xref: /dragonfly/sys/vfs/hammer2/hammer2_vfsops.c (revision 93b72ee4)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/buf.h>
43 #include <sys/uuid.h>
44 #include <sys/vfsops.h>
45 #include <sys/sysctl.h>
46 #include <sys/socket.h>
47 #include <sys/objcache.h>
48 
49 #include <sys/proc.h>
50 #include <sys/namei.h>
51 #include <sys/mountctl.h>
52 #include <sys/dirent.h>
53 #include <sys/uio.h>
54 
55 #include <sys/mutex.h>
56 #include <sys/mutex2.h>
57 
58 #include "hammer2.h"
59 #include "hammer2_disk.h"
60 #include "hammer2_mount.h"
61 #include "hammer2_lz4.h"
62 
63 #include "zlib/hammer2_zlib.h"
64 
65 #define REPORT_REFS_ERRORS 1	/* XXX remove me */
66 
67 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache");
68 
69 struct hammer2_sync_info {
70 	int error;
71 	int waitfor;
72 	int pass;
73 };
74 
75 TAILQ_HEAD(hammer2_mntlist, hammer2_dev);
76 static struct hammer2_mntlist hammer2_mntlist;
77 
78 struct hammer2_pfslist hammer2_pfslist;
79 struct hammer2_pfslist hammer2_spmplist;
80 struct lock hammer2_mntlk;
81 
82 int hammer2_supported_version = HAMMER2_VOL_VERSION_DEFAULT;
83 int hammer2_debug;
84 int hammer2_cluster_meta_read = 1;	/* physical read-ahead */
85 int hammer2_cluster_data_read = 4;	/* physical read-ahead */
86 int hammer2_dedup_enable = 1;
87 int hammer2_always_compress = 0;	/* always try to compress */
88 int hammer2_inval_enable = 0;
89 int hammer2_flush_pipe = 100;
90 int hammer2_dio_count;
91 int hammer2_dio_limit = 256;
92 int hammer2_bulkfree_tps = 5000;
93 long hammer2_chain_allocs;
94 long hammer2_chain_frees;
95 long hammer2_limit_dirty_chains;
96 long hammer2_limit_dirty_inodes;
97 long hammer2_count_modified_chains;
98 long hammer2_iod_invals;
99 long hammer2_iod_file_read;
100 long hammer2_iod_meta_read;
101 long hammer2_iod_indr_read;
102 long hammer2_iod_fmap_read;
103 long hammer2_iod_volu_read;
104 long hammer2_iod_file_write;
105 long hammer2_iod_file_wembed;
106 long hammer2_iod_file_wzero;
107 long hammer2_iod_file_wdedup;
108 long hammer2_iod_meta_write;
109 long hammer2_iod_indr_write;
110 long hammer2_iod_fmap_write;
111 long hammer2_iod_volu_write;
112 
113 MALLOC_DECLARE(M_HAMMER2_CBUFFER);
114 MALLOC_DEFINE(M_HAMMER2_CBUFFER, "HAMMER2-compbuffer",
115 		"Buffer used for compression.");
116 
117 MALLOC_DECLARE(M_HAMMER2_DEBUFFER);
118 MALLOC_DEFINE(M_HAMMER2_DEBUFFER, "HAMMER2-decompbuffer",
119 		"Buffer used for decompression.");
120 
121 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
122 
123 SYSCTL_INT(_vfs_hammer2, OID_AUTO, supported_version, CTLFLAG_RD,
124 	   &hammer2_supported_version, 0, "");
125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
126 	   &hammer2_debug, 0, "");
127 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_meta_read, CTLFLAG_RW,
128 	   &hammer2_cluster_meta_read, 0, "");
129 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_data_read, CTLFLAG_RW,
130 	   &hammer2_cluster_data_read, 0, "");
131 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dedup_enable, CTLFLAG_RW,
132 	   &hammer2_dedup_enable, 0, "");
133 SYSCTL_INT(_vfs_hammer2, OID_AUTO, always_compress, CTLFLAG_RW,
134 	   &hammer2_always_compress, 0, "");
135 SYSCTL_INT(_vfs_hammer2, OID_AUTO, inval_enable, CTLFLAG_RW,
136 	   &hammer2_inval_enable, 0, "");
137 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
138 	   &hammer2_flush_pipe, 0, "");
139 SYSCTL_INT(_vfs_hammer2, OID_AUTO, bulkfree_tps, CTLFLAG_RW,
140 	   &hammer2_bulkfree_tps, 0, "");
141 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_allocs, CTLFLAG_RW,
142 	   &hammer2_chain_allocs, 0, "");
143 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_frees, CTLFLAG_RW,
144 	   &hammer2_chain_frees, 0, "");
145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
146 	   &hammer2_limit_dirty_chains, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_inodes, CTLFLAG_RW,
148 	   &hammer2_limit_dirty_inodes, 0, "");
149 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, count_modified_chains, CTLFLAG_RW,
150 	   &hammer2_count_modified_chains, 0, "");
151 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
152 	   &hammer2_dio_count, 0, "");
153 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_limit, CTLFLAG_RW,
154 	   &hammer2_dio_limit, 0, "");
155 
156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_invals, CTLFLAG_RW,
157 	   &hammer2_iod_invals, 0, "");
158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
159 	   &hammer2_iod_file_read, 0, "");
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
161 	   &hammer2_iod_meta_read, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
163 	   &hammer2_iod_indr_read, 0, "");
164 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
165 	   &hammer2_iod_fmap_read, 0, "");
166 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
167 	   &hammer2_iod_volu_read, 0, "");
168 
169 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
170 	   &hammer2_iod_file_write, 0, "");
171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wembed, CTLFLAG_RW,
172 	   &hammer2_iod_file_wembed, 0, "");
173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wzero, CTLFLAG_RW,
174 	   &hammer2_iod_file_wzero, 0, "");
175 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wdedup, CTLFLAG_RW,
176 	   &hammer2_iod_file_wdedup, 0, "");
177 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
178 	   &hammer2_iod_meta_write, 0, "");
179 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
180 	   &hammer2_iod_indr_write, 0, "");
181 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
182 	   &hammer2_iod_fmap_write, 0, "");
183 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
184 	   &hammer2_iod_volu_write, 0, "");
185 
186 long hammer2_process_icrc32;
187 long hammer2_process_xxhash64;
188 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_icrc32, CTLFLAG_RW,
189 	   &hammer2_process_icrc32, 0, "");
190 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_xxhash64, CTLFLAG_RW,
191 	   &hammer2_process_xxhash64, 0, "");
192 
193 static int hammer2_vfs_init(struct vfsconf *conf);
194 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
195 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
196 				struct ucred *cred);
197 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *,
198 				struct vnode *, struct ucred *);
199 static int hammer2_recovery(hammer2_dev_t *hmp);
200 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
201 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
202 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
203 				struct ucred *cred);
204 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
205 				struct ucred *cred);
206 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
207 				struct fid *fhp, struct vnode **vpp);
208 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
209 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
210 				int *exflagsp, struct ucred **credanonp);
211 
212 static int hammer2_install_volume_header(hammer2_dev_t *hmp);
213 static int hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
214 
215 static void hammer2_update_pmps(hammer2_dev_t *hmp);
216 
217 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp);
218 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp,
219 				hammer2_dev_t *hmp);
220 static int hammer2_fixup_pfses(hammer2_dev_t *hmp);
221 
222 /*
223  * HAMMER2 vfs operations.
224  */
225 static struct vfsops hammer2_vfsops = {
226 	.vfs_init	= hammer2_vfs_init,
227 	.vfs_uninit	= hammer2_vfs_uninit,
228 	.vfs_sync	= hammer2_vfs_sync,
229 	.vfs_mount	= hammer2_vfs_mount,
230 	.vfs_unmount	= hammer2_vfs_unmount,
231 	.vfs_root 	= hammer2_vfs_root,
232 	.vfs_statfs	= hammer2_vfs_statfs,
233 	.vfs_statvfs	= hammer2_vfs_statvfs,
234 	.vfs_vget	= hammer2_vfs_vget,
235 	.vfs_vptofh	= hammer2_vfs_vptofh,
236 	.vfs_fhtovp	= hammer2_vfs_fhtovp,
237 	.vfs_checkexp	= hammer2_vfs_checkexp
238 };
239 
240 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
241 
242 VFS_SET(hammer2_vfsops, hammer2, VFCF_MPSAFE);
243 MODULE_VERSION(hammer2, 1);
244 
245 static
246 int
247 hammer2_vfs_init(struct vfsconf *conf)
248 {
249 	static struct objcache_malloc_args margs_read;
250 	static struct objcache_malloc_args margs_write;
251 	static struct objcache_malloc_args margs_vop;
252 
253 	int error;
254 
255 	error = 0;
256 
257 	/*
258 	 * A large DIO cache is needed to retain dedup enablement masks.
259 	 * The bulkfree code clears related masks as part of the disk block
260 	 * recycling algorithm, preventing it from being used for a later
261 	 * dedup.
262 	 *
263 	 * NOTE: A large buffer cache can actually interfere with dedup
264 	 *	 operation because we dedup based on media physical buffers
265 	 *	 and not logical buffers.  Try to make the DIO case large
266 	 *	 enough to avoid this problem, but also cap it.
267 	 */
268 	hammer2_dio_limit = nbuf * 2;
269 	if (hammer2_dio_limit > 100000)
270 		hammer2_dio_limit = 100000;
271 
272 	if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
273 		error = EINVAL;
274 	if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
275 		error = EINVAL;
276 	if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
277 		error = EINVAL;
278 
279 	if (error)
280 		kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
281 
282 	margs_read.objsize = 65536;
283 	margs_read.mtype = M_HAMMER2_DEBUFFER;
284 
285 	margs_write.objsize = 32768;
286 	margs_write.mtype = M_HAMMER2_CBUFFER;
287 
288 	margs_vop.objsize = sizeof(hammer2_xop_t);
289 	margs_vop.mtype = M_HAMMER2;
290 
291 	/*
292 	 * Note thaht for the XOPS cache we want backing store allocations
293 	 * to use M_ZERO.  This is not allowed in objcache_get() (to avoid
294 	 * confusion), so use the backing store function that does it.  This
295 	 * means that initial XOPS objects are zerod but REUSED objects are
296 	 * not.  So we are responsible for cleaning the object up sufficiently
297 	 * for our needs before objcache_put()ing it back (typically just the
298 	 * FIFO indices).
299 	 */
300 	cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
301 				0, 1, NULL, NULL, NULL,
302 				objcache_malloc_alloc,
303 				objcache_malloc_free,
304 				&margs_read);
305 	cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
306 				0, 1, NULL, NULL, NULL,
307 				objcache_malloc_alloc,
308 				objcache_malloc_free,
309 				&margs_write);
310 	cache_xops = objcache_create(margs_vop.mtype->ks_shortdesc,
311 				0, 1, NULL, NULL, NULL,
312 				objcache_malloc_alloc_zero,
313 				objcache_malloc_free,
314 				&margs_vop);
315 
316 
317 	lockinit(&hammer2_mntlk, "mntlk", 0, 0);
318 	TAILQ_INIT(&hammer2_mntlist);
319 	TAILQ_INIT(&hammer2_pfslist);
320 	TAILQ_INIT(&hammer2_spmplist);
321 
322 	hammer2_limit_dirty_chains = maxvnodes / 10;
323 	if (hammer2_limit_dirty_chains > HAMMER2_LIMIT_DIRTY_CHAINS)
324 		hammer2_limit_dirty_chains = HAMMER2_LIMIT_DIRTY_CHAINS;
325 
326 	hammer2_limit_dirty_inodes = maxvnodes / 100;
327 	if (hammer2_limit_dirty_inodes < 100)
328 		hammer2_limit_dirty_inodes = 100;
329 	if (hammer2_limit_dirty_inodes > HAMMER2_LIMIT_DIRTY_INODES)
330 		hammer2_limit_dirty_inodes = HAMMER2_LIMIT_DIRTY_INODES;
331 
332 	return (error);
333 }
334 
335 static
336 int
337 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
338 {
339 	objcache_destroy(cache_buffer_read);
340 	objcache_destroy(cache_buffer_write);
341 	objcache_destroy(cache_xops);
342 	return 0;
343 }
344 
345 /*
346  * Core PFS allocator.  Used to allocate or reference the pmp structure
347  * for PFS cluster mounts and the spmp structure for media (hmp) structures.
348  * The pmp can be passed in or loaded by this function using the chain and
349  * inode data.
350  *
351  * pmp->modify_tid tracks new modify_tid transaction ids for front-end
352  * transactions.  Note that synchronization does not use this field.
353  * (typically frontend operations and synchronization cannot run on the
354  * same PFS node at the same time).
355  *
356  * XXX check locking
357  */
358 hammer2_pfs_t *
359 hammer2_pfsalloc(hammer2_chain_t *chain,
360 		 const hammer2_inode_data_t *ripdata,
361 		 hammer2_tid_t modify_tid, hammer2_dev_t *force_local)
362 {
363 	hammer2_pfs_t *pmp;
364 	hammer2_inode_t *iroot;
365 	int count;
366 	int i;
367 	int j;
368 
369 	pmp = NULL;
370 
371 	/*
372 	 * Locate or create the PFS based on the cluster id.  If ripdata
373 	 * is NULL this is a spmp which is unique and is always allocated.
374 	 *
375 	 * If the device is mounted in local mode all PFSs are considered
376 	 * independent and not part of any cluster (for debugging only).
377 	 */
378 	if (ripdata) {
379 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
380 			if (force_local != pmp->force_local)
381 				continue;
382 			if (force_local == NULL &&
383 			    bcmp(&pmp->pfs_clid, &ripdata->meta.pfs_clid,
384 				 sizeof(pmp->pfs_clid)) == 0) {
385 					break;
386 			} else if (force_local && pmp->pfs_names[0] &&
387 			    strcmp(pmp->pfs_names[0], ripdata->filename) == 0) {
388 					break;
389 			}
390 		}
391 	}
392 
393 	if (pmp == NULL) {
394 		pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
395 		pmp->force_local = force_local;
396 		hammer2_trans_manage_init(pmp);
397 		kmalloc_create(&pmp->minode, "HAMMER2-inodes");
398 		kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg");
399 		lockinit(&pmp->lock, "pfslk", 0, 0);
400 		lockinit(&pmp->lock_nlink, "h2nlink", 0, 0);
401 		spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
402 		spin_init(&pmp->xop_spin, "h2xop");
403 		spin_init(&pmp->lru_spin, "h2lru");
404 		RB_INIT(&pmp->inum_tree);
405 		TAILQ_INIT(&pmp->sideq);
406 		TAILQ_INIT(&pmp->lru_list);
407 		spin_init(&pmp->list_spin, "hm2pfsalloc_list");
408 
409 		/*
410 		 * Distribute backend operations to threads
411 		 */
412 		for (i = 0; i < HAMMER2_XOPGROUPS; ++i)
413 			hammer2_xop_group_init(pmp, &pmp->xop_groups[i]);
414 
415 		/*
416 		 * Save the last media transaction id for the flusher.  Set
417 		 * initial
418 		 */
419 		if (ripdata) {
420 			pmp->pfs_clid = ripdata->meta.pfs_clid;
421 			TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
422 		} else {
423 			pmp->flags |= HAMMER2_PMPF_SPMP;
424 			TAILQ_INSERT_TAIL(&hammer2_spmplist, pmp, mntentry);
425 		}
426 
427 		/*
428 		 * The synchronization thread may start too early, make
429 		 * sure it stays frozen until we are ready to let it go.
430 		 * XXX
431 		 */
432 		/*
433 		pmp->primary_thr.flags = HAMMER2_THREAD_FROZEN |
434 					 HAMMER2_THREAD_REMASTER;
435 		*/
436 	}
437 
438 	/*
439 	 * Create the PFS's root inode and any missing XOP helper threads.
440 	 */
441 	if ((iroot = pmp->iroot) == NULL) {
442 		iroot = hammer2_inode_get(pmp, NULL, NULL, -1);
443 		if (ripdata)
444 			iroot->meta = ripdata->meta;
445 		pmp->iroot = iroot;
446 		hammer2_inode_ref(iroot);
447 		hammer2_inode_unlock(iroot);
448 	}
449 
450 	/*
451 	 * Stop here if no chain is passed in.
452 	 */
453 	if (chain == NULL)
454 		goto done;
455 
456 	/*
457 	 * When a chain is passed in we must add it to the PFS's root
458 	 * inode, update pmp->pfs_types[], and update the syncronization
459 	 * threads.
460 	 *
461 	 * When forcing local mode, mark the PFS as a MASTER regardless.
462 	 *
463 	 * At the moment empty spots can develop due to removals or failures.
464 	 * Ultimately we want to re-fill these spots but doing so might
465 	 * confused running code. XXX
466 	 */
467 	hammer2_inode_ref(iroot);
468 	hammer2_mtx_ex(&iroot->lock);
469 	j = iroot->cluster.nchains;
470 
471 	if (j == HAMMER2_MAXCLUSTER) {
472 		kprintf("hammer2_mount: cluster full!\n");
473 		/* XXX fatal error? */
474 	} else {
475 		KKASSERT(chain->pmp == NULL);
476 		chain->pmp = pmp;
477 		hammer2_chain_ref(chain);
478 		iroot->cluster.array[j].chain = chain;
479 		if (force_local)
480 			pmp->pfs_types[j] = HAMMER2_PFSTYPE_MASTER;
481 		else
482 			pmp->pfs_types[j] = ripdata->meta.pfs_type;
483 		pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2);
484 		pmp->pfs_hmps[j] = chain->hmp;
485 
486 		/*
487 		 * If the PFS is already mounted we must account
488 		 * for the mount_count here.
489 		 */
490 		if (pmp->mp)
491 			++chain->hmp->mount_count;
492 
493 		/*
494 		 * May have to fixup dirty chain tracking.  Previous
495 		 * pmp was NULL so nothing to undo.
496 		 */
497 		if (chain->flags & HAMMER2_CHAIN_MODIFIED)
498 			hammer2_pfs_memory_inc(pmp);
499 		++j;
500 	}
501 	iroot->cluster.nchains = j;
502 
503 	/*
504 	 * Update nmasters from any PFS inode which is part of the cluster.
505 	 * It is possible that this will result in a value which is too
506 	 * high.  MASTER PFSs are authoritative for pfs_nmasters and will
507 	 * override this value later on.
508 	 *
509 	 * (This informs us of masters that might not currently be
510 	 *  discoverable by this mount).
511 	 */
512 	if (ripdata && pmp->pfs_nmasters < ripdata->meta.pfs_nmasters) {
513 		pmp->pfs_nmasters = ripdata->meta.pfs_nmasters;
514 	}
515 
516 	/*
517 	 * Count visible masters.  Masters are usually added with
518 	 * ripdata->meta.pfs_nmasters set to 1.  This detects when there
519 	 * are more (XXX and must update the master inodes).
520 	 */
521 	count = 0;
522 	for (i = 0; i < iroot->cluster.nchains; ++i) {
523 		if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)
524 			++count;
525 	}
526 	if (pmp->pfs_nmasters < count)
527 		pmp->pfs_nmasters = count;
528 
529 	/*
530 	 * Create missing synchronization and support threads.
531 	 *
532 	 * Single-node masters (including snapshots) have nothing to
533 	 * synchronize and do not require this thread.
534 	 *
535 	 * Multi-node masters or any number of soft masters, slaves, copy,
536 	 * or other PFS types need the thread.
537 	 *
538 	 * Each thread is responsible for its particular cluster index.
539 	 * We use independent threads so stalls or mismatches related to
540 	 * any given target do not affect other targets.
541 	 */
542 	for (i = 0; i < iroot->cluster.nchains; ++i) {
543 		/*
544 		 * Single-node masters (including snapshots) have nothing
545 		 * to synchronize and will make direct xops support calls,
546 		 * thus they do not require this thread.
547 		 *
548 		 * Note that there can be thousands of snapshots.  We do not
549 		 * want to create thousands of threads.
550 		 */
551 		if (pmp->pfs_nmasters <= 1 &&
552 		    pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) {
553 			continue;
554 		}
555 
556 		/*
557 		 * Sync support thread
558 		 */
559 		if (pmp->sync_thrs[i].td == NULL) {
560 			hammer2_thr_create(&pmp->sync_thrs[i], pmp, NULL,
561 					   "h2nod", i, -1,
562 					   hammer2_primary_sync_thread);
563 		}
564 	}
565 
566 	/*
567 	 * Create missing Xop threads
568 	 *
569 	 * NOTE: We create helper threads for all mounted PFSs or any
570 	 *	 PFSs with 2+ nodes (so the sync thread can update them,
571 	 *	 even if not mounted).
572 	 */
573 	if (pmp->mp || iroot->cluster.nchains >= 2)
574 		hammer2_xop_helper_create(pmp);
575 
576 	hammer2_mtx_unlock(&iroot->lock);
577 	hammer2_inode_drop(iroot);
578 done:
579 	return pmp;
580 }
581 
582 /*
583  * Deallocate an element of a probed PFS.  If destroying and this is a
584  * MASTER, adjust nmasters.
585  *
586  * This function does not physically destroy the PFS element in its device
587  * under the super-root  (see hammer2_ioctl_pfs_delete()).
588  */
589 void
590 hammer2_pfsdealloc(hammer2_pfs_t *pmp, int clindex, int destroying)
591 {
592 	hammer2_inode_t *iroot;
593 	hammer2_chain_t *chain;
594 	int j;
595 
596 	/*
597 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
598 	 * by the flush code.
599 	 */
600 	iroot = pmp->iroot;
601 	if (iroot) {
602 		/*
603 		 * Stop synchronizing
604 		 *
605 		 * XXX flush after acquiring the iroot lock.
606 		 * XXX clean out the cluster index from all inode structures.
607 		 */
608 		hammer2_thr_delete(&pmp->sync_thrs[clindex]);
609 
610 		/*
611 		 * Remove the cluster index from the group.  If destroying
612 		 * the PFS and this is a master, adjust pfs_nmasters.
613 		 */
614 		hammer2_mtx_ex(&iroot->lock);
615 		chain = iroot->cluster.array[clindex].chain;
616 		iroot->cluster.array[clindex].chain = NULL;
617 
618 		switch(pmp->pfs_types[clindex]) {
619 		case HAMMER2_PFSTYPE_MASTER:
620 			if (destroying && pmp->pfs_nmasters > 0)
621 				--pmp->pfs_nmasters;
622 			/* XXX adjust ripdata->meta.pfs_nmasters */
623 			break;
624 		default:
625 			break;
626 		}
627 		pmp->pfs_types[clindex] = HAMMER2_PFSTYPE_NONE;
628 
629 		hammer2_mtx_unlock(&iroot->lock);
630 
631 		/*
632 		 * Release the chain.
633 		 */
634 		if (chain) {
635 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
636 			hammer2_chain_drop(chain);
637 		}
638 
639 		/*
640 		 * Terminate all XOP threads for the cluster index.
641 		 */
642 		for (j = 0; j < HAMMER2_XOPGROUPS; ++j)
643 			hammer2_thr_delete(&pmp->xop_groups[j].thrs[clindex]);
644 	}
645 }
646 
647 /*
648  * Destroy a PFS, typically only occurs after the last mount on a device
649  * has gone away.
650  */
651 static void
652 hammer2_pfsfree(hammer2_pfs_t *pmp)
653 {
654 	hammer2_inode_t *iroot;
655 	hammer2_chain_t *chain;
656 	int i;
657 	int j;
658 
659 	/*
660 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
661 	 * by the flush code.
662 	 */
663 	if (pmp->flags & HAMMER2_PMPF_SPMP)
664 		TAILQ_REMOVE(&hammer2_spmplist, pmp, mntentry);
665 	else
666 		TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
667 
668 	iroot = pmp->iroot;
669 	if (iroot) {
670 		for (i = 0; i < iroot->cluster.nchains; ++i) {
671 			hammer2_thr_delete(&pmp->sync_thrs[i]);
672 			for (j = 0; j < HAMMER2_XOPGROUPS; ++j)
673 				hammer2_thr_delete(&pmp->xop_groups[j].thrs[i]);
674 		}
675 #if REPORT_REFS_ERRORS
676 		if (pmp->iroot->refs != 1)
677 			kprintf("PMP->IROOT %p REFS WRONG %d\n",
678 				pmp->iroot, pmp->iroot->refs);
679 #else
680 		KKASSERT(pmp->iroot->refs == 1);
681 #endif
682 		/* ref for pmp->iroot */
683 		hammer2_inode_drop(pmp->iroot);
684 		pmp->iroot = NULL;
685 	}
686 
687 	/*
688 	 * Cleanup chains remaining on LRU list.
689 	 */
690 	hammer2_spin_ex(&pmp->lru_spin);
691 	while ((chain = TAILQ_FIRST(&pmp->lru_list)) != NULL) {
692 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONLRU);
693 		atomic_add_int(&pmp->lru_count, -1);
694 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
695 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
696 		hammer2_chain_ref(chain);
697 		hammer2_spin_unex(&pmp->lru_spin);
698 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
699 		hammer2_chain_drop(chain);
700 		hammer2_spin_ex(&pmp->lru_spin);
701 	}
702 	hammer2_spin_unex(&pmp->lru_spin);
703 
704 	/*
705 	 * Free remaining pmp resources
706 	 */
707 	kmalloc_destroy(&pmp->mmsg);
708 	kmalloc_destroy(&pmp->minode);
709 
710 	kfree(pmp, M_HAMMER2);
711 }
712 
713 /*
714  * Remove all references to hmp from the pfs list.  Any PFS which becomes
715  * empty is terminated and freed.
716  *
717  * XXX inefficient.
718  */
719 static void
720 hammer2_pfsfree_scan(hammer2_dev_t *hmp, int which)
721 {
722 	hammer2_pfs_t *pmp;
723 	hammer2_inode_t *iroot;
724 	hammer2_chain_t *rchain;
725 	int didfreeze;
726 	int i;
727 	int j;
728 	struct hammer2_pfslist *wlist;
729 
730 	if (which == 0)
731 		wlist = &hammer2_pfslist;
732 	else
733 		wlist = &hammer2_spmplist;
734 again:
735 	TAILQ_FOREACH(pmp, wlist, mntentry) {
736 		if ((iroot = pmp->iroot) == NULL)
737 			continue;
738 		hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
739 		hammer2_inode_run_sideq(pmp, 1);
740 		hammer2_bioq_sync(pmp);
741 		hammer2_trans_done(pmp);
742 
743 		/*
744 		 * Determine if this PFS is affected.  If it is we must
745 		 * freeze all management threads and lock its iroot.
746 		 *
747 		 * Freezing a management thread forces it idle, operations
748 		 * in-progress will be aborted and it will have to start
749 		 * over again when unfrozen, or exit if told to exit.
750 		 */
751 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
752 			if (pmp->pfs_hmps[i] == hmp)
753 				break;
754 		}
755 		if (i != HAMMER2_MAXCLUSTER) {
756 			/*
757 			 * Make sure all synchronization threads are locked
758 			 * down.
759 			 */
760 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
761 				if (pmp->pfs_hmps[i] == NULL)
762 					continue;
763 				hammer2_thr_freeze_async(&pmp->sync_thrs[i]);
764 				for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
765 					hammer2_thr_freeze_async(
766 						&pmp->xop_groups[j].thrs[i]);
767 				}
768 			}
769 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
770 				if (pmp->pfs_hmps[i] == NULL)
771 					continue;
772 				hammer2_thr_freeze(&pmp->sync_thrs[i]);
773 				for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
774 					hammer2_thr_freeze(
775 						&pmp->xop_groups[j].thrs[i]);
776 				}
777 			}
778 
779 			/*
780 			 * Lock the inode and clean out matching chains.
781 			 * Note that we cannot use hammer2_inode_lock_*()
782 			 * here because that would attempt to validate the
783 			 * cluster that we are in the middle of ripping
784 			 * apart.
785 			 *
786 			 * WARNING! We are working directly on the inodes
787 			 *	    embedded cluster.
788 			 */
789 			hammer2_mtx_ex(&iroot->lock);
790 
791 			/*
792 			 * Remove the chain from matching elements of the PFS.
793 			 */
794 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
795 				if (pmp->pfs_hmps[i] != hmp)
796 					continue;
797 				hammer2_thr_delete(&pmp->sync_thrs[i]);
798 				for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
799 					hammer2_thr_delete(
800 						&pmp->xop_groups[j].thrs[i]);
801 				}
802 				rchain = iroot->cluster.array[i].chain;
803 				iroot->cluster.array[i].chain = NULL;
804 				pmp->pfs_types[i] = 0;
805 				if (pmp->pfs_names[i]) {
806 					kfree(pmp->pfs_names[i], M_HAMMER2);
807 					pmp->pfs_names[i] = NULL;
808 				}
809 				if (rchain) {
810 					hammer2_chain_drop(rchain);
811 					/* focus hint */
812 					if (iroot->cluster.focus == rchain)
813 						iroot->cluster.focus = NULL;
814 				}
815 				pmp->pfs_hmps[i] = NULL;
816 			}
817 			hammer2_mtx_unlock(&iroot->lock);
818 			didfreeze = 1;	/* remaster, unfreeze down below */
819 		} else {
820 			didfreeze = 0;
821 		}
822 
823 		/*
824 		 * Cleanup trailing chains.  Gaps may remain.
825 		 */
826 		for (i = HAMMER2_MAXCLUSTER - 1; i >= 0; --i) {
827 			if (pmp->pfs_hmps[i])
828 				break;
829 		}
830 		iroot->cluster.nchains = i + 1;
831 
832 		/*
833 		 * If the PMP has no elements remaining we can destroy it.
834 		 * (this will transition management threads from frozen->exit).
835 		 */
836 		if (iroot->cluster.nchains == 0) {
837 			/*
838 			 * If this was the hmp's spmp, we need to clean
839 			 * a little more stuff out.
840 			 */
841 			if (hmp->spmp == pmp) {
842 				hmp->spmp = NULL;
843 				hmp->vchain.pmp = NULL;
844 				hmp->fchain.pmp = NULL;
845 			}
846 
847 			/*
848 			 * Free the pmp and restart the loop
849 			 */
850 			hammer2_pfsfree(pmp);
851 			goto again;
852 		}
853 
854 		/*
855 		 * If elements still remain we need to set the REMASTER
856 		 * flag and unfreeze it.
857 		 */
858 		if (didfreeze) {
859 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
860 				if (pmp->pfs_hmps[i] == NULL)
861 					continue;
862 				hammer2_thr_remaster(&pmp->sync_thrs[i]);
863 				hammer2_thr_unfreeze(&pmp->sync_thrs[i]);
864 				for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
865 					hammer2_thr_remaster(
866 						&pmp->xop_groups[j].thrs[i]);
867 					hammer2_thr_unfreeze(
868 						&pmp->xop_groups[j].thrs[i]);
869 				}
870 			}
871 		}
872 	}
873 }
874 
875 /*
876  * Mount or remount HAMMER2 fileystem from physical media
877  *
878  *	mountroot
879  *		mp		mount point structure
880  *		path		NULL
881  *		data		<unused>
882  *		cred		<unused>
883  *
884  *	mount
885  *		mp		mount point structure
886  *		path		path to mount point
887  *		data		pointer to argument structure in user space
888  *			volume	volume path (device@LABEL form)
889  *			hflags	user mount flags
890  *		cred		user credentials
891  *
892  * RETURNS:	0	Success
893  *		!0	error number
894  */
895 static
896 int
897 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
898 		  struct ucred *cred)
899 {
900 	struct hammer2_mount_info info;
901 	hammer2_pfs_t *pmp;
902 	hammer2_pfs_t *spmp;
903 	hammer2_dev_t *hmp;
904 	hammer2_dev_t *force_local;
905 	hammer2_key_t key_next;
906 	hammer2_key_t key_dummy;
907 	hammer2_key_t lhc;
908 	struct vnode *devvp;
909 	struct nlookupdata nd;
910 	hammer2_chain_t *parent;
911 	hammer2_chain_t *chain;
912 	hammer2_cluster_t *cluster;
913 	const hammer2_inode_data_t *ripdata;
914 	hammer2_blockref_t bref;
915 	struct file *fp;
916 	char devstr[MNAMELEN];
917 	size_t size;
918 	size_t done;
919 	char *dev;
920 	char *label;
921 	int ronly = 1;
922 	int error;
923 	int i;
924 
925 	hmp = NULL;
926 	pmp = NULL;
927 	dev = NULL;
928 	label = NULL;
929 	devvp = NULL;
930 
931 	kprintf("hammer2_mount\n");
932 
933 	if (path == NULL) {
934 		/*
935 		 * Root mount
936 		 */
937 		bzero(&info, sizeof(info));
938 		info.cluster_fd = -1;
939 		ksnprintf(devstr, sizeof(devstr), "%s",
940 			  mp->mnt_stat.f_mntfromname);
941 		kprintf("hammer2_mount: root '%s'\n", devstr);
942 	} else {
943 		/*
944 		 * Non-root mount or updating a mount
945 		 */
946 		error = copyin(data, &info, sizeof(info));
947 		if (error)
948 			return (error);
949 
950 		error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
951 		if (error)
952 			return (error);
953 	}
954 
955 	/*
956 	 * Extract device and label, automatically mount @BOOT, @ROOT, or @DATA
957 	 * if no label specified, based on the partition id.  Error out if no
958 	 * label or device (with partition id) is specified.  This is strictly
959 	 * a convenience to match the default label created by newfs_hammer2,
960 	 * our preference is that a label always be specified.
961 	 *
962 	 * NOTE: We allow 'mount @LABEL <blah>'... that is, a mount command
963 	 *	 that does not specify a device, as long as some H2 label
964 	 *	 has already been mounted from that device.  This makes
965 	 *	 mounting snapshots a lot easier.
966 	 */
967 	dev = devstr;
968 	label = strchr(devstr, '@');
969 	if (label && ((label + 1) - dev) > done)
970 		return (EINVAL);
971 	if (label == NULL || label[1] == 0) {
972 		char slice;
973 
974 		if (label == NULL)
975 			label = devstr + strlen(devstr);
976 		slice = label[-1];
977 		switch(slice) {
978 		case 'a':
979 			label = "BOOT";
980 			break;
981 		case 'd':
982 			label = "ROOT";
983 			break;
984 		default:
985 			label = "DATA";
986 			break;
987 		}
988 	} else {
989 		*label = '\0';
990 		label++;
991 	}
992 
993 	kprintf("hammer2_mount: dev=\"%s\" label=\"%s\" rdonly=%d\n",
994 		dev, label, (mp->mnt_flag & MNT_RDONLY));
995 
996 	if (mp->mnt_flag & MNT_UPDATE) {
997 		/*
998 		 * Update mount.  Note that pmp->iroot->cluster is
999 		 * an inode-embedded cluster and thus cannot be
1000 		 * directly locked.
1001 		 *
1002 		 * XXX HAMMER2 needs to implement NFS export via
1003 		 *     mountctl.
1004 		 */
1005 		pmp = MPTOPMP(mp);
1006 		pmp->hflags = info.hflags;
1007 		cluster = &pmp->iroot->cluster;
1008 		for (i = 0; i < cluster->nchains; ++i) {
1009 			if (cluster->array[i].chain == NULL)
1010 				continue;
1011 			hmp = cluster->array[i].chain->hmp;
1012 			devvp = hmp->devvp;
1013 			error = hammer2_remount(hmp, mp, path,
1014 						devvp, cred);
1015 			if (error)
1016 				break;
1017 		}
1018 
1019 		return error;
1020 	}
1021 
1022 	/*
1023 	 * HMP device mount
1024 	 *
1025 	 * If a path is specified and dev is not an empty string, lookup the
1026 	 * name and verify that it referes to a block device.
1027 	 *
1028 	 * If a path is specified and dev is an empty string we fall through
1029 	 * and locate the label in the hmp search.
1030 	 */
1031 	if (path && *dev != 0) {
1032 		error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW);
1033 		if (error == 0)
1034 			error = nlookup(&nd);
1035 		if (error == 0)
1036 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp);
1037 		nlookup_done(&nd);
1038 	} else if (path == NULL) {
1039 		/* root mount */
1040 		cdev_t cdev = kgetdiskbyname(dev);
1041 		error = bdevvp(cdev, &devvp);
1042 		if (error)
1043 			kprintf("hammer2: cannot find '%s'\n", dev);
1044 	} else {
1045 		/*
1046 		 * We will locate the hmp using the label in the hmp loop.
1047 		 */
1048 		error = 0;
1049 	}
1050 
1051 	/*
1052 	 * Make sure its a block device.  Do not check to see if it is
1053 	 * already mounted until we determine that its a fresh H2 device.
1054 	 */
1055 	if (error == 0 && devvp) {
1056 		vn_isdisk(devvp, &error);
1057 	}
1058 
1059 	/*
1060 	 * Determine if the device has already been mounted.  After this
1061 	 * check hmp will be non-NULL if we are doing the second or more
1062 	 * hammer2 mounts from the same device.
1063 	 */
1064 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1065 	if (devvp) {
1066 		/*
1067 		 * Match the device.  Due to the way devfs works,
1068 		 * we may not be able to directly match the vnode pointer,
1069 		 * so also check to see if the underlying device matches.
1070 		 */
1071 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1072 			if (hmp->devvp == devvp)
1073 				break;
1074 			if (devvp->v_rdev &&
1075 			    hmp->devvp->v_rdev == devvp->v_rdev) {
1076 				break;
1077 			}
1078 		}
1079 
1080 		/*
1081 		 * If no match this may be a fresh H2 mount, make sure
1082 		 * the device is not mounted on anything else.
1083 		 */
1084 		if (hmp == NULL)
1085 			error = vfs_mountedon(devvp);
1086 	} else if (error == 0) {
1087 		/*
1088 		 * Match the label to a pmp already probed.
1089 		 */
1090 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
1091 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
1092 				if (pmp->pfs_names[i] &&
1093 				    strcmp(pmp->pfs_names[i], label) == 0) {
1094 					hmp = pmp->pfs_hmps[i];
1095 					break;
1096 				}
1097 			}
1098 			if (hmp)
1099 				break;
1100 		}
1101 		if (hmp == NULL)
1102 			error = ENOENT;
1103 	}
1104 
1105 	/*
1106 	 * Open the device if this isn't a secondary mount and construct
1107 	 * the H2 device mount (hmp).
1108 	 */
1109 	if (hmp == NULL) {
1110 		hammer2_chain_t *schain;
1111 		hammer2_xid_t xid;
1112 
1113 		if (error == 0 && vcount(devvp) > 0) {
1114 			kprintf("Primary device already has references\n");
1115 			error = EBUSY;
1116 		}
1117 
1118 		/*
1119 		 * Now open the device
1120 		 */
1121 		if (error == 0) {
1122 			ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
1123 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1124 			error = vinvalbuf(devvp, V_SAVE, 0, 0);
1125 			if (error == 0) {
1126 				error = VOP_OPEN(devvp,
1127 					     (ronly ? FREAD : FREAD | FWRITE),
1128 					     FSCRED, NULL);
1129 			}
1130 			vn_unlock(devvp);
1131 		}
1132 		if (error && devvp) {
1133 			vrele(devvp);
1134 			devvp = NULL;
1135 		}
1136 		if (error) {
1137 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1138 			return error;
1139 		}
1140 		hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
1141 		ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", dev);
1142 		hmp->ronly = ronly;
1143 		hmp->devvp = devvp;
1144 		hmp->hflags = info.hflags & HMNT2_DEVFLAGS;
1145 		kmalloc_create(&hmp->mchain, "HAMMER2-chains");
1146 		TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
1147 		RB_INIT(&hmp->iotree);
1148 		spin_init(&hmp->io_spin, "hm2mount_io");
1149 		spin_init(&hmp->list_spin, "hm2mount_list");
1150 		TAILQ_INIT(&hmp->flushq);
1151 
1152 		lockinit(&hmp->vollk, "h2vol", 0, 0);
1153 		lockinit(&hmp->bulklk, "h2bulk", 0, 0);
1154 		lockinit(&hmp->bflock, "h2bflk", 0, 0);
1155 
1156 		/*
1157 		 * vchain setup. vchain.data is embedded.
1158 		 * vchain.refs is initialized and will never drop to 0.
1159 		 *
1160 		 * NOTE! voldata is not yet loaded.
1161 		 */
1162 		hmp->vchain.hmp = hmp;
1163 		hmp->vchain.refs = 1;
1164 		hmp->vchain.data = (void *)&hmp->voldata;
1165 		hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
1166 		hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1167 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1168 
1169 		hammer2_chain_core_init(&hmp->vchain);
1170 		/* hmp->vchain.u.xxx is left NULL */
1171 
1172 		/*
1173 		 * fchain setup.  fchain.data is embedded.
1174 		 * fchain.refs is initialized and will never drop to 0.
1175 		 *
1176 		 * The data is not used but needs to be initialized to
1177 		 * pass assertion muster.  We use this chain primarily
1178 		 * as a placeholder for the freemap's top-level RBTREE
1179 		 * so it does not interfere with the volume's topology
1180 		 * RBTREE.
1181 		 */
1182 		hmp->fchain.hmp = hmp;
1183 		hmp->fchain.refs = 1;
1184 		hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
1185 		hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
1186 		hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1187 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1188 		hmp->fchain.bref.methods =
1189 			HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
1190 			HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
1191 
1192 		hammer2_chain_core_init(&hmp->fchain);
1193 		/* hmp->fchain.u.xxx is left NULL */
1194 
1195 		/*
1196 		 * Install the volume header and initialize fields from
1197 		 * voldata.
1198 		 */
1199 		error = hammer2_install_volume_header(hmp);
1200 		if (error) {
1201 			hammer2_unmount_helper(mp, NULL, hmp);
1202 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1203 			hammer2_vfs_unmount(mp, MNT_FORCE);
1204 			return error;
1205 		}
1206 
1207 		/*
1208 		 * Really important to get these right or flush will get
1209 		 * confused.
1210 		 */
1211 		hmp->spmp = hammer2_pfsalloc(NULL, NULL, 0, NULL);
1212 		spmp = hmp->spmp;
1213 
1214 		/*
1215 		 * Dummy-up vchain and fchain's modify_tid.  mirror_tid
1216 		 * is inherited from the volume header.
1217 		 */
1218 		xid = 0;
1219 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1220 		hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
1221 		hmp->vchain.pmp = spmp;
1222 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1223 		hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
1224 		hmp->fchain.pmp = spmp;
1225 
1226 		/*
1227 		 * First locate the super-root inode, which is key 0
1228 		 * relative to the volume header's blockset.
1229 		 *
1230 		 * Then locate the root inode by scanning the directory keyspace
1231 		 * represented by the label.
1232 		 */
1233 		parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1234 		schain = hammer2_chain_lookup(&parent, &key_dummy,
1235 				      HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
1236 				      &error, 0);
1237 		hammer2_chain_lookup_done(parent);
1238 		if (schain == NULL) {
1239 			kprintf("hammer2_mount: invalid super-root\n");
1240 			hammer2_unmount_helper(mp, NULL, hmp);
1241 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1242 			hammer2_vfs_unmount(mp, MNT_FORCE);
1243 			return EINVAL;
1244 		}
1245 		if (schain->error) {
1246 			kprintf("hammer2_mount: error %s reading super-root\n",
1247 				hammer2_error_str(schain->error));
1248 			hammer2_chain_unlock(schain);
1249 			hammer2_chain_drop(schain);
1250 			schain = NULL;
1251 			hammer2_unmount_helper(mp, NULL, hmp);
1252 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1253 			hammer2_vfs_unmount(mp, MNT_FORCE);
1254 			return EINVAL;
1255 		}
1256 
1257 		/*
1258 		 * The super-root always uses an inode_tid of 1 when
1259 		 * creating PFSs.
1260 		 */
1261 		spmp->inode_tid = 1;
1262 		spmp->modify_tid = schain->bref.modify_tid + 1;
1263 
1264 		/*
1265 		 * Sanity-check schain's pmp and finish initialization.
1266 		 * Any chain belonging to the super-root topology should
1267 		 * have a NULL pmp (not even set to spmp).
1268 		 */
1269 		ripdata = &hammer2_chain_rdata(schain)->ipdata;
1270 		KKASSERT(schain->pmp == NULL);
1271 		spmp->pfs_clid = ripdata->meta.pfs_clid;
1272 
1273 		/*
1274 		 * Replace the dummy spmp->iroot with a real one.  It's
1275 		 * easier to just do a wholesale replacement than to try
1276 		 * to update the chain and fixup the iroot fields.
1277 		 *
1278 		 * The returned inode is locked with the supplied cluster.
1279 		 */
1280 		cluster = hammer2_cluster_from_chain(schain);
1281 		hammer2_inode_drop(spmp->iroot);
1282 		spmp->iroot = NULL;
1283 		spmp->iroot = hammer2_inode_get(spmp, NULL, cluster, -1);
1284 		spmp->spmp_hmp = hmp;
1285 		spmp->pfs_types[0] = ripdata->meta.pfs_type;
1286 		spmp->pfs_hmps[0] = hmp;
1287 		hammer2_inode_ref(spmp->iroot);
1288 		hammer2_inode_unlock(spmp->iroot);
1289 		hammer2_cluster_unlock(cluster);
1290 		hammer2_cluster_drop(cluster);
1291 		schain = NULL;
1292 		/* leave spmp->iroot with one ref */
1293 
1294 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
1295 			error = hammer2_recovery(hmp);
1296 			if (error == 0)
1297 				error |= hammer2_fixup_pfses(hmp);
1298 			/* XXX do something with error */
1299 		}
1300 		hammer2_update_pmps(hmp);
1301 		hammer2_iocom_init(hmp);
1302 		hammer2_bulkfree_init(hmp);
1303 
1304 		/*
1305 		 * Ref the cluster management messaging descriptor.  The mount
1306 		 * program deals with the other end of the communications pipe.
1307 		 *
1308 		 * Root mounts typically do not supply one.
1309 		 */
1310 		if (info.cluster_fd >= 0) {
1311 			fp = holdfp(curthread, info.cluster_fd, -1);
1312 			if (fp) {
1313 				hammer2_cluster_reconnect(hmp, fp);
1314 			} else {
1315 				kprintf("hammer2_mount: bad cluster_fd!\n");
1316 			}
1317 		}
1318 	} else {
1319 		spmp = hmp->spmp;
1320 		if (info.hflags & HMNT2_DEVFLAGS) {
1321 			kprintf("hammer2: Warning: mount flags pertaining "
1322 				"to the whole device may only be specified "
1323 				"on the first mount of the device: %08x\n",
1324 				info.hflags & HMNT2_DEVFLAGS);
1325 		}
1326 	}
1327 
1328 	/*
1329 	 * Force local mount (disassociate all PFSs from their clusters).
1330 	 * Used primarily for debugging.
1331 	 */
1332 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1333 
1334 	/*
1335 	 * Lookup the mount point under the media-localized super-root.
1336 	 * Scanning hammer2_pfslist doesn't help us because it represents
1337 	 * PFS cluster ids which can aggregate several named PFSs together.
1338 	 *
1339 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1340 	 * up later on.
1341 	 */
1342 	hammer2_inode_lock(spmp->iroot, 0);
1343 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1344 	lhc = hammer2_dirhash(label, strlen(label));
1345 	chain = hammer2_chain_lookup(&parent, &key_next,
1346 				     lhc, lhc + HAMMER2_DIRHASH_LOMASK,
1347 				     &error, 0);
1348 	while (chain) {
1349 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
1350 		    strcmp(label, chain->data->ipdata.filename) == 0) {
1351 			break;
1352 		}
1353 		chain = hammer2_chain_next(&parent, chain, &key_next,
1354 					    key_next,
1355 					    lhc + HAMMER2_DIRHASH_LOMASK,
1356 					    &error, 0);
1357 	}
1358 	if (parent) {
1359 		hammer2_chain_unlock(parent);
1360 		hammer2_chain_drop(parent);
1361 	}
1362 	hammer2_inode_unlock(spmp->iroot);
1363 
1364 	/*
1365 	 * PFS could not be found?
1366 	 */
1367 	if (chain == NULL) {
1368 		if (error)
1369 			kprintf("hammer2_mount: PFS label I/O error\n");
1370 		else
1371 			kprintf("hammer2_mount: PFS label not found\n");
1372 		hammer2_unmount_helper(mp, NULL, hmp);
1373 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1374 		hammer2_vfs_unmount(mp, MNT_FORCE);
1375 
1376 		return EINVAL;
1377 	}
1378 
1379 	/*
1380 	 * Acquire the pmp structure (it should have already been allocated
1381 	 * via hammer2_update_pmps() so do not pass cluster in to add to
1382 	 * available chains).
1383 	 *
1384 	 * Check if the cluster has already been mounted.  A cluster can
1385 	 * only be mounted once, use null mounts to mount additional copies.
1386 	 */
1387 	if (chain->error) {
1388 		kprintf("hammer2_mount: PFS label I/O error\n");
1389 	} else {
1390 		ripdata = &chain->data->ipdata;
1391 		bref = chain->bref;
1392 		pmp = hammer2_pfsalloc(NULL, ripdata,
1393 				       bref.modify_tid, force_local);
1394 	}
1395 	hammer2_chain_unlock(chain);
1396 	hammer2_chain_drop(chain);
1397 
1398 	/*
1399 	 * Finish the mount
1400 	 */
1401         kprintf("hammer2_mount hmp=%p pmp=%p\n", hmp, pmp);
1402 
1403 	if (pmp->mp) {
1404 		kprintf("hammer2_mount: PFS already mounted!\n");
1405 		hammer2_unmount_helper(mp, NULL, hmp);
1406 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1407 		hammer2_vfs_unmount(mp, MNT_FORCE);
1408 
1409 		return EBUSY;
1410 	}
1411 
1412 	pmp->hflags = info.hflags;
1413         mp->mnt_flag |= MNT_LOCAL;
1414         mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;   /* all entry pts are SMP */
1415         mp->mnt_kern_flag |= MNTK_THR_SYNC;     /* new vsyncscan semantics */
1416 
1417         /*
1418          * required mount structure initializations
1419          */
1420         mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
1421         mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
1422 
1423         mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
1424         mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1425 
1426         /*
1427          * Optional fields
1428          */
1429         mp->mnt_iosize_max = MAXPHYS;
1430 
1431 	/*
1432 	 * Connect up mount pointers.
1433 	 */
1434 	hammer2_mount_helper(mp, pmp);
1435 
1436         lockmgr(&hammer2_mntlk, LK_RELEASE);
1437 
1438 	/*
1439 	 * Finish setup
1440 	 */
1441 	vfs_getnewfsid(mp);
1442 	vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
1443 	vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
1444 	vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
1445 
1446 	if (path) {
1447 		copyinstr(info.volume, mp->mnt_stat.f_mntfromname,
1448 			  MNAMELEN - 1, &size);
1449 		bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
1450 	} /* else root mount, already in there */
1451 
1452 	bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
1453 	if (path) {
1454 		copyinstr(path, mp->mnt_stat.f_mntonname,
1455 			  sizeof(mp->mnt_stat.f_mntonname) - 1,
1456 			  &size);
1457 	} else {
1458 		/* root mount */
1459 		mp->mnt_stat.f_mntonname[0] = '/';
1460 	}
1461 
1462 	/*
1463 	 * Initial statfs to prime mnt_stat.
1464 	 */
1465 	hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
1466 
1467 	return 0;
1468 }
1469 
1470 /*
1471  * Scan PFSs under the super-root and create hammer2_pfs structures.
1472  */
1473 static
1474 void
1475 hammer2_update_pmps(hammer2_dev_t *hmp)
1476 {
1477 	const hammer2_inode_data_t *ripdata;
1478 	hammer2_chain_t *parent;
1479 	hammer2_chain_t *chain;
1480 	hammer2_blockref_t bref;
1481 	hammer2_dev_t *force_local;
1482 	hammer2_pfs_t *spmp;
1483 	hammer2_pfs_t *pmp;
1484 	hammer2_key_t key_next;
1485 	int error;
1486 
1487 	/*
1488 	 * Force local mount (disassociate all PFSs from their clusters).
1489 	 * Used primarily for debugging.
1490 	 */
1491 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1492 
1493 	/*
1494 	 * Lookup mount point under the media-localized super-root.
1495 	 *
1496 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1497 	 * up later on.
1498 	 */
1499 	spmp = hmp->spmp;
1500 	hammer2_inode_lock(spmp->iroot, 0);
1501 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1502 	chain = hammer2_chain_lookup(&parent, &key_next,
1503 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
1504 					 &error, 0);
1505 	while (chain) {
1506 		if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
1507 			continue;
1508 		if (chain->error) {
1509 			kprintf("I/O error scanning PFS labels\n");
1510 		} else {
1511 			ripdata = &chain->data->ipdata;
1512 			bref = chain->bref;
1513 
1514 			pmp = hammer2_pfsalloc(chain, ripdata,
1515 					       bref.modify_tid, force_local);
1516 		}
1517 		chain = hammer2_chain_next(&parent, chain, &key_next,
1518 					   key_next, HAMMER2_KEY_MAX,
1519 					   &error, 0);
1520 	}
1521 	if (parent) {
1522 		hammer2_chain_unlock(parent);
1523 		hammer2_chain_drop(parent);
1524 	}
1525 	hammer2_inode_unlock(spmp->iroot);
1526 }
1527 
1528 static
1529 int
1530 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path __unused,
1531 		struct vnode *devvp, struct ucred *cred)
1532 {
1533 	int error;
1534 
1535 	if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) {
1536 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1537 		VOP_OPEN(devvp, FREAD | FWRITE, FSCRED, NULL);
1538 		vn_unlock(devvp);
1539 		error = hammer2_recovery(hmp);
1540 		if (error == 0)
1541 			error |= hammer2_fixup_pfses(hmp);
1542 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1543 		if (error == 0) {
1544 			VOP_CLOSE(devvp, FREAD, NULL);
1545 			hmp->ronly = 0;
1546 		} else {
1547 			VOP_CLOSE(devvp, FREAD | FWRITE, NULL);
1548 		}
1549 		vn_unlock(devvp);
1550 	} else {
1551 		error = 0;
1552 	}
1553 	return error;
1554 }
1555 
1556 static
1557 int
1558 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1559 {
1560 	hammer2_pfs_t *pmp;
1561 	int flags;
1562 	int error = 0;
1563 
1564 	pmp = MPTOPMP(mp);
1565 
1566 	if (pmp == NULL)
1567 		return(0);
1568 
1569 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1570 
1571 	/*
1572 	 * If mount initialization proceeded far enough we must flush
1573 	 * its vnodes and sync the underlying mount points.  Three syncs
1574 	 * are required to fully flush the filesystem (freemap updates lag
1575 	 * by one flush, and one extra for safety).
1576 	 */
1577 	if (mntflags & MNT_FORCE)
1578 		flags = FORCECLOSE;
1579 	else
1580 		flags = 0;
1581 	if (pmp->iroot) {
1582 		error = vflush(mp, 0, flags);
1583 		if (error)
1584 			goto failed;
1585 		hammer2_vfs_sync(mp, MNT_WAIT);
1586 		hammer2_vfs_sync(mp, MNT_WAIT);
1587 		hammer2_vfs_sync(mp, MNT_WAIT);
1588 	}
1589 
1590 	/*
1591 	 * Cleanup the frontend support XOPS threads
1592 	 */
1593 	hammer2_xop_helper_cleanup(pmp);
1594 
1595 	if (pmp->mp)
1596 		hammer2_unmount_helper(mp, pmp, NULL);
1597 
1598 	error = 0;
1599 failed:
1600 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1601 
1602 	return (error);
1603 }
1604 
1605 /*
1606  * Mount helper, hook the system mount into our PFS.
1607  * The mount lock is held.
1608  *
1609  * We must bump the mount_count on related devices for any
1610  * mounted PFSs.
1611  */
1612 static
1613 void
1614 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp)
1615 {
1616 	hammer2_cluster_t *cluster;
1617 	hammer2_chain_t *rchain;
1618 	int i;
1619 
1620         mp->mnt_data = (qaddr_t)pmp;
1621 	pmp->mp = mp;
1622 
1623 	/*
1624 	 * After pmp->mp is set we have to adjust hmp->mount_count.
1625 	 */
1626 	cluster = &pmp->iroot->cluster;
1627 	for (i = 0; i < cluster->nchains; ++i) {
1628 		rchain = cluster->array[i].chain;
1629 		if (rchain == NULL)
1630 			continue;
1631 		++rchain->hmp->mount_count;
1632 	}
1633 
1634 	/*
1635 	 * Create missing Xop threads
1636 	 */
1637 	hammer2_xop_helper_create(pmp);
1638 }
1639 
1640 /*
1641  * Mount helper, unhook the system mount from our PFS.
1642  * The mount lock is held.
1643  *
1644  * If hmp is supplied a mount responsible for being the first to open
1645  * the block device failed and the block device and all PFSs using the
1646  * block device must be cleaned up.
1647  *
1648  * If pmp is supplied multiple devices might be backing the PFS and each
1649  * must be disconnected.  This might not be the last PFS using some of the
1650  * underlying devices.  Also, we have to adjust our hmp->mount_count
1651  * accounting for the devices backing the pmp which is now undergoing an
1652  * unmount.
1653  */
1654 static
1655 void
1656 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp)
1657 {
1658 	hammer2_cluster_t *cluster;
1659 	hammer2_chain_t *rchain;
1660 	struct vnode *devvp;
1661 	int dumpcnt;
1662 	int ronly;
1663 	int i;
1664 
1665 	/*
1666 	 * If no device supplied this is a high-level unmount and we have to
1667 	 * to disconnect the mount, adjust mount_count, and locate devices
1668 	 * that might now have no mounts.
1669 	 */
1670 	if (pmp) {
1671 		KKASSERT(hmp == NULL);
1672 		KKASSERT((void *)(intptr_t)mp->mnt_data == pmp);
1673 		pmp->mp = NULL;
1674 		mp->mnt_data = NULL;
1675 
1676 		/*
1677 		 * After pmp->mp is cleared we have to account for
1678 		 * mount_count.
1679 		 */
1680 		cluster = &pmp->iroot->cluster;
1681 		for (i = 0; i < cluster->nchains; ++i) {
1682 			rchain = cluster->array[i].chain;
1683 			if (rchain == NULL)
1684 				continue;
1685 			--rchain->hmp->mount_count;
1686 			/* scrapping hmp now may invalidate the pmp */
1687 		}
1688 again:
1689 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1690 			if (hmp->mount_count == 0) {
1691 				hammer2_unmount_helper(NULL, NULL, hmp);
1692 				goto again;
1693 			}
1694 		}
1695 		return;
1696 	}
1697 
1698 	/*
1699 	 * Try to terminate the block device.  We can't terminate it if
1700 	 * there are still PFSs referencing it.
1701 	 */
1702 	if (hmp->mount_count)
1703 		return;
1704 
1705 	/*
1706 	 * Decomission the network before we start messing with the
1707 	 * device and PFS.
1708 	 */
1709 	hammer2_iocom_uninit(hmp);
1710 
1711 	hammer2_bulkfree_uninit(hmp);
1712 	hammer2_pfsfree_scan(hmp, 0);
1713 	hammer2_dev_exlock(hmp);	/* XXX order */
1714 
1715 	/*
1716 	 * Cycle the volume data lock as a safety (probably not needed any
1717 	 * more).  To ensure everything is out we need to flush at least
1718 	 * three times.  (1) The running of the sideq can dirty the
1719 	 * filesystem, (2) A normal flush can dirty the freemap, and
1720 	 * (3) ensure that the freemap is fully synchronized.
1721 	 *
1722 	 * The next mount's recovery scan can clean everything up but we want
1723 	 * to leave the filesystem in a 100% clean state on a normal unmount.
1724 	 */
1725 #if 0
1726 	hammer2_voldata_lock(hmp);
1727 	hammer2_voldata_unlock(hmp);
1728 #endif
1729 
1730 	/*
1731 	 * Flush whatever is left.  Unmounted but modified PFS's might still
1732 	 * have some dirty chains on them.
1733 	 */
1734 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1735 	hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1736 
1737 	if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1738 		hammer2_voldata_modify(hmp);
1739 		hammer2_flush(&hmp->fchain, HAMMER2_FLUSH_TOP |
1740 					    HAMMER2_FLUSH_ALL);
1741 	}
1742 	hammer2_chain_unlock(&hmp->fchain);
1743 
1744 	if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1745 		hammer2_flush(&hmp->vchain, HAMMER2_FLUSH_TOP |
1746 					    HAMMER2_FLUSH_ALL);
1747 	}
1748 	hammer2_chain_unlock(&hmp->vchain);
1749 
1750 	if ((hmp->vchain.flags | hmp->fchain.flags) &
1751 	    HAMMER2_CHAIN_FLUSH_MASK) {
1752 		kprintf("hammer2_unmount: chains left over "
1753 			"after final sync\n");
1754 		kprintf("    vchain %08x\n", hmp->vchain.flags);
1755 		kprintf("    fchain %08x\n", hmp->fchain.flags);
1756 
1757 		if (hammer2_debug & 0x0010)
1758 			Debugger("entered debugger");
1759 	}
1760 
1761 	hammer2_pfsfree_scan(hmp, 1);
1762 
1763 	KKASSERT(hmp->spmp == NULL);
1764 
1765 	/*
1766 	 * Finish up with the device vnode
1767 	 */
1768 	if ((devvp = hmp->devvp) != NULL) {
1769 		ronly = hmp->ronly;
1770 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1771 		kprintf("hammer2_unmount(A): devvp %s rbdirty %p ronly=%d\n",
1772 			hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree),
1773 			ronly);
1774 		vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0);
1775 		kprintf("hammer2_unmount(B): devvp %s rbdirty %p\n",
1776 			hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree));
1777 		hmp->devvp = NULL;
1778 		VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL);
1779 		vn_unlock(devvp);
1780 		vrele(devvp);
1781 		devvp = NULL;
1782 	}
1783 
1784 	/*
1785 	 * Clear vchain/fchain flags that might prevent final cleanup
1786 	 * of these chains.
1787 	 */
1788 	if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1789 		atomic_add_long(&hammer2_count_modified_chains, -1);
1790 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1791 		hammer2_pfs_memory_wakeup(hmp->vchain.pmp);
1792 	}
1793 	if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1794 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_UPDATE);
1795 	}
1796 
1797 	if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1798 		atomic_add_long(&hammer2_count_modified_chains, -1);
1799 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_MODIFIED);
1800 		hammer2_pfs_memory_wakeup(hmp->fchain.pmp);
1801 	}
1802 	if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1803 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_UPDATE);
1804 	}
1805 
1806 	/*
1807 	 * Final drop of embedded freemap root chain to
1808 	 * clean up fchain.core (fchain structure is not
1809 	 * flagged ALLOCATED so it is cleaned out and then
1810 	 * left to rot).
1811 	 */
1812 	hammer2_chain_drop(&hmp->fchain);
1813 
1814 	/*
1815 	 * Final drop of embedded volume root chain to clean
1816 	 * up vchain.core (vchain structure is not flagged
1817 	 * ALLOCATED so it is cleaned out and then left to
1818 	 * rot).
1819 	 */
1820 	dumpcnt = 50;
1821 	hammer2_dump_chain(&hmp->vchain, 0, &dumpcnt, 'v', (u_int)-1);
1822 	dumpcnt = 50;
1823 	hammer2_dump_chain(&hmp->fchain, 0, &dumpcnt, 'f', (u_int)-1);
1824 	hammer2_dev_unlock(hmp);
1825 	hammer2_chain_drop(&hmp->vchain);
1826 
1827 	hammer2_io_cleanup(hmp, &hmp->iotree);
1828 	if (hmp->iofree_count) {
1829 		kprintf("io_cleanup: %d I/O's left hanging\n",
1830 			hmp->iofree_count);
1831 	}
1832 
1833 	TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1834 	kmalloc_destroy(&hmp->mchain);
1835 	kfree(hmp, M_HAMMER2);
1836 }
1837 
1838 int
1839 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1840 		 ino_t ino, struct vnode **vpp)
1841 {
1842 	hammer2_xop_lookup_t *xop;
1843 	hammer2_pfs_t *pmp;
1844 	hammer2_inode_t *ip;
1845 	hammer2_tid_t inum;
1846 	int error;
1847 
1848 	inum = (hammer2_tid_t)ino & HAMMER2_DIRHASH_USERMSK;
1849 
1850 	error = 0;
1851 	pmp = MPTOPMP(mp);
1852 
1853 	/*
1854 	 * Easy if we already have it cached
1855 	 */
1856 	ip = hammer2_inode_lookup(pmp, inum);
1857 	if (ip) {
1858 		hammer2_inode_lock(ip, HAMMER2_RESOLVE_SHARED);
1859 		*vpp = hammer2_igetv(ip, &error);
1860 		hammer2_inode_unlock(ip);
1861 		hammer2_inode_drop(ip);		/* from lookup */
1862 
1863 		return error;
1864 	}
1865 
1866 	/*
1867 	 * Otherwise we have to find the inode
1868 	 */
1869 	xop = hammer2_xop_alloc(pmp->iroot, 0);
1870 	xop->lhc = inum;
1871 	hammer2_xop_start(&xop->head, hammer2_xop_lookup);
1872 	error = hammer2_xop_collect(&xop->head, 0);
1873 
1874 	if (error == 0) {
1875 		if (hammer2_cluster_rdata(&xop->head.cluster) == NULL) {
1876 			kprintf("vget: no collect error but also no rdata\n");
1877 			kprintf("xop %p\n", xop);
1878 			while ((hammer2_debug & 0x80000) == 0) {
1879 				tsleep(xop, PCATCH, "wait", hz * 10);
1880 			}
1881 			ip = NULL;
1882 		} else {
1883 			ip = hammer2_inode_get(pmp, NULL, &xop->head.cluster, -1);
1884 		}
1885 	}
1886 	hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1887 
1888 	if (ip) {
1889 		*vpp = hammer2_igetv(ip, &error);
1890 		hammer2_inode_unlock(ip);
1891 	} else {
1892 		*vpp = NULL;
1893 		error = ENOENT;
1894 	}
1895 	return (error);
1896 }
1897 
1898 static
1899 int
1900 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1901 {
1902 	hammer2_pfs_t *pmp;
1903 	struct vnode *vp;
1904 	int error;
1905 
1906 	pmp = MPTOPMP(mp);
1907 	if (pmp->iroot == NULL) {
1908 		*vpp = NULL;
1909 		return EINVAL;
1910 	}
1911 
1912 	error = 0;
1913 	hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1914 
1915 	while (pmp->inode_tid == 0) {
1916 		hammer2_xop_ipcluster_t *xop;
1917 		hammer2_inode_meta_t *meta;
1918 
1919 		xop = hammer2_xop_alloc(pmp->iroot, HAMMER2_XOP_MODIFYING);
1920 		hammer2_xop_start(&xop->head, hammer2_xop_ipcluster);
1921 		error = hammer2_xop_collect(&xop->head, 0);
1922 
1923 		if (error == 0) {
1924 			meta = &xop->head.cluster.focus->data->ipdata.meta;
1925 			pmp->iroot->meta = *meta;
1926 			pmp->inode_tid = meta->pfs_inum + 1;
1927 			if (pmp->inode_tid < HAMMER2_INODE_START)
1928 				pmp->inode_tid = HAMMER2_INODE_START;
1929 			pmp->modify_tid =
1930 				xop->head.cluster.focus->bref.modify_tid + 1;
1931 #if 0
1932 			kprintf("PFS: Starting inode %jd\n",
1933 				(intmax_t)pmp->inode_tid);
1934 			kprintf("PMP focus good set nextino=%ld mod=%016jx\n",
1935 				pmp->inode_tid, pmp->modify_tid);
1936 #endif
1937 			wakeup(&pmp->iroot);
1938 
1939 			hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1940 
1941 			/*
1942 			 * Prime the mount info.
1943 			 */
1944 			hammer2_vfs_statfs(mp, &mp->mnt_stat, NULL);
1945 			break;
1946 		}
1947 
1948 		/*
1949 		 * Loop, try again
1950 		 */
1951 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1952 		hammer2_inode_unlock(pmp->iroot);
1953 		error = tsleep(&pmp->iroot, PCATCH, "h2root", hz);
1954 		hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1955 		if (error == EINTR)
1956 			break;
1957 	}
1958 
1959 	if (error) {
1960 		hammer2_inode_unlock(pmp->iroot);
1961 		*vpp = NULL;
1962 	} else {
1963 		vp = hammer2_igetv(pmp->iroot, &error);
1964 		hammer2_inode_unlock(pmp->iroot);
1965 		*vpp = vp;
1966 	}
1967 
1968 	return (error);
1969 }
1970 
1971 /*
1972  * Filesystem status
1973  *
1974  * XXX incorporate ipdata->meta.inode_quota and data_quota
1975  */
1976 static
1977 int
1978 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
1979 {
1980 	hammer2_pfs_t *pmp;
1981 	hammer2_dev_t *hmp;
1982 	hammer2_blockref_t bref;
1983 	struct statfs tmp;
1984 	int i;
1985 
1986 	/*
1987 	 * NOTE: iroot might not have validated the cluster yet.
1988 	 */
1989 	pmp = MPTOPMP(mp);
1990 
1991 	bzero(&tmp, sizeof(tmp));
1992 
1993 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
1994 		hmp = pmp->pfs_hmps[i];
1995 		if (hmp == NULL)
1996 			continue;
1997 		if (pmp->iroot->cluster.array[i].chain)
1998 			bref = pmp->iroot->cluster.array[i].chain->bref;
1999 		else
2000 			bzero(&bref, sizeof(bref));
2001 
2002 		tmp.f_files = bref.embed.stats.inode_count;
2003 		tmp.f_ffree = 0;
2004 		tmp.f_blocks = hmp->voldata.allocator_size /
2005 			       mp->mnt_vstat.f_bsize;
2006 		tmp.f_bfree = hmp->voldata.allocator_free /
2007 			      mp->mnt_vstat.f_bsize;
2008 		tmp.f_bavail = tmp.f_bfree;
2009 
2010 		if (cred && cred->cr_uid != 0) {
2011 			uint64_t adj;
2012 
2013 			/* 5% */
2014 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2015 			tmp.f_blocks -= adj;
2016 			tmp.f_bfree -= adj;
2017 			tmp.f_bavail -= adj;
2018 		}
2019 
2020 		mp->mnt_stat.f_blocks = tmp.f_blocks;
2021 		mp->mnt_stat.f_bfree = tmp.f_bfree;
2022 		mp->mnt_stat.f_bavail = tmp.f_bavail;
2023 		mp->mnt_stat.f_files = tmp.f_files;
2024 		mp->mnt_stat.f_ffree = tmp.f_ffree;
2025 
2026 		*sbp = mp->mnt_stat;
2027 	}
2028 	return (0);
2029 }
2030 
2031 static
2032 int
2033 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
2034 {
2035 	hammer2_pfs_t *pmp;
2036 	hammer2_dev_t *hmp;
2037 	hammer2_blockref_t bref;
2038 	struct statvfs tmp;
2039 	int i;
2040 
2041 	/*
2042 	 * NOTE: iroot might not have validated the cluster yet.
2043 	 */
2044 	pmp = MPTOPMP(mp);
2045 	bzero(&tmp, sizeof(tmp));
2046 
2047 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2048 		hmp = pmp->pfs_hmps[i];
2049 		if (hmp == NULL)
2050 			continue;
2051 		if (pmp->iroot->cluster.array[i].chain)
2052 			bref = pmp->iroot->cluster.array[i].chain->bref;
2053 		else
2054 			bzero(&bref, sizeof(bref));
2055 
2056 		tmp.f_files = bref.embed.stats.inode_count;
2057 		tmp.f_ffree = 0;
2058 		tmp.f_blocks = hmp->voldata.allocator_size /
2059 			       mp->mnt_vstat.f_bsize;
2060 		tmp.f_bfree = hmp->voldata.allocator_free /
2061 			      mp->mnt_vstat.f_bsize;
2062 		tmp.f_bavail = tmp.f_bfree;
2063 
2064 		if (cred && cred->cr_uid != 0) {
2065 			uint64_t adj;
2066 
2067 			/* 5% */
2068 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2069 			tmp.f_blocks -= adj;
2070 			tmp.f_bfree -= adj;
2071 			tmp.f_bavail -= adj;
2072 		}
2073 
2074 		mp->mnt_vstat.f_blocks = tmp.f_blocks;
2075 		mp->mnt_vstat.f_bfree = tmp.f_bfree;
2076 		mp->mnt_vstat.f_bavail = tmp.f_bavail;
2077 		mp->mnt_vstat.f_files = tmp.f_files;
2078 		mp->mnt_vstat.f_ffree = tmp.f_ffree;
2079 
2080 		*sbp = mp->mnt_vstat;
2081 	}
2082 	return (0);
2083 }
2084 
2085 /*
2086  * Mount-time recovery (RW mounts)
2087  *
2088  * Updates to the free block table are allowed to lag flushes by one
2089  * transaction.  In case of a crash, then on a fresh mount we must do an
2090  * incremental scan of the last committed transaction id and make sure that
2091  * all related blocks have been marked allocated.
2092  *
2093  * The super-root topology and each PFS has its own transaction id domain,
2094  * so we must track PFS boundary transitions.
2095  */
2096 struct hammer2_recovery_elm {
2097 	TAILQ_ENTRY(hammer2_recovery_elm) entry;
2098 	hammer2_chain_t *chain;
2099 	hammer2_tid_t sync_tid;
2100 };
2101 
2102 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
2103 
2104 struct hammer2_recovery_info {
2105 	struct hammer2_recovery_list list;
2106 	hammer2_tid_t	mtid;
2107 	int	depth;
2108 };
2109 
2110 static int hammer2_recovery_scan(hammer2_dev_t *hmp,
2111 			hammer2_chain_t *parent,
2112 			struct hammer2_recovery_info *info,
2113 			hammer2_tid_t sync_tid);
2114 
2115 #define HAMMER2_RECOVERY_MAXDEPTH	10
2116 
2117 static
2118 int
2119 hammer2_recovery(hammer2_dev_t *hmp)
2120 {
2121 	struct hammer2_recovery_info info;
2122 	struct hammer2_recovery_elm *elm;
2123 	hammer2_chain_t *parent;
2124 	hammer2_tid_t sync_tid;
2125 	hammer2_tid_t mirror_tid;
2126 	int error;
2127 
2128 	hammer2_trans_init(hmp->spmp, 0);
2129 
2130 	sync_tid = hmp->voldata.freemap_tid;
2131 	mirror_tid = hmp->voldata.mirror_tid;
2132 
2133 	kprintf("hammer2 mount \"%s\": ", hmp->devrepname);
2134 	if (sync_tid >= mirror_tid) {
2135 		kprintf(" no recovery needed\n");
2136 	} else {
2137 		kprintf(" freemap recovery %016jx-%016jx\n",
2138 			sync_tid + 1, mirror_tid);
2139 	}
2140 
2141 	TAILQ_INIT(&info.list);
2142 	info.depth = 0;
2143 	parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
2144 	error = hammer2_recovery_scan(hmp, parent, &info, sync_tid);
2145 	hammer2_chain_lookup_done(parent);
2146 
2147 	while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
2148 		TAILQ_REMOVE(&info.list, elm, entry);
2149 		parent = elm->chain;
2150 		sync_tid = elm->sync_tid;
2151 		kfree(elm, M_HAMMER2);
2152 
2153 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2154 		error |= hammer2_recovery_scan(hmp, parent, &info,
2155 					      hmp->voldata.freemap_tid);
2156 		hammer2_chain_unlock(parent);
2157 		hammer2_chain_drop(parent);	/* drop elm->chain ref */
2158 	}
2159 
2160 	hammer2_trans_done(hmp->spmp);
2161 
2162 	return error;
2163 }
2164 
2165 static
2166 int
2167 hammer2_recovery_scan(hammer2_dev_t *hmp, hammer2_chain_t *parent,
2168 		      struct hammer2_recovery_info *info,
2169 		      hammer2_tid_t sync_tid)
2170 {
2171 	const hammer2_inode_data_t *ripdata;
2172 	hammer2_chain_t *chain;
2173 	hammer2_blockref_t bref;
2174 	int tmp_error;
2175 	int rup_error;
2176 	int error;
2177 	int first;
2178 
2179 	/*
2180 	 * Adjust freemap to ensure that the block(s) are marked allocated.
2181 	 */
2182 	if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
2183 		hammer2_freemap_adjust(hmp, &parent->bref,
2184 				       HAMMER2_FREEMAP_DORECOVER);
2185 	}
2186 
2187 	/*
2188 	 * Check type for recursive scan
2189 	 */
2190 	switch(parent->bref.type) {
2191 	case HAMMER2_BREF_TYPE_VOLUME:
2192 		/* data already instantiated */
2193 		break;
2194 	case HAMMER2_BREF_TYPE_INODE:
2195 		/*
2196 		 * Must instantiate data for DIRECTDATA test and also
2197 		 * for recursion.
2198 		 */
2199 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2200 		ripdata = &hammer2_chain_rdata(parent)->ipdata;
2201 		if (ripdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2202 			/* not applicable to recovery scan */
2203 			hammer2_chain_unlock(parent);
2204 			return 0;
2205 		}
2206 		hammer2_chain_unlock(parent);
2207 		break;
2208 	case HAMMER2_BREF_TYPE_INDIRECT:
2209 		/*
2210 		 * Must instantiate data for recursion
2211 		 */
2212 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2213 		hammer2_chain_unlock(parent);
2214 		break;
2215 	case HAMMER2_BREF_TYPE_DIRENT:
2216 	case HAMMER2_BREF_TYPE_DATA:
2217 	case HAMMER2_BREF_TYPE_FREEMAP:
2218 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2219 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2220 		/* not applicable to recovery scan */
2221 		return 0;
2222 		break;
2223 	default:
2224 		return HAMMER2_ERROR_BADBREF;
2225 	}
2226 
2227 	/*
2228 	 * Defer operation if depth limit reached or if we are crossing a
2229 	 * PFS boundary.
2230 	 */
2231 	if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) {
2232 		struct hammer2_recovery_elm *elm;
2233 
2234 		elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2235 		elm->chain = parent;
2236 		elm->sync_tid = sync_tid;
2237 		hammer2_chain_ref(parent);
2238 		TAILQ_INSERT_TAIL(&info->list, elm, entry);
2239 		/* unlocked by caller */
2240 
2241 		return(0);
2242 	}
2243 
2244 
2245 	/*
2246 	 * Recursive scan of the last flushed transaction only.  We are
2247 	 * doing this without pmp assignments so don't leave the chains
2248 	 * hanging around after we are done with them.
2249 	 *
2250 	 * error	Cumulative error this level only
2251 	 * rup_error	Cumulative error for recursion
2252 	 * tmp_error	Specific non-cumulative recursion error
2253 	 */
2254 	chain = NULL;
2255 	first = 1;
2256 	rup_error = 0;
2257 	error = 0;
2258 
2259 	for (;;) {
2260 		error |= hammer2_chain_scan(parent, &chain, &bref,
2261 					    &first,
2262 					    HAMMER2_LOOKUP_NODATA);
2263 
2264 		/*
2265 		 * Problem during scan or EOF
2266 		 */
2267 		if (error)
2268 			break;
2269 
2270 		/*
2271 		 * If this is a leaf
2272 		 */
2273 		if (chain == NULL) {
2274 			if (bref.mirror_tid > sync_tid) {
2275 				hammer2_freemap_adjust(hmp, &bref,
2276 						     HAMMER2_FREEMAP_DORECOVER);
2277 			}
2278 			continue;
2279 		}
2280 
2281 		/*
2282 		 * This may or may not be a recursive node.
2283 		 */
2284 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2285 		if (bref.mirror_tid > sync_tid) {
2286 			++info->depth;
2287 			tmp_error = hammer2_recovery_scan(hmp, chain,
2288 							   info, sync_tid);
2289 			--info->depth;
2290 		} else {
2291 			tmp_error = 0;
2292 		}
2293 
2294 		/*
2295 		 * Flush the recovery at the PFS boundary to stage it for
2296 		 * the final flush of the super-root topology.
2297 		 */
2298 		if (tmp_error == 0 &&
2299 		    (bref.flags & HAMMER2_BREF_FLAG_PFSROOT) &&
2300 		    (chain->flags & HAMMER2_CHAIN_ONFLUSH)) {
2301 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2302 					     HAMMER2_FLUSH_ALL);
2303 		}
2304 		rup_error |= tmp_error;
2305 	}
2306 	return ((error | rup_error) & ~HAMMER2_ERROR_EOF);
2307 }
2308 
2309 /*
2310  * This fixes up an error introduced in earlier H2 implementations where
2311  * moving a PFS inode into an indirect block wound up causing the
2312  * HAMMER2_BREF_FLAG_PFSROOT flag in the bref to get cleared.
2313  */
2314 static
2315 int
2316 hammer2_fixup_pfses(hammer2_dev_t *hmp)
2317 {
2318 	const hammer2_inode_data_t *ripdata;
2319 	hammer2_chain_t *parent;
2320 	hammer2_chain_t *chain;
2321 	hammer2_key_t key_next;
2322 	hammer2_pfs_t *spmp;
2323 	int error;
2324 
2325 	error = 0;
2326 
2327 	/*
2328 	 * Lookup mount point under the media-localized super-root.
2329 	 *
2330 	 * cluster->pmp will incorrectly point to spmp and must be fixed
2331 	 * up later on.
2332 	 */
2333 	spmp = hmp->spmp;
2334 	hammer2_inode_lock(spmp->iroot, 0);
2335 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
2336 	chain = hammer2_chain_lookup(&parent, &key_next,
2337 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
2338 					 &error, 0);
2339 	while (chain) {
2340 		if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
2341 			continue;
2342 		if (chain->error) {
2343 			kprintf("I/O error scanning PFS labels\n");
2344 			error |= chain->error;
2345 		} else if ((chain->bref.flags &
2346 			    HAMMER2_BREF_FLAG_PFSROOT) == 0) {
2347 			int error2;
2348 
2349 			ripdata = &chain->data->ipdata;
2350 			hammer2_trans_init(hmp->spmp, 0);
2351 			error2 = hammer2_chain_modify(chain,
2352 						      chain->bref.modify_tid,
2353 						      0, 0);
2354 			if (error2 == 0) {
2355 				kprintf("hammer2: Correct mis-flagged PFS %s\n",
2356 					ripdata->filename);
2357 				chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2358 			} else {
2359 				error |= error2;
2360 			}
2361 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2362 					     HAMMER2_FLUSH_ALL);
2363 			hammer2_trans_done(hmp->spmp);
2364 		}
2365 		chain = hammer2_chain_next(&parent, chain, &key_next,
2366 					   key_next, HAMMER2_KEY_MAX,
2367 					   &error, 0);
2368 	}
2369 	if (parent) {
2370 		hammer2_chain_unlock(parent);
2371 		hammer2_chain_drop(parent);
2372 	}
2373 	hammer2_inode_unlock(spmp->iroot);
2374 
2375 	return error;
2376 }
2377 
2378 /*
2379  * Sync a mount point; this is called periodically on a per-mount basis from
2380  * the filesystem syncer, and whenever a user issues a sync.
2381  */
2382 int
2383 hammer2_vfs_sync(struct mount *mp, int waitfor)
2384 {
2385 	hammer2_xop_flush_t *xop;
2386 	struct hammer2_sync_info info;
2387 	hammer2_inode_t *iroot;
2388 	hammer2_pfs_t *pmp;
2389 	int flags;
2390 	int error;
2391 
2392 	pmp = MPTOPMP(mp);
2393 	iroot = pmp->iroot;
2394 	KKASSERT(iroot);
2395 	KKASSERT(iroot->pmp == pmp);
2396 
2397 	/*
2398 	 * We can't acquire locks on existing vnodes while in a transaction
2399 	 * without risking a deadlock.  This assumes that vfsync() can be
2400 	 * called without the vnode locked (which it can in DragonFly).
2401 	 * Otherwise we'd have to implement a multi-pass or flag the lock
2402 	 * failures and retry.
2403 	 *
2404 	 * The reclamation code interlocks with the sync list's token
2405 	 * (by removing the vnode from the scan list) before unlocking
2406 	 * the inode, giving us time to ref the inode.
2407 	 */
2408 	/*flags = VMSC_GETVP;*/
2409 	flags = 0;
2410 	if (waitfor & MNT_LAZY)
2411 		flags |= VMSC_ONEPASS;
2412 
2413 	/*
2414 	 * Flush vnodes individually using a normal transaction to avoid
2415 	 * stalling any concurrent operations.  This will flush the related
2416 	 * buffer cache buffers and inodes to the media.
2417 	 *
2418 	 * For efficiency do an async pass before making sure with a
2419 	 * synchronous pass on all related buffer cache buffers.
2420 	 */
2421 	hammer2_trans_init(pmp, 0);
2422 
2423 	info.error = 0;
2424 
2425 	info.waitfor = MNT_NOWAIT;
2426 	info.pass = 1;
2427 	vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info);
2428 
2429 	/*
2430 	 * Now do two passes making sure we get everything.  The first pass
2431 	 * vfsync()s dirty vnodes.  The second pass waits for their I/O's
2432 	 * to finish and cleans up the dirty flag on the vnode.
2433 	 */
2434 	info.pass = 1;
2435 	info.waitfor = MNT_WAIT;
2436 	vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2437 
2438 	info.pass = 2;
2439 	info.waitfor = MNT_WAIT;
2440 	vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2441 
2442 	/*
2443 	 * We must also run the sideq to handle any disconnected inodes
2444 	 * as the vnode scan will not see these.
2445 	 */
2446 	hammer2_inode_run_sideq(pmp, 1);
2447 	hammer2_trans_done(pmp);
2448 
2449 	/*
2450 	 * Start our flush transaction and flush the root topology down to
2451 	 * the inodes, but not the inodes themselves (which we already flushed
2452 	 * above).  Any concurrent activity effecting inode contents will not
2453 	 *
2454 	 * The flush sequence will
2455 	 *
2456 	 * NOTE! It is still possible for the paging code to push pages
2457 	 *	 out via a UIO_NOCOPY hammer2_vop_write() during the main
2458 	 *	 flush.
2459 	 */
2460 	hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
2461 
2462 	/*
2463 	 * sync dirty vnodes again while in the flush transaction.  This is
2464 	 * currently an expensive shim to makre sure the logical topology is
2465 	 * completely consistent before we flush the volume header.
2466 	 */
2467 	info.pass = 1;
2468 	info.waitfor = MNT_WAIT;
2469 	vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2470 
2471 	info.pass = 2;
2472 	info.waitfor = MNT_WAIT;
2473 	vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2474 
2475 	/*
2476 	 * Use the XOP interface to concurrently flush all nodes to
2477 	 * synchronize the PFSROOT subtopology to the media.  A standard
2478 	 * end-of-scan ENOENT error indicates cluster sufficiency.
2479 	 *
2480 	 * Note that this flush will not be visible on crash recovery until
2481 	 * we flush the super-root topology in the next loop.
2482 	 *
2483 	 * XXX For now wait for all flushes to complete.
2484 	 */
2485 	if (iroot) {
2486 		/*
2487 		 * If unmounting try to flush everything including any
2488 		 * sub-trees under inodes, just in case there is dangling
2489 		 * modified data, as a safety.  Otherwise just flush up to
2490 		 * the inodes in this stage.
2491 		 */
2492 		if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
2493 			xop = hammer2_xop_alloc(iroot, HAMMER2_XOP_MODIFYING |
2494 						       HAMMER2_XOP_VOLHDR);
2495 		} else {
2496 			xop = hammer2_xop_alloc(iroot, HAMMER2_XOP_MODIFYING |
2497 						       HAMMER2_XOP_INODE_STOP |
2498 						       HAMMER2_XOP_VOLHDR);
2499 		}
2500 		hammer2_xop_start(&xop->head, hammer2_inode_xop_flush);
2501 		error = hammer2_xop_collect(&xop->head,
2502 					    HAMMER2_XOP_COLLECT_WAITALL);
2503 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2504 		if (error == HAMMER2_ERROR_ENOENT)
2505 			error = 0;
2506 		else
2507 			error = hammer2_error_to_errno(error);
2508 	} else {
2509 		error = 0;
2510 	}
2511 	hammer2_trans_done(pmp);
2512 
2513 	return (error);
2514 }
2515 
2516 /*
2517  * Sync passes.
2518  *
2519  * Note that we ignore the tranasction mtid we got above.  Instead,
2520  * each vfsync below will ultimately get its own via TRANS_BUFCACHE
2521  * transactions.
2522  *
2523  * WARNING! The frontend might be waiting on chnmem (limit_dirty_chains)
2524  * while holding a vnode locked.  When this situation occurs we cannot
2525  * safely test whether it is ok to clear the dirty bit on the vnode.
2526  * However, we can still flush the inode's topology.
2527  */
2528 static int
2529 hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
2530 {
2531 	struct hammer2_sync_info *info = data;
2532 	hammer2_inode_t *ip;
2533 	int error;
2534 
2535 	/*
2536 	 * Degenerate cases.  Note that ip == NULL typically means the
2537 	 * syncer vnode itself and we don't want to vclrisdirty() in that
2538 	 * situation.
2539 	 */
2540 	ip = VTOI(vp);
2541 	if (ip == NULL) {
2542 		return(0);
2543 	}
2544 	if (vp->v_type == VNON || vp->v_type == VBAD) {
2545 		vclrisdirty(vp);
2546 		return(0);
2547 	}
2548 
2549 	/*
2550 	 * Synchronize the buffer cche and inode meta-data to the backing
2551 	 * chain topology.
2552 	 *
2553 	 * vfsync is not necessarily synchronous, so it is best NOT to try
2554 	 * to flush the backing topology to media at this point.
2555 	 */
2556 	hammer2_inode_ref(ip);
2557 	if ((ip->flags & (HAMMER2_INODE_RESIZED|HAMMER2_INODE_MODIFIED)) ||
2558 	    !RB_EMPTY(&vp->v_rbdirty_tree)) {
2559 		if (info->pass == 1)
2560 			vfsync(vp, info->waitfor, 1, NULL, NULL);
2561 		else
2562 			bio_track_wait(&vp->v_track_write, 0, 0);
2563 	}
2564 	if (info->pass == 2 && (vp->v_flag & VISDIRTY)) {
2565 		/*
2566 		 * v_token is needed to interlock v_rbdirty_tree.
2567 		 */
2568 		lwkt_gettoken(&vp->v_token);
2569 		hammer2_inode_lock(ip, 0);
2570 		hammer2_inode_chain_sync(ip);
2571 		hammer2_inode_chain_flush(ip);
2572 		if ((ip->flags & (HAMMER2_INODE_MODIFIED |
2573 				  HAMMER2_INODE_RESIZED |
2574 				  HAMMER2_INODE_DIRTYDATA)) == 0 &&
2575 		    RB_EMPTY(&vp->v_rbdirty_tree) &&
2576 		    !bio_track_active(&vp->v_track_write)) {
2577 			vclrisdirty(vp);
2578 		}
2579 		hammer2_inode_unlock(ip);
2580 		lwkt_reltoken(&vp->v_token);
2581 	}
2582 	hammer2_inode_drop(ip);
2583 #if 1
2584 	error = 0;
2585 	if (error)
2586 		info->error = error;
2587 #endif
2588 	return(0);
2589 }
2590 
2591 static
2592 int
2593 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2594 {
2595 	hammer2_inode_t *ip;
2596 
2597 	KKASSERT(MAXFIDSZ >= 16);
2598 	ip = VTOI(vp);
2599 	fhp->fid_len = offsetof(struct fid, fid_data[16]);
2600 	fhp->fid_ext = 0;
2601 	((hammer2_tid_t *)fhp->fid_data)[0] = ip->meta.inum;
2602 	((hammer2_tid_t *)fhp->fid_data)[1] = 0;
2603 
2604 	return 0;
2605 }
2606 
2607 static
2608 int
2609 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2610 	       struct fid *fhp, struct vnode **vpp)
2611 {
2612 	hammer2_pfs_t *pmp;
2613 	hammer2_tid_t inum;
2614 	int error;
2615 
2616 	pmp = MPTOPMP(mp);
2617 	inum = ((hammer2_tid_t *)fhp->fid_data)[0] & HAMMER2_DIRHASH_USERMSK;
2618 	if (vpp) {
2619 		if (inum == 1)
2620 			error = hammer2_vfs_root(mp, vpp);
2621 		else
2622 			error = hammer2_vfs_vget(mp, NULL, inum, vpp);
2623 	} else {
2624 		error = 0;
2625 	}
2626 	if (error)
2627 		kprintf("fhtovp: %016jx -> %p, %d\n", inum, *vpp, error);
2628 	return error;
2629 }
2630 
2631 static
2632 int
2633 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2634 		 int *exflagsp, struct ucred **credanonp)
2635 {
2636 	hammer2_pfs_t *pmp;
2637 	struct netcred *np;
2638 	int error;
2639 
2640 	pmp = MPTOPMP(mp);
2641 	np = vfs_export_lookup(mp, &pmp->export, nam);
2642 	if (np) {
2643 		*exflagsp = np->netc_exflags;
2644 		*credanonp = &np->netc_anon;
2645 		error = 0;
2646 	} else {
2647 		error = EACCES;
2648 	}
2649 	return error;
2650 }
2651 
2652 /*
2653  * Support code for hammer2_vfs_mount().  Read, verify, and install the volume
2654  * header into the HMP
2655  *
2656  * XXX read four volhdrs and use the one with the highest TID whos CRC
2657  *     matches.
2658  *
2659  * XXX check iCRCs.
2660  *
2661  * XXX For filesystems w/ less than 4 volhdrs, make sure to not write to
2662  *     nonexistant locations.
2663  *
2664  * XXX Record selected volhdr and ring updates to each of 4 volhdrs
2665  */
2666 static
2667 int
2668 hammer2_install_volume_header(hammer2_dev_t *hmp)
2669 {
2670 	hammer2_volume_data_t *vd;
2671 	struct buf *bp;
2672 	hammer2_crc32_t crc0, crc, bcrc0, bcrc;
2673 	int error_reported;
2674 	int error;
2675 	int valid;
2676 	int i;
2677 
2678 	error_reported = 0;
2679 	error = 0;
2680 	valid = 0;
2681 	bp = NULL;
2682 
2683 	/*
2684 	 * There are up to 4 copies of the volume header (syncs iterate
2685 	 * between them so there is no single master).  We don't trust the
2686 	 * volu_size field so we don't know precisely how large the filesystem
2687 	 * is, so depend on the OS to return an error if we go beyond the
2688 	 * block device's EOF.
2689 	 */
2690 	for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) {
2691 		error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2692 			      HAMMER2_VOLUME_BYTES, &bp);
2693 		if (error) {
2694 			brelse(bp);
2695 			bp = NULL;
2696 			continue;
2697 		}
2698 
2699 		vd = (struct hammer2_volume_data *) bp->b_data;
2700 		if ((vd->magic != HAMMER2_VOLUME_ID_HBO) &&
2701 		    (vd->magic != HAMMER2_VOLUME_ID_ABO)) {
2702 			brelse(bp);
2703 			bp = NULL;
2704 			continue;
2705 		}
2706 
2707 		if (vd->magic == HAMMER2_VOLUME_ID_ABO) {
2708 			/* XXX: Reversed-endianness filesystem */
2709 			kprintf("hammer2: reverse-endian filesystem detected");
2710 			brelse(bp);
2711 			bp = NULL;
2712 			continue;
2713 		}
2714 
2715 		crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0];
2716 		crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF,
2717 				      HAMMER2_VOLUME_ICRC0_SIZE);
2718 		bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1];
2719 		bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF,
2720 				       HAMMER2_VOLUME_ICRC1_SIZE);
2721 		if ((crc0 != crc) || (bcrc0 != bcrc)) {
2722 			kprintf("hammer2 volume header crc "
2723 				"mismatch copy #%d %08x/%08x\n",
2724 				i, crc0, crc);
2725 			error_reported = 1;
2726 			brelse(bp);
2727 			bp = NULL;
2728 			continue;
2729 		}
2730 		if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) {
2731 			valid = 1;
2732 			hmp->voldata = *vd;
2733 			hmp->volhdrno = i;
2734 		}
2735 		brelse(bp);
2736 		bp = NULL;
2737 	}
2738 	if (valid) {
2739 		hmp->volsync = hmp->voldata;
2740 		hmp->free_reserved = hmp->voldata.allocator_size / 20;
2741 		error = 0;
2742 		if (error_reported || bootverbose || 1) { /* 1/DEBUG */
2743 			kprintf("hammer2: using volume header #%d\n",
2744 				hmp->volhdrno);
2745 		}
2746 	} else {
2747 		error = EINVAL;
2748 		kprintf("hammer2: no valid volume headers found!\n");
2749 	}
2750 	return (error);
2751 }
2752 
2753 /*
2754  * This handles hysteresis on regular file flushes.  Because the BIOs are
2755  * routed to a thread it is possible for an excessive number to build up
2756  * and cause long front-end stalls long before the runningbuffspace limit
2757  * is hit, so we implement hammer2_flush_pipe to control the
2758  * hysteresis.
2759  *
2760  * This is a particular problem when compression is used.
2761  */
2762 void
2763 hammer2_lwinprog_ref(hammer2_pfs_t *pmp)
2764 {
2765 	atomic_add_int(&pmp->count_lwinprog, 1);
2766 }
2767 
2768 void
2769 hammer2_lwinprog_drop(hammer2_pfs_t *pmp)
2770 {
2771 	int lwinprog;
2772 
2773 	lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
2774 	if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
2775 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
2776 		atomic_clear_int(&pmp->count_lwinprog,
2777 				 HAMMER2_LWINPROG_WAITING);
2778 		wakeup(&pmp->count_lwinprog);
2779 	}
2780 	if ((lwinprog & HAMMER2_LWINPROG_WAITING0) &&
2781 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= 0) {
2782 		atomic_clear_int(&pmp->count_lwinprog,
2783 				 HAMMER2_LWINPROG_WAITING0);
2784 		wakeup(&pmp->count_lwinprog);
2785 	}
2786 }
2787 
2788 void
2789 hammer2_lwinprog_wait(hammer2_pfs_t *pmp, int flush_pipe)
2790 {
2791 	int lwinprog;
2792 	int lwflag = (flush_pipe) ? HAMMER2_LWINPROG_WAITING :
2793 				    HAMMER2_LWINPROG_WAITING0;
2794 
2795 	for (;;) {
2796 		lwinprog = pmp->count_lwinprog;
2797 		cpu_ccfence();
2798 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2799 			break;
2800 		tsleep_interlock(&pmp->count_lwinprog, 0);
2801 		atomic_set_int(&pmp->count_lwinprog, lwflag);
2802 		lwinprog = pmp->count_lwinprog;
2803 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2804 			break;
2805 		tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
2806 	}
2807 }
2808 
2809 /*
2810  * Attempt to proactively fsync dirty vnodes if we have too many.  This
2811  * solves an issue where the kernel syncer thread can get seriously behind
2812  * when multiple user processes/threads are furiously modifying inodes.
2813  * This situation can occur on slow storage and is only limited by
2814  * kern.maxvnodes without the moderation code below.  It is made worse
2815  * when the device buffers underlying the modified inodes (which are clean)
2816  * get evicted before the flush can occur, forcing a re-read.
2817  *
2818  * We do not want sysads to feel that they have to torpedo kern.maxvnodes
2819  * to solve this problem, so we implement vfs.hammer2.limit_dirty_inodes
2820  * (per-mount-basis) and default it to something reasonable.
2821  */
2822 static void
2823 hammer2_pfs_moderate(hammer2_inode_t *ip, int always_moderate)
2824 {
2825 	hammer2_pfs_t *pmp = ip->pmp;
2826 	struct mount *mp = pmp->mp;
2827 
2828 	if (mp && vn_syncer_count(mp) > hammer2_limit_dirty_inodes) {
2829 		vn_syncer_one(mp);
2830 	}
2831 }
2832 
2833 /*
2834  * Manage excessive memory resource use for chain and related
2835  * structures.
2836  *
2837  * Called without any inode locks or transaction locks.  VNodes
2838  * might be locked by the kernel in the call stack.
2839  */
2840 void
2841 hammer2_pfs_memory_wait(hammer2_inode_t *ip, int always_moderate)
2842 {
2843 	hammer2_pfs_t *pmp = ip->pmp;
2844 	uint32_t waiting;
2845 	uint32_t count;
2846 	uint32_t limit;
2847 #if 0
2848 	static int zzticks;
2849 #endif
2850 
2851 	/*
2852 	 * Moderate the number of dirty inodes
2853 	 */
2854 	hammer2_pfs_moderate(ip, always_moderate);
2855 
2856 	/*
2857 	 * Atomic check condition and wait.  Also do an early speedup of
2858 	 * the syncer to try to avoid hitting the wait.
2859 	 */
2860 	for (;;) {
2861 		waiting = pmp->inmem_dirty_chains;
2862 		cpu_ccfence();
2863 		count = waiting & HAMMER2_DIRTYCHAIN_MASK;
2864 
2865 		limit = pmp->mp->mnt_nvnodelistsize / 10;
2866 		if (limit < hammer2_limit_dirty_chains)
2867 			limit = hammer2_limit_dirty_chains;
2868 		if (limit < 1000)
2869 			limit = 1000;
2870 
2871 #if 0
2872 		if ((int)(ticks - zzticks) > hz) {
2873 			zzticks = ticks;
2874 			kprintf("count %ld %ld\n", count, limit);
2875 		}
2876 #endif
2877 
2878 		/*
2879 		 * Block if there are too many dirty chains present, wait
2880 		 * for the flush to clean some out.
2881 		 */
2882 		if (count > limit) {
2883 			hammer2_pfs_moderate(ip, always_moderate);
2884 			tsleep_interlock(&pmp->inmem_dirty_chains, 0);
2885 			if (atomic_cmpset_int(&pmp->inmem_dirty_chains,
2886 					       waiting,
2887 				       waiting | HAMMER2_DIRTYCHAIN_WAITING)) {
2888 				if (ticks != pmp->speedup_ticks) {
2889 					pmp->speedup_ticks = ticks;
2890 					speedup_syncer(pmp->mp);
2891 				}
2892 				tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED,
2893 				       "chnmem", hz);
2894 			}
2895 			continue;	/* loop on success or fail */
2896 		}
2897 
2898 		/*
2899 		 * Try to start an early flush before we are forced to block.
2900 		 */
2901 		if (count > limit * 5 / 10 &&
2902 		    ticks != pmp->speedup_ticks) {
2903 			pmp->speedup_ticks = ticks;
2904 			speedup_syncer(pmp->mp);
2905 		}
2906 		break;
2907 	}
2908 }
2909 
2910 void
2911 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp)
2912 {
2913 	if (pmp) {
2914 		atomic_add_int(&pmp->inmem_dirty_chains, 1);
2915 	}
2916 }
2917 
2918 void
2919 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp)
2920 {
2921 	uint32_t waiting;
2922 
2923 	if (pmp) {
2924 		waiting = atomic_fetchadd_int(&pmp->inmem_dirty_chains, -1);
2925 		/* don't need --waiting to test flag */
2926 		if (waiting & HAMMER2_DIRTYCHAIN_WAITING) {
2927 			atomic_clear_int(&pmp->inmem_dirty_chains,
2928 					 HAMMER2_DIRTYCHAIN_WAITING);
2929 			wakeup(&pmp->inmem_dirty_chains);
2930 		}
2931 	}
2932 }
2933 
2934 /*
2935  * Returns 0 if the filesystem has tons of free space
2936  * Returns 1 if the filesystem has less than 10% remaining
2937  * Returns 2 if the filesystem has less than 2%/5% (user/root) remaining.
2938  */
2939 int
2940 hammer2_vfs_enospace(hammer2_inode_t *ip, off_t bytes, struct ucred *cred)
2941 {
2942 	hammer2_pfs_t *pmp;
2943 	hammer2_dev_t *hmp;
2944 	hammer2_off_t free_reserved;
2945 	hammer2_off_t free_nominal;
2946 	int i;
2947 
2948 	pmp = ip->pmp;
2949 
2950 	if (pmp->free_ticks == 0 || pmp->free_ticks != ticks) {
2951 		free_reserved = HAMMER2_SEGSIZE;
2952 		free_nominal = 0x7FFFFFFFFFFFFFFFLLU;
2953 		for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2954 			hmp = pmp->pfs_hmps[i];
2955 			if (hmp == NULL)
2956 				continue;
2957 			if (pmp->pfs_types[i] != HAMMER2_PFSTYPE_MASTER &&
2958 			    pmp->pfs_types[i] != HAMMER2_PFSTYPE_SOFT_MASTER)
2959 				continue;
2960 
2961 			if (free_nominal > hmp->voldata.allocator_free)
2962 				free_nominal = hmp->voldata.allocator_free;
2963 			if (free_reserved < hmp->free_reserved)
2964 				free_reserved = hmp->free_reserved;
2965 		}
2966 
2967 		/*
2968 		 * SMP races ok
2969 		 */
2970 		pmp->free_reserved = free_reserved;
2971 		pmp->free_nominal = free_nominal;
2972 		pmp->free_ticks = ticks;
2973 	} else {
2974 		free_reserved = pmp->free_reserved;
2975 		free_nominal = pmp->free_nominal;
2976 	}
2977 	if (cred && cred->cr_uid != 0) {
2978 		if ((int64_t)(free_nominal - bytes) <
2979 		    (int64_t)free_reserved) {
2980 			return 2;
2981 		}
2982 	} else {
2983 		if ((int64_t)(free_nominal - bytes) <
2984 		    (int64_t)free_reserved / 2) {
2985 			return 2;
2986 		}
2987 	}
2988 	if ((int64_t)(free_nominal - bytes) < (int64_t)free_reserved * 2)
2989 		return 1;
2990 	return 0;
2991 }
2992 
2993 /*
2994  * Debugging
2995  */
2996 void
2997 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int *countp, char pfx,
2998 		   u_int flags)
2999 {
3000 	hammer2_chain_t *scan;
3001 	hammer2_chain_t *parent;
3002 
3003 	--*countp;
3004 	if (*countp == 0) {
3005 		kprintf("%*.*s...\n", tab, tab, "");
3006 		return;
3007 	}
3008 	if (*countp < 0)
3009 		return;
3010 	kprintf("%*.*s%c-chain %p.%d %016jx/%d mir=%016jx\n",
3011 		tab, tab, "", pfx,
3012 		chain, chain->bref.type,
3013 		chain->bref.key, chain->bref.keybits,
3014 		chain->bref.mirror_tid);
3015 
3016 	kprintf("%*.*s      [%08x] (%s) refs=%d",
3017 		tab, tab, "",
3018 		chain->flags,
3019 		((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
3020 		chain->data) ?  (char *)chain->data->ipdata.filename : "?"),
3021 		chain->refs);
3022 
3023 	parent = chain->parent;
3024 	if (parent)
3025 		kprintf("\n%*.*s      p=%p [pflags %08x prefs %d",
3026 			tab, tab, "",
3027 			parent, parent->flags, parent->refs);
3028 	if (RB_EMPTY(&chain->core.rbtree)) {
3029 		kprintf("\n");
3030 	} else {
3031 		kprintf(" {\n");
3032 		RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree) {
3033 			if ((scan->flags & flags) || flags == (u_int)-1) {
3034 				hammer2_dump_chain(scan, tab + 4, countp, 'a',
3035 						   flags);
3036 			}
3037 		}
3038 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
3039 			kprintf("%*.*s}(%s)\n", tab, tab, "",
3040 				chain->data->ipdata.filename);
3041 		else
3042 			kprintf("%*.*s}\n", tab, tab, "");
3043 	}
3044 }
3045