xref: /dragonfly/sys/vfs/nfs/nfs_bio.c (revision 279dd846)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33  * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
34  */
35 
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/resourcevar.h>
40 #include <sys/signalvar.h>
41 #include <sys/proc.h>
42 #include <sys/buf.h>
43 #include <sys/vnode.h>
44 #include <sys/mount.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50 #include <vm/vm_page.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_pager.h>
53 #include <vm/vnode_pager.h>
54 
55 #include <sys/buf2.h>
56 #include <sys/thread2.h>
57 #include <vm/vm_page2.h>
58 
59 #include "rpcv2.h"
60 #include "nfsproto.h"
61 #include "nfs.h"
62 #include "nfsmount.h"
63 #include "nfsnode.h"
64 #include "xdr_subs.h"
65 #include "nfsm_subs.h"
66 
67 
68 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset,
69 				   int size, struct thread *td);
70 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen);
71 static void nfsiodone_sync(struct bio *bio);
72 static void nfs_readrpc_bio_done(nfsm_info_t info);
73 static void nfs_writerpc_bio_done(nfsm_info_t info);
74 static void nfs_commitrpc_bio_done(nfsm_info_t info);
75 
76 /*
77  * Vnode op for read using bio
78  */
79 int
80 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
81 {
82 	struct nfsnode *np = VTONFS(vp);
83 	int biosize, i;
84 	struct buf *bp, *rabp;
85 	struct vattr vattr;
86 	struct thread *td;
87 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
88 	off_t lbn, rabn;
89 	off_t raoffset;
90 	off_t loffset;
91 	int seqcount;
92 	int nra, error = 0;
93 	int boff = 0;
94 	size_t n;
95 
96 #ifdef DIAGNOSTIC
97 	if (uio->uio_rw != UIO_READ)
98 		panic("nfs_read mode");
99 #endif
100 	if (uio->uio_resid == 0)
101 		return (0);
102 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
103 		return (EINVAL);
104 	td = uio->uio_td;
105 
106 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
107 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
108 		(void)nfs_fsinfo(nmp, vp, td);
109 	if (vp->v_type != VDIR &&
110 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
111 		return (EFBIG);
112 	biosize = vp->v_mount->mnt_stat.f_iosize;
113 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
114 
115 	/*
116 	 * For nfs, cache consistency can only be maintained approximately.
117 	 * Although RFC1094 does not specify the criteria, the following is
118 	 * believed to be compatible with the reference port.
119 	 *
120 	 * NFS:		If local changes have been made and this is a
121 	 *		directory, the directory must be invalidated and
122 	 *		the attribute cache must be cleared.
123 	 *
124 	 *		GETATTR is called to synchronize the file size.
125 	 *
126 	 *		If remote changes are detected local data is flushed
127 	 *		and the cache is invalidated.
128 	 *
129 	 *		NOTE: In the normal case the attribute cache is not
130 	 *		cleared which means GETATTR may use cached data and
131 	 *		not immediately detect changes made on the server.
132 	 */
133 	if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) {
134 		nfs_invaldir(vp);
135 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
136 		if (error)
137 			return (error);
138 		np->n_attrstamp = 0;
139 	}
140 	error = VOP_GETATTR(vp, &vattr);
141 	if (error)
142 		return (error);
143 
144 	/*
145 	 * This can deadlock getpages/putpages for regular
146 	 * files.  Only do it for directories.
147 	 */
148 	if (np->n_flag & NRMODIFIED) {
149 		if (vp->v_type == VDIR) {
150 			nfs_invaldir(vp);
151 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
152 			if (error)
153 				return (error);
154 			np->n_flag &= ~NRMODIFIED;
155 		}
156 	}
157 
158 	/*
159 	 * Loop until uio exhausted or we hit EOF
160 	 */
161 	do {
162 	    bp = NULL;
163 
164 	    switch (vp->v_type) {
165 	    case VREG:
166 		nfsstats.biocache_reads++;
167 		lbn = uio->uio_offset / biosize;
168 		boff = uio->uio_offset & (biosize - 1);
169 		loffset = lbn * biosize;
170 
171 		/*
172 		 * Start the read ahead(s), as required.
173 		 */
174 		if (nmp->nm_readahead > 0 && nfs_asyncok(nmp)) {
175 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
176 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
177 			rabn = lbn + 1 + nra;
178 			raoffset = rabn * biosize;
179 			if (findblk(vp, raoffset, FINDBLK_TEST) == NULL) {
180 			    rabp = nfs_getcacheblk(vp, raoffset, biosize, td);
181 			    if (!rabp)
182 				return (EINTR);
183 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
184 				rabp->b_cmd = BUF_CMD_READ;
185 				vfs_busy_pages(vp, rabp);
186 				nfs_asyncio(vp, &rabp->b_bio2);
187 			    } else {
188 				brelse(rabp);
189 			    }
190 			}
191 		    }
192 		}
193 
194 		/*
195 		 * Obtain the buffer cache block.  Figure out the buffer size
196 		 * when we are at EOF.  If we are modifying the size of the
197 		 * buffer based on an EOF condition we need to hold
198 		 * nfs_rslock() through obtaining the buffer to prevent
199 		 * a potential writer-appender from messing with n_size.
200 		 * Otherwise we may accidently truncate the buffer and
201 		 * lose dirty data.
202 		 *
203 		 * Note that bcount is *not* DEV_BSIZE aligned.
204 		 */
205 		if (loffset + boff >= np->n_size) {
206 			n = 0;
207 			break;
208 		}
209 		bp = nfs_getcacheblk(vp, loffset, biosize, td);
210 
211 		if (bp == NULL)
212 			return (EINTR);
213 
214 		/*
215 		 * If B_CACHE is not set, we must issue the read.  If this
216 		 * fails, we return an error.
217 		 */
218 		if ((bp->b_flags & B_CACHE) == 0) {
219 			bp->b_cmd = BUF_CMD_READ;
220 			bp->b_bio2.bio_done = nfsiodone_sync;
221 			bp->b_bio2.bio_flags |= BIO_SYNC;
222 			vfs_busy_pages(vp, bp);
223 			error = nfs_doio(vp, &bp->b_bio2, td);
224 			if (error) {
225 				brelse(bp);
226 				return (error);
227 			}
228 		}
229 
230 		/*
231 		 * on is the offset into the current bp.  Figure out how many
232 		 * bytes we can copy out of the bp.  Note that bcount is
233 		 * NOT DEV_BSIZE aligned.
234 		 *
235 		 * Then figure out how many bytes we can copy into the uio.
236 		 */
237 		n = biosize - boff;
238 		if (n > uio->uio_resid)
239 			n = uio->uio_resid;
240 		if (loffset + boff + n > np->n_size)
241 			n = np->n_size - loffset - boff;
242 		break;
243 	    case VLNK:
244 		biosize = min(NFS_MAXPATHLEN, np->n_size);
245 		nfsstats.biocache_readlinks++;
246 		bp = nfs_getcacheblk(vp, (off_t)0, biosize, td);
247 		if (bp == NULL)
248 			return (EINTR);
249 		if ((bp->b_flags & B_CACHE) == 0) {
250 			bp->b_cmd = BUF_CMD_READ;
251 			bp->b_bio2.bio_done = nfsiodone_sync;
252 			bp->b_bio2.bio_flags |= BIO_SYNC;
253 			vfs_busy_pages(vp, bp);
254 			error = nfs_doio(vp, &bp->b_bio2, td);
255 			if (error) {
256 				bp->b_flags |= B_ERROR | B_INVAL;
257 				brelse(bp);
258 				return (error);
259 			}
260 		}
261 		n = szmin(uio->uio_resid, (size_t)bp->b_bcount - bp->b_resid);
262 		boff = 0;
263 		break;
264 	    case VDIR:
265 		nfsstats.biocache_readdirs++;
266 		if (np->n_direofoffset &&
267 		    uio->uio_offset >= np->n_direofoffset
268 		) {
269 			return (0);
270 		}
271 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
272 		boff = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
273 		loffset = uio->uio_offset - boff;
274 		bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td);
275 		if (bp == NULL)
276 			return (EINTR);
277 
278 		if ((bp->b_flags & B_CACHE) == 0) {
279 		    bp->b_cmd = BUF_CMD_READ;
280 		    bp->b_bio2.bio_done = nfsiodone_sync;
281 		    bp->b_bio2.bio_flags |= BIO_SYNC;
282 		    vfs_busy_pages(vp, bp);
283 		    error = nfs_doio(vp, &bp->b_bio2, td);
284 		    if (error)
285 			    brelse(bp);
286 		    while (error == NFSERR_BAD_COOKIE) {
287 			kprintf("got bad cookie vp %p bp %p\n", vp, bp);
288 			nfs_invaldir(vp);
289 			error = nfs_vinvalbuf(vp, 0, 1);
290 			/*
291 			 * Yuck! The directory has been modified on the
292 			 * server. The only way to get the block is by
293 			 * reading from the beginning to get all the
294 			 * offset cookies.
295 			 *
296 			 * Leave the last bp intact unless there is an error.
297 			 * Loop back up to the while if the error is another
298 			 * NFSERR_BAD_COOKIE (double yuch!).
299 			 */
300 			for (i = 0; i <= lbn && !error; i++) {
301 			    if (np->n_direofoffset
302 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
303 				    return (0);
304 			    bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ,
305 						 NFS_DIRBLKSIZ, td);
306 			    if (!bp)
307 				return (EINTR);
308 			    if ((bp->b_flags & B_CACHE) == 0) {
309 				    bp->b_cmd = BUF_CMD_READ;
310 				    bp->b_bio2.bio_done = nfsiodone_sync;
311 				    bp->b_bio2.bio_flags |= BIO_SYNC;
312 				    vfs_busy_pages(vp, bp);
313 				    error = nfs_doio(vp, &bp->b_bio2, td);
314 				    /*
315 				     * no error + B_INVAL == directory EOF,
316 				     * use the block.
317 				     */
318 				    if (error == 0 && (bp->b_flags & B_INVAL))
319 					    break;
320 			    }
321 			    /*
322 			     * An error will throw away the block and the
323 			     * for loop will break out.  If no error and this
324 			     * is not the block we want, we throw away the
325 			     * block and go for the next one via the for loop.
326 			     */
327 			    if (error || i < lbn)
328 				    brelse(bp);
329 			}
330 		    }
331 		    /*
332 		     * The above while is repeated if we hit another cookie
333 		     * error.  If we hit an error and it wasn't a cookie error,
334 		     * we give up.
335 		     */
336 		    if (error)
337 			    return (error);
338 		}
339 
340 		/*
341 		 * If not eof and read aheads are enabled, start one.
342 		 * (You need the current block first, so that you have the
343 		 *  directory offset cookie of the next block.)
344 		 */
345 		if (nmp->nm_readahead > 0 && nfs_asyncok(nmp) &&
346 		    (bp->b_flags & B_INVAL) == 0 &&
347 		    (np->n_direofoffset == 0 ||
348 		    loffset + NFS_DIRBLKSIZ < np->n_direofoffset) &&
349 		    findblk(vp, loffset + NFS_DIRBLKSIZ, FINDBLK_TEST) == NULL
350 		) {
351 			rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ,
352 					       NFS_DIRBLKSIZ, td);
353 			if (rabp) {
354 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
355 				rabp->b_cmd = BUF_CMD_READ;
356 				vfs_busy_pages(vp, rabp);
357 				nfs_asyncio(vp, &rabp->b_bio2);
358 			    } else {
359 				brelse(rabp);
360 			    }
361 			}
362 		}
363 		/*
364 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
365 		 * chopped for the EOF condition, we cannot tell how large
366 		 * NFS directories are going to be until we hit EOF.  So
367 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
368 		 * it just so happens that b_resid will effectively chop it
369 		 * to EOF.  *BUT* this information is lost if the buffer goes
370 		 * away and is reconstituted into a B_CACHE state ( due to
371 		 * being VMIO ) later.  So we keep track of the directory eof
372 		 * in np->n_direofoffset and chop it off as an extra step
373 		 * right here.
374 		 *
375 		 * NOTE: boff could already be beyond EOF.
376 		 */
377 		if ((size_t)boff > NFS_DIRBLKSIZ - bp->b_resid) {
378 			n = 0;
379 		} else {
380 			n = szmin(uio->uio_resid,
381 				  NFS_DIRBLKSIZ - bp->b_resid - (size_t)boff);
382 		}
383 		if (np->n_direofoffset &&
384 		    n > (size_t)(np->n_direofoffset - uio->uio_offset)) {
385 			n = (size_t)(np->n_direofoffset - uio->uio_offset);
386 		}
387 		break;
388 	    default:
389 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
390 		n = 0;
391 		break;
392 	    }
393 
394 	    switch (vp->v_type) {
395 	    case VREG:
396 		if (n > 0)
397 		    error = uiomovebp(bp, bp->b_data + boff, n, uio);
398 		break;
399 	    case VLNK:
400 		if (n > 0)
401 		    error = uiomovebp(bp, bp->b_data + boff, n, uio);
402 		n = 0;
403 		break;
404 	    case VDIR:
405 		if (n > 0) {
406 		    off_t old_off = uio->uio_offset;
407 		    caddr_t cpos, epos;
408 		    struct nfs_dirent *dp;
409 
410 		    /*
411 		     * We are casting cpos to nfs_dirent, it must be
412 		     * int-aligned.
413 		     */
414 		    if (boff & 3) {
415 			error = EINVAL;
416 			break;
417 		    }
418 
419 		    cpos = bp->b_data + boff;
420 		    epos = bp->b_data + boff + n;
421 		    while (cpos < epos && error == 0 && uio->uio_resid > 0) {
422 			    dp = (struct nfs_dirent *)cpos;
423 			    error = nfs_check_dirent(dp, (int)(epos - cpos));
424 			    if (error)
425 				    break;
426 			    if (vop_write_dirent(&error, uio, dp->nfs_ino,
427 				dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) {
428 				    break;
429 			    }
430 			    cpos += dp->nfs_reclen;
431 		    }
432 		    n = 0;
433 		    if (error == 0) {
434 			    uio->uio_offset = old_off + cpos -
435 					      bp->b_data - boff;
436 		    }
437 		}
438 		break;
439 	    default:
440 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
441 	    }
442 	    if (bp)
443 		    brelse(bp);
444 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
445 	return (error);
446 }
447 
448 /*
449  * Userland can supply any 'seek' offset when reading a NFS directory.
450  * Validate the structure so we don't panic the kernel.  Note that
451  * the element name is nul terminated and the nul is not included
452  * in nfs_namlen.
453  */
454 static
455 int
456 nfs_check_dirent(struct nfs_dirent *dp, int maxlen)
457 {
458 	int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]);
459 
460 	if (nfs_name_off >= maxlen)
461 		return (EINVAL);
462 	if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen)
463 		return (EINVAL);
464 	if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen)
465 		return (EINVAL);
466 	if (dp->nfs_reclen & 3)
467 		return (EINVAL);
468 	return (0);
469 }
470 
471 /*
472  * Vnode op for write using bio
473  *
474  * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
475  *	     struct ucred *a_cred)
476  */
477 int
478 nfs_write(struct vop_write_args *ap)
479 {
480 	struct uio *uio = ap->a_uio;
481 	struct thread *td = uio->uio_td;
482 	struct vnode *vp = ap->a_vp;
483 	struct nfsnode *np = VTONFS(vp);
484 	int ioflag = ap->a_ioflag;
485 	struct buf *bp;
486 	struct vattr vattr;
487 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
488 	off_t loffset;
489 	int boff, bytes;
490 	int error = 0;
491 	int haverslock = 0;
492 	int bcount;
493 	int biosize;
494 	int trivial;
495 
496 #ifdef DIAGNOSTIC
497 	if (uio->uio_rw != UIO_WRITE)
498 		panic("nfs_write mode");
499 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
500 		panic("nfs_write proc");
501 #endif
502 	if (vp->v_type != VREG)
503 		return (EIO);
504 
505 	lwkt_gettoken(&nmp->nm_token);
506 
507 	if (np->n_flag & NWRITEERR) {
508 		np->n_flag &= ~NWRITEERR;
509 		lwkt_reltoken(&nmp->nm_token);
510 		return (np->n_error);
511 	}
512 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
513 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
514 		(void)nfs_fsinfo(nmp, vp, td);
515 	}
516 
517 	/*
518 	 * Synchronously flush pending buffers if we are in synchronous
519 	 * mode or if we are appending.
520 	 */
521 	if (ioflag & (IO_APPEND | IO_SYNC)) {
522 		if (np->n_flag & NLMODIFIED) {
523 			np->n_attrstamp = 0;
524 			error = nfs_flush(vp, MNT_WAIT, td, 0);
525 			/* error = nfs_vinvalbuf(vp, V_SAVE, 1); */
526 			if (error)
527 				goto  done;
528 		}
529 	}
530 
531 	/*
532 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
533 	 * get the append lock.
534 	 */
535 restart:
536 	if (ioflag & IO_APPEND) {
537 		np->n_attrstamp = 0;
538 		error = VOP_GETATTR(vp, &vattr);
539 		if (error)
540 			goto done;
541 		uio->uio_offset = np->n_size;
542 	}
543 
544 	if (uio->uio_offset < 0) {
545 		error = EINVAL;
546 		goto done;
547 	}
548 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) {
549 		error = EFBIG;
550 		goto done;
551 	}
552 	if (uio->uio_resid == 0) {
553 		error = 0;
554 		goto done;
555 	}
556 
557 	/*
558 	 * We need to obtain the rslock if we intend to modify np->n_size
559 	 * in order to guarentee the append point with multiple contending
560 	 * writers, to guarentee that no other appenders modify n_size
561 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
562 	 * accidently truncating data written by another appender due to
563 	 * the race), and to ensure that the buffer is populated prior to
564 	 * our extending of the file.  We hold rslock through the entire
565 	 * operation.
566 	 *
567 	 * Note that we do not synchronize the case where someone truncates
568 	 * the file while we are appending to it because attempting to lock
569 	 * this case may deadlock other parts of the system unexpectedly.
570 	 */
571 	if ((ioflag & IO_APPEND) ||
572 	    uio->uio_offset + uio->uio_resid > np->n_size) {
573 		switch(nfs_rslock(np)) {
574 		case ENOLCK:
575 			goto restart;
576 			/* not reached */
577 		case EINTR:
578 		case ERESTART:
579 			error = EINTR;
580 			goto done;
581 			/* not reached */
582 		default:
583 			break;
584 		}
585 		haverslock = 1;
586 	}
587 
588 	/*
589 	 * Maybe this should be above the vnode op call, but so long as
590 	 * file servers have no limits, i don't think it matters
591 	 */
592 	if (td && td->td_proc && uio->uio_offset + uio->uio_resid >
593 	      td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
594 		lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
595 		if (haverslock)
596 			nfs_rsunlock(np);
597 		error = EFBIG;
598 		goto done;
599 	}
600 
601 	biosize = vp->v_mount->mnt_stat.f_iosize;
602 
603 	do {
604 		nfsstats.biocache_writes++;
605 		boff = uio->uio_offset & (biosize-1);
606 		loffset = uio->uio_offset - boff;
607 		bytes = (int)szmin((unsigned)(biosize - boff), uio->uio_resid);
608 again:
609 		/*
610 		 * Handle direct append and file extension cases, calculate
611 		 * unaligned buffer size.  When extending B_CACHE will be
612 		 * set if possible.  See UIO_NOCOPY note below.
613 		 */
614 		if (uio->uio_offset + bytes > np->n_size) {
615 			np->n_flag |= NLMODIFIED;
616 			trivial = (uio->uio_segflg != UIO_NOCOPY &&
617 				   uio->uio_offset <= np->n_size);
618 			nfs_meta_setsize(vp, td, uio->uio_offset + bytes,
619 					 trivial);
620 		}
621 		bp = nfs_getcacheblk(vp, loffset, biosize, td);
622 		if (bp == NULL) {
623 			error = EINTR;
624 			break;
625 		}
626 
627 		/*
628 		 * Actual bytes in buffer which we care about
629 		 */
630 		if (loffset + biosize < np->n_size)
631 			bcount = biosize;
632 		else
633 			bcount = (int)(np->n_size - loffset);
634 
635 		/*
636 		 * Avoid a read by setting B_CACHE where the data we
637 		 * intend to write covers the entire buffer.  Note
638 		 * that the buffer may have been set to B_CACHE by
639 		 * nfs_meta_setsize() above or otherwise inherited the
640 		 * flag, but if B_CACHE isn't set the buffer may be
641 		 * uninitialized and must be zero'd to accomodate
642 		 * future seek+write's.
643 		 *
644 		 * See the comments in kern/vfs_bio.c's getblk() for
645 		 * more information.
646 		 *
647 		 * When doing a UIO_NOCOPY write the buffer is not
648 		 * overwritten and we cannot just set B_CACHE unconditionally
649 		 * for full-block writes.
650 		 */
651 		if (boff == 0 && bytes == biosize &&
652 		    uio->uio_segflg != UIO_NOCOPY) {
653 			bp->b_flags |= B_CACHE;
654 			bp->b_flags &= ~(B_ERROR | B_INVAL);
655 		}
656 
657 		/*
658 		 * b_resid may be set due to file EOF if we extended out.
659 		 * The NFS bio code will zero the difference anyway so
660 		 * just acknowledged the fact and set b_resid to 0.
661 		 */
662 		if ((bp->b_flags & B_CACHE) == 0) {
663 			bp->b_cmd = BUF_CMD_READ;
664 			bp->b_bio2.bio_done = nfsiodone_sync;
665 			bp->b_bio2.bio_flags |= BIO_SYNC;
666 			vfs_busy_pages(vp, bp);
667 			error = nfs_doio(vp, &bp->b_bio2, td);
668 			if (error) {
669 				brelse(bp);
670 				break;
671 			}
672 			bp->b_resid = 0;
673 		}
674 		np->n_flag |= NLMODIFIED;
675 
676 		/*
677 		 * If dirtyend exceeds file size, chop it down.  This should
678 		 * not normally occur but there is an append race where it
679 		 * might occur XXX, so we log it.
680 		 *
681 		 * If the chopping creates a reverse-indexed or degenerate
682 		 * situation with dirtyoff/end, we 0 both of them.
683 		 */
684 		if (bp->b_dirtyend > bcount) {
685 			kprintf("NFS append race @%08llx:%d\n",
686 			    (long long)bp->b_bio2.bio_offset,
687 			    bp->b_dirtyend - bcount);
688 			bp->b_dirtyend = bcount;
689 		}
690 
691 		if (bp->b_dirtyoff >= bp->b_dirtyend)
692 			bp->b_dirtyoff = bp->b_dirtyend = 0;
693 
694 		/*
695 		 * If the new write will leave a contiguous dirty
696 		 * area, just update the b_dirtyoff and b_dirtyend,
697 		 * otherwise force a write rpc of the old dirty area.
698 		 *
699 		 * While it is possible to merge discontiguous writes due to
700 		 * our having a B_CACHE buffer ( and thus valid read data
701 		 * for the hole), we don't because it could lead to
702 		 * significant cache coherency problems with multiple clients,
703 		 * especially if locking is implemented later on.
704 		 *
705 		 * as an optimization we could theoretically maintain
706 		 * a linked list of discontinuous areas, but we would still
707 		 * have to commit them separately so there isn't much
708 		 * advantage to it except perhaps a bit of asynchronization.
709 		 */
710 		if (bp->b_dirtyend > 0 &&
711 		    (boff > bp->b_dirtyend ||
712 		     (boff + bytes) < bp->b_dirtyoff)
713 		) {
714 			if (bwrite(bp) == EINTR) {
715 				error = EINTR;
716 				break;
717 			}
718 			goto again;
719 		}
720 
721 		error = uiomovebp(bp, bp->b_data + boff, bytes, uio);
722 
723 		/*
724 		 * Since this block is being modified, it must be written
725 		 * again and not just committed.  Since write clustering does
726 		 * not work for the stage 1 data write, only the stage 2
727 		 * commit rpc, we have to clear B_CLUSTEROK as well.
728 		 */
729 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
730 
731 		if (error) {
732 			brelse(bp);
733 			break;
734 		}
735 
736 		/*
737 		 * Only update dirtyoff/dirtyend if not a degenerate
738 		 * condition.
739 		 *
740 		 * The underlying VM pages have been marked valid by
741 		 * virtue of acquiring the bp.  Because the entire buffer
742 		 * is marked dirty we do not have to worry about cleaning
743 		 * out the related dirty bits (and wouldn't really know
744 		 * how to deal with byte ranges anyway)
745 		 */
746 		if (bytes) {
747 			if (bp->b_dirtyend > 0) {
748 				bp->b_dirtyoff = imin(boff, bp->b_dirtyoff);
749 				bp->b_dirtyend = imax(boff + bytes,
750 						      bp->b_dirtyend);
751 			} else {
752 				bp->b_dirtyoff = boff;
753 				bp->b_dirtyend = boff + bytes;
754 			}
755 		}
756 
757 		/*
758 		 * If the lease is non-cachable or IO_SYNC do bwrite().
759 		 *
760 		 * IO_INVAL appears to be unused.  The idea appears to be
761 		 * to turn off caching in this case.  Very odd.  XXX
762 		 *
763 		 * If nfs_async is set bawrite() will use an unstable write
764 		 * (build dirty bufs on the server), so we might as well
765 		 * push it out with bawrite().  If nfs_async is not set we
766 		 * use bdwrite() to cache dirty bufs on the client.
767 		 */
768 		if (ioflag & IO_SYNC) {
769 			if (ioflag & IO_INVAL)
770 				bp->b_flags |= B_NOCACHE;
771 			error = bwrite(bp);
772 			if (error)
773 				break;
774 		} else if (boff + bytes == biosize && nfs_async) {
775 			bawrite(bp);
776 		} else {
777 			bdwrite(bp);
778 		}
779 	} while (uio->uio_resid > 0 && bytes > 0);
780 
781 	if (haverslock)
782 		nfs_rsunlock(np);
783 
784 done:
785 	lwkt_reltoken(&nmp->nm_token);
786 	return (error);
787 }
788 
789 /*
790  * Get an nfs cache block.
791  *
792  * Allocate a new one if the block isn't currently in the cache
793  * and return the block marked busy. If the calling process is
794  * interrupted by a signal for an interruptible mount point, return
795  * NULL.
796  *
797  * The caller must carefully deal with the possible B_INVAL state of
798  * the buffer.  nfs_startio() clears B_INVAL (and nfs_asyncio() clears it
799  * indirectly), so synchronous reads can be issued without worrying about
800  * the B_INVAL state.  We have to be a little more careful when dealing
801  * with writes (see comments in nfs_write()) when extending a file past
802  * its EOF.
803  */
804 static struct buf *
805 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td)
806 {
807 	struct buf *bp;
808 	struct mount *mp;
809 	struct nfsmount *nmp;
810 
811 	mp = vp->v_mount;
812 	nmp = VFSTONFS(mp);
813 
814 	if (nmp->nm_flag & NFSMNT_INT) {
815 		bp = getblk(vp, loffset, size, GETBLK_PCATCH, 0);
816 		while (bp == NULL) {
817 			if (nfs_sigintr(nmp, NULL, td))
818 				return (NULL);
819 			bp = getblk(vp, loffset, size, 0, 2 * hz);
820 		}
821 	} else {
822 		bp = getblk(vp, loffset, size, 0, 0);
823 	}
824 
825 	/*
826 	 * bio2, the 'device' layer.  Since BIOs use 64 bit byte offsets
827 	 * now, no translation is necessary.
828 	 */
829 	bp->b_bio2.bio_offset = loffset;
830 	return (bp);
831 }
832 
833 /*
834  * Flush and invalidate all dirty buffers. If another process is already
835  * doing the flush, just wait for completion.
836  */
837 int
838 nfs_vinvalbuf(struct vnode *vp, int flags, int intrflg)
839 {
840 	struct nfsnode *np = VTONFS(vp);
841 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
842 	int error = 0, slpflag, slptimeo;
843 	thread_t td = curthread;
844 
845 	if (vp->v_flag & VRECLAIMED)
846 		return (0);
847 
848 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
849 		intrflg = 0;
850 	if (intrflg) {
851 		slpflag = PCATCH;
852 		slptimeo = 2 * hz;
853 	} else {
854 		slpflag = 0;
855 		slptimeo = 0;
856 	}
857 	/*
858 	 * First wait for any other process doing a flush to complete.
859 	 */
860 	while (np->n_flag & NFLUSHINPROG) {
861 		np->n_flag |= NFLUSHWANT;
862 		error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
863 		if (error && intrflg && nfs_sigintr(nmp, NULL, td))
864 			return (EINTR);
865 	}
866 
867 	/*
868 	 * Now, flush as required.
869 	 */
870 	np->n_flag |= NFLUSHINPROG;
871 	error = vinvalbuf(vp, flags, slpflag, 0);
872 	while (error) {
873 		if (intrflg && nfs_sigintr(nmp, NULL, td)) {
874 			np->n_flag &= ~NFLUSHINPROG;
875 			if (np->n_flag & NFLUSHWANT) {
876 				np->n_flag &= ~NFLUSHWANT;
877 				wakeup((caddr_t)&np->n_flag);
878 			}
879 			return (EINTR);
880 		}
881 		error = vinvalbuf(vp, flags, 0, slptimeo);
882 	}
883 	np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG);
884 	if (np->n_flag & NFLUSHWANT) {
885 		np->n_flag &= ~NFLUSHWANT;
886 		wakeup((caddr_t)&np->n_flag);
887 	}
888 	return (0);
889 }
890 
891 /*
892  * Return true (non-zero) if the txthread and rxthread are operational
893  * and we do not already have too many not-yet-started BIO's built up.
894  */
895 int
896 nfs_asyncok(struct nfsmount *nmp)
897 {
898 	return (nmp->nm_bioqlen < nfs_maxasyncbio &&
899 		nmp->nm_bioqlen < nmp->nm_maxasync_scaled / NFS_ASYSCALE &&
900 		nmp->nm_rxstate <= NFSSVC_PENDING &&
901 		nmp->nm_txstate <= NFSSVC_PENDING);
902 }
903 
904 /*
905  * The read-ahead code calls this to queue a bio to the txthread.
906  *
907  * We don't touch the bio otherwise... that is, we do not even
908  * construct or send the initial rpc.  The txthread will do it
909  * for us.
910  *
911  * NOTE!  nm_bioqlen is not decremented until the request completes,
912  *	  so it does not reflect the number of bio's on bioq.
913  */
914 void
915 nfs_asyncio(struct vnode *vp, struct bio *bio)
916 {
917 	struct buf *bp = bio->bio_buf;
918 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
919 
920 	KKASSERT(vp->v_tag == VT_NFS);
921 	BUF_KERNPROC(bp);
922 
923 	/*
924 	 * Shortcut swap cache (not done automatically because we are not
925 	 * using bread()).
926 	 */
927 	if (vn_cache_strategy(vp, bio))
928 		return;
929 
930 	bio->bio_driver_info = vp;
931 	crit_enter();
932 	TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act);
933 	atomic_add_int(&nmp->nm_bioqlen, 1);
934 	crit_exit();
935 	nfssvc_iod_writer_wakeup(nmp);
936 }
937 
938 /*
939  * nfs_doio()	- Execute a BIO operation synchronously.  The BIO will be
940  *		  completed and its error returned.  The caller is responsible
941  *		  for brelse()ing it.  ONLY USE FOR BIO_SYNC IOs!  Otherwise
942  *		  our error probe will be against an invalid pointer.
943  *
944  * nfs_startio()- Execute a BIO operation assynchronously.
945  *
946  * NOTE: nfs_asyncio() is used to initiate an asynchronous BIO operation,
947  *	 which basically just queues it to the txthread.  nfs_startio()
948  *	 actually initiates the I/O AFTER it has gotten to the txthread.
949  *
950  * NOTE: td might be NULL.
951  *
952  * NOTE: Caller has already busied the I/O.
953  */
954 void
955 nfs_startio(struct vnode *vp, struct bio *bio, struct thread *td)
956 {
957 	struct buf *bp = bio->bio_buf;
958 
959 	KKASSERT(vp->v_tag == VT_NFS);
960 
961 	/*
962 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
963 	 * do this here so we do not have to do it in all the code that
964 	 * calls us.
965 	 */
966 	bp->b_flags &= ~(B_ERROR | B_INVAL);
967 
968 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
969 		("nfs_doio: bp %p already marked done!", bp));
970 
971 	if (bp->b_cmd == BUF_CMD_READ) {
972 	    switch (vp->v_type) {
973 	    case VREG:
974 		nfsstats.read_bios++;
975 		nfs_readrpc_bio(vp, bio);
976 		break;
977 	    case VLNK:
978 #if 0
979 		bio->bio_offset = 0;
980 		nfsstats.readlink_bios++;
981 		nfs_readlinkrpc_bio(vp, bio);
982 #else
983 		nfs_doio(vp, bio, td);
984 #endif
985 		break;
986 	    case VDIR:
987 		/*
988 		 * NOTE: If nfs_readdirplusrpc_bio() is requested but
989 		 *	 not supported, it will chain to
990 		 *	 nfs_readdirrpc_bio().
991 		 */
992 #if 0
993 		nfsstats.readdir_bios++;
994 		uiop->uio_offset = bio->bio_offset;
995 		if (nmp->nm_flag & NFSMNT_RDIRPLUS)
996 			nfs_readdirplusrpc_bio(vp, bio);
997 		else
998 			nfs_readdirrpc_bio(vp, bio);
999 #else
1000 		nfs_doio(vp, bio, td);
1001 #endif
1002 		break;
1003 	    default:
1004 		kprintf("nfs_doio:  type %x unexpected\n",vp->v_type);
1005 		bp->b_flags |= B_ERROR;
1006 		bp->b_error = EINVAL;
1007 		biodone(bio);
1008 		break;
1009 	    }
1010 	} else {
1011 	    /*
1012 	     * If we only need to commit, try to commit.  If this fails
1013 	     * it will chain through to the write.  Basically all the logic
1014 	     * in nfs_doio() is replicated.
1015 	     */
1016 	    KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1017 	    if (bp->b_flags & B_NEEDCOMMIT)
1018 		nfs_commitrpc_bio(vp, bio);
1019 	    else
1020 		nfs_writerpc_bio(vp, bio);
1021 	}
1022 }
1023 
1024 int
1025 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td)
1026 {
1027 	struct buf *bp = bio->bio_buf;
1028 	struct uio *uiop;
1029 	struct nfsnode *np;
1030 	struct nfsmount *nmp;
1031 	int error = 0;
1032 	int iomode, must_commit;
1033 	size_t n;
1034 	struct uio uio;
1035 	struct iovec io;
1036 
1037 #if 0
1038 	/*
1039 	 * Shortcut swap cache (not done automatically because we are not
1040 	 * using bread()).
1041 	 *
1042 	 * XXX The biowait is a hack until we can figure out how to stop a
1043 	 * biodone chain when a middle element is BIO_SYNC.  BIO_SYNC is
1044 	 * set so the bp shouldn't get ripped out from under us.  The only
1045 	 * use-cases are fully synchronous I/O cases.
1046 	 *
1047 	 * XXX This is having problems, give up for now.
1048 	 */
1049 	if (vn_cache_strategy(vp, bio)) {
1050 		error = biowait(&bio->bio_buf->b_bio1, "nfsrsw");
1051 		return (error);
1052 	}
1053 #endif
1054 
1055 	KKASSERT(vp->v_tag == VT_NFS);
1056 	np = VTONFS(vp);
1057 	nmp = VFSTONFS(vp->v_mount);
1058 	uiop = &uio;
1059 	uiop->uio_iov = &io;
1060 	uiop->uio_iovcnt = 1;
1061 	uiop->uio_segflg = UIO_SYSSPACE;
1062 	uiop->uio_td = td;
1063 
1064 	/*
1065 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1066 	 * do this here so we do not have to do it in all the code that
1067 	 * calls us.
1068 	 */
1069 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1070 
1071 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
1072 		("nfs_doio: bp %p already marked done!", bp));
1073 
1074 	if (bp->b_cmd == BUF_CMD_READ) {
1075 	    io.iov_len = uiop->uio_resid = (size_t)bp->b_bcount;
1076 	    io.iov_base = bp->b_data;
1077 	    uiop->uio_rw = UIO_READ;
1078 
1079 	    switch (vp->v_type) {
1080 	    case VREG:
1081 		/*
1082 		 * When reading from a regular file zero-fill any residual.
1083 		 * Note that this residual has nothing to do with NFS short
1084 		 * reads, which nfs_readrpc_uio() will handle for us.
1085 		 *
1086 		 * We have to do this because when we are write extending
1087 		 * a file the server may not have the same notion of
1088 		 * filesize as we do.  Our BIOs should already be sized
1089 		 * (b_bcount) to account for the file EOF.
1090 		 */
1091 		nfsstats.read_bios++;
1092 		uiop->uio_offset = bio->bio_offset;
1093 		error = nfs_readrpc_uio(vp, uiop);
1094 		if (error == 0 && uiop->uio_resid) {
1095 			n = (size_t)bp->b_bcount - uiop->uio_resid;
1096 			bzero(bp->b_data + n, bp->b_bcount - n);
1097 			uiop->uio_resid = 0;
1098 		}
1099 		if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1100 		    np->n_mtime != np->n_vattr.va_mtime.tv_sec) {
1101 			uprintf("Process killed due to text file modification\n");
1102 			ksignal(td->td_proc, SIGKILL);
1103 		}
1104 		break;
1105 	    case VLNK:
1106 		uiop->uio_offset = 0;
1107 		nfsstats.readlink_bios++;
1108 		error = nfs_readlinkrpc_uio(vp, uiop);
1109 		break;
1110 	    case VDIR:
1111 		nfsstats.readdir_bios++;
1112 		uiop->uio_offset = bio->bio_offset;
1113 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1114 			error = nfs_readdirplusrpc_uio(vp, uiop);
1115 			if (error == NFSERR_NOTSUPP)
1116 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1117 		}
1118 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1119 			error = nfs_readdirrpc_uio(vp, uiop);
1120 		/*
1121 		 * end-of-directory sets B_INVAL but does not generate an
1122 		 * error.
1123 		 */
1124 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1125 			bp->b_flags |= B_INVAL;
1126 		break;
1127 	    default:
1128 		kprintf("nfs_doio:  type %x unexpected\n",vp->v_type);
1129 		break;
1130 	    }
1131 	    if (error) {
1132 		bp->b_flags |= B_ERROR;
1133 		bp->b_error = error;
1134 	    }
1135 	    bp->b_resid = uiop->uio_resid;
1136 	} else {
1137 	    /*
1138 	     * If we only need to commit, try to commit.
1139 	     *
1140 	     * NOTE: The I/O has already been staged for the write and
1141 	     *	     its pages busied, so b_dirtyoff/end is valid.
1142 	     */
1143 	    KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1144 	    if (bp->b_flags & B_NEEDCOMMIT) {
1145 		    int retv;
1146 		    off_t off;
1147 
1148 		    off = bio->bio_offset + bp->b_dirtyoff;
1149 		    retv = nfs_commitrpc_uio(vp, off,
1150 					     bp->b_dirtyend - bp->b_dirtyoff,
1151 					     td);
1152 		    if (retv == 0) {
1153 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1154 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1155 			    bp->b_resid = 0;
1156 			    biodone(bio);
1157 			    return(0);
1158 		    }
1159 		    if (retv == NFSERR_STALEWRITEVERF) {
1160 			    nfs_clearcommit(vp->v_mount);
1161 		    }
1162 	    }
1163 
1164 	    /*
1165 	     * Setup for actual write
1166 	     */
1167 	    if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1168 		bp->b_dirtyend = np->n_size - bio->bio_offset;
1169 
1170 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1171 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1172 		    - bp->b_dirtyoff;
1173 		uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff;
1174 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1175 		uiop->uio_rw = UIO_WRITE;
1176 		nfsstats.write_bios++;
1177 
1178 		if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1179 		    iomode = NFSV3WRITE_UNSTABLE;
1180 		else
1181 		    iomode = NFSV3WRITE_FILESYNC;
1182 
1183 		must_commit = 0;
1184 		error = nfs_writerpc_uio(vp, uiop, &iomode, &must_commit);
1185 
1186 		/*
1187 		 * We no longer try to use kern/vfs_bio's cluster code to
1188 		 * cluster commits, so B_CLUSTEROK is no longer set with
1189 		 * B_NEEDCOMMIT.  The problem is that a vfs_busy_pages()
1190 		 * may have to clear B_NEEDCOMMIT if it finds underlying
1191 		 * pages have been redirtied through a memory mapping
1192 		 * and doing this on a clustered bp will probably cause
1193 		 * a panic, plus the flag in the underlying NFS bufs
1194 		 * making up the cluster bp will not be properly cleared.
1195 		 */
1196 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1197 		    bp->b_flags |= B_NEEDCOMMIT;
1198 #if 0
1199 		    /* XXX do not enable commit clustering */
1200 		    if (bp->b_dirtyoff == 0
1201 			&& bp->b_dirtyend == bp->b_bcount)
1202 			bp->b_flags |= B_CLUSTEROK;
1203 #endif
1204 		} else {
1205 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1206 		}
1207 
1208 		/*
1209 		 * For an interrupted write, the buffer is still valid
1210 		 * and the write hasn't been pushed to the server yet,
1211 		 * so we can't set B_ERROR and report the interruption
1212 		 * by setting B_EINTR. For the async case, B_EINTR
1213 		 * is not relevant, so the rpc attempt is essentially
1214 		 * a noop.  For the case of a V3 write rpc not being
1215 		 * committed to stable storage, the block is still
1216 		 * dirty and requires either a commit rpc or another
1217 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1218 		 * the block is reused. This is indicated by setting
1219 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1220 		 *
1221 		 * If the buffer is marked B_PAGING, it does not reside on
1222 		 * the vp's paging queues so we cannot call bdirty().  The
1223 		 * bp in this case is not an NFS cache block so we should
1224 		 * be safe. XXX
1225 		 */
1226     		if (error == EINTR
1227 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1228 			crit_enter();
1229 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1230 			if ((bp->b_flags & B_PAGING) == 0)
1231 			    bdirty(bp);
1232 			if (error)
1233 			    bp->b_flags |= B_EINTR;
1234 			crit_exit();
1235 	    	} else {
1236 		    if (error) {
1237 			bp->b_flags |= B_ERROR;
1238 			bp->b_error = np->n_error = error;
1239 			np->n_flag |= NWRITEERR;
1240 		    }
1241 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1242 		}
1243 		if (must_commit)
1244 		    nfs_clearcommit(vp->v_mount);
1245 		bp->b_resid = uiop->uio_resid;
1246 	    } else {
1247 		bp->b_resid = 0;
1248 	    }
1249 	}
1250 
1251 	/*
1252 	 * I/O was run synchronously, biodone() it and calculate the
1253 	 * error to return.
1254 	 */
1255 	biodone(bio);
1256 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
1257 	if (bp->b_flags & B_EINTR)
1258 		return (EINTR);
1259 	if (bp->b_flags & B_ERROR)
1260 		return (bp->b_error ? bp->b_error : EIO);
1261 	return (0);
1262 }
1263 
1264 /*
1265  * Handle all truncation, write-extend, and ftruncate()-extend operations
1266  * on the NFS lcient side.
1267  *
1268  * We use the new API in kern/vfs_vm.c to perform these operations in a
1269  * VM-friendly way.  With this API VM pages are properly zerod and pages
1270  * still mapped into the buffer straddling EOF are not invalidated.
1271  */
1272 int
1273 nfs_meta_setsize(struct vnode *vp, struct thread *td, off_t nsize, int trivial)
1274 {
1275 	struct nfsnode *np = VTONFS(vp);
1276 	off_t osize;
1277 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1278 	int error;
1279 
1280 	osize = np->n_size;
1281 	np->n_size = nsize;
1282 
1283 	if (nsize < osize) {
1284 		error = nvtruncbuf(vp, nsize, biosize, -1, 0);
1285 	} else {
1286 		error = nvextendbuf(vp, osize, nsize,
1287 				    biosize, biosize, -1, -1,
1288 				    trivial);
1289 	}
1290 	return(error);
1291 }
1292 
1293 /*
1294  * Synchronous completion for nfs_doio.  Call bpdone() with elseit=FALSE.
1295  * Caller is responsible for brelse()'ing the bp.
1296  */
1297 static void
1298 nfsiodone_sync(struct bio *bio)
1299 {
1300 	bio->bio_flags = 0;
1301 	bpdone(bio->bio_buf, 0);
1302 }
1303 
1304 /*
1305  * nfs read rpc - BIO version
1306  */
1307 void
1308 nfs_readrpc_bio(struct vnode *vp, struct bio *bio)
1309 {
1310 	struct buf *bp = bio->bio_buf;
1311 	u_int32_t *tl;
1312 	struct nfsmount *nmp;
1313 	int error = 0, len, tsiz;
1314 	struct nfsm_info *info;
1315 
1316 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1317 	info->mrep = NULL;
1318 	info->v3 = NFS_ISV3(vp);
1319 
1320 	nmp = VFSTONFS(vp->v_mount);
1321 	tsiz = bp->b_bcount;
1322 	KKASSERT(tsiz <= nmp->nm_rsize);
1323 	if (bio->bio_offset + tsiz > nmp->nm_maxfilesize) {
1324 		error = EFBIG;
1325 		goto nfsmout;
1326 	}
1327 	nfsstats.rpccnt[NFSPROC_READ]++;
1328 	len = tsiz;
1329 	nfsm_reqhead(info, vp, NFSPROC_READ,
1330 		     NFSX_FH(info->v3) + NFSX_UNSIGNED * 3);
1331 	ERROROUT(nfsm_fhtom(info, vp));
1332 	tl = nfsm_build(info, NFSX_UNSIGNED * 3);
1333 	if (info->v3) {
1334 		txdr_hyper(bio->bio_offset, tl);
1335 		*(tl + 2) = txdr_unsigned(len);
1336 	} else {
1337 		*tl++ = txdr_unsigned(bio->bio_offset);
1338 		*tl++ = txdr_unsigned(len);
1339 		*tl = 0;
1340 	}
1341 	info->bio = bio;
1342 	info->done = nfs_readrpc_bio_done;
1343 	nfsm_request_bio(info, vp, NFSPROC_READ, NULL,
1344 			 nfs_vpcred(vp, ND_READ));
1345 	return;
1346 nfsmout:
1347 	kfree(info, M_NFSREQ);
1348 	bp->b_error = error;
1349 	bp->b_flags |= B_ERROR;
1350 	biodone(bio);
1351 }
1352 
1353 static void
1354 nfs_readrpc_bio_done(nfsm_info_t info)
1355 {
1356 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1357 	struct bio *bio = info->bio;
1358 	struct buf *bp = bio->bio_buf;
1359 	u_int32_t *tl;
1360 	int attrflag;
1361 	int retlen;
1362 	int eof;
1363 	int error = 0;
1364 
1365 	KKASSERT(info->state == NFSM_STATE_DONE);
1366 
1367 	lwkt_gettoken(&nmp->nm_token);
1368 
1369 	ERROROUT(info->error);
1370 	if (info->v3) {
1371 		ERROROUT(nfsm_postop_attr(info, info->vp, &attrflag,
1372 					 NFS_LATTR_NOSHRINK));
1373 		NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED));
1374 		eof = fxdr_unsigned(int, *(tl + 1));
1375 	} else {
1376 		ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1377 		eof = 0;
1378 	}
1379 	NEGATIVEOUT(retlen = nfsm_strsiz(info, nmp->nm_rsize));
1380 	ERROROUT(nfsm_mtobio(info, bio, retlen));
1381 	m_freem(info->mrep);
1382 	info->mrep = NULL;
1383 
1384 	/*
1385 	 * No error occured, if retlen is less then bcount and no EOF
1386 	 * and NFSv3 a zero-fill short read occured.
1387 	 *
1388 	 * For NFSv2 a short-read indicates EOF.
1389 	 */
1390 	if (retlen < bp->b_bcount && info->v3 && eof == 0) {
1391 		bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1392 		retlen = bp->b_bcount;
1393 	}
1394 
1395 	/*
1396 	 * If we hit an EOF we still zero-fill, but return the expected
1397 	 * b_resid anyway.  This should normally not occur since async
1398 	 * BIOs are not used for read-before-write case.  Races against
1399 	 * the server can cause it though and we don't want to leave
1400 	 * garbage in the buffer.
1401 	 */
1402 	if (retlen < bp->b_bcount) {
1403 		bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1404 	}
1405 	bp->b_resid = 0;
1406 	/* bp->b_resid = bp->b_bcount - retlen; */
1407 nfsmout:
1408 	lwkt_reltoken(&nmp->nm_token);
1409 	kfree(info, M_NFSREQ);
1410 	if (error) {
1411 		bp->b_error = error;
1412 		bp->b_flags |= B_ERROR;
1413 	}
1414 	biodone(bio);
1415 }
1416 
1417 /*
1418  * nfs write call - BIO version
1419  *
1420  * NOTE: Caller has already busied the I/O.
1421  */
1422 void
1423 nfs_writerpc_bio(struct vnode *vp, struct bio *bio)
1424 {
1425 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1426 	struct nfsnode *np = VTONFS(vp);
1427 	struct buf *bp = bio->bio_buf;
1428 	u_int32_t *tl;
1429 	int len;
1430 	int iomode;
1431 	int error = 0;
1432 	struct nfsm_info *info;
1433 	off_t offset;
1434 
1435 	/*
1436 	 * Setup for actual write.  Just clean up the bio if there
1437 	 * is nothing to do.  b_dirtyoff/end have already been staged
1438 	 * by the bp's pages getting busied.
1439 	 */
1440 	if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1441 		bp->b_dirtyend = np->n_size - bio->bio_offset;
1442 
1443 	if (bp->b_dirtyend <= bp->b_dirtyoff) {
1444 		bp->b_resid = 0;
1445 		biodone(bio);
1446 		return;
1447 	}
1448 	len = bp->b_dirtyend - bp->b_dirtyoff;
1449 	offset = bio->bio_offset + bp->b_dirtyoff;
1450 	if (offset + len > nmp->nm_maxfilesize) {
1451 		bp->b_flags |= B_ERROR;
1452 		bp->b_error = EFBIG;
1453 		biodone(bio);
1454 		return;
1455 	}
1456 	bp->b_resid = len;
1457 	nfsstats.write_bios++;
1458 
1459 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1460 	info->mrep = NULL;
1461 	info->v3 = NFS_ISV3(vp);
1462 	info->info_writerpc.must_commit = 0;
1463 	if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1464 		iomode = NFSV3WRITE_UNSTABLE;
1465 	else
1466 		iomode = NFSV3WRITE_FILESYNC;
1467 
1468 	KKASSERT(len <= nmp->nm_wsize);
1469 
1470 	nfsstats.rpccnt[NFSPROC_WRITE]++;
1471 	nfsm_reqhead(info, vp, NFSPROC_WRITE,
1472 		     NFSX_FH(info->v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1473 	ERROROUT(nfsm_fhtom(info, vp));
1474 	if (info->v3) {
1475 		tl = nfsm_build(info, 5 * NFSX_UNSIGNED);
1476 		txdr_hyper(offset, tl);
1477 		tl += 2;
1478 		*tl++ = txdr_unsigned(len);
1479 		*tl++ = txdr_unsigned(iomode);
1480 		*tl = txdr_unsigned(len);
1481 	} else {
1482 		u_int32_t x;
1483 
1484 		tl = nfsm_build(info, 4 * NFSX_UNSIGNED);
1485 		/* Set both "begin" and "current" to non-garbage. */
1486 		x = txdr_unsigned((u_int32_t)offset);
1487 		*tl++ = x;	/* "begin offset" */
1488 		*tl++ = x;	/* "current offset" */
1489 		x = txdr_unsigned(len);
1490 		*tl++ = x;	/* total to this offset */
1491 		*tl = x;	/* size of this write */
1492 	}
1493 	ERROROUT(nfsm_biotom(info, bio, bp->b_dirtyoff, len));
1494 	info->bio = bio;
1495 	info->done = nfs_writerpc_bio_done;
1496 	nfsm_request_bio(info, vp, NFSPROC_WRITE, NULL,
1497 			 nfs_vpcred(vp, ND_WRITE));
1498 	return;
1499 nfsmout:
1500 	kfree(info, M_NFSREQ);
1501 	bp->b_error = error;
1502 	bp->b_flags |= B_ERROR;
1503 	biodone(bio);
1504 }
1505 
1506 static void
1507 nfs_writerpc_bio_done(nfsm_info_t info)
1508 {
1509 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1510 	struct nfsnode *np = VTONFS(info->vp);
1511 	struct bio *bio = info->bio;
1512 	struct buf *bp = bio->bio_buf;
1513 	int wccflag = NFSV3_WCCRATTR;
1514 	int iomode = NFSV3WRITE_FILESYNC;
1515 	int commit;
1516 	int rlen;
1517 	int error;
1518 	int len = bp->b_resid;	/* b_resid was set to shortened length */
1519 	u_int32_t *tl;
1520 
1521 	lwkt_gettoken(&nmp->nm_token);
1522 
1523 	ERROROUT(info->error);
1524 	if (info->v3) {
1525 		/*
1526 		 * The write RPC returns a before and after mtime.  The
1527 		 * nfsm_wcc_data() macro checks the before n_mtime
1528 		 * against the before time and stores the after time
1529 		 * in the nfsnode's cached vattr and n_mtime field.
1530 		 * The NRMODIFIED bit will be set if the before
1531 		 * time did not match the original mtime.
1532 		 */
1533 		wccflag = NFSV3_WCCCHK;
1534 		ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1535 		if (error == 0) {
1536 			NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1537 			rlen = fxdr_unsigned(int, *tl++);
1538 			if (rlen == 0) {
1539 				error = NFSERR_IO;
1540 				m_freem(info->mrep);
1541 				info->mrep = NULL;
1542 				goto nfsmout;
1543 			} else if (rlen < len) {
1544 #if 0
1545 				/*
1546 				 * XXX what do we do here?
1547 				 */
1548 				backup = len - rlen;
1549 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1550 				uiop->uio_iov->iov_len += backup;
1551 				uiop->uio_offset -= backup;
1552 				uiop->uio_resid += backup;
1553 				len = rlen;
1554 #endif
1555 			}
1556 			commit = fxdr_unsigned(int, *tl++);
1557 
1558 			/*
1559 			 * Return the lowest committment level
1560 			 * obtained by any of the RPCs.
1561 			 */
1562 			if (iomode == NFSV3WRITE_FILESYNC)
1563 				iomode = commit;
1564 			else if (iomode == NFSV3WRITE_DATASYNC &&
1565 				commit == NFSV3WRITE_UNSTABLE)
1566 				iomode = commit;
1567 			if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1568 			    bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1569 			    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1570 			} else if (bcmp(tl, nmp->nm_verf, NFSX_V3WRITEVERF)) {
1571 			    info->info_writerpc.must_commit = 1;
1572 			    bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1573 			}
1574 		}
1575 	} else {
1576 		ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1577 	}
1578 	m_freem(info->mrep);
1579 	info->mrep = NULL;
1580 	len = 0;
1581 nfsmout:
1582 	if (info->vp->v_mount->mnt_flag & MNT_ASYNC)
1583 		iomode = NFSV3WRITE_FILESYNC;
1584 	bp->b_resid = len;
1585 
1586 	/*
1587 	 * End of RPC.  Now clean up the bp.
1588 	 *
1589 	 * We no longer enable write clustering for commit operations,
1590 	 * See around line 1157 for a more detailed comment.
1591 	 */
1592 	if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1593 		bp->b_flags |= B_NEEDCOMMIT;
1594 #if 0
1595 		/* XXX do not enable commit clustering */
1596 		if (bp->b_dirtyoff == 0 && bp->b_dirtyend == bp->b_bcount)
1597 			bp->b_flags |= B_CLUSTEROK;
1598 #endif
1599 	} else {
1600 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1601 	}
1602 
1603 	/*
1604 	 * For an interrupted write, the buffer is still valid
1605 	 * and the write hasn't been pushed to the server yet,
1606 	 * so we can't set B_ERROR and report the interruption
1607 	 * by setting B_EINTR. For the async case, B_EINTR
1608 	 * is not relevant, so the rpc attempt is essentially
1609 	 * a noop.  For the case of a V3 write rpc not being
1610 	 * committed to stable storage, the block is still
1611 	 * dirty and requires either a commit rpc or another
1612 	 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1613 	 * the block is reused. This is indicated by setting
1614 	 * the B_DELWRI and B_NEEDCOMMIT flags.
1615 	 *
1616 	 * If the buffer is marked B_PAGING, it does not reside on
1617 	 * the vp's paging queues so we cannot call bdirty().  The
1618 	 * bp in this case is not an NFS cache block so we should
1619 	 * be safe. XXX
1620 	 */
1621 	if (error == EINTR || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1622 		crit_enter();
1623 		bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1624 		if ((bp->b_flags & B_PAGING) == 0)
1625 			bdirty(bp);
1626 		if (error)
1627 			bp->b_flags |= B_EINTR;
1628 		crit_exit();
1629 	} else {
1630 		if (error) {
1631 			bp->b_flags |= B_ERROR;
1632 			bp->b_error = np->n_error = error;
1633 			np->n_flag |= NWRITEERR;
1634 		}
1635 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1636 	}
1637 	if (info->info_writerpc.must_commit)
1638 		nfs_clearcommit(info->vp->v_mount);
1639 	lwkt_reltoken(&nmp->nm_token);
1640 
1641 	kfree(info, M_NFSREQ);
1642 	if (error) {
1643 		bp->b_flags |= B_ERROR;
1644 		bp->b_error = error;
1645 	}
1646 	biodone(bio);
1647 }
1648 
1649 /*
1650  * Nfs Version 3 commit rpc - BIO version
1651  *
1652  * This function issues the commit rpc and will chain to a write
1653  * rpc if necessary.
1654  */
1655 void
1656 nfs_commitrpc_bio(struct vnode *vp, struct bio *bio)
1657 {
1658 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1659 	struct buf *bp = bio->bio_buf;
1660 	struct nfsm_info *info;
1661 	int error = 0;
1662 	u_int32_t *tl;
1663 
1664 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
1665 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1666 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1667 		bp->b_resid = 0;
1668 		biodone(bio);
1669 		return;
1670 	}
1671 
1672 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1673 	info->mrep = NULL;
1674 	info->v3 = 1;
1675 
1676 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
1677 	nfsm_reqhead(info, vp, NFSPROC_COMMIT, NFSX_FH(1));
1678 	ERROROUT(nfsm_fhtom(info, vp));
1679 	tl = nfsm_build(info, 3 * NFSX_UNSIGNED);
1680 	txdr_hyper(bio->bio_offset + bp->b_dirtyoff, tl);
1681 	tl += 2;
1682 	*tl = txdr_unsigned(bp->b_dirtyend - bp->b_dirtyoff);
1683 	info->bio = bio;
1684 	info->done = nfs_commitrpc_bio_done;
1685 	nfsm_request_bio(info, vp, NFSPROC_COMMIT, NULL,
1686 			 nfs_vpcred(vp, ND_WRITE));
1687 	return;
1688 nfsmout:
1689 	/*
1690 	 * Chain to write RPC on (early) error
1691 	 */
1692 	kfree(info, M_NFSREQ);
1693 	nfs_writerpc_bio(vp, bio);
1694 }
1695 
1696 static void
1697 nfs_commitrpc_bio_done(nfsm_info_t info)
1698 {
1699 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1700 	struct bio *bio = info->bio;
1701 	struct buf *bp = bio->bio_buf;
1702 	u_int32_t *tl;
1703 	int wccflag = NFSV3_WCCRATTR;
1704 	int error = 0;
1705 
1706 	lwkt_gettoken(&nmp->nm_token);
1707 
1708 	ERROROUT(info->error);
1709 	ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1710 	if (error == 0) {
1711 		NULLOUT(tl = nfsm_dissect(info, NFSX_V3WRITEVERF));
1712 		if (bcmp(nmp->nm_verf, tl, NFSX_V3WRITEVERF)) {
1713 			bcopy(tl, nmp->nm_verf, NFSX_V3WRITEVERF);
1714 			error = NFSERR_STALEWRITEVERF;
1715 		}
1716 	}
1717 	m_freem(info->mrep);
1718 	info->mrep = NULL;
1719 
1720 	/*
1721 	 * On completion we must chain to a write bio if an
1722 	 * error occurred.
1723 	 */
1724 nfsmout:
1725 	if (error == 0) {
1726 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1727 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1728 		bp->b_resid = 0;
1729 		biodone(bio);
1730 	} else {
1731 		nfs_writerpc_bio(info->vp, bio);
1732 	}
1733 	kfree(info, M_NFSREQ);
1734 	lwkt_reltoken(&nmp->nm_token);
1735 }
1736 
1737