xref: /dragonfly/sys/vfs/nfs/nfs_bio.c (revision 448e56d8)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37  * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.45 2008/07/18 00:09:39 dillon Exp $
39  */
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/buf2.h>
52 #include <sys/msfbuf.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_pager.h>
59 #include <vm/vnode_pager.h>
60 
61 #include <sys/thread2.h>
62 
63 #include "rpcv2.h"
64 #include "nfsproto.h"
65 #include "nfs.h"
66 #include "nfsmount.h"
67 #include "nfsnode.h"
68 
69 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset,
70 				   int size, struct thread *td);
71 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen);
72 
73 extern int nfs_numasync;
74 extern int nfs_pbuf_freecnt;
75 extern struct nfsstats nfsstats;
76 
77 /*
78  * Vnode op for VM getpages.
79  *
80  * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count,
81  *		int a_reqpage, vm_ooffset_t a_offset)
82  */
83 int
84 nfs_getpages(struct vop_getpages_args *ap)
85 {
86 	struct thread *td = curthread;		/* XXX */
87 	int i, error, nextoff, size, toff, count, npages;
88 	struct uio uio;
89 	struct iovec iov;
90 	char *kva;
91 	struct vnode *vp;
92 	struct nfsmount *nmp;
93 	vm_page_t *pages;
94 	vm_page_t m;
95 	struct msf_buf *msf;
96 
97 	vp = ap->a_vp;
98 	nmp = VFSTONFS(vp->v_mount);
99 	pages = ap->a_m;
100 	count = ap->a_count;
101 
102 	if (vp->v_object == NULL) {
103 		kprintf("nfs_getpages: called with non-merged cache vnode??\n");
104 		return VM_PAGER_ERROR;
105 	}
106 
107 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
108 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
109 		(void)nfs_fsinfo(nmp, vp, td);
110 
111 	npages = btoc(count);
112 
113 	/*
114 	 * NOTE that partially valid pages may occur in cases other
115 	 * then file EOF, such as when a file is partially written and
116 	 * ftruncate()-extended to a larger size.   It is also possible
117 	 * for the valid bits to be set on garbage beyond the file EOF and
118 	 * clear in the area before EOF (e.g. m->valid == 0xfc), which can
119 	 * occur due to vtruncbuf() and the buffer cache's handling of
120 	 * pages which 'straddle' buffers or when b_bufsize is not a
121 	 * multiple of PAGE_SIZE.... the buffer cache cannot normally
122 	 * clear the extra bits.  This kind of situation occurs when you
123 	 * make a small write() (m->valid == 0x03) and then mmap() and
124 	 * fault in the buffer(m->valid = 0xFF).  When NFS flushes the
125 	 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess.
126 	 *
127 	 * This is combined with the possibility that the pages are partially
128 	 * dirty or that there is a buffer backing the pages that is dirty
129 	 * (even if m->dirty is 0).
130 	 *
131 	 * To solve this problem several hacks have been made:  (1) NFS
132 	 * guarentees that the IO block size is a multiple of PAGE_SIZE and
133 	 * (2) The buffer cache, when invalidating an NFS buffer, will
134 	 * disregard the buffer's fragmentory b_bufsize and invalidate
135 	 * the whole page rather then just the piece the buffer owns.
136 	 *
137 	 * This allows us to assume that a partially valid page found here
138 	 * is fully valid (vm_fault will zero'd out areas of the page not
139 	 * marked as valid).
140 	 */
141 	m = pages[ap->a_reqpage];
142 	if (m->valid != 0) {
143 		for (i = 0; i < npages; ++i) {
144 			if (i != ap->a_reqpage)
145 				vnode_pager_freepage(pages[i]);
146 		}
147 		return(0);
148 	}
149 
150 	/*
151 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
152 	 */
153 	msf_map_pagelist(&msf, pages, npages, 0);
154 	KKASSERT(msf);
155 	kva = msf_buf_kva(msf);
156 
157 	iov.iov_base = kva;
158 	iov.iov_len = count;
159 	uio.uio_iov = &iov;
160 	uio.uio_iovcnt = 1;
161 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
162 	uio.uio_resid = count;
163 	uio.uio_segflg = UIO_SYSSPACE;
164 	uio.uio_rw = UIO_READ;
165 	uio.uio_td = td;
166 
167 	error = nfs_readrpc(vp, &uio);
168 	msf_buf_free(msf);
169 
170 	if (error && (uio.uio_resid == count)) {
171 		kprintf("nfs_getpages: error %d\n", error);
172 		for (i = 0; i < npages; ++i) {
173 			if (i != ap->a_reqpage)
174 				vnode_pager_freepage(pages[i]);
175 		}
176 		return VM_PAGER_ERROR;
177 	}
178 
179 	/*
180 	 * Calculate the number of bytes read and validate only that number
181 	 * of bytes.  Note that due to pending writes, size may be 0.  This
182 	 * does not mean that the remaining data is invalid!
183 	 */
184 
185 	size = count - uio.uio_resid;
186 
187 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
188 		nextoff = toff + PAGE_SIZE;
189 		m = pages[i];
190 
191 		m->flags &= ~PG_ZERO;
192 
193 		if (nextoff <= size) {
194 			/*
195 			 * Read operation filled an entire page
196 			 */
197 			m->valid = VM_PAGE_BITS_ALL;
198 			vm_page_undirty(m);
199 		} else if (size > toff) {
200 			/*
201 			 * Read operation filled a partial page.
202 			 */
203 			m->valid = 0;
204 			vm_page_set_validclean(m, 0, size - toff);
205 			/* handled by vm_fault now	  */
206 			/* vm_page_zero_invalid(m, TRUE); */
207 		} else {
208 			/*
209 			 * Read operation was short.  If no error occured
210 			 * we may have hit a zero-fill section.   We simply
211 			 * leave valid set to 0.
212 			 */
213 			;
214 		}
215 		if (i != ap->a_reqpage) {
216 			/*
217 			 * Whether or not to leave the page activated is up in
218 			 * the air, but we should put the page on a page queue
219 			 * somewhere (it already is in the object).  Result:
220 			 * It appears that emperical results show that
221 			 * deactivating pages is best.
222 			 */
223 
224 			/*
225 			 * Just in case someone was asking for this page we
226 			 * now tell them that it is ok to use.
227 			 */
228 			if (!error) {
229 				if (m->flags & PG_WANTED)
230 					vm_page_activate(m);
231 				else
232 					vm_page_deactivate(m);
233 				vm_page_wakeup(m);
234 			} else {
235 				vnode_pager_freepage(m);
236 			}
237 		}
238 	}
239 	return 0;
240 }
241 
242 /*
243  * Vnode op for VM putpages.
244  *
245  * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync,
246  *		int *a_rtvals, vm_ooffset_t a_offset)
247  */
248 int
249 nfs_putpages(struct vop_putpages_args *ap)
250 {
251 	struct thread *td = curthread;
252 	struct uio uio;
253 	struct iovec iov;
254 	char *kva;
255 	int iomode, must_commit, i, error, npages, count;
256 	off_t offset;
257 	int *rtvals;
258 	struct vnode *vp;
259 	struct nfsmount *nmp;
260 	struct nfsnode *np;
261 	vm_page_t *pages;
262 	struct msf_buf *msf;
263 
264 	vp = ap->a_vp;
265 	np = VTONFS(vp);
266 	nmp = VFSTONFS(vp->v_mount);
267 	pages = ap->a_m;
268 	count = ap->a_count;
269 	rtvals = ap->a_rtvals;
270 	npages = btoc(count);
271 	offset = IDX_TO_OFF(pages[0]->pindex);
272 
273 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
274 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
275 		(void)nfs_fsinfo(nmp, vp, td);
276 
277 	for (i = 0; i < npages; i++) {
278 		rtvals[i] = VM_PAGER_AGAIN;
279 	}
280 
281 	/*
282 	 * When putting pages, do not extend file past EOF.
283 	 */
284 
285 	if (offset + count > np->n_size) {
286 		count = np->n_size - offset;
287 		if (count < 0)
288 			count = 0;
289 	}
290 
291 	/*
292 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
293 	 */
294 	msf_map_pagelist(&msf, pages, npages, 0);
295 	KKASSERT(msf);
296 	kva = msf_buf_kva(msf);
297 
298 	iov.iov_base = kva;
299 	iov.iov_len = count;
300 	uio.uio_iov = &iov;
301 	uio.uio_iovcnt = 1;
302 	uio.uio_offset = offset;
303 	uio.uio_resid = count;
304 	uio.uio_segflg = UIO_SYSSPACE;
305 	uio.uio_rw = UIO_WRITE;
306 	uio.uio_td = td;
307 
308 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
309 	    iomode = NFSV3WRITE_UNSTABLE;
310 	else
311 	    iomode = NFSV3WRITE_FILESYNC;
312 
313 	error = nfs_writerpc(vp, &uio, &iomode, &must_commit);
314 
315 	msf_buf_free(msf);
316 
317 	if (!error) {
318 		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
319 		for (i = 0; i < nwritten; i++) {
320 			rtvals[i] = VM_PAGER_OK;
321 			vm_page_undirty(pages[i]);
322 		}
323 		if (must_commit)
324 			nfs_clearcommit(vp->v_mount);
325 	}
326 	return rtvals[0];
327 }
328 
329 /*
330  * Vnode op for read using bio
331  */
332 int
333 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
334 {
335 	struct nfsnode *np = VTONFS(vp);
336 	int biosize, i;
337 	struct buf *bp = 0, *rabp;
338 	struct vattr vattr;
339 	struct thread *td;
340 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
341 	daddr_t lbn, rabn;
342 	off_t raoffset;
343 	off_t loffset;
344 	int bcount;
345 	int seqcount;
346 	int nra, error = 0, n = 0, on = 0;
347 
348 #ifdef DIAGNOSTIC
349 	if (uio->uio_rw != UIO_READ)
350 		panic("nfs_read mode");
351 #endif
352 	if (uio->uio_resid == 0)
353 		return (0);
354 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
355 		return (EINVAL);
356 	td = uio->uio_td;
357 
358 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
359 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
360 		(void)nfs_fsinfo(nmp, vp, td);
361 	if (vp->v_type != VDIR &&
362 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
363 		return (EFBIG);
364 	biosize = vp->v_mount->mnt_stat.f_iosize;
365 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
366 
367 	/*
368 	 * For nfs, cache consistency can only be maintained approximately.
369 	 * Although RFC1094 does not specify the criteria, the following is
370 	 * believed to be compatible with the reference port.
371 	 *
372 	 * NFS:		If local changes have been made and this is a
373 	 *		directory, the directory must be invalidated and
374 	 *		the attribute cache must be cleared.
375 	 *
376 	 *		GETATTR is called to synchronize the file size.
377 	 *
378 	 *		If remote changes are detected local data is flushed
379 	 *		and the cache is invalidated.
380 	 *
381 	 *		NOTE: In the normal case the attribute cache is not
382 	 *		cleared which means GETATTR may use cached data and
383 	 *		not immediately detect changes made on the server.
384 	 */
385 	if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) {
386 		nfs_invaldir(vp);
387 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
388 		if (error)
389 			return (error);
390 		np->n_attrstamp = 0;
391 	}
392 	error = VOP_GETATTR(vp, &vattr);
393 	if (error)
394 		return (error);
395 	if (np->n_flag & NRMODIFIED) {
396 		if (vp->v_type == VDIR)
397 			nfs_invaldir(vp);
398 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
399 		if (error)
400 			return (error);
401 		np->n_flag &= ~NRMODIFIED;
402 	}
403 	do {
404 	    if (np->n_flag & NDONTCACHE) {
405 		switch (vp->v_type) {
406 		case VREG:
407 			return (nfs_readrpc(vp, uio));
408 		case VLNK:
409 			return (nfs_readlinkrpc(vp, uio));
410 		case VDIR:
411 			break;
412 		default:
413 			kprintf(" NDONTCACHE: type %x unexpected\n", vp->v_type);
414 			break;
415 		};
416 	    }
417 	    switch (vp->v_type) {
418 	    case VREG:
419 		nfsstats.biocache_reads++;
420 		lbn = uio->uio_offset / biosize;
421 		on = uio->uio_offset & (biosize - 1);
422 		loffset = (off_t)lbn * biosize;
423 
424 		/*
425 		 * Start the read ahead(s), as required.
426 		 */
427 		if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
428 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
429 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
430 			rabn = lbn + 1 + nra;
431 			raoffset = (off_t)rabn * biosize;
432 			if (!findblk(vp, raoffset)) {
433 			    rabp = nfs_getcacheblk(vp, raoffset, biosize, td);
434 			    if (!rabp)
435 				return (EINTR);
436 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
437 				rabp->b_flags |= B_ASYNC;
438 				rabp->b_cmd = BUF_CMD_READ;
439 				vfs_busy_pages(vp, rabp);
440 				if (nfs_asyncio(vp, &rabp->b_bio2, td)) {
441 				    rabp->b_flags |= B_INVAL|B_ERROR;
442 				    vfs_unbusy_pages(rabp);
443 				    brelse(rabp);
444 				    break;
445 				}
446 			    } else {
447 				brelse(rabp);
448 			    }
449 			}
450 		    }
451 		}
452 
453 		/*
454 		 * Obtain the buffer cache block.  Figure out the buffer size
455 		 * when we are at EOF.  If we are modifying the size of the
456 		 * buffer based on an EOF condition we need to hold
457 		 * nfs_rslock() through obtaining the buffer to prevent
458 		 * a potential writer-appender from messing with n_size.
459 		 * Otherwise we may accidently truncate the buffer and
460 		 * lose dirty data.
461 		 *
462 		 * Note that bcount is *not* DEV_BSIZE aligned.
463 		 */
464 
465 again:
466 		bcount = biosize;
467 		if (loffset >= np->n_size) {
468 			bcount = 0;
469 		} else if (loffset + biosize > np->n_size) {
470 			bcount = np->n_size - loffset;
471 		}
472 		if (bcount != biosize) {
473 			switch(nfs_rslock(np)) {
474 			case ENOLCK:
475 				goto again;
476 				/* not reached */
477 			case EINTR:
478 			case ERESTART:
479 				return(EINTR);
480 				/* not reached */
481 			default:
482 				break;
483 			}
484 		}
485 
486 		bp = nfs_getcacheblk(vp, loffset, bcount, td);
487 
488 		if (bcount != biosize)
489 			nfs_rsunlock(np);
490 		if (!bp)
491 			return (EINTR);
492 
493 		/*
494 		 * If B_CACHE is not set, we must issue the read.  If this
495 		 * fails, we return an error.
496 		 */
497 
498 		if ((bp->b_flags & B_CACHE) == 0) {
499 		    bp->b_cmd = BUF_CMD_READ;
500 		    vfs_busy_pages(vp, bp);
501 		    error = nfs_doio(vp, &bp->b_bio2, td);
502 		    if (error) {
503 			brelse(bp);
504 			return (error);
505 		    }
506 		}
507 
508 		/*
509 		 * on is the offset into the current bp.  Figure out how many
510 		 * bytes we can copy out of the bp.  Note that bcount is
511 		 * NOT DEV_BSIZE aligned.
512 		 *
513 		 * Then figure out how many bytes we can copy into the uio.
514 		 */
515 
516 		n = 0;
517 		if (on < bcount)
518 			n = min((unsigned)(bcount - on), uio->uio_resid);
519 		break;
520 	    case VLNK:
521 		biosize = min(NFS_MAXPATHLEN, np->n_size);
522 		nfsstats.biocache_readlinks++;
523 		bp = nfs_getcacheblk(vp, (off_t)0, biosize, td);
524 		if (bp == NULL)
525 			return (EINTR);
526 		if ((bp->b_flags & B_CACHE) == 0) {
527 		    bp->b_cmd = BUF_CMD_READ;
528 		    vfs_busy_pages(vp, bp);
529 		    error = nfs_doio(vp, &bp->b_bio2, td);
530 		    if (error) {
531 			bp->b_flags |= B_ERROR | B_INVAL;
532 			brelse(bp);
533 			return (error);
534 		    }
535 		}
536 		n = min(uio->uio_resid, bp->b_bcount - bp->b_resid);
537 		on = 0;
538 		break;
539 	    case VDIR:
540 		nfsstats.biocache_readdirs++;
541 		if (np->n_direofoffset
542 		    && uio->uio_offset >= np->n_direofoffset) {
543 		    return (0);
544 		}
545 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
546 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
547 		loffset = uio->uio_offset - on;
548 		bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td);
549 		if (bp == NULL)
550 		    return (EINTR);
551 
552 		if ((bp->b_flags & B_CACHE) == 0) {
553 		    bp->b_cmd = BUF_CMD_READ;
554 		    vfs_busy_pages(vp, bp);
555 		    error = nfs_doio(vp, &bp->b_bio2, td);
556 		    if (error) {
557 			    brelse(bp);
558 		    }
559 		    while (error == NFSERR_BAD_COOKIE) {
560 			kprintf("got bad cookie vp %p bp %p\n", vp, bp);
561 			nfs_invaldir(vp);
562 			error = nfs_vinvalbuf(vp, 0, 1);
563 			/*
564 			 * Yuck! The directory has been modified on the
565 			 * server. The only way to get the block is by
566 			 * reading from the beginning to get all the
567 			 * offset cookies.
568 			 *
569 			 * Leave the last bp intact unless there is an error.
570 			 * Loop back up to the while if the error is another
571 			 * NFSERR_BAD_COOKIE (double yuch!).
572 			 */
573 			for (i = 0; i <= lbn && !error; i++) {
574 			    if (np->n_direofoffset
575 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
576 				    return (0);
577 			    bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ,
578 						 NFS_DIRBLKSIZ, td);
579 			    if (!bp)
580 				return (EINTR);
581 			    if ((bp->b_flags & B_CACHE) == 0) {
582 				    bp->b_cmd = BUF_CMD_READ;
583 				    vfs_busy_pages(vp, bp);
584 				    error = nfs_doio(vp, &bp->b_bio2, td);
585 				    /*
586 				     * no error + B_INVAL == directory EOF,
587 				     * use the block.
588 				     */
589 				    if (error == 0 && (bp->b_flags & B_INVAL))
590 					    break;
591 			    }
592 			    /*
593 			     * An error will throw away the block and the
594 			     * for loop will break out.  If no error and this
595 			     * is not the block we want, we throw away the
596 			     * block and go for the next one via the for loop.
597 			     */
598 			    if (error || i < lbn)
599 				    brelse(bp);
600 			}
601 		    }
602 		    /*
603 		     * The above while is repeated if we hit another cookie
604 		     * error.  If we hit an error and it wasn't a cookie error,
605 		     * we give up.
606 		     */
607 		    if (error)
608 			    return (error);
609 		}
610 
611 		/*
612 		 * If not eof and read aheads are enabled, start one.
613 		 * (You need the current block first, so that you have the
614 		 *  directory offset cookie of the next block.)
615 		 */
616 		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
617 		    (bp->b_flags & B_INVAL) == 0 &&
618 		    (np->n_direofoffset == 0 ||
619 		    loffset + NFS_DIRBLKSIZ < np->n_direofoffset) &&
620 		    (np->n_flag & NDONTCACHE) == 0 &&
621 		    !findblk(vp, loffset + NFS_DIRBLKSIZ)) {
622 			rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ,
623 					       NFS_DIRBLKSIZ, td);
624 			if (rabp) {
625 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
626 				rabp->b_flags |= B_ASYNC;
627 				rabp->b_cmd = BUF_CMD_READ;
628 				vfs_busy_pages(vp, rabp);
629 				if (nfs_asyncio(vp, &rabp->b_bio2, td)) {
630 				    rabp->b_flags |= B_INVAL|B_ERROR;
631 				    vfs_unbusy_pages(rabp);
632 				    brelse(rabp);
633 				}
634 			    } else {
635 				brelse(rabp);
636 			    }
637 			}
638 		}
639 		/*
640 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
641 		 * chopped for the EOF condition, we cannot tell how large
642 		 * NFS directories are going to be until we hit EOF.  So
643 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
644 		 * it just so happens that b_resid will effectively chop it
645 		 * to EOF.  *BUT* this information is lost if the buffer goes
646 		 * away and is reconstituted into a B_CACHE state ( due to
647 		 * being VMIO ) later.  So we keep track of the directory eof
648 		 * in np->n_direofoffset and chop it off as an extra step
649 		 * right here.
650 		 */
651 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
652 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
653 			n = np->n_direofoffset - uio->uio_offset;
654 		break;
655 	    default:
656 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
657 		break;
658 	    };
659 
660 	    switch (vp->v_type) {
661 	    case VREG:
662 		if (n > 0)
663 		    error = uiomove(bp->b_data + on, (int)n, uio);
664 		break;
665 	    case VLNK:
666 		if (n > 0)
667 		    error = uiomove(bp->b_data + on, (int)n, uio);
668 		n = 0;
669 		break;
670 	    case VDIR:
671 		if (n > 0) {
672 		    off_t old_off = uio->uio_offset;
673 		    caddr_t cpos, epos;
674 		    struct nfs_dirent *dp;
675 
676 		    /*
677 		     * We are casting cpos to nfs_dirent, it must be
678 		     * int-aligned.
679 		     */
680 		    if (on & 3) {
681 			error = EINVAL;
682 			break;
683 		    }
684 
685 		    cpos = bp->b_data + on;
686 		    epos = bp->b_data + on + n;
687 		    while (cpos < epos && error == 0 && uio->uio_resid > 0) {
688 			    dp = (struct nfs_dirent *)cpos;
689 			    error = nfs_check_dirent(dp, (int)(epos - cpos));
690 			    if (error)
691 				    break;
692 			    if (vop_write_dirent(&error, uio, dp->nfs_ino,
693 				dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) {
694 				    break;
695 			    }
696 			    cpos += dp->nfs_reclen;
697 		    }
698 		    n = 0;
699 		    if (error == 0)
700 			    uio->uio_offset = old_off + cpos - bp->b_data - on;
701 		}
702 		/*
703 		 * Invalidate buffer if caching is disabled, forcing a
704 		 * re-read from the remote later.
705 		 */
706 		if (np->n_flag & NDONTCACHE)
707 			bp->b_flags |= B_INVAL;
708 		break;
709 	    default:
710 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
711 	    }
712 	    brelse(bp);
713 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
714 	return (error);
715 }
716 
717 /*
718  * Userland can supply any 'seek' offset when reading a NFS directory.
719  * Validate the structure so we don't panic the kernel.  Note that
720  * the element name is nul terminated and the nul is not included
721  * in nfs_namlen.
722  */
723 static
724 int
725 nfs_check_dirent(struct nfs_dirent *dp, int maxlen)
726 {
727 	int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]);
728 
729 	if (nfs_name_off >= maxlen)
730 		return (EINVAL);
731 	if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen)
732 		return (EINVAL);
733 	if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen)
734 		return (EINVAL);
735 	if (dp->nfs_reclen & 3)
736 		return (EINVAL);
737 	return (0);
738 }
739 
740 /*
741  * Vnode op for write using bio
742  *
743  * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
744  *	     struct ucred *a_cred)
745  */
746 int
747 nfs_write(struct vop_write_args *ap)
748 {
749 	struct uio *uio = ap->a_uio;
750 	struct thread *td = uio->uio_td;
751 	struct vnode *vp = ap->a_vp;
752 	struct nfsnode *np = VTONFS(vp);
753 	int ioflag = ap->a_ioflag;
754 	struct buf *bp;
755 	struct vattr vattr;
756 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
757 	daddr_t lbn;
758 	off_t loffset;
759 	int n, on, error = 0, iomode, must_commit;
760 	int haverslock = 0;
761 	int bcount;
762 	int biosize;
763 
764 #ifdef DIAGNOSTIC
765 	if (uio->uio_rw != UIO_WRITE)
766 		panic("nfs_write mode");
767 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
768 		panic("nfs_write proc");
769 #endif
770 	if (vp->v_type != VREG)
771 		return (EIO);
772 	if (np->n_flag & NWRITEERR) {
773 		np->n_flag &= ~NWRITEERR;
774 		return (np->n_error);
775 	}
776 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
777 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
778 		(void)nfs_fsinfo(nmp, vp, td);
779 
780 	/*
781 	 * Synchronously flush pending buffers if we are in synchronous
782 	 * mode or if we are appending.
783 	 */
784 	if (ioflag & (IO_APPEND | IO_SYNC)) {
785 		if (np->n_flag & NLMODIFIED) {
786 			np->n_attrstamp = 0;
787 			error = nfs_flush(vp, MNT_WAIT, td, 0);
788 			/* error = nfs_vinvalbuf(vp, V_SAVE, 1); */
789 			if (error)
790 				return (error);
791 		}
792 	}
793 
794 	/*
795 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
796 	 * get the append lock.
797 	 */
798 restart:
799 	if (ioflag & IO_APPEND) {
800 		np->n_attrstamp = 0;
801 		error = VOP_GETATTR(vp, &vattr);
802 		if (error)
803 			return (error);
804 		uio->uio_offset = np->n_size;
805 	}
806 
807 	if (uio->uio_offset < 0)
808 		return (EINVAL);
809 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
810 		return (EFBIG);
811 	if (uio->uio_resid == 0)
812 		return (0);
813 
814 	/*
815 	 * We need to obtain the rslock if we intend to modify np->n_size
816 	 * in order to guarentee the append point with multiple contending
817 	 * writers, to guarentee that no other appenders modify n_size
818 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
819 	 * accidently truncating data written by another appender due to
820 	 * the race), and to ensure that the buffer is populated prior to
821 	 * our extending of the file.  We hold rslock through the entire
822 	 * operation.
823 	 *
824 	 * Note that we do not synchronize the case where someone truncates
825 	 * the file while we are appending to it because attempting to lock
826 	 * this case may deadlock other parts of the system unexpectedly.
827 	 */
828 	if ((ioflag & IO_APPEND) ||
829 	    uio->uio_offset + uio->uio_resid > np->n_size) {
830 		switch(nfs_rslock(np)) {
831 		case ENOLCK:
832 			goto restart;
833 			/* not reached */
834 		case EINTR:
835 		case ERESTART:
836 			return(EINTR);
837 			/* not reached */
838 		default:
839 			break;
840 		}
841 		haverslock = 1;
842 	}
843 
844 	/*
845 	 * Maybe this should be above the vnode op call, but so long as
846 	 * file servers have no limits, i don't think it matters
847 	 */
848 	if (td->td_proc && uio->uio_offset + uio->uio_resid >
849 	      td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
850 		lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
851 		if (haverslock)
852 			nfs_rsunlock(np);
853 		return (EFBIG);
854 	}
855 
856 	biosize = vp->v_mount->mnt_stat.f_iosize;
857 
858 	do {
859 		if ((np->n_flag & NDONTCACHE) && uio->uio_iovcnt == 1) {
860 		    iomode = NFSV3WRITE_FILESYNC;
861 		    error = nfs_writerpc(vp, uio, &iomode, &must_commit);
862 		    if (must_commit)
863 			    nfs_clearcommit(vp->v_mount);
864 		    break;
865 		}
866 		nfsstats.biocache_writes++;
867 		lbn = uio->uio_offset / biosize;
868 		on = uio->uio_offset & (biosize-1);
869 		loffset = uio->uio_offset - on;
870 		n = min((unsigned)(biosize - on), uio->uio_resid);
871 again:
872 		/*
873 		 * Handle direct append and file extension cases, calculate
874 		 * unaligned buffer size.
875 		 */
876 
877 		if (uio->uio_offset == np->n_size && n) {
878 			/*
879 			 * Get the buffer (in its pre-append state to maintain
880 			 * B_CACHE if it was previously set).  Resize the
881 			 * nfsnode after we have locked the buffer to prevent
882 			 * readers from reading garbage.
883 			 */
884 			bcount = on;
885 			bp = nfs_getcacheblk(vp, loffset, bcount, td);
886 
887 			if (bp != NULL) {
888 				long save;
889 
890 				np->n_size = uio->uio_offset + n;
891 				np->n_flag |= NLMODIFIED;
892 				vnode_pager_setsize(vp, np->n_size);
893 
894 				save = bp->b_flags & B_CACHE;
895 				bcount += n;
896 				allocbuf(bp, bcount);
897 				bp->b_flags |= save;
898 			}
899 		} else {
900 			/*
901 			 * Obtain the locked cache block first, and then
902 			 * adjust the file's size as appropriate.
903 			 */
904 			bcount = on + n;
905 			if (loffset + bcount < np->n_size) {
906 				if (loffset + biosize < np->n_size)
907 					bcount = biosize;
908 				else
909 					bcount = np->n_size - loffset;
910 			}
911 			bp = nfs_getcacheblk(vp, loffset, bcount, td);
912 			if (uio->uio_offset + n > np->n_size) {
913 				np->n_size = uio->uio_offset + n;
914 				np->n_flag |= NLMODIFIED;
915 				vnode_pager_setsize(vp, np->n_size);
916 			}
917 		}
918 
919 		if (bp == NULL) {
920 			error = EINTR;
921 			break;
922 		}
923 
924 		/*
925 		 * Issue a READ if B_CACHE is not set.  In special-append
926 		 * mode, B_CACHE is based on the buffer prior to the write
927 		 * op and is typically set, avoiding the read.  If a read
928 		 * is required in special append mode, the server will
929 		 * probably send us a short-read since we extended the file
930 		 * on our end, resulting in b_resid == 0 and, thusly,
931 		 * B_CACHE getting set.
932 		 *
933 		 * We can also avoid issuing the read if the write covers
934 		 * the entire buffer.  We have to make sure the buffer state
935 		 * is reasonable in this case since we will not be initiating
936 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
937 		 * more information.
938 		 *
939 		 * B_CACHE may also be set due to the buffer being cached
940 		 * normally.
941 		 *
942 		 * When doing a UIO_NOCOPY write the buffer is not
943 		 * overwritten and we cannot just set B_CACHE unconditionally
944 		 * for full-block writes.
945 		 */
946 
947 		if (on == 0 && n == bcount && uio->uio_segflg != UIO_NOCOPY) {
948 			bp->b_flags |= B_CACHE;
949 			bp->b_flags &= ~(B_ERROR | B_INVAL);
950 		}
951 
952 		if ((bp->b_flags & B_CACHE) == 0) {
953 			bp->b_cmd = BUF_CMD_READ;
954 			vfs_busy_pages(vp, bp);
955 			error = nfs_doio(vp, &bp->b_bio2, td);
956 			if (error) {
957 				brelse(bp);
958 				break;
959 			}
960 		}
961 		if (!bp) {
962 			error = EINTR;
963 			break;
964 		}
965 		np->n_flag |= NLMODIFIED;
966 
967 		/*
968 		 * If dirtyend exceeds file size, chop it down.  This should
969 		 * not normally occur but there is an append race where it
970 		 * might occur XXX, so we log it.
971 		 *
972 		 * If the chopping creates a reverse-indexed or degenerate
973 		 * situation with dirtyoff/end, we 0 both of them.
974 		 */
975 
976 		if (bp->b_dirtyend > bcount) {
977 			kprintf("NFS append race @%08llx:%d\n",
978 			    bp->b_bio2.bio_offset,
979 			    bp->b_dirtyend - bcount);
980 			bp->b_dirtyend = bcount;
981 		}
982 
983 		if (bp->b_dirtyoff >= bp->b_dirtyend)
984 			bp->b_dirtyoff = bp->b_dirtyend = 0;
985 
986 		/*
987 		 * If the new write will leave a contiguous dirty
988 		 * area, just update the b_dirtyoff and b_dirtyend,
989 		 * otherwise force a write rpc of the old dirty area.
990 		 *
991 		 * While it is possible to merge discontiguous writes due to
992 		 * our having a B_CACHE buffer ( and thus valid read data
993 		 * for the hole), we don't because it could lead to
994 		 * significant cache coherency problems with multiple clients,
995 		 * especially if locking is implemented later on.
996 		 *
997 		 * as an optimization we could theoretically maintain
998 		 * a linked list of discontinuous areas, but we would still
999 		 * have to commit them separately so there isn't much
1000 		 * advantage to it except perhaps a bit of asynchronization.
1001 		 */
1002 
1003 		if (bp->b_dirtyend > 0 &&
1004 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1005 			if (bwrite(bp) == EINTR) {
1006 				error = EINTR;
1007 				break;
1008 			}
1009 			goto again;
1010 		}
1011 
1012 		error = uiomove((char *)bp->b_data + on, n, uio);
1013 
1014 		/*
1015 		 * Since this block is being modified, it must be written
1016 		 * again and not just committed.  Since write clustering does
1017 		 * not work for the stage 1 data write, only the stage 2
1018 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1019 		 */
1020 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1021 
1022 		if (error) {
1023 			bp->b_flags |= B_ERROR;
1024 			brelse(bp);
1025 			break;
1026 		}
1027 
1028 		/*
1029 		 * Only update dirtyoff/dirtyend if not a degenerate
1030 		 * condition.
1031 		 */
1032 		if (n) {
1033 			if (bp->b_dirtyend > 0) {
1034 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1035 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1036 			} else {
1037 				bp->b_dirtyoff = on;
1038 				bp->b_dirtyend = on + n;
1039 			}
1040 			vfs_bio_set_validclean(bp, on, n);
1041 		}
1042 
1043 		/*
1044 		 * If the lease is non-cachable or IO_SYNC do bwrite().
1045 		 *
1046 		 * IO_INVAL appears to be unused.  The idea appears to be
1047 		 * to turn off caching in this case.  Very odd.  XXX
1048 		 *
1049 		 * If nfs_async is set bawrite() will use an unstable write
1050 		 * (build dirty bufs on the server), so we might as well
1051 		 * push it out with bawrite().  If nfs_async is not set we
1052 		 * use bdwrite() to cache dirty bufs on the client.
1053 		 */
1054 		if ((np->n_flag & NDONTCACHE) || (ioflag & IO_SYNC)) {
1055 			if (ioflag & IO_INVAL)
1056 				bp->b_flags |= B_NOCACHE;
1057 			error = bwrite(bp);
1058 			if (error)
1059 				break;
1060 			if (np->n_flag & NDONTCACHE) {
1061 				error = nfs_vinvalbuf(vp, V_SAVE, 1);
1062 				if (error)
1063 					break;
1064 			}
1065 		} else if ((n + on) == biosize && nfs_async) {
1066 			bawrite(bp);
1067 		} else {
1068 			bdwrite(bp);
1069 		}
1070 	} while (uio->uio_resid > 0 && n > 0);
1071 
1072 	if (haverslock)
1073 		nfs_rsunlock(np);
1074 
1075 	return (error);
1076 }
1077 
1078 /*
1079  * Get an nfs cache block.
1080  *
1081  * Allocate a new one if the block isn't currently in the cache
1082  * and return the block marked busy. If the calling process is
1083  * interrupted by a signal for an interruptible mount point, return
1084  * NULL.
1085  *
1086  * The caller must carefully deal with the possible B_INVAL state of
1087  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1088  * indirectly), so synchronous reads can be issued without worrying about
1089  * the B_INVAL state.  We have to be a little more careful when dealing
1090  * with writes (see comments in nfs_write()) when extending a file past
1091  * its EOF.
1092  */
1093 static struct buf *
1094 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td)
1095 {
1096 	struct buf *bp;
1097 	struct mount *mp;
1098 	struct nfsmount *nmp;
1099 
1100 	mp = vp->v_mount;
1101 	nmp = VFSTONFS(mp);
1102 
1103 	if (nmp->nm_flag & NFSMNT_INT) {
1104 		bp = getblk(vp, loffset, size, GETBLK_PCATCH, 0);
1105 		while (bp == NULL) {
1106 			if (nfs_sigintr(nmp, (struct nfsreq *)0, td))
1107 				return (NULL);
1108 			bp = getblk(vp, loffset, size, 0, 2 * hz);
1109 		}
1110 	} else {
1111 		bp = getblk(vp, loffset, size, 0, 0);
1112 	}
1113 
1114 	/*
1115 	 * bio2, the 'device' layer.  Since BIOs use 64 bit byte offsets
1116 	 * now, no translation is necessary.
1117 	 */
1118 	bp->b_bio2.bio_offset = loffset;
1119 	return (bp);
1120 }
1121 
1122 /*
1123  * Flush and invalidate all dirty buffers. If another process is already
1124  * doing the flush, just wait for completion.
1125  */
1126 int
1127 nfs_vinvalbuf(struct vnode *vp, int flags, int intrflg)
1128 {
1129 	struct nfsnode *np = VTONFS(vp);
1130 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1131 	int error = 0, slpflag, slptimeo;
1132 	thread_t td = curthread;
1133 
1134 	if (vp->v_flag & VRECLAIMED)
1135 		return (0);
1136 
1137 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1138 		intrflg = 0;
1139 	if (intrflg) {
1140 		slpflag = PCATCH;
1141 		slptimeo = 2 * hz;
1142 	} else {
1143 		slpflag = 0;
1144 		slptimeo = 0;
1145 	}
1146 	/*
1147 	 * First wait for any other process doing a flush to complete.
1148 	 */
1149 	while (np->n_flag & NFLUSHINPROG) {
1150 		np->n_flag |= NFLUSHWANT;
1151 		error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
1152 		if (error && intrflg && nfs_sigintr(nmp, NULL, td))
1153 			return (EINTR);
1154 	}
1155 
1156 	/*
1157 	 * Now, flush as required.
1158 	 */
1159 	np->n_flag |= NFLUSHINPROG;
1160 	error = vinvalbuf(vp, flags, slpflag, 0);
1161 	while (error) {
1162 		if (intrflg && nfs_sigintr(nmp, NULL, td)) {
1163 			np->n_flag &= ~NFLUSHINPROG;
1164 			if (np->n_flag & NFLUSHWANT) {
1165 				np->n_flag &= ~NFLUSHWANT;
1166 				wakeup((caddr_t)&np->n_flag);
1167 			}
1168 			return (EINTR);
1169 		}
1170 		error = vinvalbuf(vp, flags, 0, slptimeo);
1171 	}
1172 	np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG);
1173 	if (np->n_flag & NFLUSHWANT) {
1174 		np->n_flag &= ~NFLUSHWANT;
1175 		wakeup((caddr_t)&np->n_flag);
1176 	}
1177 	return (0);
1178 }
1179 
1180 /*
1181  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1182  * This is mainly to avoid queueing async I/O requests when the nfsiods
1183  * are all hung on a dead server.
1184  *
1185  * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1186  * is eventually dequeued by the async daemon, nfs_doio() *will*.
1187  */
1188 int
1189 nfs_asyncio(struct vnode *vp, struct bio *bio, struct thread *td)
1190 {
1191 	struct buf *bp = bio->bio_buf;
1192 	struct nfsmount *nmp;
1193 	int i;
1194 	int gotiod;
1195 	int slpflag = 0;
1196 	int slptimeo = 0;
1197 	int error;
1198 
1199 	/*
1200 	 * If no async daemons then return EIO to force caller to run the rpc
1201 	 * synchronously.
1202 	 */
1203 	if (nfs_numasync == 0)
1204 		return (EIO);
1205 
1206 	KKASSERT(vp->v_tag == VT_NFS);
1207 	nmp = VFSTONFS(vp->v_mount);
1208 
1209 	/*
1210 	 * Commits are usually short and sweet so lets save some cpu and
1211 	 * leave the async daemons for more important rpc's (such as reads
1212 	 * and writes).
1213 	 */
1214 	if (bp->b_cmd == BUF_CMD_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1215 	    (nmp->nm_bioqiods > nfs_numasync / 2)) {
1216 		return(EIO);
1217 	}
1218 
1219 again:
1220 	if (nmp->nm_flag & NFSMNT_INT)
1221 		slpflag = PCATCH;
1222 	gotiod = FALSE;
1223 
1224 	/*
1225 	 * Find a free iod to process this request.
1226 	 */
1227 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1228 		if (nfs_iodwant[i]) {
1229 			/*
1230 			 * Found one, so wake it up and tell it which
1231 			 * mount to process.
1232 			 */
1233 			NFS_DPF(ASYNCIO,
1234 				("nfs_asyncio: waking iod %d for mount %p\n",
1235 				 i, nmp));
1236 			nfs_iodwant[i] = NULL;
1237 			nfs_iodmount[i] = nmp;
1238 			nmp->nm_bioqiods++;
1239 			wakeup((caddr_t)&nfs_iodwant[i]);
1240 			gotiod = TRUE;
1241 			break;
1242 		}
1243 
1244 	/*
1245 	 * If none are free, we may already have an iod working on this mount
1246 	 * point.  If so, it will process our request.
1247 	 */
1248 	if (!gotiod) {
1249 		if (nmp->nm_bioqiods > 0) {
1250 			NFS_DPF(ASYNCIO,
1251 				("nfs_asyncio: %d iods are already processing mount %p\n",
1252 				 nmp->nm_bioqiods, nmp));
1253 			gotiod = TRUE;
1254 		}
1255 	}
1256 
1257 	/*
1258 	 * If we have an iod which can process the request, then queue
1259 	 * the buffer.
1260 	 */
1261 	if (gotiod) {
1262 		/*
1263 		 * Ensure that the queue never grows too large.  We still want
1264 		 * to asynchronize so we block rather then return EIO.
1265 		 */
1266 		while (nmp->nm_bioqlen >= 2*nfs_numasync) {
1267 			NFS_DPF(ASYNCIO,
1268 				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1269 			nmp->nm_bioqwant = TRUE;
1270 			error = tsleep(&nmp->nm_bioq, slpflag,
1271 				       "nfsaio", slptimeo);
1272 			if (error) {
1273 				if (nfs_sigintr(nmp, NULL, td))
1274 					return (EINTR);
1275 				if (slpflag == PCATCH) {
1276 					slpflag = 0;
1277 					slptimeo = 2 * hz;
1278 				}
1279 			}
1280 			/*
1281 			 * We might have lost our iod while sleeping,
1282 			 * so check and loop if nescessary.
1283 			 */
1284 			if (nmp->nm_bioqiods == 0) {
1285 				NFS_DPF(ASYNCIO,
1286 					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1287 				goto again;
1288 			}
1289 		}
1290 		BUF_KERNPROC(bp);
1291 
1292 		/*
1293 		 * The passed bio's buffer is not necessary associated with
1294 		 * the NFS vnode it is being written to.  Store the NFS vnode
1295 		 * in the BIO driver info.
1296 		 */
1297 		bio->bio_driver_info = vp;
1298 		TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act);
1299 		nmp->nm_bioqlen++;
1300 		return (0);
1301 	}
1302 
1303 	/*
1304 	 * All the iods are busy on other mounts, so return EIO to
1305 	 * force the caller to process the i/o synchronously.
1306 	 */
1307 	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1308 	return (EIO);
1309 }
1310 
1311 /*
1312  * Do an I/O operation to/from a cache block. This may be called
1313  * synchronously or from an nfsiod.  The BIO is normalized for DEV_BSIZE.
1314  *
1315  * NOTE! TD MIGHT BE NULL
1316  */
1317 int
1318 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td)
1319 {
1320 	struct buf *bp = bio->bio_buf;
1321 	struct uio *uiop;
1322 	struct nfsnode *np;
1323 	struct nfsmount *nmp;
1324 	int error = 0, iomode, must_commit = 0;
1325 	struct uio uio;
1326 	struct iovec io;
1327 
1328 	KKASSERT(vp->v_tag == VT_NFS);
1329 	np = VTONFS(vp);
1330 	nmp = VFSTONFS(vp->v_mount);
1331 	uiop = &uio;
1332 	uiop->uio_iov = &io;
1333 	uiop->uio_iovcnt = 1;
1334 	uiop->uio_segflg = UIO_SYSSPACE;
1335 	uiop->uio_td = td;
1336 
1337 	/*
1338 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1339 	 * do this here so we do not have to do it in all the code that
1340 	 * calls us.
1341 	 */
1342 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1343 
1344 
1345 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
1346 		("nfs_doio: bp %p already marked done!", bp));
1347 
1348 	if (bp->b_cmd == BUF_CMD_READ) {
1349 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1350 	    io.iov_base = bp->b_data;
1351 	    uiop->uio_rw = UIO_READ;
1352 
1353 	    switch (vp->v_type) {
1354 	    case VREG:
1355 		uiop->uio_offset = bio->bio_offset;
1356 		nfsstats.read_bios++;
1357 		error = nfs_readrpc(vp, uiop);
1358 
1359 		if (!error) {
1360 		    if (uiop->uio_resid) {
1361 			/*
1362 			 * If we had a short read with no error, we must have
1363 			 * hit a file hole.  We should zero-fill the remainder.
1364 			 * This can also occur if the server hits the file EOF.
1365 			 *
1366 			 * Holes used to be able to occur due to pending
1367 			 * writes, but that is not possible any longer.
1368 			 */
1369 			int nread = bp->b_bcount - uiop->uio_resid;
1370 			int left  = uiop->uio_resid;
1371 
1372 			if (left > 0)
1373 				bzero((char *)bp->b_data + nread, left);
1374 			uiop->uio_resid = 0;
1375 		    }
1376 		}
1377 		if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1378 		    np->n_mtime != np->n_vattr.va_mtime.tv_sec) {
1379 			uprintf("Process killed due to text file modification\n");
1380 			ksignal(td->td_proc, SIGKILL);
1381 		}
1382 		break;
1383 	    case VLNK:
1384 		uiop->uio_offset = 0;
1385 		nfsstats.readlink_bios++;
1386 		error = nfs_readlinkrpc(vp, uiop);
1387 		break;
1388 	    case VDIR:
1389 		nfsstats.readdir_bios++;
1390 		uiop->uio_offset = bio->bio_offset;
1391 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1392 			error = nfs_readdirplusrpc(vp, uiop);
1393 			if (error == NFSERR_NOTSUPP)
1394 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1395 		}
1396 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1397 			error = nfs_readdirrpc(vp, uiop);
1398 		/*
1399 		 * end-of-directory sets B_INVAL but does not generate an
1400 		 * error.
1401 		 */
1402 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1403 			bp->b_flags |= B_INVAL;
1404 		break;
1405 	    default:
1406 		kprintf("nfs_doio:  type %x unexpected\n",vp->v_type);
1407 		break;
1408 	    };
1409 	    if (error) {
1410 		bp->b_flags |= B_ERROR;
1411 		bp->b_error = error;
1412 	    }
1413 	} else {
1414 	    /*
1415 	     * If we only need to commit, try to commit
1416 	     */
1417 	    KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1418 	    if (bp->b_flags & B_NEEDCOMMIT) {
1419 		    int retv;
1420 		    off_t off;
1421 
1422 		    off = bio->bio_offset + bp->b_dirtyoff;
1423 		    retv = nfs_commit(vp, off,
1424 				bp->b_dirtyend - bp->b_dirtyoff, td);
1425 		    if (retv == 0) {
1426 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1427 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1428 			    bp->b_resid = 0;
1429 			    biodone(bio);
1430 			    return (0);
1431 		    }
1432 		    if (retv == NFSERR_STALEWRITEVERF) {
1433 			    nfs_clearcommit(vp->v_mount);
1434 		    }
1435 	    }
1436 
1437 	    /*
1438 	     * Setup for actual write
1439 	     */
1440 
1441 	    if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1442 		bp->b_dirtyend = np->n_size - bio->bio_offset;
1443 
1444 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1445 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1446 		    - bp->b_dirtyoff;
1447 		uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff;
1448 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1449 		uiop->uio_rw = UIO_WRITE;
1450 		nfsstats.write_bios++;
1451 
1452 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1453 		    iomode = NFSV3WRITE_UNSTABLE;
1454 		else
1455 		    iomode = NFSV3WRITE_FILESYNC;
1456 
1457 		error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
1458 
1459 		/*
1460 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1461 		 * to cluster the buffers needing commit.  This will allow
1462 		 * the system to submit a single commit rpc for the whole
1463 		 * cluster.  We can do this even if the buffer is not 100%
1464 		 * dirty (relative to the NFS blocksize), so we optimize the
1465 		 * append-to-file-case.
1466 		 *
1467 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1468 		 * cleared because write clustering only works for commit
1469 		 * rpc's, not for the data portion of the write).
1470 		 */
1471 
1472 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1473 		    bp->b_flags |= B_NEEDCOMMIT;
1474 		    if (bp->b_dirtyoff == 0
1475 			&& bp->b_dirtyend == bp->b_bcount)
1476 			bp->b_flags |= B_CLUSTEROK;
1477 		} else {
1478 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1479 		}
1480 
1481 		/*
1482 		 * For an interrupted write, the buffer is still valid
1483 		 * and the write hasn't been pushed to the server yet,
1484 		 * so we can't set B_ERROR and report the interruption
1485 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1486 		 * is not relevant, so the rpc attempt is essentially
1487 		 * a noop.  For the case of a V3 write rpc not being
1488 		 * committed to stable storage, the block is still
1489 		 * dirty and requires either a commit rpc or another
1490 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1491 		 * the block is reused. This is indicated by setting
1492 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1493 		 *
1494 		 * If the buffer is marked B_PAGING, it does not reside on
1495 		 * the vp's paging queues so we cannot call bdirty().  The
1496 		 * bp in this case is not an NFS cache block so we should
1497 		 * be safe. XXX
1498 		 */
1499     		if (error == EINTR
1500 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1501 			crit_enter();
1502 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1503 			if ((bp->b_flags & B_PAGING) == 0)
1504 			    bdirty(bp);
1505 			if (error && (bp->b_flags & B_ASYNC) == 0)
1506 			    bp->b_flags |= B_EINTR;
1507 			crit_exit();
1508 	    	} else {
1509 		    if (error) {
1510 			bp->b_flags |= B_ERROR;
1511 			bp->b_error = np->n_error = error;
1512 			np->n_flag |= NWRITEERR;
1513 		    }
1514 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1515 		}
1516 	    } else {
1517 		bp->b_resid = 0;
1518 		biodone(bio);
1519 		return (0);
1520 	    }
1521 	}
1522 	bp->b_resid = uiop->uio_resid;
1523 	if (must_commit)
1524 	    nfs_clearcommit(vp->v_mount);
1525 	biodone(bio);
1526 	return (error);
1527 }
1528 
1529 /*
1530  * Used to aid in handling ftruncate() operations on the NFS client side.
1531  * Truncation creates a number of special problems for NFS.  We have to
1532  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1533  * we have to properly handle VM pages or (potentially dirty) buffers
1534  * that straddle the truncation point.
1535  */
1536 
1537 int
1538 nfs_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
1539 {
1540 	struct nfsnode *np = VTONFS(vp);
1541 	u_quad_t tsize = np->n_size;
1542 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1543 	int error = 0;
1544 
1545 	np->n_size = nsize;
1546 
1547 	if (np->n_size < tsize) {
1548 		struct buf *bp;
1549 		daddr_t lbn;
1550 		off_t loffset;
1551 		int bufsize;
1552 
1553 		/*
1554 		 * vtruncbuf() doesn't get the buffer overlapping the
1555 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1556 		 * buffer that now needs to be truncated.
1557 		 */
1558 		error = vtruncbuf(vp, nsize, biosize);
1559 		lbn = nsize / biosize;
1560 		bufsize = nsize & (biosize - 1);
1561 		loffset = nsize - bufsize;
1562 		bp = nfs_getcacheblk(vp, loffset, bufsize, td);
1563 		if (bp->b_dirtyoff > bp->b_bcount)
1564 			bp->b_dirtyoff = bp->b_bcount;
1565 		if (bp->b_dirtyend > bp->b_bcount)
1566 			bp->b_dirtyend = bp->b_bcount;
1567 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1568 		brelse(bp);
1569 	} else {
1570 		vnode_pager_setsize(vp, nsize);
1571 	}
1572 	return(error);
1573 }
1574 
1575