xref: /dragonfly/sys/vfs/hammer2/hammer2_vfsops.c (revision d37f73b6)
1 /*
2  * Copyright (c) 2011-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/buf.h>
43 #include <sys/uuid.h>
44 #include <sys/vfsops.h>
45 #include <sys/sysctl.h>
46 #include <sys/socket.h>
47 #include <sys/objcache.h>
48 
49 #include <sys/proc.h>
50 #include <sys/namei.h>
51 #include <sys/mountctl.h>
52 #include <sys/dirent.h>
53 #include <sys/uio.h>
54 
55 #include <sys/mutex.h>
56 #include <sys/mutex2.h>
57 
58 #include "hammer2.h"
59 #include "hammer2_disk.h"
60 #include "hammer2_mount.h"
61 
62 #include "hammer2.h"
63 #include "hammer2_lz4.h"
64 
65 #include "zlib/hammer2_zlib.h"
66 
67 #define REPORT_REFS_ERRORS 1	/* XXX remove me */
68 
69 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache");
70 
71 struct hammer2_sync_info {
72 	hammer2_trans_t trans;
73 	int error;
74 	int waitfor;
75 };
76 
77 TAILQ_HEAD(hammer2_mntlist, hammer2_mount);
78 TAILQ_HEAD(hammer2_pfslist, hammer2_pfsmount);
79 static struct hammer2_mntlist hammer2_mntlist;
80 static struct hammer2_pfslist hammer2_pfslist;
81 static struct lock hammer2_mntlk;
82 
83 int hammer2_debug;
84 int hammer2_cluster_enable = 1;
85 int hammer2_hardlink_enable = 1;
86 int hammer2_flush_pipe = 100;
87 int hammer2_synchronous_flush = 1;
88 int hammer2_dio_count;
89 long hammer2_limit_dirty_chains;
90 long hammer2_iod_file_read;
91 long hammer2_iod_meta_read;
92 long hammer2_iod_indr_read;
93 long hammer2_iod_fmap_read;
94 long hammer2_iod_volu_read;
95 long hammer2_iod_file_write;
96 long hammer2_iod_meta_write;
97 long hammer2_iod_indr_write;
98 long hammer2_iod_fmap_write;
99 long hammer2_iod_volu_write;
100 long hammer2_ioa_file_read;
101 long hammer2_ioa_meta_read;
102 long hammer2_ioa_indr_read;
103 long hammer2_ioa_fmap_read;
104 long hammer2_ioa_volu_read;
105 long hammer2_ioa_fmap_write;
106 long hammer2_ioa_file_write;
107 long hammer2_ioa_meta_write;
108 long hammer2_ioa_indr_write;
109 long hammer2_ioa_volu_write;
110 
111 MALLOC_DECLARE(C_BUFFER);
112 MALLOC_DEFINE(C_BUFFER, "compbuffer", "Buffer used for compression.");
113 
114 MALLOC_DECLARE(D_BUFFER);
115 MALLOC_DEFINE(D_BUFFER, "decompbuffer", "Buffer used for decompression.");
116 
117 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
118 
119 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
120 	   &hammer2_debug, 0, "");
121 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_enable, CTLFLAG_RW,
122 	   &hammer2_cluster_enable, 0, "");
123 SYSCTL_INT(_vfs_hammer2, OID_AUTO, hardlink_enable, CTLFLAG_RW,
124 	   &hammer2_hardlink_enable, 0, "");
125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
126 	   &hammer2_flush_pipe, 0, "");
127 SYSCTL_INT(_vfs_hammer2, OID_AUTO, synchronous_flush, CTLFLAG_RW,
128 	   &hammer2_synchronous_flush, 0, "");
129 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
130 	   &hammer2_limit_dirty_chains, 0, "");
131 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
132 	   &hammer2_dio_count, 0, "");
133 
134 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
135 	   &hammer2_iod_file_read, 0, "");
136 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
137 	   &hammer2_iod_meta_read, 0, "");
138 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
139 	   &hammer2_iod_indr_read, 0, "");
140 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
141 	   &hammer2_iod_fmap_read, 0, "");
142 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
143 	   &hammer2_iod_volu_read, 0, "");
144 
145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
146 	   &hammer2_iod_file_write, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
148 	   &hammer2_iod_meta_write, 0, "");
149 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
150 	   &hammer2_iod_indr_write, 0, "");
151 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
152 	   &hammer2_iod_fmap_write, 0, "");
153 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
154 	   &hammer2_iod_volu_write, 0, "");
155 
156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_read, CTLFLAG_RW,
157 	   &hammer2_ioa_file_read, 0, "");
158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_read, CTLFLAG_RW,
159 	   &hammer2_ioa_meta_read, 0, "");
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_read, CTLFLAG_RW,
161 	   &hammer2_ioa_indr_read, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_read, CTLFLAG_RW,
163 	   &hammer2_ioa_fmap_read, 0, "");
164 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_read, CTLFLAG_RW,
165 	   &hammer2_ioa_volu_read, 0, "");
166 
167 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_write, CTLFLAG_RW,
168 	   &hammer2_ioa_file_write, 0, "");
169 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_write, CTLFLAG_RW,
170 	   &hammer2_ioa_meta_write, 0, "");
171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_write, CTLFLAG_RW,
172 	   &hammer2_ioa_indr_write, 0, "");
173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_write, CTLFLAG_RW,
174 	   &hammer2_ioa_fmap_write, 0, "");
175 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_write, CTLFLAG_RW,
176 	   &hammer2_ioa_volu_write, 0, "");
177 
178 static int hammer2_vfs_init(struct vfsconf *conf);
179 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
180 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
181 				struct ucred *cred);
182 static int hammer2_remount(hammer2_mount_t *, struct mount *, char *,
183 				struct vnode *, struct ucred *);
184 static int hammer2_recovery(hammer2_mount_t *hmp);
185 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
186 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
187 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
188 				struct ucred *cred);
189 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
190 				struct ucred *cred);
191 static int hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
192 				ino_t ino, struct vnode **vpp);
193 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
194 				struct fid *fhp, struct vnode **vpp);
195 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
196 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
197 				int *exflagsp, struct ucred **credanonp);
198 
199 static int hammer2_install_volume_header(hammer2_mount_t *hmp);
200 static int hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
201 
202 static void hammer2_write_thread(void *arg);
203 
204 static void hammer2_vfs_unmount_hmp1(struct mount *mp, hammer2_mount_t *hmp);
205 static void hammer2_vfs_unmount_hmp2(struct mount *mp, hammer2_mount_t *hmp);
206 
207 /*
208  * Functions for compression in threads,
209  * from hammer2_vnops.c
210  */
211 static void hammer2_write_file_core(struct buf *bp, hammer2_trans_t *trans,
212 				hammer2_inode_t *ip,
213 				const hammer2_inode_data_t *ripdata,
214 				hammer2_cluster_t *cparent,
215 				hammer2_key_t lbase, int ioflag, int pblksize,
216 				int *errorp);
217 static void hammer2_compress_and_write(struct buf *bp, hammer2_trans_t *trans,
218 				hammer2_inode_t *ip,
219 				const hammer2_inode_data_t *ripdata,
220 				hammer2_cluster_t *cparent,
221 				hammer2_key_t lbase, int ioflag,
222 				int pblksize, int *errorp,
223 				int comp_algo, int check_algo);
224 static void hammer2_zero_check_and_write(struct buf *bp,
225 				hammer2_trans_t *trans, hammer2_inode_t *ip,
226 				const hammer2_inode_data_t *ripdata,
227 				hammer2_cluster_t *cparent,
228 				hammer2_key_t lbase,
229 				int ioflag, int pblksize, int *errorp,
230 				int check_algo);
231 static int test_block_zeros(const char *buf, size_t bytes);
232 static void zero_write(struct buf *bp, hammer2_trans_t *trans,
233 				hammer2_inode_t *ip,
234 				const hammer2_inode_data_t *ripdata,
235 				hammer2_cluster_t *cparent,
236 				hammer2_key_t lbase,
237 				int *errorp);
238 static void hammer2_write_bp(hammer2_cluster_t *cluster, struct buf *bp,
239 				int ioflag, int pblksize, int *errorp,
240 				int check_algo);
241 
242 static int hammer2_rcvdmsg(kdmsg_msg_t *msg);
243 static void hammer2_autodmsg(kdmsg_msg_t *msg);
244 static int hammer2_lnk_span_reply(kdmsg_state_t *state, kdmsg_msg_t *msg);
245 
246 
247 /*
248  * HAMMER2 vfs operations.
249  */
250 static struct vfsops hammer2_vfsops = {
251 	.vfs_init	= hammer2_vfs_init,
252 	.vfs_uninit	= hammer2_vfs_uninit,
253 	.vfs_sync	= hammer2_vfs_sync,
254 	.vfs_mount	= hammer2_vfs_mount,
255 	.vfs_unmount	= hammer2_vfs_unmount,
256 	.vfs_root 	= hammer2_vfs_root,
257 	.vfs_statfs	= hammer2_vfs_statfs,
258 	.vfs_statvfs	= hammer2_vfs_statvfs,
259 	.vfs_vget	= hammer2_vfs_vget,
260 	.vfs_vptofh	= hammer2_vfs_vptofh,
261 	.vfs_fhtovp	= hammer2_vfs_fhtovp,
262 	.vfs_checkexp	= hammer2_vfs_checkexp
263 };
264 
265 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
266 
267 VFS_SET(hammer2_vfsops, hammer2, 0);
268 MODULE_VERSION(hammer2, 1);
269 
270 static
271 int
272 hammer2_vfs_init(struct vfsconf *conf)
273 {
274 	static struct objcache_malloc_args margs_read;
275 	static struct objcache_malloc_args margs_write;
276 
277 	int error;
278 
279 	error = 0;
280 
281 	if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
282 		error = EINVAL;
283 	if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
284 		error = EINVAL;
285 	if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
286 		error = EINVAL;
287 
288 	if (error)
289 		kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
290 
291 	margs_read.objsize = 65536;
292 	margs_read.mtype = D_BUFFER;
293 
294 	margs_write.objsize = 32768;
295 	margs_write.mtype = C_BUFFER;
296 
297 	cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
298 				0, 1, NULL, NULL, NULL, objcache_malloc_alloc,
299 				objcache_malloc_free, &margs_read);
300 	cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
301 				0, 1, NULL, NULL, NULL, objcache_malloc_alloc,
302 				objcache_malloc_free, &margs_write);
303 
304 	lockinit(&hammer2_mntlk, "mntlk", 0, 0);
305 	TAILQ_INIT(&hammer2_mntlist);
306 	TAILQ_INIT(&hammer2_pfslist);
307 
308 	hammer2_limit_dirty_chains = desiredvnodes / 10;
309 
310 	hammer2_trans_manage_init();
311 
312 	return (error);
313 }
314 
315 static
316 int
317 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
318 {
319 	objcache_destroy(cache_buffer_read);
320 	objcache_destroy(cache_buffer_write);
321 	return 0;
322 }
323 
324 /*
325  * Core PFS allocator.  Used to allocate the pmp structure for PFS cluster
326  * mounts and the spmp structure for media (hmp) structures.
327  */
328 static hammer2_pfsmount_t *
329 hammer2_pfsalloc(const hammer2_inode_data_t *ripdata, hammer2_tid_t alloc_tid)
330 {
331 	hammer2_pfsmount_t *pmp;
332 
333 	pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
334 	kmalloc_create(&pmp->minode, "HAMMER2-inodes");
335 	kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg");
336 	lockinit(&pmp->lock, "pfslk", 0, 0);
337 	spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
338 	RB_INIT(&pmp->inum_tree);
339 	TAILQ_INIT(&pmp->unlinkq);
340 	spin_init(&pmp->list_spin, "hm2pfsalloc_list");
341 
342 	pmp->alloc_tid = alloc_tid + 1;	  /* our first media transaction id */
343 	pmp->flush_tid = pmp->alloc_tid;
344 	if (ripdata) {
345 		pmp->inode_tid = ripdata->pfs_inum + 1;
346 		pmp->pfs_clid = ripdata->pfs_clid;
347 	}
348 	mtx_init(&pmp->wthread_mtx);
349 	bioq_init(&pmp->wthread_bioq);
350 
351 	return pmp;
352 }
353 
354 /*
355  * Mount or remount HAMMER2 fileystem from physical media
356  *
357  *	mountroot
358  *		mp		mount point structure
359  *		path		NULL
360  *		data		<unused>
361  *		cred		<unused>
362  *
363  *	mount
364  *		mp		mount point structure
365  *		path		path to mount point
366  *		data		pointer to argument structure in user space
367  *			volume	volume path (device@LABEL form)
368  *			hflags	user mount flags
369  *		cred		user credentials
370  *
371  * RETURNS:	0	Success
372  *		!0	error number
373  */
374 static
375 int
376 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
377 		  struct ucred *cred)
378 {
379 	struct hammer2_mount_info info;
380 	hammer2_pfsmount_t *pmp;
381 	hammer2_pfsmount_t *spmp;
382 	hammer2_mount_t *hmp;
383 	hammer2_key_t key_next;
384 	hammer2_key_t key_dummy;
385 	hammer2_key_t lhc;
386 	struct vnode *devvp;
387 	struct nlookupdata nd;
388 	hammer2_chain_t *parent;
389 	hammer2_chain_t *rchain;
390 	hammer2_cluster_t *cluster;
391 	hammer2_cluster_t *cparent;
392 	const hammer2_inode_data_t *ripdata;
393 	hammer2_blockref_t bref;
394 	struct file *fp;
395 	char devstr[MNAMELEN];
396 	size_t size;
397 	size_t done;
398 	char *dev;
399 	char *label;
400 	int ronly = 1;
401 	int error;
402 	int cache_index;
403 	int ddflag;
404 	int i;
405 
406 	hmp = NULL;
407 	pmp = NULL;
408 	dev = NULL;
409 	label = NULL;
410 	devvp = NULL;
411 	cache_index = -1;
412 
413 	kprintf("hammer2_mount\n");
414 
415 	if (path == NULL) {
416 		/*
417 		 * Root mount
418 		 */
419 		bzero(&info, sizeof(info));
420 		info.cluster_fd = -1;
421 		return (EOPNOTSUPP);
422 	} else {
423 		/*
424 		 * Non-root mount or updating a mount
425 		 */
426 		error = copyin(data, &info, sizeof(info));
427 		if (error)
428 			return (error);
429 
430 		error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
431 		if (error)
432 			return (error);
433 
434 		/* Extract device and label */
435 		dev = devstr;
436 		label = strchr(devstr, '@');
437 		if (label == NULL ||
438 		    ((label + 1) - dev) > done) {
439 			return (EINVAL);
440 		}
441 		*label = '\0';
442 		label++;
443 		if (*label == '\0')
444 			return (EINVAL);
445 
446 		if (mp->mnt_flag & MNT_UPDATE) {
447 			/* Update mount */
448 			/* HAMMER2 implements NFS export via mountctl */
449 			pmp = MPTOPMP(mp);
450 			for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
451 				hmp = pmp->iroot->cluster.array[i]->hmp;
452 				devvp = hmp->devvp;
453 				error = hammer2_remount(hmp, mp, path,
454 							devvp, cred);
455 				if (error)
456 					break;
457 			}
458 			/*hammer2_inode_install_hidden(pmp);*/
459 
460 			return error;
461 		}
462 	}
463 
464 	/*
465 	 * HMP device mount
466 	 *
467 	 * Lookup name and verify it refers to a block device.
468 	 */
469 	error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW);
470 	if (error == 0)
471 		error = nlookup(&nd);
472 	if (error == 0)
473 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp);
474 	nlookup_done(&nd);
475 
476 	if (error == 0) {
477 		if (vn_isdisk(devvp, &error))
478 			error = vfs_mountedon(devvp);
479 	}
480 
481 	/*
482 	 * Determine if the device has already been mounted.  After this
483 	 * check hmp will be non-NULL if we are doing the second or more
484 	 * hammer2 mounts from the same device.
485 	 */
486 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
487 	TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
488 		if (hmp->devvp == devvp)
489 			break;
490 	}
491 
492 	/*
493 	 * Open the device if this isn't a secondary mount and construct
494 	 * the H2 device mount (hmp).
495 	 */
496 	if (hmp == NULL) {
497 		hammer2_chain_t *schain;
498 		hammer2_xid_t xid;
499 
500 		if (error == 0 && vcount(devvp) > 0)
501 			error = EBUSY;
502 
503 		/*
504 		 * Now open the device
505 		 */
506 		if (error == 0) {
507 			ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
508 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
509 			error = vinvalbuf(devvp, V_SAVE, 0, 0);
510 			if (error == 0) {
511 				error = VOP_OPEN(devvp,
512 						 ronly ? FREAD : FREAD | FWRITE,
513 						 FSCRED, NULL);
514 			}
515 			vn_unlock(devvp);
516 		}
517 		if (error && devvp) {
518 			vrele(devvp);
519 			devvp = NULL;
520 		}
521 		if (error) {
522 			lockmgr(&hammer2_mntlk, LK_RELEASE);
523 			return error;
524 		}
525 		hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
526 		hmp->ronly = ronly;
527 		hmp->devvp = devvp;
528 		kmalloc_create(&hmp->mchain, "HAMMER2-chains");
529 		TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
530 		RB_INIT(&hmp->iotree);
531 		spin_init(&hmp->io_spin, "hm2mount_io");
532 		spin_init(&hmp->list_spin, "hm2mount_list");
533 		TAILQ_INIT(&hmp->flushq);
534 
535 		lockinit(&hmp->vollk, "h2vol", 0, 0);
536 
537 		/*
538 		 * vchain setup. vchain.data is embedded.
539 		 * vchain.refs is initialized and will never drop to 0.
540 		 *
541 		 * NOTE! voldata is not yet loaded.
542 		 */
543 		hmp->vchain.hmp = hmp;
544 		hmp->vchain.refs = 1;
545 		hmp->vchain.data = (void *)&hmp->voldata;
546 		hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
547 		hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
548 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
549 
550 		hammer2_chain_core_alloc(NULL, &hmp->vchain);
551 		/* hmp->vchain.u.xxx is left NULL */
552 
553 		/*
554 		 * fchain setup.  fchain.data is embedded.
555 		 * fchain.refs is initialized and will never drop to 0.
556 		 *
557 		 * The data is not used but needs to be initialized to
558 		 * pass assertion muster.  We use this chain primarily
559 		 * as a placeholder for the freemap's top-level RBTREE
560 		 * so it does not interfere with the volume's topology
561 		 * RBTREE.
562 		 */
563 		hmp->fchain.hmp = hmp;
564 		hmp->fchain.refs = 1;
565 		hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
566 		hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
567 		hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
568 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
569 		hmp->fchain.bref.methods =
570 			HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
571 			HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
572 
573 		hammer2_chain_core_alloc(NULL, &hmp->fchain);
574 		/* hmp->fchain.u.xxx is left NULL */
575 
576 		/*
577 		 * Install the volume header and initialize fields from
578 		 * voldata.
579 		 */
580 		error = hammer2_install_volume_header(hmp);
581 		if (error) {
582 			++hmp->pmp_count;
583 			hammer2_vfs_unmount_hmp1(mp, hmp);
584 			hammer2_vfs_unmount_hmp2(mp, hmp);
585 			lockmgr(&hammer2_mntlk, LK_RELEASE);
586 			hammer2_vfs_unmount(mp, MNT_FORCE);
587 			return error;
588 		}
589 
590 		/*
591 		 * Really important to get these right or flush will get
592 		 * confused.
593 		 */
594 		hmp->spmp = hammer2_pfsalloc(NULL, hmp->voldata.mirror_tid);
595 		kprintf("alloc spmp %p tid %016jx\n",
596 			hmp->spmp, hmp->voldata.mirror_tid);
597 		spmp = hmp->spmp;
598 		spmp->inode_tid = 1;
599 
600 		xid = 0;
601 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
602 		hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
603 		hmp->vchain.pmp = spmp;
604 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
605 		hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
606 		hmp->fchain.pmp = spmp;
607 
608 		/*
609 		 * First locate the super-root inode, which is key 0
610 		 * relative to the volume header's blockset.
611 		 *
612 		 * Then locate the root inode by scanning the directory keyspace
613 		 * represented by the label.
614 		 */
615 		parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
616 		schain = hammer2_chain_lookup(&parent, &key_dummy,
617 				      HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
618 				      &cache_index, 0, &ddflag);
619 		hammer2_chain_lookup_done(parent);
620 		if (schain == NULL) {
621 			kprintf("hammer2_mount: invalid super-root\n");
622 			++hmp->pmp_count;
623 			hammer2_vfs_unmount_hmp1(mp, hmp);
624 			hammer2_vfs_unmount_hmp2(mp, hmp);
625 			lockmgr(&hammer2_mntlk, LK_RELEASE);
626 			hammer2_vfs_unmount(mp, MNT_FORCE);
627 			return EINVAL;
628 		}
629 
630 		/*
631 		 * Sanity-check schain's pmp, finish initializing spmp.
632 		 */
633 		ripdata = &hammer2_chain_rdata(schain)->ipdata;
634 		KKASSERT(schain->pmp == spmp);
635 		spmp->pfs_clid = ripdata->pfs_clid;
636 
637 		/*
638 		 * NOTE: inode_get sucks up schain's lock.
639 		 */
640 		cluster = hammer2_cluster_from_chain(schain);
641 		spmp->iroot = hammer2_inode_get(spmp, NULL, cluster);
642 		spmp->spmp_hmp = hmp;
643 		hammer2_inode_ref(spmp->iroot);
644 		hammer2_inode_unlock_ex(spmp->iroot, cluster);
645 		schain = NULL;
646 		/* leave spmp->iroot with one ref */
647 
648 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
649 			error = hammer2_recovery(hmp);
650 			/* XXX do something with error */
651 		}
652 		++hmp->pmp_count;
653 
654 		/*
655 		 * XXX RDONLY stuff is totally broken FIXME XXX
656 		 *
657 		 * Automatic LNK_CONN
658 		 * Automatic handling of received LNK_SPAN
659 		 * Automatic handling of received LNK_CIRC
660 		 * No automatic LNK_SPAN generation - we do this ourselves
661 		 * No automatic LNK_CIRC generation - we do this ourselves
662 		 */
663 		kdmsg_iocom_init(&hmp->iocom, hmp,
664 				 KDMSG_IOCOMF_AUTOCONN |
665 				 KDMSG_IOCOMF_AUTORXSPAN,
666 				 hmp->mchain, hammer2_rcvdmsg);
667 
668 		/*
669 		 * Ref the cluster management messaging descriptor.  The mount
670 		 * program deals with the other end of the communications pipe.
671 		 */
672 		fp = holdfp(curproc->p_fd, info.cluster_fd, -1);
673 		if (fp) {
674 			hammer2_cluster_reconnect(hmp, fp);
675 		} else {
676 			kprintf("hammer2_mount: bad cluster_fd!\n");
677 		}
678 	} else {
679 		spmp = hmp->spmp;
680 		++hmp->pmp_count;
681 	}
682 
683 	/*
684 	 * Lookup mount point under the media-localized super-root.
685 	 *
686 	 * cluster->pmp will incorrectly point to spmp and must be fixed
687 	 * up later on.
688 	 */
689 	cparent = hammer2_inode_lock_ex(spmp->iroot);
690 	lhc = hammer2_dirhash(label, strlen(label));
691 	cluster = hammer2_cluster_lookup(cparent, &key_next,
692 				      lhc, lhc + HAMMER2_DIRHASH_LOMASK,
693 				      0, &ddflag);
694 	while (cluster) {
695 		if (hammer2_cluster_type(cluster) == HAMMER2_BREF_TYPE_INODE &&
696 		    strcmp(label,
697 		       hammer2_cluster_rdata(cluster)->ipdata.filename) == 0) {
698 			break;
699 		}
700 		cluster = hammer2_cluster_next(cparent, cluster, &key_next,
701 					    key_next,
702 					    lhc + HAMMER2_DIRHASH_LOMASK, 0);
703 	}
704 	hammer2_inode_unlock_ex(spmp->iroot, cparent);
705 
706 	if (cluster == NULL) {
707 		kprintf("hammer2_mount: PFS label not found\n");
708 		hammer2_vfs_unmount_hmp1(mp, hmp);
709 		hammer2_vfs_unmount_hmp2(mp, hmp);
710 		lockmgr(&hammer2_mntlk, LK_RELEASE);
711 		hammer2_vfs_unmount(mp, MNT_FORCE);
712 		return EINVAL;
713 	}
714 
715 	for (i = 0; i < cluster->nchains; ++i) {
716 		rchain = cluster->array[i];
717 		if (rchain->flags & HAMMER2_CHAIN_MOUNTED) {
718 			kprintf("hammer2_mount: PFS label already mounted!\n");
719 			hammer2_cluster_unlock(cluster);
720 			hammer2_vfs_unmount_hmp1(mp, hmp);
721 			hammer2_vfs_unmount_hmp2(mp, hmp);
722 			lockmgr(&hammer2_mntlk, LK_RELEASE);
723 			hammer2_vfs_unmount(mp, MNT_FORCE);
724 			return EBUSY;
725 		}
726 		KKASSERT(rchain->pmp == NULL);
727 #if 0
728 		if (rchain->flags & HAMMER2_CHAIN_RECYCLE) {
729 			kprintf("hammer2_mount: PFS label is recycling\n");
730 			hammer2_cluster_unlock(cluster);
731 			hammer2_vfs_unmount_hmp1(mp, hmp);
732 			hammer2_vfs_unmount_hmp2(mp, hmp);
733 			lockmgr(&hammer2_mntlk, LK_RELEASE);
734 			hammer2_vfs_unmount(mp, MNT_FORCE);
735 			return EBUSY;
736 		}
737 #endif
738 	}
739 
740 	/*
741 	 * Check to see if the cluster id is already mounted at the mount
742 	 * point.  If it is, add us to the cluster.
743 	 */
744 	ripdata = &hammer2_cluster_rdata(cluster)->ipdata;
745 	hammer2_cluster_bref(cluster, &bref);
746 	TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
747 		if (pmp->spmp_hmp == NULL &&
748 		    bcmp(&pmp->pfs_clid, &ripdata->pfs_clid,
749 			 sizeof(pmp->pfs_clid)) == 0) {
750 			break;
751 		}
752 	}
753 
754 	if (pmp) {
755 		int i;
756 		int j;
757 
758 		hammer2_inode_ref(pmp->iroot);
759 		ccms_thread_lock(&pmp->iroot->topo_cst, CCMS_STATE_EXCLUSIVE);
760 
761 		if (pmp->iroot->cluster.nchains + cluster->nchains >
762 		    HAMMER2_MAXCLUSTER) {
763 			kprintf("hammer2_mount: cluster full!\n");
764 
765 			ccms_thread_unlock(&pmp->iroot->topo_cst);
766 			hammer2_inode_drop(pmp->iroot);
767 
768 			hammer2_cluster_unlock(cluster);
769 			hammer2_vfs_unmount_hmp1(mp, hmp);
770 			hammer2_vfs_unmount_hmp2(mp, hmp);
771 			lockmgr(&hammer2_mntlk, LK_RELEASE);
772 			hammer2_vfs_unmount(mp, MNT_FORCE);
773 			return EBUSY;
774 		}
775 		kprintf("hammer2_vfs_mount: Adding pfs to existing cluster\n");
776 		j = pmp->iroot->cluster.nchains;
777 		for (i = 0; i < cluster->nchains; ++i) {
778 			rchain = cluster->array[i];
779 			KKASSERT(rchain->pmp == NULL);
780 			rchain->pmp = pmp;
781 			hammer2_chain_ref(cluster->array[i]);
782 			pmp->iroot->cluster.array[j] = cluster->array[i];
783 			++j;
784 		}
785 		pmp->iroot->cluster.nchains = j;
786 		ccms_thread_unlock(&pmp->iroot->topo_cst);
787 		hammer2_inode_drop(pmp->iroot);
788 		hammer2_cluster_unlock(cluster);
789 		lockmgr(&hammer2_mntlk, LK_RELEASE);
790 
791 		kprintf("ok\n");
792 		hammer2_inode_install_hidden(pmp);
793 
794 		return ERANGE;
795 	}
796 
797 	/*
798 	 * Block device opened successfully, finish initializing the
799 	 * mount structure.
800 	 *
801 	 * From this point on we have to call hammer2_unmount() on failure.
802 	 */
803 	pmp = hammer2_pfsalloc(ripdata, bref.mirror_tid);
804 	kprintf("PMP mirror_tid is %016jx\n", bref.mirror_tid);
805 	for (i = 0; i < cluster->nchains; ++i) {
806 		rchain = cluster->array[i];
807 		KKASSERT(rchain->pmp == NULL);
808 		rchain->pmp = pmp;
809 		atomic_set_int(&rchain->flags, HAMMER2_CHAIN_MOUNTED);
810 	}
811 	cluster->pmp = pmp;
812 
813 	ccms_domain_init(&pmp->ccms_dom);
814 	TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
815 	lockmgr(&hammer2_mntlk, LK_RELEASE);
816 
817 	kprintf("hammer2_mount hmp=%p pmp=%p pmpcnt=%d\n",
818 		hmp, pmp, hmp->pmp_count);
819 
820 	mp->mnt_flag = MNT_LOCAL;
821 	mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;	/* all entry pts are SMP */
822 	mp->mnt_kern_flag |= MNTK_THR_SYNC;	/* new vsyncscan semantics */
823 
824 	/*
825 	 * required mount structure initializations
826 	 */
827 	mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
828 	mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
829 
830 	mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
831 	mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
832 
833 	/*
834 	 * Optional fields
835 	 */
836 	mp->mnt_iosize_max = MAXPHYS;
837 	mp->mnt_data = (qaddr_t)pmp;
838 	pmp->mp = mp;
839 
840 	/*
841 	 * After this point hammer2_vfs_unmount() has visibility on hmp
842 	 * and manual hmp1/hmp2 calls are not needed on fatal errors.
843 	 */
844 	pmp->iroot = hammer2_inode_get(pmp, NULL, cluster);
845 	hammer2_inode_ref(pmp->iroot);		/* ref for pmp->iroot */
846 	hammer2_inode_unlock_ex(pmp->iroot, cluster);
847 
848 	/*
849 	 * The logical file buffer bio write thread handles things
850 	 * like physical block assignment and compression.
851 	 *
852 	 * (only applicable to pfs mounts, not applicable to spmp)
853 	 */
854 	pmp->wthread_destroy = 0;
855 	lwkt_create(hammer2_write_thread, pmp,
856 		    &pmp->wthread_td, NULL, 0, -1, "hwrite-%s", label);
857 
858 	/*
859 	 * With the cluster operational install ihidden.
860 	 * (only applicable to pfs mounts, not applicable to spmp)
861 	 */
862 	hammer2_inode_install_hidden(pmp);
863 
864 	/*
865 	 * Finish setup
866 	 */
867 	vfs_getnewfsid(mp);
868 	vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
869 	vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
870 	vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
871 
872 	copyinstr(info.volume, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, &size);
873 	bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
874 	bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
875 	copyinstr(path, mp->mnt_stat.f_mntonname,
876 		  sizeof(mp->mnt_stat.f_mntonname) - 1,
877 		  &size);
878 
879 	/*
880 	 * Initial statfs to prime mnt_stat.
881 	 */
882 	hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
883 
884 	return 0;
885 }
886 
887 /*
888  * Handle bioq for strategy write
889  */
890 static
891 void
892 hammer2_write_thread(void *arg)
893 {
894 	hammer2_pfsmount_t *pmp;
895 	struct bio *bio;
896 	struct buf *bp;
897 	hammer2_trans_t trans;
898 	struct vnode *vp;
899 	hammer2_inode_t *ip;
900 	hammer2_cluster_t *cparent;
901 	hammer2_inode_data_t *wipdata;
902 	hammer2_key_t lbase;
903 	int lblksize;
904 	int pblksize;
905 	int error;
906 
907 	pmp = arg;
908 
909 	mtx_lock(&pmp->wthread_mtx);
910 	while (pmp->wthread_destroy == 0) {
911 		if (bioq_first(&pmp->wthread_bioq) == NULL) {
912 			mtxsleep(&pmp->wthread_bioq, &pmp->wthread_mtx,
913 				 0, "h2bioqw", 0);
914 		}
915 		cparent = NULL;
916 
917 		hammer2_trans_init(&trans, pmp, HAMMER2_TRANS_BUFCACHE);
918 
919 		while ((bio = bioq_takefirst(&pmp->wthread_bioq)) != NULL) {
920 			/*
921 			 * dummy bio for synchronization.  The transaction
922 			 * must be reinitialized.
923 			 */
924 			if (bio->bio_buf == NULL) {
925 				bio->bio_flags |= BIO_DONE;
926 				wakeup(bio);
927 				hammer2_trans_done(&trans);
928 				hammer2_trans_init(&trans, pmp,
929 						   HAMMER2_TRANS_BUFCACHE);
930 				continue;
931 			}
932 
933 			/*
934 			 * else normal bio processing
935 			 */
936 			mtx_unlock(&pmp->wthread_mtx);
937 
938 			hammer2_lwinprog_drop(pmp);
939 
940 			error = 0;
941 			bp = bio->bio_buf;
942 			vp = bp->b_vp;
943 			ip = VTOI(vp);
944 
945 			/*
946 			 * Inode is modified, flush size and mtime changes
947 			 * to ensure that the file size remains consistent
948 			 * with the buffers being flushed.
949 			 *
950 			 * NOTE: The inode_fsync() call only flushes the
951 			 *	 inode's meta-data state, it doesn't try
952 			 *	 to flush underlying buffers or chains.
953 			 */
954 			cparent = hammer2_inode_lock_ex(ip);
955 			if (ip->flags & (HAMMER2_INODE_RESIZED |
956 					 HAMMER2_INODE_MTIME)) {
957 				hammer2_inode_fsync(&trans, ip, cparent);
958 			}
959 			wipdata = hammer2_cluster_modify_ip(&trans, ip,
960 							 cparent, 0);
961 			lblksize = hammer2_calc_logical(ip, bio->bio_offset,
962 							&lbase, NULL);
963 			pblksize = hammer2_calc_physical(ip, wipdata, lbase);
964 			hammer2_write_file_core(bp, &trans, ip, wipdata,
965 						cparent,
966 						lbase, IO_ASYNC,
967 						pblksize, &error);
968 			hammer2_cluster_modsync(cparent);
969 			hammer2_inode_unlock_ex(ip, cparent);
970 			if (error) {
971 				kprintf("hammer2: error in buffer write\n");
972 				bp->b_flags |= B_ERROR;
973 				bp->b_error = EIO;
974 			}
975 			biodone(bio);
976 			mtx_lock(&pmp->wthread_mtx);
977 		}
978 		hammer2_trans_done(&trans);
979 	}
980 	pmp->wthread_destroy = -1;
981 	wakeup(&pmp->wthread_destroy);
982 
983 	mtx_unlock(&pmp->wthread_mtx);
984 }
985 
986 void
987 hammer2_bioq_sync(hammer2_pfsmount_t *pmp)
988 {
989 	struct bio sync_bio;
990 
991 	bzero(&sync_bio, sizeof(sync_bio));	/* dummy with no bio_buf */
992 	mtx_lock(&pmp->wthread_mtx);
993 	if (pmp->wthread_destroy == 0 &&
994 	    TAILQ_FIRST(&pmp->wthread_bioq.queue)) {
995 		bioq_insert_tail(&pmp->wthread_bioq, &sync_bio);
996 		while ((sync_bio.bio_flags & BIO_DONE) == 0)
997 			mtxsleep(&sync_bio, &pmp->wthread_mtx, 0, "h2bioq", 0);
998 	}
999 	mtx_unlock(&pmp->wthread_mtx);
1000 }
1001 
1002 /*
1003  * Return a chain suitable for I/O, creating the chain if necessary
1004  * and assigning its physical block.
1005  */
1006 static
1007 hammer2_cluster_t *
1008 hammer2_assign_physical(hammer2_trans_t *trans,
1009 			hammer2_inode_t *ip, hammer2_cluster_t *cparent,
1010 			hammer2_key_t lbase, int pblksize, int *errorp)
1011 {
1012 	hammer2_cluster_t *cluster;
1013 	hammer2_cluster_t *dparent;
1014 	hammer2_key_t key_dummy;
1015 	int pradix = hammer2_getradix(pblksize);
1016 	int ddflag;
1017 
1018 	/*
1019 	 * Locate the chain associated with lbase, return a locked chain.
1020 	 * However, do not instantiate any data reference (which utilizes a
1021 	 * device buffer) because we will be using direct IO via the
1022 	 * logical buffer cache buffer.
1023 	 */
1024 	*errorp = 0;
1025 	KKASSERT(pblksize >= HAMMER2_ALLOC_MIN);
1026 retry:
1027 	dparent = hammer2_cluster_lookup_init(cparent, 0);
1028 	cluster = hammer2_cluster_lookup(dparent, &key_dummy,
1029 				     lbase, lbase,
1030 				     HAMMER2_LOOKUP_NODATA, &ddflag);
1031 
1032 	if (cluster == NULL) {
1033 		/*
1034 		 * We found a hole, create a new chain entry.
1035 		 *
1036 		 * NOTE: DATA chains are created without device backing
1037 		 *	 store (nor do we want any).
1038 		 */
1039 		*errorp = hammer2_cluster_create(trans, dparent, &cluster,
1040 					       lbase, HAMMER2_PBUFRADIX,
1041 					       HAMMER2_BREF_TYPE_DATA,
1042 					       pblksize, 0);
1043 		if (cluster == NULL) {
1044 			hammer2_cluster_lookup_done(dparent);
1045 			panic("hammer2_cluster_create: par=%p error=%d\n",
1046 				dparent->focus, *errorp);
1047 			goto retry;
1048 		}
1049 		/*ip->delta_dcount += pblksize;*/
1050 	} else {
1051 		switch (hammer2_cluster_type(cluster)) {
1052 		case HAMMER2_BREF_TYPE_INODE:
1053 			/*
1054 			 * The data is embedded in the inode.  The
1055 			 * caller is responsible for marking the inode
1056 			 * modified and copying the data to the embedded
1057 			 * area.
1058 			 */
1059 			break;
1060 		case HAMMER2_BREF_TYPE_DATA:
1061 			if (hammer2_cluster_need_resize(cluster, pblksize)) {
1062 				hammer2_cluster_resize(trans, ip,
1063 						     dparent, cluster,
1064 						     pradix,
1065 						     HAMMER2_MODIFY_OPTDATA);
1066 			}
1067 
1068 			/*
1069 			 * DATA buffers must be marked modified whether the
1070 			 * data is in a logical buffer or not.  We also have
1071 			 * to make this call to fixup the chain data pointers
1072 			 * after resizing in case this is an encrypted or
1073 			 * compressed buffer.
1074 			 */
1075 			hammer2_cluster_modify(trans, cluster,
1076 					       HAMMER2_MODIFY_OPTDATA);
1077 			break;
1078 		default:
1079 			panic("hammer2_assign_physical: bad type");
1080 			/* NOT REACHED */
1081 			break;
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * Cleanup.  If cluster wound up being the inode itself, i.e.
1087 	 * the DIRECTDATA case for offset 0, then we need to update cparent.
1088 	 * The caller expects cparent to not become stale.
1089 	 */
1090 	hammer2_cluster_lookup_done(dparent);
1091 	/* dparent = NULL; safety */
1092 	if (cluster && ddflag)
1093 		hammer2_cluster_replace_locked(cparent, cluster);
1094 	return (cluster);
1095 }
1096 
1097 /*
1098  * bio queued from hammer2_vnops.c.
1099  *
1100  * The core write function which determines which path to take
1101  * depending on compression settings.  We also have to locate the
1102  * related clusters so we can calculate and set the check data for
1103  * the blockref.
1104  */
1105 static
1106 void
1107 hammer2_write_file_core(struct buf *bp, hammer2_trans_t *trans,
1108 			hammer2_inode_t *ip,
1109 			const hammer2_inode_data_t *ripdata,
1110 			hammer2_cluster_t *cparent,
1111 			hammer2_key_t lbase, int ioflag, int pblksize,
1112 			int *errorp)
1113 {
1114 	hammer2_cluster_t *cluster;
1115 
1116 	switch(HAMMER2_DEC_ALGO(ripdata->comp_algo)) {
1117 	case HAMMER2_COMP_NONE:
1118 		/*
1119 		 * We have to assign physical storage to the buffer
1120 		 * we intend to dirty or write now to avoid deadlocks
1121 		 * in the strategy code later.
1122 		 *
1123 		 * This can return NOOFFSET for inode-embedded data.
1124 		 * The strategy code will take care of it in that case.
1125 		 */
1126 		cluster = hammer2_assign_physical(trans, ip, cparent,
1127 						lbase, pblksize,
1128 						errorp);
1129 		hammer2_write_bp(cluster, bp, ioflag, pblksize, errorp,
1130 				 ripdata->check_algo);
1131 		if (cluster)
1132 			hammer2_cluster_unlock(cluster);
1133 		break;
1134 	case HAMMER2_COMP_AUTOZERO:
1135 		/*
1136 		 * Check for zero-fill only
1137 		 */
1138 		hammer2_zero_check_and_write(bp, trans, ip,
1139 				    ripdata, cparent, lbase,
1140 				    ioflag, pblksize, errorp,
1141 				    ripdata->check_algo);
1142 		break;
1143 	case HAMMER2_COMP_LZ4:
1144 	case HAMMER2_COMP_ZLIB:
1145 	default:
1146 		/*
1147 		 * Check for zero-fill and attempt compression.
1148 		 */
1149 		hammer2_compress_and_write(bp, trans, ip,
1150 					   ripdata, cparent,
1151 					   lbase, ioflag,
1152 					   pblksize, errorp,
1153 					   ripdata->comp_algo,
1154 					   ripdata->check_algo);
1155 		break;
1156 	}
1157 }
1158 
1159 /*
1160  * Generic function that will perform the compression in compression
1161  * write path. The compression algorithm is determined by the settings
1162  * obtained from inode.
1163  */
1164 static
1165 void
1166 hammer2_compress_and_write(struct buf *bp, hammer2_trans_t *trans,
1167 	hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata,
1168 	hammer2_cluster_t *cparent,
1169 	hammer2_key_t lbase, int ioflag, int pblksize,
1170 	int *errorp, int comp_algo, int check_algo)
1171 {
1172 	hammer2_cluster_t *cluster;
1173 	hammer2_chain_t *chain;
1174 	int comp_size;
1175 	int comp_block_size;
1176 	int i;
1177 	char *comp_buffer;
1178 
1179 	if (test_block_zeros(bp->b_data, pblksize)) {
1180 		zero_write(bp, trans, ip, ripdata, cparent, lbase, errorp);
1181 		return;
1182 	}
1183 
1184 	comp_size = 0;
1185 	comp_buffer = NULL;
1186 
1187 	KKASSERT(pblksize / 2 <= 32768);
1188 
1189 	if (ip->comp_heuristic < 8 || (ip->comp_heuristic & 7) == 0) {
1190 		z_stream strm_compress;
1191 		int comp_level;
1192 		int ret;
1193 
1194 		switch(HAMMER2_DEC_ALGO(comp_algo)) {
1195 		case HAMMER2_COMP_LZ4:
1196 			comp_buffer = objcache_get(cache_buffer_write,
1197 						   M_INTWAIT);
1198 			comp_size = LZ4_compress_limitedOutput(
1199 					bp->b_data,
1200 					&comp_buffer[sizeof(int)],
1201 					pblksize,
1202 					pblksize / 2 - sizeof(int));
1203 			/*
1204 			 * We need to prefix with the size, LZ4
1205 			 * doesn't do it for us.  Add the related
1206 			 * overhead.
1207 			 */
1208 			*(int *)comp_buffer = comp_size;
1209 			if (comp_size)
1210 				comp_size += sizeof(int);
1211 			break;
1212 		case HAMMER2_COMP_ZLIB:
1213 			comp_level = HAMMER2_DEC_LEVEL(comp_algo);
1214 			if (comp_level == 0)
1215 				comp_level = 6;	/* default zlib compression */
1216 			else if (comp_level < 6)
1217 				comp_level = 6;
1218 			else if (comp_level > 9)
1219 				comp_level = 9;
1220 			ret = deflateInit(&strm_compress, comp_level);
1221 			if (ret != Z_OK) {
1222 				kprintf("HAMMER2 ZLIB: fatal error "
1223 					"on deflateInit.\n");
1224 			}
1225 
1226 			comp_buffer = objcache_get(cache_buffer_write,
1227 						   M_INTWAIT);
1228 			strm_compress.next_in = bp->b_data;
1229 			strm_compress.avail_in = pblksize;
1230 			strm_compress.next_out = comp_buffer;
1231 			strm_compress.avail_out = pblksize / 2;
1232 			ret = deflate(&strm_compress, Z_FINISH);
1233 			if (ret == Z_STREAM_END) {
1234 				comp_size = pblksize / 2 -
1235 					    strm_compress.avail_out;
1236 			} else {
1237 				comp_size = 0;
1238 			}
1239 			ret = deflateEnd(&strm_compress);
1240 			break;
1241 		default:
1242 			kprintf("Error: Unknown compression method.\n");
1243 			kprintf("Comp_method = %d.\n", comp_algo);
1244 			break;
1245 		}
1246 	}
1247 
1248 	if (comp_size == 0) {
1249 		/*
1250 		 * compression failed or turned off
1251 		 */
1252 		comp_block_size = pblksize;	/* safety */
1253 		if (++ip->comp_heuristic > 128)
1254 			ip->comp_heuristic = 8;
1255 	} else {
1256 		/*
1257 		 * compression succeeded
1258 		 */
1259 		ip->comp_heuristic = 0;
1260 		if (comp_size <= 1024) {
1261 			comp_block_size = 1024;
1262 		} else if (comp_size <= 2048) {
1263 			comp_block_size = 2048;
1264 		} else if (comp_size <= 4096) {
1265 			comp_block_size = 4096;
1266 		} else if (comp_size <= 8192) {
1267 			comp_block_size = 8192;
1268 		} else if (comp_size <= 16384) {
1269 			comp_block_size = 16384;
1270 		} else if (comp_size <= 32768) {
1271 			comp_block_size = 32768;
1272 		} else {
1273 			panic("hammer2: WRITE PATH: "
1274 			      "Weird comp_size value.");
1275 			/* NOT REACHED */
1276 			comp_block_size = pblksize;
1277 		}
1278 	}
1279 
1280 	cluster = hammer2_assign_physical(trans, ip, cparent,
1281 					  lbase, comp_block_size,
1282 					  errorp);
1283 	ripdata = NULL;
1284 
1285 	if (*errorp) {
1286 		kprintf("WRITE PATH: An error occurred while "
1287 			"assigning physical space.\n");
1288 		KKASSERT(cluster == NULL);
1289 		goto done;
1290 	}
1291 
1292 	for (i = 0; i < cluster->nchains; ++i) {
1293 		hammer2_inode_data_t *wipdata;
1294 		hammer2_io_t *dio;
1295 		char *bdata;
1296 
1297 		chain = cluster->array[i];	/* XXX */
1298 		KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1299 
1300 		switch(chain->bref.type) {
1301 		case HAMMER2_BREF_TYPE_INODE:
1302 			wipdata = &hammer2_chain_wdata(chain)->ipdata;
1303 			KKASSERT(wipdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1304 			KKASSERT(bp->b_loffset == 0);
1305 			bcopy(bp->b_data, wipdata->u.data,
1306 			      HAMMER2_EMBEDDED_BYTES);
1307 			break;
1308 		case HAMMER2_BREF_TYPE_DATA:
1309 			/*
1310 			 * Optimize out the read-before-write
1311 			 * if possible.
1312 			 */
1313 			*errorp = hammer2_io_newnz(chain->hmp,
1314 						   chain->bref.data_off,
1315 						   chain->bytes,
1316 						   &dio);
1317 			if (*errorp) {
1318 				hammer2_io_brelse(&dio);
1319 				kprintf("hammer2: WRITE PATH: "
1320 					"dbp bread error\n");
1321 				break;
1322 			}
1323 			bdata = hammer2_io_data(dio, chain->bref.data_off);
1324 
1325 			/*
1326 			 * When loading the block make sure we don't
1327 			 * leave garbage after the compressed data.
1328 			 */
1329 			if (comp_size) {
1330 				chain->bref.methods =
1331 					HAMMER2_ENC_COMP(comp_algo) +
1332 					HAMMER2_ENC_CHECK(check_algo);
1333 				bcopy(comp_buffer, bdata, comp_size);
1334 				if (comp_size != comp_block_size) {
1335 					bzero(bdata + comp_size,
1336 					      comp_block_size - comp_size);
1337 				}
1338 			} else {
1339 				chain->bref.methods =
1340 					HAMMER2_ENC_COMP(
1341 						HAMMER2_COMP_NONE) +
1342 					HAMMER2_ENC_CHECK(check_algo);
1343 				bcopy(bp->b_data, bdata, pblksize);
1344 			}
1345 
1346 			/*
1347 			 * The flush code doesn't calculate check codes for
1348 			 * file data (doing so can result in excessive I/O),
1349 			 * so we do it here.
1350 			 */
1351 			hammer2_chain_setcheck(chain, bdata);
1352 
1353 			/*
1354 			 * Device buffer is now valid, chain is no longer in
1355 			 * the initial state.
1356 			 *
1357 			 * (No blockref table worries with file data)
1358 			 */
1359 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1360 
1361 			/* Now write the related bdp. */
1362 			if (ioflag & IO_SYNC) {
1363 				/*
1364 				 * Synchronous I/O requested.
1365 				 */
1366 				hammer2_io_bwrite(&dio);
1367 			/*
1368 			} else if ((ioflag & IO_DIRECT) &&
1369 				   loff + n == pblksize) {
1370 				hammer2_io_bdwrite(&dio);
1371 			*/
1372 			} else if (ioflag & IO_ASYNC) {
1373 				hammer2_io_bawrite(&dio);
1374 			} else {
1375 				hammer2_io_bdwrite(&dio);
1376 			}
1377 			break;
1378 		default:
1379 			panic("hammer2_write_bp: bad chain type %d\n",
1380 				chain->bref.type);
1381 			/* NOT REACHED */
1382 			break;
1383 		}
1384 	}
1385 done:
1386 	if (cluster)
1387 		hammer2_cluster_unlock(cluster);
1388 	if (comp_buffer)
1389 		objcache_put(cache_buffer_write, comp_buffer);
1390 }
1391 
1392 /*
1393  * Function that performs zero-checking and writing without compression,
1394  * it corresponds to default zero-checking path.
1395  */
1396 static
1397 void
1398 hammer2_zero_check_and_write(struct buf *bp, hammer2_trans_t *trans,
1399 	hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata,
1400 	hammer2_cluster_t *cparent,
1401 	hammer2_key_t lbase, int ioflag, int pblksize, int *errorp,
1402 	int check_algo)
1403 {
1404 	hammer2_cluster_t *cluster;
1405 
1406 	if (test_block_zeros(bp->b_data, pblksize)) {
1407 		zero_write(bp, trans, ip, ripdata, cparent, lbase, errorp);
1408 	} else {
1409 		cluster = hammer2_assign_physical(trans, ip, cparent,
1410 						  lbase, pblksize, errorp);
1411 		hammer2_write_bp(cluster, bp, ioflag, pblksize, errorp,
1412 				 check_algo);
1413 		if (cluster)
1414 			hammer2_cluster_unlock(cluster);
1415 	}
1416 }
1417 
1418 /*
1419  * A function to test whether a block of data contains only zeros,
1420  * returns TRUE (non-zero) if the block is all zeros.
1421  */
1422 static
1423 int
1424 test_block_zeros(const char *buf, size_t bytes)
1425 {
1426 	size_t i;
1427 
1428 	for (i = 0; i < bytes; i += sizeof(long)) {
1429 		if (*(const long *)(buf + i) != 0)
1430 			return (0);
1431 	}
1432 	return (1);
1433 }
1434 
1435 /*
1436  * Function to "write" a block that contains only zeros.
1437  */
1438 static
1439 void
1440 zero_write(struct buf *bp, hammer2_trans_t *trans,
1441 	   hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata,
1442 	   hammer2_cluster_t *cparent,
1443 	   hammer2_key_t lbase, int *errorp __unused)
1444 {
1445 	hammer2_cluster_t *cluster;
1446 	hammer2_media_data_t *data;
1447 	hammer2_key_t key_dummy;
1448 	int ddflag;
1449 
1450 	cparent = hammer2_cluster_lookup_init(cparent, 0);
1451 	cluster = hammer2_cluster_lookup(cparent, &key_dummy, lbase, lbase,
1452 				     HAMMER2_LOOKUP_NODATA, &ddflag);
1453 	if (cluster) {
1454 		data = hammer2_cluster_wdata(cluster);
1455 
1456 		if (ddflag) {
1457 			KKASSERT(cluster->focus->flags &
1458 				 HAMMER2_CHAIN_MODIFIED);
1459 			bzero(data->ipdata.u.data, HAMMER2_EMBEDDED_BYTES);
1460 			hammer2_cluster_modsync(cluster);
1461 		} else {
1462 			hammer2_cluster_delete(trans, cparent, cluster,
1463 					       HAMMER2_DELETE_PERMANENT);
1464 		}
1465 		hammer2_cluster_unlock(cluster);
1466 	}
1467 	hammer2_cluster_lookup_done(cparent);
1468 }
1469 
1470 /*
1471  * Function to write the data as it is, without performing any sort of
1472  * compression. This function is used in path without compression and
1473  * default zero-checking path.
1474  */
1475 static
1476 void
1477 hammer2_write_bp(hammer2_cluster_t *cluster, struct buf *bp, int ioflag,
1478 				int pblksize, int *errorp, int check_algo)
1479 {
1480 	hammer2_chain_t *chain;
1481 	hammer2_inode_data_t *wipdata;
1482 	hammer2_io_t *dio;
1483 	char *bdata;
1484 	int error;
1485 	int i;
1486 
1487 	error = 0;	/* XXX TODO below */
1488 
1489 	for (i = 0; i < cluster->nchains; ++i) {
1490 		chain = cluster->array[i];	/* XXX */
1491 		KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1492 
1493 		switch(chain->bref.type) {
1494 		case HAMMER2_BREF_TYPE_INODE:
1495 			wipdata = &hammer2_chain_wdata(chain)->ipdata;
1496 			KKASSERT(wipdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1497 			KKASSERT(bp->b_loffset == 0);
1498 			bcopy(bp->b_data, wipdata->u.data,
1499 			      HAMMER2_EMBEDDED_BYTES);
1500 			error = 0;
1501 			break;
1502 		case HAMMER2_BREF_TYPE_DATA:
1503 			error = hammer2_io_newnz(chain->hmp,
1504 						 chain->bref.data_off,
1505 						 chain->bytes, &dio);
1506 			if (error) {
1507 				hammer2_io_bqrelse(&dio);
1508 				kprintf("hammer2: WRITE PATH: "
1509 					"dbp bread error\n");
1510 				break;
1511 			}
1512 			bdata = hammer2_io_data(dio, chain->bref.data_off);
1513 
1514 			chain->bref.methods = HAMMER2_ENC_COMP(
1515 							HAMMER2_COMP_NONE) +
1516 					      HAMMER2_ENC_CHECK(check_algo);
1517 			bcopy(bp->b_data, bdata, chain->bytes);
1518 
1519 			/*
1520 			 * The flush code doesn't calculate check codes for
1521 			 * file data (doing so can result in excessive I/O),
1522 			 * so we do it here.
1523 			 */
1524 			hammer2_chain_setcheck(chain, bdata);
1525 
1526 			/*
1527 			 * Device buffer is now valid, chain is no longer in
1528 			 * the initial state.
1529 			 *
1530 			 * (No blockref table worries with file data)
1531 			 */
1532 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1533 
1534 			if (ioflag & IO_SYNC) {
1535 				/*
1536 				 * Synchronous I/O requested.
1537 				 */
1538 				hammer2_io_bwrite(&dio);
1539 			/*
1540 			} else if ((ioflag & IO_DIRECT) &&
1541 				   loff + n == pblksize) {
1542 				hammer2_io_bdwrite(&dio);
1543 			*/
1544 			} else if (ioflag & IO_ASYNC) {
1545 				hammer2_io_bawrite(&dio);
1546 			} else {
1547 				hammer2_io_bdwrite(&dio);
1548 			}
1549 			break;
1550 		default:
1551 			panic("hammer2_write_bp: bad chain type %d\n",
1552 			      chain->bref.type);
1553 			/* NOT REACHED */
1554 			error = 0;
1555 			break;
1556 		}
1557 		KKASSERT(error == 0);	/* XXX TODO */
1558 	}
1559 	*errorp = error;
1560 }
1561 
1562 static
1563 int
1564 hammer2_remount(hammer2_mount_t *hmp, struct mount *mp, char *path,
1565 		struct vnode *devvp, struct ucred *cred)
1566 {
1567 	int error;
1568 
1569 	if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) {
1570 		error = hammer2_recovery(hmp);
1571 	} else {
1572 		error = 0;
1573 	}
1574 	return error;
1575 }
1576 
1577 static
1578 int
1579 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1580 {
1581 	hammer2_pfsmount_t *pmp;
1582 	hammer2_mount_t *hmp;
1583 	hammer2_chain_t *rchain;
1584 	hammer2_cluster_t *cluster;
1585 	int flags;
1586 	int error = 0;
1587 	int i;
1588 
1589 	pmp = MPTOPMP(mp);
1590 
1591 	if (pmp == NULL)
1592 		return(0);
1593 
1594 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1595 	TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
1596 
1597 	/*
1598 	 * If mount initialization proceeded far enough we must flush
1599 	 * its vnodes.
1600 	 */
1601 	if (mntflags & MNT_FORCE)
1602 		flags = FORCECLOSE;
1603 	else
1604 		flags = 0;
1605 	if (pmp->iroot) {
1606 		error = vflush(mp, 0, flags);
1607 		if (error)
1608 			goto failed;
1609 	}
1610 
1611 	ccms_domain_uninit(&pmp->ccms_dom);
1612 
1613 	if (pmp->wthread_td) {
1614 		mtx_lock(&pmp->wthread_mtx);
1615 		pmp->wthread_destroy = 1;
1616 		wakeup(&pmp->wthread_bioq);
1617 		while (pmp->wthread_destroy != -1) {
1618 			mtxsleep(&pmp->wthread_destroy,
1619 				&pmp->wthread_mtx, 0,
1620 				"umount-sleep",	0);
1621 		}
1622 		mtx_unlock(&pmp->wthread_mtx);
1623 		pmp->wthread_td = NULL;
1624 	}
1625 
1626 	/*
1627 	 * Cleanup our reference on ihidden.
1628 	 */
1629 	if (pmp->ihidden) {
1630 		hammer2_inode_drop(pmp->ihidden);
1631 		pmp->ihidden = NULL;
1632 	}
1633 
1634 	/*
1635 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
1636 	 * by the flush code.
1637 	 */
1638 	if (pmp->iroot) {
1639 		cluster = &pmp->iroot->cluster;
1640 		for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
1641 			rchain = pmp->iroot->cluster.array[i];
1642 			if (rchain == NULL)
1643 				continue;
1644 			hmp = rchain->hmp;
1645 			hammer2_vfs_unmount_hmp1(mp, hmp);
1646 
1647 			atomic_clear_int(&rchain->flags, HAMMER2_CHAIN_MOUNTED);
1648 #if REPORT_REFS_ERRORS
1649 			if (rchain->refs != 1)
1650 				kprintf("PMP->RCHAIN %p REFS WRONG %d\n",
1651 					rchain, rchain->refs);
1652 #else
1653 			KKASSERT(rchain->refs == 1);
1654 #endif
1655 			hammer2_chain_drop(rchain);
1656 			cluster->array[i] = NULL;
1657 			hammer2_vfs_unmount_hmp2(mp, hmp);
1658 		}
1659 		cluster->focus = NULL;
1660 
1661 #if REPORT_REFS_ERRORS
1662 		if (pmp->iroot->refs != 1)
1663 			kprintf("PMP->IROOT %p REFS WRONG %d\n",
1664 				pmp->iroot, pmp->iroot->refs);
1665 #else
1666 		KKASSERT(pmp->iroot->refs == 1);
1667 #endif
1668 		/* ref for pmp->iroot */
1669 		hammer2_inode_drop(pmp->iroot);
1670 		pmp->iroot = NULL;
1671 	}
1672 
1673 	pmp->mp = NULL;
1674 	mp->mnt_data = NULL;
1675 
1676 	kmalloc_destroy(&pmp->mmsg);
1677 	kmalloc_destroy(&pmp->minode);
1678 
1679 	kfree(pmp, M_HAMMER2);
1680 	error = 0;
1681 
1682 failed:
1683 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1684 
1685 	return (error);
1686 }
1687 
1688 static
1689 void
1690 hammer2_vfs_unmount_hmp1(struct mount *mp, hammer2_mount_t *hmp)
1691 {
1692 	hammer2_mount_exlock(hmp);
1693 	--hmp->pmp_count;
1694 
1695 	kprintf("hammer2_unmount hmp=%p pmpcnt=%d\n", hmp, hmp->pmp_count);
1696 
1697 	kdmsg_iocom_uninit(&hmp->iocom);	/* XXX chain depend deadlck? */
1698 
1699 	/*
1700 	 * Cycle the volume data lock as a safety (probably not needed any
1701 	 * more).  To ensure everything is out we need to flush at least
1702 	 * three times.  (1) The running of the unlinkq can dirty the
1703 	 * filesystem, (2) A normal flush can dirty the freemap, and
1704 	 * (3) ensure that the freemap is fully synchronized.
1705 	 *
1706 	 * The next mount's recovery scan can clean everything up but we want
1707 	 * to leave the filesystem in a 100% clean state on a normal unmount.
1708 	 */
1709 	hammer2_voldata_lock(hmp);
1710 	hammer2_voldata_unlock(hmp);
1711 	if (mp->mnt_data) {
1712 		hammer2_vfs_sync(mp, MNT_WAIT);
1713 		hammer2_vfs_sync(mp, MNT_WAIT);
1714 		hammer2_vfs_sync(mp, MNT_WAIT);
1715 	}
1716 
1717 	if (hmp->pmp_count == 0) {
1718 		if ((hmp->vchain.flags | hmp->fchain.flags) &
1719 		    HAMMER2_CHAIN_FLUSH_MASK) {
1720 			kprintf("hammer2_unmount: chains left over "
1721 				"after final sync\n");
1722 			kprintf("    vchain %08x\n", hmp->vchain.flags);
1723 			kprintf("    fchain %08x\n", hmp->fchain.flags);
1724 
1725 			if (hammer2_debug & 0x0010)
1726 				Debugger("entered debugger");
1727 		}
1728 	}
1729 }
1730 
1731 static
1732 void
1733 hammer2_vfs_unmount_hmp2(struct mount *mp, hammer2_mount_t *hmp)
1734 {
1735 	hammer2_pfsmount_t *spmp;
1736 	struct vnode *devvp;
1737 	int dumpcnt;
1738 	int ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
1739 
1740 	/*
1741 	 * If no PFS's left drop the master hammer2_mount for the
1742 	 * device.
1743 	 */
1744 	if (hmp->pmp_count == 0) {
1745 		/*
1746 		 * Clean up SPMP and the super-root inode
1747 		 */
1748 		spmp = hmp->spmp;
1749 		if (spmp) {
1750 			if (spmp->iroot) {
1751 				hammer2_inode_drop(spmp->iroot);
1752 				spmp->iroot = NULL;
1753 			}
1754 			hmp->spmp = NULL;
1755 			kmalloc_destroy(&spmp->mmsg);
1756 			kmalloc_destroy(&spmp->minode);
1757 			kfree(spmp, M_HAMMER2);
1758 		}
1759 
1760 		/*
1761 		 * Finish up with the device vnode
1762 		 */
1763 		if ((devvp = hmp->devvp) != NULL) {
1764 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1765 			vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0);
1766 			hmp->devvp = NULL;
1767 			VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL);
1768 			vn_unlock(devvp);
1769 			vrele(devvp);
1770 			devvp = NULL;
1771 		}
1772 
1773 		/*
1774 		 * Clear vchain/fchain flags that might prevent final cleanup
1775 		 * of these chains.
1776 		 */
1777 		if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1778 			atomic_clear_int(&hmp->vchain.flags,
1779 					 HAMMER2_CHAIN_MODIFIED);
1780 			hammer2_pfs_memory_wakeup(hmp->vchain.pmp);
1781 			hammer2_chain_drop(&hmp->vchain);
1782 		}
1783 		if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1784 			atomic_clear_int(&hmp->vchain.flags,
1785 					 HAMMER2_CHAIN_UPDATE);
1786 			hammer2_chain_drop(&hmp->vchain);
1787 		}
1788 
1789 		if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1790 			atomic_clear_int(&hmp->fchain.flags,
1791 					 HAMMER2_CHAIN_MODIFIED);
1792 			hammer2_pfs_memory_wakeup(hmp->fchain.pmp);
1793 			hammer2_chain_drop(&hmp->fchain);
1794 		}
1795 		if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1796 			atomic_clear_int(&hmp->fchain.flags,
1797 					 HAMMER2_CHAIN_UPDATE);
1798 			hammer2_chain_drop(&hmp->fchain);
1799 		}
1800 
1801 		/*
1802 		 * Final drop of embedded freemap root chain to
1803 		 * clean up fchain.core (fchain structure is not
1804 		 * flagged ALLOCATED so it is cleaned out and then
1805 		 * left to rot).
1806 		 */
1807 		hammer2_chain_drop(&hmp->fchain);
1808 
1809 		/*
1810 		 * Final drop of embedded volume root chain to clean
1811 		 * up vchain.core (vchain structure is not flagged
1812 		 * ALLOCATED so it is cleaned out and then left to
1813 		 * rot).
1814 		 */
1815 		dumpcnt = 50;
1816 		hammer2_dump_chain(&hmp->vchain, 0, &dumpcnt, 'v');
1817 		dumpcnt = 50;
1818 		hammer2_dump_chain(&hmp->fchain, 0, &dumpcnt, 'f');
1819 		hammer2_mount_unlock(hmp);
1820 		hammer2_chain_drop(&hmp->vchain);
1821 
1822 		hammer2_io_cleanup(hmp, &hmp->iotree);
1823 		if (hmp->iofree_count) {
1824 			kprintf("io_cleanup: %d I/O's left hanging\n",
1825 				hmp->iofree_count);
1826 		}
1827 
1828 		TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1829 		kmalloc_destroy(&hmp->mchain);
1830 		kfree(hmp, M_HAMMER2);
1831 	} else {
1832 		hammer2_mount_unlock(hmp);
1833 	}
1834 }
1835 
1836 static
1837 int
1838 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1839 	     ino_t ino, struct vnode **vpp)
1840 {
1841 	kprintf("hammer2_vget\n");
1842 	return (EOPNOTSUPP);
1843 }
1844 
1845 static
1846 int
1847 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1848 {
1849 	hammer2_pfsmount_t *pmp;
1850 	hammer2_cluster_t *cparent;
1851 	int error;
1852 	struct vnode *vp;
1853 
1854 	pmp = MPTOPMP(mp);
1855 	if (pmp->iroot == NULL) {
1856 		*vpp = NULL;
1857 		error = EINVAL;
1858 	} else {
1859 		cparent = hammer2_inode_lock_sh(pmp->iroot);
1860 		vp = hammer2_igetv(pmp->iroot, cparent, &error);
1861 		hammer2_inode_unlock_sh(pmp->iroot, cparent);
1862 		*vpp = vp;
1863 		if (vp == NULL)
1864 			kprintf("vnodefail\n");
1865 	}
1866 
1867 	return (error);
1868 }
1869 
1870 /*
1871  * Filesystem status
1872  *
1873  * XXX incorporate ipdata->inode_quota and data_quota
1874  */
1875 static
1876 int
1877 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
1878 {
1879 	hammer2_pfsmount_t *pmp;
1880 	hammer2_mount_t *hmp;
1881 
1882 	pmp = MPTOPMP(mp);
1883 	KKASSERT(pmp->iroot->cluster.nchains >= 1);
1884 	hmp = pmp->iroot->cluster.focus->hmp;	/* XXX */
1885 
1886 	mp->mnt_stat.f_files = pmp->inode_count;
1887 	mp->mnt_stat.f_ffree = 0;
1888 	mp->mnt_stat.f_blocks = hmp->voldata.allocator_size / HAMMER2_PBUFSIZE;
1889 	mp->mnt_stat.f_bfree =  hmp->voldata.allocator_free / HAMMER2_PBUFSIZE;
1890 	mp->mnt_stat.f_bavail = mp->mnt_stat.f_bfree;
1891 
1892 	*sbp = mp->mnt_stat;
1893 	return (0);
1894 }
1895 
1896 static
1897 int
1898 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
1899 {
1900 	hammer2_pfsmount_t *pmp;
1901 	hammer2_mount_t *hmp;
1902 
1903 	pmp = MPTOPMP(mp);
1904 	KKASSERT(pmp->iroot->cluster.nchains >= 1);
1905 	hmp = pmp->iroot->cluster.focus->hmp;	/* XXX */
1906 
1907 	mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1908 	mp->mnt_vstat.f_files = pmp->inode_count;
1909 	mp->mnt_vstat.f_ffree = 0;
1910 	mp->mnt_vstat.f_blocks = hmp->voldata.allocator_size / HAMMER2_PBUFSIZE;
1911 	mp->mnt_vstat.f_bfree =  hmp->voldata.allocator_free / HAMMER2_PBUFSIZE;
1912 	mp->mnt_vstat.f_bavail = mp->mnt_vstat.f_bfree;
1913 
1914 	*sbp = mp->mnt_vstat;
1915 	return (0);
1916 }
1917 
1918 /*
1919  * Mount-time recovery (RW mounts)
1920  *
1921  * Updates to the free block table are allowed to lag flushes by one
1922  * transaction.  In case of a crash, then on a fresh mount we must do an
1923  * incremental scan of the last committed transaction id and make sure that
1924  * all related blocks have been marked allocated.
1925  *
1926  * The super-root topology and each PFS has its own transaction id domain,
1927  * so we must track PFS boundary transitions.
1928  */
1929 struct hammer2_recovery_elm {
1930 	TAILQ_ENTRY(hammer2_recovery_elm) entry;
1931 	hammer2_chain_t *chain;
1932 	hammer2_tid_t sync_tid;
1933 };
1934 
1935 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
1936 
1937 struct hammer2_recovery_info {
1938 	struct hammer2_recovery_list list;
1939 	int	depth;
1940 };
1941 
1942 static int hammer2_recovery_scan(hammer2_trans_t *trans, hammer2_mount_t *hmp,
1943 			hammer2_chain_t *parent,
1944 			struct hammer2_recovery_info *info,
1945 			hammer2_tid_t sync_tid);
1946 
1947 #define HAMMER2_RECOVERY_MAXDEPTH	10
1948 
1949 static
1950 int
1951 hammer2_recovery(hammer2_mount_t *hmp)
1952 {
1953 	hammer2_trans_t trans;
1954 	struct hammer2_recovery_info info;
1955 	struct hammer2_recovery_elm *elm;
1956 	hammer2_chain_t *parent;
1957 	hammer2_tid_t sync_tid;
1958 	int error;
1959 	int cumulative_error = 0;
1960 
1961 	hammer2_trans_init(&trans, hmp->spmp, 0);
1962 
1963 	sync_tid = 0;
1964 	TAILQ_INIT(&info.list);
1965 	info.depth = 0;
1966 	parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1967 	cumulative_error = hammer2_recovery_scan(&trans, hmp, parent,
1968 						 &info, sync_tid);
1969 	hammer2_chain_lookup_done(parent);
1970 
1971 	while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
1972 		TAILQ_REMOVE(&info.list, elm, entry);
1973 		parent = elm->chain;
1974 		sync_tid = elm->sync_tid;
1975 		kfree(elm, M_HAMMER2);
1976 
1977 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1978 					   HAMMER2_RESOLVE_NOREF);
1979 		error = hammer2_recovery_scan(&trans, hmp, parent,
1980 					      &info, sync_tid);
1981 		hammer2_chain_unlock(parent);
1982 		if (error)
1983 			cumulative_error = error;
1984 	}
1985 	hammer2_trans_done(&trans);
1986 
1987 	return cumulative_error;
1988 }
1989 
1990 static
1991 int
1992 hammer2_recovery_scan(hammer2_trans_t *trans, hammer2_mount_t *hmp,
1993 		      hammer2_chain_t *parent,
1994 		      struct hammer2_recovery_info *info,
1995 		      hammer2_tid_t sync_tid)
1996 {
1997 	const hammer2_inode_data_t *ripdata;
1998 	hammer2_chain_t *chain;
1999 	int cache_index;
2000 	int cumulative_error = 0;
2001 	int pfs_boundary = 0;
2002 	int error;
2003 
2004 	/*
2005 	 * Adjust freemap to ensure that the block(s) are marked allocated.
2006 	 */
2007 	if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
2008 		hammer2_freemap_adjust(trans, hmp, &parent->bref,
2009 				       HAMMER2_FREEMAP_DORECOVER);
2010 	}
2011 
2012 	/*
2013 	 * Check type for recursive scan
2014 	 */
2015 	switch(parent->bref.type) {
2016 	case HAMMER2_BREF_TYPE_VOLUME:
2017 		/* data already instantiated */
2018 		break;
2019 	case HAMMER2_BREF_TYPE_INODE:
2020 		/*
2021 		 * Must instantiate data for DIRECTDATA test and also
2022 		 * for recursion.
2023 		 */
2024 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2025 		ripdata = &hammer2_chain_rdata(parent)->ipdata;
2026 		if (ripdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2027 			/* not applicable to recovery scan */
2028 			hammer2_chain_unlock(parent);
2029 			return 0;
2030 		}
2031 		if ((ripdata->op_flags & HAMMER2_OPFLAG_PFSROOT) &&
2032 		    info->depth != 0) {
2033 			pfs_boundary = 1;
2034 			sync_tid = parent->bref.mirror_tid - 1;
2035 		}
2036 		hammer2_chain_unlock(parent);
2037 		break;
2038 	case HAMMER2_BREF_TYPE_INDIRECT:
2039 		/*
2040 		 * Must instantiate data for recursion
2041 		 */
2042 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2043 		hammer2_chain_unlock(parent);
2044 		break;
2045 	case HAMMER2_BREF_TYPE_DATA:
2046 	case HAMMER2_BREF_TYPE_FREEMAP:
2047 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2048 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2049 		/* not applicable to recovery scan */
2050 		return 0;
2051 		break;
2052 	default:
2053 		return EDOM;
2054 	}
2055 
2056 	/*
2057 	 * Defer operation if depth limit reached or if we are crossing a
2058 	 * PFS boundary.
2059 	 */
2060 	if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH || pfs_boundary) {
2061 		struct hammer2_recovery_elm *elm;
2062 
2063 		elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2064 		elm->chain = parent;
2065 		elm->sync_tid = sync_tid;
2066 		hammer2_chain_ref(parent);
2067 		TAILQ_INSERT_TAIL(&info->list, elm, entry);
2068 		/* unlocked by caller */
2069 
2070 		return(0);
2071 	}
2072 
2073 
2074 	/*
2075 	 * Recursive scan of the last flushed transaction only.  We are
2076 	 * doing this without pmp assignments so don't leave the chains
2077 	 * hanging around after we are done with them.
2078 	 */
2079 	cache_index = 0;
2080 	chain = hammer2_chain_scan(parent, NULL, &cache_index,
2081 				   HAMMER2_LOOKUP_NODATA);
2082 	while (chain) {
2083 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2084 		if (chain->bref.mirror_tid >= sync_tid) {
2085 			++info->depth;
2086 			error = hammer2_recovery_scan(trans, hmp, chain,
2087 						      info, sync_tid);
2088 			--info->depth;
2089 			if (error)
2090 				cumulative_error = error;
2091 		}
2092 		chain = hammer2_chain_scan(parent, chain, &cache_index,
2093 					   HAMMER2_LOOKUP_NODATA);
2094 	}
2095 
2096 	return cumulative_error;
2097 }
2098 
2099 /*
2100  * Sync the entire filesystem; this is called from the filesystem syncer
2101  * process periodically and whenever a user calls sync(1) on the hammer
2102  * mountpoint.
2103  *
2104  * Currently is actually called from the syncer! \o/
2105  *
2106  * This task will have to snapshot the state of the dirty inode chain.
2107  * From that, it will have to make sure all of the inodes on the dirty
2108  * chain have IO initiated. We make sure that io is initiated for the root
2109  * block.
2110  *
2111  * If waitfor is set, we wait for media to acknowledge the new rootblock.
2112  *
2113  * THINKS: side A vs side B, to have sync not stall all I/O?
2114  */
2115 int
2116 hammer2_vfs_sync(struct mount *mp, int waitfor)
2117 {
2118 	struct hammer2_sync_info info;
2119 	hammer2_inode_t *iroot;
2120 	hammer2_chain_t *chain;
2121 	hammer2_chain_t *parent;
2122 	hammer2_pfsmount_t *pmp;
2123 	hammer2_mount_t *hmp;
2124 	int flags;
2125 	int error;
2126 	int total_error;
2127 	int force_fchain;
2128 	int i;
2129 	int j;
2130 
2131 	pmp = MPTOPMP(mp);
2132 	iroot = pmp->iroot;
2133 	KKASSERT(iroot);
2134 	KKASSERT(iroot->pmp == pmp);
2135 
2136 	/*
2137 	 * We can't acquire locks on existing vnodes while in a transaction
2138 	 * without risking a deadlock.  This assumes that vfsync() can be
2139 	 * called without the vnode locked (which it can in DragonFly).
2140 	 * Otherwise we'd have to implement a multi-pass or flag the lock
2141 	 * failures and retry.
2142 	 *
2143 	 * The reclamation code interlocks with the sync list's token
2144 	 * (by removing the vnode from the scan list) before unlocking
2145 	 * the inode, giving us time to ref the inode.
2146 	 */
2147 	/*flags = VMSC_GETVP;*/
2148 	flags = 0;
2149 	if (waitfor & MNT_LAZY)
2150 		flags |= VMSC_ONEPASS;
2151 
2152 	/*
2153 	 * Start our flush transaction.  This does not return until all
2154 	 * concurrent transactions have completed and will prevent any
2155 	 * new transactions from running concurrently, except for the
2156 	 * buffer cache transactions.
2157 	 *
2158 	 * For efficiency do an async pass before making sure with a
2159 	 * synchronous pass on all related buffer cache buffers.  It
2160 	 * should theoretically not be possible for any new file buffers
2161 	 * to be instantiated during this sequence.
2162 	 */
2163 	hammer2_trans_init(&info.trans, pmp, HAMMER2_TRANS_ISFLUSH |
2164 					     HAMMER2_TRANS_PREFLUSH);
2165 	hammer2_run_unlinkq(&info.trans, pmp);
2166 
2167 	info.error = 0;
2168 	info.waitfor = MNT_NOWAIT;
2169 	vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info);
2170 	info.waitfor = MNT_WAIT;
2171 	vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2172 
2173 	/*
2174 	 * Clear PREFLUSH.  This prevents (or asserts on) any new logical
2175 	 * buffer cache flushes which occur during the flush.  Device buffers
2176 	 * are not affected.
2177 	 */
2178 
2179 #if 0
2180 	if (info.error == 0 && (waitfor & MNT_WAIT)) {
2181 		info.waitfor = waitfor;
2182 		    vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2183 
2184 	}
2185 #endif
2186 	hammer2_bioq_sync(info.trans.pmp);
2187 	atomic_clear_int(&info.trans.flags, HAMMER2_TRANS_PREFLUSH);
2188 
2189 	total_error = 0;
2190 
2191 	/*
2192 	 * Flush all storage elements making up the cluster
2193 	 *
2194 	 * We must also flush any deleted siblings because the super-root
2195 	 * flush won't do it for us.  They all must be staged or the
2196 	 * super-root flush will not be able to update its block table
2197 	 * properly.
2198 	 *
2199 	 * XXX currently done serially instead of concurrently
2200 	 */
2201 	for (i = 0; iroot && i < iroot->cluster.nchains; ++i) {
2202 		chain = iroot->cluster.array[i];
2203 		if (chain) {
2204 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
2205 			hammer2_flush(&info.trans, chain);
2206 			hammer2_chain_unlock(chain);
2207 		}
2208 	}
2209 #if 0
2210 	hammer2_trans_done(&info.trans);
2211 #endif
2212 
2213 	/*
2214 	 * Flush all volume roots to synchronize PFS flushes with the
2215 	 * storage media.  Use a super-root transaction for each one.
2216 	 *
2217 	 * The flush code will detect super-root -> pfs-root chain
2218 	 * transitions using the last pfs-root flush.
2219 	 */
2220 	for (i = 0; iroot && i < iroot->cluster.nchains; ++i) {
2221 		chain = iroot->cluster.array[i];
2222 		if (chain == NULL)
2223 			continue;
2224 
2225 		hmp = chain->hmp;
2226 
2227 		/*
2228 		 * We only have to flush each hmp once
2229 		 */
2230 		for (j = i - 1; j >= 0; --j) {
2231 			if (iroot->cluster.array[j] &&
2232 			    iroot->cluster.array[j]->hmp == hmp)
2233 				break;
2234 		}
2235 		if (j >= 0)
2236 			continue;
2237 		hammer2_trans_spmp(&info.trans, hmp->spmp);
2238 
2239 		/*
2240 		 * Force an update of the XID from the PFS root to the
2241 		 * topology root.  We couldn't do this from the PFS
2242 		 * transaction because a SPMP transaction is needed.
2243 		 * This does not modify blocks, instead what it does is
2244 		 * allow the flush code to find the transition point and
2245 		 * then update on the way back up.
2246 		 */
2247 		parent = chain->parent;
2248 		KKASSERT(chain->pmp != parent->pmp);
2249 		hammer2_chain_setflush(&info.trans, parent);
2250 
2251 		/*
2252 		 * Media mounts have two 'roots', vchain for the topology
2253 		 * and fchain for the free block table.  Flush both.
2254 		 *
2255 		 * Note that the topology and free block table are handled
2256 		 * independently, so the free block table can wind up being
2257 		 * ahead of the topology.  We depend on the bulk free scan
2258 		 * code to deal with any loose ends.
2259 		 */
2260 		hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
2261 		hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
2262 		if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
2263 			/*
2264 			 * This will also modify vchain as a side effect,
2265 			 * mark vchain as modified now.
2266 			 */
2267 			hammer2_voldata_modify(hmp);
2268 			chain = &hmp->fchain;
2269 			hammer2_flush(&info.trans, chain);
2270 			KKASSERT(chain == &hmp->fchain);
2271 		}
2272 		hammer2_chain_unlock(&hmp->fchain);
2273 		hammer2_chain_unlock(&hmp->vchain);
2274 
2275 		hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
2276 		if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
2277 			chain = &hmp->vchain;
2278 			hammer2_flush(&info.trans, chain);
2279 			KKASSERT(chain == &hmp->vchain);
2280 			force_fchain = 1;
2281 		} else {
2282 			force_fchain = 0;
2283 		}
2284 		hammer2_chain_unlock(&hmp->vchain);
2285 
2286 #if 0
2287 		hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
2288 		if ((hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) ||
2289 		    force_fchain) {
2290 			/* this will also modify vchain as a side effect */
2291 			chain = &hmp->fchain;
2292 			hammer2_flush(&info.trans, chain);
2293 			KKASSERT(chain == &hmp->fchain);
2294 		}
2295 		hammer2_chain_unlock(&hmp->fchain);
2296 #endif
2297 
2298 		error = 0;
2299 
2300 		/*
2301 		 * We can't safely flush the volume header until we have
2302 		 * flushed any device buffers which have built up.
2303 		 *
2304 		 * XXX this isn't being incremental
2305 		 */
2306 		vn_lock(hmp->devvp, LK_EXCLUSIVE | LK_RETRY);
2307 		error = VOP_FSYNC(hmp->devvp, MNT_WAIT, 0);
2308 		vn_unlock(hmp->devvp);
2309 
2310 		/*
2311 		 * The flush code sets CHAIN_VOLUMESYNC to indicate that the
2312 		 * volume header needs synchronization via hmp->volsync.
2313 		 *
2314 		 * XXX synchronize the flag & data with only this flush XXX
2315 		 */
2316 		if (error == 0 &&
2317 		    (hmp->vchain.flags & HAMMER2_CHAIN_VOLUMESYNC)) {
2318 			struct buf *bp;
2319 
2320 			/*
2321 			 * Synchronize the disk before flushing the volume
2322 			 * header.
2323 			 */
2324 			bp = getpbuf(NULL);
2325 			bp->b_bio1.bio_offset = 0;
2326 			bp->b_bufsize = 0;
2327 			bp->b_bcount = 0;
2328 			bp->b_cmd = BUF_CMD_FLUSH;
2329 			bp->b_bio1.bio_done = biodone_sync;
2330 			bp->b_bio1.bio_flags |= BIO_SYNC;
2331 			vn_strategy(hmp->devvp, &bp->b_bio1);
2332 			biowait(&bp->b_bio1, "h2vol");
2333 			relpbuf(bp, NULL);
2334 
2335 			/*
2336 			 * Then we can safely flush the version of the
2337 			 * volume header synchronized by the flush code.
2338 			 */
2339 			i = hmp->volhdrno + 1;
2340 			if (i >= HAMMER2_NUM_VOLHDRS)
2341 				i = 0;
2342 			if (i * HAMMER2_ZONE_BYTES64 + HAMMER2_SEGSIZE >
2343 			    hmp->volsync.volu_size) {
2344 				i = 0;
2345 			}
2346 			kprintf("sync volhdr %d %jd\n",
2347 				i, (intmax_t)hmp->volsync.volu_size);
2348 			bp = getblk(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2349 				    HAMMER2_PBUFSIZE, 0, 0);
2350 			atomic_clear_int(&hmp->vchain.flags,
2351 					 HAMMER2_CHAIN_VOLUMESYNC);
2352 			bcopy(&hmp->volsync, bp->b_data, HAMMER2_PBUFSIZE);
2353 			bawrite(bp);
2354 			hmp->volhdrno = i;
2355 		}
2356 		if (error)
2357 			total_error = error;
2358 
2359 #if 0
2360 		hammer2_trans_done(&info.trans);
2361 #endif
2362 	}
2363 	hammer2_trans_done(&info.trans);
2364 
2365 	return (total_error);
2366 }
2367 
2368 /*
2369  * Sync passes.
2370  */
2371 static int
2372 hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
2373 {
2374 	struct hammer2_sync_info *info = data;
2375 	hammer2_inode_t *ip;
2376 	int error;
2377 
2378 	/*
2379 	 *
2380 	 */
2381 	ip = VTOI(vp);
2382 	if (ip == NULL)
2383 		return(0);
2384 	if (vp->v_type == VNON || vp->v_type == VBAD) {
2385 		vclrisdirty(vp);
2386 		return(0);
2387 	}
2388 	if ((ip->flags & HAMMER2_INODE_MODIFIED) == 0 &&
2389 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
2390 		vclrisdirty(vp);
2391 		return(0);
2392 	}
2393 
2394 	/*
2395 	 * VOP_FSYNC will start a new transaction so replicate some code
2396 	 * here to do it inline (see hammer2_vop_fsync()).
2397 	 *
2398 	 * WARNING: The vfsync interacts with the buffer cache and might
2399 	 *          block, we can't hold the inode lock at that time.
2400 	 *	    However, we MUST ref ip before blocking to ensure that
2401 	 *	    it isn't ripped out from under us (since we do not
2402 	 *	    hold a lock on the vnode).
2403 	 */
2404 	hammer2_inode_ref(ip);
2405 	atomic_clear_int(&ip->flags, HAMMER2_INODE_MODIFIED);
2406 	if (vp)
2407 		vfsync(vp, MNT_NOWAIT, 1, NULL, NULL);
2408 
2409 	hammer2_inode_drop(ip);
2410 #if 1
2411 	error = 0;
2412 	if (error)
2413 		info->error = error;
2414 #endif
2415 	return(0);
2416 }
2417 
2418 static
2419 int
2420 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2421 {
2422 	return (0);
2423 }
2424 
2425 static
2426 int
2427 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2428 	       struct fid *fhp, struct vnode **vpp)
2429 {
2430 	return (0);
2431 }
2432 
2433 static
2434 int
2435 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2436 		 int *exflagsp, struct ucred **credanonp)
2437 {
2438 	return (0);
2439 }
2440 
2441 /*
2442  * Support code for hammer2_mount().  Read, verify, and install the volume
2443  * header into the HMP
2444  *
2445  * XXX read four volhdrs and use the one with the highest TID whos CRC
2446  *     matches.
2447  *
2448  * XXX check iCRCs.
2449  *
2450  * XXX For filesystems w/ less than 4 volhdrs, make sure to not write to
2451  *     nonexistant locations.
2452  *
2453  * XXX Record selected volhdr and ring updates to each of 4 volhdrs
2454  */
2455 static
2456 int
2457 hammer2_install_volume_header(hammer2_mount_t *hmp)
2458 {
2459 	hammer2_volume_data_t *vd;
2460 	struct buf *bp;
2461 	hammer2_crc32_t crc0, crc, bcrc0, bcrc;
2462 	int error_reported;
2463 	int error;
2464 	int valid;
2465 	int i;
2466 
2467 	error_reported = 0;
2468 	error = 0;
2469 	valid = 0;
2470 	bp = NULL;
2471 
2472 	/*
2473 	 * There are up to 4 copies of the volume header (syncs iterate
2474 	 * between them so there is no single master).  We don't trust the
2475 	 * volu_size field so we don't know precisely how large the filesystem
2476 	 * is, so depend on the OS to return an error if we go beyond the
2477 	 * block device's EOF.
2478 	 */
2479 	for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) {
2480 		error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2481 			      HAMMER2_VOLUME_BYTES, &bp);
2482 		if (error) {
2483 			brelse(bp);
2484 			bp = NULL;
2485 			continue;
2486 		}
2487 
2488 		vd = (struct hammer2_volume_data *) bp->b_data;
2489 		if ((vd->magic != HAMMER2_VOLUME_ID_HBO) &&
2490 		    (vd->magic != HAMMER2_VOLUME_ID_ABO)) {
2491 			brelse(bp);
2492 			bp = NULL;
2493 			continue;
2494 		}
2495 
2496 		if (vd->magic == HAMMER2_VOLUME_ID_ABO) {
2497 			/* XXX: Reversed-endianness filesystem */
2498 			kprintf("hammer2: reverse-endian filesystem detected");
2499 			brelse(bp);
2500 			bp = NULL;
2501 			continue;
2502 		}
2503 
2504 		crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0];
2505 		crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF,
2506 				      HAMMER2_VOLUME_ICRC0_SIZE);
2507 		bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1];
2508 		bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF,
2509 				       HAMMER2_VOLUME_ICRC1_SIZE);
2510 		if ((crc0 != crc) || (bcrc0 != bcrc)) {
2511 			kprintf("hammer2 volume header crc "
2512 				"mismatch copy #%d %08x/%08x\n",
2513 				i, crc0, crc);
2514 			error_reported = 1;
2515 			brelse(bp);
2516 			bp = NULL;
2517 			continue;
2518 		}
2519 		if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) {
2520 			valid = 1;
2521 			hmp->voldata = *vd;
2522 			hmp->volhdrno = i;
2523 		}
2524 		brelse(bp);
2525 		bp = NULL;
2526 	}
2527 	if (valid) {
2528 		hmp->volsync = hmp->voldata;
2529 		error = 0;
2530 		if (error_reported || bootverbose || 1) { /* 1/DEBUG */
2531 			kprintf("hammer2: using volume header #%d\n",
2532 				hmp->volhdrno);
2533 		}
2534 	} else {
2535 		error = EINVAL;
2536 		kprintf("hammer2: no valid volume headers found!\n");
2537 	}
2538 	return (error);
2539 }
2540 
2541 /*
2542  * Reconnect using the passed file pointer.  The caller must ref the
2543  * fp for us.
2544  */
2545 void
2546 hammer2_cluster_reconnect(hammer2_mount_t *hmp, struct file *fp)
2547 {
2548 	size_t name_len;
2549 	const char *name = "disk-volume";
2550 
2551 	/*
2552 	 * Closes old comm descriptor, kills threads, cleans up
2553 	 * states, then installs the new descriptor and creates
2554 	 * new threads.
2555 	 */
2556 	kdmsg_iocom_reconnect(&hmp->iocom, fp, "hammer2");
2557 
2558 	/*
2559 	 * Setup LNK_CONN fields for autoinitiated state machine.  We
2560 	 * will use SPANs to advertise multiple PFSs so only pass the
2561 	 * fsid and HAMMER2_PFSTYPE_SUPROOT for the AUTOCONN.
2562 	 *
2563 	 * We are not initiating a LNK_SPAN so we do not have to set-up
2564 	 * iocom.auto_lnk_span.
2565 	 */
2566 	bzero(&hmp->iocom.auto_lnk_conn.pfs_clid,
2567 	      sizeof(hmp->iocom.auto_lnk_conn.pfs_clid));
2568 	hmp->iocom.auto_lnk_conn.pfs_fsid = hmp->voldata.fsid;
2569 	hmp->iocom.auto_lnk_conn.pfs_type = HAMMER2_PFSTYPE_SUPROOT;
2570 	hmp->iocom.auto_lnk_conn.proto_version = DMSG_SPAN_PROTO_1;
2571 #if 0
2572 	hmp->iocom.auto_lnk_conn.peer_type = hmp->voldata.peer_type;
2573 #endif
2574 	hmp->iocom.auto_lnk_conn.peer_type = DMSG_PEER_HAMMER2;
2575 
2576 	/*
2577 	 * Filter adjustment.  Clients do not need visibility into other
2578 	 * clients (otherwise millions of clients would present a serious
2579 	 * problem).  The fs_label also serves to restrict the namespace.
2580 	 */
2581 	hmp->iocom.auto_lnk_conn.peer_mask = 1LLU << DMSG_PEER_HAMMER2;
2582 	hmp->iocom.auto_lnk_conn.pfs_mask = (uint64_t)-1;
2583 
2584 #if 0
2585 	switch (ipdata->pfs_type) {
2586 	case DMSG_PFSTYPE_CLIENT:
2587 		hmp->iocom.auto_lnk_conn.peer_mask &=
2588 				~(1LLU << DMSG_PFSTYPE_CLIENT);
2589 		break;
2590 	default:
2591 		break;
2592 	}
2593 #endif
2594 
2595 	name_len = strlen(name);
2596 	if (name_len >= sizeof(hmp->iocom.auto_lnk_conn.fs_label))
2597 		name_len = sizeof(hmp->iocom.auto_lnk_conn.fs_label) - 1;
2598 	bcopy(name, hmp->iocom.auto_lnk_conn.fs_label, name_len);
2599 	hmp->iocom.auto_lnk_conn.fs_label[name_len] = 0;
2600 
2601 	kdmsg_iocom_autoinitiate(&hmp->iocom, hammer2_autodmsg);
2602 }
2603 
2604 static int
2605 hammer2_rcvdmsg(kdmsg_msg_t *msg)
2606 {
2607 	kprintf("RCVMSG %08x\n", msg->tcmd);
2608 
2609 	switch(msg->tcmd) {
2610 	case DMSG_DBG_SHELL:
2611 		/*
2612 		 * (non-transaction)
2613 		 * Execute shell command (not supported atm)
2614 		 */
2615 		kdmsg_msg_result(msg, DMSG_ERR_NOSUPP);
2616 		break;
2617 	case DMSG_DBG_SHELL | DMSGF_REPLY:
2618 		/*
2619 		 * (non-transaction)
2620 		 */
2621 		if (msg->aux_data) {
2622 			msg->aux_data[msg->aux_size - 1] = 0;
2623 			kprintf("HAMMER2 DBG: %s\n", msg->aux_data);
2624 		}
2625 		break;
2626 	default:
2627 		/*
2628 		 * Unsupported message received.  We only need to
2629 		 * reply if it's a transaction in order to close our end.
2630 		 * Ignore any one-way messages or any further messages
2631 		 * associated with the transaction.
2632 		 *
2633 		 * NOTE: This case also includes DMSG_LNK_ERROR messages
2634 		 *	 which might be one-way, replying to those would
2635 		 *	 cause an infinite ping-pong.
2636 		 */
2637 		if (msg->any.head.cmd & DMSGF_CREATE)
2638 			kdmsg_msg_reply(msg, DMSG_ERR_NOSUPP);
2639 		break;
2640 	}
2641 	return(0);
2642 }
2643 
2644 /*
2645  * This function is called after KDMSG has automatically handled processing
2646  * of a LNK layer message (typically CONN, SPAN, or CIRC).
2647  *
2648  * We tag off the LNK_CONN to trigger our LNK_VOLCONF messages which
2649  * advertises all available hammer2 super-root volumes.
2650  */
2651 static void hammer2_update_spans(hammer2_mount_t *hmp, kdmsg_state_t *state);
2652 
2653 static void
2654 hammer2_autodmsg(kdmsg_msg_t *msg)
2655 {
2656 	hammer2_mount_t *hmp = msg->state->iocom->handle;
2657 	int copyid;
2658 
2659 	kprintf("RCAMSG %08x\n", msg->tcmd);
2660 
2661 	switch(msg->tcmd) {
2662 	case DMSG_LNK_CONN | DMSGF_CREATE | DMSGF_REPLY:
2663 	case DMSG_LNK_CONN | DMSGF_CREATE | DMSGF_DELETE | DMSGF_REPLY:
2664 		if (msg->any.head.cmd & DMSGF_CREATE) {
2665 			kprintf("HAMMER2: VOLDATA DUMP\n");
2666 
2667 			/*
2668 			 * Dump the configuration stored in the volume header.
2669 			 * This will typically be import/export access rights,
2670 			 * master encryption keys (encrypted), etc.
2671 			 */
2672 			hammer2_voldata_lock(hmp);
2673 			copyid = 0;
2674 			while (copyid < HAMMER2_COPYID_COUNT) {
2675 				if (hmp->voldata.copyinfo[copyid].copyid)
2676 					hammer2_volconf_update(hmp, copyid);
2677 				++copyid;
2678 			}
2679 			hammer2_voldata_unlock(hmp);
2680 
2681 			kprintf("HAMMER2: INITIATE SPANs\n");
2682 			hammer2_update_spans(hmp, msg->state);
2683 		}
2684 		if ((msg->any.head.cmd & DMSGF_DELETE) &&
2685 		    msg->state && (msg->state->txcmd & DMSGF_DELETE) == 0) {
2686 			kprintf("HAMMER2: CONN WAS TERMINATED\n");
2687 		}
2688 		break;
2689 	default:
2690 		break;
2691 	}
2692 }
2693 
2694 /*
2695  * Update LNK_SPAN state
2696  */
2697 static void
2698 hammer2_update_spans(hammer2_mount_t *hmp, kdmsg_state_t *state)
2699 {
2700 	const hammer2_inode_data_t *ripdata;
2701 	hammer2_cluster_t *cparent;
2702 	hammer2_cluster_t *cluster;
2703 	hammer2_pfsmount_t *spmp;
2704 	hammer2_key_t key_next;
2705 	kdmsg_msg_t *rmsg;
2706 	size_t name_len;
2707 	int ddflag;
2708 
2709 	/*
2710 	 * Lookup mount point under the media-localized super-root.
2711 	 *
2712 	 * cluster->pmp will incorrectly point to spmp and must be fixed
2713 	 * up later on.
2714 	 */
2715 	spmp = hmp->spmp;
2716 	cparent = hammer2_inode_lock_ex(spmp->iroot);
2717 	cluster = hammer2_cluster_lookup(cparent, &key_next,
2718 					 HAMMER2_KEY_MIN,
2719 					 HAMMER2_KEY_MAX,
2720 					 0, &ddflag);
2721 	while (cluster) {
2722 		if (hammer2_cluster_type(cluster) != HAMMER2_BREF_TYPE_INODE)
2723 			continue;
2724 		ripdata = &hammer2_cluster_rdata(cluster)->ipdata;
2725 		kprintf("UPDATE SPANS: %s\n", ripdata->filename);
2726 
2727 		rmsg = kdmsg_msg_alloc(state, DMSG_LNK_SPAN | DMSGF_CREATE,
2728 				       hammer2_lnk_span_reply, NULL);
2729 		rmsg->any.lnk_span.pfs_clid = ripdata->pfs_clid;
2730 		rmsg->any.lnk_span.pfs_fsid = ripdata->pfs_fsid;
2731 		rmsg->any.lnk_span.pfs_type = ripdata->pfs_type;
2732 		rmsg->any.lnk_span.peer_type = DMSG_PEER_HAMMER2;
2733 		rmsg->any.lnk_span.proto_version = DMSG_SPAN_PROTO_1;
2734 		name_len = ripdata->name_len;
2735 		if (name_len >= sizeof(rmsg->any.lnk_span.fs_label))
2736 			name_len = sizeof(rmsg->any.lnk_span.fs_label) - 1;
2737 		bcopy(ripdata->filename, rmsg->any.lnk_span.fs_label, name_len);
2738 
2739 		kdmsg_msg_write(rmsg);
2740 
2741 		cluster = hammer2_cluster_next(cparent, cluster,
2742 					       &key_next,
2743 					       key_next,
2744 					       HAMMER2_KEY_MAX,
2745 					       0);
2746 	}
2747 	hammer2_inode_unlock_ex(spmp->iroot, cparent);
2748 }
2749 
2750 static
2751 int
2752 hammer2_lnk_span_reply(kdmsg_state_t *state, kdmsg_msg_t *msg)
2753 {
2754 	if ((state->txcmd & DMSGF_DELETE) == 0 &&
2755 	    (msg->any.head.cmd & DMSGF_DELETE)) {
2756 		kdmsg_msg_reply(msg, 0);
2757 	}
2758 	return 0;
2759 }
2760 
2761 /*
2762  * Volume configuration updates are passed onto the userland service
2763  * daemon via the open LNK_CONN transaction.
2764  */
2765 void
2766 hammer2_volconf_update(hammer2_mount_t *hmp, int index)
2767 {
2768 	kdmsg_msg_t *msg;
2769 
2770 	/* XXX interlock against connection state termination */
2771 	kprintf("volconf update %p\n", hmp->iocom.conn_state);
2772 	if (hmp->iocom.conn_state) {
2773 		kprintf("TRANSMIT VOLCONF VIA OPEN CONN TRANSACTION\n");
2774 		msg = kdmsg_msg_alloc(hmp->iocom.conn_state,
2775 				      DMSG_LNK_HAMMER2_VOLCONF,
2776 				      NULL, NULL);
2777 		H2_LNK_VOLCONF(msg)->copy = hmp->voldata.copyinfo[index];
2778 		H2_LNK_VOLCONF(msg)->mediaid = hmp->voldata.fsid;
2779 		H2_LNK_VOLCONF(msg)->index = index;
2780 		kdmsg_msg_write(msg);
2781 	}
2782 }
2783 
2784 /*
2785  * This handles hysteresis on regular file flushes.  Because the BIOs are
2786  * routed to a thread it is possible for an excessive number to build up
2787  * and cause long front-end stalls long before the runningbuffspace limit
2788  * is hit, so we implement hammer2_flush_pipe to control the
2789  * hysteresis.
2790  *
2791  * This is a particular problem when compression is used.
2792  */
2793 void
2794 hammer2_lwinprog_ref(hammer2_pfsmount_t *pmp)
2795 {
2796 	atomic_add_int(&pmp->count_lwinprog, 1);
2797 }
2798 
2799 void
2800 hammer2_lwinprog_drop(hammer2_pfsmount_t *pmp)
2801 {
2802 	int lwinprog;
2803 
2804 	lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
2805 	if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
2806 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
2807 		atomic_clear_int(&pmp->count_lwinprog,
2808 				 HAMMER2_LWINPROG_WAITING);
2809 		wakeup(&pmp->count_lwinprog);
2810 	}
2811 }
2812 
2813 void
2814 hammer2_lwinprog_wait(hammer2_pfsmount_t *pmp)
2815 {
2816 	int lwinprog;
2817 
2818 	for (;;) {
2819 		lwinprog = pmp->count_lwinprog;
2820 		cpu_ccfence();
2821 		if ((lwinprog & HAMMER2_LWINPROG_MASK) < hammer2_flush_pipe)
2822 			break;
2823 		tsleep_interlock(&pmp->count_lwinprog, 0);
2824 		atomic_set_int(&pmp->count_lwinprog, HAMMER2_LWINPROG_WAITING);
2825 		lwinprog = pmp->count_lwinprog;
2826 		if ((lwinprog & HAMMER2_LWINPROG_MASK) < hammer2_flush_pipe)
2827 			break;
2828 		tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
2829 	}
2830 }
2831 
2832 /*
2833  * Manage excessive memory resource use for chain and related
2834  * structures.
2835  */
2836 void
2837 hammer2_pfs_memory_wait(hammer2_pfsmount_t *pmp)
2838 {
2839 	uint32_t waiting;
2840 	uint32_t count;
2841 	uint32_t limit;
2842 #if 0
2843 	static int zzticks;
2844 #endif
2845 
2846 	/*
2847 	 * Atomic check condition and wait.  Also do an early speedup of
2848 	 * the syncer to try to avoid hitting the wait.
2849 	 */
2850 	for (;;) {
2851 		waiting = pmp->inmem_dirty_chains;
2852 		cpu_ccfence();
2853 		count = waiting & HAMMER2_DIRTYCHAIN_MASK;
2854 
2855 		limit = pmp->mp->mnt_nvnodelistsize / 10;
2856 		if (limit < hammer2_limit_dirty_chains)
2857 			limit = hammer2_limit_dirty_chains;
2858 		if (limit < 1000)
2859 			limit = 1000;
2860 
2861 #if 0
2862 		if ((int)(ticks - zzticks) > hz) {
2863 			zzticks = ticks;
2864 			kprintf("count %ld %ld\n", count, limit);
2865 		}
2866 #endif
2867 
2868 		/*
2869 		 * Block if there are too many dirty chains present, wait
2870 		 * for the flush to clean some out.
2871 		 */
2872 		if (count > limit) {
2873 			tsleep_interlock(&pmp->inmem_dirty_chains, 0);
2874 			if (atomic_cmpset_int(&pmp->inmem_dirty_chains,
2875 					       waiting,
2876 				       waiting | HAMMER2_DIRTYCHAIN_WAITING)) {
2877 				speedup_syncer(pmp->mp);
2878 				tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED,
2879 				       "chnmem", hz);
2880 			}
2881 			continue;	/* loop on success or fail */
2882 		}
2883 
2884 		/*
2885 		 * Try to start an early flush before we are forced to block.
2886 		 */
2887 		if (count > limit * 7 / 10)
2888 			speedup_syncer(pmp->mp);
2889 		break;
2890 	}
2891 }
2892 
2893 void
2894 hammer2_pfs_memory_inc(hammer2_pfsmount_t *pmp)
2895 {
2896 	if (pmp) {
2897 		atomic_add_int(&pmp->inmem_dirty_chains, 1);
2898 	}
2899 }
2900 
2901 void
2902 hammer2_pfs_memory_wakeup(hammer2_pfsmount_t *pmp)
2903 {
2904 	uint32_t waiting;
2905 
2906 	if (pmp == NULL)
2907 		return;
2908 
2909 	for (;;) {
2910 		waiting = pmp->inmem_dirty_chains;
2911 		cpu_ccfence();
2912 		if (atomic_cmpset_int(&pmp->inmem_dirty_chains,
2913 				       waiting,
2914 				       (waiting - 1) &
2915 					~HAMMER2_DIRTYCHAIN_WAITING)) {
2916 			break;
2917 		}
2918 	}
2919 
2920 	if (waiting & HAMMER2_DIRTYCHAIN_WAITING)
2921 		wakeup(&pmp->inmem_dirty_chains);
2922 }
2923 
2924 /*
2925  * Debugging
2926  */
2927 void
2928 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int *countp, char pfx)
2929 {
2930 	hammer2_chain_t *scan;
2931 	hammer2_chain_t *parent;
2932 
2933 	--*countp;
2934 	if (*countp == 0) {
2935 		kprintf("%*.*s...\n", tab, tab, "");
2936 		return;
2937 	}
2938 	if (*countp < 0)
2939 		return;
2940 	kprintf("%*.*s%c-chain %p.%d %016jx/%d mir=%016jx\n",
2941 		tab, tab, "", pfx,
2942 		chain, chain->bref.type,
2943 		chain->bref.key, chain->bref.keybits,
2944 		chain->bref.mirror_tid);
2945 
2946 	kprintf("%*.*s      [%08x] (%s) refs=%d\n",
2947 		tab, tab, "",
2948 		chain->flags,
2949 		((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2950 		chain->data) ?  (char *)chain->data->ipdata.filename : "?"),
2951 		chain->refs);
2952 
2953 	kprintf("%*.*s      core [%08x]",
2954 		tab, tab, "",
2955 		chain->core.flags);
2956 
2957 	parent = chain->parent;
2958 	if (parent)
2959 		kprintf("\n%*.*s      p=%p [pflags %08x prefs %d",
2960 			tab, tab, "",
2961 			parent, parent->flags, parent->refs);
2962 	if (RB_EMPTY(&chain->core.rbtree)) {
2963 		kprintf("\n");
2964 	} else {
2965 		kprintf(" {\n");
2966 		RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree)
2967 			hammer2_dump_chain(scan, tab + 4, countp, 'a');
2968 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
2969 			kprintf("%*.*s}(%s)\n", tab, tab, "",
2970 				chain->data->ipdata.filename);
2971 		else
2972 			kprintf("%*.*s}\n", tab, tab, "");
2973 	}
2974 }
2975