xref: /dragonfly/sys/vfs/hammer2/hammer2_vfsops.c (revision 8f2ce533)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/vfsops.h>
43 #include <sys/sysctl.h>
44 #include <sys/socket.h>
45 #include <sys/objcache.h>
46 #include <sys/proc.h>
47 #include <sys/lock.h>
48 #include <sys/file.h>
49 
50 #include "hammer2.h"
51 
52 TAILQ_HEAD(hammer2_mntlist, hammer2_dev);
53 static struct hammer2_mntlist hammer2_mntlist;
54 
55 struct hammer2_pfslist hammer2_pfslist;
56 struct hammer2_pfslist hammer2_spmplist;
57 struct lock hammer2_mntlk;
58 
59 int hammer2_supported_version = HAMMER2_VOL_VERSION_DEFAULT;
60 int hammer2_debug;
61 int hammer2_aux_flags;
62 int hammer2_xop_nthreads;
63 int hammer2_xop_sgroups;
64 int hammer2_xop_xgroups;
65 int hammer2_xop_xbase;
66 int hammer2_xop_mod;
67 long hammer2_debug_inode;
68 int hammer2_cluster_meta_read = 1;	/* physical read-ahead */
69 int hammer2_cluster_data_read = 4;	/* physical read-ahead */
70 int hammer2_cluster_write = 0;		/* physical write clustering */
71 int hammer2_dedup_enable = 1;
72 int hammer2_always_compress = 0;	/* always try to compress */
73 int hammer2_flush_pipe = 100;
74 int hammer2_dio_count;
75 int hammer2_dio_limit = 256;
76 int hammer2_bulkfree_tps = 5000;
77 int hammer2_spread_workers;
78 int hammer2_limit_saved_depth;
79 long hammer2_chain_allocs;
80 long hammer2_limit_saved_chains;
81 long hammer2_limit_dirty_chains;
82 long hammer2_limit_dirty_inodes;
83 long hammer2_count_modified_chains;
84 long hammer2_iod_file_read;
85 long hammer2_iod_meta_read;
86 long hammer2_iod_indr_read;
87 long hammer2_iod_fmap_read;
88 long hammer2_iod_volu_read;
89 long hammer2_iod_file_write;
90 long hammer2_iod_file_wembed;
91 long hammer2_iod_file_wzero;
92 long hammer2_iod_file_wdedup;
93 long hammer2_iod_meta_write;
94 long hammer2_iod_indr_write;
95 long hammer2_iod_fmap_write;
96 long hammer2_iod_volu_write;
97 static long hammer2_iod_inode_creates;
98 static long hammer2_iod_inode_deletes;
99 
100 long hammer2_process_icrc32;
101 long hammer2_process_xxhash64;
102 
103 MALLOC_DECLARE(M_HAMMER2_CBUFFER);
104 MALLOC_DEFINE(M_HAMMER2_CBUFFER, "HAMMER2-compbuffer",
105 		"Buffer used for compression.");
106 
107 MALLOC_DECLARE(M_HAMMER2_DEBUFFER);
108 MALLOC_DEFINE(M_HAMMER2_DEBUFFER, "HAMMER2-decompbuffer",
109 		"Buffer used for decompression.");
110 
111 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
112 
113 SYSCTL_INT(_vfs_hammer2, OID_AUTO, supported_version, CTLFLAG_RD,
114 	   &hammer2_supported_version, 0, "");
115 SYSCTL_INT(_vfs_hammer2, OID_AUTO, aux_flags, CTLFLAG_RW,
116 	   &hammer2_aux_flags, 0, "");
117 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
118 	   &hammer2_debug, 0, "");
119 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, debug_inode, CTLFLAG_RW,
120 	   &hammer2_debug_inode, 0, "");
121 SYSCTL_INT(_vfs_hammer2, OID_AUTO, spread_workers, CTLFLAG_RW,
122 	   &hammer2_spread_workers, 0, "");
123 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_meta_read, CTLFLAG_RW,
124 	   &hammer2_cluster_meta_read, 0, "");
125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_data_read, CTLFLAG_RW,
126 	   &hammer2_cluster_data_read, 0, "");
127 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_write, CTLFLAG_RW,
128 	   &hammer2_cluster_write, 0, "");
129 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dedup_enable, CTLFLAG_RW,
130 	   &hammer2_dedup_enable, 0, "");
131 SYSCTL_INT(_vfs_hammer2, OID_AUTO, always_compress, CTLFLAG_RW,
132 	   &hammer2_always_compress, 0, "");
133 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
134 	   &hammer2_flush_pipe, 0, "");
135 SYSCTL_INT(_vfs_hammer2, OID_AUTO, bulkfree_tps, CTLFLAG_RW,
136 	   &hammer2_bulkfree_tps, 0, "");
137 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_allocs, CTLFLAG_RW,
138 	   &hammer2_chain_allocs, 0, "");
139 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_saved_chains, CTLFLAG_RW,
140 	   &hammer2_limit_saved_chains, 0, "");
141 SYSCTL_INT(_vfs_hammer2, OID_AUTO, limit_saved_depth, CTLFLAG_RW,
142 	   &hammer2_limit_saved_depth, 0, "");
143 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
144 	   &hammer2_limit_dirty_chains, 0, "");
145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_inodes, CTLFLAG_RW,
146 	   &hammer2_limit_dirty_inodes, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, count_modified_chains, CTLFLAG_RW,
148 	   &hammer2_count_modified_chains, 0, "");
149 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
150 	   &hammer2_dio_count, 0, "");
151 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_limit, CTLFLAG_RW,
152 	   &hammer2_dio_limit, 0, "");
153 
154 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
155 	   &hammer2_iod_file_read, 0, "");
156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
157 	   &hammer2_iod_meta_read, 0, "");
158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
159 	   &hammer2_iod_indr_read, 0, "");
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
161 	   &hammer2_iod_fmap_read, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
163 	   &hammer2_iod_volu_read, 0, "");
164 
165 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
166 	   &hammer2_iod_file_write, 0, "");
167 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wembed, CTLFLAG_RW,
168 	   &hammer2_iod_file_wembed, 0, "");
169 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wzero, CTLFLAG_RW,
170 	   &hammer2_iod_file_wzero, 0, "");
171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wdedup, CTLFLAG_RW,
172 	   &hammer2_iod_file_wdedup, 0, "");
173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
174 	   &hammer2_iod_meta_write, 0, "");
175 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
176 	   &hammer2_iod_indr_write, 0, "");
177 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
178 	   &hammer2_iod_fmap_write, 0, "");
179 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
180 	   &hammer2_iod_volu_write, 0, "");
181 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_creates, CTLFLAG_RW,
182 	   &hammer2_iod_inode_creates, 0, "");
183 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_deletes, CTLFLAG_RW,
184 	   &hammer2_iod_inode_deletes, 0, "");
185 
186 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_icrc32, CTLFLAG_RW,
187 	   &hammer2_process_icrc32, 0, "");
188 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_xxhash64, CTLFLAG_RW,
189 	   &hammer2_process_xxhash64, 0, "");
190 
191 static int hammer2_vfs_init(struct vfsconf *conf);
192 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
193 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
194 				struct ucred *cred);
195 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *,
196 				struct ucred *);
197 static int hammer2_recovery(hammer2_dev_t *hmp);
198 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
199 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
200 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
201 				struct ucred *cred);
202 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
203 				struct ucred *cred);
204 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
205 				struct fid *fhp, struct vnode **vpp);
206 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
207 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
208 				int *exflagsp, struct ucred **credanonp);
209 static int hammer2_vfs_modifying(struct mount *mp);
210 
211 static void hammer2_update_pmps(hammer2_dev_t *hmp);
212 
213 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp);
214 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp,
215 				hammer2_dev_t *hmp);
216 static int hammer2_fixup_pfses(hammer2_dev_t *hmp);
217 
218 /*
219  * HAMMER2 vfs operations.
220  */
221 static struct vfsops hammer2_vfsops = {
222 	.vfs_flags	= 0,
223 	.vfs_init	= hammer2_vfs_init,
224 	.vfs_uninit	= hammer2_vfs_uninit,
225 	.vfs_sync	= hammer2_vfs_sync,
226 	.vfs_mount	= hammer2_vfs_mount,
227 	.vfs_unmount	= hammer2_vfs_unmount,
228 	.vfs_root	= hammer2_vfs_root,
229 	.vfs_statfs	= hammer2_vfs_statfs,
230 	.vfs_statvfs	= hammer2_vfs_statvfs,
231 	.vfs_vget	= hammer2_vfs_vget,
232 	.vfs_vptofh	= hammer2_vfs_vptofh,
233 	.vfs_fhtovp	= hammer2_vfs_fhtovp,
234 	.vfs_checkexp	= hammer2_vfs_checkexp,
235 	.vfs_modifying	= hammer2_vfs_modifying
236 };
237 
238 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
239 
240 VFS_SET(hammer2_vfsops, hammer2, VFCF_MPSAFE);
241 MODULE_VERSION(hammer2, 1);
242 
243 static
244 int
245 hammer2_vfs_init(struct vfsconf *conf)
246 {
247 	static struct objcache_malloc_args margs_read;
248 	static struct objcache_malloc_args margs_write;
249 	static struct objcache_malloc_args margs_vop;
250 
251 	int error;
252 	int mod;
253 
254 	error = 0;
255 	kmalloc_raise_limit(M_HAMMER2, 0);	/* unlimited */
256 
257 	/*
258 	 * hammer2_xop_nthreads must be a multiple of ncpus,
259 	 * minimum 2 * ncpus.
260 	 */
261 	mod = ncpus;
262 	hammer2_xop_mod = mod;
263 	hammer2_xop_nthreads = mod * 2;
264 	while (hammer2_xop_nthreads / mod < HAMMER2_XOPGROUPS_MIN ||
265 	       hammer2_xop_nthreads < HAMMER2_XOPTHREADS_MIN)
266 	{
267 		hammer2_xop_nthreads += mod;
268 	}
269 	hammer2_xop_sgroups = hammer2_xop_nthreads / mod / 2;
270 	hammer2_xop_xgroups = hammer2_xop_nthreads / mod - hammer2_xop_sgroups;
271 	hammer2_xop_xbase = hammer2_xop_sgroups * mod;
272 
273 	/*
274 	 * A large DIO cache is needed to retain dedup enablement masks.
275 	 * The bulkfree code clears related masks as part of the disk block
276 	 * recycling algorithm, preventing it from being used for a later
277 	 * dedup.
278 	 *
279 	 * NOTE: A large buffer cache can actually interfere with dedup
280 	 *	 operation because we dedup based on media physical buffers
281 	 *	 and not logical buffers.  Try to make the DIO case large
282 	 *	 enough to avoid this problem, but also cap it.
283 	 */
284 	hammer2_dio_limit = nbuf * 2;
285 	if (hammer2_dio_limit > 100000)
286 		hammer2_dio_limit = 100000;
287 
288 	if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
289 		error = EINVAL;
290 	if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
291 		error = EINVAL;
292 	if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
293 		error = EINVAL;
294 
295 	if (error)
296 		kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
297 
298 	margs_read.objsize = 65536;
299 	margs_read.mtype = M_HAMMER2_DEBUFFER;
300 
301 	margs_write.objsize = 32768;
302 	margs_write.mtype = M_HAMMER2_CBUFFER;
303 
304 	margs_vop.objsize = sizeof(hammer2_xop_t);
305 	margs_vop.mtype = M_HAMMER2;
306 
307 	/*
308 	 * Note thaht for the XOPS cache we want backing store allocations
309 	 * to use M_ZERO.  This is not allowed in objcache_get() (to avoid
310 	 * confusion), so use the backing store function that does it.  This
311 	 * means that initial XOPS objects are zerod but REUSED objects are
312 	 * not.  So we are responsible for cleaning the object up sufficiently
313 	 * for our needs before objcache_put()ing it back (typically just the
314 	 * FIFO indices).
315 	 */
316 	cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
317 				0, 1, NULL, NULL, NULL,
318 				objcache_malloc_alloc,
319 				objcache_malloc_free,
320 				&margs_read);
321 	cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
322 				0, 1, NULL, NULL, NULL,
323 				objcache_malloc_alloc,
324 				objcache_malloc_free,
325 				&margs_write);
326 	cache_xops = objcache_create(margs_vop.mtype->ks_shortdesc,
327 				0, 1, NULL, NULL, NULL,
328 				objcache_malloc_alloc_zero,
329 				objcache_malloc_free,
330 				&margs_vop);
331 
332 
333 	lockinit(&hammer2_mntlk, "mntlk", 0, 0);
334 	TAILQ_INIT(&hammer2_mntlist);
335 	TAILQ_INIT(&hammer2_pfslist);
336 	TAILQ_INIT(&hammer2_spmplist);
337 
338 	hammer2_limit_dirty_chains = maxvnodes / 10;
339 	if (hammer2_limit_dirty_chains > HAMMER2_LIMIT_DIRTY_CHAINS)
340 		hammer2_limit_dirty_chains = HAMMER2_LIMIT_DIRTY_CHAINS;
341 	if (hammer2_limit_dirty_chains < 1000)
342 		hammer2_limit_dirty_chains = 1000;
343 
344 	hammer2_limit_dirty_inodes = maxvnodes / 25;
345 	if (hammer2_limit_dirty_inodes < 100)
346 		hammer2_limit_dirty_inodes = 100;
347 	if (hammer2_limit_dirty_inodes > HAMMER2_LIMIT_DIRTY_INODES)
348 		hammer2_limit_dirty_inodes = HAMMER2_LIMIT_DIRTY_INODES;
349 
350 	hammer2_limit_saved_chains = hammer2_limit_dirty_chains * 5;
351 
352 	return (error);
353 }
354 
355 static
356 int
357 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
358 {
359 	objcache_destroy(cache_buffer_read);
360 	objcache_destroy(cache_buffer_write);
361 	objcache_destroy(cache_xops);
362 	return 0;
363 }
364 
365 /*
366  * Core PFS allocator.  Used to allocate or reference the pmp structure
367  * for PFS cluster mounts and the spmp structure for media (hmp) structures.
368  * The pmp can be passed in or loaded by this function using the chain and
369  * inode data.
370  *
371  * pmp->modify_tid tracks new modify_tid transaction ids for front-end
372  * transactions.  Note that synchronization does not use this field.
373  * (typically frontend operations and synchronization cannot run on the
374  * same PFS node at the same time).
375  *
376  * XXX check locking
377  */
378 hammer2_pfs_t *
379 hammer2_pfsalloc(hammer2_chain_t *chain,
380 		 const hammer2_inode_data_t *ripdata,
381 		 hammer2_tid_t modify_tid, hammer2_dev_t *force_local)
382 {
383 	hammer2_pfs_t *pmp;
384 	hammer2_inode_t *iroot;
385 	int count;
386 	int i;
387 	int j;
388 
389 	pmp = NULL;
390 
391 	/*
392 	 * Locate or create the PFS based on the cluster id.  If ripdata
393 	 * is NULL this is a spmp which is unique and is always allocated.
394 	 *
395 	 * If the device is mounted in local mode all PFSs are considered
396 	 * independent and not part of any cluster (for debugging only).
397 	 */
398 	if (ripdata) {
399 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
400 			if (force_local != pmp->force_local)
401 				continue;
402 			if (force_local == NULL &&
403 			    bcmp(&pmp->pfs_clid, &ripdata->meta.pfs_clid,
404 				 sizeof(pmp->pfs_clid)) == 0) {
405 					break;
406 			} else if (force_local && pmp->pfs_names[0] &&
407 			    strcmp(pmp->pfs_names[0], ripdata->filename) == 0) {
408 					break;
409 			}
410 		}
411 	}
412 
413 	if (pmp == NULL) {
414 		pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
415 		pmp->force_local = force_local;
416 		hammer2_trans_manage_init(pmp);
417 		kmalloc_create_obj(&pmp->minode, "HAMMER2-inodes",
418 				   sizeof(struct hammer2_inode));
419 		lockinit(&pmp->lock, "pfslk", 0, 0);
420 		hammer2_spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
421 		hammer2_spin_init(&pmp->xop_spin, "h2xop");
422 		hammer2_spin_init(&pmp->lru_spin, "h2lru");
423 		RB_INIT(&pmp->inum_tree);
424 		TAILQ_INIT(&pmp->syncq);
425 		TAILQ_INIT(&pmp->depq);
426 		TAILQ_INIT(&pmp->lru_list);
427 		hammer2_spin_init(&pmp->list_spin, "h2pfsalloc_list");
428 
429 		/*
430 		 * Save the last media transaction id for the flusher.  Set
431 		 * initial
432 		 */
433 		if (ripdata) {
434 			pmp->pfs_clid = ripdata->meta.pfs_clid;
435 			TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
436 		} else {
437 			pmp->flags |= HAMMER2_PMPF_SPMP;
438 			TAILQ_INSERT_TAIL(&hammer2_spmplist, pmp, mntentry);
439 		}
440 
441 		/*
442 		 * The synchronization thread may start too early, make
443 		 * sure it stays frozen until we are ready to let it go.
444 		 * XXX
445 		 */
446 		/*
447 		pmp->primary_thr.flags = HAMMER2_THREAD_FROZEN |
448 					 HAMMER2_THREAD_REMASTER;
449 		*/
450 	}
451 
452 	/*
453 	 * Create the PFS's root inode and any missing XOP helper threads.
454 	 */
455 	if ((iroot = pmp->iroot) == NULL) {
456 		iroot = hammer2_inode_get(pmp, NULL, 1, -1);
457 		if (ripdata)
458 			iroot->meta = ripdata->meta;
459 		pmp->iroot = iroot;
460 		hammer2_inode_ref(iroot);
461 		hammer2_inode_unlock(iroot);
462 	}
463 
464 	/*
465 	 * Stop here if no chain is passed in.
466 	 */
467 	if (chain == NULL)
468 		goto done;
469 
470 	/*
471 	 * When a chain is passed in we must add it to the PFS's root
472 	 * inode, update pmp->pfs_types[], and update the syncronization
473 	 * threads.
474 	 *
475 	 * When forcing local mode, mark the PFS as a MASTER regardless.
476 	 *
477 	 * At the moment empty spots can develop due to removals or failures.
478 	 * Ultimately we want to re-fill these spots but doing so might
479 	 * confused running code. XXX
480 	 */
481 	hammer2_inode_ref(iroot);
482 	hammer2_mtx_ex(&iroot->lock);
483 	j = iroot->cluster.nchains;
484 
485 	if (j == HAMMER2_MAXCLUSTER) {
486 		kprintf("hammer2_pfsalloc: cluster full!\n");
487 		/* XXX fatal error? */
488 	} else {
489 		KKASSERT(chain->pmp == NULL);
490 		chain->pmp = pmp;
491 		hammer2_chain_ref(chain);
492 		iroot->cluster.array[j].chain = chain;
493 		if (force_local)
494 			pmp->pfs_types[j] = HAMMER2_PFSTYPE_MASTER;
495 		else
496 			pmp->pfs_types[j] = ripdata->meta.pfs_type;
497 		pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2);
498 		pmp->pfs_hmps[j] = chain->hmp;
499 		hammer2_spin_ex(&pmp->inum_spin);
500 		pmp->pfs_iroot_blocksets[j] = chain->data->ipdata.u.blockset;
501 		hammer2_spin_unex(&pmp->inum_spin);
502 
503 		/*
504 		 * If the PFS is already mounted we must account
505 		 * for the mount_count here.
506 		 */
507 		if (pmp->mp)
508 			++chain->hmp->mount_count;
509 
510 		/*
511 		 * May have to fixup dirty chain tracking.  Previous
512 		 * pmp was NULL so nothing to undo.
513 		 */
514 		if (chain->flags & HAMMER2_CHAIN_MODIFIED)
515 			hammer2_pfs_memory_inc(pmp);
516 		++j;
517 	}
518 	iroot->cluster.nchains = j;
519 
520 	/*
521 	 * Update nmasters from any PFS inode which is part of the cluster.
522 	 * It is possible that this will result in a value which is too
523 	 * high.  MASTER PFSs are authoritative for pfs_nmasters and will
524 	 * override this value later on.
525 	 *
526 	 * (This informs us of masters that might not currently be
527 	 *  discoverable by this mount).
528 	 */
529 	if (ripdata && pmp->pfs_nmasters < ripdata->meta.pfs_nmasters) {
530 		pmp->pfs_nmasters = ripdata->meta.pfs_nmasters;
531 	}
532 
533 	/*
534 	 * Count visible masters.  Masters are usually added with
535 	 * ripdata->meta.pfs_nmasters set to 1.  This detects when there
536 	 * are more (XXX and must update the master inodes).
537 	 */
538 	count = 0;
539 	for (i = 0; i < iroot->cluster.nchains; ++i) {
540 		if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)
541 			++count;
542 	}
543 	if (pmp->pfs_nmasters < count)
544 		pmp->pfs_nmasters = count;
545 
546 	/*
547 	 * Create missing synchronization and support threads.
548 	 *
549 	 * Single-node masters (including snapshots) have nothing to
550 	 * synchronize and do not require this thread.
551 	 *
552 	 * Multi-node masters or any number of soft masters, slaves, copy,
553 	 * or other PFS types need the thread.
554 	 *
555 	 * Each thread is responsible for its particular cluster index.
556 	 * We use independent threads so stalls or mismatches related to
557 	 * any given target do not affect other targets.
558 	 */
559 	for (i = 0; i < iroot->cluster.nchains; ++i) {
560 		/*
561 		 * Single-node masters (including snapshots) have nothing
562 		 * to synchronize and will make direct xops support calls,
563 		 * thus they do not require this thread.
564 		 *
565 		 * Note that there can be thousands of snapshots.  We do not
566 		 * want to create thousands of threads.
567 		 */
568 		if (pmp->pfs_nmasters <= 1 &&
569 		    pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) {
570 			continue;
571 		}
572 
573 		/*
574 		 * Sync support thread
575 		 */
576 		if (pmp->sync_thrs[i].td == NULL) {
577 			hammer2_thr_create(&pmp->sync_thrs[i], pmp, NULL,
578 					   "h2nod", i, -1,
579 					   hammer2_primary_sync_thread);
580 		}
581 	}
582 
583 	/*
584 	 * Create missing Xop threads
585 	 *
586 	 * NOTE: We create helper threads for all mounted PFSs or any
587 	 *	 PFSs with 2+ nodes (so the sync thread can update them,
588 	 *	 even if not mounted).
589 	 */
590 	if (pmp->mp || iroot->cluster.nchains >= 2)
591 		hammer2_xop_helper_create(pmp);
592 
593 	hammer2_mtx_unlock(&iroot->lock);
594 	hammer2_inode_drop(iroot);
595 done:
596 	return pmp;
597 }
598 
599 /*
600  * Deallocate an element of a probed PFS.  If destroying and this is a
601  * MASTER, adjust nmasters.
602  *
603  * This function does not physically destroy the PFS element in its device
604  * under the super-root  (see hammer2_ioctl_pfs_delete()).
605  */
606 void
607 hammer2_pfsdealloc(hammer2_pfs_t *pmp, int clindex, int destroying)
608 {
609 	hammer2_inode_t *iroot;
610 	hammer2_chain_t *chain;
611 	int j;
612 
613 	/*
614 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
615 	 * by the flush code.
616 	 */
617 	iroot = pmp->iroot;
618 	if (iroot) {
619 		/*
620 		 * Stop synchronizing
621 		 *
622 		 * XXX flush after acquiring the iroot lock.
623 		 * XXX clean out the cluster index from all inode structures.
624 		 */
625 		hammer2_thr_delete(&pmp->sync_thrs[clindex]);
626 
627 		/*
628 		 * Remove the cluster index from the group.  If destroying
629 		 * the PFS and this is a master, adjust pfs_nmasters.
630 		 */
631 		hammer2_mtx_ex(&iroot->lock);
632 		chain = iroot->cluster.array[clindex].chain;
633 		iroot->cluster.array[clindex].chain = NULL;
634 
635 		switch(pmp->pfs_types[clindex]) {
636 		case HAMMER2_PFSTYPE_MASTER:
637 			if (destroying && pmp->pfs_nmasters > 0)
638 				--pmp->pfs_nmasters;
639 			/* XXX adjust ripdata->meta.pfs_nmasters */
640 			break;
641 		default:
642 			break;
643 		}
644 		pmp->pfs_types[clindex] = HAMMER2_PFSTYPE_NONE;
645 
646 		hammer2_mtx_unlock(&iroot->lock);
647 
648 		/*
649 		 * Release the chain.
650 		 */
651 		if (chain) {
652 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
653 			hammer2_chain_drop(chain);
654 		}
655 
656 		/*
657 		 * Terminate all XOP threads for the cluster index.
658 		 */
659 		if (pmp->xop_groups) {
660 			for (j = 0; j < hammer2_xop_nthreads; ++j) {
661 				hammer2_thr_delete(
662 					&pmp->xop_groups[j].thrs[clindex]);
663 			}
664 		}
665 	}
666 }
667 
668 /*
669  * Destroy a PFS, typically only occurs after the last mount on a device
670  * has gone away.
671  */
672 static void
673 hammer2_pfsfree(hammer2_pfs_t *pmp)
674 {
675 	hammer2_inode_t *iroot;
676 	hammer2_chain_t *chain;
677 	int chains_still_present = 0;
678 	int i;
679 	int j;
680 
681 	/*
682 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
683 	 * by the flush code.
684 	 */
685 	if (pmp->flags & HAMMER2_PMPF_SPMP)
686 		TAILQ_REMOVE(&hammer2_spmplist, pmp, mntentry);
687 	else
688 		TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
689 
690 	/*
691 	 * Cleanup chains remaining on LRU list.
692 	 */
693 	hammer2_spin_ex(&pmp->lru_spin);
694 	while ((chain = TAILQ_FIRST(&pmp->lru_list)) != NULL) {
695 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONLRU);
696 		atomic_add_int(&pmp->lru_count, -1);
697 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
698 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
699 		hammer2_chain_ref(chain);
700 		hammer2_spin_unex(&pmp->lru_spin);
701 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
702 		hammer2_chain_drop(chain);
703 		hammer2_spin_ex(&pmp->lru_spin);
704 	}
705 	hammer2_spin_unex(&pmp->lru_spin);
706 
707 	/*
708 	 * Clean up iroot
709 	 */
710 	iroot = pmp->iroot;
711 	if (iroot) {
712 		for (i = 0; i < iroot->cluster.nchains; ++i) {
713 			hammer2_thr_delete(&pmp->sync_thrs[i]);
714 			if (pmp->xop_groups) {
715 				for (j = 0; j < hammer2_xop_nthreads; ++j)
716 					hammer2_thr_delete(
717 						&pmp->xop_groups[j].thrs[i]);
718 			}
719 			chain = iroot->cluster.array[i].chain;
720 			if (chain && !RB_EMPTY(&chain->core.rbtree)) {
721 				kprintf("hammer2: Warning pmp %p still "
722 					"has active chains\n", pmp);
723 				chains_still_present = 1;
724 			}
725 		}
726 		KASSERT(iroot->refs == 1,
727 			("PMP->IROOT %p REFS WRONG %d", iroot, iroot->refs));
728 
729 		/* ref for iroot */
730 		hammer2_inode_drop(iroot);
731 		pmp->iroot = NULL;
732 	}
733 
734 	/*
735 	 * Free remaining pmp resources
736 	 */
737 	if (chains_still_present) {
738 		kprintf("hammer2: cannot free pmp %p, still in use\n", pmp);
739 	} else {
740 		kmalloc_destroy_obj(&pmp->minode);
741 		kfree(pmp, M_HAMMER2);
742 	}
743 }
744 
745 /*
746  * Remove all references to hmp from the pfs list.  Any PFS which becomes
747  * empty is terminated and freed.
748  *
749  * XXX inefficient.
750  */
751 static void
752 hammer2_pfsfree_scan(hammer2_dev_t *hmp, int which)
753 {
754 	hammer2_pfs_t *pmp;
755 	hammer2_inode_t *iroot;
756 	hammer2_chain_t *rchain;
757 	int i;
758 	int j;
759 	struct hammer2_pfslist *wlist;
760 
761 	if (which == 0)
762 		wlist = &hammer2_pfslist;
763 	else
764 		wlist = &hammer2_spmplist;
765 again:
766 	TAILQ_FOREACH(pmp, wlist, mntentry) {
767 		if ((iroot = pmp->iroot) == NULL)
768 			continue;
769 
770 		/*
771 		 * Determine if this PFS is affected.  If it is we must
772 		 * freeze all management threads and lock its iroot.
773 		 *
774 		 * Freezing a management thread forces it idle, operations
775 		 * in-progress will be aborted and it will have to start
776 		 * over again when unfrozen, or exit if told to exit.
777 		 */
778 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
779 			if (pmp->pfs_hmps[i] == hmp)
780 				break;
781 		}
782 		if (i == HAMMER2_MAXCLUSTER)
783 			continue;
784 
785 		hammer2_vfs_sync_pmp(pmp, MNT_WAIT);
786 
787 		/*
788 		 * Make sure all synchronization threads are locked
789 		 * down.
790 		 */
791 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
792 			if (pmp->pfs_hmps[i] == NULL)
793 				continue;
794 			hammer2_thr_freeze_async(&pmp->sync_thrs[i]);
795 			if (pmp->xop_groups) {
796 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
797 					hammer2_thr_freeze_async(
798 						&pmp->xop_groups[j].thrs[i]);
799 				}
800 			}
801 		}
802 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
803 			if (pmp->pfs_hmps[i] == NULL)
804 				continue;
805 			hammer2_thr_freeze(&pmp->sync_thrs[i]);
806 			if (pmp->xop_groups) {
807 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
808 					hammer2_thr_freeze(
809 						&pmp->xop_groups[j].thrs[i]);
810 				}
811 			}
812 		}
813 
814 		/*
815 		 * Lock the inode and clean out matching chains.
816 		 * Note that we cannot use hammer2_inode_lock_*()
817 		 * here because that would attempt to validate the
818 		 * cluster that we are in the middle of ripping
819 		 * apart.
820 		 *
821 		 * WARNING! We are working directly on the inodes
822 		 *	    embedded cluster.
823 		 */
824 		hammer2_mtx_ex(&iroot->lock);
825 
826 		/*
827 		 * Remove the chain from matching elements of the PFS.
828 		 */
829 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
830 			if (pmp->pfs_hmps[i] != hmp)
831 				continue;
832 			hammer2_thr_delete(&pmp->sync_thrs[i]);
833 			if (pmp->xop_groups) {
834 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
835 					hammer2_thr_delete(
836 						&pmp->xop_groups[j].thrs[i]);
837 				}
838 			}
839 			rchain = iroot->cluster.array[i].chain;
840 			iroot->cluster.array[i].chain = NULL;
841 			pmp->pfs_types[i] = 0;
842 			if (pmp->pfs_names[i]) {
843 				kfree(pmp->pfs_names[i], M_HAMMER2);
844 				pmp->pfs_names[i] = NULL;
845 			}
846 			if (rchain) {
847 				hammer2_chain_drop(rchain);
848 				/* focus hint */
849 				if (iroot->cluster.focus == rchain)
850 					iroot->cluster.focus = NULL;
851 			}
852 			pmp->pfs_hmps[i] = NULL;
853 		}
854 		hammer2_mtx_unlock(&iroot->lock);
855 
856 		/*
857 		 * Cleanup trailing chains.  Gaps may remain.
858 		 */
859 		for (i = HAMMER2_MAXCLUSTER - 1; i >= 0; --i) {
860 			if (pmp->pfs_hmps[i])
861 				break;
862 		}
863 		iroot->cluster.nchains = i + 1;
864 
865 		/*
866 		 * If the PMP has no elements remaining we can destroy it.
867 		 * (this will transition management threads from frozen->exit).
868 		 */
869 		if (iroot->cluster.nchains == 0) {
870 			/*
871 			 * If this was the hmp's spmp, we need to clean
872 			 * a little more stuff out.
873 			 */
874 			if (hmp->spmp == pmp) {
875 				hmp->spmp = NULL;
876 				hmp->vchain.pmp = NULL;
877 				hmp->fchain.pmp = NULL;
878 			}
879 
880 			/*
881 			 * Free the pmp and restart the loop
882 			 */
883 			KKASSERT(TAILQ_EMPTY(&pmp->syncq));
884 			KKASSERT(TAILQ_EMPTY(&pmp->depq));
885 			hammer2_pfsfree(pmp);
886 			goto again;
887 		}
888 
889 		/*
890 		 * If elements still remain we need to set the REMASTER
891 		 * flag and unfreeze it.
892 		 */
893 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
894 			if (pmp->pfs_hmps[i] == NULL)
895 				continue;
896 			hammer2_thr_remaster(&pmp->sync_thrs[i]);
897 			hammer2_thr_unfreeze(&pmp->sync_thrs[i]);
898 			if (pmp->xop_groups) {
899 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
900 					hammer2_thr_remaster(
901 						&pmp->xop_groups[j].thrs[i]);
902 					hammer2_thr_unfreeze(
903 						&pmp->xop_groups[j].thrs[i]);
904 				}
905 			}
906 		}
907 	}
908 }
909 
910 /*
911  * Mount or remount HAMMER2 fileystem from physical media
912  *
913  *	mountroot
914  *		mp		mount point structure
915  *		path		NULL
916  *		data		<unused>
917  *		cred		<unused>
918  *
919  *	mount
920  *		mp		mount point structure
921  *		path		path to mount point
922  *		data		pointer to argument structure in user space
923  *			volume	volume path (device@LABEL form)
924  *			hflags	user mount flags
925  *		cred		user credentials
926  *
927  * RETURNS:	0	Success
928  *		!0	error number
929  */
930 static
931 int
932 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
933 		  struct ucred *cred)
934 {
935 	struct hammer2_mount_info info;
936 	hammer2_pfs_t *pmp;
937 	hammer2_pfs_t *spmp;
938 	hammer2_dev_t *hmp, *hmp_tmp;
939 	hammer2_dev_t *force_local;
940 	hammer2_key_t key_next;
941 	hammer2_key_t key_dummy;
942 	hammer2_key_t lhc;
943 	hammer2_chain_t *parent;
944 	hammer2_chain_t *chain;
945 	const hammer2_inode_data_t *ripdata;
946 	hammer2_blockref_t bref;
947 	hammer2_devvp_list_t devvpl;
948 	hammer2_devvp_t *e, *e_tmp;
949 	struct file *fp;
950 	char devstr[MNAMELEN];
951 	size_t size;
952 	size_t done;
953 	char *dev;
954 	char *label;
955 	int ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
956 	int error;
957 	int i;
958 
959 	hmp = NULL;
960 	pmp = NULL;
961 	dev = NULL;
962 	label = NULL;
963 	bzero(&info, sizeof(info));
964 
965 	if (path) {
966 		/*
967 		 * Non-root mount or updating a mount
968 		 */
969 		error = copyin(data, &info, sizeof(info));
970 		if (error)
971 			return (error);
972 	}
973 
974 	if (mp->mnt_flag & MNT_UPDATE) {
975 		/*
976 		 * Update mount.  Note that pmp->iroot->cluster is
977 		 * an inode-embedded cluster and thus cannot be
978 		 * directly locked.
979 		 *
980 		 * XXX HAMMER2 needs to implement NFS export via
981 		 *     mountctl.
982 		 */
983 		hammer2_cluster_t *cluster;
984 
985 		pmp = MPTOPMP(mp);
986 		pmp->hflags = info.hflags;
987 		cluster = &pmp->iroot->cluster;
988 		for (i = 0; i < cluster->nchains; ++i) {
989 			if (cluster->array[i].chain == NULL)
990 				continue;
991 			hmp = cluster->array[i].chain->hmp;
992 			error = hammer2_remount(hmp, mp, path, cred);
993 			if (error)
994 				break;
995 		}
996 
997 		return error;
998 	}
999 
1000 	if (path == NULL) {
1001 		/*
1002 		 * Root mount
1003 		 */
1004 		info.cluster_fd = -1;
1005 		ksnprintf(devstr, sizeof(devstr), "%s",
1006 			  mp->mnt_stat.f_mntfromname);
1007 		done = strlen(devstr) + 1;
1008 		kprintf("hammer2_mount: root devstr=\"%s\"\n", devstr);
1009 	} else {
1010 		error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
1011 		if (error)
1012 			return (error);
1013 		kprintf("hammer2_mount: devstr=\"%s\"\n", devstr);
1014 	}
1015 
1016 	/*
1017 	 * Extract device and label, automatically mount @BOOT, @ROOT, or @DATA
1018 	 * if no label specified, based on the partition id.  Error out if no
1019 	 * label or device (with partition id) is specified.  This is strictly
1020 	 * a convenience to match the default label created by newfs_hammer2,
1021 	 * our preference is that a label always be specified.
1022 	 *
1023 	 * NOTE: We allow 'mount @LABEL <blah>'... that is, a mount command
1024 	 *	 that does not specify a device, as long as some H2 label
1025 	 *	 has already been mounted from that device.  This makes
1026 	 *	 mounting snapshots a lot easier.
1027 	 */
1028 	dev = devstr;
1029 	label = strchr(devstr, '@');
1030 	if (label && ((label + 1) - dev) > done) {
1031 		kprintf("hammer2_mount: bad label %s/%zd\n", devstr, done);
1032 		return (EINVAL);
1033 	}
1034 	if (label == NULL || label[1] == 0) {
1035 		char slice;
1036 
1037 		if (label == NULL)
1038 			label = devstr + strlen(devstr);
1039 		else
1040 			*label = '\0';		/* clean up trailing @ */
1041 
1042 		slice = label[-1];
1043 		switch(slice) {
1044 		case 'a':
1045 			label = "BOOT";
1046 			break;
1047 		case 'd':
1048 			label = "ROOT";
1049 			break;
1050 		default:
1051 			label = "DATA";
1052 			break;
1053 		}
1054 	} else {
1055 		*label = '\0';
1056 		label++;
1057 	}
1058 
1059 	kprintf("hammer2_mount: dev=\"%s\" label=\"%s\" rdonly=%d\n",
1060 		dev, label, ronly);
1061 
1062 	/*
1063 	 * Initialize all device vnodes.
1064 	 */
1065 	TAILQ_INIT(&devvpl);
1066 	error = hammer2_init_devvp(dev, path == NULL, &devvpl);
1067 	if (error) {
1068 		kprintf("hammer2: failed to initialize devvp in %s\n", dev);
1069 		hammer2_cleanup_devvp(&devvpl);
1070 		return error;
1071 	}
1072 
1073 	/*
1074 	 * Determine if the device has already been mounted.  After this
1075 	 * check hmp will be non-NULL if we are doing the second or more
1076 	 * hammer2 mounts from the same device.
1077 	 */
1078 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1079 	if (!TAILQ_EMPTY(&devvpl)) {
1080 		/*
1081 		 * Match the device.  Due to the way devfs works,
1082 		 * we may not be able to directly match the vnode pointer,
1083 		 * so also check to see if the underlying device matches.
1084 		 */
1085 		TAILQ_FOREACH(hmp_tmp, &hammer2_mntlist, mntentry) {
1086 			TAILQ_FOREACH(e_tmp, &hmp_tmp->devvpl, entry) {
1087 				int devvp_found = 0;
1088 				TAILQ_FOREACH(e, &devvpl, entry) {
1089 					KKASSERT(e->devvp);
1090 					if (e_tmp->devvp == e->devvp)
1091 						devvp_found = 1;
1092 					if (e_tmp->devvp->v_rdev &&
1093 					    e_tmp->devvp->v_rdev == e->devvp->v_rdev)
1094 						devvp_found = 1;
1095 				}
1096 				if (!devvp_found)
1097 					goto next_hmp;
1098 			}
1099 			hmp = hmp_tmp;
1100 			kprintf("hammer2_mount: hmp=%p matched\n", hmp);
1101 			break;
1102 next_hmp:
1103 			continue;
1104 		}
1105 
1106 		/*
1107 		 * If no match this may be a fresh H2 mount, make sure
1108 		 * the device is not mounted on anything else.
1109 		 */
1110 		if (hmp == NULL) {
1111 			TAILQ_FOREACH(e, &devvpl, entry) {
1112 				struct vnode *devvp = e->devvp;
1113 				KKASSERT(devvp);
1114 				error = vfs_mountedon(devvp);
1115 				if (error) {
1116 					kprintf("hammer2_mount: %s mounted %d\n",
1117 						e->path, error);
1118 					hammer2_cleanup_devvp(&devvpl);
1119 					lockmgr(&hammer2_mntlk, LK_RELEASE);
1120 					return error;
1121 				}
1122 			}
1123 		}
1124 	} else {
1125 		/*
1126 		 * Match the label to a pmp already probed.
1127 		 */
1128 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
1129 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
1130 				if (pmp->pfs_names[i] &&
1131 				    strcmp(pmp->pfs_names[i], label) == 0) {
1132 					hmp = pmp->pfs_hmps[i];
1133 					break;
1134 				}
1135 			}
1136 			if (hmp)
1137 				break;
1138 		}
1139 		if (hmp == NULL) {
1140 			kprintf("hammer2_mount: PFS label \"%s\" not found\n",
1141 				label);
1142 			hammer2_cleanup_devvp(&devvpl);
1143 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1144 			return ENOENT;
1145 		}
1146 	}
1147 
1148 	/*
1149 	 * Open the device if this isn't a secondary mount and construct
1150 	 * the H2 device mount (hmp).
1151 	 */
1152 	if (hmp == NULL) {
1153 		hammer2_chain_t *schain;
1154 		hammer2_xop_head_t xop;
1155 
1156 		/*
1157 		 * Now open the device
1158 		 */
1159 		KKASSERT(!TAILQ_EMPTY(&devvpl));
1160 		if (error == 0) {
1161 			error = hammer2_open_devvp(&devvpl, ronly);
1162 			if (error) {
1163 				hammer2_close_devvp(&devvpl, ronly);
1164 				hammer2_cleanup_devvp(&devvpl);
1165 				lockmgr(&hammer2_mntlk, LK_RELEASE);
1166 				return error;
1167 			}
1168 		}
1169 
1170 		/*
1171 		 * Construct volumes and link with device vnodes.
1172 		 */
1173 		hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
1174 		hmp->devvp = NULL;
1175 		error = hammer2_init_volumes(mp, &devvpl, hmp->volumes,
1176 					     &hmp->voldata, &hmp->volhdrno,
1177 					     &hmp->devvp);
1178 		if (error) {
1179 			hammer2_close_devvp(&devvpl, ronly);
1180 			hammer2_cleanup_devvp(&devvpl);
1181 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1182 			kfree(hmp, M_HAMMER2);
1183 			return error;
1184 		}
1185 		if (!hmp->devvp) {
1186 			kprintf("hammer2: failed to initialize root volume\n");
1187 			hammer2_unmount_helper(mp, NULL, hmp);
1188 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1189 			hammer2_vfs_unmount(mp, MNT_FORCE);
1190 			return EINVAL;
1191 		}
1192 
1193 		ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", dev);
1194 		hmp->ronly = ronly;
1195 		hmp->hflags = info.hflags & HMNT2_DEVFLAGS;
1196 		kmalloc_create_obj(&hmp->mchain, "HAMMER2-chains",
1197 				   sizeof(struct hammer2_chain));
1198 		kmalloc_create_obj(&hmp->mio, "HAMMER2-dio",
1199 				   sizeof(struct hammer2_io));
1200 		kmalloc_create(&hmp->mmsg, "HAMMER2-msg");
1201 		TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
1202 		RB_INIT(&hmp->iotree);
1203 		hammer2_spin_init(&hmp->io_spin, "h2mount_io");
1204 		hammer2_spin_init(&hmp->list_spin, "h2mount_list");
1205 
1206 		lockinit(&hmp->vollk, "h2vol", 0, 0);
1207 		lockinit(&hmp->bulklk, "h2bulk", 0, 0);
1208 		lockinit(&hmp->bflock, "h2bflk", 0, 0);
1209 
1210 		/*
1211 		 * vchain setup. vchain.data is embedded.
1212 		 * vchain.refs is initialized and will never drop to 0.
1213 		 *
1214 		 * NOTE! voldata is not yet loaded.
1215 		 */
1216 		hmp->vchain.hmp = hmp;
1217 		hmp->vchain.refs = 1;
1218 		hmp->vchain.data = (void *)&hmp->voldata;
1219 		hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
1220 		hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1221 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1222 		hammer2_chain_core_init(&hmp->vchain);
1223 
1224 		/*
1225 		 * fchain setup.  fchain.data is embedded.
1226 		 * fchain.refs is initialized and will never drop to 0.
1227 		 *
1228 		 * The data is not used but needs to be initialized to
1229 		 * pass assertion muster.  We use this chain primarily
1230 		 * as a placeholder for the freemap's top-level radix tree
1231 		 * so it does not interfere with the volume's topology
1232 		 * radix tree.
1233 		 */
1234 		hmp->fchain.hmp = hmp;
1235 		hmp->fchain.refs = 1;
1236 		hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
1237 		hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
1238 		hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1239 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1240 		hmp->fchain.bref.methods =
1241 			HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
1242 			HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
1243 		hammer2_chain_core_init(&hmp->fchain);
1244 
1245 		/*
1246 		 * Initialize volume header related fields.
1247 		 */
1248 		KKASSERT(hmp->voldata.magic == HAMMER2_VOLUME_ID_HBO ||
1249 			 hmp->voldata.magic == HAMMER2_VOLUME_ID_ABO);
1250 		hmp->volsync = hmp->voldata;
1251 		hmp->free_reserved = hmp->voldata.allocator_size / 20;
1252 		/*
1253 		 * Must use hmp instead of volume header for these two
1254 		 * in order to handle volume versions transparently.
1255 		 */
1256 		if (hmp->voldata.version >= HAMMER2_VOL_VERSION_MULTI_VOLUMES) {
1257 			hmp->nvolumes = hmp->voldata.nvolumes;
1258 			hmp->total_size = hmp->voldata.total_size;
1259 		} else {
1260 			hmp->nvolumes = 1;
1261 			hmp->total_size = hmp->voldata.volu_size;
1262 		}
1263 		KKASSERT(hmp->nvolumes > 0);
1264 
1265 		/*
1266 		 * Move devvpl entries to hmp.
1267 		 */
1268 		TAILQ_INIT(&hmp->devvpl);
1269 		while ((e = TAILQ_FIRST(&devvpl)) != NULL) {
1270 			TAILQ_REMOVE(&devvpl, e, entry);
1271 			TAILQ_INSERT_TAIL(&hmp->devvpl, e, entry);
1272 		}
1273 		KKASSERT(TAILQ_EMPTY(&devvpl));
1274 		KKASSERT(!TAILQ_EMPTY(&hmp->devvpl));
1275 
1276 		/*
1277 		 * Really important to get these right or the flush and
1278 		 * teardown code will get confused.
1279 		 */
1280 		hmp->spmp = hammer2_pfsalloc(NULL, NULL, 0, NULL);
1281 		spmp = hmp->spmp;
1282 		spmp->pfs_hmps[0] = hmp;
1283 
1284 		/*
1285 		 * Dummy-up vchain and fchain's modify_tid.  mirror_tid
1286 		 * is inherited from the volume header.
1287 		 */
1288 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1289 		hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
1290 		hmp->vchain.pmp = spmp;
1291 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1292 		hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
1293 		hmp->fchain.pmp = spmp;
1294 
1295 		/*
1296 		 * First locate the super-root inode, which is key 0
1297 		 * relative to the volume header's blockset.
1298 		 *
1299 		 * Then locate the root inode by scanning the directory keyspace
1300 		 * represented by the label.
1301 		 */
1302 		parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1303 		schain = hammer2_chain_lookup(&parent, &key_dummy,
1304 				      HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
1305 				      &error, 0);
1306 		hammer2_chain_lookup_done(parent);
1307 		if (schain == NULL) {
1308 			kprintf("hammer2_mount: invalid super-root\n");
1309 			hammer2_unmount_helper(mp, NULL, hmp);
1310 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1311 			hammer2_vfs_unmount(mp, MNT_FORCE);
1312 			return EINVAL;
1313 		}
1314 		if (schain->error) {
1315 			kprintf("hammer2_mount: error %s reading super-root\n",
1316 				hammer2_error_str(schain->error));
1317 			hammer2_chain_unlock(schain);
1318 			hammer2_chain_drop(schain);
1319 			schain = NULL;
1320 			hammer2_unmount_helper(mp, NULL, hmp);
1321 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1322 			hammer2_vfs_unmount(mp, MNT_FORCE);
1323 			return EINVAL;
1324 		}
1325 
1326 		/*
1327 		 * The super-root always uses an inode_tid of 1 when
1328 		 * creating PFSs.
1329 		 */
1330 		spmp->inode_tid = 1;
1331 		spmp->modify_tid = schain->bref.modify_tid + 1;
1332 
1333 		/*
1334 		 * Sanity-check schain's pmp and finish initialization.
1335 		 * Any chain belonging to the super-root topology should
1336 		 * have a NULL pmp (not even set to spmp).
1337 		 */
1338 		ripdata = &schain->data->ipdata;
1339 		KKASSERT(schain->pmp == NULL);
1340 		spmp->pfs_clid = ripdata->meta.pfs_clid;
1341 
1342 		/*
1343 		 * Replace the dummy spmp->iroot with a real one.  It's
1344 		 * easier to just do a wholesale replacement than to try
1345 		 * to update the chain and fixup the iroot fields.
1346 		 *
1347 		 * The returned inode is locked with the supplied cluster.
1348 		 */
1349 		hammer2_dummy_xop_from_chain(&xop, schain);
1350 		hammer2_inode_drop(spmp->iroot);
1351 		spmp->iroot = NULL;
1352 		spmp->iroot = hammer2_inode_get(spmp, &xop, -1, -1);
1353 		spmp->spmp_hmp = hmp;
1354 		spmp->pfs_types[0] = ripdata->meta.pfs_type;
1355 		spmp->pfs_hmps[0] = hmp;
1356 		hammer2_inode_ref(spmp->iroot);
1357 		hammer2_inode_unlock(spmp->iroot);
1358 		hammer2_cluster_unlock(&xop.cluster);
1359 		hammer2_chain_drop(schain);
1360 		/* do not call hammer2_cluster_drop() on an embedded cluster */
1361 		schain = NULL;	/* now invalid */
1362 		/* leave spmp->iroot with one ref */
1363 
1364 		if (!hmp->ronly) {
1365 			error = hammer2_recovery(hmp);
1366 			if (error == 0)
1367 				error |= hammer2_fixup_pfses(hmp);
1368 			/* XXX do something with error */
1369 		}
1370 		hammer2_update_pmps(hmp);
1371 		hammer2_iocom_init(hmp);
1372 		hammer2_bulkfree_init(hmp);
1373 
1374 		/*
1375 		 * Ref the cluster management messaging descriptor.  The mount
1376 		 * program deals with the other end of the communications pipe.
1377 		 *
1378 		 * Root mounts typically do not supply one.
1379 		 */
1380 		if (info.cluster_fd >= 0) {
1381 			fp = holdfp(curthread, info.cluster_fd, -1);
1382 			if (fp) {
1383 				hammer2_cluster_reconnect(hmp, fp);
1384 			} else {
1385 				kprintf("hammer2_mount: bad cluster_fd!\n");
1386 			}
1387 		}
1388 	} else {
1389 		spmp = hmp->spmp;
1390 		if (info.hflags & HMNT2_DEVFLAGS) {
1391 			kprintf("hammer2_mount: Warning: mount flags pertaining "
1392 				"to the whole device may only be specified "
1393 				"on the first mount of the device: %08x\n",
1394 				info.hflags & HMNT2_DEVFLAGS);
1395 		}
1396 	}
1397 
1398 	/*
1399 	 * Force local mount (disassociate all PFSs from their clusters).
1400 	 * Used primarily for debugging.
1401 	 */
1402 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1403 
1404 	/*
1405 	 * Lookup the mount point under the media-localized super-root.
1406 	 * Scanning hammer2_pfslist doesn't help us because it represents
1407 	 * PFS cluster ids which can aggregate several named PFSs together.
1408 	 *
1409 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1410 	 * up later on.
1411 	 */
1412 	hammer2_inode_lock(spmp->iroot, 0);
1413 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1414 	lhc = hammer2_dirhash(label, strlen(label));
1415 	chain = hammer2_chain_lookup(&parent, &key_next,
1416 				     lhc, lhc + HAMMER2_DIRHASH_LOMASK,
1417 				     &error, 0);
1418 	while (chain) {
1419 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
1420 		    strcmp(label, chain->data->ipdata.filename) == 0) {
1421 			break;
1422 		}
1423 		chain = hammer2_chain_next(&parent, chain, &key_next,
1424 					    key_next,
1425 					    lhc + HAMMER2_DIRHASH_LOMASK,
1426 					    &error, 0);
1427 	}
1428 	if (parent) {
1429 		hammer2_chain_unlock(parent);
1430 		hammer2_chain_drop(parent);
1431 	}
1432 	hammer2_inode_unlock(spmp->iroot);
1433 
1434 	/*
1435 	 * PFS could not be found?
1436 	 */
1437 	if (chain == NULL) {
1438 		hammer2_unmount_helper(mp, NULL, hmp);
1439 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1440 		hammer2_vfs_unmount(mp, MNT_FORCE);
1441 
1442 		if (error) {
1443 			kprintf("hammer2_mount: PFS label I/O error\n");
1444 			return EINVAL;
1445 		} else {
1446 			kprintf("hammer2_mount: PFS label \"%s\" not found\n",
1447 				label);
1448 			return ENOENT;
1449 		}
1450 	}
1451 
1452 	/*
1453 	 * Acquire the pmp structure (it should have already been allocated
1454 	 * via hammer2_update_pmps() so do not pass cluster in to add to
1455 	 * available chains).
1456 	 *
1457 	 * Check if the cluster has already been mounted.  A cluster can
1458 	 * only be mounted once, use null mounts to mount additional copies.
1459 	 */
1460 	if (chain->error) {
1461 		kprintf("hammer2_mount: PFS label I/O error\n");
1462 	} else {
1463 		ripdata = &chain->data->ipdata;
1464 		bref = chain->bref;
1465 		pmp = hammer2_pfsalloc(NULL, ripdata,
1466 				       bref.modify_tid, force_local);
1467 	}
1468 	hammer2_chain_unlock(chain);
1469 	hammer2_chain_drop(chain);
1470 
1471 	/*
1472 	 * Finish the mount
1473 	 */
1474 	kprintf("hammer2_mount: hmp=%p pmp=%p\n", hmp, pmp);
1475 
1476 	if (pmp->mp) {
1477 		kprintf("hammer2_mount: PFS already mounted!\n");
1478 		hammer2_unmount_helper(mp, NULL, hmp);
1479 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1480 		hammer2_vfs_unmount(mp, MNT_FORCE);
1481 
1482 		return EBUSY;
1483 	}
1484 
1485 	pmp->hflags = info.hflags;
1486 	mp->mnt_flag |= MNT_LOCAL;
1487 	mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;   /* all entry pts are SMP */
1488 	mp->mnt_kern_flag |= MNTK_THR_SYNC;     /* new vsyncscan semantics */
1489 
1490 	/*
1491 	 * required mount structure initializations
1492 	 */
1493 	mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
1494 	mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
1495 
1496 	mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
1497 	mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1498 
1499 	/*
1500 	 * Optional fields
1501 	 */
1502 	mp->mnt_iosize_max = MAXPHYS;
1503 
1504 	/*
1505 	 * Connect up mount pointers.
1506 	 */
1507 	hammer2_mount_helper(mp, pmp);
1508 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1509 
1510 	/*
1511 	 * Finish setup
1512 	 */
1513 	vfs_getnewfsid(mp);
1514 	vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
1515 	vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
1516 	vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
1517 
1518 	if (path) {
1519 		copyinstr(info.volume, mp->mnt_stat.f_mntfromname,
1520 			  MNAMELEN - 1, &size);
1521 		bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
1522 	} /* else root mount, already in there */
1523 
1524 	bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
1525 	if (path) {
1526 		copyinstr(path, mp->mnt_stat.f_mntonname,
1527 			  sizeof(mp->mnt_stat.f_mntonname) - 1,
1528 			  &size);
1529 	} else {
1530 		/* root mount */
1531 		mp->mnt_stat.f_mntonname[0] = '/';
1532 	}
1533 
1534 	/*
1535 	 * Initial statfs to prime mnt_stat.
1536 	 */
1537 	hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
1538 
1539 	return 0;
1540 }
1541 
1542 /*
1543  * Scan PFSs under the super-root and create hammer2_pfs structures.
1544  */
1545 static
1546 void
1547 hammer2_update_pmps(hammer2_dev_t *hmp)
1548 {
1549 	const hammer2_inode_data_t *ripdata;
1550 	hammer2_chain_t *parent;
1551 	hammer2_chain_t *chain;
1552 	hammer2_blockref_t bref;
1553 	hammer2_dev_t *force_local;
1554 	hammer2_pfs_t *spmp;
1555 	hammer2_pfs_t *pmp;
1556 	hammer2_key_t key_next;
1557 	int error;
1558 
1559 	/*
1560 	 * Force local mount (disassociate all PFSs from their clusters).
1561 	 * Used primarily for debugging.
1562 	 */
1563 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1564 
1565 	/*
1566 	 * Lookup mount point under the media-localized super-root.
1567 	 *
1568 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1569 	 * up later on.
1570 	 */
1571 	spmp = hmp->spmp;
1572 	hammer2_inode_lock(spmp->iroot, 0);
1573 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1574 	chain = hammer2_chain_lookup(&parent, &key_next,
1575 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
1576 					 &error, 0);
1577 	while (chain) {
1578 		if (chain->error) {
1579 			kprintf("I/O error scanning PFS labels\n");
1580 		} else if (chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
1581 			kprintf("Non inode chain type %d under super-root\n",
1582 				chain->bref.type);
1583 		} else {
1584 			ripdata = &chain->data->ipdata;
1585 			bref = chain->bref;
1586 			pmp = hammer2_pfsalloc(chain, ripdata,
1587 					       bref.modify_tid, force_local);
1588 		}
1589 		chain = hammer2_chain_next(&parent, chain, &key_next,
1590 					   key_next, HAMMER2_KEY_MAX,
1591 					   &error, 0);
1592 	}
1593 	if (parent) {
1594 		hammer2_chain_unlock(parent);
1595 		hammer2_chain_drop(parent);
1596 	}
1597 	hammer2_inode_unlock(spmp->iroot);
1598 }
1599 
1600 static
1601 int
1602 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path __unused,
1603 		struct ucred *cred)
1604 {
1605 	hammer2_volume_t *vol;
1606 	struct vnode *devvp;
1607 	int i, error, result = 0;
1608 
1609 	if (!(hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)))
1610 		return 0;
1611 
1612 	for (i = 0; i < hmp->nvolumes; ++i) {
1613 		vol = &hmp->volumes[i];
1614 		devvp = vol->dev->devvp;
1615 		KKASSERT(devvp);
1616 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1617 		VOP_OPEN(devvp, FREAD | FWRITE, FSCRED, NULL);
1618 		vn_unlock(devvp);
1619 		error = 0;
1620 		if (vol->id == HAMMER2_ROOT_VOLUME) {
1621 			error = hammer2_recovery(hmp);
1622 			if (error == 0)
1623 				error |= hammer2_fixup_pfses(hmp);
1624 		}
1625 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1626 		if (error == 0) {
1627 			VOP_CLOSE(devvp, FREAD, NULL);
1628 		} else {
1629 			VOP_CLOSE(devvp, FREAD | FWRITE, NULL);
1630 		}
1631 		vn_unlock(devvp);
1632 		result |= error;
1633 	}
1634 	if (result == 0) {
1635 		kprintf("hammer2: enable read/write\n");
1636 		hmp->ronly = 0;
1637 	}
1638 
1639 	return result;
1640 }
1641 
1642 static
1643 int
1644 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1645 {
1646 	hammer2_pfs_t *pmp;
1647 	int flags;
1648 	int error = 0;
1649 
1650 	pmp = MPTOPMP(mp);
1651 
1652 	if (pmp == NULL)
1653 		return(0);
1654 
1655 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1656 
1657 	/*
1658 	 * If mount initialization proceeded far enough we must flush
1659 	 * its vnodes and sync the underlying mount points.  Three syncs
1660 	 * are required to fully flush the filesystem (freemap updates lag
1661 	 * by one flush, and one extra for safety).
1662 	 */
1663 	if (mntflags & MNT_FORCE)
1664 		flags = FORCECLOSE;
1665 	else
1666 		flags = 0;
1667 	if (pmp->iroot) {
1668 		error = vflush(mp, 0, flags);
1669 		if (error)
1670 			goto failed;
1671 		hammer2_vfs_sync(mp, MNT_WAIT);
1672 		hammer2_vfs_sync(mp, MNT_WAIT);
1673 		hammer2_vfs_sync(mp, MNT_WAIT);
1674 	}
1675 
1676 	/*
1677 	 * Cleanup the frontend support XOPS threads
1678 	 */
1679 	hammer2_xop_helper_cleanup(pmp);
1680 
1681 	if (pmp->mp)
1682 		hammer2_unmount_helper(mp, pmp, NULL);
1683 
1684 	error = 0;
1685 failed:
1686 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1687 
1688 	return (error);
1689 }
1690 
1691 /*
1692  * Mount helper, hook the system mount into our PFS.
1693  * The mount lock is held.
1694  *
1695  * We must bump the mount_count on related devices for any
1696  * mounted PFSs.
1697  */
1698 static
1699 void
1700 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp)
1701 {
1702 	hammer2_cluster_t *cluster;
1703 	hammer2_chain_t *rchain;
1704 	int i;
1705 
1706 	mp->mnt_data = (qaddr_t)pmp;
1707 	pmp->mp = mp;
1708 
1709 	/*
1710 	 * After pmp->mp is set we have to adjust hmp->mount_count.
1711 	 */
1712 	cluster = &pmp->iroot->cluster;
1713 	for (i = 0; i < cluster->nchains; ++i) {
1714 		rchain = cluster->array[i].chain;
1715 		if (rchain == NULL)
1716 			continue;
1717 		++rchain->hmp->mount_count;
1718 	}
1719 
1720 	/*
1721 	 * Create missing Xop threads
1722 	 */
1723 	hammer2_xop_helper_create(pmp);
1724 }
1725 
1726 /*
1727  * Unmount helper, unhook the system mount from our PFS.
1728  * The mount lock is held.
1729  *
1730  * If hmp is supplied a mount responsible for being the first to open
1731  * the block device failed and the block device and all PFSs using the
1732  * block device must be cleaned up.
1733  *
1734  * If pmp is supplied multiple devices might be backing the PFS and each
1735  * must be disconnected.  This might not be the last PFS using some of the
1736  * underlying devices.  Also, we have to adjust our hmp->mount_count
1737  * accounting for the devices backing the pmp which is now undergoing an
1738  * unmount.
1739  */
1740 static
1741 void
1742 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp)
1743 {
1744 	hammer2_cluster_t *cluster;
1745 	hammer2_chain_t *rchain;
1746 	int dumpcnt;
1747 	int i;
1748 
1749 	/*
1750 	 * If no device supplied this is a high-level unmount and we have to
1751 	 * to disconnect the mount, adjust mount_count, and locate devices
1752 	 * that might now have no mounts.
1753 	 */
1754 	if (pmp) {
1755 		KKASSERT(hmp == NULL);
1756 		KKASSERT(MPTOPMP(mp) == pmp);
1757 		pmp->mp = NULL;
1758 		mp->mnt_data = NULL;
1759 
1760 		/*
1761 		 * After pmp->mp is cleared we have to account for
1762 		 * mount_count.
1763 		 */
1764 		cluster = &pmp->iroot->cluster;
1765 		for (i = 0; i < cluster->nchains; ++i) {
1766 			rchain = cluster->array[i].chain;
1767 			if (rchain == NULL)
1768 				continue;
1769 			--rchain->hmp->mount_count;
1770 			/* scrapping hmp now may invalidate the pmp */
1771 		}
1772 again:
1773 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1774 			if (hmp->mount_count == 0) {
1775 				hammer2_unmount_helper(NULL, NULL, hmp);
1776 				goto again;
1777 			}
1778 		}
1779 		return;
1780 	}
1781 
1782 	/*
1783 	 * Try to terminate the block device.  We can't terminate it if
1784 	 * there are still PFSs referencing it.
1785 	 */
1786 	if (hmp->mount_count)
1787 		return;
1788 
1789 	/*
1790 	 * Decomission the network before we start messing with the
1791 	 * device and PFS.
1792 	 */
1793 	hammer2_iocom_uninit(hmp);
1794 
1795 	hammer2_bulkfree_uninit(hmp);
1796 	hammer2_pfsfree_scan(hmp, 0);
1797 
1798 	/*
1799 	 * Cycle the volume data lock as a safety (probably not needed any
1800 	 * more).  To ensure everything is out we need to flush at least
1801 	 * three times.  (1) The running of the sideq can dirty the
1802 	 * filesystem, (2) A normal flush can dirty the freemap, and
1803 	 * (3) ensure that the freemap is fully synchronized.
1804 	 *
1805 	 * The next mount's recovery scan can clean everything up but we want
1806 	 * to leave the filesystem in a 100% clean state on a normal unmount.
1807 	 */
1808 #if 0
1809 	hammer2_voldata_lock(hmp);
1810 	hammer2_voldata_unlock(hmp);
1811 #endif
1812 
1813 	/*
1814 	 * Flush whatever is left.  Unmounted but modified PFS's might still
1815 	 * have some dirty chains on them.
1816 	 */
1817 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1818 	hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1819 
1820 	if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1821 		hammer2_voldata_modify(hmp);
1822 		hammer2_flush(&hmp->fchain, HAMMER2_FLUSH_TOP |
1823 					    HAMMER2_FLUSH_ALL);
1824 	}
1825 	hammer2_chain_unlock(&hmp->fchain);
1826 
1827 	if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1828 		hammer2_flush(&hmp->vchain, HAMMER2_FLUSH_TOP |
1829 					    HAMMER2_FLUSH_ALL);
1830 	}
1831 	hammer2_chain_unlock(&hmp->vchain);
1832 
1833 	if ((hmp->vchain.flags | hmp->fchain.flags) &
1834 	    HAMMER2_CHAIN_FLUSH_MASK) {
1835 		kprintf("hammer2_unmount: chains left over after final sync\n");
1836 		kprintf("    vchain %08x\n", hmp->vchain.flags);
1837 		kprintf("    fchain %08x\n", hmp->fchain.flags);
1838 
1839 		if (hammer2_debug & 0x0010)
1840 			Debugger("entered debugger");
1841 	}
1842 
1843 	hammer2_pfsfree_scan(hmp, 1);
1844 
1845 	KKASSERT(hmp->spmp == NULL);
1846 
1847 	/*
1848 	 * Finish up with the device vnode
1849 	 */
1850 	if (!TAILQ_EMPTY(&hmp->devvpl)) {
1851 		hammer2_close_devvp(&hmp->devvpl, hmp->ronly);
1852 		hammer2_cleanup_devvp(&hmp->devvpl);
1853 	}
1854 	KKASSERT(TAILQ_EMPTY(&hmp->devvpl));
1855 
1856 	/*
1857 	 * Clear vchain/fchain flags that might prevent final cleanup
1858 	 * of these chains.
1859 	 */
1860 	if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1861 		atomic_add_long(&hammer2_count_modified_chains, -1);
1862 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1863 		hammer2_pfs_memory_wakeup(hmp->vchain.pmp, -1);
1864 	}
1865 	if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1866 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_UPDATE);
1867 	}
1868 
1869 	if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1870 		atomic_add_long(&hammer2_count_modified_chains, -1);
1871 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_MODIFIED);
1872 		hammer2_pfs_memory_wakeup(hmp->fchain.pmp, -1);
1873 	}
1874 	if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1875 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_UPDATE);
1876 	}
1877 
1878 	/*
1879 	 * Final drop of embedded freemap root chain to
1880 	 * clean up fchain.core (fchain structure is not
1881 	 * flagged ALLOCATED so it is cleaned out and then
1882 	 * left to rot).
1883 	 */
1884 	hammer2_chain_drop(&hmp->fchain);
1885 
1886 	/*
1887 	 * Final drop of embedded volume root chain to clean
1888 	 * up vchain.core (vchain structure is not flagged
1889 	 * ALLOCATED so it is cleaned out and then left to
1890 	 * rot).
1891 	 */
1892 	dumpcnt = 50;
1893 	hammer2_dump_chain(&hmp->vchain, 0, 0, &dumpcnt, 'v', (u_int)-1);
1894 	dumpcnt = 50;
1895 	hammer2_dump_chain(&hmp->fchain, 0, 0, &dumpcnt, 'f', (u_int)-1);
1896 
1897 	hammer2_chain_drop(&hmp->vchain);
1898 
1899 	hammer2_io_cleanup(hmp, &hmp->iotree);
1900 	if (hmp->iofree_count) {
1901 		kprintf("io_cleanup: %d I/O's left hanging\n",
1902 			hmp->iofree_count);
1903 	}
1904 
1905 	TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1906 	kmalloc_destroy_obj(&hmp->mchain);
1907 	kmalloc_destroy_obj(&hmp->mio);
1908 	kmalloc_destroy(&hmp->mmsg);
1909 	kfree(hmp, M_HAMMER2);
1910 }
1911 
1912 int
1913 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1914 		 ino_t ino, struct vnode **vpp)
1915 {
1916 	hammer2_xop_lookup_t *xop;
1917 	hammer2_pfs_t *pmp;
1918 	hammer2_inode_t *ip;
1919 	hammer2_tid_t inum;
1920 	int error;
1921 
1922 	inum = (hammer2_tid_t)ino & HAMMER2_DIRHASH_USERMSK;
1923 
1924 	error = 0;
1925 	pmp = MPTOPMP(mp);
1926 
1927 	/*
1928 	 * Easy if we already have it cached
1929 	 */
1930 	ip = hammer2_inode_lookup(pmp, inum);
1931 	if (ip) {
1932 		hammer2_inode_lock(ip, HAMMER2_RESOLVE_SHARED);
1933 		*vpp = hammer2_igetv(ip, &error);
1934 		hammer2_inode_unlock(ip);
1935 		hammer2_inode_drop(ip);		/* from lookup */
1936 
1937 		return error;
1938 	}
1939 
1940 	/*
1941 	 * Otherwise we have to find the inode
1942 	 */
1943 	xop = hammer2_xop_alloc(pmp->iroot, 0);
1944 	xop->lhc = inum;
1945 	hammer2_xop_start(&xop->head, &hammer2_lookup_desc);
1946 	error = hammer2_xop_collect(&xop->head, 0);
1947 
1948 	if (error == 0)
1949 		ip = hammer2_inode_get(pmp, &xop->head, -1, -1);
1950 	hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1951 
1952 	if (ip) {
1953 		*vpp = hammer2_igetv(ip, &error);
1954 		hammer2_inode_unlock(ip);
1955 	} else {
1956 		*vpp = NULL;
1957 		error = ENOENT;
1958 	}
1959 	return (error);
1960 }
1961 
1962 static
1963 int
1964 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1965 {
1966 	hammer2_pfs_t *pmp;
1967 	struct vnode *vp;
1968 	int error;
1969 
1970 	pmp = MPTOPMP(mp);
1971 	if (pmp->iroot == NULL) {
1972 		kprintf("hammer2 (%s): no root inode\n",
1973 			mp->mnt_stat.f_mntfromname);
1974 		*vpp = NULL;
1975 		return EINVAL;
1976 	}
1977 
1978 	error = 0;
1979 	hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1980 
1981 	while (pmp->inode_tid == 0) {
1982 		hammer2_xop_ipcluster_t *xop;
1983 		const hammer2_inode_meta_t *meta;
1984 
1985 		xop = hammer2_xop_alloc(pmp->iroot, HAMMER2_XOP_MODIFYING);
1986 		hammer2_xop_start(&xop->head, &hammer2_ipcluster_desc);
1987 		error = hammer2_xop_collect(&xop->head, 0);
1988 
1989 		if (error == 0) {
1990 			meta = &hammer2_xop_gdata(&xop->head)->ipdata.meta;
1991 			pmp->iroot->meta = *meta;
1992 			pmp->inode_tid = meta->pfs_inum + 1;
1993 			hammer2_xop_pdata(&xop->head);
1994 			/* meta invalid */
1995 
1996 			if (pmp->inode_tid < HAMMER2_INODE_START)
1997 				pmp->inode_tid = HAMMER2_INODE_START;
1998 			pmp->modify_tid =
1999 				xop->head.cluster.focus->bref.modify_tid + 1;
2000 #if 0
2001 			kprintf("PFS: Starting inode %jd\n",
2002 				(intmax_t)pmp->inode_tid);
2003 			kprintf("PMP focus good set nextino=%ld mod=%016jx\n",
2004 				pmp->inode_tid, pmp->modify_tid);
2005 #endif
2006 			wakeup(&pmp->iroot);
2007 
2008 			hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2009 
2010 			/*
2011 			 * Prime the mount info.
2012 			 */
2013 			hammer2_vfs_statfs(mp, &mp->mnt_stat, NULL);
2014 			break;
2015 		}
2016 
2017 		/*
2018 		 * Loop, try again
2019 		 */
2020 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2021 		hammer2_inode_unlock(pmp->iroot);
2022 		error = tsleep(&pmp->iroot, PCATCH, "h2root", hz);
2023 		hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
2024 		if (error == EINTR)
2025 			break;
2026 	}
2027 
2028 	if (error) {
2029 		hammer2_inode_unlock(pmp->iroot);
2030 		*vpp = NULL;
2031 	} else {
2032 		vp = hammer2_igetv(pmp->iroot, &error);
2033 		hammer2_inode_unlock(pmp->iroot);
2034 		*vpp = vp;
2035 	}
2036 
2037 	return (error);
2038 }
2039 
2040 /*
2041  * Filesystem status
2042  *
2043  * XXX incorporate ipdata->meta.inode_quota and data_quota
2044  */
2045 static
2046 int
2047 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
2048 {
2049 	hammer2_pfs_t *pmp;
2050 	hammer2_dev_t *hmp;
2051 	hammer2_blockref_t bref;
2052 	struct statfs tmp;
2053 	int i;
2054 
2055 	/*
2056 	 * NOTE: iroot might not have validated the cluster yet.
2057 	 */
2058 	pmp = MPTOPMP(mp);
2059 
2060 	bzero(&tmp, sizeof(tmp));
2061 
2062 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2063 		hmp = pmp->pfs_hmps[i];
2064 		if (hmp == NULL)
2065 			continue;
2066 		if (pmp->iroot->cluster.array[i].chain)
2067 			bref = pmp->iroot->cluster.array[i].chain->bref;
2068 		else
2069 			bzero(&bref, sizeof(bref));
2070 
2071 		tmp.f_files = bref.embed.stats.inode_count;
2072 		tmp.f_ffree = 0;
2073 		tmp.f_blocks = hmp->voldata.allocator_size /
2074 			       mp->mnt_vstat.f_bsize;
2075 		tmp.f_bfree = hmp->voldata.allocator_free /
2076 			      mp->mnt_vstat.f_bsize;
2077 		tmp.f_bavail = tmp.f_bfree;
2078 
2079 		if (cred && cred->cr_uid != 0) {
2080 			uint64_t adj;
2081 
2082 			/* 5% */
2083 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2084 			tmp.f_blocks -= adj;
2085 			tmp.f_bfree -= adj;
2086 			tmp.f_bavail -= adj;
2087 		}
2088 
2089 		mp->mnt_stat.f_blocks = tmp.f_blocks;
2090 		mp->mnt_stat.f_bfree = tmp.f_bfree;
2091 		mp->mnt_stat.f_bavail = tmp.f_bavail;
2092 		mp->mnt_stat.f_files = tmp.f_files;
2093 		mp->mnt_stat.f_ffree = tmp.f_ffree;
2094 
2095 		*sbp = mp->mnt_stat;
2096 	}
2097 	return (0);
2098 }
2099 
2100 static
2101 int
2102 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
2103 {
2104 	hammer2_pfs_t *pmp;
2105 	hammer2_dev_t *hmp;
2106 	hammer2_blockref_t bref;
2107 	struct statvfs tmp;
2108 	int i;
2109 
2110 	/*
2111 	 * NOTE: iroot might not have validated the cluster yet.
2112 	 */
2113 	pmp = MPTOPMP(mp);
2114 	bzero(&tmp, sizeof(tmp));
2115 
2116 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2117 		hmp = pmp->pfs_hmps[i];
2118 		if (hmp == NULL)
2119 			continue;
2120 		if (pmp->iroot->cluster.array[i].chain)
2121 			bref = pmp->iroot->cluster.array[i].chain->bref;
2122 		else
2123 			bzero(&bref, sizeof(bref));
2124 
2125 		tmp.f_files = bref.embed.stats.inode_count;
2126 		tmp.f_ffree = 0;
2127 		tmp.f_blocks = hmp->voldata.allocator_size /
2128 			       mp->mnt_vstat.f_bsize;
2129 		tmp.f_bfree = hmp->voldata.allocator_free /
2130 			      mp->mnt_vstat.f_bsize;
2131 		tmp.f_bavail = tmp.f_bfree;
2132 
2133 		if (cred && cred->cr_uid != 0) {
2134 			uint64_t adj;
2135 
2136 			/* 5% */
2137 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2138 			tmp.f_blocks -= adj;
2139 			tmp.f_bfree -= adj;
2140 			tmp.f_bavail -= adj;
2141 		}
2142 
2143 		mp->mnt_vstat.f_blocks = tmp.f_blocks;
2144 		mp->mnt_vstat.f_bfree = tmp.f_bfree;
2145 		mp->mnt_vstat.f_bavail = tmp.f_bavail;
2146 		mp->mnt_vstat.f_files = tmp.f_files;
2147 		mp->mnt_vstat.f_ffree = tmp.f_ffree;
2148 
2149 		*sbp = mp->mnt_vstat;
2150 	}
2151 	return (0);
2152 }
2153 
2154 /*
2155  * Mount-time recovery (RW mounts)
2156  *
2157  * Updates to the free block table are allowed to lag flushes by one
2158  * transaction.  In case of a crash, then on a fresh mount we must do an
2159  * incremental scan of the last committed transaction id and make sure that
2160  * all related blocks have been marked allocated.
2161  */
2162 struct hammer2_recovery_elm {
2163 	TAILQ_ENTRY(hammer2_recovery_elm) entry;
2164 	hammer2_chain_t *chain;
2165 	hammer2_tid_t sync_tid;
2166 };
2167 
2168 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
2169 
2170 struct hammer2_recovery_info {
2171 	struct hammer2_recovery_list list;
2172 	hammer2_tid_t	mtid;
2173 	int	depth;
2174 };
2175 
2176 static int hammer2_recovery_scan(hammer2_dev_t *hmp,
2177 			hammer2_chain_t *parent,
2178 			struct hammer2_recovery_info *info,
2179 			hammer2_tid_t sync_tid);
2180 
2181 #define HAMMER2_RECOVERY_MAXDEPTH	10
2182 
2183 static
2184 int
2185 hammer2_recovery(hammer2_dev_t *hmp)
2186 {
2187 	struct hammer2_recovery_info info;
2188 	struct hammer2_recovery_elm *elm;
2189 	hammer2_chain_t *parent;
2190 	hammer2_tid_t sync_tid;
2191 	hammer2_tid_t mirror_tid;
2192 	int error;
2193 
2194 	hammer2_trans_init(hmp->spmp, 0);
2195 
2196 	sync_tid = hmp->voldata.freemap_tid;
2197 	mirror_tid = hmp->voldata.mirror_tid;
2198 
2199 	kprintf("hammer2_mount: \"%s\": ", hmp->devrepname);
2200 	if (sync_tid >= mirror_tid) {
2201 		kprintf("no recovery needed\n");
2202 	} else {
2203 		kprintf("freemap recovery %016jx-%016jx\n",
2204 			sync_tid + 1, mirror_tid);
2205 	}
2206 
2207 	TAILQ_INIT(&info.list);
2208 	info.depth = 0;
2209 	parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
2210 	error = hammer2_recovery_scan(hmp, parent, &info, sync_tid);
2211 	hammer2_chain_lookup_done(parent);
2212 
2213 	while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
2214 		TAILQ_REMOVE(&info.list, elm, entry);
2215 		parent = elm->chain;
2216 		sync_tid = elm->sync_tid;
2217 		kfree(elm, M_HAMMER2);
2218 
2219 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2220 		error |= hammer2_recovery_scan(hmp, parent, &info,
2221 					      hmp->voldata.freemap_tid);
2222 		hammer2_chain_unlock(parent);
2223 		hammer2_chain_drop(parent);	/* drop elm->chain ref */
2224 	}
2225 
2226 	hammer2_trans_done(hmp->spmp, 0);
2227 
2228 	return error;
2229 }
2230 
2231 static
2232 int
2233 hammer2_recovery_scan(hammer2_dev_t *hmp, hammer2_chain_t *parent,
2234 		      struct hammer2_recovery_info *info,
2235 		      hammer2_tid_t sync_tid)
2236 {
2237 	const hammer2_inode_data_t *ripdata;
2238 	hammer2_chain_t *chain;
2239 	hammer2_blockref_t bref;
2240 	int tmp_error;
2241 	int rup_error;
2242 	int error;
2243 	int first;
2244 
2245 	/*
2246 	 * Adjust freemap to ensure that the block(s) are marked allocated.
2247 	 */
2248 	if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
2249 		hammer2_freemap_adjust(hmp, &parent->bref,
2250 				       HAMMER2_FREEMAP_DORECOVER);
2251 	}
2252 
2253 	/*
2254 	 * Check type for recursive scan
2255 	 */
2256 	switch(parent->bref.type) {
2257 	case HAMMER2_BREF_TYPE_VOLUME:
2258 		/* data already instantiated */
2259 		break;
2260 	case HAMMER2_BREF_TYPE_INODE:
2261 		/*
2262 		 * Must instantiate data for DIRECTDATA test and also
2263 		 * for recursion.
2264 		 */
2265 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2266 		ripdata = &parent->data->ipdata;
2267 		if (ripdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2268 			/* not applicable to recovery scan */
2269 			hammer2_chain_unlock(parent);
2270 			return 0;
2271 		}
2272 		hammer2_chain_unlock(parent);
2273 		break;
2274 	case HAMMER2_BREF_TYPE_INDIRECT:
2275 		/*
2276 		 * Must instantiate data for recursion
2277 		 */
2278 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2279 		hammer2_chain_unlock(parent);
2280 		break;
2281 	case HAMMER2_BREF_TYPE_DIRENT:
2282 	case HAMMER2_BREF_TYPE_DATA:
2283 	case HAMMER2_BREF_TYPE_FREEMAP:
2284 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2285 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2286 		/* not applicable to recovery scan */
2287 		return 0;
2288 		break;
2289 	default:
2290 		return HAMMER2_ERROR_BADBREF;
2291 	}
2292 
2293 	/*
2294 	 * Defer operation if depth limit reached.
2295 	 */
2296 	if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) {
2297 		struct hammer2_recovery_elm *elm;
2298 
2299 		elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2300 		elm->chain = parent;
2301 		elm->sync_tid = sync_tid;
2302 		hammer2_chain_ref(parent);
2303 		TAILQ_INSERT_TAIL(&info->list, elm, entry);
2304 		/* unlocked by caller */
2305 
2306 		return(0);
2307 	}
2308 
2309 
2310 	/*
2311 	 * Recursive scan of the last flushed transaction only.  We are
2312 	 * doing this without pmp assignments so don't leave the chains
2313 	 * hanging around after we are done with them.
2314 	 *
2315 	 * error	Cumulative error this level only
2316 	 * rup_error	Cumulative error for recursion
2317 	 * tmp_error	Specific non-cumulative recursion error
2318 	 */
2319 	chain = NULL;
2320 	first = 1;
2321 	rup_error = 0;
2322 	error = 0;
2323 
2324 	for (;;) {
2325 		error |= hammer2_chain_scan(parent, &chain, &bref,
2326 					    &first,
2327 					    HAMMER2_LOOKUP_NODATA);
2328 
2329 		/*
2330 		 * Problem during scan or EOF
2331 		 */
2332 		if (error)
2333 			break;
2334 
2335 		/*
2336 		 * If this is a leaf
2337 		 */
2338 		if (chain == NULL) {
2339 			if (bref.mirror_tid > sync_tid) {
2340 				hammer2_freemap_adjust(hmp, &bref,
2341 						     HAMMER2_FREEMAP_DORECOVER);
2342 			}
2343 			continue;
2344 		}
2345 
2346 		/*
2347 		 * This may or may not be a recursive node.
2348 		 */
2349 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2350 		if (bref.mirror_tid > sync_tid) {
2351 			++info->depth;
2352 			tmp_error = hammer2_recovery_scan(hmp, chain,
2353 							   info, sync_tid);
2354 			--info->depth;
2355 		} else {
2356 			tmp_error = 0;
2357 		}
2358 
2359 		/*
2360 		 * Flush the recovery at the PFS boundary to stage it for
2361 		 * the final flush of the super-root topology.
2362 		 */
2363 		if (tmp_error == 0 &&
2364 		    (bref.flags & HAMMER2_BREF_FLAG_PFSROOT) &&
2365 		    (chain->flags & HAMMER2_CHAIN_ONFLUSH)) {
2366 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2367 					     HAMMER2_FLUSH_ALL);
2368 		}
2369 		rup_error |= tmp_error;
2370 	}
2371 	return ((error | rup_error) & ~HAMMER2_ERROR_EOF);
2372 }
2373 
2374 /*
2375  * This fixes up an error introduced in earlier H2 implementations where
2376  * moving a PFS inode into an indirect block wound up causing the
2377  * HAMMER2_BREF_FLAG_PFSROOT flag in the bref to get cleared.
2378  */
2379 static
2380 int
2381 hammer2_fixup_pfses(hammer2_dev_t *hmp)
2382 {
2383 	const hammer2_inode_data_t *ripdata;
2384 	hammer2_chain_t *parent;
2385 	hammer2_chain_t *chain;
2386 	hammer2_key_t key_next;
2387 	hammer2_pfs_t *spmp;
2388 	int error;
2389 
2390 	error = 0;
2391 
2392 	/*
2393 	 * Lookup mount point under the media-localized super-root.
2394 	 *
2395 	 * cluster->pmp will incorrectly point to spmp and must be fixed
2396 	 * up later on.
2397 	 */
2398 	spmp = hmp->spmp;
2399 	hammer2_inode_lock(spmp->iroot, 0);
2400 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
2401 	chain = hammer2_chain_lookup(&parent, &key_next,
2402 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
2403 					 &error, 0);
2404 	while (chain) {
2405 		if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
2406 			continue;
2407 		if (chain->error) {
2408 			kprintf("I/O error scanning PFS labels\n");
2409 			error |= chain->error;
2410 		} else if ((chain->bref.flags &
2411 			    HAMMER2_BREF_FLAG_PFSROOT) == 0) {
2412 			int error2;
2413 
2414 			ripdata = &chain->data->ipdata;
2415 			hammer2_trans_init(hmp->spmp, 0);
2416 			error2 = hammer2_chain_modify(chain,
2417 						      chain->bref.modify_tid,
2418 						      0, 0);
2419 			if (error2 == 0) {
2420 				kprintf("hammer2: Correct mis-flagged PFS %s\n",
2421 					ripdata->filename);
2422 				chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2423 			} else {
2424 				error |= error2;
2425 			}
2426 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2427 					     HAMMER2_FLUSH_ALL);
2428 			hammer2_trans_done(hmp->spmp, 0);
2429 		}
2430 		chain = hammer2_chain_next(&parent, chain, &key_next,
2431 					   key_next, HAMMER2_KEY_MAX,
2432 					   &error, 0);
2433 	}
2434 	if (parent) {
2435 		hammer2_chain_unlock(parent);
2436 		hammer2_chain_drop(parent);
2437 	}
2438 	hammer2_inode_unlock(spmp->iroot);
2439 
2440 	return error;
2441 }
2442 
2443 /*
2444  * Sync a mount point; this is called periodically on a per-mount basis from
2445  * the filesystem syncer, and whenever a user issues a sync.
2446  */
2447 int
2448 hammer2_vfs_sync(struct mount *mp, int waitfor)
2449 {
2450 	int error;
2451 
2452 	error = hammer2_vfs_sync_pmp(MPTOPMP(mp), waitfor);
2453 
2454 	return error;
2455 }
2456 
2457 /*
2458  * Because frontend operations lock vnodes before we get a chance to
2459  * lock the related inode, we can't just acquire a vnode lock without
2460  * risking a deadlock.  The frontend may be holding a vnode lock while
2461  * also blocked on our SYNCQ flag while trying to get the inode lock.
2462  *
2463  * To deal with this situation we can check the vnode lock situation
2464  * after locking the inode and perform a work-around.
2465  */
2466 int
2467 hammer2_vfs_sync_pmp(hammer2_pfs_t *pmp, int waitfor)
2468 {
2469 	hammer2_inode_t *ip;
2470 	hammer2_depend_t *depend;
2471 	hammer2_depend_t *depend_next;
2472 	struct vnode *vp;
2473 	uint32_t pass2;
2474 	int error;
2475 	int wakecount;
2476 	int dorestart;
2477 
2478 	/*
2479 	 * Move all inodes on sideq to syncq.  This will clear sideq.
2480 	 * This should represent all flushable inodes.  These inodes
2481 	 * will already have refs due to being on syncq or sideq.  We
2482 	 * must do this all at once with the spinlock held to ensure that
2483 	 * all inode dependencies are part of the same flush.
2484 	 *
2485 	 * We should be able to do this asynchronously from frontend
2486 	 * operations because we will be locking the inodes later on
2487 	 * to actually flush them, and that will partition any frontend
2488 	 * op using the same inode.  Either it has already locked the
2489 	 * inode and we will block, or it has not yet locked the inode
2490 	 * and it will block until we are finished flushing that inode.
2491 	 *
2492 	 * When restarting, only move the inodes flagged as PASS2 from
2493 	 * SIDEQ to SYNCQ.  PASS2 propagation by inode_lock4() and
2494 	 * inode_depend() are atomic with the spin-lock.
2495 	 */
2496 	hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
2497 #ifdef HAMMER2_DEBUG_SYNC
2498 	kprintf("FILESYSTEM SYNC BOUNDARY\n");
2499 #endif
2500 	dorestart = 0;
2501 
2502 	/*
2503 	 * Move inodes from depq to syncq, releasing the related
2504 	 * depend structures.
2505 	 */
2506 restart:
2507 #ifdef HAMMER2_DEBUG_SYNC
2508 	kprintf("FILESYSTEM SYNC RESTART (%d)\n", dorestart);
2509 #endif
2510 	hammer2_trans_setflags(pmp, 0/*HAMMER2_TRANS_COPYQ*/);
2511 	hammer2_trans_clearflags(pmp, HAMMER2_TRANS_RESCAN);
2512 
2513 	/*
2514 	 * Move inodes from depq to syncq.  When restarting, only depq's
2515 	 * marked pass2 are moved.
2516 	 */
2517 	hammer2_spin_ex(&pmp->list_spin);
2518 	depend_next = TAILQ_FIRST(&pmp->depq);
2519 	wakecount = 0;
2520 
2521 	while ((depend = depend_next) != NULL) {
2522 		depend_next = TAILQ_NEXT(depend, entry);
2523 		if (dorestart && depend->pass2 == 0)
2524 			continue;
2525 		TAILQ_FOREACH(ip, &depend->sideq, entry) {
2526 			KKASSERT(ip->flags & HAMMER2_INODE_SIDEQ);
2527 			atomic_set_int(&ip->flags, HAMMER2_INODE_SYNCQ);
2528 			atomic_clear_int(&ip->flags, HAMMER2_INODE_SIDEQ);
2529 			ip->depend = NULL;
2530 		}
2531 
2532 		/*
2533 		 * NOTE: pmp->sideq_count includes both sideq and syncq
2534 		 */
2535 		TAILQ_CONCAT(&pmp->syncq, &depend->sideq, entry);
2536 
2537 		depend->count = 0;
2538 		depend->pass2 = 0;
2539 		TAILQ_REMOVE(&pmp->depq, depend, entry);
2540 	}
2541 
2542 	hammer2_spin_unex(&pmp->list_spin);
2543 	hammer2_trans_clearflags(pmp, /*HAMMER2_TRANS_COPYQ |*/
2544 				      HAMMER2_TRANS_WAITING);
2545 	dorestart = 0;
2546 
2547 	/*
2548 	 * sideq_count may have dropped enough to allow us to unstall
2549 	 * the frontend.
2550 	 */
2551 	hammer2_pfs_memory_wakeup(pmp, 0);
2552 
2553 	/*
2554 	 * Now run through all inodes on syncq.
2555 	 *
2556 	 * Flush transactions only interlock with other flush transactions.
2557 	 * Any conflicting frontend operations will block on the inode, but
2558 	 * may hold a vnode lock while doing so.
2559 	 */
2560 	hammer2_spin_ex(&pmp->list_spin);
2561 	while ((ip = TAILQ_FIRST(&pmp->syncq)) != NULL) {
2562 		/*
2563 		 * Remove the inode from the SYNCQ, transfer the syncq ref
2564 		 * to us.  We must clear SYNCQ to allow any potential
2565 		 * front-end deadlock to proceed.  We must set PASS2 so
2566 		 * the dependency code knows what to do.
2567 		 */
2568 		pass2 = ip->flags;
2569 		cpu_ccfence();
2570 		if (atomic_cmpset_int(&ip->flags,
2571 			      pass2,
2572 			      (pass2 & ~(HAMMER2_INODE_SYNCQ |
2573 					 HAMMER2_INODE_SYNCQ_WAKEUP)) |
2574 			      HAMMER2_INODE_SYNCQ_PASS2) == 0)
2575 		{
2576 			continue;
2577 		}
2578 		TAILQ_REMOVE(&pmp->syncq, ip, entry);
2579 		--pmp->sideq_count;
2580 		hammer2_spin_unex(&pmp->list_spin);
2581 
2582 		/*
2583 		 * Tickle anyone waiting on ip->flags or the hysteresis
2584 		 * on the dirty inode count.
2585 		 */
2586 		if (pass2 & HAMMER2_INODE_SYNCQ_WAKEUP)
2587 			wakeup(&ip->flags);
2588 		if (++wakecount >= hammer2_limit_dirty_inodes / 20 + 1) {
2589 			wakecount = 0;
2590 			hammer2_pfs_memory_wakeup(pmp, 0);
2591 		}
2592 
2593 		/*
2594 		 * Relock the inode, and we inherit a ref from the above.
2595 		 * We will check for a race after we acquire the vnode.
2596 		 */
2597 		hammer2_mtx_ex(&ip->lock);
2598 
2599 		/*
2600 		 * We need the vp in order to vfsync() dirty buffers, so if
2601 		 * one isn't attached we can skip it.
2602 		 *
2603 		 * Ordering the inode lock and then the vnode lock has the
2604 		 * potential to deadlock.  If we had left SYNCQ set that could
2605 		 * also deadlock us against the frontend even if we don't hold
2606 		 * any locks, but the latter is not a problem now since we
2607 		 * cleared it.  igetv will temporarily release the inode lock
2608 		 * in a safe manner to work-around the deadlock.
2609 		 *
2610 		 * Unfortunately it is still possible to deadlock when the
2611 		 * frontend obtains multiple inode locks, because all the
2612 		 * related vnodes are already locked (nor can the vnode locks
2613 		 * be released and reacquired without messing up RECLAIM and
2614 		 * INACTIVE sequencing).
2615 		 *
2616 		 * The solution for now is to move the vp back onto SIDEQ
2617 		 * and set dorestart, which will restart the flush after we
2618 		 * exhaust the current SYNCQ.  Note that additional
2619 		 * dependencies may build up, so we definitely need to move
2620 		 * the whole SIDEQ back to SYNCQ when we restart.
2621 		 */
2622 		vp = ip->vp;
2623 		if (vp) {
2624 			if (vget(vp, LK_EXCLUSIVE|LK_NOWAIT)) {
2625 				/*
2626 				 * Failed to get the vnode, requeue the inode
2627 				 * (PASS2 is already set so it will be found
2628 				 * again on the restart).
2629 				 *
2630 				 * Then unlock, possibly sleep, and retry
2631 				 * later.  We sleep if PASS2 was *previously*
2632 				 * set, before we set it again above.
2633 				 */
2634 				vp = NULL;
2635 				dorestart = 1;
2636 #ifdef HAMMER2_DEBUG_SYNC
2637 				kprintf("inum %ld (sync delayed by vnode)\n",
2638 					(long)ip->meta.inum);
2639 #endif
2640 				hammer2_inode_delayed_sideq(ip);
2641 
2642 				hammer2_mtx_unlock(&ip->lock);
2643 				hammer2_inode_drop(ip);
2644 
2645 				if (pass2 & HAMMER2_INODE_SYNCQ_PASS2) {
2646 					tsleep(&dorestart, 0, "h2syndel", 2);
2647 				}
2648 				hammer2_spin_ex(&pmp->list_spin);
2649 				continue;
2650 			}
2651 		} else {
2652 			vp = NULL;
2653 		}
2654 
2655 		/*
2656 		 * If the inode wound up on a SIDEQ again it will already be
2657 		 * prepped for another PASS2.  In this situation if we flush
2658 		 * it now we will just wind up flushing it again in the same
2659 		 * syncer run, so we might as well not flush it now.
2660 		 */
2661 		if (ip->flags & HAMMER2_INODE_SIDEQ) {
2662 			hammer2_mtx_unlock(&ip->lock);
2663 			hammer2_inode_drop(ip);
2664 			if (vp)
2665 				vput(vp);
2666 			dorestart = 1;
2667 			hammer2_spin_ex(&pmp->list_spin);
2668 			continue;
2669 		}
2670 
2671 		/*
2672 		 * Ok we have the inode exclusively locked and if vp is
2673 		 * not NULL that will also be exclusively locked.  Do the
2674 		 * meat of the flush.
2675 		 *
2676 		 * vp token needed for v_rbdirty_tree check / vclrisdirty
2677 		 * sequencing.  Though we hold the vnode exclusively so
2678 		 * we shouldn't need to hold the token also in this case.
2679 		 */
2680 		if (vp) {
2681 			vfsync(vp, MNT_WAIT, 1, NULL, NULL);
2682 			bio_track_wait(&vp->v_track_write, 0, 0); /* XXX */
2683 		}
2684 
2685 		/*
2686 		 * If the inode has not yet been inserted into the tree
2687 		 * we must do so.  Then sync and flush it.  The flush should
2688 		 * update the parent.
2689 		 */
2690 		if (ip->flags & HAMMER2_INODE_DELETING) {
2691 #ifdef HAMMER2_DEBUG_SYNC
2692 			kprintf("inum %ld destroy\n", (long)ip->meta.inum);
2693 #endif
2694 			hammer2_inode_chain_des(ip);
2695 			atomic_add_long(&hammer2_iod_inode_deletes, 1);
2696 		} else if (ip->flags & HAMMER2_INODE_CREATING) {
2697 #ifdef HAMMER2_DEBUG_SYNC
2698 			kprintf("inum %ld insert\n", (long)ip->meta.inum);
2699 #endif
2700 			hammer2_inode_chain_ins(ip);
2701 			atomic_add_long(&hammer2_iod_inode_creates, 1);
2702 		}
2703 #ifdef HAMMER2_DEBUG_SYNC
2704 		kprintf("inum %ld chain-sync\n", (long)ip->meta.inum);
2705 #endif
2706 
2707 		/*
2708 		 * Because I kinda messed up the design and index the inodes
2709 		 * under the root inode, along side the directory entries,
2710 		 * we can't flush the inode index under the iroot until the
2711 		 * end.  If we do it now we might miss effects created by
2712 		 * other inodes on the SYNCQ.
2713 		 *
2714 		 * Do a normal (non-FSSYNC) flush instead, which allows the
2715 		 * vnode code to work the same.  We don't want to force iroot
2716 		 * back onto the SIDEQ, and we also don't want the flush code
2717 		 * to update pfs_iroot_blocksets until the final flush later.
2718 		 *
2719 		 * XXX at the moment this will likely result in a double-flush
2720 		 * of the iroot chain.
2721 		 */
2722 		hammer2_inode_chain_sync(ip);
2723 		if (ip == pmp->iroot) {
2724 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP);
2725 		} else {
2726 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2727 						      HAMMER2_XOP_FSSYNC);
2728 		}
2729 		if (vp) {
2730 			lwkt_gettoken(&vp->v_token);
2731 			if ((ip->flags & (HAMMER2_INODE_MODIFIED |
2732 					  HAMMER2_INODE_RESIZED |
2733 					  HAMMER2_INODE_DIRTYDATA)) == 0 &&
2734 			    RB_EMPTY(&vp->v_rbdirty_tree) &&
2735 			    !bio_track_active(&vp->v_track_write)) {
2736 				vclrisdirty(vp);
2737 			} else {
2738 				hammer2_inode_delayed_sideq(ip);
2739 			}
2740 			lwkt_reltoken(&vp->v_token);
2741 			vput(vp);
2742 			vp = NULL;	/* safety */
2743 		}
2744 		atomic_clear_int(&ip->flags, HAMMER2_INODE_SYNCQ_PASS2);
2745 		hammer2_inode_unlock(ip);	/* unlock+drop */
2746 		/* ip pointer invalid */
2747 
2748 		/*
2749 		 * If the inode got dirted after we dropped our locks,
2750 		 * it will have already been moved back to the SIDEQ.
2751 		 */
2752 		hammer2_spin_ex(&pmp->list_spin);
2753 	}
2754 	hammer2_spin_unex(&pmp->list_spin);
2755 	hammer2_pfs_memory_wakeup(pmp, 0);
2756 
2757 	if (dorestart || (pmp->trans.flags & HAMMER2_TRANS_RESCAN)) {
2758 #ifdef HAMMER2_DEBUG_SYNC
2759 		kprintf("FILESYSTEM SYNC STAGE 1 RESTART\n");
2760 		/*tsleep(&dorestart, 0, "h2STG1-R", hz*20);*/
2761 #endif
2762 		dorestart = 1;
2763 		goto restart;
2764 	}
2765 #ifdef HAMMER2_DEBUG_SYNC
2766 	kprintf("FILESYSTEM SYNC STAGE 2 BEGIN\n");
2767 	/*tsleep(&dorestart, 0, "h2STG2", hz*20);*/
2768 #endif
2769 
2770 	/*
2771 	 * We have to flush the PFS root last, even if it does not appear to
2772 	 * be dirty, because all the inodes in the PFS are indexed under it.
2773 	 * The normal flushing of iroot above would only occur if directory
2774 	 * entries under the root were changed.
2775 	 *
2776 	 * Specifying VOLHDR will cause an additionl flush of hmp->spmp
2777 	 * for the media making up the cluster.
2778 	 */
2779 	if ((ip = pmp->iroot) != NULL) {
2780 		hammer2_inode_ref(ip);
2781 		hammer2_mtx_ex(&ip->lock);
2782 		hammer2_inode_chain_sync(ip);
2783 		hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2784 					      HAMMER2_XOP_FSSYNC |
2785 					      HAMMER2_XOP_VOLHDR);
2786 		hammer2_inode_unlock(ip);	/* unlock+drop */
2787 	}
2788 #ifdef HAMMER2_DEBUG_SYNC
2789 	kprintf("FILESYSTEM SYNC STAGE 2 DONE\n");
2790 #endif
2791 
2792 	/*
2793 	 * device bioq sync
2794 	 */
2795 	hammer2_bioq_sync(pmp);
2796 
2797 	error = 0;	/* XXX */
2798 	hammer2_trans_done(pmp, HAMMER2_TRANS_ISFLUSH);
2799 
2800 	return (error);
2801 }
2802 
2803 static
2804 int
2805 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2806 {
2807 	hammer2_inode_t *ip;
2808 
2809 	KKASSERT(MAXFIDSZ >= 16);
2810 	ip = VTOI(vp);
2811 	fhp->fid_len = offsetof(struct fid, fid_data[16]);
2812 	fhp->fid_ext = 0;
2813 	((hammer2_tid_t *)fhp->fid_data)[0] = ip->meta.inum;
2814 	((hammer2_tid_t *)fhp->fid_data)[1] = 0;
2815 
2816 	return 0;
2817 }
2818 
2819 static
2820 int
2821 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2822 	       struct fid *fhp, struct vnode **vpp)
2823 {
2824 	hammer2_pfs_t *pmp;
2825 	hammer2_tid_t inum;
2826 	int error;
2827 
2828 	pmp = MPTOPMP(mp);
2829 	inum = ((hammer2_tid_t *)fhp->fid_data)[0] & HAMMER2_DIRHASH_USERMSK;
2830 	if (vpp) {
2831 		if (inum == 1)
2832 			error = hammer2_vfs_root(mp, vpp);
2833 		else
2834 			error = hammer2_vfs_vget(mp, NULL, inum, vpp);
2835 	} else {
2836 		error = 0;
2837 	}
2838 	return error;
2839 }
2840 
2841 static
2842 int
2843 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2844 		 int *exflagsp, struct ucred **credanonp)
2845 {
2846 	hammer2_pfs_t *pmp;
2847 	struct netcred *np;
2848 	int error;
2849 
2850 	pmp = MPTOPMP(mp);
2851 	np = vfs_export_lookup(mp, &pmp->export, nam);
2852 	if (np) {
2853 		*exflagsp = np->netc_exflags;
2854 		*credanonp = &np->netc_anon;
2855 		error = 0;
2856 	} else {
2857 		error = EACCES;
2858 	}
2859 	return error;
2860 }
2861 
2862 /*
2863  * This handles hysteresis on regular file flushes.  Because the BIOs are
2864  * routed to a thread it is possible for an excessive number to build up
2865  * and cause long front-end stalls long before the runningbuffspace limit
2866  * is hit, so we implement hammer2_flush_pipe to control the
2867  * hysteresis.
2868  *
2869  * This is a particular problem when compression is used.
2870  */
2871 void
2872 hammer2_lwinprog_ref(hammer2_pfs_t *pmp)
2873 {
2874 	atomic_add_int(&pmp->count_lwinprog, 1);
2875 }
2876 
2877 void
2878 hammer2_lwinprog_drop(hammer2_pfs_t *pmp)
2879 {
2880 	int lwinprog;
2881 
2882 	lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
2883 	if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
2884 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
2885 		atomic_clear_int(&pmp->count_lwinprog,
2886 				 HAMMER2_LWINPROG_WAITING);
2887 		wakeup(&pmp->count_lwinprog);
2888 	}
2889 	if ((lwinprog & HAMMER2_LWINPROG_WAITING0) &&
2890 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= 0) {
2891 		atomic_clear_int(&pmp->count_lwinprog,
2892 				 HAMMER2_LWINPROG_WAITING0);
2893 		wakeup(&pmp->count_lwinprog);
2894 	}
2895 }
2896 
2897 void
2898 hammer2_lwinprog_wait(hammer2_pfs_t *pmp, int flush_pipe)
2899 {
2900 	int lwinprog;
2901 	int lwflag = (flush_pipe) ? HAMMER2_LWINPROG_WAITING :
2902 				    HAMMER2_LWINPROG_WAITING0;
2903 
2904 	for (;;) {
2905 		lwinprog = pmp->count_lwinprog;
2906 		cpu_ccfence();
2907 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2908 			break;
2909 		tsleep_interlock(&pmp->count_lwinprog, 0);
2910 		atomic_set_int(&pmp->count_lwinprog, lwflag);
2911 		lwinprog = pmp->count_lwinprog;
2912 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2913 			break;
2914 		tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
2915 	}
2916 }
2917 
2918 /*
2919  * It is possible for an excessive number of dirty chains or dirty inodes
2920  * to build up.  When this occurs we start an asynchronous filesystem sync.
2921  * If the level continues to build up, we stall, waiting for it to drop,
2922  * with some hysteresis.
2923  *
2924  * This relies on the kernel calling hammer2_vfs_modifying() prior to
2925  * obtaining any vnode locks before making a modifying VOP call.
2926  */
2927 static int
2928 hammer2_vfs_modifying(struct mount *mp)
2929 {
2930 	if (mp->mnt_flag & MNT_RDONLY)
2931 		return EROFS;
2932 	hammer2_pfs_memory_wait(MPTOPMP(mp));
2933 
2934 	return 0;
2935 }
2936 
2937 /*
2938  * Initiate an asynchronous filesystem sync and, with hysteresis,
2939  * stall if the internal data structure count becomes too bloated.
2940  */
2941 void
2942 hammer2_pfs_memory_wait(hammer2_pfs_t *pmp)
2943 {
2944 	uint32_t waiting;
2945 	int pcatch;
2946 	int error;
2947 
2948 	if (pmp == NULL || pmp->mp == NULL)
2949 		return;
2950 
2951 	for (;;) {
2952 		waiting = pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK;
2953 		cpu_ccfence();
2954 
2955 		/*
2956 		 * Start the syncer running at 1/2 the limit
2957 		 */
2958 		if (waiting > hammer2_limit_dirty_chains / 2 ||
2959 		    pmp->sideq_count > hammer2_limit_dirty_inodes / 2) {
2960 			trigger_syncer(pmp->mp);
2961 		}
2962 
2963 		/*
2964 		 * Stall at the limit waiting for the counts to drop.
2965 		 * This code will typically be woken up once the count
2966 		 * drops below 3/4 the limit, or in one second.
2967 		 */
2968 		if (waiting < hammer2_limit_dirty_chains &&
2969 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
2970 			break;
2971 		}
2972 
2973 		pcatch = curthread->td_proc ? PCATCH : 0;
2974 
2975 		tsleep_interlock(&pmp->inmem_dirty_chains, pcatch);
2976 		atomic_set_int(&pmp->inmem_dirty_chains,
2977 			       HAMMER2_DIRTYCHAIN_WAITING);
2978 		if (waiting < hammer2_limit_dirty_chains &&
2979 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
2980 			break;
2981 		}
2982 		trigger_syncer(pmp->mp);
2983 		error = tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED | pcatch,
2984 			       "h2memw", hz);
2985 		if (error == ERESTART)
2986 			break;
2987 	}
2988 }
2989 
2990 /*
2991  * Wake up any stalled frontend ops waiting, with hysteresis, using
2992  * 2/3 of the limit.
2993  */
2994 void
2995 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp, int count)
2996 {
2997 	uint32_t waiting;
2998 
2999 	if (pmp) {
3000 		waiting = atomic_fetchadd_int(&pmp->inmem_dirty_chains, count);
3001 		/* don't need --waiting to test flag */
3002 
3003 		if ((waiting & HAMMER2_DIRTYCHAIN_WAITING) &&
3004 		    (pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK) <=
3005 		    hammer2_limit_dirty_chains * 2 / 3 &&
3006 		    pmp->sideq_count <= hammer2_limit_dirty_inodes * 2 / 3) {
3007 			atomic_clear_int(&pmp->inmem_dirty_chains,
3008 					 HAMMER2_DIRTYCHAIN_WAITING);
3009 			wakeup(&pmp->inmem_dirty_chains);
3010 		}
3011 	}
3012 }
3013 
3014 void
3015 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp)
3016 {
3017 	if (pmp) {
3018 		atomic_add_int(&pmp->inmem_dirty_chains, 1);
3019 	}
3020 }
3021 
3022 /*
3023  * Volume header data locks
3024  */
3025 void
3026 hammer2_voldata_lock(hammer2_dev_t *hmp)
3027 {
3028 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
3029 }
3030 
3031 void
3032 hammer2_voldata_unlock(hammer2_dev_t *hmp)
3033 {
3034 	lockmgr(&hmp->vollk, LK_RELEASE);
3035 }
3036 
3037 /*
3038  * Caller indicates that the volume header is being modified.  Flag
3039  * the related chain and adjust its transaction id.
3040  *
3041  * The transaction id is set to voldata.mirror_tid + 1, similar to
3042  * what hammer2_chain_modify() does.  Be very careful here, volume
3043  * data can be updated independently of the rest of the filesystem.
3044  */
3045 void
3046 hammer2_voldata_modify(hammer2_dev_t *hmp)
3047 {
3048 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
3049 		atomic_add_long(&hammer2_count_modified_chains, 1);
3050 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
3051 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
3052 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid + 1;
3053 	}
3054 }
3055 
3056 /*
3057  * Returns 0 if the filesystem has tons of free space
3058  * Returns 1 if the filesystem has less than 10% remaining
3059  * Returns 2 if the filesystem has less than 2%/5% (user/root) remaining.
3060  */
3061 int
3062 hammer2_vfs_enospace(hammer2_inode_t *ip, off_t bytes, struct ucred *cred)
3063 {
3064 	hammer2_pfs_t *pmp;
3065 	hammer2_dev_t *hmp;
3066 	hammer2_off_t free_reserved;
3067 	hammer2_off_t free_nominal;
3068 	int i;
3069 
3070 	pmp = ip->pmp;
3071 
3072 	if (pmp->free_ticks == 0 || pmp->free_ticks != ticks) {
3073 		free_reserved = HAMMER2_SEGSIZE;
3074 		free_nominal = 0x7FFFFFFFFFFFFFFFLLU;
3075 		for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
3076 			hmp = pmp->pfs_hmps[i];
3077 			if (hmp == NULL)
3078 				continue;
3079 			if (pmp->pfs_types[i] != HAMMER2_PFSTYPE_MASTER &&
3080 			    pmp->pfs_types[i] != HAMMER2_PFSTYPE_SOFT_MASTER)
3081 				continue;
3082 
3083 			if (free_nominal > hmp->voldata.allocator_free)
3084 				free_nominal = hmp->voldata.allocator_free;
3085 			if (free_reserved < hmp->free_reserved)
3086 				free_reserved = hmp->free_reserved;
3087 		}
3088 
3089 		/*
3090 		 * SMP races ok
3091 		 */
3092 		pmp->free_reserved = free_reserved;
3093 		pmp->free_nominal = free_nominal;
3094 		pmp->free_ticks = ticks;
3095 	} else {
3096 		free_reserved = pmp->free_reserved;
3097 		free_nominal = pmp->free_nominal;
3098 	}
3099 	if (cred && cred->cr_uid != 0) {
3100 		if ((int64_t)(free_nominal - bytes) <
3101 		    (int64_t)free_reserved) {
3102 			return 2;
3103 		}
3104 	} else {
3105 		if ((int64_t)(free_nominal - bytes) <
3106 		    (int64_t)free_reserved / 2) {
3107 			return 2;
3108 		}
3109 	}
3110 	if ((int64_t)(free_nominal - bytes) < (int64_t)free_reserved * 2)
3111 		return 1;
3112 	return 0;
3113 }
3114 
3115 /*
3116  * Debugging
3117  */
3118 void
3119 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int bi, int *countp,
3120 		   char pfx, u_int flags)
3121 {
3122 	hammer2_chain_t *scan;
3123 	hammer2_chain_t *parent;
3124 
3125 	--*countp;
3126 	if (*countp == 0) {
3127 		kprintf("%*.*s...\n", tab, tab, "");
3128 		return;
3129 	}
3130 	if (*countp < 0)
3131 		return;
3132 	kprintf("%*.*s%c-chain %p %s.%-3d %016jx %016jx/%-2d mir=%016jx\n",
3133 		tab, tab, "", pfx, chain,
3134 		hammer2_bref_type_str(chain->bref.type), bi,
3135 		chain->bref.data_off, chain->bref.key, chain->bref.keybits,
3136 		chain->bref.mirror_tid);
3137 
3138 	kprintf("%*.*s      [%08x] (%s) refs=%d",
3139 		tab, tab, "",
3140 		chain->flags,
3141 		((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
3142 		chain->data) ?  (char *)chain->data->ipdata.filename : "?"),
3143 		chain->refs);
3144 
3145 	parent = chain->parent;
3146 	if (parent)
3147 		kprintf("\n%*.*s      p=%p [pflags %08x prefs %d]",
3148 			tab, tab, "",
3149 			parent, parent->flags, parent->refs);
3150 	if (RB_EMPTY(&chain->core.rbtree)) {
3151 		kprintf("\n");
3152 	} else {
3153 		int bi = 0;
3154 		kprintf(" {\n");
3155 		RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree) {
3156 			if ((scan->flags & flags) || flags == (u_int)-1) {
3157 				hammer2_dump_chain(scan, tab + 4, bi, countp,
3158 						   'a', flags);
3159 			}
3160 			bi++;
3161 		}
3162 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
3163 			kprintf("%*.*s}(%s)\n", tab, tab, "",
3164 				chain->data->ipdata.filename);
3165 		else
3166 			kprintf("%*.*s}\n", tab, tab, "");
3167 	}
3168 }
3169