3099 		return EROFS;
3100 	hammer2_pfs_memory_wait(MPTOPMP(mp));
3101 
3102 	return 0;
3103 }
3104 
3105 /*
3106  * Initiate an asynchronous filesystem sync and, with hysteresis,
3107  * stall if the internal data structure count becomes too bloated.
3108  */
3109 void
3110 hammer2_pfs_memory_wait(hammer2_pfs_t *pmp)
3111 {
3112 	uint32_t waiting;
3113 	int pcatch;
3114 	int error;
3115 
3116 	if (pmp == NULL || pmp->mp == NULL)
3117 		return;
3118 
3119 	for (;;) {
3120 		waiting = pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK;
3121 		cpu_ccfence();
3122 
3123 		/*
3124 		 * Start the syncer running at 1/2 the limit
3125 		 */
3126 		if (waiting > hammer2_limit_dirty_chains / 2 ||
3127 		    pmp->sideq_count > hammer2_limit_dirty_inodes / 2) {
3128 			trigger_syncer(pmp->mp);
3129 		}
3130 
3131 		/*
3132 		 * Stall at the limit waiting for the counts to drop.
3133 		 * This code will typically be woken up once the count
3134 		 * drops below 3/4 the limit, or in one second.
3135 		 */
3136 		if (waiting < hammer2_limit_dirty_chains &&
3137 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
3138 			break;
3139 		}
3140 
3141 		pcatch = curthread->td_proc ? PCATCH : 0;
3142 
3143 		tsleep_interlock(&pmp->inmem_dirty_chains, pcatch);
3144 		atomic_set_int(&pmp->inmem_dirty_chains,
3145 			       HAMMER2_DIRTYCHAIN_WAITING);
3146 		if (waiting < hammer2_limit_dirty_chains &&
3147 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
3148 			break;
3149 		}
3150 		trigger_syncer(pmp->mp);
3151 		error = tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED | pcatch,
3152 			       "h2memw", hz);
3153 		if (error == ERESTART)
3154 			break;
3155 	}
3156 }
3157 
3158 /*
3159  * Wake up any stalled frontend ops waiting, with hysteresis, using
3160  * 2/3 of the limit.
3161  */
3162 void
3163 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp, int count)
3164 {
3165 	uint32_t waiting;
3166 
3167 	if (pmp) {
3168 		waiting = atomic_fetchadd_int(&pmp->inmem_dirty_chains, count);
3169 		/* don't need --waiting to test flag */
3170 
3171 		if ((waiting & HAMMER2_DIRTYCHAIN_WAITING) &&
3172 		    (pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK) <=
3173 		    hammer2_limit_dirty_chains * 2 / 3 &&
3174 		    pmp->sideq_count <= hammer2_limit_dirty_inodes * 2 / 3) {
3175 			atomic_clear_int(&pmp->inmem_dirty_chains,
3176 					 HAMMER2_DIRTYCHAIN_WAITING);
3177 			wakeup(&pmp->inmem_dirty_chains);
3178 		}
3179 	}
3180 }
3181 
3182 void
3183 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp)
3184 {
3185 	if (pmp) {
3186 		atomic_add_int(&pmp->inmem_dirty_chains, 1);
3187 	}
3188 }
3189 
3190 /*
3191  * Returns 0 if the filesystem has tons of free space
3192  * Returns 1 if the filesystem has less than 10% remaining
3193  * Returns 2 if the filesystem has less than 2%/5% (user/root) remaining.
3194  */
3195 int
3196 hammer2_vfs_enospace(hammer2_inode_t *ip, off_t bytes, struct ucred *cred)
3197 {
3198 	hammer2_pfs_t *pmp;
3199 	hammer2_dev_t *hmp;
3200 	hammer2_off_t free_reserved;
3201 	hammer2_off_t free_nominal;
3202 	int i;
3203 
3204 	pmp = ip->pmp;
3205 
3206 	if (pmp->free_ticks == 0 || pmp->free_ticks != ticks) {
3207 		free_reserved = HAMMER2_SEGSIZE;
3208 		free_nominal = 0x7FFFFFFFFFFFFFFFLLU;
3209 		for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
3210 			hmp = pmp->pfs_hmps[i];
3211 			if (hmp == NULL)
3212 				continue;
3213 			if (pmp->pfs_types[i] != HAMMER2_PFSTYPE_MASTER &&
3214 			    pmp->pfs_types[i] != HAMMER2_PFSTYPE_SOFT_MASTER)
3215 				continue;
3216 
3217 			if (free_nominal > hmp->voldata.allocator_free)
3218 				free_nominal = hmp->voldata.allocator_free;
3219 			if (free_reserved < hmp->free_reserved)
3220 				free_reserved = hmp->free_reserved;
3221 		}
3222 
3223 		/*
3224 		 * SMP races ok
3225 		 */
3226 		pmp->free_reserved = free_reserved;
3227 		pmp->free_nominal = free_nominal;
3228 		pmp->free_ticks = ticks;
3229 	} else {
3230 		free_reserved = pmp->free_reserved;
3231 		free_nominal = pmp->free_nominal;
3232 	}
3233 	if (cred && cred->cr_uid != 0) {
3234 		if ((int64_t)(free_nominal - bytes) <
3235 		    (int64_t)free_reserved) {
3236 			return 2;
3237 		}
3238 	} else {
3239 		if ((int64_t)(free_nominal - bytes) <
3240 		    (int64_t)free_reserved / 2) {
3241 			return 2;
3242 		}
3243 	}
3244 	if ((int64_t)(free_nominal - bytes) < (int64_t)free_reserved * 2)
3245 		return 1;
3246 	return 0;
3247 }
3248 
3249 /*
3250  * Debugging
3251  */
3252 void
3253 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int *countp, char pfx,
3254 		   u_int flags)
3255 {
3256 	hammer2_chain_t *scan;
3257 	hammer2_chain_t *parent;
3258 
3259 	--*countp;
3260 	if (*countp == 0) {
3261 		kprintf("%*.*s...\n", tab, tab, "");
3262 		return;
3263 	}
3264 	if (*countp < 0)
3265 		return;
3266 	kprintf("%*.*s%c-chain %p.%d %016jx/%d mir=%016jx\n",
3267 		tab, tab, "", pfx,
3268 		chain, chain->bref.type,
3269 		chain->bref.key, chain->bref.keybits,
3270 		chain->bref.mirror_tid);
3271 
3272 	kprintf("%*.*s      [%08x] (%s) refs=%d",
3273 		tab, tab, "",
3274 		chain->flags,
3275 		((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
3276 		chain->data) ?  (char *)chain->data->ipdata.filename : "?"),
3277 		chain->refs);
3278 
3279 	parent = chain->parent;
3280 	if (parent)
3281 		kprintf("\n%*.*s      p=%p [pflags %08x prefs %d",
3282 			tab, tab, "",
3283 			parent, parent->flags, parent->refs);
3284 	if (RB_EMPTY(&chain->core.rbtree)) {
3285 		kprintf("\n");
3286 	} else {
3287 		kprintf(" {\n");
3288 		RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree) {
3289 			if ((scan->flags & flags) || flags == (u_int)-1) {
3290 				hammer2_dump_chain(scan, tab + 4, countp, 'a',
3291 						   flags);
3292 			}
3293 		}
3294 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
3295 			kprintf("%*.*s}(%s)\n", tab, tab, "",
3296 				chain->data->ipdata.filename);
3297 		else
3298 			kprintf("%*.*s}\n", tab, tab, "");
3299 	}
3300 }
3301