xref: /dragonfly/sys/vfs/hammer2/hammer2_vfsops.c (revision d9d30518)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/vfsops.h>
43 #include <sys/sysctl.h>
44 #include <sys/socket.h>
45 #include <sys/objcache.h>
46 #include <sys/proc.h>
47 #include <sys/lock.h>
48 #include <sys/file.h>
49 
50 #include "hammer2.h"
51 
52 TAILQ_HEAD(hammer2_mntlist, hammer2_dev);
53 static struct hammer2_mntlist hammer2_mntlist;
54 
55 struct hammer2_pfslist hammer2_pfslist;
56 struct hammer2_pfslist hammer2_spmplist;
57 struct lock hammer2_mntlk;
58 
59 int hammer2_supported_version = HAMMER2_VOL_VERSION_DEFAULT;
60 int hammer2_debug;
61 int hammer2_aux_flags;
62 int hammer2_xop_nthreads;
63 int hammer2_xop_sgroups;
64 int hammer2_xop_xgroups;
65 int hammer2_xop_xbase;
66 int hammer2_xop_mod;
67 long hammer2_debug_inode;
68 int hammer2_cluster_meta_read = 1;	/* physical read-ahead */
69 int hammer2_cluster_data_read = 4;	/* physical read-ahead */
70 int hammer2_cluster_write = 0;		/* physical write clustering */
71 int hammer2_dedup_enable = 1;
72 int hammer2_always_compress = 0;	/* always try to compress */
73 int hammer2_flush_pipe = 100;
74 int hammer2_dio_count;
75 int hammer2_dio_limit = 256;
76 int hammer2_bulkfree_tps = 5000;
77 int hammer2_spread_workers;
78 int hammer2_limit_saved_depth;
79 long hammer2_chain_allocs;
80 long hammer2_limit_saved_chains;
81 long hammer2_limit_dirty_chains;
82 long hammer2_limit_dirty_inodes;
83 long hammer2_count_modified_chains;
84 long hammer2_iod_file_read;
85 long hammer2_iod_meta_read;
86 long hammer2_iod_indr_read;
87 long hammer2_iod_fmap_read;
88 long hammer2_iod_volu_read;
89 long hammer2_iod_file_write;
90 long hammer2_iod_file_wembed;
91 long hammer2_iod_file_wzero;
92 long hammer2_iod_file_wdedup;
93 long hammer2_iod_meta_write;
94 long hammer2_iod_indr_write;
95 long hammer2_iod_fmap_write;
96 long hammer2_iod_volu_write;
97 static long hammer2_iod_inode_creates;
98 static long hammer2_iod_inode_deletes;
99 
100 long hammer2_process_icrc32;
101 long hammer2_process_xxhash64;
102 
103 MALLOC_DECLARE(M_HAMMER2_CBUFFER);
104 MALLOC_DEFINE(M_HAMMER2_CBUFFER, "HAMMER2-compbuffer",
105 		"Buffer used for compression.");
106 
107 MALLOC_DECLARE(M_HAMMER2_DEBUFFER);
108 MALLOC_DEFINE(M_HAMMER2_DEBUFFER, "HAMMER2-decompbuffer",
109 		"Buffer used for decompression.");
110 
111 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
112 
113 SYSCTL_INT(_vfs_hammer2, OID_AUTO, supported_version, CTLFLAG_RD,
114 	   &hammer2_supported_version, 0, "");
115 SYSCTL_INT(_vfs_hammer2, OID_AUTO, aux_flags, CTLFLAG_RW,
116 	   &hammer2_aux_flags, 0, "");
117 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
118 	   &hammer2_debug, 0, "");
119 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, debug_inode, CTLFLAG_RW,
120 	   &hammer2_debug_inode, 0, "");
121 SYSCTL_INT(_vfs_hammer2, OID_AUTO, spread_workers, CTLFLAG_RW,
122 	   &hammer2_spread_workers, 0, "");
123 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_meta_read, CTLFLAG_RW,
124 	   &hammer2_cluster_meta_read, 0, "");
125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_data_read, CTLFLAG_RW,
126 	   &hammer2_cluster_data_read, 0, "");
127 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_write, CTLFLAG_RW,
128 	   &hammer2_cluster_write, 0, "");
129 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dedup_enable, CTLFLAG_RW,
130 	   &hammer2_dedup_enable, 0, "");
131 SYSCTL_INT(_vfs_hammer2, OID_AUTO, always_compress, CTLFLAG_RW,
132 	   &hammer2_always_compress, 0, "");
133 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
134 	   &hammer2_flush_pipe, 0, "");
135 SYSCTL_INT(_vfs_hammer2, OID_AUTO, bulkfree_tps, CTLFLAG_RW,
136 	   &hammer2_bulkfree_tps, 0, "");
137 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_allocs, CTLFLAG_RD,
138 	   &hammer2_chain_allocs, 0, "");
139 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_saved_chains, CTLFLAG_RW,
140 	   &hammer2_limit_saved_chains, 0, "");
141 SYSCTL_INT(_vfs_hammer2, OID_AUTO, limit_saved_depth, CTLFLAG_RW,
142 	   &hammer2_limit_saved_depth, 0, "");
143 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
144 	   &hammer2_limit_dirty_chains, 0, "");
145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_inodes, CTLFLAG_RW,
146 	   &hammer2_limit_dirty_inodes, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, count_modified_chains, CTLFLAG_RD,
148 	   &hammer2_count_modified_chains, 0, "");
149 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
150 	   &hammer2_dio_count, 0, "");
151 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_limit, CTLFLAG_RW,
152 	   &hammer2_dio_limit, 0, "");
153 
154 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RD,
155 	   &hammer2_iod_file_read, 0, "");
156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RD,
157 	   &hammer2_iod_meta_read, 0, "");
158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RD,
159 	   &hammer2_iod_indr_read, 0, "");
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RD,
161 	   &hammer2_iod_fmap_read, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RD,
163 	   &hammer2_iod_volu_read, 0, "");
164 
165 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RD,
166 	   &hammer2_iod_file_write, 0, "");
167 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wembed, CTLFLAG_RD,
168 	   &hammer2_iod_file_wembed, 0, "");
169 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wzero, CTLFLAG_RD,
170 	   &hammer2_iod_file_wzero, 0, "");
171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wdedup, CTLFLAG_RD,
172 	   &hammer2_iod_file_wdedup, 0, "");
173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RD,
174 	   &hammer2_iod_meta_write, 0, "");
175 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RD,
176 	   &hammer2_iod_indr_write, 0, "");
177 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RD,
178 	   &hammer2_iod_fmap_write, 0, "");
179 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RD,
180 	   &hammer2_iod_volu_write, 0, "");
181 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_creates, CTLFLAG_RD,
182 	   &hammer2_iod_inode_creates, 0, "");
183 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_inode_deletes, CTLFLAG_RD,
184 	   &hammer2_iod_inode_deletes, 0, "");
185 
186 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_icrc32, CTLFLAG_RD,
187 	   &hammer2_process_icrc32, 0, "");
188 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_xxhash64, CTLFLAG_RD,
189 	   &hammer2_process_xxhash64, 0, "");
190 
191 static int hammer2_vfs_init(struct vfsconf *conf);
192 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
193 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
194 				struct ucred *cred);
195 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *,
196 				struct ucred *);
197 static int hammer2_recovery(hammer2_dev_t *hmp);
198 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
199 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
200 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
201 				struct ucred *cred);
202 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
203 				struct ucred *cred);
204 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
205 				struct fid *fhp, struct vnode **vpp);
206 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
207 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
208 				int *exflagsp, struct ucred **credanonp);
209 static int hammer2_vfs_modifying(struct mount *mp);
210 
211 static void hammer2_update_pmps(hammer2_dev_t *hmp);
212 
213 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp);
214 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp,
215 				hammer2_dev_t *hmp);
216 static int hammer2_fixup_pfses(hammer2_dev_t *hmp);
217 
218 /*
219  * HAMMER2 vfs operations.
220  */
221 static struct vfsops hammer2_vfsops = {
222 	.vfs_flags	= 0,
223 	.vfs_init	= hammer2_vfs_init,
224 	.vfs_uninit	= hammer2_vfs_uninit,
225 	.vfs_sync	= hammer2_vfs_sync,
226 	.vfs_mount	= hammer2_vfs_mount,
227 	.vfs_unmount	= hammer2_vfs_unmount,
228 	.vfs_root	= hammer2_vfs_root,
229 	.vfs_statfs	= hammer2_vfs_statfs,
230 	.vfs_statvfs	= hammer2_vfs_statvfs,
231 	.vfs_vget	= hammer2_vfs_vget,
232 	.vfs_vptofh	= hammer2_vfs_vptofh,
233 	.vfs_fhtovp	= hammer2_vfs_fhtovp,
234 	.vfs_checkexp	= hammer2_vfs_checkexp,
235 	.vfs_modifying	= hammer2_vfs_modifying
236 };
237 
238 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
239 
240 VFS_SET(hammer2_vfsops, hammer2, VFCF_MPSAFE);
241 MODULE_VERSION(hammer2, 1);
242 
243 static
244 int
245 hammer2_vfs_init(struct vfsconf *conf)
246 {
247 	static struct objcache_malloc_args margs_read;
248 	static struct objcache_malloc_args margs_write;
249 	static struct objcache_malloc_args margs_vop;
250 
251 	int error;
252 	int mod;
253 
254 	error = 0;
255 	kmalloc_raise_limit(M_HAMMER2, 0);	/* unlimited */
256 
257 	/*
258 	 * hammer2_xop_nthreads must be a multiple of ncpus,
259 	 * minimum 2 * ncpus.
260 	 */
261 	mod = ncpus;
262 	hammer2_xop_mod = mod;
263 	hammer2_xop_nthreads = mod * 2;
264 	while (hammer2_xop_nthreads / mod < HAMMER2_XOPGROUPS_MIN ||
265 	       hammer2_xop_nthreads < HAMMER2_XOPTHREADS_MIN)
266 	{
267 		hammer2_xop_nthreads += mod;
268 	}
269 	hammer2_xop_sgroups = hammer2_xop_nthreads / mod / 2;
270 	hammer2_xop_xgroups = hammer2_xop_nthreads / mod - hammer2_xop_sgroups;
271 	hammer2_xop_xbase = hammer2_xop_sgroups * mod;
272 
273 	/*
274 	 * A large DIO cache is needed to retain dedup enablement masks.
275 	 * The bulkfree code clears related masks as part of the disk block
276 	 * recycling algorithm, preventing it from being used for a later
277 	 * dedup.
278 	 *
279 	 * NOTE: A large buffer cache can actually interfere with dedup
280 	 *	 operation because we dedup based on media physical buffers
281 	 *	 and not logical buffers.  Try to make the DIO case large
282 	 *	 enough to avoid this problem, but also cap it.
283 	 */
284 	hammer2_dio_limit = nbuf * 2;
285 	if (hammer2_dio_limit > 100000)
286 		hammer2_dio_limit = 100000;
287 
288 	if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
289 		error = EINVAL;
290 	if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
291 		error = EINVAL;
292 	if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
293 		error = EINVAL;
294 
295 	if (error)
296 		kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
297 
298 	margs_read.objsize = 65536;
299 	margs_read.mtype = M_HAMMER2_DEBUFFER;
300 
301 	margs_write.objsize = 32768;
302 	margs_write.mtype = M_HAMMER2_CBUFFER;
303 
304 	margs_vop.objsize = sizeof(hammer2_xop_t);
305 	margs_vop.mtype = M_HAMMER2;
306 
307 	/*
308 	 * Note thaht for the XOPS cache we want backing store allocations
309 	 * to use M_ZERO.  This is not allowed in objcache_get() (to avoid
310 	 * confusion), so use the backing store function that does it.  This
311 	 * means that initial XOPS objects are zerod but REUSED objects are
312 	 * not.  So we are responsible for cleaning the object up sufficiently
313 	 * for our needs before objcache_put()ing it back (typically just the
314 	 * FIFO indices).
315 	 */
316 	cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
317 				0, 1, NULL, NULL, NULL,
318 				objcache_malloc_alloc,
319 				objcache_malloc_free,
320 				&margs_read);
321 	cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
322 				0, 1, NULL, NULL, NULL,
323 				objcache_malloc_alloc,
324 				objcache_malloc_free,
325 				&margs_write);
326 	cache_xops = objcache_create(margs_vop.mtype->ks_shortdesc,
327 				0, 1, NULL, NULL, NULL,
328 				objcache_malloc_alloc_zero,
329 				objcache_malloc_free,
330 				&margs_vop);
331 
332 
333 	lockinit(&hammer2_mntlk, "mntlk", 0, 0);
334 	TAILQ_INIT(&hammer2_mntlist);
335 	TAILQ_INIT(&hammer2_pfslist);
336 	TAILQ_INIT(&hammer2_spmplist);
337 
338 	hammer2_limit_dirty_chains = maxvnodes / 10;
339 	if (hammer2_limit_dirty_chains > HAMMER2_LIMIT_DIRTY_CHAINS)
340 		hammer2_limit_dirty_chains = HAMMER2_LIMIT_DIRTY_CHAINS;
341 	if (hammer2_limit_dirty_chains < 1000)
342 		hammer2_limit_dirty_chains = 1000;
343 
344 	hammer2_limit_dirty_inodes = maxvnodes / 25;
345 	if (hammer2_limit_dirty_inodes < 100)
346 		hammer2_limit_dirty_inodes = 100;
347 	if (hammer2_limit_dirty_inodes > HAMMER2_LIMIT_DIRTY_INODES)
348 		hammer2_limit_dirty_inodes = HAMMER2_LIMIT_DIRTY_INODES;
349 
350 	hammer2_limit_saved_chains = hammer2_limit_dirty_chains * 5;
351 
352 	return (error);
353 }
354 
355 static
356 int
357 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
358 {
359 	objcache_destroy(cache_buffer_read);
360 	objcache_destroy(cache_buffer_write);
361 	objcache_destroy(cache_xops);
362 	return 0;
363 }
364 
365 /*
366  * Core PFS allocator.  Used to allocate or reference the pmp structure
367  * for PFS cluster mounts and the spmp structure for media (hmp) structures.
368  * The pmp can be passed in or loaded by this function using the chain and
369  * inode data.
370  *
371  * pmp->modify_tid tracks new modify_tid transaction ids for front-end
372  * transactions.  Note that synchronization does not use this field.
373  * (typically frontend operations and synchronization cannot run on the
374  * same PFS node at the same time).
375  *
376  * XXX check locking
377  */
378 hammer2_pfs_t *
379 hammer2_pfsalloc(hammer2_chain_t *chain,
380 		 const hammer2_inode_data_t *ripdata,
381 		 hammer2_dev_t *force_local)
382 {
383 	hammer2_pfs_t *pmp;
384 	hammer2_inode_t *iroot;
385 	int count;
386 	int i;
387 	int j;
388 
389 	pmp = NULL;
390 
391 	/*
392 	 * Locate or create the PFS based on the cluster id.  If ripdata
393 	 * is NULL this is a spmp which is unique and is always allocated.
394 	 *
395 	 * If the device is mounted in local mode all PFSs are considered
396 	 * independent and not part of any cluster (for debugging only).
397 	 */
398 	if (ripdata) {
399 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
400 			if (force_local != pmp->force_local)
401 				continue;
402 			if (force_local == NULL &&
403 			    bcmp(&pmp->pfs_clid, &ripdata->meta.pfs_clid,
404 				 sizeof(pmp->pfs_clid)) == 0) {
405 				break;
406 			} else if (force_local && pmp->pfs_names[0] &&
407 			    strcmp(pmp->pfs_names[0], ripdata->filename) == 0) {
408 				break;
409 			}
410 		}
411 	}
412 
413 	if (pmp == NULL) {
414 		pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
415 		pmp->force_local = force_local;
416 		hammer2_trans_manage_init(pmp);
417 		kmalloc_create_obj(&pmp->minode, "HAMMER2-inodes",
418 				   sizeof(struct hammer2_inode));
419 		lockinit(&pmp->lock, "pfslk", 0, 0);
420 		hammer2_spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
421 		hammer2_spin_init(&pmp->xop_spin, "h2xop");
422 		hammer2_spin_init(&pmp->lru_spin, "h2lru");
423 		RB_INIT(&pmp->inum_tree);
424 		TAILQ_INIT(&pmp->syncq);
425 		TAILQ_INIT(&pmp->depq);
426 		TAILQ_INIT(&pmp->lru_list);
427 		hammer2_spin_init(&pmp->list_spin, "h2pfsalloc_list");
428 
429 		/*
430 		 * Save the last media transaction id for the flusher.  Set
431 		 * initial
432 		 */
433 		if (ripdata) {
434 			pmp->pfs_clid = ripdata->meta.pfs_clid;
435 			TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
436 		} else {
437 			pmp->flags |= HAMMER2_PMPF_SPMP;
438 			TAILQ_INSERT_TAIL(&hammer2_spmplist, pmp, mntentry);
439 		}
440 
441 		/*
442 		 * The synchronization thread may start too early, make
443 		 * sure it stays frozen until we are ready to let it go.
444 		 * XXX
445 		 */
446 		/*
447 		pmp->primary_thr.flags = HAMMER2_THREAD_FROZEN |
448 					 HAMMER2_THREAD_REMASTER;
449 		*/
450 	}
451 
452 	/*
453 	 * Create the PFS's root inode and any missing XOP helper threads.
454 	 */
455 	if ((iroot = pmp->iroot) == NULL) {
456 		iroot = hammer2_inode_get(pmp, NULL, 1, -1);
457 		if (ripdata)
458 			iroot->meta = ripdata->meta;
459 		pmp->iroot = iroot;
460 		hammer2_inode_ref(iroot);
461 		hammer2_inode_unlock(iroot);
462 	}
463 
464 	/*
465 	 * Stop here if no chain is passed in.
466 	 */
467 	if (chain == NULL)
468 		goto done;
469 
470 	/*
471 	 * When a chain is passed in we must add it to the PFS's root
472 	 * inode, update pmp->pfs_types[], and update the syncronization
473 	 * threads.
474 	 *
475 	 * When forcing local mode, mark the PFS as a MASTER regardless.
476 	 *
477 	 * At the moment empty spots can develop due to removals or failures.
478 	 * Ultimately we want to re-fill these spots but doing so might
479 	 * confused running code. XXX
480 	 */
481 	hammer2_inode_ref(iroot);
482 	hammer2_mtx_ex(&iroot->lock);
483 	j = iroot->cluster.nchains;
484 
485 	if (j == HAMMER2_MAXCLUSTER) {
486 		kprintf("hammer2_pfsalloc: cluster full!\n");
487 		/* XXX fatal error? */
488 	} else {
489 		KKASSERT(chain->pmp == NULL);
490 		chain->pmp = pmp;
491 		hammer2_chain_ref(chain);
492 		iroot->cluster.array[j].chain = chain;
493 		if (force_local)
494 			pmp->pfs_types[j] = HAMMER2_PFSTYPE_MASTER;
495 		else
496 			pmp->pfs_types[j] = ripdata->meta.pfs_type;
497 		pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2);
498 		pmp->pfs_hmps[j] = chain->hmp;
499 		hammer2_spin_ex(&pmp->inum_spin);
500 		pmp->pfs_iroot_blocksets[j] = chain->data->ipdata.u.blockset;
501 		hammer2_spin_unex(&pmp->inum_spin);
502 
503 		/*
504 		 * If the PFS is already mounted we must account
505 		 * for the mount_count here.
506 		 */
507 		if (pmp->mp)
508 			++chain->hmp->mount_count;
509 
510 		/*
511 		 * May have to fixup dirty chain tracking.  Previous
512 		 * pmp was NULL so nothing to undo.
513 		 */
514 		if (chain->flags & HAMMER2_CHAIN_MODIFIED)
515 			hammer2_pfs_memory_inc(pmp);
516 		++j;
517 	}
518 	iroot->cluster.nchains = j;
519 
520 	/*
521 	 * Update nmasters from any PFS inode which is part of the cluster.
522 	 * It is possible that this will result in a value which is too
523 	 * high.  MASTER PFSs are authoritative for pfs_nmasters and will
524 	 * override this value later on.
525 	 *
526 	 * (This informs us of masters that might not currently be
527 	 *  discoverable by this mount).
528 	 */
529 	if (ripdata && pmp->pfs_nmasters < ripdata->meta.pfs_nmasters) {
530 		pmp->pfs_nmasters = ripdata->meta.pfs_nmasters;
531 	}
532 
533 	/*
534 	 * Count visible masters.  Masters are usually added with
535 	 * ripdata->meta.pfs_nmasters set to 1.  This detects when there
536 	 * are more (XXX and must update the master inodes).
537 	 */
538 	count = 0;
539 	for (i = 0; i < iroot->cluster.nchains; ++i) {
540 		if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)
541 			++count;
542 	}
543 	if (pmp->pfs_nmasters < count)
544 		pmp->pfs_nmasters = count;
545 
546 	/*
547 	 * Create missing synchronization and support threads.
548 	 *
549 	 * Single-node masters (including snapshots) have nothing to
550 	 * synchronize and do not require this thread.
551 	 *
552 	 * Multi-node masters or any number of soft masters, slaves, copy,
553 	 * or other PFS types need the thread.
554 	 *
555 	 * Each thread is responsible for its particular cluster index.
556 	 * We use independent threads so stalls or mismatches related to
557 	 * any given target do not affect other targets.
558 	 */
559 	for (i = 0; i < iroot->cluster.nchains; ++i) {
560 		/*
561 		 * Single-node masters (including snapshots) have nothing
562 		 * to synchronize and will make direct xops support calls,
563 		 * thus they do not require this thread.
564 		 *
565 		 * Note that there can be thousands of snapshots.  We do not
566 		 * want to create thousands of threads.
567 		 */
568 		if (pmp->pfs_nmasters <= 1 &&
569 		    pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) {
570 			continue;
571 		}
572 
573 		/*
574 		 * Sync support thread
575 		 */
576 		if (pmp->sync_thrs[i].td == NULL) {
577 			hammer2_thr_create(&pmp->sync_thrs[i], pmp, NULL,
578 					   "h2nod", i, -1,
579 					   hammer2_primary_sync_thread);
580 		}
581 	}
582 
583 	/*
584 	 * Create missing Xop threads
585 	 *
586 	 * NOTE: We create helper threads for all mounted PFSs or any
587 	 *	 PFSs with 2+ nodes (so the sync thread can update them,
588 	 *	 even if not mounted).
589 	 */
590 	if (pmp->mp || iroot->cluster.nchains >= 2)
591 		hammer2_xop_helper_create(pmp);
592 
593 	hammer2_mtx_unlock(&iroot->lock);
594 	hammer2_inode_drop(iroot);
595 done:
596 	return pmp;
597 }
598 
599 /*
600  * Deallocate an element of a probed PFS.  If destroying and this is a
601  * MASTER, adjust nmasters.
602  *
603  * This function does not physically destroy the PFS element in its device
604  * under the super-root  (see hammer2_ioctl_pfs_delete()).
605  */
606 void
607 hammer2_pfsdealloc(hammer2_pfs_t *pmp, int clindex, int destroying)
608 {
609 	hammer2_inode_t *iroot;
610 	hammer2_chain_t *chain;
611 	int j;
612 
613 	/*
614 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
615 	 * by the flush code.
616 	 */
617 	iroot = pmp->iroot;
618 	if (iroot) {
619 		/*
620 		 * Stop synchronizing
621 		 *
622 		 * XXX flush after acquiring the iroot lock.
623 		 * XXX clean out the cluster index from all inode structures.
624 		 */
625 		hammer2_thr_delete(&pmp->sync_thrs[clindex]);
626 
627 		/*
628 		 * Remove the cluster index from the group.  If destroying
629 		 * the PFS and this is a master, adjust pfs_nmasters.
630 		 */
631 		hammer2_mtx_ex(&iroot->lock);
632 		chain = iroot->cluster.array[clindex].chain;
633 		iroot->cluster.array[clindex].chain = NULL;
634 
635 		switch(pmp->pfs_types[clindex]) {
636 		case HAMMER2_PFSTYPE_MASTER:
637 			if (destroying && pmp->pfs_nmasters > 0)
638 				--pmp->pfs_nmasters;
639 			/* XXX adjust ripdata->meta.pfs_nmasters */
640 			break;
641 		default:
642 			break;
643 		}
644 		pmp->pfs_types[clindex] = HAMMER2_PFSTYPE_NONE;
645 
646 		hammer2_mtx_unlock(&iroot->lock);
647 
648 		/*
649 		 * Release the chain.
650 		 */
651 		if (chain) {
652 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
653 			hammer2_chain_drop(chain);
654 		}
655 
656 		/*
657 		 * Terminate all XOP threads for the cluster index.
658 		 */
659 		if (pmp->xop_groups) {
660 			for (j = 0; j < hammer2_xop_nthreads; ++j) {
661 				hammer2_thr_delete(
662 					&pmp->xop_groups[j].thrs[clindex]);
663 			}
664 		}
665 	}
666 }
667 
668 /*
669  * Destroy a PFS, typically only occurs after the last mount on a device
670  * has gone away.
671  */
672 static void
673 hammer2_pfsfree(hammer2_pfs_t *pmp)
674 {
675 	hammer2_inode_t *iroot;
676 	hammer2_chain_t *chain;
677 	int chains_still_present = 0;
678 	int i;
679 	int j;
680 
681 	/*
682 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
683 	 * by the flush code.
684 	 */
685 	if (pmp->flags & HAMMER2_PMPF_SPMP)
686 		TAILQ_REMOVE(&hammer2_spmplist, pmp, mntentry);
687 	else
688 		TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
689 
690 	/*
691 	 * Cleanup chains remaining on LRU list.
692 	 */
693 	hammer2_spin_ex(&pmp->lru_spin);
694 	while ((chain = TAILQ_FIRST(&pmp->lru_list)) != NULL) {
695 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONLRU);
696 		atomic_add_int(&pmp->lru_count, -1);
697 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
698 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
699 		hammer2_chain_ref(chain);
700 		hammer2_spin_unex(&pmp->lru_spin);
701 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
702 		hammer2_chain_drop(chain);
703 		hammer2_spin_ex(&pmp->lru_spin);
704 	}
705 	hammer2_spin_unex(&pmp->lru_spin);
706 
707 	/*
708 	 * Clean up iroot
709 	 */
710 	iroot = pmp->iroot;
711 	if (iroot) {
712 		for (i = 0; i < iroot->cluster.nchains; ++i) {
713 			hammer2_thr_delete(&pmp->sync_thrs[i]);
714 			if (pmp->xop_groups) {
715 				for (j = 0; j < hammer2_xop_nthreads; ++j)
716 					hammer2_thr_delete(
717 						&pmp->xop_groups[j].thrs[i]);
718 			}
719 			chain = iroot->cluster.array[i].chain;
720 			if (chain && !RB_EMPTY(&chain->core.rbtree)) {
721 				kprintf("hammer2: Warning pmp %p still "
722 					"has active chains\n", pmp);
723 				chains_still_present = 1;
724 			}
725 		}
726 		KASSERT(iroot->refs == 1,
727 			("PMP->IROOT %p REFS WRONG %d", iroot, iroot->refs));
728 
729 		/* ref for iroot */
730 		hammer2_inode_drop(iroot);
731 		pmp->iroot = NULL;
732 	}
733 
734 	/*
735 	 * Free remaining pmp resources
736 	 */
737 	if (chains_still_present) {
738 		kprintf("hammer2: cannot free pmp %p, still in use\n", pmp);
739 	} else {
740 		kmalloc_destroy_obj(&pmp->minode);
741 		kfree(pmp, M_HAMMER2);
742 	}
743 }
744 
745 /*
746  * Remove all references to hmp from the pfs list.  Any PFS which becomes
747  * empty is terminated and freed.
748  *
749  * XXX inefficient.
750  */
751 static void
752 hammer2_pfsfree_scan(hammer2_dev_t *hmp, int which)
753 {
754 	hammer2_pfs_t *pmp;
755 	hammer2_inode_t *iroot;
756 	hammer2_chain_t *rchain;
757 	int i;
758 	int j;
759 	struct hammer2_pfslist *wlist;
760 
761 	if (which == 0)
762 		wlist = &hammer2_pfslist;
763 	else
764 		wlist = &hammer2_spmplist;
765 again:
766 	TAILQ_FOREACH(pmp, wlist, mntentry) {
767 		if ((iroot = pmp->iroot) == NULL)
768 			continue;
769 
770 		/*
771 		 * Determine if this PFS is affected.  If it is we must
772 		 * freeze all management threads and lock its iroot.
773 		 *
774 		 * Freezing a management thread forces it idle, operations
775 		 * in-progress will be aborted and it will have to start
776 		 * over again when unfrozen, or exit if told to exit.
777 		 */
778 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
779 			if (pmp->pfs_hmps[i] == hmp)
780 				break;
781 		}
782 		if (i == HAMMER2_MAXCLUSTER)
783 			continue;
784 
785 		hammer2_vfs_sync_pmp(pmp, MNT_WAIT);
786 
787 		/*
788 		 * Make sure all synchronization threads are locked
789 		 * down.
790 		 */
791 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
792 			if (pmp->pfs_hmps[i] == NULL)
793 				continue;
794 			hammer2_thr_freeze_async(&pmp->sync_thrs[i]);
795 			if (pmp->xop_groups) {
796 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
797 					hammer2_thr_freeze_async(
798 						&pmp->xop_groups[j].thrs[i]);
799 				}
800 			}
801 		}
802 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
803 			if (pmp->pfs_hmps[i] == NULL)
804 				continue;
805 			hammer2_thr_freeze(&pmp->sync_thrs[i]);
806 			if (pmp->xop_groups) {
807 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
808 					hammer2_thr_freeze(
809 						&pmp->xop_groups[j].thrs[i]);
810 				}
811 			}
812 		}
813 
814 		/*
815 		 * Lock the inode and clean out matching chains.
816 		 * Note that we cannot use hammer2_inode_lock_*()
817 		 * here because that would attempt to validate the
818 		 * cluster that we are in the middle of ripping
819 		 * apart.
820 		 *
821 		 * WARNING! We are working directly on the inodes
822 		 *	    embedded cluster.
823 		 */
824 		hammer2_mtx_ex(&iroot->lock);
825 
826 		/*
827 		 * Remove the chain from matching elements of the PFS.
828 		 */
829 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
830 			if (pmp->pfs_hmps[i] != hmp)
831 				continue;
832 			hammer2_thr_delete(&pmp->sync_thrs[i]);
833 			if (pmp->xop_groups) {
834 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
835 					hammer2_thr_delete(
836 						&pmp->xop_groups[j].thrs[i]);
837 				}
838 			}
839 			rchain = iroot->cluster.array[i].chain;
840 			iroot->cluster.array[i].chain = NULL;
841 			pmp->pfs_types[i] = HAMMER2_PFSTYPE_NONE;
842 			if (pmp->pfs_names[i]) {
843 				kfree(pmp->pfs_names[i], M_HAMMER2);
844 				pmp->pfs_names[i] = NULL;
845 			}
846 			if (rchain) {
847 				hammer2_chain_drop(rchain);
848 				/* focus hint */
849 				if (iroot->cluster.focus == rchain)
850 					iroot->cluster.focus = NULL;
851 			}
852 			pmp->pfs_hmps[i] = NULL;
853 		}
854 		hammer2_mtx_unlock(&iroot->lock);
855 
856 		/*
857 		 * Cleanup trailing chains.  Gaps may remain.
858 		 */
859 		for (i = HAMMER2_MAXCLUSTER - 1; i >= 0; --i) {
860 			if (pmp->pfs_hmps[i])
861 				break;
862 		}
863 		iroot->cluster.nchains = i + 1;
864 
865 		/*
866 		 * If the PMP has no elements remaining we can destroy it.
867 		 * (this will transition management threads from frozen->exit).
868 		 */
869 		if (iroot->cluster.nchains == 0) {
870 			/*
871 			 * If this was the hmp's spmp, we need to clean
872 			 * a little more stuff out.
873 			 */
874 			if (hmp->spmp == pmp) {
875 				hmp->spmp = NULL;
876 				hmp->vchain.pmp = NULL;
877 				hmp->fchain.pmp = NULL;
878 			}
879 
880 			/*
881 			 * Free the pmp and restart the loop
882 			 */
883 			KKASSERT(TAILQ_EMPTY(&pmp->syncq));
884 			KKASSERT(TAILQ_EMPTY(&pmp->depq));
885 			hammer2_pfsfree(pmp);
886 			goto again;
887 		}
888 
889 		/*
890 		 * If elements still remain we need to set the REMASTER
891 		 * flag and unfreeze it.
892 		 */
893 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
894 			if (pmp->pfs_hmps[i] == NULL)
895 				continue;
896 			hammer2_thr_remaster(&pmp->sync_thrs[i]);
897 			hammer2_thr_unfreeze(&pmp->sync_thrs[i]);
898 			if (pmp->xop_groups) {
899 				for (j = 0; j < hammer2_xop_nthreads; ++j) {
900 					hammer2_thr_remaster(
901 						&pmp->xop_groups[j].thrs[i]);
902 					hammer2_thr_unfreeze(
903 						&pmp->xop_groups[j].thrs[i]);
904 				}
905 			}
906 		}
907 	}
908 }
909 
910 /*
911  * Mount or remount HAMMER2 fileystem from physical media
912  *
913  *	mountroot
914  *		mp		mount point structure
915  *		path		NULL
916  *		data		<unused>
917  *		cred		<unused>
918  *
919  *	mount
920  *		mp		mount point structure
921  *		path		path to mount point
922  *		data		pointer to argument structure in user space
923  *			volume	volume path (device@LABEL form)
924  *			hflags	user mount flags
925  *		cred		user credentials
926  *
927  * RETURNS:	0	Success
928  *		!0	error number
929  */
930 static
931 int
932 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
933 		  struct ucred *cred)
934 {
935 	struct hammer2_mount_info info;
936 	hammer2_pfs_t *pmp;
937 	hammer2_pfs_t *spmp;
938 	hammer2_dev_t *hmp, *hmp_tmp;
939 	hammer2_dev_t *force_local;
940 	hammer2_key_t key_next;
941 	hammer2_key_t key_dummy;
942 	hammer2_key_t lhc;
943 	hammer2_chain_t *parent;
944 	hammer2_chain_t *chain;
945 	const hammer2_inode_data_t *ripdata;
946 	hammer2_devvp_list_t devvpl;
947 	hammer2_devvp_t *e, *e_tmp;
948 	struct file *fp;
949 	char devstr[MNAMELEN];
950 	size_t size;
951 	size_t done;
952 	char *label;
953 	int ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
954 	int error;
955 	int i;
956 
957 	hmp = NULL;
958 	pmp = NULL;
959 	label = NULL;
960 	bzero(&info, sizeof(info));
961 
962 	if (path) {
963 		/*
964 		 * Non-root mount or updating a mount
965 		 */
966 		error = copyin(data, &info, sizeof(info));
967 		if (error)
968 			return (error);
969 	}
970 
971 	if (mp->mnt_flag & MNT_UPDATE) {
972 		/*
973 		 * Update mount.  Note that pmp->iroot->cluster is
974 		 * an inode-embedded cluster and thus cannot be
975 		 * directly locked.
976 		 *
977 		 * XXX HAMMER2 needs to implement NFS export via
978 		 *     mountctl.
979 		 */
980 		hammer2_cluster_t *cluster;
981 
982 		error = 0;
983 		pmp = MPTOPMP(mp);
984 		pmp->hflags = info.hflags;
985 		cluster = &pmp->iroot->cluster;
986 		for (i = 0; i < cluster->nchains; ++i) {
987 			if (cluster->array[i].chain == NULL)
988 				continue;
989 			hmp = cluster->array[i].chain->hmp;
990 			error = hammer2_remount(hmp, mp, path, cred);
991 			if (error)
992 				break;
993 		}
994 
995 		return error;
996 	}
997 
998 	if (path == NULL) {
999 		/*
1000 		 * Root mount
1001 		 */
1002 		info.cluster_fd = -1;
1003 		ksnprintf(devstr, sizeof(devstr), "%s",
1004 			  mp->mnt_stat.f_mntfromname);
1005 		done = strlen(devstr) + 1;
1006 		kprintf("hammer2_mount: root devstr=\"%s\"\n", devstr);
1007 	} else {
1008 		error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
1009 		if (error)
1010 			return (error);
1011 		kprintf("hammer2_mount: devstr=\"%s\"\n", devstr);
1012 	}
1013 
1014 	/*
1015 	 * Extract device and label, automatically mount @BOOT, @ROOT, or @DATA
1016 	 * if no label specified, based on the partition id.  Error out if no
1017 	 * label or device (with partition id) is specified.  This is strictly
1018 	 * a convenience to match the default label created by newfs_hammer2,
1019 	 * our preference is that a label always be specified.
1020 	 *
1021 	 * NOTE: We allow 'mount @LABEL <blah>'... that is, a mount command
1022 	 *	 that does not specify a device, as long as some H2 label
1023 	 *	 has already been mounted from that device.  This makes
1024 	 *	 mounting snapshots a lot easier.
1025 	 */
1026 	label = strchr(devstr, '@');
1027 	if (label && ((label + 1) - devstr) > done) {
1028 		kprintf("hammer2_mount: bad label %s/%zd\n", devstr, done);
1029 		return (EINVAL);
1030 	}
1031 	if (label == NULL || label[1] == 0) {
1032 		char slice;
1033 
1034 		if (label == NULL)
1035 			label = devstr + strlen(devstr);
1036 		else
1037 			*label = '\0';		/* clean up trailing @ */
1038 
1039 		slice = label[-1];
1040 		switch(slice) {
1041 		case 'a':
1042 			label = "BOOT";
1043 			break;
1044 		case 'd':
1045 			label = "ROOT";
1046 			break;
1047 		default:
1048 			label = "DATA";
1049 			break;
1050 		}
1051 	} else {
1052 		*label = '\0';
1053 		label++;
1054 	}
1055 
1056 	kprintf("hammer2_mount: device=\"%s\" label=\"%s\" rdonly=%d\n",
1057 		devstr, label, ronly);
1058 
1059 	/*
1060 	 * Initialize all device vnodes.
1061 	 */
1062 	TAILQ_INIT(&devvpl);
1063 	error = hammer2_init_devvp(devstr, path == NULL, &devvpl);
1064 	if (error) {
1065 		kprintf("hammer2: failed to initialize devvp in %s\n", devstr);
1066 		hammer2_cleanup_devvp(&devvpl);
1067 		return error;
1068 	}
1069 
1070 	/*
1071 	 * Determine if the device has already been mounted.  After this
1072 	 * check hmp will be non-NULL if we are doing the second or more
1073 	 * hammer2 mounts from the same device.
1074 	 */
1075 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1076 	if (!TAILQ_EMPTY(&devvpl)) {
1077 		/*
1078 		 * Match the device.  Due to the way devfs works,
1079 		 * we may not be able to directly match the vnode pointer,
1080 		 * so also check to see if the underlying device matches.
1081 		 */
1082 		TAILQ_FOREACH(hmp_tmp, &hammer2_mntlist, mntentry) {
1083 			TAILQ_FOREACH(e_tmp, &hmp_tmp->devvpl, entry) {
1084 				int devvp_found = 0;
1085 				TAILQ_FOREACH(e, &devvpl, entry) {
1086 					KKASSERT(e->devvp);
1087 					if (e_tmp->devvp == e->devvp)
1088 						devvp_found = 1;
1089 					if (e_tmp->devvp->v_rdev &&
1090 					    e_tmp->devvp->v_rdev == e->devvp->v_rdev)
1091 						devvp_found = 1;
1092 				}
1093 				if (!devvp_found)
1094 					goto next_hmp;
1095 			}
1096 			hmp = hmp_tmp;
1097 			kprintf("hammer2_mount: hmp=%p matched\n", hmp);
1098 			break;
1099 next_hmp:
1100 			continue;
1101 		}
1102 
1103 		/*
1104 		 * If no match this may be a fresh H2 mount, make sure
1105 		 * the device is not mounted on anything else.
1106 		 */
1107 		if (hmp == NULL) {
1108 			TAILQ_FOREACH(e, &devvpl, entry) {
1109 				struct vnode *devvp = e->devvp;
1110 				KKASSERT(devvp);
1111 				error = vfs_mountedon(devvp);
1112 				if (error) {
1113 					kprintf("hammer2_mount: %s mounted %d\n",
1114 						e->path, error);
1115 					hammer2_cleanup_devvp(&devvpl);
1116 					lockmgr(&hammer2_mntlk, LK_RELEASE);
1117 					return error;
1118 				}
1119 			}
1120 		}
1121 	} else {
1122 		/*
1123 		 * Match the label to a pmp already probed.
1124 		 */
1125 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
1126 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
1127 				if (pmp->pfs_names[i] &&
1128 				    strcmp(pmp->pfs_names[i], label) == 0) {
1129 					hmp = pmp->pfs_hmps[i];
1130 					break;
1131 				}
1132 			}
1133 			if (hmp)
1134 				break;
1135 		}
1136 		if (hmp == NULL) {
1137 			kprintf("hammer2_mount: PFS label \"%s\" not found\n",
1138 				label);
1139 			hammer2_cleanup_devvp(&devvpl);
1140 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1141 			return ENOENT;
1142 		}
1143 	}
1144 
1145 	/*
1146 	 * Open the device if this isn't a secondary mount and construct
1147 	 * the H2 device mount (hmp).
1148 	 */
1149 	if (hmp == NULL) {
1150 		hammer2_chain_t *schain;
1151 		hammer2_xop_head_t xop;
1152 
1153 		/*
1154 		 * Now open the device
1155 		 */
1156 		KKASSERT(!TAILQ_EMPTY(&devvpl));
1157 		error = hammer2_open_devvp(&devvpl, ronly);
1158 		if (error) {
1159 			hammer2_close_devvp(&devvpl, ronly);
1160 			hammer2_cleanup_devvp(&devvpl);
1161 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1162 			return error;
1163 		}
1164 
1165 		/*
1166 		 * Construct volumes and link with device vnodes.
1167 		 */
1168 		hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
1169 		hmp->devvp = NULL;
1170 		error = hammer2_init_volumes(mp, &devvpl, hmp->volumes,
1171 					     &hmp->voldata, &hmp->volhdrno,
1172 					     &hmp->devvp);
1173 		if (error) {
1174 			hammer2_close_devvp(&devvpl, ronly);
1175 			hammer2_cleanup_devvp(&devvpl);
1176 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1177 			kfree(hmp, M_HAMMER2);
1178 			return error;
1179 		}
1180 		if (!hmp->devvp) {
1181 			kprintf("hammer2: failed to initialize root volume\n");
1182 			hammer2_unmount_helper(mp, NULL, hmp);
1183 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1184 			hammer2_vfs_unmount(mp, MNT_FORCE);
1185 			return EINVAL;
1186 		}
1187 
1188 		ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", devstr);
1189 		hmp->ronly = ronly;
1190 		hmp->hflags = info.hflags & HMNT2_DEVFLAGS;
1191 		kmalloc_create_obj(&hmp->mchain, "HAMMER2-chains",
1192 				   sizeof(struct hammer2_chain));
1193 		kmalloc_create_obj(&hmp->mio, "HAMMER2-dio",
1194 				   sizeof(struct hammer2_io));
1195 		kmalloc_create(&hmp->mmsg, "HAMMER2-msg");
1196 		TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
1197 		RB_INIT(&hmp->iotree);
1198 		hammer2_spin_init(&hmp->io_spin, "h2mount_io");
1199 		hammer2_spin_init(&hmp->list_spin, "h2mount_list");
1200 
1201 		lockinit(&hmp->vollk, "h2vol", 0, 0);
1202 		lockinit(&hmp->bulklk, "h2bulk", 0, 0);
1203 		lockinit(&hmp->bflock, "h2bflk", 0, 0);
1204 
1205 		/*
1206 		 * vchain setup. vchain.data is embedded.
1207 		 * vchain.refs is initialized and will never drop to 0.
1208 		 *
1209 		 * NOTE! voldata is not yet loaded.
1210 		 */
1211 		hmp->vchain.hmp = hmp;
1212 		hmp->vchain.refs = 1;
1213 		hmp->vchain.data = (void *)&hmp->voldata;
1214 		hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
1215 		hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1216 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1217 		hammer2_chain_init(&hmp->vchain);
1218 
1219 		/*
1220 		 * fchain setup.  fchain.data is embedded.
1221 		 * fchain.refs is initialized and will never drop to 0.
1222 		 *
1223 		 * The data is not used but needs to be initialized to
1224 		 * pass assertion muster.  We use this chain primarily
1225 		 * as a placeholder for the freemap's top-level radix tree
1226 		 * so it does not interfere with the volume's topology
1227 		 * radix tree.
1228 		 */
1229 		hmp->fchain.hmp = hmp;
1230 		hmp->fchain.refs = 1;
1231 		hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
1232 		hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
1233 		hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1234 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1235 		hmp->fchain.bref.methods =
1236 			HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
1237 			HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
1238 		hammer2_chain_init(&hmp->fchain);
1239 
1240 		/*
1241 		 * Initialize volume header related fields.
1242 		 */
1243 		KKASSERT(hmp->voldata.magic == HAMMER2_VOLUME_ID_HBO ||
1244 			 hmp->voldata.magic == HAMMER2_VOLUME_ID_ABO);
1245 		hmp->volsync = hmp->voldata;
1246 		hmp->free_reserved = hmp->voldata.allocator_size / 20;
1247 		/*
1248 		 * Must use hmp instead of volume header for these two
1249 		 * in order to handle volume versions transparently.
1250 		 */
1251 		if (hmp->voldata.version >= HAMMER2_VOL_VERSION_MULTI_VOLUMES) {
1252 			hmp->nvolumes = hmp->voldata.nvolumes;
1253 			hmp->total_size = hmp->voldata.total_size;
1254 		} else {
1255 			hmp->nvolumes = 1;
1256 			hmp->total_size = hmp->voldata.volu_size;
1257 		}
1258 		KKASSERT(hmp->nvolumes > 0);
1259 
1260 		/*
1261 		 * Move devvpl entries to hmp.
1262 		 */
1263 		TAILQ_INIT(&hmp->devvpl);
1264 		while ((e = TAILQ_FIRST(&devvpl)) != NULL) {
1265 			TAILQ_REMOVE(&devvpl, e, entry);
1266 			TAILQ_INSERT_TAIL(&hmp->devvpl, e, entry);
1267 		}
1268 		KKASSERT(TAILQ_EMPTY(&devvpl));
1269 		KKASSERT(!TAILQ_EMPTY(&hmp->devvpl));
1270 
1271 		/*
1272 		 * Really important to get these right or the flush and
1273 		 * teardown code will get confused.
1274 		 */
1275 		hmp->spmp = hammer2_pfsalloc(NULL, NULL, NULL);
1276 		spmp = hmp->spmp;
1277 		spmp->pfs_hmps[0] = hmp;
1278 
1279 		/*
1280 		 * Dummy-up vchain and fchain's modify_tid.  mirror_tid
1281 		 * is inherited from the volume header.
1282 		 */
1283 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1284 		hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
1285 		hmp->vchain.pmp = spmp;
1286 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1287 		hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
1288 		hmp->fchain.pmp = spmp;
1289 
1290 		/*
1291 		 * First locate the super-root inode, which is key 0
1292 		 * relative to the volume header's blockset.
1293 		 *
1294 		 * Then locate the root inode by scanning the directory keyspace
1295 		 * represented by the label.
1296 		 */
1297 		parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1298 		schain = hammer2_chain_lookup(&parent, &key_dummy,
1299 				      HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
1300 				      &error, 0);
1301 		hammer2_chain_lookup_done(parent);
1302 		if (schain == NULL) {
1303 			kprintf("hammer2_mount: invalid super-root\n");
1304 			hammer2_unmount_helper(mp, NULL, hmp);
1305 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1306 			hammer2_vfs_unmount(mp, MNT_FORCE);
1307 			return EINVAL;
1308 		}
1309 		if (schain->error) {
1310 			kprintf("hammer2_mount: error %s reading super-root\n",
1311 				hammer2_error_str(schain->error));
1312 			hammer2_chain_unlock(schain);
1313 			hammer2_chain_drop(schain);
1314 			schain = NULL;
1315 			hammer2_unmount_helper(mp, NULL, hmp);
1316 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1317 			hammer2_vfs_unmount(mp, MNT_FORCE);
1318 			return EINVAL;
1319 		}
1320 
1321 		/*
1322 		 * The super-root always uses an inode_tid of 1 when
1323 		 * creating PFSs.
1324 		 */
1325 		spmp->inode_tid = 1;
1326 		spmp->modify_tid = schain->bref.modify_tid + 1;
1327 
1328 		/*
1329 		 * Sanity-check schain's pmp and finish initialization.
1330 		 * Any chain belonging to the super-root topology should
1331 		 * have a NULL pmp (not even set to spmp).
1332 		 */
1333 		ripdata = &schain->data->ipdata;
1334 		KKASSERT(schain->pmp == NULL);
1335 		spmp->pfs_clid = ripdata->meta.pfs_clid;
1336 
1337 		/*
1338 		 * Replace the dummy spmp->iroot with a real one.  It's
1339 		 * easier to just do a wholesale replacement than to try
1340 		 * to update the chain and fixup the iroot fields.
1341 		 *
1342 		 * The returned inode is locked with the supplied cluster.
1343 		 */
1344 		hammer2_dummy_xop_from_chain(&xop, schain);
1345 		hammer2_inode_drop(spmp->iroot);
1346 		spmp->iroot = NULL;
1347 		spmp->iroot = hammer2_inode_get(spmp, &xop, -1, -1);
1348 		spmp->spmp_hmp = hmp;
1349 		spmp->pfs_types[0] = ripdata->meta.pfs_type;
1350 		spmp->pfs_hmps[0] = hmp;
1351 		hammer2_inode_ref(spmp->iroot);
1352 		hammer2_inode_unlock(spmp->iroot);
1353 		hammer2_cluster_unlock(&xop.cluster);
1354 		hammer2_chain_drop(schain);
1355 		/* do not call hammer2_cluster_drop() on an embedded cluster */
1356 		schain = NULL;	/* now invalid */
1357 		/* leave spmp->iroot with one ref */
1358 
1359 		if (!hmp->ronly) {
1360 			error = hammer2_recovery(hmp);
1361 			if (error == 0)
1362 				error |= hammer2_fixup_pfses(hmp);
1363 			/* XXX do something with error */
1364 		}
1365 		hammer2_update_pmps(hmp);
1366 		hammer2_iocom_init(hmp);
1367 		hammer2_bulkfree_init(hmp);
1368 
1369 		/*
1370 		 * Ref the cluster management messaging descriptor.  The mount
1371 		 * program deals with the other end of the communications pipe.
1372 		 *
1373 		 * Root mounts typically do not supply one.
1374 		 */
1375 		if (info.cluster_fd >= 0) {
1376 			fp = holdfp(curthread, info.cluster_fd, -1);
1377 			if (fp) {
1378 				hammer2_cluster_reconnect(hmp, fp);
1379 			} else {
1380 				kprintf("hammer2_mount: bad cluster_fd!\n");
1381 			}
1382 		}
1383 	} else {
1384 		spmp = hmp->spmp;
1385 		if (info.hflags & HMNT2_DEVFLAGS) {
1386 			kprintf("hammer2_mount: Warning: mount flags pertaining "
1387 				"to the whole device may only be specified "
1388 				"on the first mount of the device: %08x\n",
1389 				info.hflags & HMNT2_DEVFLAGS);
1390 		}
1391 	}
1392 
1393 	/*
1394 	 * Force local mount (disassociate all PFSs from their clusters).
1395 	 * Used primarily for debugging.
1396 	 */
1397 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1398 
1399 	/*
1400 	 * Lookup the mount point under the media-localized super-root.
1401 	 * Scanning hammer2_pfslist doesn't help us because it represents
1402 	 * PFS cluster ids which can aggregate several named PFSs together.
1403 	 *
1404 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1405 	 * up later on.
1406 	 */
1407 	hammer2_inode_lock(spmp->iroot, 0);
1408 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1409 	lhc = hammer2_dirhash(label, strlen(label));
1410 	chain = hammer2_chain_lookup(&parent, &key_next,
1411 				     lhc, lhc + HAMMER2_DIRHASH_LOMASK,
1412 				     &error, 0);
1413 	while (chain) {
1414 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
1415 		    strcmp(label, chain->data->ipdata.filename) == 0) {
1416 			break;
1417 		}
1418 		chain = hammer2_chain_next(&parent, chain, &key_next,
1419 					    key_next,
1420 					    lhc + HAMMER2_DIRHASH_LOMASK,
1421 					    &error, 0);
1422 	}
1423 	if (parent) {
1424 		hammer2_chain_unlock(parent);
1425 		hammer2_chain_drop(parent);
1426 	}
1427 	hammer2_inode_unlock(spmp->iroot);
1428 
1429 	/*
1430 	 * PFS could not be found?
1431 	 */
1432 	if (chain == NULL) {
1433 		hammer2_unmount_helper(mp, NULL, hmp);
1434 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1435 		hammer2_vfs_unmount(mp, MNT_FORCE);
1436 
1437 		if (error) {
1438 			kprintf("hammer2_mount: PFS label I/O error\n");
1439 			return EINVAL;
1440 		} else {
1441 			kprintf("hammer2_mount: PFS label \"%s\" not found\n",
1442 				label);
1443 			return ENOENT;
1444 		}
1445 	}
1446 
1447 	/*
1448 	 * Acquire the pmp structure (it should have already been allocated
1449 	 * via hammer2_update_pmps() so do not pass cluster in to add to
1450 	 * available chains).
1451 	 *
1452 	 * Check if the cluster has already been mounted.  A cluster can
1453 	 * only be mounted once, use null mounts to mount additional copies.
1454 	 */
1455 	if (chain->error) {
1456 		kprintf("hammer2_mount: PFS label I/O error\n");
1457 	} else {
1458 		ripdata = &chain->data->ipdata;
1459 		pmp = hammer2_pfsalloc(NULL, ripdata, force_local);
1460 	}
1461 	hammer2_chain_unlock(chain);
1462 	hammer2_chain_drop(chain);
1463 
1464 	/*
1465 	 * PFS to mount must exist at this point.
1466 	 */
1467 	if (pmp == NULL) {
1468 		kprintf("hammer2_mount: Failed to acquire PFS structure\n");
1469 		hammer2_unmount_helper(mp, NULL, hmp);
1470 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1471 		hammer2_vfs_unmount(mp, MNT_FORCE);
1472 		return EINVAL;
1473 	}
1474 
1475 	/*
1476 	 * Finish the mount
1477 	 */
1478 	kprintf("hammer2_mount: hmp=%p pmp=%p\n", hmp, pmp);
1479 
1480 	if (pmp->mp) {
1481 		kprintf("hammer2_mount: PFS already mounted!\n");
1482 		hammer2_unmount_helper(mp, NULL, hmp);
1483 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1484 		hammer2_vfs_unmount(mp, MNT_FORCE);
1485 		return EBUSY;
1486 	}
1487 
1488 	pmp->hflags = info.hflags;
1489 	mp->mnt_flag |= MNT_LOCAL;
1490 	mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;   /* all entry pts are SMP */
1491 	mp->mnt_kern_flag |= MNTK_THR_SYNC;     /* new vsyncscan semantics */
1492 
1493 	/*
1494 	 * required mount structure initializations
1495 	 */
1496 	mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
1497 	mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
1498 
1499 	mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
1500 	mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1501 
1502 	/*
1503 	 * Optional fields
1504 	 */
1505 	mp->mnt_iosize_max = MAXPHYS;
1506 
1507 	/*
1508 	 * Connect up mount pointers.
1509 	 */
1510 	hammer2_mount_helper(mp, pmp);
1511 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1512 
1513 	/*
1514 	 * Finish setup
1515 	 */
1516 	vfs_getnewfsid(mp);
1517 	vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
1518 	vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
1519 	vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
1520 
1521 	if (path) {
1522 		copyinstr(info.volume, mp->mnt_stat.f_mntfromname,
1523 			  MNAMELEN - 1, &size);
1524 		bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
1525 	} /* else root mount, already in there */
1526 
1527 	bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
1528 	if (path) {
1529 		copyinstr(path, mp->mnt_stat.f_mntonname,
1530 			  sizeof(mp->mnt_stat.f_mntonname) - 1,
1531 			  &size);
1532 	} else {
1533 		/* root mount */
1534 		mp->mnt_stat.f_mntonname[0] = '/';
1535 	}
1536 
1537 	/*
1538 	 * Initial statfs to prime mnt_stat.
1539 	 */
1540 	hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
1541 
1542 	return 0;
1543 }
1544 
1545 /*
1546  * Scan PFSs under the super-root and create hammer2_pfs structures.
1547  */
1548 static
1549 void
1550 hammer2_update_pmps(hammer2_dev_t *hmp)
1551 {
1552 	const hammer2_inode_data_t *ripdata;
1553 	hammer2_chain_t *parent;
1554 	hammer2_chain_t *chain;
1555 	hammer2_dev_t *force_local;
1556 	hammer2_pfs_t *spmp;
1557 	hammer2_key_t key_next;
1558 	int error;
1559 
1560 	/*
1561 	 * Force local mount (disassociate all PFSs from their clusters).
1562 	 * Used primarily for debugging.
1563 	 */
1564 	force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1565 
1566 	/*
1567 	 * Lookup mount point under the media-localized super-root.
1568 	 *
1569 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1570 	 * up later on.
1571 	 */
1572 	spmp = hmp->spmp;
1573 	hammer2_inode_lock(spmp->iroot, 0);
1574 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1575 	chain = hammer2_chain_lookup(&parent, &key_next,
1576 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
1577 					 &error, 0);
1578 	while (chain) {
1579 		if (chain->error) {
1580 			kprintf("I/O error scanning PFS labels\n");
1581 		} else if (chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
1582 			kprintf("Non inode chain type %d under super-root\n",
1583 				chain->bref.type);
1584 		} else {
1585 			ripdata = &chain->data->ipdata;
1586 			hammer2_pfsalloc(chain, ripdata, force_local);
1587 		}
1588 		chain = hammer2_chain_next(&parent, chain, &key_next,
1589 					   key_next, HAMMER2_KEY_MAX,
1590 					   &error, 0);
1591 	}
1592 	if (parent) {
1593 		hammer2_chain_unlock(parent);
1594 		hammer2_chain_drop(parent);
1595 	}
1596 	hammer2_inode_unlock(spmp->iroot);
1597 }
1598 
1599 static
1600 int
1601 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path __unused,
1602 		struct ucred *cred)
1603 {
1604 	hammer2_volume_t *vol;
1605 	struct vnode *devvp;
1606 	int i, error, result = 0;
1607 
1608 	if (!(hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)))
1609 		return 0;
1610 
1611 	for (i = 0; i < hmp->nvolumes; ++i) {
1612 		vol = &hmp->volumes[i];
1613 		devvp = vol->dev->devvp;
1614 		KKASSERT(devvp);
1615 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1616 		VOP_OPEN(devvp, FREAD | FWRITE, FSCRED, NULL);
1617 		vn_unlock(devvp);
1618 		error = 0;
1619 		if (vol->id == HAMMER2_ROOT_VOLUME) {
1620 			error = hammer2_recovery(hmp);
1621 			if (error == 0)
1622 				error |= hammer2_fixup_pfses(hmp);
1623 		}
1624 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1625 		if (error == 0) {
1626 			VOP_CLOSE(devvp, FREAD, NULL);
1627 		} else {
1628 			VOP_CLOSE(devvp, FREAD | FWRITE, NULL);
1629 		}
1630 		vn_unlock(devvp);
1631 		result |= error;
1632 	}
1633 	if (result == 0) {
1634 		kprintf("hammer2: enable read/write\n");
1635 		hmp->ronly = 0;
1636 	}
1637 
1638 	return result;
1639 }
1640 
1641 static
1642 int
1643 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1644 {
1645 	hammer2_pfs_t *pmp;
1646 	int flags;
1647 	int error = 0;
1648 
1649 	pmp = MPTOPMP(mp);
1650 
1651 	if (pmp == NULL)
1652 		return(0);
1653 
1654 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1655 
1656 	/*
1657 	 * If mount initialization proceeded far enough we must flush
1658 	 * its vnodes and sync the underlying mount points.  Three syncs
1659 	 * are required to fully flush the filesystem (freemap updates lag
1660 	 * by one flush, and one extra for safety).
1661 	 */
1662 	if (mntflags & MNT_FORCE)
1663 		flags = FORCECLOSE;
1664 	else
1665 		flags = 0;
1666 	if (pmp->iroot) {
1667 		error = vflush(mp, 0, flags);
1668 		if (error)
1669 			goto failed;
1670 		hammer2_vfs_sync(mp, MNT_WAIT);
1671 		hammer2_vfs_sync(mp, MNT_WAIT);
1672 		hammer2_vfs_sync(mp, MNT_WAIT);
1673 	}
1674 
1675 	/*
1676 	 * Cleanup the frontend support XOPS threads
1677 	 */
1678 	hammer2_xop_helper_cleanup(pmp);
1679 
1680 	if (pmp->mp)
1681 		hammer2_unmount_helper(mp, pmp, NULL);
1682 
1683 	error = 0;
1684 failed:
1685 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1686 
1687 	return (error);
1688 }
1689 
1690 /*
1691  * Mount helper, hook the system mount into our PFS.
1692  * The mount lock is held.
1693  *
1694  * We must bump the mount_count on related devices for any
1695  * mounted PFSs.
1696  */
1697 static
1698 void
1699 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp)
1700 {
1701 	hammer2_cluster_t *cluster;
1702 	hammer2_chain_t *rchain;
1703 	int i;
1704 
1705 	mp->mnt_data = (qaddr_t)pmp;
1706 	pmp->mp = mp;
1707 
1708 	/*
1709 	 * After pmp->mp is set we have to adjust hmp->mount_count.
1710 	 */
1711 	cluster = &pmp->iroot->cluster;
1712 	for (i = 0; i < cluster->nchains; ++i) {
1713 		rchain = cluster->array[i].chain;
1714 		if (rchain == NULL)
1715 			continue;
1716 		++rchain->hmp->mount_count;
1717 	}
1718 
1719 	/*
1720 	 * Create missing Xop threads
1721 	 */
1722 	hammer2_xop_helper_create(pmp);
1723 }
1724 
1725 /*
1726  * Unmount helper, unhook the system mount from our PFS.
1727  * The mount lock is held.
1728  *
1729  * If hmp is supplied a mount responsible for being the first to open
1730  * the block device failed and the block device and all PFSs using the
1731  * block device must be cleaned up.
1732  *
1733  * If pmp is supplied multiple devices might be backing the PFS and each
1734  * must be disconnected.  This might not be the last PFS using some of the
1735  * underlying devices.  Also, we have to adjust our hmp->mount_count
1736  * accounting for the devices backing the pmp which is now undergoing an
1737  * unmount.
1738  */
1739 static
1740 void
1741 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp)
1742 {
1743 	hammer2_cluster_t *cluster;
1744 	hammer2_chain_t *rchain;
1745 	int dumpcnt;
1746 	int i;
1747 
1748 	/*
1749 	 * If no device supplied this is a high-level unmount and we have to
1750 	 * to disconnect the mount, adjust mount_count, and locate devices
1751 	 * that might now have no mounts.
1752 	 */
1753 	if (pmp) {
1754 		KKASSERT(hmp == NULL);
1755 		KKASSERT(MPTOPMP(mp) == pmp);
1756 		pmp->mp = NULL;
1757 		mp->mnt_data = NULL;
1758 
1759 		/*
1760 		 * After pmp->mp is cleared we have to account for
1761 		 * mount_count.
1762 		 */
1763 		cluster = &pmp->iroot->cluster;
1764 		for (i = 0; i < cluster->nchains; ++i) {
1765 			rchain = cluster->array[i].chain;
1766 			if (rchain == NULL)
1767 				continue;
1768 			--rchain->hmp->mount_count;
1769 			/* scrapping hmp now may invalidate the pmp */
1770 		}
1771 again:
1772 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1773 			if (hmp->mount_count == 0) {
1774 				hammer2_unmount_helper(NULL, NULL, hmp);
1775 				goto again;
1776 			}
1777 		}
1778 		return;
1779 	}
1780 
1781 	/*
1782 	 * Try to terminate the block device.  We can't terminate it if
1783 	 * there are still PFSs referencing it.
1784 	 */
1785 	if (hmp->mount_count)
1786 		return;
1787 
1788 	/*
1789 	 * Decomission the network before we start messing with the
1790 	 * device and PFS.
1791 	 */
1792 	hammer2_iocom_uninit(hmp);
1793 
1794 	hammer2_bulkfree_uninit(hmp);
1795 	hammer2_pfsfree_scan(hmp, 0);
1796 
1797 	/*
1798 	 * Cycle the volume data lock as a safety (probably not needed any
1799 	 * more).  To ensure everything is out we need to flush at least
1800 	 * three times.  (1) The running of the sideq can dirty the
1801 	 * filesystem, (2) A normal flush can dirty the freemap, and
1802 	 * (3) ensure that the freemap is fully synchronized.
1803 	 *
1804 	 * The next mount's recovery scan can clean everything up but we want
1805 	 * to leave the filesystem in a 100% clean state on a normal unmount.
1806 	 */
1807 #if 0
1808 	hammer2_voldata_lock(hmp);
1809 	hammer2_voldata_unlock(hmp);
1810 #endif
1811 
1812 	/*
1813 	 * Flush whatever is left.  Unmounted but modified PFS's might still
1814 	 * have some dirty chains on them.
1815 	 */
1816 	hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1817 	hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1818 
1819 	if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1820 		hammer2_voldata_modify(hmp);
1821 		hammer2_flush(&hmp->fchain, HAMMER2_FLUSH_TOP |
1822 					    HAMMER2_FLUSH_ALL);
1823 	}
1824 	hammer2_chain_unlock(&hmp->fchain);
1825 
1826 	if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1827 		hammer2_flush(&hmp->vchain, HAMMER2_FLUSH_TOP |
1828 					    HAMMER2_FLUSH_ALL);
1829 	}
1830 	hammer2_chain_unlock(&hmp->vchain);
1831 
1832 	if ((hmp->vchain.flags | hmp->fchain.flags) &
1833 	    HAMMER2_CHAIN_FLUSH_MASK) {
1834 		kprintf("hammer2_unmount: chains left over after final sync\n");
1835 		kprintf("    vchain %08x\n", hmp->vchain.flags);
1836 		kprintf("    fchain %08x\n", hmp->fchain.flags);
1837 
1838 		if (hammer2_debug & 0x0010)
1839 			Debugger("entered debugger");
1840 	}
1841 
1842 	hammer2_pfsfree_scan(hmp, 1);
1843 
1844 	KKASSERT(hmp->spmp == NULL);
1845 
1846 	/*
1847 	 * Finish up with the device vnode
1848 	 */
1849 	if (!TAILQ_EMPTY(&hmp->devvpl)) {
1850 		hammer2_close_devvp(&hmp->devvpl, hmp->ronly);
1851 		hammer2_cleanup_devvp(&hmp->devvpl);
1852 	}
1853 	KKASSERT(TAILQ_EMPTY(&hmp->devvpl));
1854 
1855 	/*
1856 	 * Clear vchain/fchain flags that might prevent final cleanup
1857 	 * of these chains.
1858 	 */
1859 	if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1860 		atomic_add_long(&hammer2_count_modified_chains, -1);
1861 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1862 		hammer2_pfs_memory_wakeup(hmp->vchain.pmp, -1);
1863 	}
1864 	if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1865 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_UPDATE);
1866 	}
1867 
1868 	if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1869 		atomic_add_long(&hammer2_count_modified_chains, -1);
1870 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_MODIFIED);
1871 		hammer2_pfs_memory_wakeup(hmp->fchain.pmp, -1);
1872 	}
1873 	if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1874 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_UPDATE);
1875 	}
1876 
1877 	dumpcnt = 50;
1878 	hammer2_dump_chain(&hmp->vchain, 0, 0, &dumpcnt, 'v', (u_int)-1);
1879 	dumpcnt = 50;
1880 	hammer2_dump_chain(&hmp->fchain, 0, 0, &dumpcnt, 'f', (u_int)-1);
1881 
1882 	/*
1883 	 * Final drop of embedded freemap root chain to
1884 	 * clean up fchain.core (fchain structure is not
1885 	 * flagged ALLOCATED so it is cleaned out and then
1886 	 * left to rot).
1887 	 */
1888 	hammer2_chain_drop(&hmp->fchain);
1889 
1890 	/*
1891 	 * Final drop of embedded volume root chain to clean
1892 	 * up vchain.core (vchain structure is not flagged
1893 	 * ALLOCATED so it is cleaned out and then left to
1894 	 * rot).
1895 	 */
1896 	hammer2_chain_drop(&hmp->vchain);
1897 
1898 	hammer2_io_cleanup(hmp, &hmp->iotree);
1899 	if (hmp->iofree_count) {
1900 		kprintf("io_cleanup: %d I/O's left hanging\n",
1901 			hmp->iofree_count);
1902 	}
1903 
1904 	TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1905 	kmalloc_destroy_obj(&hmp->mchain);
1906 	kmalloc_destroy_obj(&hmp->mio);
1907 	kmalloc_destroy(&hmp->mmsg);
1908 	kfree(hmp, M_HAMMER2);
1909 }
1910 
1911 int
1912 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1913 		 ino_t ino, struct vnode **vpp)
1914 {
1915 	hammer2_xop_lookup_t *xop;
1916 	hammer2_pfs_t *pmp;
1917 	hammer2_inode_t *ip;
1918 	hammer2_tid_t inum;
1919 	int error;
1920 
1921 	inum = (hammer2_tid_t)ino & HAMMER2_DIRHASH_USERMSK;
1922 
1923 	error = 0;
1924 	pmp = MPTOPMP(mp);
1925 
1926 	/*
1927 	 * Easy if we already have it cached
1928 	 */
1929 	ip = hammer2_inode_lookup(pmp, inum);
1930 	if (ip) {
1931 		hammer2_inode_lock(ip, HAMMER2_RESOLVE_SHARED);
1932 		*vpp = hammer2_igetv(ip, &error);
1933 		hammer2_inode_unlock(ip);
1934 		hammer2_inode_drop(ip);		/* from lookup */
1935 
1936 		return error;
1937 	}
1938 
1939 	/*
1940 	 * Otherwise we have to find the inode
1941 	 */
1942 	xop = hammer2_xop_alloc(pmp->iroot, 0);
1943 	xop->lhc = inum;
1944 	hammer2_xop_start(&xop->head, &hammer2_lookup_desc);
1945 	error = hammer2_xop_collect(&xop->head, 0);
1946 
1947 	if (error == 0)
1948 		ip = hammer2_inode_get(pmp, &xop->head, -1, -1);
1949 	hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1950 
1951 	if (ip) {
1952 		*vpp = hammer2_igetv(ip, &error);
1953 		hammer2_inode_unlock(ip);
1954 	} else {
1955 		*vpp = NULL;
1956 		error = ENOENT;
1957 	}
1958 	return (error);
1959 }
1960 
1961 static
1962 int
1963 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1964 {
1965 	hammer2_pfs_t *pmp;
1966 	struct vnode *vp;
1967 	int error;
1968 
1969 	pmp = MPTOPMP(mp);
1970 	if (pmp->iroot == NULL) {
1971 		kprintf("hammer2 (%s): no root inode\n",
1972 			mp->mnt_stat.f_mntfromname);
1973 		*vpp = NULL;
1974 		return EINVAL;
1975 	}
1976 
1977 	error = 0;
1978 	hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1979 
1980 	while (pmp->inode_tid == 0) {
1981 		hammer2_xop_ipcluster_t *xop;
1982 		const hammer2_inode_meta_t *meta;
1983 
1984 		xop = hammer2_xop_alloc(pmp->iroot, HAMMER2_XOP_MODIFYING);
1985 		hammer2_xop_start(&xop->head, &hammer2_ipcluster_desc);
1986 		error = hammer2_xop_collect(&xop->head, 0);
1987 
1988 		if (error == 0) {
1989 			meta = &hammer2_xop_gdata(&xop->head)->ipdata.meta;
1990 			pmp->iroot->meta = *meta;
1991 			pmp->inode_tid = meta->pfs_inum + 1;
1992 			hammer2_xop_pdata(&xop->head);
1993 			/* meta invalid */
1994 
1995 			if (pmp->inode_tid < HAMMER2_INODE_START)
1996 				pmp->inode_tid = HAMMER2_INODE_START;
1997 			pmp->modify_tid =
1998 				xop->head.cluster.focus->bref.modify_tid + 1;
1999 #if 0
2000 			kprintf("PFS: Starting inode %jd\n",
2001 				(intmax_t)pmp->inode_tid);
2002 			kprintf("PMP focus good set nextino=%ld mod=%016jx\n",
2003 				pmp->inode_tid, pmp->modify_tid);
2004 #endif
2005 			wakeup(&pmp->iroot);
2006 
2007 			hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2008 
2009 			/*
2010 			 * Prime the mount info.
2011 			 */
2012 			hammer2_vfs_statfs(mp, &mp->mnt_stat, NULL);
2013 			break;
2014 		}
2015 
2016 		/*
2017 		 * Loop, try again
2018 		 */
2019 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2020 		hammer2_inode_unlock(pmp->iroot);
2021 		error = tsleep(&pmp->iroot, PCATCH, "h2root", hz);
2022 		hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
2023 		if (error == EINTR)
2024 			break;
2025 	}
2026 
2027 	if (error) {
2028 		hammer2_inode_unlock(pmp->iroot);
2029 		*vpp = NULL;
2030 	} else {
2031 		vp = hammer2_igetv(pmp->iroot, &error);
2032 		hammer2_inode_unlock(pmp->iroot);
2033 		*vpp = vp;
2034 	}
2035 
2036 	return (error);
2037 }
2038 
2039 /*
2040  * Filesystem status
2041  *
2042  * XXX incorporate ipdata->meta.inode_quota and data_quota
2043  */
2044 static
2045 int
2046 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
2047 {
2048 	hammer2_pfs_t *pmp;
2049 	hammer2_dev_t *hmp;
2050 	hammer2_blockref_t bref;
2051 	struct statfs tmp;
2052 	int i;
2053 
2054 	/*
2055 	 * NOTE: iroot might not have validated the cluster yet.
2056 	 */
2057 	pmp = MPTOPMP(mp);
2058 
2059 	bzero(&tmp, sizeof(tmp));
2060 
2061 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2062 		hmp = pmp->pfs_hmps[i];
2063 		if (hmp == NULL)
2064 			continue;
2065 		if (pmp->iroot->cluster.array[i].chain)
2066 			bref = pmp->iroot->cluster.array[i].chain->bref;
2067 		else
2068 			bzero(&bref, sizeof(bref));
2069 
2070 		tmp.f_files = bref.embed.stats.inode_count;
2071 		tmp.f_ffree = 0;
2072 		tmp.f_blocks = hmp->voldata.allocator_size /
2073 			       mp->mnt_vstat.f_bsize;
2074 		tmp.f_bfree = hmp->voldata.allocator_free /
2075 			      mp->mnt_vstat.f_bsize;
2076 		tmp.f_bavail = tmp.f_bfree;
2077 
2078 		if (cred && cred->cr_uid != 0) {
2079 			uint64_t adj;
2080 
2081 			/* 5% */
2082 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2083 			tmp.f_blocks -= adj;
2084 			tmp.f_bfree -= adj;
2085 			tmp.f_bavail -= adj;
2086 		}
2087 
2088 		mp->mnt_stat.f_blocks = tmp.f_blocks;
2089 		mp->mnt_stat.f_bfree = tmp.f_bfree;
2090 		mp->mnt_stat.f_bavail = tmp.f_bavail;
2091 		mp->mnt_stat.f_files = tmp.f_files;
2092 		mp->mnt_stat.f_ffree = tmp.f_ffree;
2093 
2094 		*sbp = mp->mnt_stat;
2095 	}
2096 	return (0);
2097 }
2098 
2099 static
2100 int
2101 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
2102 {
2103 	hammer2_pfs_t *pmp;
2104 	hammer2_dev_t *hmp;
2105 	hammer2_blockref_t bref;
2106 	struct statvfs tmp;
2107 	int i;
2108 
2109 	/*
2110 	 * NOTE: iroot might not have validated the cluster yet.
2111 	 */
2112 	pmp = MPTOPMP(mp);
2113 	bzero(&tmp, sizeof(tmp));
2114 
2115 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2116 		hmp = pmp->pfs_hmps[i];
2117 		if (hmp == NULL)
2118 			continue;
2119 		if (pmp->iroot->cluster.array[i].chain)
2120 			bref = pmp->iroot->cluster.array[i].chain->bref;
2121 		else
2122 			bzero(&bref, sizeof(bref));
2123 
2124 		tmp.f_files = bref.embed.stats.inode_count;
2125 		tmp.f_ffree = 0;
2126 		tmp.f_blocks = hmp->voldata.allocator_size /
2127 			       mp->mnt_vstat.f_bsize;
2128 		tmp.f_bfree = hmp->voldata.allocator_free /
2129 			      mp->mnt_vstat.f_bsize;
2130 		tmp.f_bavail = tmp.f_bfree;
2131 
2132 		if (cred && cred->cr_uid != 0) {
2133 			uint64_t adj;
2134 
2135 			/* 5% */
2136 			adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2137 			tmp.f_blocks -= adj;
2138 			tmp.f_bfree -= adj;
2139 			tmp.f_bavail -= adj;
2140 		}
2141 
2142 		mp->mnt_vstat.f_blocks = tmp.f_blocks;
2143 		mp->mnt_vstat.f_bfree = tmp.f_bfree;
2144 		mp->mnt_vstat.f_bavail = tmp.f_bavail;
2145 		mp->mnt_vstat.f_files = tmp.f_files;
2146 		mp->mnt_vstat.f_ffree = tmp.f_ffree;
2147 
2148 		*sbp = mp->mnt_vstat;
2149 	}
2150 	return (0);
2151 }
2152 
2153 /*
2154  * Mount-time recovery (RW mounts)
2155  *
2156  * Updates to the free block table are allowed to lag flushes by one
2157  * transaction.  In case of a crash, then on a fresh mount we must do an
2158  * incremental scan of the last committed transaction id and make sure that
2159  * all related blocks have been marked allocated.
2160  */
2161 struct hammer2_recovery_elm {
2162 	TAILQ_ENTRY(hammer2_recovery_elm) entry;
2163 	hammer2_chain_t *chain;
2164 	hammer2_tid_t sync_tid;
2165 };
2166 
2167 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
2168 
2169 struct hammer2_recovery_info {
2170 	struct hammer2_recovery_list list;
2171 	hammer2_tid_t	mtid;
2172 	int	depth;
2173 };
2174 
2175 static int hammer2_recovery_scan(hammer2_dev_t *hmp,
2176 			hammer2_chain_t *parent,
2177 			struct hammer2_recovery_info *info,
2178 			hammer2_tid_t sync_tid);
2179 
2180 #define HAMMER2_RECOVERY_MAXDEPTH	10
2181 
2182 static
2183 int
2184 hammer2_recovery(hammer2_dev_t *hmp)
2185 {
2186 	struct hammer2_recovery_info info;
2187 	struct hammer2_recovery_elm *elm;
2188 	hammer2_chain_t *parent;
2189 	hammer2_tid_t sync_tid;
2190 	hammer2_tid_t mirror_tid;
2191 	int error;
2192 
2193 	hammer2_trans_init(hmp->spmp, 0);
2194 
2195 	sync_tid = hmp->voldata.freemap_tid;
2196 	mirror_tid = hmp->voldata.mirror_tid;
2197 
2198 	kprintf("hammer2_mount: \"%s\": ", hmp->devrepname);
2199 	if (sync_tid >= mirror_tid) {
2200 		kprintf("no recovery needed\n");
2201 	} else {
2202 		kprintf("freemap recovery %016jx-%016jx\n",
2203 			sync_tid + 1, mirror_tid);
2204 	}
2205 
2206 	TAILQ_INIT(&info.list);
2207 	info.depth = 0;
2208 	parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
2209 	error = hammer2_recovery_scan(hmp, parent, &info, sync_tid);
2210 	hammer2_chain_lookup_done(parent);
2211 
2212 	while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
2213 		TAILQ_REMOVE(&info.list, elm, entry);
2214 		parent = elm->chain;
2215 		sync_tid = elm->sync_tid;
2216 		kfree(elm, M_HAMMER2);
2217 
2218 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2219 		error |= hammer2_recovery_scan(hmp, parent, &info,
2220 					      hmp->voldata.freemap_tid);
2221 		hammer2_chain_unlock(parent);
2222 		hammer2_chain_drop(parent);	/* drop elm->chain ref */
2223 	}
2224 
2225 	hammer2_trans_done(hmp->spmp, 0);
2226 
2227 	return error;
2228 }
2229 
2230 static
2231 int
2232 hammer2_recovery_scan(hammer2_dev_t *hmp, hammer2_chain_t *parent,
2233 		      struct hammer2_recovery_info *info,
2234 		      hammer2_tid_t sync_tid)
2235 {
2236 	const hammer2_inode_data_t *ripdata;
2237 	hammer2_chain_t *chain;
2238 	hammer2_blockref_t bref;
2239 	int tmp_error;
2240 	int rup_error;
2241 	int error;
2242 	int first;
2243 
2244 	/*
2245 	 * Adjust freemap to ensure that the block(s) are marked allocated.
2246 	 */
2247 	if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
2248 		hammer2_freemap_adjust(hmp, &parent->bref,
2249 				       HAMMER2_FREEMAP_DORECOVER);
2250 	}
2251 
2252 	/*
2253 	 * Check type for recursive scan
2254 	 */
2255 	switch(parent->bref.type) {
2256 	case HAMMER2_BREF_TYPE_VOLUME:
2257 		/* data already instantiated */
2258 		break;
2259 	case HAMMER2_BREF_TYPE_INODE:
2260 		/*
2261 		 * Must instantiate data for DIRECTDATA test and also
2262 		 * for recursion.
2263 		 */
2264 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2265 		ripdata = &parent->data->ipdata;
2266 		if (ripdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2267 			/* not applicable to recovery scan */
2268 			hammer2_chain_unlock(parent);
2269 			return 0;
2270 		}
2271 		hammer2_chain_unlock(parent);
2272 		break;
2273 	case HAMMER2_BREF_TYPE_INDIRECT:
2274 		/*
2275 		 * Must instantiate data for recursion
2276 		 */
2277 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2278 		hammer2_chain_unlock(parent);
2279 		break;
2280 	case HAMMER2_BREF_TYPE_DIRENT:
2281 	case HAMMER2_BREF_TYPE_DATA:
2282 	case HAMMER2_BREF_TYPE_FREEMAP:
2283 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2284 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2285 		/* not applicable to recovery scan */
2286 		return 0;
2287 		break;
2288 	default:
2289 		return HAMMER2_ERROR_BADBREF;
2290 	}
2291 
2292 	/*
2293 	 * Defer operation if depth limit reached.
2294 	 */
2295 	if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) {
2296 		struct hammer2_recovery_elm *elm;
2297 
2298 		elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2299 		elm->chain = parent;
2300 		elm->sync_tid = sync_tid;
2301 		hammer2_chain_ref(parent);
2302 		TAILQ_INSERT_TAIL(&info->list, elm, entry);
2303 		/* unlocked by caller */
2304 
2305 		return(0);
2306 	}
2307 
2308 
2309 	/*
2310 	 * Recursive scan of the last flushed transaction only.  We are
2311 	 * doing this without pmp assignments so don't leave the chains
2312 	 * hanging around after we are done with them.
2313 	 *
2314 	 * error	Cumulative error this level only
2315 	 * rup_error	Cumulative error for recursion
2316 	 * tmp_error	Specific non-cumulative recursion error
2317 	 */
2318 	chain = NULL;
2319 	first = 1;
2320 	rup_error = 0;
2321 	error = 0;
2322 
2323 	for (;;) {
2324 		error |= hammer2_chain_scan(parent, &chain, &bref,
2325 					    &first,
2326 					    HAMMER2_LOOKUP_NODATA);
2327 
2328 		/*
2329 		 * Problem during scan or EOF
2330 		 */
2331 		if (error)
2332 			break;
2333 
2334 		/*
2335 		 * If this is a leaf
2336 		 */
2337 		if (chain == NULL) {
2338 			if (bref.mirror_tid > sync_tid) {
2339 				hammer2_freemap_adjust(hmp, &bref,
2340 						     HAMMER2_FREEMAP_DORECOVER);
2341 			}
2342 			continue;
2343 		}
2344 
2345 		/*
2346 		 * This may or may not be a recursive node.
2347 		 */
2348 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2349 		if (bref.mirror_tid > sync_tid) {
2350 			++info->depth;
2351 			tmp_error = hammer2_recovery_scan(hmp, chain,
2352 							   info, sync_tid);
2353 			--info->depth;
2354 		} else {
2355 			tmp_error = 0;
2356 		}
2357 
2358 		/*
2359 		 * Flush the recovery at the PFS boundary to stage it for
2360 		 * the final flush of the super-root topology.
2361 		 */
2362 		if (tmp_error == 0 &&
2363 		    (bref.flags & HAMMER2_BREF_FLAG_PFSROOT) &&
2364 		    (chain->flags & HAMMER2_CHAIN_ONFLUSH)) {
2365 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2366 					     HAMMER2_FLUSH_ALL);
2367 		}
2368 		rup_error |= tmp_error;
2369 	}
2370 	return ((error | rup_error) & ~HAMMER2_ERROR_EOF);
2371 }
2372 
2373 /*
2374  * This fixes up an error introduced in earlier H2 implementations where
2375  * moving a PFS inode into an indirect block wound up causing the
2376  * HAMMER2_BREF_FLAG_PFSROOT flag in the bref to get cleared.
2377  */
2378 static
2379 int
2380 hammer2_fixup_pfses(hammer2_dev_t *hmp)
2381 {
2382 	const hammer2_inode_data_t *ripdata;
2383 	hammer2_chain_t *parent;
2384 	hammer2_chain_t *chain;
2385 	hammer2_key_t key_next;
2386 	hammer2_pfs_t *spmp;
2387 	int error;
2388 
2389 	error = 0;
2390 
2391 	/*
2392 	 * Lookup mount point under the media-localized super-root.
2393 	 *
2394 	 * cluster->pmp will incorrectly point to spmp and must be fixed
2395 	 * up later on.
2396 	 */
2397 	spmp = hmp->spmp;
2398 	hammer2_inode_lock(spmp->iroot, 0);
2399 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
2400 	chain = hammer2_chain_lookup(&parent, &key_next,
2401 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
2402 					 &error, 0);
2403 	while (chain) {
2404 		if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
2405 			continue;
2406 		if (chain->error) {
2407 			kprintf("I/O error scanning PFS labels\n");
2408 			error |= chain->error;
2409 		} else if ((chain->bref.flags &
2410 			    HAMMER2_BREF_FLAG_PFSROOT) == 0) {
2411 			int error2;
2412 
2413 			ripdata = &chain->data->ipdata;
2414 			hammer2_trans_init(hmp->spmp, 0);
2415 			error2 = hammer2_chain_modify(chain,
2416 						      chain->bref.modify_tid,
2417 						      0, 0);
2418 			if (error2 == 0) {
2419 				kprintf("hammer2: Correct mis-flagged PFS %s\n",
2420 					ripdata->filename);
2421 				chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2422 			} else {
2423 				error |= error2;
2424 			}
2425 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2426 					     HAMMER2_FLUSH_ALL);
2427 			hammer2_trans_done(hmp->spmp, 0);
2428 		}
2429 		chain = hammer2_chain_next(&parent, chain, &key_next,
2430 					   key_next, HAMMER2_KEY_MAX,
2431 					   &error, 0);
2432 	}
2433 	if (parent) {
2434 		hammer2_chain_unlock(parent);
2435 		hammer2_chain_drop(parent);
2436 	}
2437 	hammer2_inode_unlock(spmp->iroot);
2438 
2439 	return error;
2440 }
2441 
2442 /*
2443  * Sync a mount point; this is called periodically on a per-mount basis from
2444  * the filesystem syncer, and whenever a user issues a sync.
2445  */
2446 int
2447 hammer2_vfs_sync(struct mount *mp, int waitfor)
2448 {
2449 	int error;
2450 
2451 	error = hammer2_vfs_sync_pmp(MPTOPMP(mp), waitfor);
2452 
2453 	return error;
2454 }
2455 
2456 /*
2457  * Because frontend operations lock vnodes before we get a chance to
2458  * lock the related inode, we can't just acquire a vnode lock without
2459  * risking a deadlock.  The frontend may be holding a vnode lock while
2460  * also blocked on our SYNCQ flag while trying to get the inode lock.
2461  *
2462  * To deal with this situation we can check the vnode lock situation
2463  * after locking the inode and perform a work-around.
2464  */
2465 int
2466 hammer2_vfs_sync_pmp(hammer2_pfs_t *pmp, int waitfor)
2467 {
2468 	hammer2_inode_t *ip;
2469 	hammer2_depend_t *depend;
2470 	hammer2_depend_t *depend_next;
2471 	struct vnode *vp;
2472 	uint32_t pass2;
2473 	int error;
2474 	int wakecount;
2475 	int dorestart;
2476 
2477 	/*
2478 	 * Move all inodes on sideq to syncq.  This will clear sideq.
2479 	 * This should represent all flushable inodes.  These inodes
2480 	 * will already have refs due to being on syncq or sideq.  We
2481 	 * must do this all at once with the spinlock held to ensure that
2482 	 * all inode dependencies are part of the same flush.
2483 	 *
2484 	 * We should be able to do this asynchronously from frontend
2485 	 * operations because we will be locking the inodes later on
2486 	 * to actually flush them, and that will partition any frontend
2487 	 * op using the same inode.  Either it has already locked the
2488 	 * inode and we will block, or it has not yet locked the inode
2489 	 * and it will block until we are finished flushing that inode.
2490 	 *
2491 	 * When restarting, only move the inodes flagged as PASS2 from
2492 	 * SIDEQ to SYNCQ.  PASS2 propagation by inode_lock4() and
2493 	 * inode_depend() are atomic with the spin-lock.
2494 	 */
2495 	hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
2496 #ifdef HAMMER2_DEBUG_SYNC
2497 	kprintf("FILESYSTEM SYNC BOUNDARY\n");
2498 #endif
2499 	dorestart = 0;
2500 
2501 	/*
2502 	 * Move inodes from depq to syncq, releasing the related
2503 	 * depend structures.
2504 	 */
2505 restart:
2506 #ifdef HAMMER2_DEBUG_SYNC
2507 	kprintf("FILESYSTEM SYNC RESTART (%d)\n", dorestart);
2508 #endif
2509 	hammer2_trans_setflags(pmp, 0/*HAMMER2_TRANS_COPYQ*/);
2510 	hammer2_trans_clearflags(pmp, HAMMER2_TRANS_RESCAN);
2511 
2512 	/*
2513 	 * Move inodes from depq to syncq.  When restarting, only depq's
2514 	 * marked pass2 are moved.
2515 	 */
2516 	hammer2_spin_ex(&pmp->list_spin);
2517 	depend_next = TAILQ_FIRST(&pmp->depq);
2518 	wakecount = 0;
2519 
2520 	while ((depend = depend_next) != NULL) {
2521 		depend_next = TAILQ_NEXT(depend, entry);
2522 		if (dorestart && depend->pass2 == 0)
2523 			continue;
2524 		TAILQ_FOREACH(ip, &depend->sideq, entry) {
2525 			KKASSERT(ip->flags & HAMMER2_INODE_SIDEQ);
2526 			atomic_set_int(&ip->flags, HAMMER2_INODE_SYNCQ);
2527 			atomic_clear_int(&ip->flags, HAMMER2_INODE_SIDEQ);
2528 			ip->depend = NULL;
2529 		}
2530 
2531 		/*
2532 		 * NOTE: pmp->sideq_count includes both sideq and syncq
2533 		 */
2534 		TAILQ_CONCAT(&pmp->syncq, &depend->sideq, entry);
2535 
2536 		depend->count = 0;
2537 		depend->pass2 = 0;
2538 		TAILQ_REMOVE(&pmp->depq, depend, entry);
2539 	}
2540 
2541 	hammer2_spin_unex(&pmp->list_spin);
2542 	hammer2_trans_clearflags(pmp, /*HAMMER2_TRANS_COPYQ |*/
2543 				      HAMMER2_TRANS_WAITING);
2544 	dorestart = 0;
2545 
2546 	/*
2547 	 * sideq_count may have dropped enough to allow us to unstall
2548 	 * the frontend.
2549 	 */
2550 	hammer2_pfs_memory_wakeup(pmp, 0);
2551 
2552 	/*
2553 	 * Now run through all inodes on syncq.
2554 	 *
2555 	 * Flush transactions only interlock with other flush transactions.
2556 	 * Any conflicting frontend operations will block on the inode, but
2557 	 * may hold a vnode lock while doing so.
2558 	 */
2559 	hammer2_spin_ex(&pmp->list_spin);
2560 	while ((ip = TAILQ_FIRST(&pmp->syncq)) != NULL) {
2561 		/*
2562 		 * Remove the inode from the SYNCQ, transfer the syncq ref
2563 		 * to us.  We must clear SYNCQ to allow any potential
2564 		 * front-end deadlock to proceed.  We must set PASS2 so
2565 		 * the dependency code knows what to do.
2566 		 */
2567 		pass2 = ip->flags;
2568 		cpu_ccfence();
2569 		if (atomic_cmpset_int(&ip->flags,
2570 			      pass2,
2571 			      (pass2 & ~(HAMMER2_INODE_SYNCQ |
2572 					 HAMMER2_INODE_SYNCQ_WAKEUP)) |
2573 			      HAMMER2_INODE_SYNCQ_PASS2) == 0)
2574 		{
2575 			continue;
2576 		}
2577 		TAILQ_REMOVE(&pmp->syncq, ip, entry);
2578 		--pmp->sideq_count;
2579 		hammer2_spin_unex(&pmp->list_spin);
2580 
2581 		/*
2582 		 * Tickle anyone waiting on ip->flags or the hysteresis
2583 		 * on the dirty inode count.
2584 		 */
2585 		if (pass2 & HAMMER2_INODE_SYNCQ_WAKEUP)
2586 			wakeup(&ip->flags);
2587 		if (++wakecount >= hammer2_limit_dirty_inodes / 20 + 1) {
2588 			wakecount = 0;
2589 			hammer2_pfs_memory_wakeup(pmp, 0);
2590 		}
2591 
2592 		/*
2593 		 * Relock the inode, and we inherit a ref from the above.
2594 		 * We will check for a race after we acquire the vnode.
2595 		 */
2596 		hammer2_mtx_ex(&ip->lock);
2597 
2598 		/*
2599 		 * We need the vp in order to vfsync() dirty buffers, so if
2600 		 * one isn't attached we can skip it.
2601 		 *
2602 		 * Ordering the inode lock and then the vnode lock has the
2603 		 * potential to deadlock.  If we had left SYNCQ set that could
2604 		 * also deadlock us against the frontend even if we don't hold
2605 		 * any locks, but the latter is not a problem now since we
2606 		 * cleared it.  igetv will temporarily release the inode lock
2607 		 * in a safe manner to work-around the deadlock.
2608 		 *
2609 		 * Unfortunately it is still possible to deadlock when the
2610 		 * frontend obtains multiple inode locks, because all the
2611 		 * related vnodes are already locked (nor can the vnode locks
2612 		 * be released and reacquired without messing up RECLAIM and
2613 		 * INACTIVE sequencing).
2614 		 *
2615 		 * The solution for now is to move the vp back onto SIDEQ
2616 		 * and set dorestart, which will restart the flush after we
2617 		 * exhaust the current SYNCQ.  Note that additional
2618 		 * dependencies may build up, so we definitely need to move
2619 		 * the whole SIDEQ back to SYNCQ when we restart.
2620 		 */
2621 		vp = ip->vp;
2622 		if (vp) {
2623 			if (vget(vp, LK_EXCLUSIVE|LK_NOWAIT)) {
2624 				/*
2625 				 * Failed to get the vnode, requeue the inode
2626 				 * (PASS2 is already set so it will be found
2627 				 * again on the restart).
2628 				 *
2629 				 * Then unlock, possibly sleep, and retry
2630 				 * later.  We sleep if PASS2 was *previously*
2631 				 * set, before we set it again above.
2632 				 */
2633 				vp = NULL;
2634 				dorestart = 1;
2635 #ifdef HAMMER2_DEBUG_SYNC
2636 				kprintf("inum %ld (sync delayed by vnode)\n",
2637 					(long)ip->meta.inum);
2638 #endif
2639 				hammer2_inode_delayed_sideq(ip);
2640 
2641 				hammer2_mtx_unlock(&ip->lock);
2642 				hammer2_inode_drop(ip);
2643 
2644 				if (pass2 & HAMMER2_INODE_SYNCQ_PASS2) {
2645 					tsleep(&dorestart, 0, "h2syndel", 2);
2646 				}
2647 				hammer2_spin_ex(&pmp->list_spin);
2648 				continue;
2649 			}
2650 		} else {
2651 			vp = NULL;
2652 		}
2653 
2654 		/*
2655 		 * If the inode wound up on a SIDEQ again it will already be
2656 		 * prepped for another PASS2.  In this situation if we flush
2657 		 * it now we will just wind up flushing it again in the same
2658 		 * syncer run, so we might as well not flush it now.
2659 		 */
2660 		if (ip->flags & HAMMER2_INODE_SIDEQ) {
2661 			hammer2_mtx_unlock(&ip->lock);
2662 			hammer2_inode_drop(ip);
2663 			if (vp)
2664 				vput(vp);
2665 			dorestart = 1;
2666 			hammer2_spin_ex(&pmp->list_spin);
2667 			continue;
2668 		}
2669 
2670 		/*
2671 		 * Ok we have the inode exclusively locked and if vp is
2672 		 * not NULL that will also be exclusively locked.  Do the
2673 		 * meat of the flush.
2674 		 *
2675 		 * vp token needed for v_rbdirty_tree check / vclrisdirty
2676 		 * sequencing.  Though we hold the vnode exclusively so
2677 		 * we shouldn't need to hold the token also in this case.
2678 		 */
2679 		if (vp) {
2680 			vfsync(vp, MNT_WAIT, 1, NULL, NULL);
2681 			bio_track_wait(&vp->v_track_write, 0, 0); /* XXX */
2682 		}
2683 
2684 		/*
2685 		 * If the inode has not yet been inserted into the tree
2686 		 * we must do so.  Then sync and flush it.  The flush should
2687 		 * update the parent.
2688 		 */
2689 		if (ip->flags & HAMMER2_INODE_DELETING) {
2690 #ifdef HAMMER2_DEBUG_SYNC
2691 			kprintf("inum %ld destroy\n", (long)ip->meta.inum);
2692 #endif
2693 			hammer2_inode_chain_des(ip);
2694 			atomic_add_long(&hammer2_iod_inode_deletes, 1);
2695 		} else if (ip->flags & HAMMER2_INODE_CREATING) {
2696 #ifdef HAMMER2_DEBUG_SYNC
2697 			kprintf("inum %ld insert\n", (long)ip->meta.inum);
2698 #endif
2699 			hammer2_inode_chain_ins(ip);
2700 			atomic_add_long(&hammer2_iod_inode_creates, 1);
2701 		}
2702 #ifdef HAMMER2_DEBUG_SYNC
2703 		kprintf("inum %ld chain-sync\n", (long)ip->meta.inum);
2704 #endif
2705 
2706 		/*
2707 		 * Because I kinda messed up the design and index the inodes
2708 		 * under the root inode, along side the directory entries,
2709 		 * we can't flush the inode index under the iroot until the
2710 		 * end.  If we do it now we might miss effects created by
2711 		 * other inodes on the SYNCQ.
2712 		 *
2713 		 * Do a normal (non-FSSYNC) flush instead, which allows the
2714 		 * vnode code to work the same.  We don't want to force iroot
2715 		 * back onto the SIDEQ, and we also don't want the flush code
2716 		 * to update pfs_iroot_blocksets until the final flush later.
2717 		 *
2718 		 * XXX at the moment this will likely result in a double-flush
2719 		 * of the iroot chain.
2720 		 */
2721 		hammer2_inode_chain_sync(ip);
2722 		if (ip == pmp->iroot) {
2723 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP);
2724 		} else {
2725 			hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2726 						      HAMMER2_XOP_FSSYNC);
2727 		}
2728 		if (vp) {
2729 			lwkt_gettoken(&vp->v_token);
2730 			if ((ip->flags & (HAMMER2_INODE_MODIFIED |
2731 					  HAMMER2_INODE_RESIZED |
2732 					  HAMMER2_INODE_DIRTYDATA)) == 0 &&
2733 			    RB_EMPTY(&vp->v_rbdirty_tree) &&
2734 			    !bio_track_active(&vp->v_track_write)) {
2735 				vclrisdirty(vp);
2736 			} else {
2737 				hammer2_inode_delayed_sideq(ip);
2738 			}
2739 			lwkt_reltoken(&vp->v_token);
2740 			vput(vp);
2741 			vp = NULL;	/* safety */
2742 		}
2743 		atomic_clear_int(&ip->flags, HAMMER2_INODE_SYNCQ_PASS2);
2744 		hammer2_inode_unlock(ip);	/* unlock+drop */
2745 		/* ip pointer invalid */
2746 
2747 		/*
2748 		 * If the inode got dirted after we dropped our locks,
2749 		 * it will have already been moved back to the SIDEQ.
2750 		 */
2751 		hammer2_spin_ex(&pmp->list_spin);
2752 	}
2753 	hammer2_spin_unex(&pmp->list_spin);
2754 	hammer2_pfs_memory_wakeup(pmp, 0);
2755 
2756 	if (dorestart || (pmp->trans.flags & HAMMER2_TRANS_RESCAN)) {
2757 #ifdef HAMMER2_DEBUG_SYNC
2758 		kprintf("FILESYSTEM SYNC STAGE 1 RESTART\n");
2759 		/*tsleep(&dorestart, 0, "h2STG1-R", hz*20);*/
2760 #endif
2761 		dorestart = 1;
2762 		goto restart;
2763 	}
2764 #ifdef HAMMER2_DEBUG_SYNC
2765 	kprintf("FILESYSTEM SYNC STAGE 2 BEGIN\n");
2766 	/*tsleep(&dorestart, 0, "h2STG2", hz*20);*/
2767 #endif
2768 
2769 	/*
2770 	 * We have to flush the PFS root last, even if it does not appear to
2771 	 * be dirty, because all the inodes in the PFS are indexed under it.
2772 	 * The normal flushing of iroot above would only occur if directory
2773 	 * entries under the root were changed.
2774 	 *
2775 	 * Specifying VOLHDR will cause an additionl flush of hmp->spmp
2776 	 * for the media making up the cluster.
2777 	 */
2778 	if ((ip = pmp->iroot) != NULL) {
2779 		hammer2_inode_ref(ip);
2780 		hammer2_mtx_ex(&ip->lock);
2781 		hammer2_inode_chain_sync(ip);
2782 		hammer2_inode_chain_flush(ip, HAMMER2_XOP_INODE_STOP |
2783 					      HAMMER2_XOP_FSSYNC |
2784 					      HAMMER2_XOP_VOLHDR);
2785 		hammer2_inode_unlock(ip);	/* unlock+drop */
2786 	}
2787 #ifdef HAMMER2_DEBUG_SYNC
2788 	kprintf("FILESYSTEM SYNC STAGE 2 DONE\n");
2789 #endif
2790 
2791 	/*
2792 	 * device bioq sync
2793 	 */
2794 	hammer2_bioq_sync(pmp);
2795 
2796 	error = 0;	/* XXX */
2797 	hammer2_trans_done(pmp, HAMMER2_TRANS_ISFLUSH);
2798 
2799 	return (error);
2800 }
2801 
2802 static
2803 int
2804 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2805 {
2806 	hammer2_inode_t *ip;
2807 
2808 	KKASSERT(MAXFIDSZ >= 16);
2809 	ip = VTOI(vp);
2810 	fhp->fid_len = offsetof(struct fid, fid_data[16]);
2811 	fhp->fid_ext = 0;
2812 	((hammer2_tid_t *)fhp->fid_data)[0] = ip->meta.inum;
2813 	((hammer2_tid_t *)fhp->fid_data)[1] = 0;
2814 
2815 	return 0;
2816 }
2817 
2818 static
2819 int
2820 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2821 	       struct fid *fhp, struct vnode **vpp)
2822 {
2823 	hammer2_tid_t inum;
2824 	int error;
2825 
2826 	inum = ((hammer2_tid_t *)fhp->fid_data)[0] & HAMMER2_DIRHASH_USERMSK;
2827 	if (vpp) {
2828 		if (inum == 1)
2829 			error = hammer2_vfs_root(mp, vpp);
2830 		else
2831 			error = hammer2_vfs_vget(mp, NULL, inum, vpp);
2832 	} else {
2833 		error = 0;
2834 	}
2835 	return error;
2836 }
2837 
2838 static
2839 int
2840 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2841 		 int *exflagsp, struct ucred **credanonp)
2842 {
2843 	hammer2_pfs_t *pmp;
2844 	struct netcred *np;
2845 	int error;
2846 
2847 	pmp = MPTOPMP(mp);
2848 	np = vfs_export_lookup(mp, &pmp->export, nam);
2849 	if (np) {
2850 		*exflagsp = np->netc_exflags;
2851 		*credanonp = &np->netc_anon;
2852 		error = 0;
2853 	} else {
2854 		error = EACCES;
2855 	}
2856 	return error;
2857 }
2858 
2859 /*
2860  * This handles hysteresis on regular file flushes.  Because the BIOs are
2861  * routed to a thread it is possible for an excessive number to build up
2862  * and cause long front-end stalls long before the runningbuffspace limit
2863  * is hit, so we implement hammer2_flush_pipe to control the
2864  * hysteresis.
2865  *
2866  * This is a particular problem when compression is used.
2867  */
2868 void
2869 hammer2_lwinprog_ref(hammer2_pfs_t *pmp)
2870 {
2871 	atomic_add_int(&pmp->count_lwinprog, 1);
2872 }
2873 
2874 void
2875 hammer2_lwinprog_drop(hammer2_pfs_t *pmp)
2876 {
2877 	int lwinprog;
2878 
2879 	lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
2880 	if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
2881 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
2882 		atomic_clear_int(&pmp->count_lwinprog,
2883 				 HAMMER2_LWINPROG_WAITING);
2884 		wakeup(&pmp->count_lwinprog);
2885 	}
2886 	if ((lwinprog & HAMMER2_LWINPROG_WAITING0) &&
2887 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= 0) {
2888 		atomic_clear_int(&pmp->count_lwinprog,
2889 				 HAMMER2_LWINPROG_WAITING0);
2890 		wakeup(&pmp->count_lwinprog);
2891 	}
2892 }
2893 
2894 void
2895 hammer2_lwinprog_wait(hammer2_pfs_t *pmp, int flush_pipe)
2896 {
2897 	int lwinprog;
2898 	int lwflag = (flush_pipe) ? HAMMER2_LWINPROG_WAITING :
2899 				    HAMMER2_LWINPROG_WAITING0;
2900 
2901 	for (;;) {
2902 		lwinprog = pmp->count_lwinprog;
2903 		cpu_ccfence();
2904 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2905 			break;
2906 		tsleep_interlock(&pmp->count_lwinprog, 0);
2907 		atomic_set_int(&pmp->count_lwinprog, lwflag);
2908 		lwinprog = pmp->count_lwinprog;
2909 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2910 			break;
2911 		tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
2912 	}
2913 }
2914 
2915 /*
2916  * It is possible for an excessive number of dirty chains or dirty inodes
2917  * to build up.  When this occurs we start an asynchronous filesystem sync.
2918  * If the level continues to build up, we stall, waiting for it to drop,
2919  * with some hysteresis.
2920  *
2921  * This relies on the kernel calling hammer2_vfs_modifying() prior to
2922  * obtaining any vnode locks before making a modifying VOP call.
2923  */
2924 static int
2925 hammer2_vfs_modifying(struct mount *mp)
2926 {
2927 	if (mp->mnt_flag & MNT_RDONLY)
2928 		return EROFS;
2929 	hammer2_pfs_memory_wait(MPTOPMP(mp));
2930 
2931 	return 0;
2932 }
2933 
2934 /*
2935  * Initiate an asynchronous filesystem sync and, with hysteresis,
2936  * stall if the internal data structure count becomes too bloated.
2937  */
2938 void
2939 hammer2_pfs_memory_wait(hammer2_pfs_t *pmp)
2940 {
2941 	uint32_t waiting;
2942 	int pcatch;
2943 	int error;
2944 
2945 	if (pmp == NULL || pmp->mp == NULL)
2946 		return;
2947 
2948 	for (;;) {
2949 		waiting = pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK;
2950 		cpu_ccfence();
2951 
2952 		/*
2953 		 * Start the syncer running at 1/2 the limit
2954 		 */
2955 		if (waiting > hammer2_limit_dirty_chains / 2 ||
2956 		    pmp->sideq_count > hammer2_limit_dirty_inodes / 2) {
2957 			trigger_syncer(pmp->mp);
2958 		}
2959 
2960 		/*
2961 		 * Stall at the limit waiting for the counts to drop.
2962 		 * This code will typically be woken up once the count
2963 		 * drops below 3/4 the limit, or in one second.
2964 		 */
2965 		if (waiting < hammer2_limit_dirty_chains &&
2966 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
2967 			break;
2968 		}
2969 
2970 		pcatch = curthread->td_proc ? PCATCH : 0;
2971 
2972 		tsleep_interlock(&pmp->inmem_dirty_chains, pcatch);
2973 		atomic_set_int(&pmp->inmem_dirty_chains,
2974 			       HAMMER2_DIRTYCHAIN_WAITING);
2975 		if (waiting < hammer2_limit_dirty_chains &&
2976 		    pmp->sideq_count < hammer2_limit_dirty_inodes) {
2977 			break;
2978 		}
2979 		trigger_syncer(pmp->mp);
2980 		error = tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED | pcatch,
2981 			       "h2memw", hz);
2982 		if (error == ERESTART)
2983 			break;
2984 	}
2985 }
2986 
2987 /*
2988  * Wake up any stalled frontend ops waiting, with hysteresis, using
2989  * 2/3 of the limit.
2990  */
2991 void
2992 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp, int count)
2993 {
2994 	uint32_t waiting;
2995 
2996 	if (pmp) {
2997 		waiting = atomic_fetchadd_int(&pmp->inmem_dirty_chains, count);
2998 		/* don't need --waiting to test flag */
2999 
3000 		if ((waiting & HAMMER2_DIRTYCHAIN_WAITING) &&
3001 		    (pmp->inmem_dirty_chains & HAMMER2_DIRTYCHAIN_MASK) <=
3002 		    hammer2_limit_dirty_chains * 2 / 3 &&
3003 		    pmp->sideq_count <= hammer2_limit_dirty_inodes * 2 / 3) {
3004 			atomic_clear_int(&pmp->inmem_dirty_chains,
3005 					 HAMMER2_DIRTYCHAIN_WAITING);
3006 			wakeup(&pmp->inmem_dirty_chains);
3007 		}
3008 	}
3009 }
3010 
3011 void
3012 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp)
3013 {
3014 	if (pmp) {
3015 		atomic_add_int(&pmp->inmem_dirty_chains, 1);
3016 	}
3017 }
3018 
3019 /*
3020  * Volume header data locks
3021  */
3022 void
3023 hammer2_voldata_lock(hammer2_dev_t *hmp)
3024 {
3025 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
3026 }
3027 
3028 void
3029 hammer2_voldata_unlock(hammer2_dev_t *hmp)
3030 {
3031 	lockmgr(&hmp->vollk, LK_RELEASE);
3032 }
3033 
3034 /*
3035  * Caller indicates that the volume header is being modified.  Flag
3036  * the related chain and adjust its transaction id.
3037  *
3038  * The transaction id is set to voldata.mirror_tid + 1, similar to
3039  * what hammer2_chain_modify() does.  Be very careful here, volume
3040  * data can be updated independently of the rest of the filesystem.
3041  */
3042 void
3043 hammer2_voldata_modify(hammer2_dev_t *hmp)
3044 {
3045 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
3046 		atomic_add_long(&hammer2_count_modified_chains, 1);
3047 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
3048 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
3049 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid + 1;
3050 	}
3051 }
3052 
3053 /*
3054  * Returns 0 if the filesystem has tons of free space
3055  * Returns 1 if the filesystem has less than 10% remaining
3056  * Returns 2 if the filesystem has less than 2%/5% (user/root) remaining.
3057  */
3058 int
3059 hammer2_vfs_enospace(hammer2_inode_t *ip, off_t bytes, struct ucred *cred)
3060 {
3061 	hammer2_pfs_t *pmp;
3062 	hammer2_dev_t *hmp;
3063 	hammer2_off_t free_reserved;
3064 	hammer2_off_t free_nominal;
3065 	int i;
3066 
3067 	pmp = ip->pmp;
3068 
3069 	if (pmp->free_ticks == 0 || pmp->free_ticks != ticks) {
3070 		free_reserved = HAMMER2_SEGSIZE;
3071 		free_nominal = 0x7FFFFFFFFFFFFFFFLLU;
3072 		for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
3073 			hmp = pmp->pfs_hmps[i];
3074 			if (hmp == NULL)
3075 				continue;
3076 			if (pmp->pfs_types[i] != HAMMER2_PFSTYPE_MASTER &&
3077 			    pmp->pfs_types[i] != HAMMER2_PFSTYPE_SOFT_MASTER)
3078 				continue;
3079 
3080 			if (free_nominal > hmp->voldata.allocator_free)
3081 				free_nominal = hmp->voldata.allocator_free;
3082 			if (free_reserved < hmp->free_reserved)
3083 				free_reserved = hmp->free_reserved;
3084 		}
3085 
3086 		/*
3087 		 * SMP races ok
3088 		 */
3089 		pmp->free_reserved = free_reserved;
3090 		pmp->free_nominal = free_nominal;
3091 		pmp->free_ticks = ticks;
3092 	} else {
3093 		free_reserved = pmp->free_reserved;
3094 		free_nominal = pmp->free_nominal;
3095 	}
3096 	if (cred && cred->cr_uid != 0) {
3097 		if ((int64_t)(free_nominal - bytes) <
3098 		    (int64_t)free_reserved) {
3099 			return 2;
3100 		}
3101 	} else {
3102 		if ((int64_t)(free_nominal - bytes) <
3103 		    (int64_t)free_reserved / 2) {
3104 			return 2;
3105 		}
3106 	}
3107 	if ((int64_t)(free_nominal - bytes) < (int64_t)free_reserved * 2)
3108 		return 1;
3109 	return 0;
3110 }
3111