xref: /dragonfly/sys/vfs/hammer2/hammer2_vfsops.c (revision b0d289c2)
1 /*
2  * Copyright (c) 2011-2015 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/buf.h>
43 #include <sys/uuid.h>
44 #include <sys/vfsops.h>
45 #include <sys/sysctl.h>
46 #include <sys/socket.h>
47 #include <sys/objcache.h>
48 
49 #include <sys/proc.h>
50 #include <sys/namei.h>
51 #include <sys/mountctl.h>
52 #include <sys/dirent.h>
53 #include <sys/uio.h>
54 
55 #include <sys/mutex.h>
56 #include <sys/mutex2.h>
57 
58 #include "hammer2.h"
59 #include "hammer2_disk.h"
60 #include "hammer2_mount.h"
61 #include "hammer2_lz4.h"
62 
63 #include "zlib/hammer2_zlib.h"
64 
65 #define REPORT_REFS_ERRORS 1	/* XXX remove me */
66 
67 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache");
68 
69 struct hammer2_sync_info {
70 	hammer2_trans_t trans;
71 	int error;
72 	int waitfor;
73 };
74 
75 TAILQ_HEAD(hammer2_mntlist, hammer2_dev);
76 TAILQ_HEAD(hammer2_pfslist, hammer2_pfs);
77 static struct hammer2_mntlist hammer2_mntlist;
78 static struct hammer2_pfslist hammer2_pfslist;
79 static struct lock hammer2_mntlk;
80 
81 int hammer2_debug;
82 int hammer2_cluster_enable = 1;
83 int hammer2_hardlink_enable = 1;
84 int hammer2_flush_pipe = 100;
85 int hammer2_synchronous_flush = 1;
86 int hammer2_dio_count;
87 long hammer2_limit_dirty_chains;
88 long hammer2_iod_file_read;
89 long hammer2_iod_meta_read;
90 long hammer2_iod_indr_read;
91 long hammer2_iod_fmap_read;
92 long hammer2_iod_volu_read;
93 long hammer2_iod_file_write;
94 long hammer2_iod_meta_write;
95 long hammer2_iod_indr_write;
96 long hammer2_iod_fmap_write;
97 long hammer2_iod_volu_write;
98 long hammer2_ioa_file_read;
99 long hammer2_ioa_meta_read;
100 long hammer2_ioa_indr_read;
101 long hammer2_ioa_fmap_read;
102 long hammer2_ioa_volu_read;
103 long hammer2_ioa_fmap_write;
104 long hammer2_ioa_file_write;
105 long hammer2_ioa_meta_write;
106 long hammer2_ioa_indr_write;
107 long hammer2_ioa_volu_write;
108 
109 MALLOC_DECLARE(C_BUFFER);
110 MALLOC_DEFINE(C_BUFFER, "compbuffer", "Buffer used for compression.");
111 
112 MALLOC_DECLARE(D_BUFFER);
113 MALLOC_DEFINE(D_BUFFER, "decompbuffer", "Buffer used for decompression.");
114 
115 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
116 
117 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
118 	   &hammer2_debug, 0, "");
119 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_enable, CTLFLAG_RW,
120 	   &hammer2_cluster_enable, 0, "");
121 SYSCTL_INT(_vfs_hammer2, OID_AUTO, hardlink_enable, CTLFLAG_RW,
122 	   &hammer2_hardlink_enable, 0, "");
123 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
124 	   &hammer2_flush_pipe, 0, "");
125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, synchronous_flush, CTLFLAG_RW,
126 	   &hammer2_synchronous_flush, 0, "");
127 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
128 	   &hammer2_limit_dirty_chains, 0, "");
129 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
130 	   &hammer2_dio_count, 0, "");
131 
132 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
133 	   &hammer2_iod_file_read, 0, "");
134 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
135 	   &hammer2_iod_meta_read, 0, "");
136 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
137 	   &hammer2_iod_indr_read, 0, "");
138 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
139 	   &hammer2_iod_fmap_read, 0, "");
140 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
141 	   &hammer2_iod_volu_read, 0, "");
142 
143 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
144 	   &hammer2_iod_file_write, 0, "");
145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
146 	   &hammer2_iod_meta_write, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
148 	   &hammer2_iod_indr_write, 0, "");
149 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
150 	   &hammer2_iod_fmap_write, 0, "");
151 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
152 	   &hammer2_iod_volu_write, 0, "");
153 
154 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_read, CTLFLAG_RW,
155 	   &hammer2_ioa_file_read, 0, "");
156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_read, CTLFLAG_RW,
157 	   &hammer2_ioa_meta_read, 0, "");
158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_read, CTLFLAG_RW,
159 	   &hammer2_ioa_indr_read, 0, "");
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_read, CTLFLAG_RW,
161 	   &hammer2_ioa_fmap_read, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_read, CTLFLAG_RW,
163 	   &hammer2_ioa_volu_read, 0, "");
164 
165 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_write, CTLFLAG_RW,
166 	   &hammer2_ioa_file_write, 0, "");
167 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_write, CTLFLAG_RW,
168 	   &hammer2_ioa_meta_write, 0, "");
169 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_write, CTLFLAG_RW,
170 	   &hammer2_ioa_indr_write, 0, "");
171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_write, CTLFLAG_RW,
172 	   &hammer2_ioa_fmap_write, 0, "");
173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_write, CTLFLAG_RW,
174 	   &hammer2_ioa_volu_write, 0, "");
175 
176 static int hammer2_vfs_init(struct vfsconf *conf);
177 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
178 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
179 				struct ucred *cred);
180 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *,
181 				struct vnode *, struct ucred *);
182 static int hammer2_recovery(hammer2_dev_t *hmp);
183 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
184 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
185 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
186 				struct ucred *cred);
187 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
188 				struct ucred *cred);
189 static int hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
190 				ino_t ino, struct vnode **vpp);
191 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
192 				struct fid *fhp, struct vnode **vpp);
193 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
194 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
195 				int *exflagsp, struct ucred **credanonp);
196 
197 static int hammer2_install_volume_header(hammer2_dev_t *hmp);
198 static int hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
199 
200 static void hammer2_update_pmps(hammer2_dev_t *hmp);
201 static void hammer2_write_thread(void *arg);
202 
203 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp);
204 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp,
205 				hammer2_dev_t *hmp);
206 
207 /*
208  * Functions for compression in threads,
209  * from hammer2_vnops.c
210  */
211 static void hammer2_write_file_core(struct buf *bp, hammer2_trans_t *trans,
212 				hammer2_inode_t *ip,
213 				const hammer2_inode_data_t *ripdata,
214 				hammer2_cluster_t *cparent,
215 				hammer2_key_t lbase, int ioflag, int pblksize,
216 				int *errorp);
217 static void hammer2_compress_and_write(struct buf *bp, hammer2_trans_t *trans,
218 				hammer2_inode_t *ip,
219 				const hammer2_inode_data_t *ripdata,
220 				hammer2_cluster_t *cparent,
221 				hammer2_key_t lbase, int ioflag,
222 				int pblksize, int *errorp,
223 				int comp_algo, int check_algo);
224 static void hammer2_zero_check_and_write(struct buf *bp,
225 				hammer2_trans_t *trans, hammer2_inode_t *ip,
226 				const hammer2_inode_data_t *ripdata,
227 				hammer2_cluster_t *cparent,
228 				hammer2_key_t lbase,
229 				int ioflag, int pblksize, int *errorp,
230 				int check_algo);
231 static int test_block_zeros(const char *buf, size_t bytes);
232 static void zero_write(struct buf *bp, hammer2_trans_t *trans,
233 				hammer2_inode_t *ip,
234 				const hammer2_inode_data_t *ripdata,
235 				hammer2_cluster_t *cparent,
236 				hammer2_key_t lbase,
237 				int *errorp);
238 static void hammer2_write_bp(hammer2_cluster_t *cluster, struct buf *bp,
239 				int ioflag, int pblksize, int *errorp,
240 				int check_algo);
241 
242 /*
243  * HAMMER2 vfs operations.
244  */
245 static struct vfsops hammer2_vfsops = {
246 	.vfs_init	= hammer2_vfs_init,
247 	.vfs_uninit	= hammer2_vfs_uninit,
248 	.vfs_sync	= hammer2_vfs_sync,
249 	.vfs_mount	= hammer2_vfs_mount,
250 	.vfs_unmount	= hammer2_vfs_unmount,
251 	.vfs_root 	= hammer2_vfs_root,
252 	.vfs_statfs	= hammer2_vfs_statfs,
253 	.vfs_statvfs	= hammer2_vfs_statvfs,
254 	.vfs_vget	= hammer2_vfs_vget,
255 	.vfs_vptofh	= hammer2_vfs_vptofh,
256 	.vfs_fhtovp	= hammer2_vfs_fhtovp,
257 	.vfs_checkexp	= hammer2_vfs_checkexp
258 };
259 
260 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
261 
262 VFS_SET(hammer2_vfsops, hammer2, 0);
263 MODULE_VERSION(hammer2, 1);
264 
265 static
266 int
267 hammer2_vfs_init(struct vfsconf *conf)
268 {
269 	static struct objcache_malloc_args margs_read;
270 	static struct objcache_malloc_args margs_write;
271 
272 	int error;
273 
274 	error = 0;
275 
276 	if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
277 		error = EINVAL;
278 	if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
279 		error = EINVAL;
280 	if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
281 		error = EINVAL;
282 
283 	if (error)
284 		kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
285 
286 	margs_read.objsize = 65536;
287 	margs_read.mtype = D_BUFFER;
288 
289 	margs_write.objsize = 32768;
290 	margs_write.mtype = C_BUFFER;
291 
292 	cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
293 				0, 1, NULL, NULL, NULL, objcache_malloc_alloc,
294 				objcache_malloc_free, &margs_read);
295 	cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
296 				0, 1, NULL, NULL, NULL, objcache_malloc_alloc,
297 				objcache_malloc_free, &margs_write);
298 
299 	lockinit(&hammer2_mntlk, "mntlk", 0, 0);
300 	TAILQ_INIT(&hammer2_mntlist);
301 	TAILQ_INIT(&hammer2_pfslist);
302 
303 	hammer2_limit_dirty_chains = desiredvnodes / 10;
304 
305 	return (error);
306 }
307 
308 static
309 int
310 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
311 {
312 	objcache_destroy(cache_buffer_read);
313 	objcache_destroy(cache_buffer_write);
314 	return 0;
315 }
316 
317 /*
318  * Core PFS allocator.  Used to allocate the pmp structure for PFS cluster
319  * mounts and the spmp structure for media (hmp) structures.
320  *
321  * pmp->modify_tid tracks new modify_tid transaction ids for front-end
322  * transactions.  Note that synchronization does not use this field.
323  * (typically frontend operations and synchronization cannot run on the
324  * same PFS node at the same time).
325  *
326  * XXX check locking
327  */
328 hammer2_pfs_t *
329 hammer2_pfsalloc(hammer2_cluster_t *cluster,
330 		 const hammer2_inode_data_t *ripdata,
331 		 hammer2_tid_t modify_tid)
332 {
333 	hammer2_chain_t *rchain;
334 	hammer2_inode_t *iroot;
335 	hammer2_pfs_t *pmp;
336 	int count;
337 	int i;
338 	int j;
339 
340 	/*
341 	 * Locate or create the PFS based on the cluster id.  If ripdata
342 	 * is NULL this is a spmp which is unique and is always allocated.
343 	 */
344 	if (ripdata) {
345 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
346 			if (bcmp(&pmp->pfs_clid, &ripdata->pfs_clid,
347 				 sizeof(pmp->pfs_clid)) == 0) {
348 					break;
349 			}
350 		}
351 	} else {
352 		pmp = NULL;
353 	}
354 
355 	if (pmp == NULL) {
356 		pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
357 		hammer2_trans_manage_init(&pmp->tmanage);
358 		kmalloc_create(&pmp->minode, "HAMMER2-inodes");
359 		kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg");
360 		lockinit(&pmp->lock, "pfslk", 0, 0);
361 		spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
362 		RB_INIT(&pmp->inum_tree);
363 		TAILQ_INIT(&pmp->unlinkq);
364 		spin_init(&pmp->list_spin, "hm2pfsalloc_list");
365 
366 		/*
367 		 * Save the last media transaction id for the flusher.  Set
368 		 * initial
369 		 */
370 		if (ripdata)
371 			pmp->pfs_clid = ripdata->pfs_clid;
372 		hammer2_mtx_init(&pmp->wthread_mtx, "h2wthr");
373 		bioq_init(&pmp->wthread_bioq);
374 		TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
375 
376 		/*
377 		 * The synchronization thread may start too early, make
378 		 * sure it stays frozen until we are ready to let it go.
379 		 * XXX
380 		 */
381 		/*
382 		pmp->primary_thr.flags = HAMMER2_SYNCTHR_FROZEN |
383 					 HAMMER2_SYNCTHR_REMASTER;
384 		*/
385 	}
386 
387 	/*
388 	 * Create the PFS's root inode.
389 	 */
390 	if ((iroot = pmp->iroot) == NULL) {
391 		iroot = hammer2_inode_get(pmp, NULL, NULL);
392 		pmp->iroot = iroot;
393 		hammer2_inode_ref(iroot);
394 		hammer2_inode_unlock(iroot, NULL);
395 	}
396 
397 	/*
398 	 * Stop here if no cluster is passed in.
399 	 */
400 	if (cluster == NULL)
401 		goto done;
402 
403 	/*
404 	 * When a cluster is passed in we must add the cluster's chains
405 	 * to the PFS's root inode, update pmp->pfs_types[], and update
406 	 * the syncronization threads.
407 	 *
408 	 * At the moment empty spots can develop due to removals or failures.
409 	 * Ultimately we want to re-fill these spots but doing so might
410 	 * confused running code. XXX
411 	 */
412 	hammer2_inode_ref(iroot);
413 	hammer2_mtx_ex(&iroot->lock);
414 	j = iroot->cluster.nchains;
415 
416 	kprintf("add PFS to pmp %p[%d]\n", pmp, j);
417 
418 	for (i = 0; i < cluster->nchains; ++i) {
419 		if (j == HAMMER2_MAXCLUSTER)
420 			break;
421 		rchain = cluster->array[i].chain;
422 		KKASSERT(rchain->pmp == NULL);
423 		rchain->pmp = pmp;
424 		hammer2_chain_ref(rchain);
425 		iroot->cluster.array[j].chain = rchain;
426 		pmp->pfs_types[j] = ripdata->pfs_type;
427 		pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2);
428 
429 		/*
430 		 * If the PFS is already mounted we must account
431 		 * for the mount_count here.
432 		 */
433 		if (pmp->mp)
434 			++rchain->hmp->mount_count;
435 
436 		/*
437 		 * May have to fixup dirty chain tracking.  Previous
438 		 * pmp was NULL so nothing to undo.
439 		 */
440 		if (rchain->flags & HAMMER2_CHAIN_MODIFIED)
441 			hammer2_pfs_memory_inc(pmp);
442 		++j;
443 	}
444 	iroot->cluster.nchains = j;
445 
446 	if (i != cluster->nchains) {
447 		kprintf("hammer2_mount: cluster full!\n");
448 		/* XXX fatal error? */
449 	}
450 
451 	/*
452 	 * Update nmasters from any PFS inode which is part of the cluster.
453 	 * It is possible that this will result in a value which is too
454 	 * high.  MASTER PFSs are authoritative for pfs_nmasters and will
455 	 * override this value later on.
456 	 *
457 	 * (This informs us of masters that might not currently be
458 	 *  discoverable by this mount).
459 	 */
460 	if (ripdata && pmp->pfs_nmasters < ripdata->pfs_nmasters) {
461 		pmp->pfs_nmasters = ripdata->pfs_nmasters;
462 	}
463 
464 	/*
465 	 * Count visible masters.  Masters are usually added with
466 	 * ripdata->pfs_nmasters set to 1.  This detects when there
467 	 * are more (XXX and must update the master inodes).
468 	 */
469 	count = 0;
470 	for (i = 0; i < iroot->cluster.nchains; ++i) {
471 		if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)
472 			++count;
473 	}
474 	if (pmp->pfs_nmasters < count)
475 		pmp->pfs_nmasters = count;
476 
477 	/*
478 	 * Create missing synchronization threads.
479 	 *
480 	 * Single-node masters (including snapshots) have nothing to
481 	 * synchronize and do not require this thread.
482 	 *
483 	 * Multi-node masters or any number of soft masters, slaves, copy,
484 	 * or other PFS types need the thread.
485 	 *
486 	 * Each thread is responsible for its particular cluster index.
487 	 * We use independent threads so stalls or mismatches related to
488 	 * any given target do not affect other targets.
489 	 */
490 	for (i = 0; i < iroot->cluster.nchains; ++i) {
491 		if (pmp->sync_thrs[i].td)
492 			continue;
493 		if ((pmp->pfs_nmasters > 1 &&
494 		     (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)) ||
495 		    pmp->pfs_types[i] != HAMMER2_PFSTYPE_MASTER) {
496 			hammer2_syncthr_create(&pmp->sync_thrs[i], pmp, i,
497 					       hammer2_syncthr_primary);
498 		}
499 	}
500 
501 	hammer2_mtx_unlock(&iroot->lock);
502 	hammer2_inode_drop(iroot);
503 done:
504 	return pmp;
505 }
506 
507 /*
508  * Destroy a PFS, typically only occurs after the last mount on a device
509  * has gone away.
510  */
511 static void
512 hammer2_pfsfree(hammer2_pfs_t *pmp)
513 {
514 	hammer2_inode_t *iroot;
515 	int i;
516 
517 	/*
518 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
519 	 * by the flush code.
520 	 */
521 	TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
522 
523 	iroot = pmp->iroot;
524 	if (iroot) {
525 		for (i = 0; i < iroot->cluster.nchains; ++i)
526 			hammer2_syncthr_delete(&pmp->sync_thrs[i]);
527 #if REPORT_REFS_ERRORS
528 		if (pmp->iroot->refs != 1)
529 			kprintf("PMP->IROOT %p REFS WRONG %d\n",
530 				pmp->iroot, pmp->iroot->refs);
531 #else
532 		KKASSERT(pmp->iroot->refs == 1);
533 #endif
534 		/* ref for pmp->iroot */
535 		hammer2_inode_drop(pmp->iroot);
536 		pmp->iroot = NULL;
537 	}
538 
539 	kmalloc_destroy(&pmp->mmsg);
540 	kmalloc_destroy(&pmp->minode);
541 
542 	kfree(pmp, M_HAMMER2);
543 }
544 
545 /*
546  * Remove all references to hmp from the pfs list.  Any PFS which becomes
547  * empty is terminated and freed.
548  *
549  * XXX inefficient.
550  */
551 static void
552 hammer2_pfsfree_scan(hammer2_dev_t *hmp)
553 {
554 	hammer2_pfs_t *pmp;
555 	hammer2_inode_t *iroot;
556 	hammer2_cluster_t *cluster;
557 	hammer2_chain_t *rchain;
558 	int didfreeze;
559 	int i;
560 
561 again:
562 	TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
563 		if ((iroot = pmp->iroot) == NULL)
564 			continue;
565 		if (hmp->spmp == pmp) {
566 			kprintf("unmount hmp %p remove spmp %p\n",
567 				hmp, pmp);
568 			hmp->spmp = NULL;
569 		}
570 
571 		/*
572 		 * Determine if this PFS is affected.  If it is we must
573 		 * freeze all management threads and lock its iroot.
574 		 *
575 		 * Freezing a management thread forces it idle, operations
576 		 * in-progress will be aborted and it will have to start
577 		 * over again when unfrozen, or exit if told to exit.
578 		 */
579 		cluster = &iroot->cluster;
580 		for (i = 0; i < cluster->nchains; ++i) {
581 			rchain = cluster->array[i].chain;
582 			if (rchain == NULL || rchain->hmp != hmp)
583 				continue;
584 			break;
585 		}
586 		if (i != cluster->nchains) {
587 			/*
588 			 * Make sure all synchronization threads are locked
589 			 * down.
590 			 */
591 			for (i = 0; i < iroot->cluster.nchains; ++i)
592 				hammer2_syncthr_freeze(&pmp->sync_thrs[i]);
593 
594 			/*
595 			 * Lock the inode and clean out matching chains.
596 			 * Note that we cannot use hammer2_inode_lock_*()
597 			 * here because that would attempt to validate the
598 			 * cluster that we are in the middle of ripping
599 			 * apart.
600 			 *
601 			 * WARNING! We are working directly on the inodes
602 			 *	    embedded cluster.
603 			 */
604 			hammer2_mtx_ex(&iroot->lock);
605 
606 			/*
607 			 * Remove the chain from matching elements of the PFS.
608 			 */
609 			for (i = 0; i < cluster->nchains; ++i) {
610 				rchain = cluster->array[i].chain;
611 				if (rchain == NULL || rchain->hmp != hmp)
612 					continue;
613 				hammer2_syncthr_delete(&pmp->sync_thrs[i]);
614 				rchain = cluster->array[i].chain;
615 				cluster->array[i].chain = NULL;
616 				pmp->pfs_types[i] = 0;
617 				if (pmp->pfs_names[i]) {
618 					kfree(pmp->pfs_names[i], M_HAMMER2);
619 					pmp->pfs_names[i] = NULL;
620 				}
621 				hammer2_chain_drop(rchain);
622 
623 				/* focus hint */
624 				if (cluster->focus == rchain)
625 					cluster->focus = NULL;
626 			}
627 			hammer2_mtx_unlock(&iroot->lock);
628 			didfreeze = 1;	/* remaster, unfreeze down below */
629 		} else {
630 			didfreeze = 0;
631 		}
632 
633 		/*
634 		 * Cleanup trailing chains.  Do not reorder chains (for now).
635 		 * XXX might remove more than we intended.
636 		 */
637 		while (i > 0) {
638 			if (cluster->array[i - 1].chain)
639 				break;
640 			--i;
641 		}
642 		cluster->nchains = i;
643 
644 		/*
645 		 * If the PMP has no elements remaining we can destroy it.
646 		 * (this will transition management threads from frozen->exit).
647 		 */
648 		if (cluster->nchains == 0) {
649 			kprintf("unmount hmp %p last ref to PMP=%p\n",
650 				hmp, pmp);
651 			hammer2_pfsfree(pmp);
652 			goto again;
653 		}
654 
655 		/*
656 		 * If elements still remain we need to set the REMASTER
657 		 * flag and unfreeze it.
658 		 */
659 		if (didfreeze) {
660 			for (i = 0; i < iroot->cluster.nchains; ++i) {
661 				hammer2_syncthr_remaster(&pmp->sync_thrs[i]);
662 				hammer2_syncthr_unfreeze(&pmp->sync_thrs[i]);
663 			}
664 		}
665 	}
666 }
667 
668 /*
669  * Mount or remount HAMMER2 fileystem from physical media
670  *
671  *	mountroot
672  *		mp		mount point structure
673  *		path		NULL
674  *		data		<unused>
675  *		cred		<unused>
676  *
677  *	mount
678  *		mp		mount point structure
679  *		path		path to mount point
680  *		data		pointer to argument structure in user space
681  *			volume	volume path (device@LABEL form)
682  *			hflags	user mount flags
683  *		cred		user credentials
684  *
685  * RETURNS:	0	Success
686  *		!0	error number
687  */
688 static
689 int
690 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
691 		  struct ucred *cred)
692 {
693 	struct hammer2_mount_info info;
694 	hammer2_pfs_t *pmp;
695 	hammer2_pfs_t *spmp;
696 	hammer2_dev_t *hmp;
697 	hammer2_key_t key_next;
698 	hammer2_key_t key_dummy;
699 	hammer2_key_t lhc;
700 	struct vnode *devvp;
701 	struct nlookupdata nd;
702 	hammer2_chain_t *parent;
703 	hammer2_cluster_t *cluster;
704 	hammer2_cluster_t *cparent;
705 	const hammer2_inode_data_t *ripdata;
706 	hammer2_blockref_t bref;
707 	struct file *fp;
708 	char devstr[MNAMELEN];
709 	size_t size;
710 	size_t done;
711 	char *dev;
712 	char *label;
713 	int ronly = 1;
714 	int error;
715 	int cache_index;
716 	int i;
717 
718 	hmp = NULL;
719 	pmp = NULL;
720 	dev = NULL;
721 	label = NULL;
722 	devvp = NULL;
723 	cache_index = -1;
724 
725 	kprintf("hammer2_mount\n");
726 
727 	if (path == NULL) {
728 		/*
729 		 * Root mount
730 		 */
731 		bzero(&info, sizeof(info));
732 		info.cluster_fd = -1;
733 		return (EOPNOTSUPP);
734 	} else {
735 		/*
736 		 * Non-root mount or updating a mount
737 		 */
738 		error = copyin(data, &info, sizeof(info));
739 		if (error)
740 			return (error);
741 
742 		error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
743 		if (error)
744 			return (error);
745 
746 		/* Extract device and label */
747 		dev = devstr;
748 		label = strchr(devstr, '@');
749 		if (label == NULL ||
750 		    ((label + 1) - dev) > done) {
751 			return (EINVAL);
752 		}
753 		*label = '\0';
754 		label++;
755 		if (*label == '\0')
756 			return (EINVAL);
757 
758 		if (mp->mnt_flag & MNT_UPDATE) {
759 			/*
760 			 * Update mount.  Note that pmp->iroot->cluster is
761 			 * an inode-embedded cluster and thus cannot be
762 			 * directly locked.
763 			 *
764 			 * XXX HAMMER2 needs to implement NFS export via
765 			 *     mountctl.
766 			 */
767 			pmp = MPTOPMP(mp);
768 			cluster = &pmp->iroot->cluster;
769 			for (i = 0; i < cluster->nchains; ++i) {
770 				if (cluster->array[i].chain == NULL)
771 					continue;
772 				hmp = cluster->array[i].chain->hmp;
773 				devvp = hmp->devvp;
774 				error = hammer2_remount(hmp, mp, path,
775 							devvp, cred);
776 				if (error)
777 					break;
778 			}
779 			/*hammer2_inode_install_hidden(pmp);*/
780 
781 			return error;
782 		}
783 	}
784 
785 	/*
786 	 * HMP device mount
787 	 *
788 	 * Lookup name and verify it refers to a block device.
789 	 */
790 	error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW);
791 	if (error == 0)
792 		error = nlookup(&nd);
793 	if (error == 0)
794 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp);
795 	nlookup_done(&nd);
796 
797 	if (error == 0) {
798 		if (vn_isdisk(devvp, &error))
799 			error = vfs_mountedon(devvp);
800 	}
801 
802 	/*
803 	 * Determine if the device has already been mounted.  After this
804 	 * check hmp will be non-NULL if we are doing the second or more
805 	 * hammer2 mounts from the same device.
806 	 */
807 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
808 	TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
809 		if (hmp->devvp == devvp)
810 			break;
811 	}
812 
813 	/*
814 	 * Open the device if this isn't a secondary mount and construct
815 	 * the H2 device mount (hmp).
816 	 */
817 	if (hmp == NULL) {
818 		hammer2_chain_t *schain;
819 		hammer2_xid_t xid;
820 
821 		if (error == 0 && vcount(devvp) > 0)
822 			error = EBUSY;
823 
824 		/*
825 		 * Now open the device
826 		 */
827 		if (error == 0) {
828 			ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
829 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
830 			error = vinvalbuf(devvp, V_SAVE, 0, 0);
831 			if (error == 0) {
832 				error = VOP_OPEN(devvp,
833 						 ronly ? FREAD : FREAD | FWRITE,
834 						 FSCRED, NULL);
835 			}
836 			vn_unlock(devvp);
837 		}
838 		if (error && devvp) {
839 			vrele(devvp);
840 			devvp = NULL;
841 		}
842 		if (error) {
843 			lockmgr(&hammer2_mntlk, LK_RELEASE);
844 			return error;
845 		}
846 		hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
847 		ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", dev);
848 		hmp->ronly = ronly;
849 		hmp->devvp = devvp;
850 		kmalloc_create(&hmp->mchain, "HAMMER2-chains");
851 		TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
852 		RB_INIT(&hmp->iotree);
853 		spin_init(&hmp->io_spin, "hm2mount_io");
854 		spin_init(&hmp->list_spin, "hm2mount_list");
855 		TAILQ_INIT(&hmp->flushq);
856 
857 		lockinit(&hmp->vollk, "h2vol", 0, 0);
858 
859 		/*
860 		 * vchain setup. vchain.data is embedded.
861 		 * vchain.refs is initialized and will never drop to 0.
862 		 *
863 		 * NOTE! voldata is not yet loaded.
864 		 */
865 		hmp->vchain.hmp = hmp;
866 		hmp->vchain.refs = 1;
867 		hmp->vchain.data = (void *)&hmp->voldata;
868 		hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
869 		hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
870 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
871 
872 		hammer2_chain_core_init(&hmp->vchain);
873 		/* hmp->vchain.u.xxx is left NULL */
874 
875 		/*
876 		 * fchain setup.  fchain.data is embedded.
877 		 * fchain.refs is initialized and will never drop to 0.
878 		 *
879 		 * The data is not used but needs to be initialized to
880 		 * pass assertion muster.  We use this chain primarily
881 		 * as a placeholder for the freemap's top-level RBTREE
882 		 * so it does not interfere with the volume's topology
883 		 * RBTREE.
884 		 */
885 		hmp->fchain.hmp = hmp;
886 		hmp->fchain.refs = 1;
887 		hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
888 		hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
889 		hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
890 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
891 		hmp->fchain.bref.methods =
892 			HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
893 			HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
894 
895 		hammer2_chain_core_init(&hmp->fchain);
896 		/* hmp->fchain.u.xxx is left NULL */
897 
898 		/*
899 		 * Install the volume header and initialize fields from
900 		 * voldata.
901 		 */
902 		error = hammer2_install_volume_header(hmp);
903 		if (error) {
904 			hammer2_unmount_helper(mp, NULL, hmp);
905 			lockmgr(&hammer2_mntlk, LK_RELEASE);
906 			hammer2_vfs_unmount(mp, MNT_FORCE);
907 			return error;
908 		}
909 
910 		/*
911 		 * Really important to get these right or flush will get
912 		 * confused.
913 		 */
914 		hmp->spmp = hammer2_pfsalloc(NULL, NULL, 0);
915 		kprintf("alloc spmp %p tid %016jx\n",
916 			hmp->spmp, hmp->voldata.mirror_tid);
917 		spmp = hmp->spmp;
918 
919 		/*
920 		 * Dummy-up vchain and fchain's modify_tid.  mirror_tid
921 		 * is inherited from the volume header.
922 		 */
923 		xid = 0;
924 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
925 		hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
926 		hmp->vchain.pmp = spmp;
927 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
928 		hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
929 		hmp->fchain.pmp = spmp;
930 
931 		/*
932 		 * First locate the super-root inode, which is key 0
933 		 * relative to the volume header's blockset.
934 		 *
935 		 * Then locate the root inode by scanning the directory keyspace
936 		 * represented by the label.
937 		 */
938 		parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
939 		schain = hammer2_chain_lookup(&parent, &key_dummy,
940 				      HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
941 				      &cache_index, 0);
942 		hammer2_chain_lookup_done(parent);
943 		if (schain == NULL) {
944 			kprintf("hammer2_mount: invalid super-root\n");
945 			hammer2_unmount_helper(mp, NULL, hmp);
946 			lockmgr(&hammer2_mntlk, LK_RELEASE);
947 			hammer2_vfs_unmount(mp, MNT_FORCE);
948 			return EINVAL;
949 		}
950 		if (schain->error) {
951 			kprintf("hammer2_mount: error %s reading super-root\n",
952 				hammer2_error_str(schain->error));
953 			hammer2_chain_unlock(schain);
954 			hammer2_chain_drop(schain);
955 			schain = NULL;
956 			hammer2_unmount_helper(mp, NULL, hmp);
957 			lockmgr(&hammer2_mntlk, LK_RELEASE);
958 			hammer2_vfs_unmount(mp, MNT_FORCE);
959 			return EINVAL;
960 		}
961 
962 		/*
963 		 * The super-root always uses an inode_tid of 1 when
964 		 * creating PFSs.
965 		 */
966 		spmp->inode_tid = 1;
967 		spmp->modify_tid = schain->bref.modify_tid;
968 
969 		/*
970 		 * Sanity-check schain's pmp and finish initialization.
971 		 * Any chain belonging to the super-root topology should
972 		 * have a NULL pmp (not even set to spmp).
973 		 */
974 		ripdata = &hammer2_chain_rdata(schain)->ipdata;
975 		KKASSERT(schain->pmp == NULL);
976 		spmp->pfs_clid = ripdata->pfs_clid;
977 
978 		/*
979 		 * Replace the dummy spmp->iroot with a real one.  It's
980 		 * easier to just do a wholesale replacement than to try
981 		 * to update the chain and fixup the iroot fields.
982 		 *
983 		 * The returned inode is locked with the supplied cluster.
984 		 */
985 		cluster = hammer2_cluster_from_chain(schain);
986 		hammer2_inode_drop(spmp->iroot);
987 		spmp->iroot = NULL;
988 		spmp->iroot = hammer2_inode_get(spmp, NULL, cluster);
989 		spmp->spmp_hmp = hmp;
990 		spmp->pfs_types[0] = ripdata->pfs_type;
991 		hammer2_inode_ref(spmp->iroot);
992 		hammer2_inode_unlock(spmp->iroot, cluster);
993 		schain = NULL;
994 		/* leave spmp->iroot with one ref */
995 
996 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
997 			error = hammer2_recovery(hmp);
998 			/* XXX do something with error */
999 		}
1000 		hammer2_update_pmps(hmp);
1001 		hammer2_iocom_init(hmp);
1002 
1003 		/*
1004 		 * Ref the cluster management messaging descriptor.  The mount
1005 		 * program deals with the other end of the communications pipe.
1006 		 */
1007 		fp = holdfp(curproc->p_fd, info.cluster_fd, -1);
1008 		if (fp) {
1009 			hammer2_cluster_reconnect(hmp, fp);
1010 		} else {
1011 			kprintf("hammer2_mount: bad cluster_fd!\n");
1012 		}
1013 	} else {
1014 		spmp = hmp->spmp;
1015 	}
1016 
1017 	/*
1018 	 * Lookup the mount point under the media-localized super-root.
1019 	 * Scanning hammer2_pfslist doesn't help us because it represents
1020 	 * PFS cluster ids which can aggregate several named PFSs together.
1021 	 *
1022 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1023 	 * up later on.
1024 	 */
1025 	cparent = hammer2_inode_lock(spmp->iroot, HAMMER2_RESOLVE_ALWAYS);
1026 	lhc = hammer2_dirhash(label, strlen(label));
1027 	cluster = hammer2_cluster_lookup(cparent, &key_next,
1028 				      lhc, lhc + HAMMER2_DIRHASH_LOMASK,
1029 				      0);
1030 	while (cluster) {
1031 		if (hammer2_cluster_type(cluster) == HAMMER2_BREF_TYPE_INODE &&
1032 		    strcmp(label,
1033 		       hammer2_cluster_rdata(cluster)->ipdata.filename) == 0) {
1034 			break;
1035 		}
1036 		cluster = hammer2_cluster_next(cparent, cluster, &key_next,
1037 					    key_next,
1038 					    lhc + HAMMER2_DIRHASH_LOMASK, 0);
1039 	}
1040 	hammer2_inode_unlock(spmp->iroot, cparent);
1041 
1042 	/*
1043 	 * PFS could not be found?
1044 	 */
1045 	if (cluster == NULL) {
1046 		kprintf("hammer2_mount: PFS label not found\n");
1047 		hammer2_unmount_helper(mp, NULL, hmp);
1048 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1049 		hammer2_vfs_unmount(mp, MNT_FORCE);
1050 
1051 		return EINVAL;
1052 	}
1053 
1054 	/*
1055 	 * Acquire the pmp structure (it should have already been allocated
1056 	 * via hammer2_update_pmps() so do not pass cluster in to add to
1057 	 * available chains).
1058 	 *
1059 	 * Check if the cluster has already been mounted.  A cluster can
1060 	 * only be mounted once, use null mounts to mount additional copies.
1061 	 */
1062 	ripdata = &hammer2_cluster_rdata(cluster)->ipdata;
1063 	hammer2_cluster_bref(cluster, &bref);
1064 	pmp = hammer2_pfsalloc(NULL, ripdata, bref.modify_tid);
1065 	hammer2_cluster_unlock(cluster);
1066 	hammer2_cluster_drop(cluster);
1067 
1068 	if (pmp->mp) {
1069 		kprintf("hammer2_mount: PFS already mounted!\n");
1070 		hammer2_unmount_helper(mp, NULL, hmp);
1071 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1072 		hammer2_vfs_unmount(mp, MNT_FORCE);
1073 
1074 		return EBUSY;
1075 	}
1076 
1077 	/*
1078 	 * Finish the mount
1079 	 */
1080         kprintf("hammer2_mount hmp=%p pmp=%p\n", hmp, pmp);
1081 
1082         mp->mnt_flag = MNT_LOCAL;
1083         mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;   /* all entry pts are SMP */
1084         mp->mnt_kern_flag |= MNTK_THR_SYNC;     /* new vsyncscan semantics */
1085 
1086         /*
1087          * required mount structure initializations
1088          */
1089         mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
1090         mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
1091 
1092         mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
1093         mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1094 
1095         /*
1096          * Optional fields
1097          */
1098         mp->mnt_iosize_max = MAXPHYS;
1099 
1100 	/*
1101 	 * Connect up mount pointers.
1102 	 */
1103 	hammer2_mount_helper(mp, pmp);
1104 
1105         lockmgr(&hammer2_mntlk, LK_RELEASE);
1106 
1107 	/*
1108 	 * A mounted PFS needs a write thread for logical buffers and
1109 	 * a hidden directory for deletions of open files.  These features
1110 	 * are not used by unmounted PFSs.
1111 	 *
1112 	 * The logical file buffer bio write thread handles things like
1113 	 * physical block assignment and compression.
1114 	 */
1115 	pmp->wthread_destroy = 0;
1116 	lwkt_create(hammer2_write_thread, pmp,
1117 		    &pmp->wthread_td, NULL, 0, -1, "h2pfs-%s", label);
1118 
1119 	/*
1120 	 * With the cluster operational install ihidden.
1121 	 * (only applicable to pfs mounts, not applicable to spmp)
1122 	 */
1123 	hammer2_inode_install_hidden(pmp);
1124 
1125 	/*
1126 	 * Finish setup
1127 	 */
1128 	vfs_getnewfsid(mp);
1129 	vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
1130 	vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
1131 	vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
1132 
1133 	copyinstr(info.volume, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, &size);
1134 	bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
1135 	bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
1136 	copyinstr(path, mp->mnt_stat.f_mntonname,
1137 		  sizeof(mp->mnt_stat.f_mntonname) - 1,
1138 		  &size);
1139 
1140 	/*
1141 	 * Initial statfs to prime mnt_stat.
1142 	 */
1143 	hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
1144 
1145 	return 0;
1146 }
1147 
1148 /*
1149  * Scan PFSs under the super-root and create hammer2_pfs structures.
1150  */
1151 static
1152 void
1153 hammer2_update_pmps(hammer2_dev_t *hmp)
1154 {
1155 	const hammer2_inode_data_t *ripdata;
1156 	hammer2_cluster_t *cparent;
1157 	hammer2_cluster_t *cluster;
1158 	hammer2_blockref_t bref;
1159 	hammer2_pfs_t *spmp;
1160 	hammer2_pfs_t *pmp;
1161 	hammer2_key_t key_next;
1162 
1163 	/*
1164 	 * Lookup mount point under the media-localized super-root.
1165 	 *
1166 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1167 	 * up later on.
1168 	 */
1169 	spmp = hmp->spmp;
1170 	cparent = hammer2_inode_lock(spmp->iroot, HAMMER2_RESOLVE_ALWAYS);
1171 	cluster = hammer2_cluster_lookup(cparent, &key_next,
1172 					 HAMMER2_KEY_MIN,
1173 					 HAMMER2_KEY_MAX,
1174 					 0);
1175 	while (cluster) {
1176 		if (hammer2_cluster_type(cluster) != HAMMER2_BREF_TYPE_INODE)
1177 			continue;
1178 		ripdata = &hammer2_cluster_rdata(cluster)->ipdata;
1179 		hammer2_cluster_bref(cluster, &bref);
1180 		kprintf("ADD LOCAL PFS: %s\n", ripdata->filename);
1181 
1182 		pmp = hammer2_pfsalloc(cluster, ripdata, bref.modify_tid);
1183 		cluster = hammer2_cluster_next(cparent, cluster,
1184 					       &key_next,
1185 					       key_next,
1186 					       HAMMER2_KEY_MAX,
1187 					       0);
1188 	}
1189 	hammer2_inode_unlock(spmp->iroot, cparent);
1190 }
1191 
1192 /*
1193  * Handle bioq for strategy write
1194  */
1195 static
1196 void
1197 hammer2_write_thread(void *arg)
1198 {
1199 	hammer2_pfs_t *pmp;
1200 	struct bio *bio;
1201 	struct buf *bp;
1202 	hammer2_trans_t trans;
1203 	struct vnode *vp;
1204 	hammer2_inode_t *ip;
1205 	hammer2_cluster_t *cparent;
1206 	const hammer2_inode_data_t *ripdata;
1207 	hammer2_key_t lbase;
1208 	int lblksize;
1209 	int pblksize;
1210 	int error;
1211 
1212 	pmp = arg;
1213 
1214 	hammer2_mtx_ex(&pmp->wthread_mtx);
1215 	for (;;) {
1216 		/*
1217 		 * Wait for work.  Break out and destroy the thread only if
1218 		 * requested and no work remains.
1219 		 */
1220 		if (bioq_first(&pmp->wthread_bioq) == NULL) {
1221 			if (pmp->wthread_destroy)
1222 				break;
1223 			mtxsleep(&pmp->wthread_bioq, &pmp->wthread_mtx,
1224 				 0, "h2bioqw", 0);
1225 			continue;
1226 		}
1227 
1228 		/*
1229 		 * Special transaction for logical buffer cache writes.
1230 		 */
1231 		hammer2_trans_init(&trans, pmp, HAMMER2_TRANS_BUFCACHE);
1232 
1233 		while ((bio = bioq_takefirst(&pmp->wthread_bioq)) != NULL) {
1234 			/*
1235 			 * dummy bio for synchronization.  The transaction
1236 			 * must be terminated.
1237 			 */
1238 			if (bio->bio_buf == NULL) {
1239 				bio->bio_flags |= BIO_DONE;
1240 				/* bio will become invalid after DONE set */
1241 				wakeup(bio);
1242 				break;
1243 			}
1244 
1245 			/*
1246 			 * else normal bio processing
1247 			 */
1248 			hammer2_mtx_unlock(&pmp->wthread_mtx);
1249 
1250 			hammer2_lwinprog_drop(pmp);
1251 
1252 			error = 0;
1253 			bp = bio->bio_buf;
1254 			vp = bp->b_vp;
1255 			ip = VTOI(vp);
1256 
1257 			/*
1258 			 * Inode is modified, flush size and mtime changes
1259 			 * to ensure that the file size remains consistent
1260 			 * with the buffers being flushed.
1261 			 *
1262 			 * NOTE: The inode_fsync() call only flushes the
1263 			 *	 inode's meta-data state, it doesn't try
1264 			 *	 to flush underlying buffers or chains.
1265 			 *
1266 			 * NOTE: hammer2_write_file_core() may indirectly
1267 			 *	 modify and modsync the inode.
1268 			 */
1269 			cparent = hammer2_inode_lock(ip,
1270 						     HAMMER2_RESOLVE_ALWAYS);
1271 			if (ip->flags & (HAMMER2_INODE_RESIZED |
1272 					 HAMMER2_INODE_MTIME)) {
1273 				hammer2_inode_fsync(&trans, ip, cparent);
1274 			}
1275 			ripdata = &hammer2_cluster_rdata(cparent)->ipdata;
1276 			lblksize = hammer2_calc_logical(ip, bio->bio_offset,
1277 							&lbase, NULL);
1278 			pblksize = hammer2_calc_physical(ip, ripdata, lbase);
1279 			hammer2_write_file_core(bp, &trans, ip, ripdata,
1280 						cparent,
1281 						lbase, IO_ASYNC,
1282 						pblksize, &error);
1283 			/* ripdata can be invalid after call */
1284 			hammer2_inode_unlock(ip, cparent);
1285 			if (error) {
1286 				kprintf("hammer2: error in buffer write\n");
1287 				bp->b_flags |= B_ERROR;
1288 				bp->b_error = EIO;
1289 			}
1290 			biodone(bio);
1291 			hammer2_mtx_ex(&pmp->wthread_mtx);
1292 		}
1293 		hammer2_trans_done(&trans);
1294 	}
1295 	pmp->wthread_destroy = -1;
1296 	wakeup(&pmp->wthread_destroy);
1297 
1298 	hammer2_mtx_unlock(&pmp->wthread_mtx);
1299 }
1300 
1301 void
1302 hammer2_bioq_sync(hammer2_pfs_t *pmp)
1303 {
1304 	struct bio sync_bio;
1305 
1306 	bzero(&sync_bio, sizeof(sync_bio));	/* dummy with no bio_buf */
1307 	hammer2_mtx_ex(&pmp->wthread_mtx);
1308 	if (pmp->wthread_destroy == 0 &&
1309 	    TAILQ_FIRST(&pmp->wthread_bioq.queue)) {
1310 		bioq_insert_tail(&pmp->wthread_bioq, &sync_bio);
1311 		while ((sync_bio.bio_flags & BIO_DONE) == 0)
1312 			mtxsleep(&sync_bio, &pmp->wthread_mtx, 0, "h2bioq", 0);
1313 	}
1314 	hammer2_mtx_unlock(&pmp->wthread_mtx);
1315 }
1316 
1317 /*
1318  * Return a chain suitable for I/O, creating the chain if necessary
1319  * and assigning its physical block.  The cluster will be in a modified
1320  * state.
1321  *
1322  * cparent can wind up being anything.
1323  *
1324  * NOTE: Special case for data embedded in inode.
1325  */
1326 static
1327 hammer2_cluster_t *
1328 hammer2_assign_physical(hammer2_trans_t *trans,
1329 			hammer2_inode_t *ip, hammer2_cluster_t *cparent,
1330 			hammer2_key_t lbase, int pblksize, int *errorp)
1331 {
1332 	hammer2_cluster_t *cluster;
1333 	hammer2_cluster_t *dparent;
1334 	hammer2_key_t key_dummy;
1335 	int pradix = hammer2_getradix(pblksize);
1336 
1337 	/*
1338 	 * Locate the chain associated with lbase, return a locked chain.
1339 	 * However, do not instantiate any data reference (which utilizes a
1340 	 * device buffer) because we will be using direct IO via the
1341 	 * logical buffer cache buffer.
1342 	 */
1343 	*errorp = 0;
1344 	KKASSERT(pblksize >= HAMMER2_ALLOC_MIN);
1345 retry:
1346 	dparent = hammer2_cluster_lookup_init(cparent, 0);
1347 	cluster = hammer2_cluster_lookup(dparent, &key_dummy,
1348 				     lbase, lbase,
1349 				     HAMMER2_LOOKUP_NODATA);
1350 
1351 	if (cluster == NULL) {
1352 		/*
1353 		 * We found a hole, create a new chain entry.
1354 		 *
1355 		 * NOTE: DATA chains are created without device backing
1356 		 *	 store (nor do we want any).
1357 		 */
1358 		*errorp = hammer2_cluster_create(trans, dparent, &cluster,
1359 					       lbase, HAMMER2_PBUFRADIX,
1360 					       HAMMER2_BREF_TYPE_DATA,
1361 					       pblksize, 0);
1362 		if (cluster == NULL) {
1363 			hammer2_cluster_lookup_done(dparent);
1364 			panic("hammer2_cluster_create: par=%p error=%d\n",
1365 				dparent->focus, *errorp);
1366 			goto retry;
1367 		}
1368 		/*ip->delta_dcount += pblksize;*/
1369 	} else {
1370 		switch (hammer2_cluster_type(cluster)) {
1371 		case HAMMER2_BREF_TYPE_INODE:
1372 			/*
1373 			 * The data is embedded in the inode, which requires
1374 			 * a bit more finess.
1375 			 */
1376 			hammer2_cluster_modify_ip(trans, ip, cluster, 0);
1377 			break;
1378 		case HAMMER2_BREF_TYPE_DATA:
1379 			if (hammer2_cluster_need_resize(cluster, pblksize)) {
1380 				hammer2_cluster_resize(trans, ip,
1381 						     dparent, cluster,
1382 						     pradix,
1383 						     HAMMER2_MODIFY_OPTDATA);
1384 			}
1385 
1386 			/*
1387 			 * DATA buffers must be marked modified whether the
1388 			 * data is in a logical buffer or not.  We also have
1389 			 * to make this call to fixup the chain data pointers
1390 			 * after resizing in case this is an encrypted or
1391 			 * compressed buffer.
1392 			 */
1393 			hammer2_cluster_modify(trans, cluster,
1394 					       HAMMER2_MODIFY_OPTDATA);
1395 			break;
1396 		default:
1397 			panic("hammer2_assign_physical: bad type");
1398 			/* NOT REACHED */
1399 			break;
1400 		}
1401 	}
1402 
1403 	/*
1404 	 * Cleanup.  If cluster wound up being the inode itself, i.e.
1405 	 * the DIRECTDATA case for offset 0, then we need to update cparent.
1406 	 * The caller expects cparent to not become stale.
1407 	 */
1408 	hammer2_cluster_lookup_done(dparent);
1409 	/* dparent = NULL; safety */
1410 	return (cluster);
1411 }
1412 
1413 /*
1414  * bio queued from hammer2_vnops.c.
1415  *
1416  * The core write function which determines which path to take
1417  * depending on compression settings.  We also have to locate the
1418  * related clusters so we can calculate and set the check data for
1419  * the blockref.
1420  */
1421 static
1422 void
1423 hammer2_write_file_core(struct buf *bp, hammer2_trans_t *trans,
1424 			hammer2_inode_t *ip,
1425 			const hammer2_inode_data_t *ripdata,
1426 			hammer2_cluster_t *cparent,
1427 			hammer2_key_t lbase, int ioflag, int pblksize,
1428 			int *errorp)
1429 {
1430 	hammer2_cluster_t *cluster;
1431 
1432 	switch(HAMMER2_DEC_ALGO(ripdata->comp_algo)) {
1433 	case HAMMER2_COMP_NONE:
1434 		/*
1435 		 * We have to assign physical storage to the buffer
1436 		 * we intend to dirty or write now to avoid deadlocks
1437 		 * in the strategy code later.
1438 		 *
1439 		 * This can return NOOFFSET for inode-embedded data.
1440 		 * The strategy code will take care of it in that case.
1441 		 */
1442 		cluster = hammer2_assign_physical(trans, ip, cparent,
1443 						lbase, pblksize,
1444 						errorp);
1445 		if (cluster->ddflag) {
1446 			hammer2_inode_data_t *wipdata;
1447 
1448 			wipdata = hammer2_cluster_modify_ip(trans, ip,
1449 							    cluster, 0);
1450 			KKASSERT(wipdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1451 			KKASSERT(bp->b_loffset == 0);
1452 			bcopy(bp->b_data, wipdata->u.data,
1453 			      HAMMER2_EMBEDDED_BYTES);
1454 			hammer2_cluster_modsync(cluster);
1455 		} else {
1456 			hammer2_write_bp(cluster, bp, ioflag, pblksize,
1457 					 errorp, ripdata->check_algo);
1458 		}
1459 		/* ripdata can become invalid */
1460 		if (cluster) {
1461 			hammer2_cluster_unlock(cluster);
1462 			hammer2_cluster_drop(cluster);
1463 		}
1464 		break;
1465 	case HAMMER2_COMP_AUTOZERO:
1466 		/*
1467 		 * Check for zero-fill only
1468 		 */
1469 		hammer2_zero_check_and_write(bp, trans, ip,
1470 				    ripdata, cparent, lbase,
1471 				    ioflag, pblksize, errorp,
1472 				    ripdata->check_algo);
1473 		break;
1474 	case HAMMER2_COMP_LZ4:
1475 	case HAMMER2_COMP_ZLIB:
1476 	default:
1477 		/*
1478 		 * Check for zero-fill and attempt compression.
1479 		 */
1480 		hammer2_compress_and_write(bp, trans, ip,
1481 					   ripdata, cparent,
1482 					   lbase, ioflag,
1483 					   pblksize, errorp,
1484 					   ripdata->comp_algo,
1485 					   ripdata->check_algo);
1486 		break;
1487 	}
1488 }
1489 
1490 /*
1491  * Generic function that will perform the compression in compression
1492  * write path. The compression algorithm is determined by the settings
1493  * obtained from inode.
1494  */
1495 static
1496 void
1497 hammer2_compress_and_write(struct buf *bp, hammer2_trans_t *trans,
1498 	hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata,
1499 	hammer2_cluster_t *cparent,
1500 	hammer2_key_t lbase, int ioflag, int pblksize,
1501 	int *errorp, int comp_algo, int check_algo)
1502 {
1503 	hammer2_cluster_t *cluster;
1504 	hammer2_chain_t *chain;
1505 	int comp_size;
1506 	int comp_block_size;
1507 	int i;
1508 	char *comp_buffer;
1509 
1510 	if (test_block_zeros(bp->b_data, pblksize)) {
1511 		zero_write(bp, trans, ip, ripdata, cparent, lbase, errorp);
1512 		return;
1513 	}
1514 
1515 	comp_size = 0;
1516 	comp_buffer = NULL;
1517 
1518 	KKASSERT(pblksize / 2 <= 32768);
1519 
1520 	if (ip->comp_heuristic < 8 || (ip->comp_heuristic & 7) == 0) {
1521 		z_stream strm_compress;
1522 		int comp_level;
1523 		int ret;
1524 
1525 		switch(HAMMER2_DEC_ALGO(comp_algo)) {
1526 		case HAMMER2_COMP_LZ4:
1527 			comp_buffer = objcache_get(cache_buffer_write,
1528 						   M_INTWAIT);
1529 			comp_size = LZ4_compress_limitedOutput(
1530 					bp->b_data,
1531 					&comp_buffer[sizeof(int)],
1532 					pblksize,
1533 					pblksize / 2 - sizeof(int));
1534 			/*
1535 			 * We need to prefix with the size, LZ4
1536 			 * doesn't do it for us.  Add the related
1537 			 * overhead.
1538 			 */
1539 			*(int *)comp_buffer = comp_size;
1540 			if (comp_size)
1541 				comp_size += sizeof(int);
1542 			break;
1543 		case HAMMER2_COMP_ZLIB:
1544 			comp_level = HAMMER2_DEC_LEVEL(comp_algo);
1545 			if (comp_level == 0)
1546 				comp_level = 6;	/* default zlib compression */
1547 			else if (comp_level < 6)
1548 				comp_level = 6;
1549 			else if (comp_level > 9)
1550 				comp_level = 9;
1551 			ret = deflateInit(&strm_compress, comp_level);
1552 			if (ret != Z_OK) {
1553 				kprintf("HAMMER2 ZLIB: fatal error "
1554 					"on deflateInit.\n");
1555 			}
1556 
1557 			comp_buffer = objcache_get(cache_buffer_write,
1558 						   M_INTWAIT);
1559 			strm_compress.next_in = bp->b_data;
1560 			strm_compress.avail_in = pblksize;
1561 			strm_compress.next_out = comp_buffer;
1562 			strm_compress.avail_out = pblksize / 2;
1563 			ret = deflate(&strm_compress, Z_FINISH);
1564 			if (ret == Z_STREAM_END) {
1565 				comp_size = pblksize / 2 -
1566 					    strm_compress.avail_out;
1567 			} else {
1568 				comp_size = 0;
1569 			}
1570 			ret = deflateEnd(&strm_compress);
1571 			break;
1572 		default:
1573 			kprintf("Error: Unknown compression method.\n");
1574 			kprintf("Comp_method = %d.\n", comp_algo);
1575 			break;
1576 		}
1577 	}
1578 
1579 	if (comp_size == 0) {
1580 		/*
1581 		 * compression failed or turned off
1582 		 */
1583 		comp_block_size = pblksize;	/* safety */
1584 		if (++ip->comp_heuristic > 128)
1585 			ip->comp_heuristic = 8;
1586 	} else {
1587 		/*
1588 		 * compression succeeded
1589 		 */
1590 		ip->comp_heuristic = 0;
1591 		if (comp_size <= 1024) {
1592 			comp_block_size = 1024;
1593 		} else if (comp_size <= 2048) {
1594 			comp_block_size = 2048;
1595 		} else if (comp_size <= 4096) {
1596 			comp_block_size = 4096;
1597 		} else if (comp_size <= 8192) {
1598 			comp_block_size = 8192;
1599 		} else if (comp_size <= 16384) {
1600 			comp_block_size = 16384;
1601 		} else if (comp_size <= 32768) {
1602 			comp_block_size = 32768;
1603 		} else {
1604 			panic("hammer2: WRITE PATH: "
1605 			      "Weird comp_size value.");
1606 			/* NOT REACHED */
1607 			comp_block_size = pblksize;
1608 		}
1609 	}
1610 
1611 	cluster = hammer2_assign_physical(trans, ip, cparent,
1612 					  lbase, comp_block_size,
1613 					  errorp);
1614 	ripdata = NULL;
1615 
1616 	if (*errorp) {
1617 		kprintf("WRITE PATH: An error occurred while "
1618 			"assigning physical space.\n");
1619 		KKASSERT(cluster == NULL);
1620 		goto done;
1621 	}
1622 
1623 	if (cluster->ddflag) {
1624 		hammer2_inode_data_t *wipdata;
1625 
1626 		wipdata = &hammer2_cluster_wdata(cluster)->ipdata;
1627 		KKASSERT(wipdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1628 		KKASSERT(bp->b_loffset == 0);
1629 		bcopy(bp->b_data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1630 		hammer2_cluster_modsync(cluster);
1631 	} else
1632 	for (i = 0; i < cluster->nchains; ++i) {
1633 		hammer2_io_t *dio;
1634 		char *bdata;
1635 
1636 		/* XXX hackx */
1637 
1638 		if ((cluster->array[i].flags & HAMMER2_CITEM_FEMOD) == 0)
1639 			continue;
1640 		chain = cluster->array[i].chain;	/* XXX */
1641 		if (chain == NULL)
1642 			continue;
1643 		KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1644 
1645 		switch(chain->bref.type) {
1646 		case HAMMER2_BREF_TYPE_INODE:
1647 			panic("hammer2_write_bp: unexpected inode\n");
1648 			break;
1649 		case HAMMER2_BREF_TYPE_DATA:
1650 			/*
1651 			 * Optimize out the read-before-write
1652 			 * if possible.
1653 			 */
1654 			*errorp = hammer2_io_newnz(chain->hmp,
1655 						   chain->bref.data_off,
1656 						   chain->bytes,
1657 						   &dio);
1658 			if (*errorp) {
1659 				hammer2_io_brelse(&dio);
1660 				kprintf("hammer2: WRITE PATH: "
1661 					"dbp bread error\n");
1662 				break;
1663 			}
1664 			bdata = hammer2_io_data(dio, chain->bref.data_off);
1665 
1666 			/*
1667 			 * When loading the block make sure we don't
1668 			 * leave garbage after the compressed data.
1669 			 */
1670 			if (comp_size) {
1671 				chain->bref.methods =
1672 					HAMMER2_ENC_COMP(comp_algo) +
1673 					HAMMER2_ENC_CHECK(check_algo);
1674 				bcopy(comp_buffer, bdata, comp_size);
1675 				if (comp_size != comp_block_size) {
1676 					bzero(bdata + comp_size,
1677 					      comp_block_size - comp_size);
1678 				}
1679 			} else {
1680 				chain->bref.methods =
1681 					HAMMER2_ENC_COMP(
1682 						HAMMER2_COMP_NONE) +
1683 					HAMMER2_ENC_CHECK(check_algo);
1684 				bcopy(bp->b_data, bdata, pblksize);
1685 			}
1686 
1687 			/*
1688 			 * The flush code doesn't calculate check codes for
1689 			 * file data (doing so can result in excessive I/O),
1690 			 * so we do it here.
1691 			 */
1692 			hammer2_chain_setcheck(chain, bdata);
1693 
1694 			/*
1695 			 * Device buffer is now valid, chain is no longer in
1696 			 * the initial state.
1697 			 *
1698 			 * (No blockref table worries with file data)
1699 			 */
1700 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1701 
1702 			/* Now write the related bdp. */
1703 			if (ioflag & IO_SYNC) {
1704 				/*
1705 				 * Synchronous I/O requested.
1706 				 */
1707 				hammer2_io_bwrite(&dio);
1708 			/*
1709 			} else if ((ioflag & IO_DIRECT) &&
1710 				   loff + n == pblksize) {
1711 				hammer2_io_bdwrite(&dio);
1712 			*/
1713 			} else if (ioflag & IO_ASYNC) {
1714 				hammer2_io_bawrite(&dio);
1715 			} else {
1716 				hammer2_io_bdwrite(&dio);
1717 			}
1718 			break;
1719 		default:
1720 			panic("hammer2_write_bp: bad chain type %d\n",
1721 				chain->bref.type);
1722 			/* NOT REACHED */
1723 			break;
1724 		}
1725 	}
1726 done:
1727 	if (cluster) {
1728 		hammer2_cluster_unlock(cluster);
1729 		hammer2_cluster_drop(cluster);
1730 	}
1731 	if (comp_buffer)
1732 		objcache_put(cache_buffer_write, comp_buffer);
1733 }
1734 
1735 /*
1736  * Function that performs zero-checking and writing without compression,
1737  * it corresponds to default zero-checking path.
1738  */
1739 static
1740 void
1741 hammer2_zero_check_and_write(struct buf *bp, hammer2_trans_t *trans,
1742 	hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata,
1743 	hammer2_cluster_t *cparent,
1744 	hammer2_key_t lbase, int ioflag, int pblksize, int *errorp,
1745 	int check_algo)
1746 {
1747 	hammer2_cluster_t *cluster;
1748 
1749 	if (test_block_zeros(bp->b_data, pblksize)) {
1750 		zero_write(bp, trans, ip, ripdata, cparent, lbase, errorp);
1751 		/* ripdata can become invalid */
1752 	} else {
1753 		cluster = hammer2_assign_physical(trans, ip, cparent,
1754 						  lbase, pblksize, errorp);
1755 		hammer2_write_bp(cluster, bp, ioflag, pblksize, errorp,
1756 				 check_algo);
1757 		/* ripdata can become invalid */
1758 		if (cluster) {
1759 			hammer2_cluster_unlock(cluster);
1760 			hammer2_cluster_drop(cluster);
1761 		}
1762 	}
1763 }
1764 
1765 /*
1766  * A function to test whether a block of data contains only zeros,
1767  * returns TRUE (non-zero) if the block is all zeros.
1768  */
1769 static
1770 int
1771 test_block_zeros(const char *buf, size_t bytes)
1772 {
1773 	size_t i;
1774 
1775 	for (i = 0; i < bytes; i += sizeof(long)) {
1776 		if (*(const long *)(buf + i) != 0)
1777 			return (0);
1778 	}
1779 	return (1);
1780 }
1781 
1782 /*
1783  * Function to "write" a block that contains only zeros.
1784  */
1785 static
1786 void
1787 zero_write(struct buf *bp, hammer2_trans_t *trans,
1788 	   hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata,
1789 	   hammer2_cluster_t *cparent,
1790 	   hammer2_key_t lbase, int *errorp __unused)
1791 {
1792 	hammer2_cluster_t *cluster;
1793 	hammer2_key_t key_dummy;
1794 
1795 	cparent = hammer2_cluster_lookup_init(cparent, 0);
1796 	cluster = hammer2_cluster_lookup(cparent, &key_dummy, lbase, lbase,
1797 				     HAMMER2_LOOKUP_NODATA);
1798 	if (cluster) {
1799 		if (cluster->ddflag) {
1800 			hammer2_inode_data_t *wipdata;
1801 
1802 			wipdata = hammer2_cluster_modify_ip(trans, ip,
1803 							    cluster, 0);
1804 			KKASSERT(wipdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1805 			KKASSERT(bp->b_loffset == 0);
1806 			bzero(wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1807 			hammer2_cluster_modsync(cluster);
1808 		} else {
1809 			hammer2_cluster_delete(trans, cparent, cluster,
1810 					       HAMMER2_DELETE_PERMANENT);
1811 		}
1812 		hammer2_cluster_unlock(cluster);
1813 		hammer2_cluster_drop(cluster);
1814 	}
1815 	hammer2_cluster_lookup_done(cparent);
1816 }
1817 
1818 /*
1819  * Function to write the data as it is, without performing any sort of
1820  * compression. This function is used in path without compression and
1821  * default zero-checking path.
1822  */
1823 static
1824 void
1825 hammer2_write_bp(hammer2_cluster_t *cluster, struct buf *bp, int ioflag,
1826 				int pblksize, int *errorp, int check_algo)
1827 {
1828 	hammer2_chain_t *chain;
1829 	hammer2_inode_data_t *wipdata;
1830 	hammer2_io_t *dio;
1831 	char *bdata;
1832 	int error;
1833 	int i;
1834 
1835 	error = 0;	/* XXX TODO below */
1836 
1837 	for (i = 0; i < cluster->nchains; ++i) {
1838 		if ((cluster->array[i].flags & HAMMER2_CITEM_FEMOD) == 0)
1839 			continue;
1840 		chain = cluster->array[i].chain;	/* XXX */
1841 		if (chain == NULL)
1842 			continue;
1843 		KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1844 
1845 		switch(chain->bref.type) {
1846 		case HAMMER2_BREF_TYPE_INODE:
1847 			wipdata = &hammer2_chain_wdata(chain)->ipdata;
1848 			KKASSERT(wipdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1849 			KKASSERT(bp->b_loffset == 0);
1850 			bcopy(bp->b_data, wipdata->u.data,
1851 			      HAMMER2_EMBEDDED_BYTES);
1852 			error = 0;
1853 			break;
1854 		case HAMMER2_BREF_TYPE_DATA:
1855 			error = hammer2_io_newnz(chain->hmp,
1856 						 chain->bref.data_off,
1857 						 chain->bytes, &dio);
1858 			if (error) {
1859 				hammer2_io_bqrelse(&dio);
1860 				kprintf("hammer2: WRITE PATH: "
1861 					"dbp bread error\n");
1862 				break;
1863 			}
1864 			bdata = hammer2_io_data(dio, chain->bref.data_off);
1865 
1866 			chain->bref.methods = HAMMER2_ENC_COMP(
1867 							HAMMER2_COMP_NONE) +
1868 					      HAMMER2_ENC_CHECK(check_algo);
1869 			bcopy(bp->b_data, bdata, chain->bytes);
1870 
1871 			/*
1872 			 * The flush code doesn't calculate check codes for
1873 			 * file data (doing so can result in excessive I/O),
1874 			 * so we do it here.
1875 			 */
1876 			hammer2_chain_setcheck(chain, bdata);
1877 
1878 			/*
1879 			 * Device buffer is now valid, chain is no longer in
1880 			 * the initial state.
1881 			 *
1882 			 * (No blockref table worries with file data)
1883 			 */
1884 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1885 
1886 			if (ioflag & IO_SYNC) {
1887 				/*
1888 				 * Synchronous I/O requested.
1889 				 */
1890 				hammer2_io_bwrite(&dio);
1891 			/*
1892 			} else if ((ioflag & IO_DIRECT) &&
1893 				   loff + n == pblksize) {
1894 				hammer2_io_bdwrite(&dio);
1895 			*/
1896 			} else if (ioflag & IO_ASYNC) {
1897 				hammer2_io_bawrite(&dio);
1898 			} else {
1899 				hammer2_io_bdwrite(&dio);
1900 			}
1901 			break;
1902 		default:
1903 			panic("hammer2_write_bp: bad chain type %d\n",
1904 			      chain->bref.type);
1905 			/* NOT REACHED */
1906 			error = 0;
1907 			break;
1908 		}
1909 		KKASSERT(error == 0);	/* XXX TODO */
1910 	}
1911 	*errorp = error;
1912 }
1913 
1914 static
1915 int
1916 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path,
1917 		struct vnode *devvp, struct ucred *cred)
1918 {
1919 	int error;
1920 
1921 	if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) {
1922 		error = hammer2_recovery(hmp);
1923 	} else {
1924 		error = 0;
1925 	}
1926 	return error;
1927 }
1928 
1929 static
1930 int
1931 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1932 {
1933 	hammer2_pfs_t *pmp;
1934 	int flags;
1935 	int error = 0;
1936 
1937 	pmp = MPTOPMP(mp);
1938 
1939 	if (pmp == NULL)
1940 		return(0);
1941 
1942 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1943 
1944 	/*
1945 	 * If mount initialization proceeded far enough we must flush
1946 	 * its vnodes and sync the underlying mount points.  Three syncs
1947 	 * are required to fully flush the filesystem (freemap updates lag
1948 	 * by one flush, and one extra for safety).
1949 	 */
1950 	if (mntflags & MNT_FORCE)
1951 		flags = FORCECLOSE;
1952 	else
1953 		flags = 0;
1954 	if (pmp->iroot) {
1955 		error = vflush(mp, 0, flags);
1956 		if (error)
1957 			goto failed;
1958 		hammer2_vfs_sync(mp, MNT_WAIT);
1959 		hammer2_vfs_sync(mp, MNT_WAIT);
1960 		hammer2_vfs_sync(mp, MNT_WAIT);
1961 	}
1962 
1963 	if (pmp->wthread_td) {
1964 		hammer2_mtx_ex(&pmp->wthread_mtx);
1965 		pmp->wthread_destroy = 1;
1966 		wakeup(&pmp->wthread_bioq);
1967 		while (pmp->wthread_destroy != -1) {
1968 			mtxsleep(&pmp->wthread_destroy,
1969 				&pmp->wthread_mtx, 0,
1970 				"umount-sleep",	0);
1971 		}
1972 		hammer2_mtx_unlock(&pmp->wthread_mtx);
1973 		pmp->wthread_td = NULL;
1974 	}
1975 
1976 	/*
1977 	 * Cleanup our reference on ihidden.
1978 	 */
1979 	if (pmp->ihidden) {
1980 		hammer2_inode_drop(pmp->ihidden);
1981 		pmp->ihidden = NULL;
1982 	}
1983 	if (pmp->mp)
1984 		hammer2_unmount_helper(mp, pmp, NULL);
1985 
1986 	error = 0;
1987 failed:
1988 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1989 
1990 	return (error);
1991 }
1992 
1993 /*
1994  * Mount helper, hook the system mount into our PFS.
1995  * The mount lock is held.
1996  *
1997  * We must bump the mount_count on related devices for any
1998  * mounted PFSs.
1999  */
2000 static
2001 void
2002 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp)
2003 {
2004 	hammer2_cluster_t *cluster;
2005 	hammer2_chain_t *rchain;
2006 	int i;
2007 
2008         mp->mnt_data = (qaddr_t)pmp;
2009 	pmp->mp = mp;
2010 
2011 	/*
2012 	 * After pmp->mp is set we have to adjust hmp->mount_count.
2013 	 */
2014 	cluster = &pmp->iroot->cluster;
2015 	for (i = 0; i < cluster->nchains; ++i) {
2016 		rchain = cluster->array[i].chain;
2017 		if (rchain == NULL)
2018 			continue;
2019 		++rchain->hmp->mount_count;
2020 		kprintf("hammer2_mount hmp=%p ++mount_count=%d\n",
2021 			rchain->hmp, rchain->hmp->mount_count);
2022 	}
2023 }
2024 
2025 /*
2026  * Mount helper, unhook the system mount from our PFS.
2027  * The mount lock is held.
2028  *
2029  * If hmp is supplied a mount responsible for being the first to open
2030  * the block device failed and the block device and all PFSs using the
2031  * block device must be cleaned up.
2032  *
2033  * If pmp is supplied multiple devices might be backing the PFS and each
2034  * must be disconnect.  This might not be the last PFS using some of the
2035  * underlying devices.  Also, we have to adjust our hmp->mount_count
2036  * accounting for the devices backing the pmp which is now undergoing an
2037  * unmount.
2038  */
2039 static
2040 void
2041 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp)
2042 {
2043 	hammer2_cluster_t *cluster;
2044 	hammer2_chain_t *rchain;
2045 	struct vnode *devvp;
2046 	int dumpcnt;
2047 	int ronly = 0;
2048 	int i;
2049 
2050 	/*
2051 	 * If no device supplied this is a high-level unmount and we have to
2052 	 * to disconnect the mount, adjust mount_count, and locate devices
2053 	 * that might now have no mounts.
2054 	 */
2055 	if (pmp) {
2056 		KKASSERT(hmp == NULL);
2057 		KKASSERT((void *)(intptr_t)mp->mnt_data == pmp);
2058 		pmp->mp = NULL;
2059 		mp->mnt_data = NULL;
2060 
2061 		/*
2062 		 * After pmp->mp is cleared we have to account for
2063 		 * mount_count.
2064 		 */
2065 		cluster = &pmp->iroot->cluster;
2066 		for (i = 0; i < cluster->nchains; ++i) {
2067 			rchain = cluster->array[i].chain;
2068 			if (rchain == NULL)
2069 				continue;
2070 			--rchain->hmp->mount_count;
2071 			kprintf("hammer2_unmount hmp=%p --mount_count=%d\n",
2072 				rchain->hmp, rchain->hmp->mount_count);
2073 			/* scrapping hmp now may invalidate the pmp */
2074 		}
2075 again:
2076 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
2077 			if (hmp->mount_count == 0) {
2078 				hammer2_unmount_helper(NULL, NULL, hmp);
2079 				goto again;
2080 			}
2081 		}
2082 		return;
2083 	}
2084 
2085 	/*
2086 	 * Try to terminate the block device.  We can't terminate it if
2087 	 * there are still PFSs referencing it.
2088 	 */
2089 	kprintf("hammer2_unmount hmp=%p mount_count=%d\n",
2090 		hmp, hmp->mount_count);
2091 	if (hmp->mount_count)
2092 		return;
2093 
2094 	hammer2_pfsfree_scan(hmp);
2095 	hammer2_dev_exlock(hmp);	/* XXX order */
2096 
2097 	/*
2098 	 * Cycle the volume data lock as a safety (probably not needed any
2099 	 * more).  To ensure everything is out we need to flush at least
2100 	 * three times.  (1) The running of the unlinkq can dirty the
2101 	 * filesystem, (2) A normal flush can dirty the freemap, and
2102 	 * (3) ensure that the freemap is fully synchronized.
2103 	 *
2104 	 * The next mount's recovery scan can clean everything up but we want
2105 	 * to leave the filesystem in a 100% clean state on a normal unmount.
2106 	 */
2107 #if 0
2108 	hammer2_voldata_lock(hmp);
2109 	hammer2_voldata_unlock(hmp);
2110 #endif
2111 	hammer2_iocom_uninit(hmp);
2112 
2113 	if ((hmp->vchain.flags | hmp->fchain.flags) &
2114 	    HAMMER2_CHAIN_FLUSH_MASK) {
2115 		kprintf("hammer2_unmount: chains left over "
2116 			"after final sync\n");
2117 		kprintf("    vchain %08x\n", hmp->vchain.flags);
2118 		kprintf("    fchain %08x\n", hmp->fchain.flags);
2119 
2120 		if (hammer2_debug & 0x0010)
2121 			Debugger("entered debugger");
2122 	}
2123 
2124 	KKASSERT(hmp->spmp == NULL);
2125 
2126 	/*
2127 	 * Finish up with the device vnode
2128 	 */
2129 	if ((devvp = hmp->devvp) != NULL) {
2130 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2131 		vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0);
2132 		hmp->devvp = NULL;
2133 		VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL);
2134 		vn_unlock(devvp);
2135 		vrele(devvp);
2136 		devvp = NULL;
2137 	}
2138 
2139 	/*
2140 	 * Clear vchain/fchain flags that might prevent final cleanup
2141 	 * of these chains.
2142 	 */
2143 	if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
2144 		atomic_clear_int(&hmp->vchain.flags,
2145 				 HAMMER2_CHAIN_MODIFIED);
2146 		hammer2_pfs_memory_wakeup(hmp->vchain.pmp);
2147 		hammer2_chain_drop(&hmp->vchain);
2148 	}
2149 	if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
2150 		atomic_clear_int(&hmp->vchain.flags,
2151 				 HAMMER2_CHAIN_UPDATE);
2152 		hammer2_chain_drop(&hmp->vchain);
2153 	}
2154 
2155 	if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
2156 		atomic_clear_int(&hmp->fchain.flags,
2157 				 HAMMER2_CHAIN_MODIFIED);
2158 		hammer2_pfs_memory_wakeup(hmp->fchain.pmp);
2159 		hammer2_chain_drop(&hmp->fchain);
2160 	}
2161 	if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
2162 		atomic_clear_int(&hmp->fchain.flags,
2163 				 HAMMER2_CHAIN_UPDATE);
2164 		hammer2_chain_drop(&hmp->fchain);
2165 	}
2166 
2167 	/*
2168 	 * Final drop of embedded freemap root chain to
2169 	 * clean up fchain.core (fchain structure is not
2170 	 * flagged ALLOCATED so it is cleaned out and then
2171 	 * left to rot).
2172 	 */
2173 	hammer2_chain_drop(&hmp->fchain);
2174 
2175 	/*
2176 	 * Final drop of embedded volume root chain to clean
2177 	 * up vchain.core (vchain structure is not flagged
2178 	 * ALLOCATED so it is cleaned out and then left to
2179 	 * rot).
2180 	 */
2181 	dumpcnt = 50;
2182 	hammer2_dump_chain(&hmp->vchain, 0, &dumpcnt, 'v');
2183 	dumpcnt = 50;
2184 	hammer2_dump_chain(&hmp->fchain, 0, &dumpcnt, 'f');
2185 	hammer2_dev_unlock(hmp);
2186 	hammer2_chain_drop(&hmp->vchain);
2187 
2188 	hammer2_io_cleanup(hmp, &hmp->iotree);
2189 	if (hmp->iofree_count) {
2190 		kprintf("io_cleanup: %d I/O's left hanging\n",
2191 			hmp->iofree_count);
2192 	}
2193 
2194 	TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
2195 	kmalloc_destroy(&hmp->mchain);
2196 	kfree(hmp, M_HAMMER2);
2197 }
2198 
2199 static
2200 int
2201 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
2202 	     ino_t ino, struct vnode **vpp)
2203 {
2204 	kprintf("hammer2_vget\n");
2205 	return (EOPNOTSUPP);
2206 }
2207 
2208 static
2209 int
2210 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
2211 {
2212 	hammer2_pfs_t *pmp;
2213 	hammer2_cluster_t *cparent;
2214 	int error;
2215 	struct vnode *vp;
2216 
2217 	pmp = MPTOPMP(mp);
2218 	if (pmp->iroot == NULL) {
2219 		*vpp = NULL;
2220 		error = EINVAL;
2221 	} else {
2222 		cparent = hammer2_inode_lock(pmp->iroot,
2223 						HAMMER2_RESOLVE_ALWAYS |
2224 					        HAMMER2_RESOLVE_SHARED);
2225 		vp = hammer2_igetv(pmp->iroot, cparent, &error);
2226 		hammer2_inode_unlock(pmp->iroot, cparent);
2227 		*vpp = vp;
2228 		if (vp == NULL)
2229 			kprintf("vnodefail\n");
2230 	}
2231 
2232 	return (error);
2233 }
2234 
2235 /*
2236  * Filesystem status
2237  *
2238  * XXX incorporate ipdata->inode_quota and data_quota
2239  */
2240 static
2241 int
2242 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
2243 {
2244 	hammer2_pfs_t *pmp;
2245 	hammer2_dev_t *hmp;
2246 	hammer2_blockref_t bref;
2247 
2248 	pmp = MPTOPMP(mp);
2249 	KKASSERT(pmp->iroot->cluster.nchains >= 1);
2250 	hmp = pmp->iroot->cluster.focus->hmp;	/* iroot retains focus */
2251 	bref = pmp->iroot->cluster.focus->bref;	/* no lock */
2252 
2253 	mp->mnt_stat.f_files = bref.inode_count;
2254 	mp->mnt_stat.f_ffree = 0;
2255 	mp->mnt_stat.f_blocks = (bref.data_count +
2256 				 hmp->voldata.allocator_free) /
2257 				mp->mnt_vstat.f_bsize;
2258 	mp->mnt_stat.f_bfree =  hmp->voldata.allocator_free /
2259 				mp->mnt_vstat.f_bsize;
2260 	mp->mnt_stat.f_bavail = mp->mnt_stat.f_bfree;
2261 
2262 	*sbp = mp->mnt_stat;
2263 	return (0);
2264 }
2265 
2266 static
2267 int
2268 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
2269 {
2270 	hammer2_pfs_t *pmp;
2271 	hammer2_dev_t *hmp;
2272 	hammer2_blockref_t bref;
2273 
2274 	pmp = MPTOPMP(mp);
2275 	KKASSERT(pmp->iroot->cluster.nchains >= 1);
2276 	hmp = pmp->iroot->cluster.focus->hmp;	/* iroot retains focus */
2277 	bref = pmp->iroot->cluster.focus->bref;	/* no lock */
2278 
2279 	mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
2280 	mp->mnt_vstat.f_files = bref.inode_count;
2281 	mp->mnt_vstat.f_ffree = 0;
2282 	mp->mnt_vstat.f_blocks = (bref.data_count +
2283 				 hmp->voldata.allocator_free) /
2284 				mp->mnt_vstat.f_bsize;
2285 	mp->mnt_vstat.f_bfree = hmp->voldata.allocator_free /
2286 				mp->mnt_vstat.f_bsize;
2287 	mp->mnt_vstat.f_bavail = mp->mnt_vstat.f_bfree;
2288 
2289 	*sbp = mp->mnt_vstat;
2290 	return (0);
2291 }
2292 
2293 /*
2294  * Mount-time recovery (RW mounts)
2295  *
2296  * Updates to the free block table are allowed to lag flushes by one
2297  * transaction.  In case of a crash, then on a fresh mount we must do an
2298  * incremental scan of the last committed transaction id and make sure that
2299  * all related blocks have been marked allocated.
2300  *
2301  * The super-root topology and each PFS has its own transaction id domain,
2302  * so we must track PFS boundary transitions.
2303  */
2304 struct hammer2_recovery_elm {
2305 	TAILQ_ENTRY(hammer2_recovery_elm) entry;
2306 	hammer2_chain_t *chain;
2307 	hammer2_tid_t sync_tid;
2308 };
2309 
2310 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
2311 
2312 struct hammer2_recovery_info {
2313 	struct hammer2_recovery_list list;
2314 	int	depth;
2315 };
2316 
2317 static int hammer2_recovery_scan(hammer2_trans_t *trans, hammer2_dev_t *hmp,
2318 			hammer2_chain_t *parent,
2319 			struct hammer2_recovery_info *info,
2320 			hammer2_tid_t sync_tid);
2321 
2322 #define HAMMER2_RECOVERY_MAXDEPTH	10
2323 
2324 static
2325 int
2326 hammer2_recovery(hammer2_dev_t *hmp)
2327 {
2328 	hammer2_trans_t trans;
2329 	struct hammer2_recovery_info info;
2330 	struct hammer2_recovery_elm *elm;
2331 	hammer2_chain_t *parent;
2332 	hammer2_tid_t sync_tid;
2333 	hammer2_tid_t mirror_tid;
2334 	int error;
2335 	int cumulative_error = 0;
2336 
2337 	hammer2_trans_init(&trans, hmp->spmp, 0);
2338 
2339 	sync_tid = hmp->voldata.freemap_tid;
2340 	mirror_tid = hmp->voldata.mirror_tid;
2341 
2342 	kprintf("hammer2 mount \"%s\": ", hmp->devrepname);
2343 	if (sync_tid >= mirror_tid) {
2344 		kprintf(" no recovery needed\n");
2345 	} else {
2346 		kprintf(" freemap recovery %016jx-%016jx\n",
2347 			sync_tid + 1, mirror_tid);
2348 	}
2349 
2350 	TAILQ_INIT(&info.list);
2351 	info.depth = 0;
2352 	parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
2353 	cumulative_error = hammer2_recovery_scan(&trans, hmp, parent,
2354 						 &info, sync_tid);
2355 	hammer2_chain_lookup_done(parent);
2356 
2357 	while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
2358 		TAILQ_REMOVE(&info.list, elm, entry);
2359 		parent = elm->chain;
2360 		sync_tid = elm->sync_tid;
2361 		kfree(elm, M_HAMMER2);
2362 
2363 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2364 		error = hammer2_recovery_scan(&trans, hmp, parent,
2365 					      &info,
2366 					      hmp->voldata.freemap_tid);
2367 		hammer2_chain_unlock(parent);
2368 		hammer2_chain_drop(parent);	/* drop elm->chain ref */
2369 		if (error)
2370 			cumulative_error = error;
2371 	}
2372 	hammer2_trans_done(&trans);
2373 
2374 	return cumulative_error;
2375 }
2376 
2377 static
2378 int
2379 hammer2_recovery_scan(hammer2_trans_t *trans, hammer2_dev_t *hmp,
2380 		      hammer2_chain_t *parent,
2381 		      struct hammer2_recovery_info *info,
2382 		      hammer2_tid_t sync_tid)
2383 {
2384 	const hammer2_inode_data_t *ripdata;
2385 	hammer2_chain_t *chain;
2386 	int cache_index;
2387 	int cumulative_error = 0;
2388 	int error;
2389 
2390 	/*
2391 	 * Adjust freemap to ensure that the block(s) are marked allocated.
2392 	 */
2393 	if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
2394 		hammer2_freemap_adjust(trans, hmp, &parent->bref,
2395 				       HAMMER2_FREEMAP_DORECOVER);
2396 	}
2397 
2398 	/*
2399 	 * Check type for recursive scan
2400 	 */
2401 	switch(parent->bref.type) {
2402 	case HAMMER2_BREF_TYPE_VOLUME:
2403 		/* data already instantiated */
2404 		break;
2405 	case HAMMER2_BREF_TYPE_INODE:
2406 		/*
2407 		 * Must instantiate data for DIRECTDATA test and also
2408 		 * for recursion.
2409 		 */
2410 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2411 		ripdata = &hammer2_chain_rdata(parent)->ipdata;
2412 		if (ripdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2413 			/* not applicable to recovery scan */
2414 			hammer2_chain_unlock(parent);
2415 			return 0;
2416 		}
2417 		hammer2_chain_unlock(parent);
2418 		break;
2419 	case HAMMER2_BREF_TYPE_INDIRECT:
2420 		/*
2421 		 * Must instantiate data for recursion
2422 		 */
2423 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2424 		hammer2_chain_unlock(parent);
2425 		break;
2426 	case HAMMER2_BREF_TYPE_DATA:
2427 	case HAMMER2_BREF_TYPE_FREEMAP:
2428 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2429 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2430 		/* not applicable to recovery scan */
2431 		return 0;
2432 		break;
2433 	default:
2434 		return EDOM;
2435 	}
2436 
2437 	/*
2438 	 * Defer operation if depth limit reached or if we are crossing a
2439 	 * PFS boundary.
2440 	 */
2441 	if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) {
2442 		struct hammer2_recovery_elm *elm;
2443 
2444 		elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2445 		elm->chain = parent;
2446 		elm->sync_tid = sync_tid;
2447 		hammer2_chain_ref(parent);
2448 		TAILQ_INSERT_TAIL(&info->list, elm, entry);
2449 		/* unlocked by caller */
2450 
2451 		return(0);
2452 	}
2453 
2454 
2455 	/*
2456 	 * Recursive scan of the last flushed transaction only.  We are
2457 	 * doing this without pmp assignments so don't leave the chains
2458 	 * hanging around after we are done with them.
2459 	 */
2460 	cache_index = 0;
2461 	chain = hammer2_chain_scan(parent, NULL, &cache_index,
2462 				   HAMMER2_LOOKUP_NODATA);
2463 	while (chain) {
2464 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2465 		if (chain->bref.mirror_tid > sync_tid) {
2466 			++info->depth;
2467 			error = hammer2_recovery_scan(trans, hmp, chain,
2468 						      info, sync_tid);
2469 			--info->depth;
2470 			if (error)
2471 				cumulative_error = error;
2472 		}
2473 
2474 		/*
2475 		 * Flush the recovery at the PFS boundary to stage it for
2476 		 * the final flush of the super-root topology.
2477 		 */
2478 		if ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) &&
2479 		    (chain->flags & HAMMER2_CHAIN_ONFLUSH)) {
2480 			hammer2_flush(trans, chain, 1);
2481 		}
2482 		chain = hammer2_chain_scan(parent, chain, &cache_index,
2483 					   HAMMER2_LOOKUP_NODATA);
2484 	}
2485 
2486 	return cumulative_error;
2487 }
2488 
2489 /*
2490  * Sync a mount point; this is called on a per-mount basis from the
2491  * filesystem syncer process periodically and whenever a user issues
2492  * a sync.
2493  */
2494 int
2495 hammer2_vfs_sync(struct mount *mp, int waitfor)
2496 {
2497 	struct hammer2_sync_info info;
2498 	hammer2_inode_t *iroot;
2499 	hammer2_chain_t *chain;
2500 	hammer2_chain_t *parent;
2501 	hammer2_pfs_t *pmp;
2502 	hammer2_dev_t *hmp;
2503 	int flags;
2504 	int error;
2505 	int total_error;
2506 	int i;
2507 	int j;
2508 
2509 	pmp = MPTOPMP(mp);
2510 	iroot = pmp->iroot;
2511 	KKASSERT(iroot);
2512 	KKASSERT(iroot->pmp == pmp);
2513 
2514 	/*
2515 	 * We can't acquire locks on existing vnodes while in a transaction
2516 	 * without risking a deadlock.  This assumes that vfsync() can be
2517 	 * called without the vnode locked (which it can in DragonFly).
2518 	 * Otherwise we'd have to implement a multi-pass or flag the lock
2519 	 * failures and retry.
2520 	 *
2521 	 * The reclamation code interlocks with the sync list's token
2522 	 * (by removing the vnode from the scan list) before unlocking
2523 	 * the inode, giving us time to ref the inode.
2524 	 */
2525 	/*flags = VMSC_GETVP;*/
2526 	flags = 0;
2527 	if (waitfor & MNT_LAZY)
2528 		flags |= VMSC_ONEPASS;
2529 
2530 #if 0
2531 	/*
2532 	 * Preflush the vnodes using a normal transaction before interlocking
2533 	 * with a flush transaction.
2534 	 */
2535 	hammer2_trans_init(&info.trans, pmp, 0);
2536 	info.error = 0;
2537 	info.waitfor = MNT_NOWAIT;
2538 	vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info);
2539 	hammer2_trans_done(&info.trans);
2540 #endif
2541 
2542 	/*
2543 	 * Start our flush transaction.  This does not return until all
2544 	 * concurrent transactions have completed and will prevent any
2545 	 * new transactions from running concurrently, except for the
2546 	 * buffer cache transactions.
2547 	 *
2548 	 * For efficiency do an async pass before making sure with a
2549 	 * synchronous pass on all related buffer cache buffers.  It
2550 	 * should theoretically not be possible for any new file buffers
2551 	 * to be instantiated during this sequence.
2552 	 */
2553 	hammer2_trans_init(&info.trans, pmp, HAMMER2_TRANS_ISFLUSH |
2554 					     HAMMER2_TRANS_PREFLUSH);
2555 	hammer2_run_unlinkq(&info.trans, pmp);
2556 
2557 	info.error = 0;
2558 	info.waitfor = MNT_NOWAIT;
2559 	vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info);
2560 	info.waitfor = MNT_WAIT;
2561 	vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2562 
2563 	/*
2564 	 * Clear PREFLUSH.  This prevents (or asserts on) any new logical
2565 	 * buffer cache flushes which occur during the flush.  Device buffers
2566 	 * are not affected.
2567 	 */
2568 	hammer2_bioq_sync(info.trans.pmp);
2569 	atomic_clear_int(&info.trans.flags, HAMMER2_TRANS_PREFLUSH);
2570 
2571 	total_error = 0;
2572 
2573 	/*
2574 	 * Flush all nodes to synchronize the PFSROOT subtopology to the media.
2575 	 *
2576 	 * Note that this flush will not be visible on crash recovery until
2577 	 * we flush the super-root topology in the next loop.
2578 	 */
2579 	for (i = 0; iroot && i < iroot->cluster.nchains; ++i) {
2580 		chain = iroot->cluster.array[i].chain;
2581 		if (chain == NULL)
2582 			continue;
2583 
2584 		hammer2_chain_ref(chain);
2585 		hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
2586 		if (chain->flags & HAMMER2_CHAIN_FLUSH_MASK) {
2587 			hammer2_flush(&info.trans, chain, 1);
2588 			parent = chain->parent;
2589 			KKASSERT(chain->pmp != parent->pmp);
2590 			hammer2_chain_setflush(&info.trans, parent);
2591 		}
2592 		hammer2_chain_unlock(chain);
2593 		hammer2_chain_drop(chain);
2594 	}
2595 	hammer2_trans_done(&info.trans);
2596 
2597 	/*
2598 	 * Flush all volume roots to synchronize PFS flushes with the
2599 	 * storage media volume header.  This will flush the freemap and
2600 	 * the superroot topology but stops when it reaches a PFSROOT
2601 	 * (which we already flushed above).
2602 	 *
2603 	 * This is the last step which connects the volume root to the
2604 	 * PFSROOT dirs flushed above.
2605 	 *
2606 	 * Each spmp (representing the hmp's super-root) requires its own
2607 	 * transaction.
2608 	 */
2609 	for (i = 0; iroot && i < iroot->cluster.nchains; ++i) {
2610 		hammer2_chain_t *tmp;
2611 
2612 		chain = iroot->cluster.array[i].chain;
2613 		if (chain == NULL)
2614 			continue;
2615 
2616 		hmp = chain->hmp;
2617 
2618 		/*
2619 		 * We only have to flush each hmp once
2620 		 */
2621 		for (j = i - 1; j >= 0; --j) {
2622 			if ((tmp = iroot->cluster.array[j].chain) != NULL) {
2623 				if (tmp->hmp == hmp)
2624 					break;
2625 			}
2626 		}
2627 		if (j >= 0)
2628 			continue;
2629 
2630 		/*
2631 		 * spmp transaction.  The super-root is never directly
2632 		 * mounted so there shouldn't be any vnodes, let alone any
2633 		 * dirty vnodes associated with it.
2634 		 */
2635 		hammer2_trans_init(&info.trans, hmp->spmp,
2636 				   HAMMER2_TRANS_ISFLUSH);
2637 
2638 		/*
2639 		 * Media mounts have two 'roots', vchain for the topology
2640 		 * and fchain for the free block table.  Flush both.
2641 		 *
2642 		 * Note that the topology and free block table are handled
2643 		 * independently, so the free block table can wind up being
2644 		 * ahead of the topology.  We depend on the bulk free scan
2645 		 * code to deal with any loose ends.
2646 		 */
2647 		hammer2_chain_ref(&hmp->vchain);
2648 		hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
2649 		hammer2_chain_ref(&hmp->fchain);
2650 		hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
2651 		if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
2652 			/*
2653 			 * This will also modify vchain as a side effect,
2654 			 * mark vchain as modified now.
2655 			 */
2656 			hammer2_voldata_modify(hmp);
2657 			chain = &hmp->fchain;
2658 			hammer2_flush(&info.trans, chain, 1);
2659 			KKASSERT(chain == &hmp->fchain);
2660 		}
2661 		hammer2_chain_unlock(&hmp->fchain);
2662 		hammer2_chain_unlock(&hmp->vchain);
2663 		hammer2_chain_drop(&hmp->fchain);
2664 		/* vchain dropped down below */
2665 
2666 		hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
2667 		if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
2668 			chain = &hmp->vchain;
2669 			hammer2_flush(&info.trans, chain, 1);
2670 			KKASSERT(chain == &hmp->vchain);
2671 		}
2672 		hammer2_chain_unlock(&hmp->vchain);
2673 		hammer2_chain_drop(&hmp->vchain);
2674 
2675 		error = 0;
2676 
2677 		/*
2678 		 * We can't safely flush the volume header until we have
2679 		 * flushed any device buffers which have built up.
2680 		 *
2681 		 * XXX this isn't being incremental
2682 		 */
2683 		vn_lock(hmp->devvp, LK_EXCLUSIVE | LK_RETRY);
2684 		error = VOP_FSYNC(hmp->devvp, MNT_WAIT, 0);
2685 		vn_unlock(hmp->devvp);
2686 
2687 		/*
2688 		 * The flush code sets CHAIN_VOLUMESYNC to indicate that the
2689 		 * volume header needs synchronization via hmp->volsync.
2690 		 *
2691 		 * XXX synchronize the flag & data with only this flush XXX
2692 		 */
2693 		if (error == 0 &&
2694 		    (hmp->vchain.flags & HAMMER2_CHAIN_VOLUMESYNC)) {
2695 			struct buf *bp;
2696 
2697 			/*
2698 			 * Synchronize the disk before flushing the volume
2699 			 * header.
2700 			 */
2701 			bp = getpbuf(NULL);
2702 			bp->b_bio1.bio_offset = 0;
2703 			bp->b_bufsize = 0;
2704 			bp->b_bcount = 0;
2705 			bp->b_cmd = BUF_CMD_FLUSH;
2706 			bp->b_bio1.bio_done = biodone_sync;
2707 			bp->b_bio1.bio_flags |= BIO_SYNC;
2708 			vn_strategy(hmp->devvp, &bp->b_bio1);
2709 			biowait(&bp->b_bio1, "h2vol");
2710 			relpbuf(bp, NULL);
2711 
2712 			/*
2713 			 * Then we can safely flush the version of the
2714 			 * volume header synchronized by the flush code.
2715 			 */
2716 			i = hmp->volhdrno + 1;
2717 			if (i >= HAMMER2_NUM_VOLHDRS)
2718 				i = 0;
2719 			if (i * HAMMER2_ZONE_BYTES64 + HAMMER2_SEGSIZE >
2720 			    hmp->volsync.volu_size) {
2721 				i = 0;
2722 			}
2723 			kprintf("sync volhdr %d %jd\n",
2724 				i, (intmax_t)hmp->volsync.volu_size);
2725 			bp = getblk(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2726 				    HAMMER2_PBUFSIZE, 0, 0);
2727 			atomic_clear_int(&hmp->vchain.flags,
2728 					 HAMMER2_CHAIN_VOLUMESYNC);
2729 			bcopy(&hmp->volsync, bp->b_data, HAMMER2_PBUFSIZE);
2730 			bawrite(bp);
2731 			hmp->volhdrno = i;
2732 		}
2733 		if (error)
2734 			total_error = error;
2735 
2736 		hammer2_trans_done(&info.trans);	/* spmp trans */
2737 	}
2738 	return (total_error);
2739 }
2740 
2741 /*
2742  * Sync passes.
2743  */
2744 static int
2745 hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
2746 {
2747 	struct hammer2_sync_info *info = data;
2748 	hammer2_inode_t *ip;
2749 	int error;
2750 
2751 	/*
2752 	 * Degenerate cases.  Note that ip == NULL typically means the
2753 	 * syncer vnode itself and we don't want to vclrisdirty() in that
2754 	 * situation.
2755 	 */
2756 	ip = VTOI(vp);
2757 	if (ip == NULL) {
2758 		return(0);
2759 	}
2760 	if (vp->v_type == VNON || vp->v_type == VBAD) {
2761 		vclrisdirty(vp);
2762 		return(0);
2763 	}
2764 
2765 	/*
2766 	 * VOP_FSYNC will start a new transaction so replicate some code
2767 	 * here to do it inline (see hammer2_vop_fsync()).
2768 	 *
2769 	 * WARNING: The vfsync interacts with the buffer cache and might
2770 	 *          block, we can't hold the inode lock at that time.
2771 	 *	    However, we MUST ref ip before blocking to ensure that
2772 	 *	    it isn't ripped out from under us (since we do not
2773 	 *	    hold a lock on the vnode).
2774 	 */
2775 	hammer2_inode_ref(ip);
2776 	atomic_clear_int(&ip->flags, HAMMER2_INODE_MODIFIED);
2777 	if ((ip->flags & HAMMER2_INODE_MODIFIED) ||
2778 	    !RB_EMPTY(&vp->v_rbdirty_tree)) {
2779 		vfsync(vp, info->waitfor, 1, NULL, NULL);
2780 	}
2781 	if ((ip->flags & HAMMER2_INODE_MODIFIED) == 0 &&
2782 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
2783 		vclrisdirty(vp);
2784 	}
2785 
2786 	hammer2_inode_drop(ip);
2787 #if 1
2788 	error = 0;
2789 	if (error)
2790 		info->error = error;
2791 #endif
2792 	return(0);
2793 }
2794 
2795 static
2796 int
2797 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2798 {
2799 	return (0);
2800 }
2801 
2802 static
2803 int
2804 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2805 	       struct fid *fhp, struct vnode **vpp)
2806 {
2807 	return (0);
2808 }
2809 
2810 static
2811 int
2812 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2813 		 int *exflagsp, struct ucred **credanonp)
2814 {
2815 	return (0);
2816 }
2817 
2818 /*
2819  * Support code for hammer2_vfs_mount().  Read, verify, and install the volume
2820  * header into the HMP
2821  *
2822  * XXX read four volhdrs and use the one with the highest TID whos CRC
2823  *     matches.
2824  *
2825  * XXX check iCRCs.
2826  *
2827  * XXX For filesystems w/ less than 4 volhdrs, make sure to not write to
2828  *     nonexistant locations.
2829  *
2830  * XXX Record selected volhdr and ring updates to each of 4 volhdrs
2831  */
2832 static
2833 int
2834 hammer2_install_volume_header(hammer2_dev_t *hmp)
2835 {
2836 	hammer2_volume_data_t *vd;
2837 	struct buf *bp;
2838 	hammer2_crc32_t crc0, crc, bcrc0, bcrc;
2839 	int error_reported;
2840 	int error;
2841 	int valid;
2842 	int i;
2843 
2844 	error_reported = 0;
2845 	error = 0;
2846 	valid = 0;
2847 	bp = NULL;
2848 
2849 	/*
2850 	 * There are up to 4 copies of the volume header (syncs iterate
2851 	 * between them so there is no single master).  We don't trust the
2852 	 * volu_size field so we don't know precisely how large the filesystem
2853 	 * is, so depend on the OS to return an error if we go beyond the
2854 	 * block device's EOF.
2855 	 */
2856 	for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) {
2857 		error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2858 			      HAMMER2_VOLUME_BYTES, &bp);
2859 		if (error) {
2860 			brelse(bp);
2861 			bp = NULL;
2862 			continue;
2863 		}
2864 
2865 		vd = (struct hammer2_volume_data *) bp->b_data;
2866 		if ((vd->magic != HAMMER2_VOLUME_ID_HBO) &&
2867 		    (vd->magic != HAMMER2_VOLUME_ID_ABO)) {
2868 			brelse(bp);
2869 			bp = NULL;
2870 			continue;
2871 		}
2872 
2873 		if (vd->magic == HAMMER2_VOLUME_ID_ABO) {
2874 			/* XXX: Reversed-endianness filesystem */
2875 			kprintf("hammer2: reverse-endian filesystem detected");
2876 			brelse(bp);
2877 			bp = NULL;
2878 			continue;
2879 		}
2880 
2881 		crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0];
2882 		crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF,
2883 				      HAMMER2_VOLUME_ICRC0_SIZE);
2884 		bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1];
2885 		bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF,
2886 				       HAMMER2_VOLUME_ICRC1_SIZE);
2887 		if ((crc0 != crc) || (bcrc0 != bcrc)) {
2888 			kprintf("hammer2 volume header crc "
2889 				"mismatch copy #%d %08x/%08x\n",
2890 				i, crc0, crc);
2891 			error_reported = 1;
2892 			brelse(bp);
2893 			bp = NULL;
2894 			continue;
2895 		}
2896 		if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) {
2897 			valid = 1;
2898 			hmp->voldata = *vd;
2899 			hmp->volhdrno = i;
2900 		}
2901 		brelse(bp);
2902 		bp = NULL;
2903 	}
2904 	if (valid) {
2905 		hmp->volsync = hmp->voldata;
2906 		error = 0;
2907 		if (error_reported || bootverbose || 1) { /* 1/DEBUG */
2908 			kprintf("hammer2: using volume header #%d\n",
2909 				hmp->volhdrno);
2910 		}
2911 	} else {
2912 		error = EINVAL;
2913 		kprintf("hammer2: no valid volume headers found!\n");
2914 	}
2915 	return (error);
2916 }
2917 
2918 /*
2919  * This handles hysteresis on regular file flushes.  Because the BIOs are
2920  * routed to a thread it is possible for an excessive number to build up
2921  * and cause long front-end stalls long before the runningbuffspace limit
2922  * is hit, so we implement hammer2_flush_pipe to control the
2923  * hysteresis.
2924  *
2925  * This is a particular problem when compression is used.
2926  */
2927 void
2928 hammer2_lwinprog_ref(hammer2_pfs_t *pmp)
2929 {
2930 	atomic_add_int(&pmp->count_lwinprog, 1);
2931 }
2932 
2933 void
2934 hammer2_lwinprog_drop(hammer2_pfs_t *pmp)
2935 {
2936 	int lwinprog;
2937 
2938 	lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
2939 	if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
2940 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
2941 		atomic_clear_int(&pmp->count_lwinprog,
2942 				 HAMMER2_LWINPROG_WAITING);
2943 		wakeup(&pmp->count_lwinprog);
2944 	}
2945 }
2946 
2947 void
2948 hammer2_lwinprog_wait(hammer2_pfs_t *pmp)
2949 {
2950 	int lwinprog;
2951 
2952 	for (;;) {
2953 		lwinprog = pmp->count_lwinprog;
2954 		cpu_ccfence();
2955 		if ((lwinprog & HAMMER2_LWINPROG_MASK) < hammer2_flush_pipe)
2956 			break;
2957 		tsleep_interlock(&pmp->count_lwinprog, 0);
2958 		atomic_set_int(&pmp->count_lwinprog, HAMMER2_LWINPROG_WAITING);
2959 		lwinprog = pmp->count_lwinprog;
2960 		if ((lwinprog & HAMMER2_LWINPROG_MASK) < hammer2_flush_pipe)
2961 			break;
2962 		tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
2963 	}
2964 }
2965 
2966 /*
2967  * Manage excessive memory resource use for chain and related
2968  * structures.
2969  */
2970 void
2971 hammer2_pfs_memory_wait(hammer2_pfs_t *pmp)
2972 {
2973 	uint32_t waiting;
2974 	uint32_t count;
2975 	uint32_t limit;
2976 #if 0
2977 	static int zzticks;
2978 #endif
2979 
2980 	/*
2981 	 * Atomic check condition and wait.  Also do an early speedup of
2982 	 * the syncer to try to avoid hitting the wait.
2983 	 */
2984 	for (;;) {
2985 		waiting = pmp->inmem_dirty_chains;
2986 		cpu_ccfence();
2987 		count = waiting & HAMMER2_DIRTYCHAIN_MASK;
2988 
2989 		limit = pmp->mp->mnt_nvnodelistsize / 10;
2990 		if (limit < hammer2_limit_dirty_chains)
2991 			limit = hammer2_limit_dirty_chains;
2992 		if (limit < 1000)
2993 			limit = 1000;
2994 
2995 #if 0
2996 		if ((int)(ticks - zzticks) > hz) {
2997 			zzticks = ticks;
2998 			kprintf("count %ld %ld\n", count, limit);
2999 		}
3000 #endif
3001 
3002 		/*
3003 		 * Block if there are too many dirty chains present, wait
3004 		 * for the flush to clean some out.
3005 		 */
3006 		if (count > limit) {
3007 			tsleep_interlock(&pmp->inmem_dirty_chains, 0);
3008 			if (atomic_cmpset_int(&pmp->inmem_dirty_chains,
3009 					       waiting,
3010 				       waiting | HAMMER2_DIRTYCHAIN_WAITING)) {
3011 				speedup_syncer(pmp->mp);
3012 				tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED,
3013 				       "chnmem", hz);
3014 			}
3015 			continue;	/* loop on success or fail */
3016 		}
3017 
3018 		/*
3019 		 * Try to start an early flush before we are forced to block.
3020 		 */
3021 		if (count > limit * 7 / 10)
3022 			speedup_syncer(pmp->mp);
3023 		break;
3024 	}
3025 }
3026 
3027 void
3028 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp)
3029 {
3030 	if (pmp) {
3031 		atomic_add_int(&pmp->inmem_dirty_chains, 1);
3032 	}
3033 }
3034 
3035 void
3036 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp)
3037 {
3038 	uint32_t waiting;
3039 
3040 	if (pmp == NULL)
3041 		return;
3042 
3043 	for (;;) {
3044 		waiting = pmp->inmem_dirty_chains;
3045 		cpu_ccfence();
3046 		if (atomic_cmpset_int(&pmp->inmem_dirty_chains,
3047 				       waiting,
3048 				       (waiting - 1) &
3049 					~HAMMER2_DIRTYCHAIN_WAITING)) {
3050 			break;
3051 		}
3052 	}
3053 
3054 	if (waiting & HAMMER2_DIRTYCHAIN_WAITING)
3055 		wakeup(&pmp->inmem_dirty_chains);
3056 }
3057 
3058 /*
3059  * Debugging
3060  */
3061 void
3062 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int *countp, char pfx)
3063 {
3064 	hammer2_chain_t *scan;
3065 	hammer2_chain_t *parent;
3066 
3067 	--*countp;
3068 	if (*countp == 0) {
3069 		kprintf("%*.*s...\n", tab, tab, "");
3070 		return;
3071 	}
3072 	if (*countp < 0)
3073 		return;
3074 	kprintf("%*.*s%c-chain %p.%d %016jx/%d mir=%016jx\n",
3075 		tab, tab, "", pfx,
3076 		chain, chain->bref.type,
3077 		chain->bref.key, chain->bref.keybits,
3078 		chain->bref.mirror_tid);
3079 
3080 	kprintf("%*.*s      [%08x] (%s) refs=%d",
3081 		tab, tab, "",
3082 		chain->flags,
3083 		((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
3084 		chain->data) ?  (char *)chain->data->ipdata.filename : "?"),
3085 		chain->refs);
3086 
3087 	parent = chain->parent;
3088 	if (parent)
3089 		kprintf("\n%*.*s      p=%p [pflags %08x prefs %d",
3090 			tab, tab, "",
3091 			parent, parent->flags, parent->refs);
3092 	if (RB_EMPTY(&chain->core.rbtree)) {
3093 		kprintf("\n");
3094 	} else {
3095 		kprintf(" {\n");
3096 		RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree)
3097 			hammer2_dump_chain(scan, tab + 4, countp, 'a');
3098 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
3099 			kprintf("%*.*s}(%s)\n", tab, tab, "",
3100 				chain->data->ipdata.filename);
3101 		else
3102 			kprintf("%*.*s}\n", tab, tab, "");
3103 	}
3104 }
3105