xref: /dragonfly/sys/vfs/nfs/nfs_bio.c (revision 2d8a3be7)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37  * $FreeBSD: src/sys/nfs/nfs_bio.c,v 1.83.2.4 2002/12/29 18:19:53 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.11 2003/08/20 09:56:33 rob Exp $
39  */
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_pager.h>
57 #include <vm/vnode_pager.h>
58 
59 #include <sys/buf2.h>
60 
61 #include "rpcv2.h"
62 #include "nfsproto.h"
63 #include "nfs.h"
64 #include "nfsmount.h"
65 #include "nqnfs.h"
66 #include "nfsnode.h"
67 
68 static struct buf *nfs_getcacheblk (struct vnode *vp, daddr_t bn, int size,
69 					struct thread *td);
70 
71 extern int nfs_numasync;
72 extern int nfs_pbuf_freecnt;
73 extern struct nfsstats nfsstats;
74 
75 /*
76  * Vnode op for VM getpages.
77  */
78 int
79 nfs_getpages(ap)
80 	struct vop_getpages_args /* {
81 		struct vnode *a_vp;
82 		vm_page_t *a_m;
83 		int a_count;
84 		int a_reqpage;
85 		vm_ooffset_t a_offset;
86 	} */ *ap;
87 {
88 	struct thread *td = curthread;		/* XXX */
89 	int i, error, nextoff, size, toff, count, npages;
90 	struct uio uio;
91 	struct iovec iov;
92 	vm_offset_t kva;
93 	struct buf *bp;
94 	struct vnode *vp;
95 	struct nfsmount *nmp;
96 	vm_page_t *pages;
97 
98 	vp = ap->a_vp;
99 	nmp = VFSTONFS(vp->v_mount);
100 	pages = ap->a_m;
101 	count = ap->a_count;
102 
103 	if (vp->v_object == NULL) {
104 		printf("nfs_getpages: called with non-merged cache vnode??\n");
105 		return VM_PAGER_ERROR;
106 	}
107 
108 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
109 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
110 		(void)nfs_fsinfo(nmp, vp, td);
111 
112 	npages = btoc(count);
113 
114 	/*
115 	 * If the requested page is partially valid, just return it and
116 	 * allow the pager to zero-out the blanks.  Partially valid pages
117 	 * can only occur at the file EOF.
118 	 */
119 
120 	{
121 		vm_page_t m = pages[ap->a_reqpage];
122 
123 		if (m->valid != 0) {
124 			/* handled by vm_fault now	  */
125 			/* vm_page_zero_invalid(m, TRUE); */
126 			for (i = 0; i < npages; ++i) {
127 				if (i != ap->a_reqpage)
128 					vnode_pager_freepage(pages[i]);
129 			}
130 			return(0);
131 		}
132 	}
133 
134 	/*
135 	 * We use only the kva address for the buffer, but this is extremely
136 	 * convienient and fast.
137 	 */
138 	bp = getpbuf(&nfs_pbuf_freecnt);
139 
140 	kva = (vm_offset_t) bp->b_data;
141 	pmap_qenter(kva, pages, npages);
142 
143 	iov.iov_base = (caddr_t) kva;
144 	iov.iov_len = count;
145 	uio.uio_iov = &iov;
146 	uio.uio_iovcnt = 1;
147 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
148 	uio.uio_resid = count;
149 	uio.uio_segflg = UIO_SYSSPACE;
150 	uio.uio_rw = UIO_READ;
151 	uio.uio_td = td;
152 
153 	error = nfs_readrpc(vp, &uio);
154 	pmap_qremove(kva, npages);
155 
156 	relpbuf(bp, &nfs_pbuf_freecnt);
157 
158 	if (error && (uio.uio_resid == count)) {
159 		printf("nfs_getpages: error %d\n", error);
160 		for (i = 0; i < npages; ++i) {
161 			if (i != ap->a_reqpage)
162 				vnode_pager_freepage(pages[i]);
163 		}
164 		return VM_PAGER_ERROR;
165 	}
166 
167 	/*
168 	 * Calculate the number of bytes read and validate only that number
169 	 * of bytes.  Note that due to pending writes, size may be 0.  This
170 	 * does not mean that the remaining data is invalid!
171 	 */
172 
173 	size = count - uio.uio_resid;
174 
175 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
176 		vm_page_t m;
177 		nextoff = toff + PAGE_SIZE;
178 		m = pages[i];
179 
180 		m->flags &= ~PG_ZERO;
181 
182 		if (nextoff <= size) {
183 			/*
184 			 * Read operation filled an entire page
185 			 */
186 			m->valid = VM_PAGE_BITS_ALL;
187 			vm_page_undirty(m);
188 		} else if (size > toff) {
189 			/*
190 			 * Read operation filled a partial page.
191 			 */
192 			m->valid = 0;
193 			vm_page_set_validclean(m, 0, size - toff);
194 			/* handled by vm_fault now	  */
195 			/* vm_page_zero_invalid(m, TRUE); */
196 		} else {
197 			/*
198 			 * Read operation was short.  If no error occured
199 			 * we may have hit a zero-fill section.   We simply
200 			 * leave valid set to 0.
201 			 */
202 			;
203 		}
204 		if (i != ap->a_reqpage) {
205 			/*
206 			 * Whether or not to leave the page activated is up in
207 			 * the air, but we should put the page on a page queue
208 			 * somewhere (it already is in the object).  Result:
209 			 * It appears that emperical results show that
210 			 * deactivating pages is best.
211 			 */
212 
213 			/*
214 			 * Just in case someone was asking for this page we
215 			 * now tell them that it is ok to use.
216 			 */
217 			if (!error) {
218 				if (m->flags & PG_WANTED)
219 					vm_page_activate(m);
220 				else
221 					vm_page_deactivate(m);
222 				vm_page_wakeup(m);
223 			} else {
224 				vnode_pager_freepage(m);
225 			}
226 		}
227 	}
228 	return 0;
229 }
230 
231 /*
232  * Vnode op for VM putpages.
233  */
234 int
235 nfs_putpages(ap)
236 	struct vop_putpages_args /* {
237 		struct vnode *a_vp;
238 		vm_page_t *a_m;
239 		int a_count;
240 		int a_sync;
241 		int *a_rtvals;
242 		vm_ooffset_t a_offset;
243 	} */ *ap;
244 {
245 	struct thread *td = curthread;
246 	struct uio uio;
247 	struct iovec iov;
248 	vm_offset_t kva;
249 	struct buf *bp;
250 	int iomode, must_commit, i, error, npages, count;
251 	off_t offset;
252 	int *rtvals;
253 	struct vnode *vp;
254 	struct ucred *cred;
255 	struct nfsmount *nmp;
256 	struct nfsnode *np;
257 	vm_page_t *pages;
258 
259 	KKASSERT(td->td_proc);
260 	cred = td->td_proc->p_ucred;
261 
262 	vp = ap->a_vp;
263 	np = VTONFS(vp);
264 	nmp = VFSTONFS(vp->v_mount);
265 	pages = ap->a_m;
266 	count = ap->a_count;
267 	rtvals = ap->a_rtvals;
268 	npages = btoc(count);
269 	offset = IDX_TO_OFF(pages[0]->pindex);
270 
271 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
272 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
273 		(void)nfs_fsinfo(nmp, vp, td);
274 
275 	for (i = 0; i < npages; i++) {
276 		rtvals[i] = VM_PAGER_AGAIN;
277 	}
278 
279 	/*
280 	 * When putting pages, do not extend file past EOF.
281 	 */
282 
283 	if (offset + count > np->n_size) {
284 		count = np->n_size - offset;
285 		if (count < 0)
286 			count = 0;
287 	}
288 
289 	/*
290 	 * We use only the kva address for the buffer, but this is extremely
291 	 * convienient and fast.
292 	 */
293 	bp = getpbuf(&nfs_pbuf_freecnt);
294 
295 	kva = (vm_offset_t) bp->b_data;
296 	pmap_qenter(kva, pages, npages);
297 
298 	iov.iov_base = (caddr_t) kva;
299 	iov.iov_len = count;
300 	uio.uio_iov = &iov;
301 	uio.uio_iovcnt = 1;
302 	uio.uio_offset = offset;
303 	uio.uio_resid = count;
304 	uio.uio_segflg = UIO_SYSSPACE;
305 	uio.uio_rw = UIO_WRITE;
306 	uio.uio_td = td;
307 
308 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
309 	    iomode = NFSV3WRITE_UNSTABLE;
310 	else
311 	    iomode = NFSV3WRITE_FILESYNC;
312 
313 	error = nfs_writerpc(vp, &uio, &iomode, &must_commit);
314 
315 	pmap_qremove(kva, npages);
316 	relpbuf(bp, &nfs_pbuf_freecnt);
317 
318 	if (!error) {
319 		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
320 		for (i = 0; i < nwritten; i++) {
321 			rtvals[i] = VM_PAGER_OK;
322 			vm_page_undirty(pages[i]);
323 		}
324 		if (must_commit)
325 			nfs_clearcommit(vp->v_mount);
326 	}
327 	return rtvals[0];
328 }
329 
330 /*
331  * Vnode op for read using bio
332  */
333 int
334 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
335 {
336 	struct nfsnode *np = VTONFS(vp);
337 	int biosize, i;
338 	struct buf *bp = 0, *rabp;
339 	struct vattr vattr;
340 	struct thread *td;
341 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
342 	daddr_t lbn, rabn;
343 	int bcount;
344 	int seqcount;
345 	int nra, error = 0, n = 0, on = 0;
346 
347 #ifdef DIAGNOSTIC
348 	if (uio->uio_rw != UIO_READ)
349 		panic("nfs_read mode");
350 #endif
351 	if (uio->uio_resid == 0)
352 		return (0);
353 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
354 		return (EINVAL);
355 	td = uio->uio_td;
356 
357 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
358 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
359 		(void)nfs_fsinfo(nmp, vp, td);
360 	if (vp->v_type != VDIR &&
361 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
362 		return (EFBIG);
363 	biosize = vp->v_mount->mnt_stat.f_iosize;
364 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
365 	/*
366 	 * For nfs, cache consistency can only be maintained approximately.
367 	 * Although RFC1094 does not specify the criteria, the following is
368 	 * believed to be compatible with the reference port.
369 	 * For nqnfs, full cache consistency is maintained within the loop.
370 	 * For nfs:
371 	 * If the file's modify time on the server has changed since the
372 	 * last read rpc or you have written to the file,
373 	 * you may have lost data cache consistency with the
374 	 * server, so flush all of the file's data out of the cache.
375 	 * Then force a getattr rpc to ensure that you have up to date
376 	 * attributes.
377 	 * NB: This implies that cache data can be read when up to
378 	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
379 	 * attributes this could be forced by setting n_attrstamp to 0 before
380 	 * the VOP_GETATTR() call.
381 	 */
382 	if ((nmp->nm_flag & NFSMNT_NQNFS) == 0) {
383 		if (np->n_flag & NMODIFIED) {
384 			if (vp->v_type != VREG) {
385 				if (vp->v_type != VDIR)
386 					panic("nfs: bioread, not dir");
387 				nfs_invaldir(vp);
388 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
389 				if (error)
390 					return (error);
391 			}
392 			np->n_attrstamp = 0;
393 			error = VOP_GETATTR(vp, &vattr, td);
394 			if (error)
395 				return (error);
396 			np->n_mtime = vattr.va_mtime.tv_sec;
397 		} else {
398 			error = VOP_GETATTR(vp, &vattr, td);
399 			if (error)
400 				return (error);
401 			if (np->n_mtime != vattr.va_mtime.tv_sec) {
402 				if (vp->v_type == VDIR)
403 					nfs_invaldir(vp);
404 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
405 				if (error)
406 					return (error);
407 				np->n_mtime = vattr.va_mtime.tv_sec;
408 			}
409 		}
410 	}
411 	do {
412 
413 	    /*
414 	     * Get a valid lease. If cached data is stale, flush it.
415 	     */
416 	    if (nmp->nm_flag & NFSMNT_NQNFS) {
417 		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
418 		    do {
419 			error = nqnfs_getlease(vp, ND_READ, td);
420 		    } while (error == NQNFS_EXPIRED);
421 		    if (error)
422 			return (error);
423 		    if (np->n_lrev != np->n_brev ||
424 			(np->n_flag & NQNFSNONCACHE) ||
425 			((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
426 			if (vp->v_type == VDIR)
427 			    nfs_invaldir(vp);
428 			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
429 			if (error)
430 			    return (error);
431 			np->n_brev = np->n_lrev;
432 		    }
433 		} else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
434 		    nfs_invaldir(vp);
435 		    error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
436 		    if (error)
437 			return (error);
438 		}
439 	    }
440 	    if (np->n_flag & NQNFSNONCACHE) {
441 		switch (vp->v_type) {
442 		case VREG:
443 			return (nfs_readrpc(vp, uio));
444 		case VLNK:
445 			return (nfs_readlinkrpc(vp, uio));
446 		case VDIR:
447 			break;
448 		default:
449 			printf(" NQNFSNONCACHE: type %x unexpected\n",
450 				vp->v_type);
451 		};
452 	    }
453 	    switch (vp->v_type) {
454 	    case VREG:
455 		nfsstats.biocache_reads++;
456 		lbn = uio->uio_offset / biosize;
457 		on = uio->uio_offset & (biosize - 1);
458 
459 		/*
460 		 * Start the read ahead(s), as required.
461 		 */
462 		if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
463 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
464 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
465 			rabn = lbn + 1 + nra;
466 			if (!incore(vp, rabn)) {
467 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
468 			    if (!rabp)
469 				return (EINTR);
470 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
471 				rabp->b_flags |= (B_READ | B_ASYNC);
472 				vfs_busy_pages(rabp, 0);
473 				if (nfs_asyncio(rabp, td)) {
474 				    rabp->b_flags |= B_INVAL|B_ERROR;
475 				    vfs_unbusy_pages(rabp);
476 				    brelse(rabp);
477 				    break;
478 				}
479 			    } else {
480 				brelse(rabp);
481 			    }
482 			}
483 		    }
484 		}
485 
486 		/*
487 		 * Obtain the buffer cache block.  Figure out the buffer size
488 		 * when we are at EOF.  If we are modifying the size of the
489 		 * buffer based on an EOF condition we need to hold
490 		 * nfs_rslock() through obtaining the buffer to prevent
491 		 * a potential writer-appender from messing with n_size.
492 		 * Otherwise we may accidently truncate the buffer and
493 		 * lose dirty data.
494 		 *
495 		 * Note that bcount is *not* DEV_BSIZE aligned.
496 		 */
497 
498 again:
499 		bcount = biosize;
500 		if ((off_t)lbn * biosize >= np->n_size) {
501 			bcount = 0;
502 		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
503 			bcount = np->n_size - (off_t)lbn * biosize;
504 		}
505 		if (bcount != biosize) {
506 			switch(nfs_rslock(np, td)) {
507 			case ENOLCK:
508 				goto again;
509 				/* not reached */
510 			case EINTR:
511 			case ERESTART:
512 				return(EINTR);
513 				/* not reached */
514 			default:
515 				break;
516 			}
517 		}
518 
519 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
520 
521 		if (bcount != biosize)
522 			nfs_rsunlock(np, td);
523 		if (!bp)
524 			return (EINTR);
525 
526 		/*
527 		 * If B_CACHE is not set, we must issue the read.  If this
528 		 * fails, we return an error.
529 		 */
530 
531 		if ((bp->b_flags & B_CACHE) == 0) {
532 		    bp->b_flags |= B_READ;
533 		    vfs_busy_pages(bp, 0);
534 		    error = nfs_doio(bp, td);
535 		    if (error) {
536 			brelse(bp);
537 			return (error);
538 		    }
539 		}
540 
541 		/*
542 		 * on is the offset into the current bp.  Figure out how many
543 		 * bytes we can copy out of the bp.  Note that bcount is
544 		 * NOT DEV_BSIZE aligned.
545 		 *
546 		 * Then figure out how many bytes we can copy into the uio.
547 		 */
548 
549 		n = 0;
550 		if (on < bcount)
551 			n = min((unsigned)(bcount - on), uio->uio_resid);
552 		break;
553 	    case VLNK:
554 		nfsstats.biocache_readlinks++;
555 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
556 		if (!bp)
557 			return (EINTR);
558 		if ((bp->b_flags & B_CACHE) == 0) {
559 		    bp->b_flags |= B_READ;
560 		    vfs_busy_pages(bp, 0);
561 		    error = nfs_doio(bp, td);
562 		    if (error) {
563 			bp->b_flags |= B_ERROR;
564 			brelse(bp);
565 			return (error);
566 		    }
567 		}
568 		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
569 		on = 0;
570 		break;
571 	    case VDIR:
572 		nfsstats.biocache_readdirs++;
573 		if (np->n_direofoffset
574 		    && uio->uio_offset >= np->n_direofoffset) {
575 		    return (0);
576 		}
577 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
578 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
579 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
580 		if (!bp)
581 		    return (EINTR);
582 		if ((bp->b_flags & B_CACHE) == 0) {
583 		    bp->b_flags |= B_READ;
584 		    vfs_busy_pages(bp, 0);
585 		    error = nfs_doio(bp, td);
586 		    if (error) {
587 			    brelse(bp);
588 		    }
589 		    while (error == NFSERR_BAD_COOKIE) {
590 			printf("got bad cookie vp %p bp %p\n", vp, bp);
591 			nfs_invaldir(vp);
592 			error = nfs_vinvalbuf(vp, 0, td, 1);
593 			/*
594 			 * Yuck! The directory has been modified on the
595 			 * server. The only way to get the block is by
596 			 * reading from the beginning to get all the
597 			 * offset cookies.
598 			 *
599 			 * Leave the last bp intact unless there is an error.
600 			 * Loop back up to the while if the error is another
601 			 * NFSERR_BAD_COOKIE (double yuch!).
602 			 */
603 			for (i = 0; i <= lbn && !error; i++) {
604 			    if (np->n_direofoffset
605 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
606 				    return (0);
607 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
608 			    if (!bp)
609 				return (EINTR);
610 			    if ((bp->b_flags & B_CACHE) == 0) {
611 				    bp->b_flags |= B_READ;
612 				    vfs_busy_pages(bp, 0);
613 				    error = nfs_doio(bp, td);
614 				    /*
615 				     * no error + B_INVAL == directory EOF,
616 				     * use the block.
617 				     */
618 				    if (error == 0 && (bp->b_flags & B_INVAL))
619 					    break;
620 			    }
621 			    /*
622 			     * An error will throw away the block and the
623 			     * for loop will break out.  If no error and this
624 			     * is not the block we want, we throw away the
625 			     * block and go for the next one via the for loop.
626 			     */
627 			    if (error || i < lbn)
628 				    brelse(bp);
629 			}
630 		    }
631 		    /*
632 		     * The above while is repeated if we hit another cookie
633 		     * error.  If we hit an error and it wasn't a cookie error,
634 		     * we give up.
635 		     */
636 		    if (error)
637 			    return (error);
638 		}
639 
640 		/*
641 		 * If not eof and read aheads are enabled, start one.
642 		 * (You need the current block first, so that you have the
643 		 *  directory offset cookie of the next block.)
644 		 */
645 		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
646 		    (bp->b_flags & B_INVAL) == 0 &&
647 		    (np->n_direofoffset == 0 ||
648 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
649 		    !(np->n_flag & NQNFSNONCACHE) &&
650 		    !incore(vp, lbn + 1)) {
651 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
652 			if (rabp) {
653 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
654 				rabp->b_flags |= (B_READ | B_ASYNC);
655 				vfs_busy_pages(rabp, 0);
656 				if (nfs_asyncio(rabp, td)) {
657 				    rabp->b_flags |= B_INVAL|B_ERROR;
658 				    vfs_unbusy_pages(rabp);
659 				    brelse(rabp);
660 				}
661 			    } else {
662 				brelse(rabp);
663 			    }
664 			}
665 		}
666 		/*
667 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
668 		 * chopped for the EOF condition, we cannot tell how large
669 		 * NFS directories are going to be until we hit EOF.  So
670 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
671 		 * it just so happens that b_resid will effectively chop it
672 		 * to EOF.  *BUT* this information is lost if the buffer goes
673 		 * away and is reconstituted into a B_CACHE state ( due to
674 		 * being VMIO ) later.  So we keep track of the directory eof
675 		 * in np->n_direofoffset and chop it off as an extra step
676 		 * right here.
677 		 */
678 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
679 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
680 			n = np->n_direofoffset - uio->uio_offset;
681 		break;
682 	    default:
683 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
684 		break;
685 	    };
686 
687 	    if (n > 0) {
688 		    error = uiomove(bp->b_data + on, (int)n, uio);
689 	    }
690 	    switch (vp->v_type) {
691 	    case VREG:
692 		break;
693 	    case VLNK:
694 		n = 0;
695 		break;
696 	    case VDIR:
697 		/*
698 		 * Invalidate buffer if caching is disabled, forcing a
699 		 * re-read from the remote later.
700 		 */
701 		if (np->n_flag & NQNFSNONCACHE)
702 			bp->b_flags |= B_INVAL;
703 		break;
704 	    default:
705 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
706 	    }
707 	    brelse(bp);
708 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
709 	return (error);
710 }
711 
712 /*
713  * Vnode op for write using bio
714  */
715 int
716 nfs_write(ap)
717 	struct vop_write_args /* {
718 		struct vnode *a_vp;
719 		struct uio *a_uio;
720 		int  a_ioflag;
721 		struct ucred *a_cred;
722 	} */ *ap;
723 {
724 	int biosize;
725 	struct uio *uio = ap->a_uio;
726 	struct thread *td = uio->uio_td;
727 	struct vnode *vp = ap->a_vp;
728 	struct nfsnode *np = VTONFS(vp);
729 	int ioflag = ap->a_ioflag;
730 	struct buf *bp;
731 	struct vattr vattr;
732 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
733 	daddr_t lbn;
734 	int bcount;
735 	int n, on, error = 0, iomode, must_commit;
736 	int haverslock = 0;
737 
738 #ifdef DIAGNOSTIC
739 	if (uio->uio_rw != UIO_WRITE)
740 		panic("nfs_write mode");
741 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
742 		panic("nfs_write proc");
743 #endif
744 	if (vp->v_type != VREG)
745 		return (EIO);
746 	if (np->n_flag & NWRITEERR) {
747 		np->n_flag &= ~NWRITEERR;
748 		return (np->n_error);
749 	}
750 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
751 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
752 		(void)nfs_fsinfo(nmp, vp, td);
753 
754 	/*
755 	 * Synchronously flush pending buffers if we are in synchronous
756 	 * mode or if we are appending.
757 	 */
758 	if (ioflag & (IO_APPEND | IO_SYNC)) {
759 		if (np->n_flag & NMODIFIED) {
760 			np->n_attrstamp = 0;
761 			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
762 			if (error)
763 				return (error);
764 		}
765 	}
766 
767 	/*
768 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
769 	 * get the append lock.
770 	 */
771 restart:
772 	if (ioflag & IO_APPEND) {
773 		np->n_attrstamp = 0;
774 		error = VOP_GETATTR(vp, &vattr, td);
775 		if (error)
776 			return (error);
777 		uio->uio_offset = np->n_size;
778 	}
779 
780 	if (uio->uio_offset < 0)
781 		return (EINVAL);
782 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
783 		return (EFBIG);
784 	if (uio->uio_resid == 0)
785 		return (0);
786 
787 	/*
788 	 * We need to obtain the rslock if we intend to modify np->n_size
789 	 * in order to guarentee the append point with multiple contending
790 	 * writers, to guarentee that no other appenders modify n_size
791 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
792 	 * accidently truncating data written by another appender due to
793 	 * the race), and to ensure that the buffer is populated prior to
794 	 * our extending of the file.  We hold rslock through the entire
795 	 * operation.
796 	 *
797 	 * Note that we do not synchronize the case where someone truncates
798 	 * the file while we are appending to it because attempting to lock
799 	 * this case may deadlock other parts of the system unexpectedly.
800 	 */
801 	if ((ioflag & IO_APPEND) ||
802 	    uio->uio_offset + uio->uio_resid > np->n_size) {
803 		switch(nfs_rslock(np, td)) {
804 		case ENOLCK:
805 			goto restart;
806 			/* not reached */
807 		case EINTR:
808 		case ERESTART:
809 			return(EINTR);
810 			/* not reached */
811 		default:
812 			break;
813 		}
814 		haverslock = 1;
815 	}
816 
817 	/*
818 	 * Maybe this should be above the vnode op call, but so long as
819 	 * file servers have no limits, i don't think it matters
820 	 */
821 	if (td->td_proc && uio->uio_offset + uio->uio_resid >
822 	      td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
823 		psignal(td->td_proc, SIGXFSZ);
824 		if (haverslock)
825 			nfs_rsunlock(np, td);
826 		return (EFBIG);
827 	}
828 
829 	biosize = vp->v_mount->mnt_stat.f_iosize;
830 
831 	do {
832 		/*
833 		 * Check for a valid write lease.
834 		 */
835 		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
836 		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
837 			do {
838 				error = nqnfs_getlease(vp, ND_WRITE, td);
839 			} while (error == NQNFS_EXPIRED);
840 			if (error)
841 				break;
842 			if (np->n_lrev != np->n_brev ||
843 			    (np->n_flag & NQNFSNONCACHE)) {
844 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
845 				if (error)
846 					break;
847 				np->n_brev = np->n_lrev;
848 			}
849 		}
850 		if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
851 		    iomode = NFSV3WRITE_FILESYNC;
852 		    error = nfs_writerpc(vp, uio, &iomode, &must_commit);
853 		    if (must_commit)
854 			    nfs_clearcommit(vp->v_mount);
855 		    break;
856 		}
857 		nfsstats.biocache_writes++;
858 		lbn = uio->uio_offset / biosize;
859 		on = uio->uio_offset & (biosize-1);
860 		n = min((unsigned)(biosize - on), uio->uio_resid);
861 again:
862 		/*
863 		 * Handle direct append and file extension cases, calculate
864 		 * unaligned buffer size.
865 		 */
866 
867 		if (uio->uio_offset == np->n_size && n) {
868 			/*
869 			 * Get the buffer (in its pre-append state to maintain
870 			 * B_CACHE if it was previously set).  Resize the
871 			 * nfsnode after we have locked the buffer to prevent
872 			 * readers from reading garbage.
873 			 */
874 			bcount = on;
875 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
876 
877 			if (bp != NULL) {
878 				long save;
879 
880 				np->n_size = uio->uio_offset + n;
881 				np->n_flag |= NMODIFIED;
882 				vnode_pager_setsize(vp, np->n_size);
883 
884 				save = bp->b_flags & B_CACHE;
885 				bcount += n;
886 				allocbuf(bp, bcount);
887 				bp->b_flags |= save;
888 			}
889 		} else {
890 			/*
891 			 * Obtain the locked cache block first, and then
892 			 * adjust the file's size as appropriate.
893 			 */
894 			bcount = on + n;
895 			if ((off_t)lbn * biosize + bcount < np->n_size) {
896 				if ((off_t)(lbn + 1) * biosize < np->n_size)
897 					bcount = biosize;
898 				else
899 					bcount = np->n_size - (off_t)lbn * biosize;
900 			}
901 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
902 			if (uio->uio_offset + n > np->n_size) {
903 				np->n_size = uio->uio_offset + n;
904 				np->n_flag |= NMODIFIED;
905 				vnode_pager_setsize(vp, np->n_size);
906 			}
907 		}
908 
909 		if (!bp) {
910 			error = EINTR;
911 			break;
912 		}
913 
914 		/*
915 		 * Issue a READ if B_CACHE is not set.  In special-append
916 		 * mode, B_CACHE is based on the buffer prior to the write
917 		 * op and is typically set, avoiding the read.  If a read
918 		 * is required in special append mode, the server will
919 		 * probably send us a short-read since we extended the file
920 		 * on our end, resulting in b_resid == 0 and, thusly,
921 		 * B_CACHE getting set.
922 		 *
923 		 * We can also avoid issuing the read if the write covers
924 		 * the entire buffer.  We have to make sure the buffer state
925 		 * is reasonable in this case since we will not be initiating
926 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
927 		 * more information.
928 		 *
929 		 * B_CACHE may also be set due to the buffer being cached
930 		 * normally.
931 		 */
932 
933 		if (on == 0 && n == bcount) {
934 			bp->b_flags |= B_CACHE;
935 			bp->b_flags &= ~(B_ERROR | B_INVAL);
936 		}
937 
938 		if ((bp->b_flags & B_CACHE) == 0) {
939 			bp->b_flags |= B_READ;
940 			vfs_busy_pages(bp, 0);
941 			error = nfs_doio(bp, td);
942 			if (error) {
943 				brelse(bp);
944 				break;
945 			}
946 		}
947 		if (!bp) {
948 			error = EINTR;
949 			break;
950 		}
951 		np->n_flag |= NMODIFIED;
952 
953 		/*
954 		 * If dirtyend exceeds file size, chop it down.  This should
955 		 * not normally occur but there is an append race where it
956 		 * might occur XXX, so we log it.
957 		 *
958 		 * If the chopping creates a reverse-indexed or degenerate
959 		 * situation with dirtyoff/end, we 0 both of them.
960 		 */
961 
962 		if (bp->b_dirtyend > bcount) {
963 			printf("NFS append race @%lx:%d\n",
964 			    (long)bp->b_blkno * DEV_BSIZE,
965 			    bp->b_dirtyend - bcount);
966 			bp->b_dirtyend = bcount;
967 		}
968 
969 		if (bp->b_dirtyoff >= bp->b_dirtyend)
970 			bp->b_dirtyoff = bp->b_dirtyend = 0;
971 
972 		/*
973 		 * If the new write will leave a contiguous dirty
974 		 * area, just update the b_dirtyoff and b_dirtyend,
975 		 * otherwise force a write rpc of the old dirty area.
976 		 *
977 		 * While it is possible to merge discontiguous writes due to
978 		 * our having a B_CACHE buffer ( and thus valid read data
979 		 * for the hole), we don't because it could lead to
980 		 * significant cache coherency problems with multiple clients,
981 		 * especially if locking is implemented later on.
982 		 *
983 		 * as an optimization we could theoretically maintain
984 		 * a linked list of discontinuous areas, but we would still
985 		 * have to commit them separately so there isn't much
986 		 * advantage to it except perhaps a bit of asynchronization.
987 		 */
988 
989 		if (bp->b_dirtyend > 0 &&
990 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
991 			if (VOP_BWRITE(bp->b_vp, bp) == EINTR) {
992 				error = EINTR;
993 				break;
994 			}
995 			goto again;
996 		}
997 
998 		/*
999 		 * Check for valid write lease and get one as required.
1000 		 * In case getblk() and/or bwrite() delayed us.
1001 		 */
1002 		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
1003 		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
1004 			do {
1005 				error = nqnfs_getlease(vp, ND_WRITE, td);
1006 			} while (error == NQNFS_EXPIRED);
1007 			if (error) {
1008 				brelse(bp);
1009 				break;
1010 			}
1011 			if (np->n_lrev != np->n_brev ||
1012 			    (np->n_flag & NQNFSNONCACHE)) {
1013 				brelse(bp);
1014 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
1015 				if (error)
1016 					break;
1017 				np->n_brev = np->n_lrev;
1018 				goto again;
1019 			}
1020 		}
1021 
1022 		error = uiomove((char *)bp->b_data + on, n, uio);
1023 
1024 		/*
1025 		 * Since this block is being modified, it must be written
1026 		 * again and not just committed.  Since write clustering does
1027 		 * not work for the stage 1 data write, only the stage 2
1028 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1029 		 */
1030 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1031 
1032 		if (error) {
1033 			bp->b_flags |= B_ERROR;
1034 			brelse(bp);
1035 			break;
1036 		}
1037 
1038 		/*
1039 		 * Only update dirtyoff/dirtyend if not a degenerate
1040 		 * condition.
1041 		 */
1042 		if (n) {
1043 			if (bp->b_dirtyend > 0) {
1044 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1045 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1046 			} else {
1047 				bp->b_dirtyoff = on;
1048 				bp->b_dirtyend = on + n;
1049 			}
1050 			vfs_bio_set_validclean(bp, on, n);
1051 		}
1052 		/*
1053 		 * If IO_NOWDRAIN then set B_NOWDRAIN (e.g. nfs-backed VN
1054 		 * filesystem).  XXX also use for loopback NFS mounts.
1055 		 */
1056 		if (ioflag & IO_NOWDRAIN)
1057 			bp->b_flags |= B_NOWDRAIN;
1058 
1059 		/*
1060 		 * If the lease is non-cachable or IO_SYNC do bwrite().
1061 		 *
1062 		 * IO_INVAL appears to be unused.  The idea appears to be
1063 		 * to turn off caching in this case.  Very odd.  XXX
1064 		 */
1065 		if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
1066 			if (ioflag & IO_INVAL)
1067 				bp->b_flags |= B_NOCACHE;
1068 			error = VOP_BWRITE(bp->b_vp, bp);
1069 			if (error)
1070 				break;
1071 			if (np->n_flag & NQNFSNONCACHE) {
1072 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
1073 				if (error)
1074 					break;
1075 			}
1076 		} else if ((n + on) == biosize &&
1077 			(nmp->nm_flag & NFSMNT_NQNFS) == 0) {
1078 			bp->b_flags |= B_ASYNC;
1079 			(void)nfs_writebp(bp, 0, 0);
1080 		} else {
1081 			bdwrite(bp);
1082 		}
1083 	} while (uio->uio_resid > 0 && n > 0);
1084 
1085 	if (haverslock)
1086 		nfs_rsunlock(np, td);
1087 
1088 	return (error);
1089 }
1090 
1091 /*
1092  * Get an nfs cache block.
1093  *
1094  * Allocate a new one if the block isn't currently in the cache
1095  * and return the block marked busy. If the calling process is
1096  * interrupted by a signal for an interruptible mount point, return
1097  * NULL.
1098  *
1099  * The caller must carefully deal with the possible B_INVAL state of
1100  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1101  * indirectly), so synchronous reads can be issued without worrying about
1102  * the B_INVAL state.  We have to be a little more careful when dealing
1103  * with writes (see comments in nfs_write()) when extending a file past
1104  * its EOF.
1105  */
1106 static struct buf *
1107 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1108 {
1109 	struct buf *bp;
1110 	struct mount *mp;
1111 	struct nfsmount *nmp;
1112 
1113 	mp = vp->v_mount;
1114 	nmp = VFSTONFS(mp);
1115 
1116 	if (nmp->nm_flag & NFSMNT_INT) {
1117 		bp = getblk(vp, bn, size, PCATCH, 0);
1118 		while (bp == (struct buf *)0) {
1119 			if (nfs_sigintr(nmp, (struct nfsreq *)0, td))
1120 				return ((struct buf *)0);
1121 			bp = getblk(vp, bn, size, 0, 2 * hz);
1122 		}
1123 	} else {
1124 		bp = getblk(vp, bn, size, 0, 0);
1125 	}
1126 
1127 	if (vp->v_type == VREG) {
1128 		int biosize;
1129 
1130 		biosize = mp->mnt_stat.f_iosize;
1131 		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1132 	}
1133 	return (bp);
1134 }
1135 
1136 /*
1137  * Flush and invalidate all dirty buffers. If another process is already
1138  * doing the flush, just wait for completion.
1139  */
1140 int
1141 nfs_vinvalbuf(struct vnode *vp, int flags,
1142 	struct thread *td, int intrflg)
1143 {
1144 	struct nfsnode *np = VTONFS(vp);
1145 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1146 	int error = 0, slpflag, slptimeo;
1147 
1148 	if (vp->v_flag & VXLOCK) {
1149 		return (0);
1150 	}
1151 
1152 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1153 		intrflg = 0;
1154 	if (intrflg) {
1155 		slpflag = PCATCH;
1156 		slptimeo = 2 * hz;
1157 	} else {
1158 		slpflag = 0;
1159 		slptimeo = 0;
1160 	}
1161 	/*
1162 	 * First wait for any other process doing a flush to complete.
1163 	 */
1164 	while (np->n_flag & NFLUSHINPROG) {
1165 		np->n_flag |= NFLUSHWANT;
1166 		error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
1167 		if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td))
1168 			return (EINTR);
1169 	}
1170 
1171 	/*
1172 	 * Now, flush as required.
1173 	 */
1174 	np->n_flag |= NFLUSHINPROG;
1175 	error = vinvalbuf(vp, flags, td, slpflag, 0);
1176 	while (error) {
1177 		if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
1178 			np->n_flag &= ~NFLUSHINPROG;
1179 			if (np->n_flag & NFLUSHWANT) {
1180 				np->n_flag &= ~NFLUSHWANT;
1181 				wakeup((caddr_t)&np->n_flag);
1182 			}
1183 			return (EINTR);
1184 		}
1185 		error = vinvalbuf(vp, flags, td, 0, slptimeo);
1186 	}
1187 	np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
1188 	if (np->n_flag & NFLUSHWANT) {
1189 		np->n_flag &= ~NFLUSHWANT;
1190 		wakeup((caddr_t)&np->n_flag);
1191 	}
1192 	return (0);
1193 }
1194 
1195 /*
1196  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1197  * This is mainly to avoid queueing async I/O requests when the nfsiods
1198  * are all hung on a dead server.
1199  *
1200  * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1201  * is eventually dequeued by the async daemon, nfs_doio() *will*.
1202  */
1203 int
1204 nfs_asyncio(struct buf *bp, struct thread *td)
1205 {
1206 	struct nfsmount *nmp;
1207 	int i;
1208 	int gotiod;
1209 	int slpflag = 0;
1210 	int slptimeo = 0;
1211 	int error;
1212 
1213 	/*
1214 	 * If no async daemons then return EIO to force caller to run the rpc
1215 	 * synchronously.
1216 	 */
1217 	if (nfs_numasync == 0)
1218 		return (EIO);
1219 
1220 	nmp = VFSTONFS(bp->b_vp->v_mount);
1221 
1222 	/*
1223 	 * Commits are usually short and sweet so lets save some cpu and
1224 	 * leave the async daemons for more important rpc's (such as reads
1225 	 * and writes).
1226 	 */
1227 	if ((bp->b_flags & (B_READ|B_NEEDCOMMIT)) == B_NEEDCOMMIT &&
1228 	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1229 		return(EIO);
1230 	}
1231 
1232 again:
1233 	if (nmp->nm_flag & NFSMNT_INT)
1234 		slpflag = PCATCH;
1235 	gotiod = FALSE;
1236 
1237 	/*
1238 	 * Find a free iod to process this request.
1239 	 */
1240 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1241 		if (nfs_iodwant[i]) {
1242 			/*
1243 			 * Found one, so wake it up and tell it which
1244 			 * mount to process.
1245 			 */
1246 			NFS_DPF(ASYNCIO,
1247 				("nfs_asyncio: waking iod %d for mount %p\n",
1248 				 i, nmp));
1249 			nfs_iodwant[i] = NULL;
1250 			nfs_iodmount[i] = nmp;
1251 			nmp->nm_bufqiods++;
1252 			wakeup((caddr_t)&nfs_iodwant[i]);
1253 			gotiod = TRUE;
1254 			break;
1255 		}
1256 
1257 	/*
1258 	 * If none are free, we may already have an iod working on this mount
1259 	 * point.  If so, it will process our request.
1260 	 */
1261 	if (!gotiod) {
1262 		if (nmp->nm_bufqiods > 0) {
1263 			NFS_DPF(ASYNCIO,
1264 				("nfs_asyncio: %d iods are already processing mount %p\n",
1265 				 nmp->nm_bufqiods, nmp));
1266 			gotiod = TRUE;
1267 		}
1268 	}
1269 
1270 	/*
1271 	 * If we have an iod which can process the request, then queue
1272 	 * the buffer.
1273 	 */
1274 	if (gotiod) {
1275 		/*
1276 		 * Ensure that the queue never grows too large.  We still want
1277 		 * to asynchronize so we block rather then return EIO.
1278 		 */
1279 		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1280 			NFS_DPF(ASYNCIO,
1281 				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1282 			nmp->nm_bufqwant = TRUE;
1283 			error = tsleep(&nmp->nm_bufq, slpflag,
1284 				       "nfsaio", slptimeo);
1285 			if (error) {
1286 				if (nfs_sigintr(nmp, NULL, td))
1287 					return (EINTR);
1288 				if (slpflag == PCATCH) {
1289 					slpflag = 0;
1290 					slptimeo = 2 * hz;
1291 				}
1292 			}
1293 			/*
1294 			 * We might have lost our iod while sleeping,
1295 			 * so check and loop if nescessary.
1296 			 */
1297 			if (nmp->nm_bufqiods == 0) {
1298 				NFS_DPF(ASYNCIO,
1299 					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1300 				goto again;
1301 			}
1302 		}
1303 
1304 		if ((bp->b_flags & B_READ) == 0)
1305 			bp->b_flags |= B_WRITEINPROG;
1306 
1307 		BUF_KERNPROC(bp);
1308 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1309 		nmp->nm_bufqlen++;
1310 		return (0);
1311 	}
1312 
1313 	/*
1314 	 * All the iods are busy on other mounts, so return EIO to
1315 	 * force the caller to process the i/o synchronously.
1316 	 */
1317 	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1318 	return (EIO);
1319 }
1320 
1321 /*
1322  * Do an I/O operation to/from a cache block. This may be called
1323  * synchronously or from an nfsiod.
1324  *
1325  * NOTE! TD MIGHT BE NULL
1326  */
1327 int
1328 nfs_doio(struct buf *bp, struct thread *td)
1329 {
1330 	struct uio *uiop;
1331 	struct vnode *vp;
1332 	struct nfsnode *np;
1333 	struct nfsmount *nmp;
1334 	int error = 0, iomode, must_commit = 0;
1335 	struct uio uio;
1336 	struct iovec io;
1337 
1338 	vp = bp->b_vp;
1339 	np = VTONFS(vp);
1340 	nmp = VFSTONFS(vp->v_mount);
1341 	uiop = &uio;
1342 	uiop->uio_iov = &io;
1343 	uiop->uio_iovcnt = 1;
1344 	uiop->uio_segflg = UIO_SYSSPACE;
1345 	uiop->uio_td = td;
1346 
1347 	/*
1348 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1349 	 * do this here so we do not have to do it in all the code that
1350 	 * calls us.
1351 	 */
1352 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1353 
1354 	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1355 
1356 	/*
1357 	 * Historically, paging was done with physio, but no more.
1358 	 */
1359 	if (bp->b_flags & B_PHYS) {
1360 	    /*
1361 	     * ...though reading /dev/drum still gets us here.
1362 	     */
1363 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1364 	    /* mapping was done by vmapbuf() */
1365 	    io.iov_base = bp->b_data;
1366 	    uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1367 	    if (bp->b_flags & B_READ) {
1368 		uiop->uio_rw = UIO_READ;
1369 		nfsstats.read_physios++;
1370 		error = nfs_readrpc(vp, uiop);
1371 	    } else {
1372 		int com;
1373 
1374 		iomode = NFSV3WRITE_DATASYNC;
1375 		uiop->uio_rw = UIO_WRITE;
1376 		nfsstats.write_physios++;
1377 		error = nfs_writerpc(vp, uiop, &iomode, &com);
1378 	    }
1379 	    if (error) {
1380 		bp->b_flags |= B_ERROR;
1381 		bp->b_error = error;
1382 	    }
1383 	} else if (bp->b_flags & B_READ) {
1384 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1385 	    io.iov_base = bp->b_data;
1386 	    uiop->uio_rw = UIO_READ;
1387 
1388 	    switch (vp->v_type) {
1389 	    case VREG:
1390 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1391 		nfsstats.read_bios++;
1392 		error = nfs_readrpc(vp, uiop);
1393 
1394 		if (!error) {
1395 		    if (uiop->uio_resid) {
1396 			/*
1397 			 * If we had a short read with no error, we must have
1398 			 * hit a file hole.  We should zero-fill the remainder.
1399 			 * This can also occur if the server hits the file EOF.
1400 			 *
1401 			 * Holes used to be able to occur due to pending
1402 			 * writes, but that is not possible any longer.
1403 			 */
1404 			int nread = bp->b_bcount - uiop->uio_resid;
1405 			int left  = uiop->uio_resid;
1406 
1407 			if (left > 0)
1408 				bzero((char *)bp->b_data + nread, left);
1409 			uiop->uio_resid = 0;
1410 		    }
1411 		}
1412 		if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1413 			(((nmp->nm_flag & NFSMNT_NQNFS) &&
1414 			  NQNFS_CKINVALID(vp, np, ND_READ) &&
1415 			  np->n_lrev != np->n_brev) ||
1416 			 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
1417 			  np->n_mtime != np->n_vattr.va_mtime.tv_sec))) {
1418 			uprintf("Process killed due to text file modification\n");
1419 			psignal(td->td_proc, SIGKILL);
1420 			PHOLD(td->td_proc);
1421 		}
1422 		break;
1423 	    case VLNK:
1424 		uiop->uio_offset = (off_t)0;
1425 		nfsstats.readlink_bios++;
1426 		error = nfs_readlinkrpc(vp, uiop);
1427 		break;
1428 	    case VDIR:
1429 		nfsstats.readdir_bios++;
1430 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1431 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1432 			error = nfs_readdirplusrpc(vp, uiop);
1433 			if (error == NFSERR_NOTSUPP)
1434 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1435 		}
1436 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1437 			error = nfs_readdirrpc(vp, uiop);
1438 		/*
1439 		 * end-of-directory sets B_INVAL but does not generate an
1440 		 * error.
1441 		 */
1442 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1443 			bp->b_flags |= B_INVAL;
1444 		break;
1445 	    default:
1446 		printf("nfs_doio:  type %x unexpected\n",vp->v_type);
1447 		break;
1448 	    };
1449 	    if (error) {
1450 		bp->b_flags |= B_ERROR;
1451 		bp->b_error = error;
1452 	    }
1453 	} else {
1454 	    /*
1455 	     * If we only need to commit, try to commit
1456 	     */
1457 	    if (bp->b_flags & B_NEEDCOMMIT) {
1458 		    int retv;
1459 		    off_t off;
1460 
1461 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1462 		    bp->b_flags |= B_WRITEINPROG;
1463 		    retv = nfs_commit(bp->b_vp, off,
1464 				bp->b_dirtyend - bp->b_dirtyoff, td);
1465 		    bp->b_flags &= ~B_WRITEINPROG;
1466 		    if (retv == 0) {
1467 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1468 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1469 			    bp->b_resid = 0;
1470 			    biodone(bp);
1471 			    return (0);
1472 		    }
1473 		    if (retv == NFSERR_STALEWRITEVERF) {
1474 			    nfs_clearcommit(bp->b_vp->v_mount);
1475 		    }
1476 	    }
1477 
1478 	    /*
1479 	     * Setup for actual write
1480 	     */
1481 
1482 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1483 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1484 
1485 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1486 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1487 		    - bp->b_dirtyoff;
1488 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1489 		    + bp->b_dirtyoff;
1490 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1491 		uiop->uio_rw = UIO_WRITE;
1492 		nfsstats.write_bios++;
1493 
1494 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1495 		    iomode = NFSV3WRITE_UNSTABLE;
1496 		else
1497 		    iomode = NFSV3WRITE_FILESYNC;
1498 
1499 		bp->b_flags |= B_WRITEINPROG;
1500 		error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
1501 
1502 		/*
1503 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1504 		 * to cluster the buffers needing commit.  This will allow
1505 		 * the system to submit a single commit rpc for the whole
1506 		 * cluster.  We can do this even if the buffer is not 100%
1507 		 * dirty (relative to the NFS blocksize), so we optimize the
1508 		 * append-to-file-case.
1509 		 *
1510 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1511 		 * cleared because write clustering only works for commit
1512 		 * rpc's, not for the data portion of the write).
1513 		 */
1514 
1515 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1516 		    bp->b_flags |= B_NEEDCOMMIT;
1517 		    if (bp->b_dirtyoff == 0
1518 			&& bp->b_dirtyend == bp->b_bcount)
1519 			bp->b_flags |= B_CLUSTEROK;
1520 		} else {
1521 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1522 		}
1523 		bp->b_flags &= ~B_WRITEINPROG;
1524 
1525 		/*
1526 		 * For an interrupted write, the buffer is still valid
1527 		 * and the write hasn't been pushed to the server yet,
1528 		 * so we can't set B_ERROR and report the interruption
1529 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1530 		 * is not relevant, so the rpc attempt is essentially
1531 		 * a noop.  For the case of a V3 write rpc not being
1532 		 * committed to stable storage, the block is still
1533 		 * dirty and requires either a commit rpc or another
1534 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1535 		 * the block is reused. This is indicated by setting
1536 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1537 		 *
1538 		 * If the buffer is marked B_PAGING, it does not reside on
1539 		 * the vp's paging queues so we cannot call bdirty().  The
1540 		 * bp in this case is not an NFS cache block so we should
1541 		 * be safe. XXX
1542 		 */
1543     		if (error == EINTR
1544 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1545 			int s;
1546 
1547 			s = splbio();
1548 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1549 			if ((bp->b_flags & B_PAGING) == 0) {
1550 			    bdirty(bp);
1551 			    bp->b_flags &= ~B_DONE;
1552 			}
1553 			if (error && (bp->b_flags & B_ASYNC) == 0)
1554 			    bp->b_flags |= B_EINTR;
1555 			splx(s);
1556 	    	} else {
1557 		    if (error) {
1558 			bp->b_flags |= B_ERROR;
1559 			bp->b_error = np->n_error = error;
1560 			np->n_flag |= NWRITEERR;
1561 		    }
1562 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1563 		}
1564 	    } else {
1565 		bp->b_resid = 0;
1566 		biodone(bp);
1567 		return (0);
1568 	    }
1569 	}
1570 	bp->b_resid = uiop->uio_resid;
1571 	if (must_commit)
1572 	    nfs_clearcommit(vp->v_mount);
1573 	biodone(bp);
1574 	return (error);
1575 }
1576 
1577 /*
1578  * Used to aid in handling ftruncate() operations on the NFS client side.
1579  * Truncation creates a number of special problems for NFS.  We have to
1580  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1581  * we have to properly handle VM pages or (potentially dirty) buffers
1582  * that straddle the truncation point.
1583  */
1584 
1585 int
1586 nfs_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
1587 {
1588 	struct nfsnode *np = VTONFS(vp);
1589 	u_quad_t tsize = np->n_size;
1590 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1591 	int error = 0;
1592 
1593 	np->n_size = nsize;
1594 
1595 	if (np->n_size < tsize) {
1596 		struct buf *bp;
1597 		daddr_t lbn;
1598 		int bufsize;
1599 
1600 		/*
1601 		 * vtruncbuf() doesn't get the buffer overlapping the
1602 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1603 		 * buffer that now needs to be truncated.
1604 		 */
1605 		error = vtruncbuf(vp, td, nsize, biosize);
1606 		lbn = nsize / biosize;
1607 		bufsize = nsize & (biosize - 1);
1608 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1609 		if (bp->b_dirtyoff > bp->b_bcount)
1610 			bp->b_dirtyoff = bp->b_bcount;
1611 		if (bp->b_dirtyend > bp->b_bcount)
1612 			bp->b_dirtyend = bp->b_bcount;
1613 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1614 		brelse(bp);
1615 	} else {
1616 		vnode_pager_setsize(vp, nsize);
1617 	}
1618 	return(error);
1619 }
1620 
1621