xref: /dragonfly/sys/vfs/nfs/nfs_bio.c (revision 4a65f651)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37  * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.45 2008/07/18 00:09:39 dillon Exp $
39  */
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/mbuf.h>
52 #include <sys/msfbuf.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_pager.h>
59 #include <vm/vnode_pager.h>
60 
61 #include <sys/buf2.h>
62 #include <sys/thread2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "rpcv2.h"
66 #include "nfsproto.h"
67 #include "nfs.h"
68 #include "nfsmount.h"
69 #include "nfsnode.h"
70 #include "xdr_subs.h"
71 #include "nfsm_subs.h"
72 
73 
74 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset,
75 				   int size, struct thread *td);
76 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen);
77 static void nfsiodone_sync(struct bio *bio);
78 static void nfs_readrpc_bio_done(nfsm_info_t info);
79 static void nfs_writerpc_bio_done(nfsm_info_t info);
80 static void nfs_commitrpc_bio_done(nfsm_info_t info);
81 
82 /*
83  * Vnode op for VM getpages.
84  *
85  * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count,
86  *		int a_reqpage, vm_ooffset_t a_offset)
87  */
88 int
89 nfs_getpages(struct vop_getpages_args *ap)
90 {
91 	struct thread *td = curthread;		/* XXX */
92 	int i, error, nextoff, size, toff, count, npages;
93 	struct uio uio;
94 	struct iovec iov;
95 	char *kva;
96 	struct vnode *vp;
97 	struct nfsmount *nmp;
98 	vm_page_t *pages;
99 	vm_page_t m;
100 	struct msf_buf *msf;
101 
102 	vp = ap->a_vp;
103 	nmp = VFSTONFS(vp->v_mount);
104 	pages = ap->a_m;
105 	count = ap->a_count;
106 
107 	if (vp->v_object == NULL) {
108 		kprintf("nfs_getpages: called with non-merged cache vnode??\n");
109 		return VM_PAGER_ERROR;
110 	}
111 
112 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
113 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
114 		(void)nfs_fsinfo(nmp, vp, td);
115 
116 	npages = btoc(count);
117 
118 	/*
119 	 * NOTE that partially valid pages may occur in cases other
120 	 * then file EOF, such as when a file is partially written and
121 	 * ftruncate()-extended to a larger size.   It is also possible
122 	 * for the valid bits to be set on garbage beyond the file EOF and
123 	 * clear in the area before EOF (e.g. m->valid == 0xfc), which can
124 	 * occur due to vtruncbuf() and the buffer cache's handling of
125 	 * pages which 'straddle' buffers or when b_bufsize is not a
126 	 * multiple of PAGE_SIZE.... the buffer cache cannot normally
127 	 * clear the extra bits.  This kind of situation occurs when you
128 	 * make a small write() (m->valid == 0x03) and then mmap() and
129 	 * fault in the buffer(m->valid = 0xFF).  When NFS flushes the
130 	 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess.
131 	 *
132 	 * This is combined with the possibility that the pages are partially
133 	 * dirty or that there is a buffer backing the pages that is dirty
134 	 * (even if m->dirty is 0).
135 	 *
136 	 * To solve this problem several hacks have been made:  (1) NFS
137 	 * guarentees that the IO block size is a multiple of PAGE_SIZE and
138 	 * (2) The buffer cache, when invalidating an NFS buffer, will
139 	 * disregard the buffer's fragmentory b_bufsize and invalidate
140 	 * the whole page rather then just the piece the buffer owns.
141 	 *
142 	 * This allows us to assume that a partially valid page found here
143 	 * is fully valid (vm_fault will zero'd out areas of the page not
144 	 * marked as valid).
145 	 */
146 	m = pages[ap->a_reqpage];
147 	if (m->valid != 0) {
148 		for (i = 0; i < npages; ++i) {
149 			if (i != ap->a_reqpage)
150 				vnode_pager_freepage(pages[i]);
151 		}
152 		return(0);
153 	}
154 
155 	/*
156 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
157 	 */
158 	msf_map_pagelist(&msf, pages, npages, 0);
159 	KKASSERT(msf);
160 	kva = msf_buf_kva(msf);
161 
162 	iov.iov_base = kva;
163 	iov.iov_len = count;
164 	uio.uio_iov = &iov;
165 	uio.uio_iovcnt = 1;
166 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
167 	uio.uio_resid = count;
168 	uio.uio_segflg = UIO_SYSSPACE;
169 	uio.uio_rw = UIO_READ;
170 	uio.uio_td = td;
171 
172 	error = nfs_readrpc_uio(vp, &uio);
173 	msf_buf_free(msf);
174 
175 	if (error && ((int)uio.uio_resid == count)) {
176 		kprintf("nfs_getpages: error %d\n", error);
177 		for (i = 0; i < npages; ++i) {
178 			if (i != ap->a_reqpage)
179 				vnode_pager_freepage(pages[i]);
180 		}
181 		return VM_PAGER_ERROR;
182 	}
183 
184 	/*
185 	 * Calculate the number of bytes read and validate only that number
186 	 * of bytes.  Note that due to pending writes, size may be 0.  This
187 	 * does not mean that the remaining data is invalid!
188 	 */
189 
190 	size = count - (int)uio.uio_resid;
191 
192 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
193 		nextoff = toff + PAGE_SIZE;
194 		m = pages[i];
195 
196 		m->flags &= ~PG_ZERO;
197 
198 		/*
199 		 * NOTE: vm_page_undirty/clear_dirty etc do not clear the
200 		 *       pmap modified bit.
201 		 */
202 		if (nextoff <= size) {
203 			/*
204 			 * Read operation filled an entire page
205 			 */
206 			m->valid = VM_PAGE_BITS_ALL;
207 			vm_page_undirty(m);
208 		} else if (size > toff) {
209 			/*
210 			 * Read operation filled a partial page.
211 			 */
212 			m->valid = 0;
213 			vm_page_set_valid(m, 0, size - toff);
214 			vm_page_clear_dirty_end_nonincl(m, 0, size - toff);
215 			/* handled by vm_fault now	  */
216 			/* vm_page_zero_invalid(m, TRUE); */
217 		} else {
218 			/*
219 			 * Read operation was short.  If no error occured
220 			 * we may have hit a zero-fill section.   We simply
221 			 * leave valid set to 0.
222 			 */
223 			;
224 		}
225 		if (i != ap->a_reqpage) {
226 			/*
227 			 * Whether or not to leave the page activated is up in
228 			 * the air, but we should put the page on a page queue
229 			 * somewhere (it already is in the object).  Result:
230 			 * It appears that emperical results show that
231 			 * deactivating pages is best.
232 			 */
233 
234 			/*
235 			 * Just in case someone was asking for this page we
236 			 * now tell them that it is ok to use.
237 			 */
238 			if (!error) {
239 				if (m->flags & PG_WANTED)
240 					vm_page_activate(m);
241 				else
242 					vm_page_deactivate(m);
243 				vm_page_wakeup(m);
244 			} else {
245 				vnode_pager_freepage(m);
246 			}
247 		}
248 	}
249 	return 0;
250 }
251 
252 /*
253  * Vnode op for VM putpages.
254  *
255  * The pmap modified bit was cleared prior to the putpages and probably
256  * couldn't get set again until after our I/O completed, since the page
257  * should not be mapped.  But don't count on it.  The m->dirty bits must
258  * be completely cleared when we finish even if the count is truncated.
259  *
260  * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync,
261  *		int *a_rtvals, vm_ooffset_t a_offset)
262  */
263 int
264 nfs_putpages(struct vop_putpages_args *ap)
265 {
266 	struct thread *td = curthread;
267 	struct uio uio;
268 	struct iovec iov;
269 	char *kva;
270 	int iomode, must_commit, i, error, npages, count;
271 	off_t offset;
272 	int *rtvals;
273 	struct vnode *vp;
274 	struct nfsmount *nmp;
275 	struct nfsnode *np;
276 	vm_page_t *pages;
277 	struct msf_buf *msf;
278 
279 	vp = ap->a_vp;
280 	np = VTONFS(vp);
281 	nmp = VFSTONFS(vp->v_mount);
282 	pages = ap->a_m;
283 	count = ap->a_count;
284 	rtvals = ap->a_rtvals;
285 	npages = btoc(count);
286 	offset = IDX_TO_OFF(pages[0]->pindex);
287 
288 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
289 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
290 		(void)nfs_fsinfo(nmp, vp, td);
291 
292 	for (i = 0; i < npages; i++) {
293 		rtvals[i] = VM_PAGER_AGAIN;
294 	}
295 
296 	/*
297 	 * When putting pages, do not extend file past EOF.
298 	 */
299 
300 	if (offset + count > np->n_size) {
301 		count = np->n_size - offset;
302 		if (count < 0)
303 			count = 0;
304 	}
305 
306 	/*
307 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
308 	 */
309 	msf_map_pagelist(&msf, pages, npages, 0);
310 	KKASSERT(msf);
311 	kva = msf_buf_kva(msf);
312 
313 	iov.iov_base = kva;
314 	iov.iov_len = count;
315 	uio.uio_iov = &iov;
316 	uio.uio_iovcnt = 1;
317 	uio.uio_offset = offset;
318 	uio.uio_resid = (size_t)count;
319 	uio.uio_segflg = UIO_SYSSPACE;
320 	uio.uio_rw = UIO_WRITE;
321 	uio.uio_td = td;
322 
323 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
324 	    iomode = NFSV3WRITE_UNSTABLE;
325 	else
326 	    iomode = NFSV3WRITE_FILESYNC;
327 
328 	error = nfs_writerpc_uio(vp, &uio, &iomode, &must_commit);
329 
330 	msf_buf_free(msf);
331 
332 	if (error == 0) {
333 		int nwritten;
334 
335 		nwritten = round_page(count - (int)uio.uio_resid) / PAGE_SIZE;
336 		for (i = 0; i < nwritten; i++) {
337 			rtvals[i] = VM_PAGER_OK;
338 			vm_page_undirty(pages[i]);
339 		}
340 		if (must_commit)
341 			nfs_clearcommit(vp->v_mount);
342 	}
343 	return rtvals[0];
344 }
345 
346 /*
347  * Vnode op for read using bio
348  */
349 int
350 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
351 {
352 	struct nfsnode *np = VTONFS(vp);
353 	int biosize, i;
354 	struct buf *bp, *rabp;
355 	struct vattr vattr;
356 	struct thread *td;
357 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
358 	off_t lbn, rabn;
359 	off_t raoffset;
360 	off_t loffset;
361 	int seqcount;
362 	int nra, error = 0;
363 	int boff = 0;
364 	size_t n;
365 
366 #ifdef DIAGNOSTIC
367 	if (uio->uio_rw != UIO_READ)
368 		panic("nfs_read mode");
369 #endif
370 	if (uio->uio_resid == 0)
371 		return (0);
372 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
373 		return (EINVAL);
374 	td = uio->uio_td;
375 
376 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
377 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
378 		(void)nfs_fsinfo(nmp, vp, td);
379 	if (vp->v_type != VDIR &&
380 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
381 		return (EFBIG);
382 	biosize = vp->v_mount->mnt_stat.f_iosize;
383 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
384 
385 	/*
386 	 * For nfs, cache consistency can only be maintained approximately.
387 	 * Although RFC1094 does not specify the criteria, the following is
388 	 * believed to be compatible with the reference port.
389 	 *
390 	 * NFS:		If local changes have been made and this is a
391 	 *		directory, the directory must be invalidated and
392 	 *		the attribute cache must be cleared.
393 	 *
394 	 *		GETATTR is called to synchronize the file size.
395 	 *
396 	 *		If remote changes are detected local data is flushed
397 	 *		and the cache is invalidated.
398 	 *
399 	 *		NOTE: In the normal case the attribute cache is not
400 	 *		cleared which means GETATTR may use cached data and
401 	 *		not immediately detect changes made on the server.
402 	 */
403 	if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) {
404 		nfs_invaldir(vp);
405 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
406 		if (error)
407 			return (error);
408 		np->n_attrstamp = 0;
409 	}
410 	error = VOP_GETATTR(vp, &vattr);
411 	if (error)
412 		return (error);
413 	if (np->n_flag & NRMODIFIED) {
414 		if (vp->v_type == VDIR)
415 			nfs_invaldir(vp);
416 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
417 		if (error)
418 			return (error);
419 		np->n_flag &= ~NRMODIFIED;
420 	}
421 
422 	/*
423 	 * Loop until uio exhausted or we hit EOF
424 	 */
425 	do {
426 	    bp = NULL;
427 
428 	    switch (vp->v_type) {
429 	    case VREG:
430 		nfsstats.biocache_reads++;
431 		lbn = uio->uio_offset / biosize;
432 		boff = uio->uio_offset & (biosize - 1);
433 		loffset = (off_t)lbn * biosize;
434 
435 		/*
436 		 * Start the read ahead(s), as required.
437 		 */
438 		if (nmp->nm_readahead > 0 && nfs_asyncok(nmp)) {
439 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
440 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
441 			rabn = lbn + 1 + nra;
442 			raoffset = (off_t)rabn * biosize;
443 			if (findblk(vp, raoffset, FINDBLK_TEST) == NULL) {
444 			    rabp = nfs_getcacheblk(vp, raoffset, biosize, td);
445 			    if (!rabp)
446 				return (EINTR);
447 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
448 				rabp->b_cmd = BUF_CMD_READ;
449 				vfs_busy_pages(vp, rabp);
450 				nfs_asyncio(vp, &rabp->b_bio2);
451 			    } else {
452 				brelse(rabp);
453 			    }
454 			}
455 		    }
456 		}
457 
458 		/*
459 		 * Obtain the buffer cache block.  Figure out the buffer size
460 		 * when we are at EOF.  If we are modifying the size of the
461 		 * buffer based on an EOF condition we need to hold
462 		 * nfs_rslock() through obtaining the buffer to prevent
463 		 * a potential writer-appender from messing with n_size.
464 		 * Otherwise we may accidently truncate the buffer and
465 		 * lose dirty data.
466 		 *
467 		 * Note that bcount is *not* DEV_BSIZE aligned.
468 		 */
469 		if (loffset + boff >= np->n_size) {
470 			n = 0;
471 			break;
472 		}
473 		bp = nfs_getcacheblk(vp, loffset, biosize, td);
474 
475 		if (bp == NULL)
476 			return (EINTR);
477 
478 		/*
479 		 * If B_CACHE is not set, we must issue the read.  If this
480 		 * fails, we return an error.
481 		 */
482 		if ((bp->b_flags & B_CACHE) == 0) {
483 			bp->b_cmd = BUF_CMD_READ;
484 			bp->b_bio2.bio_done = nfsiodone_sync;
485 			bp->b_bio2.bio_flags |= BIO_SYNC;
486 			vfs_busy_pages(vp, bp);
487 			error = nfs_doio(vp, &bp->b_bio2, td);
488 			if (error) {
489 				brelse(bp);
490 				return (error);
491 			}
492 		}
493 
494 		/*
495 		 * on is the offset into the current bp.  Figure out how many
496 		 * bytes we can copy out of the bp.  Note that bcount is
497 		 * NOT DEV_BSIZE aligned.
498 		 *
499 		 * Then figure out how many bytes we can copy into the uio.
500 		 */
501 		n = biosize - boff;
502 		if (n > uio->uio_resid)
503 			n = uio->uio_resid;
504 		if (loffset + boff + n > np->n_size)
505 			n = np->n_size - loffset - boff;
506 		break;
507 	    case VLNK:
508 		biosize = min(NFS_MAXPATHLEN, np->n_size);
509 		nfsstats.biocache_readlinks++;
510 		bp = nfs_getcacheblk(vp, (off_t)0, biosize, td);
511 		if (bp == NULL)
512 			return (EINTR);
513 		if ((bp->b_flags & B_CACHE) == 0) {
514 			bp->b_cmd = BUF_CMD_READ;
515 			bp->b_bio2.bio_done = nfsiodone_sync;
516 			bp->b_bio2.bio_flags |= BIO_SYNC;
517 			vfs_busy_pages(vp, bp);
518 			error = nfs_doio(vp, &bp->b_bio2, td);
519 			if (error) {
520 				bp->b_flags |= B_ERROR | B_INVAL;
521 				brelse(bp);
522 				return (error);
523 			}
524 		}
525 		n = szmin(uio->uio_resid, (size_t)bp->b_bcount - bp->b_resid);
526 		boff = 0;
527 		break;
528 	    case VDIR:
529 		nfsstats.biocache_readdirs++;
530 		if (np->n_direofoffset &&
531 		    uio->uio_offset >= np->n_direofoffset
532 		) {
533 			return (0);
534 		}
535 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
536 		boff = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
537 		loffset = uio->uio_offset - boff;
538 		bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td);
539 		if (bp == NULL)
540 			return (EINTR);
541 
542 		if ((bp->b_flags & B_CACHE) == 0) {
543 		    bp->b_cmd = BUF_CMD_READ;
544 		    bp->b_bio2.bio_done = nfsiodone_sync;
545 		    bp->b_bio2.bio_flags |= BIO_SYNC;
546 		    vfs_busy_pages(vp, bp);
547 		    error = nfs_doio(vp, &bp->b_bio2, td);
548 		    if (error)
549 			    brelse(bp);
550 		    while (error == NFSERR_BAD_COOKIE) {
551 			kprintf("got bad cookie vp %p bp %p\n", vp, bp);
552 			nfs_invaldir(vp);
553 			error = nfs_vinvalbuf(vp, 0, 1);
554 			/*
555 			 * Yuck! The directory has been modified on the
556 			 * server. The only way to get the block is by
557 			 * reading from the beginning to get all the
558 			 * offset cookies.
559 			 *
560 			 * Leave the last bp intact unless there is an error.
561 			 * Loop back up to the while if the error is another
562 			 * NFSERR_BAD_COOKIE (double yuch!).
563 			 */
564 			for (i = 0; i <= lbn && !error; i++) {
565 			    if (np->n_direofoffset
566 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
567 				    return (0);
568 			    bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ,
569 						 NFS_DIRBLKSIZ, td);
570 			    if (!bp)
571 				return (EINTR);
572 			    if ((bp->b_flags & B_CACHE) == 0) {
573 				    bp->b_cmd = BUF_CMD_READ;
574 				    bp->b_bio2.bio_done = nfsiodone_sync;
575 				    bp->b_bio2.bio_flags |= BIO_SYNC;
576 				    vfs_busy_pages(vp, bp);
577 				    error = nfs_doio(vp, &bp->b_bio2, td);
578 				    /*
579 				     * no error + B_INVAL == directory EOF,
580 				     * use the block.
581 				     */
582 				    if (error == 0 && (bp->b_flags & B_INVAL))
583 					    break;
584 			    }
585 			    /*
586 			     * An error will throw away the block and the
587 			     * for loop will break out.  If no error and this
588 			     * is not the block we want, we throw away the
589 			     * block and go for the next one via the for loop.
590 			     */
591 			    if (error || i < lbn)
592 				    brelse(bp);
593 			}
594 		    }
595 		    /*
596 		     * The above while is repeated if we hit another cookie
597 		     * error.  If we hit an error and it wasn't a cookie error,
598 		     * we give up.
599 		     */
600 		    if (error)
601 			    return (error);
602 		}
603 
604 		/*
605 		 * If not eof and read aheads are enabled, start one.
606 		 * (You need the current block first, so that you have the
607 		 *  directory offset cookie of the next block.)
608 		 */
609 		if (nmp->nm_readahead > 0 && nfs_asyncok(nmp) &&
610 		    (bp->b_flags & B_INVAL) == 0 &&
611 		    (np->n_direofoffset == 0 ||
612 		    loffset + NFS_DIRBLKSIZ < np->n_direofoffset) &&
613 		    findblk(vp, loffset + NFS_DIRBLKSIZ, FINDBLK_TEST) == NULL
614 		) {
615 			rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ,
616 					       NFS_DIRBLKSIZ, td);
617 			if (rabp) {
618 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
619 				rabp->b_cmd = BUF_CMD_READ;
620 				vfs_busy_pages(vp, rabp);
621 				nfs_asyncio(vp, &rabp->b_bio2);
622 			    } else {
623 				brelse(rabp);
624 			    }
625 			}
626 		}
627 		/*
628 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
629 		 * chopped for the EOF condition, we cannot tell how large
630 		 * NFS directories are going to be until we hit EOF.  So
631 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
632 		 * it just so happens that b_resid will effectively chop it
633 		 * to EOF.  *BUT* this information is lost if the buffer goes
634 		 * away and is reconstituted into a B_CACHE state ( due to
635 		 * being VMIO ) later.  So we keep track of the directory eof
636 		 * in np->n_direofoffset and chop it off as an extra step
637 		 * right here.
638 		 */
639 		n = szmin(uio->uio_resid,
640 			  NFS_DIRBLKSIZ - bp->b_resid - (size_t)boff);
641 		if (np->n_direofoffset &&
642 		    n > (size_t)(np->n_direofoffset - uio->uio_offset)) {
643 			n = (size_t)(np->n_direofoffset - uio->uio_offset);
644 		}
645 		break;
646 	    default:
647 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
648 		n = 0;
649 		break;
650 	    };
651 
652 	    switch (vp->v_type) {
653 	    case VREG:
654 		if (n > 0)
655 		    error = uiomove(bp->b_data + boff, n, uio);
656 		break;
657 	    case VLNK:
658 		if (n > 0)
659 		    error = uiomove(bp->b_data + boff, n, uio);
660 		n = 0;
661 		break;
662 	    case VDIR:
663 		if (n > 0) {
664 		    off_t old_off = uio->uio_offset;
665 		    caddr_t cpos, epos;
666 		    struct nfs_dirent *dp;
667 
668 		    /*
669 		     * We are casting cpos to nfs_dirent, it must be
670 		     * int-aligned.
671 		     */
672 		    if (boff & 3) {
673 			error = EINVAL;
674 			break;
675 		    }
676 
677 		    cpos = bp->b_data + boff;
678 		    epos = bp->b_data + boff + n;
679 		    while (cpos < epos && error == 0 && uio->uio_resid > 0) {
680 			    dp = (struct nfs_dirent *)cpos;
681 			    error = nfs_check_dirent(dp, (int)(epos - cpos));
682 			    if (error)
683 				    break;
684 			    if (vop_write_dirent(&error, uio, dp->nfs_ino,
685 				dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) {
686 				    break;
687 			    }
688 			    cpos += dp->nfs_reclen;
689 		    }
690 		    n = 0;
691 		    if (error == 0) {
692 			    uio->uio_offset = old_off + cpos -
693 					      bp->b_data - boff;
694 		    }
695 		}
696 		break;
697 	    default:
698 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
699 	    }
700 	    if (bp)
701 		    brelse(bp);
702 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
703 	return (error);
704 }
705 
706 /*
707  * Userland can supply any 'seek' offset when reading a NFS directory.
708  * Validate the structure so we don't panic the kernel.  Note that
709  * the element name is nul terminated and the nul is not included
710  * in nfs_namlen.
711  */
712 static
713 int
714 nfs_check_dirent(struct nfs_dirent *dp, int maxlen)
715 {
716 	int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]);
717 
718 	if (nfs_name_off >= maxlen)
719 		return (EINVAL);
720 	if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen)
721 		return (EINVAL);
722 	if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen)
723 		return (EINVAL);
724 	if (dp->nfs_reclen & 3)
725 		return (EINVAL);
726 	return (0);
727 }
728 
729 /*
730  * Vnode op for write using bio
731  *
732  * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
733  *	     struct ucred *a_cred)
734  */
735 int
736 nfs_write(struct vop_write_args *ap)
737 {
738 	struct uio *uio = ap->a_uio;
739 	struct thread *td = uio->uio_td;
740 	struct vnode *vp = ap->a_vp;
741 	struct nfsnode *np = VTONFS(vp);
742 	int ioflag = ap->a_ioflag;
743 	struct buf *bp;
744 	struct vattr vattr;
745 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
746 	off_t loffset;
747 	int boff, bytes;
748 	int error = 0;
749 	int haverslock = 0;
750 	int bcount;
751 	int biosize;
752 
753 #ifdef DIAGNOSTIC
754 	if (uio->uio_rw != UIO_WRITE)
755 		panic("nfs_write mode");
756 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
757 		panic("nfs_write proc");
758 #endif
759 	if (vp->v_type != VREG)
760 		return (EIO);
761 	if (np->n_flag & NWRITEERR) {
762 		np->n_flag &= ~NWRITEERR;
763 		return (np->n_error);
764 	}
765 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
766 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
767 		(void)nfs_fsinfo(nmp, vp, td);
768 
769 	/*
770 	 * Synchronously flush pending buffers if we are in synchronous
771 	 * mode or if we are appending.
772 	 */
773 	if (ioflag & (IO_APPEND | IO_SYNC)) {
774 		if (np->n_flag & NLMODIFIED) {
775 			np->n_attrstamp = 0;
776 			error = nfs_flush(vp, MNT_WAIT, td, 0);
777 			/* error = nfs_vinvalbuf(vp, V_SAVE, 1); */
778 			if (error)
779 				return (error);
780 		}
781 	}
782 
783 	/*
784 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
785 	 * get the append lock.
786 	 */
787 restart:
788 	if (ioflag & IO_APPEND) {
789 		np->n_attrstamp = 0;
790 		error = VOP_GETATTR(vp, &vattr);
791 		if (error)
792 			return (error);
793 		uio->uio_offset = np->n_size;
794 	}
795 
796 	if (uio->uio_offset < 0)
797 		return (EINVAL);
798 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
799 		return (EFBIG);
800 	if (uio->uio_resid == 0)
801 		return (0);
802 
803 	/*
804 	 * We need to obtain the rslock if we intend to modify np->n_size
805 	 * in order to guarentee the append point with multiple contending
806 	 * writers, to guarentee that no other appenders modify n_size
807 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
808 	 * accidently truncating data written by another appender due to
809 	 * the race), and to ensure that the buffer is populated prior to
810 	 * our extending of the file.  We hold rslock through the entire
811 	 * operation.
812 	 *
813 	 * Note that we do not synchronize the case where someone truncates
814 	 * the file while we are appending to it because attempting to lock
815 	 * this case may deadlock other parts of the system unexpectedly.
816 	 */
817 	if ((ioflag & IO_APPEND) ||
818 	    uio->uio_offset + uio->uio_resid > np->n_size) {
819 		switch(nfs_rslock(np)) {
820 		case ENOLCK:
821 			goto restart;
822 			/* not reached */
823 		case EINTR:
824 		case ERESTART:
825 			return(EINTR);
826 			/* not reached */
827 		default:
828 			break;
829 		}
830 		haverslock = 1;
831 	}
832 
833 	/*
834 	 * Maybe this should be above the vnode op call, but so long as
835 	 * file servers have no limits, i don't think it matters
836 	 */
837 	if (td->td_proc && uio->uio_offset + uio->uio_resid >
838 	      td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
839 		lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
840 		if (haverslock)
841 			nfs_rsunlock(np);
842 		return (EFBIG);
843 	}
844 
845 	biosize = vp->v_mount->mnt_stat.f_iosize;
846 
847 	do {
848 		nfsstats.biocache_writes++;
849 		boff = uio->uio_offset & (biosize-1);
850 		loffset = uio->uio_offset - boff;
851 		bytes = (int)szmin((unsigned)(biosize - boff), uio->uio_resid);
852 again:
853 		/*
854 		 * Handle direct append and file extension cases, calculate
855 		 * unaligned buffer size.  When extending B_CACHE will be
856 		 * set if possible.  See UIO_NOCOPY note below.
857 		 */
858 		if (uio->uio_offset + bytes > np->n_size) {
859 			np->n_flag |= NLMODIFIED;
860 			bp = nfs_meta_setsize(vp, td, loffset, boff, bytes);
861 		} else {
862 			bp = nfs_getcacheblk(vp, loffset, biosize, td);
863 		}
864 		if (bp == NULL) {
865 			error = EINTR;
866 			break;
867 		}
868 
869 		/*
870 		 * Actual bytes in buffer which we care about
871 		 */
872 		if (loffset + biosize < np->n_size)
873 			bcount = biosize;
874 		else
875 			bcount = (int)(np->n_size - loffset);
876 
877 		/*
878 		 * Avoid a read by setting B_CACHE where the data we
879 		 * intend to write covers the entire buffer.  Note
880 		 * that the buffer may have been set to B_CACHE by
881 		 * nfs_meta_setsize() above or otherwise inherited the
882 		 * flag, but if B_CACHE isn't set the buffer may be
883 		 * uninitialized and must be zero'd to accomodate
884 		 * future seek+write's.
885 		 *
886 		 * See the comments in kern/vfs_bio.c's getblk() for
887 		 * more information.
888 		 *
889 		 * When doing a UIO_NOCOPY write the buffer is not
890 		 * overwritten and we cannot just set B_CACHE unconditionally
891 		 * for full-block writes.
892 		 */
893 		if (boff == 0 && bytes == biosize &&
894 		    uio->uio_segflg != UIO_NOCOPY) {
895 			bp->b_flags |= B_CACHE;
896 			bp->b_flags &= ~(B_ERROR | B_INVAL);
897 		}
898 
899 		/*
900 		 * b_resid may be set due to file EOF if we extended out.
901 		 * The NFS bio code will zero the difference anyway so
902 		 * just acknowledged the fact and set b_resid to 0.
903 		 */
904 		if ((bp->b_flags & B_CACHE) == 0) {
905 			bp->b_cmd = BUF_CMD_READ;
906 			bp->b_bio2.bio_done = nfsiodone_sync;
907 			bp->b_bio2.bio_flags |= BIO_SYNC;
908 			vfs_busy_pages(vp, bp);
909 			error = nfs_doio(vp, &bp->b_bio2, td);
910 			if (error) {
911 				brelse(bp);
912 				break;
913 			}
914 			bp->b_resid = 0;
915 		}
916 		np->n_flag |= NLMODIFIED;
917 
918 		/*
919 		 * If dirtyend exceeds file size, chop it down.  This should
920 		 * not normally occur but there is an append race where it
921 		 * might occur XXX, so we log it.
922 		 *
923 		 * If the chopping creates a reverse-indexed or degenerate
924 		 * situation with dirtyoff/end, we 0 both of them.
925 		 */
926 		if (bp->b_dirtyend > bcount) {
927 			kprintf("NFS append race @%08llx:%d\n",
928 			    (long long)bp->b_bio2.bio_offset,
929 			    bp->b_dirtyend - bcount);
930 			bp->b_dirtyend = bcount;
931 		}
932 
933 		if (bp->b_dirtyoff >= bp->b_dirtyend)
934 			bp->b_dirtyoff = bp->b_dirtyend = 0;
935 
936 		/*
937 		 * If the new write will leave a contiguous dirty
938 		 * area, just update the b_dirtyoff and b_dirtyend,
939 		 * otherwise force a write rpc of the old dirty area.
940 		 *
941 		 * While it is possible to merge discontiguous writes due to
942 		 * our having a B_CACHE buffer ( and thus valid read data
943 		 * for the hole), we don't because it could lead to
944 		 * significant cache coherency problems with multiple clients,
945 		 * especially if locking is implemented later on.
946 		 *
947 		 * as an optimization we could theoretically maintain
948 		 * a linked list of discontinuous areas, but we would still
949 		 * have to commit them separately so there isn't much
950 		 * advantage to it except perhaps a bit of asynchronization.
951 		 */
952 		if (bp->b_dirtyend > 0 &&
953 		    (boff > bp->b_dirtyend ||
954 		     (boff + bytes) < bp->b_dirtyoff)
955 		) {
956 			if (bwrite(bp) == EINTR) {
957 				error = EINTR;
958 				break;
959 			}
960 			goto again;
961 		}
962 
963 		error = uiomove(bp->b_data + boff, bytes, uio);
964 
965 		/*
966 		 * Since this block is being modified, it must be written
967 		 * again and not just committed.  Since write clustering does
968 		 * not work for the stage 1 data write, only the stage 2
969 		 * commit rpc, we have to clear B_CLUSTEROK as well.
970 		 */
971 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
972 
973 		if (error) {
974 			brelse(bp);
975 			break;
976 		}
977 
978 		/*
979 		 * Only update dirtyoff/dirtyend if not a degenerate
980 		 * condition.
981 		 *
982 		 * The underlying VM pages have been marked valid by
983 		 * virtue of acquiring the bp.  Because the entire buffer
984 		 * is marked dirty we do not have to worry about cleaning
985 		 * out the related dirty bits (and wouldn't really know
986 		 * how to deal with byte ranges anyway)
987 		 */
988 		if (bytes) {
989 			if (bp->b_dirtyend > 0) {
990 				bp->b_dirtyoff = imin(boff, bp->b_dirtyoff);
991 				bp->b_dirtyend = imax(boff + bytes,
992 						      bp->b_dirtyend);
993 			} else {
994 				bp->b_dirtyoff = boff;
995 				bp->b_dirtyend = boff + bytes;
996 			}
997 		}
998 
999 		/*
1000 		 * If the lease is non-cachable or IO_SYNC do bwrite().
1001 		 *
1002 		 * IO_INVAL appears to be unused.  The idea appears to be
1003 		 * to turn off caching in this case.  Very odd.  XXX
1004 		 *
1005 		 * If nfs_async is set bawrite() will use an unstable write
1006 		 * (build dirty bufs on the server), so we might as well
1007 		 * push it out with bawrite().  If nfs_async is not set we
1008 		 * use bdwrite() to cache dirty bufs on the client.
1009 		 */
1010 		if (ioflag & IO_SYNC) {
1011 			if (ioflag & IO_INVAL)
1012 				bp->b_flags |= B_NOCACHE;
1013 			error = bwrite(bp);
1014 			if (error)
1015 				break;
1016 		} else if (boff + bytes == biosize && nfs_async) {
1017 			bawrite(bp);
1018 		} else {
1019 			bdwrite(bp);
1020 		}
1021 	} while (uio->uio_resid > 0 && bytes > 0);
1022 
1023 	if (haverslock)
1024 		nfs_rsunlock(np);
1025 
1026 	return (error);
1027 }
1028 
1029 /*
1030  * Get an nfs cache block.
1031  *
1032  * Allocate a new one if the block isn't currently in the cache
1033  * and return the block marked busy. If the calling process is
1034  * interrupted by a signal for an interruptible mount point, return
1035  * NULL.
1036  *
1037  * The caller must carefully deal with the possible B_INVAL state of
1038  * the buffer.  nfs_startio() clears B_INVAL (and nfs_asyncio() clears it
1039  * indirectly), so synchronous reads can be issued without worrying about
1040  * the B_INVAL state.  We have to be a little more careful when dealing
1041  * with writes (see comments in nfs_write()) when extending a file past
1042  * its EOF.
1043  */
1044 static struct buf *
1045 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td)
1046 {
1047 	struct buf *bp;
1048 	struct mount *mp;
1049 	struct nfsmount *nmp;
1050 
1051 	mp = vp->v_mount;
1052 	nmp = VFSTONFS(mp);
1053 
1054 	if (nmp->nm_flag & NFSMNT_INT) {
1055 		bp = getblk(vp, loffset, size, GETBLK_PCATCH, 0);
1056 		while (bp == NULL) {
1057 			if (nfs_sigintr(nmp, NULL, td))
1058 				return (NULL);
1059 			bp = getblk(vp, loffset, size, 0, 2 * hz);
1060 		}
1061 	} else {
1062 		bp = getblk(vp, loffset, size, 0, 0);
1063 	}
1064 
1065 	/*
1066 	 * bio2, the 'device' layer.  Since BIOs use 64 bit byte offsets
1067 	 * now, no translation is necessary.
1068 	 */
1069 	bp->b_bio2.bio_offset = loffset;
1070 	return (bp);
1071 }
1072 
1073 /*
1074  * Flush and invalidate all dirty buffers. If another process is already
1075  * doing the flush, just wait for completion.
1076  */
1077 int
1078 nfs_vinvalbuf(struct vnode *vp, int flags, int intrflg)
1079 {
1080 	struct nfsnode *np = VTONFS(vp);
1081 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1082 	int error = 0, slpflag, slptimeo;
1083 	thread_t td = curthread;
1084 
1085 	if (vp->v_flag & VRECLAIMED)
1086 		return (0);
1087 
1088 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1089 		intrflg = 0;
1090 	if (intrflg) {
1091 		slpflag = PCATCH;
1092 		slptimeo = 2 * hz;
1093 	} else {
1094 		slpflag = 0;
1095 		slptimeo = 0;
1096 	}
1097 	/*
1098 	 * First wait for any other process doing a flush to complete.
1099 	 */
1100 	while (np->n_flag & NFLUSHINPROG) {
1101 		np->n_flag |= NFLUSHWANT;
1102 		error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
1103 		if (error && intrflg && nfs_sigintr(nmp, NULL, td))
1104 			return (EINTR);
1105 	}
1106 
1107 	/*
1108 	 * Now, flush as required.
1109 	 */
1110 	np->n_flag |= NFLUSHINPROG;
1111 	error = vinvalbuf(vp, flags, slpflag, 0);
1112 	while (error) {
1113 		if (intrflg && nfs_sigintr(nmp, NULL, td)) {
1114 			np->n_flag &= ~NFLUSHINPROG;
1115 			if (np->n_flag & NFLUSHWANT) {
1116 				np->n_flag &= ~NFLUSHWANT;
1117 				wakeup((caddr_t)&np->n_flag);
1118 			}
1119 			return (EINTR);
1120 		}
1121 		error = vinvalbuf(vp, flags, 0, slptimeo);
1122 	}
1123 	np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG);
1124 	if (np->n_flag & NFLUSHWANT) {
1125 		np->n_flag &= ~NFLUSHWANT;
1126 		wakeup((caddr_t)&np->n_flag);
1127 	}
1128 	return (0);
1129 }
1130 
1131 /*
1132  * Return true (non-zero) if the txthread and rxthread are operational
1133  * and we do not already have too many not-yet-started BIO's built up.
1134  */
1135 int
1136 nfs_asyncok(struct nfsmount *nmp)
1137 {
1138 	return (nmp->nm_bioqlen < nfs_maxasyncbio &&
1139 		nmp->nm_bioqlen < nmp->nm_maxasync_scaled / NFS_ASYSCALE &&
1140 		nmp->nm_rxstate <= NFSSVC_PENDING &&
1141 		nmp->nm_txstate <= NFSSVC_PENDING);
1142 }
1143 
1144 /*
1145  * The read-ahead code calls this to queue a bio to the txthread.
1146  *
1147  * We don't touch the bio otherwise... that is, we do not even
1148  * construct or send the initial rpc.  The txthread will do it
1149  * for us.
1150  *
1151  * NOTE!  nm_bioqlen is not decremented until the request completes,
1152  *	  so it does not reflect the number of bio's on bioq.
1153  */
1154 void
1155 nfs_asyncio(struct vnode *vp, struct bio *bio)
1156 {
1157 	struct buf *bp = bio->bio_buf;
1158 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1159 
1160 	KKASSERT(vp->v_tag == VT_NFS);
1161 	BUF_KERNPROC(bp);
1162 	bio->bio_driver_info = vp;
1163 	crit_enter();
1164 	TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act);
1165 	atomic_add_int(&nmp->nm_bioqlen, 1);
1166 	crit_exit();
1167 	nfssvc_iod_writer_wakeup(nmp);
1168 }
1169 
1170 /*
1171  * nfs_dio()	- Execute a BIO operation synchronously.  The BIO will be
1172  *		  completed and its error returned.  The caller is responsible
1173  *		  for brelse()ing it.  ONLY USE FOR BIO_SYNC IOs!  Otherwise
1174  *		  our error probe will be against an invalid pointer.
1175  *
1176  * nfs_startio()- Execute a BIO operation assynchronously.
1177  *
1178  * NOTE: nfs_asyncio() is used to initiate an asynchronous BIO operation,
1179  *	 which basically just queues it to the txthread.  nfs_startio()
1180  *	 actually initiates the I/O AFTER it has gotten to the txthread.
1181  *
1182  * NOTE: td might be NULL.
1183  *
1184  * NOTE: Caller has already busied the I/O.
1185  */
1186 void
1187 nfs_startio(struct vnode *vp, struct bio *bio, struct thread *td)
1188 {
1189 	struct buf *bp = bio->bio_buf;
1190 	struct nfsnode *np;
1191 	struct nfsmount *nmp;
1192 
1193 	KKASSERT(vp->v_tag == VT_NFS);
1194 	np = VTONFS(vp);
1195 	nmp = VFSTONFS(vp->v_mount);
1196 
1197 	/*
1198 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1199 	 * do this here so we do not have to do it in all the code that
1200 	 * calls us.
1201 	 */
1202 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1203 
1204 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
1205 		("nfs_doio: bp %p already marked done!", bp));
1206 
1207 	if (bp->b_cmd == BUF_CMD_READ) {
1208 	    switch (vp->v_type) {
1209 	    case VREG:
1210 		nfsstats.read_bios++;
1211 		nfs_readrpc_bio(vp, bio);
1212 		break;
1213 	    case VLNK:
1214 #if 0
1215 		bio->bio_offset = 0;
1216 		nfsstats.readlink_bios++;
1217 		nfs_readlinkrpc_bio(vp, bio);
1218 #else
1219 		nfs_doio(vp, bio, td);
1220 #endif
1221 		break;
1222 	    case VDIR:
1223 		/*
1224 		 * NOTE: If nfs_readdirplusrpc_bio() is requested but
1225 		 *	 not supported, it will chain to
1226 		 *	 nfs_readdirrpc_bio().
1227 		 */
1228 #if 0
1229 		nfsstats.readdir_bios++;
1230 		uiop->uio_offset = bio->bio_offset;
1231 		if (nmp->nm_flag & NFSMNT_RDIRPLUS)
1232 			nfs_readdirplusrpc_bio(vp, bio);
1233 		else
1234 			nfs_readdirrpc_bio(vp, bio);
1235 #else
1236 		nfs_doio(vp, bio, td);
1237 #endif
1238 		break;
1239 	    default:
1240 		kprintf("nfs_doio:  type %x unexpected\n",vp->v_type);
1241 		bp->b_flags |= B_ERROR;
1242 		bp->b_error = EINVAL;
1243 		biodone(bio);
1244 		break;
1245 	    }
1246 	} else {
1247 	    /*
1248 	     * If we only need to commit, try to commit.  If this fails
1249 	     * it will chain through to the write.  Basically all the logic
1250 	     * in nfs_doio() is replicated.
1251 	     */
1252 	    KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1253 	    if (bp->b_flags & B_NEEDCOMMIT)
1254 		nfs_commitrpc_bio(vp, bio);
1255 	    else
1256 		nfs_writerpc_bio(vp, bio);
1257 	}
1258 }
1259 
1260 int
1261 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td)
1262 {
1263 	struct buf *bp = bio->bio_buf;
1264 	struct uio *uiop;
1265 	struct nfsnode *np;
1266 	struct nfsmount *nmp;
1267 	int error = 0;
1268 	int iomode, must_commit;
1269 	size_t n;
1270 	struct uio uio;
1271 	struct iovec io;
1272 
1273 	KKASSERT(vp->v_tag == VT_NFS);
1274 	np = VTONFS(vp);
1275 	nmp = VFSTONFS(vp->v_mount);
1276 	uiop = &uio;
1277 	uiop->uio_iov = &io;
1278 	uiop->uio_iovcnt = 1;
1279 	uiop->uio_segflg = UIO_SYSSPACE;
1280 	uiop->uio_td = td;
1281 
1282 	/*
1283 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1284 	 * do this here so we do not have to do it in all the code that
1285 	 * calls us.
1286 	 */
1287 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1288 
1289 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
1290 		("nfs_doio: bp %p already marked done!", bp));
1291 
1292 	if (bp->b_cmd == BUF_CMD_READ) {
1293 	    io.iov_len = uiop->uio_resid = (size_t)bp->b_bcount;
1294 	    io.iov_base = bp->b_data;
1295 	    uiop->uio_rw = UIO_READ;
1296 
1297 	    switch (vp->v_type) {
1298 	    case VREG:
1299 		/*
1300 		 * When reading from a regular file zero-fill any residual.
1301 		 * Note that this residual has nothing to do with NFS short
1302 		 * reads, which nfs_readrpc_uio() will handle for us.
1303 		 *
1304 		 * We have to do this because when we are write extending
1305 		 * a file the server may not have the same notion of
1306 		 * filesize as we do.  Our BIOs should already be sized
1307 		 * (b_bcount) to account for the file EOF.
1308 		 */
1309 		nfsstats.read_bios++;
1310 		uiop->uio_offset = bio->bio_offset;
1311 		error = nfs_readrpc_uio(vp, uiop);
1312 		if (error == 0 && uiop->uio_resid) {
1313 			n = (size_t)bp->b_bcount - uiop->uio_resid;
1314 			bzero(bp->b_data + n, bp->b_bcount - n);
1315 			uiop->uio_resid = 0;
1316 		}
1317 		if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1318 		    np->n_mtime != np->n_vattr.va_mtime.tv_sec) {
1319 			uprintf("Process killed due to text file modification\n");
1320 			ksignal(td->td_proc, SIGKILL);
1321 		}
1322 		break;
1323 	    case VLNK:
1324 		uiop->uio_offset = 0;
1325 		nfsstats.readlink_bios++;
1326 		error = nfs_readlinkrpc_uio(vp, uiop);
1327 		break;
1328 	    case VDIR:
1329 		nfsstats.readdir_bios++;
1330 		uiop->uio_offset = bio->bio_offset;
1331 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1332 			error = nfs_readdirplusrpc_uio(vp, uiop);
1333 			if (error == NFSERR_NOTSUPP)
1334 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1335 		}
1336 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1337 			error = nfs_readdirrpc_uio(vp, uiop);
1338 		/*
1339 		 * end-of-directory sets B_INVAL but does not generate an
1340 		 * error.
1341 		 */
1342 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1343 			bp->b_flags |= B_INVAL;
1344 		break;
1345 	    default:
1346 		kprintf("nfs_doio:  type %x unexpected\n",vp->v_type);
1347 		break;
1348 	    };
1349 	    if (error) {
1350 		bp->b_flags |= B_ERROR;
1351 		bp->b_error = error;
1352 	    }
1353 	    bp->b_resid = uiop->uio_resid;
1354 	} else {
1355 	    /*
1356 	     * If we only need to commit, try to commit.
1357 	     *
1358 	     * NOTE: The I/O has already been staged for the write and
1359 	     *	     its pages busied, so b_dirtyoff/end is valid.
1360 	     */
1361 	    KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1362 	    if (bp->b_flags & B_NEEDCOMMIT) {
1363 		    int retv;
1364 		    off_t off;
1365 
1366 		    off = bio->bio_offset + bp->b_dirtyoff;
1367 		    retv = nfs_commitrpc_uio(vp, off,
1368 					     bp->b_dirtyend - bp->b_dirtyoff,
1369 					     td);
1370 		    if (retv == 0) {
1371 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1372 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1373 			    bp->b_resid = 0;
1374 			    biodone(bio);
1375 			    return(0);
1376 		    }
1377 		    if (retv == NFSERR_STALEWRITEVERF) {
1378 			    nfs_clearcommit(vp->v_mount);
1379 		    }
1380 	    }
1381 
1382 	    /*
1383 	     * Setup for actual write
1384 	     */
1385 	    if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1386 		bp->b_dirtyend = np->n_size - bio->bio_offset;
1387 
1388 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1389 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1390 		    - bp->b_dirtyoff;
1391 		uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff;
1392 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1393 		uiop->uio_rw = UIO_WRITE;
1394 		nfsstats.write_bios++;
1395 
1396 		if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1397 		    iomode = NFSV3WRITE_UNSTABLE;
1398 		else
1399 		    iomode = NFSV3WRITE_FILESYNC;
1400 
1401 		must_commit = 0;
1402 		error = nfs_writerpc_uio(vp, uiop, &iomode, &must_commit);
1403 
1404 		/*
1405 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1406 		 * to cluster the buffers needing commit.  This will allow
1407 		 * the system to submit a single commit rpc for the whole
1408 		 * cluster.  We can do this even if the buffer is not 100%
1409 		 * dirty (relative to the NFS blocksize), so we optimize the
1410 		 * append-to-file-case.
1411 		 *
1412 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1413 		 * cleared because write clustering only works for commit
1414 		 * rpc's, not for the data portion of the write).
1415 		 */
1416 
1417 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1418 		    bp->b_flags |= B_NEEDCOMMIT;
1419 		    if (bp->b_dirtyoff == 0
1420 			&& bp->b_dirtyend == bp->b_bcount)
1421 			bp->b_flags |= B_CLUSTEROK;
1422 		} else {
1423 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1424 		}
1425 
1426 		/*
1427 		 * For an interrupted write, the buffer is still valid
1428 		 * and the write hasn't been pushed to the server yet,
1429 		 * so we can't set B_ERROR and report the interruption
1430 		 * by setting B_EINTR. For the async case, B_EINTR
1431 		 * is not relevant, so the rpc attempt is essentially
1432 		 * a noop.  For the case of a V3 write rpc not being
1433 		 * committed to stable storage, the block is still
1434 		 * dirty and requires either a commit rpc or another
1435 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1436 		 * the block is reused. This is indicated by setting
1437 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1438 		 *
1439 		 * If the buffer is marked B_PAGING, it does not reside on
1440 		 * the vp's paging queues so we cannot call bdirty().  The
1441 		 * bp in this case is not an NFS cache block so we should
1442 		 * be safe. XXX
1443 		 */
1444     		if (error == EINTR
1445 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1446 			crit_enter();
1447 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1448 			if ((bp->b_flags & B_PAGING) == 0)
1449 			    bdirty(bp);
1450 			if (error)
1451 			    bp->b_flags |= B_EINTR;
1452 			crit_exit();
1453 	    	} else {
1454 		    if (error) {
1455 			bp->b_flags |= B_ERROR;
1456 			bp->b_error = np->n_error = error;
1457 			np->n_flag |= NWRITEERR;
1458 		    }
1459 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1460 		}
1461 		if (must_commit)
1462 		    nfs_clearcommit(vp->v_mount);
1463 		bp->b_resid = uiop->uio_resid;
1464 	    } else {
1465 		bp->b_resid = 0;
1466 	    }
1467 	}
1468 
1469 	/*
1470 	 * I/O was run synchronously, biodone() it and calculate the
1471 	 * error to return.
1472 	 */
1473 	biodone(bio);
1474 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
1475 	if (bp->b_flags & B_EINTR)
1476 		return (EINTR);
1477 	if (bp->b_flags & B_ERROR)
1478 		return (bp->b_error ? bp->b_error : EIO);
1479 	return (0);
1480 }
1481 
1482 /*
1483  * Used to aid in handling ftruncate() and non-trivial write-extend
1484  * operations on the NFS client side.  Note that trivial write-extend
1485  * operations (appending with no write hole) are handled by nfs_write()
1486  * directly to avoid silly flushes.
1487  *
1488  * Truncation creates a number of special problems for NFS.  We have to
1489  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1490  * we have to properly handle VM pages or (potentially dirty) buffers
1491  * that straddle the truncation point.
1492  *
1493  * File extension no longer has an issue now that the buffer size is
1494  * fixed.  When extending the intended overwrite area is specified
1495  * by (boff, bytes).  This function uses the parameters to determine
1496  * what areas must be zerod.  If there are no gaps we set B_CACHE.
1497  */
1498 struct buf *
1499 nfs_meta_setsize(struct vnode *vp, struct thread *td, off_t nbase,
1500 		 int boff, int bytes)
1501 {
1502 
1503 	struct nfsnode *np = VTONFS(vp);
1504 	off_t osize = np->n_size;
1505 	off_t nsize;
1506 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1507 	int error = 0;
1508 	struct buf *bp;
1509 
1510 	nsize = nbase + boff + bytes;
1511 	np->n_size = nsize;
1512 
1513 	if (nsize < osize) {
1514 		/*
1515 		 * vtruncbuf() doesn't get the buffer overlapping the
1516 		 * truncation point, but it will invalidate pages in
1517 		 * that buffer and zero the appropriate byte range in
1518 		 * the page straddling EOF.
1519 		 */
1520 		error = vtruncbuf(vp, nsize, biosize);
1521 
1522 		/*
1523 		 * NFS doesn't do a good job tracking changes in the EOF
1524 		 * so it may not revisit the buffer if the file is extended.
1525 		 *
1526 		 * After truncating just clear B_CACHE on the buffer
1527 		 * straddling EOF.  If the buffer is dirty then clean
1528 		 * out the portion beyond the file EOF.
1529 		 */
1530 		if (error) {
1531 			bp = NULL;
1532 		} else {
1533 			bp = nfs_getcacheblk(vp, nbase, biosize, td);
1534 			if (bp->b_flags & B_DELWRI) {
1535 				if (bp->b_dirtyoff > bp->b_bcount)
1536 					bp->b_dirtyoff = bp->b_bcount;
1537 				if (bp->b_dirtyend > bp->b_bcount)
1538 					bp->b_dirtyend = bp->b_bcount;
1539 				boff = (int)nsize & (biosize - 1);
1540 				bzero(bp->b_data + boff, biosize - boff);
1541 			} else if (nsize != nbase) {
1542 				boff = (int)nsize & (biosize - 1);
1543 				bzero(bp->b_data + boff, biosize - boff);
1544 			}
1545 		}
1546 	} else {
1547 		/*
1548 		 * The newly expanded portions of the buffer should already
1549 		 * be zero'd out if B_CACHE is set.  If B_CACHE is not
1550 		 * set and the buffer is beyond osize we can safely zero it
1551 		 * and set B_CACHE to avoid issuing unnecessary degenerate
1552 		 * read rpcs.
1553 		 *
1554 		 * Don't do this if the caller is going to overwrite the
1555 		 * entire buffer anyway (and also don't set B_CACHE!).
1556 		 * This allows the caller to optimize the operation.
1557 		 */
1558 		KKASSERT(nsize >= 0);
1559 		vnode_pager_setsize(vp, (vm_ooffset_t)nsize);
1560 
1561 		bp = nfs_getcacheblk(vp, nbase, biosize, td);
1562 		if ((bp->b_flags & B_CACHE) == 0 && nbase >= osize &&
1563 		    !(boff == 0 && bytes == biosize)
1564 		) {
1565 			bzero(bp->b_data, biosize);
1566 			bp->b_flags |= B_CACHE;
1567 			bp->b_flags &= ~(B_ERROR | B_INVAL);
1568 		}
1569 	}
1570 	return(bp);
1571 }
1572 
1573 /*
1574  * Synchronous completion for nfs_doio.  Call bpdone() with elseit=FALSE.
1575  * Caller is responsible for brelse()'ing the bp.
1576  */
1577 static void
1578 nfsiodone_sync(struct bio *bio)
1579 {
1580 	bio->bio_flags = 0;
1581 	bpdone(bio->bio_buf, 0);
1582 }
1583 
1584 /*
1585  * nfs read rpc - BIO version
1586  */
1587 void
1588 nfs_readrpc_bio(struct vnode *vp, struct bio *bio)
1589 {
1590 	struct buf *bp = bio->bio_buf;
1591 	u_int32_t *tl;
1592 	struct nfsmount *nmp;
1593 	int error = 0, len, tsiz;
1594 	struct nfsm_info *info;
1595 
1596 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1597 	info->mrep = NULL;
1598 	info->v3 = NFS_ISV3(vp);
1599 
1600 	nmp = VFSTONFS(vp->v_mount);
1601 	tsiz = bp->b_bcount;
1602 	KKASSERT(tsiz <= nmp->nm_rsize);
1603 	if (bio->bio_offset + tsiz > nmp->nm_maxfilesize) {
1604 		error = EFBIG;
1605 		goto nfsmout;
1606 	}
1607 	nfsstats.rpccnt[NFSPROC_READ]++;
1608 	len = tsiz;
1609 	nfsm_reqhead(info, vp, NFSPROC_READ,
1610 		     NFSX_FH(info->v3) + NFSX_UNSIGNED * 3);
1611 	ERROROUT(nfsm_fhtom(info, vp));
1612 	tl = nfsm_build(info, NFSX_UNSIGNED * 3);
1613 	if (info->v3) {
1614 		txdr_hyper(bio->bio_offset, tl);
1615 		*(tl + 2) = txdr_unsigned(len);
1616 	} else {
1617 		*tl++ = txdr_unsigned(bio->bio_offset);
1618 		*tl++ = txdr_unsigned(len);
1619 		*tl = 0;
1620 	}
1621 	info->bio = bio;
1622 	info->done = nfs_readrpc_bio_done;
1623 	nfsm_request_bio(info, vp, NFSPROC_READ, NULL,
1624 			 nfs_vpcred(vp, ND_READ));
1625 	return;
1626 nfsmout:
1627 	kfree(info, M_NFSREQ);
1628 	bp->b_error = error;
1629 	bp->b_flags |= B_ERROR;
1630 	biodone(bio);
1631 }
1632 
1633 static void
1634 nfs_readrpc_bio_done(nfsm_info_t info)
1635 {
1636 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1637 	struct bio *bio = info->bio;
1638 	struct buf *bp = bio->bio_buf;
1639 	u_int32_t *tl;
1640 	int attrflag;
1641 	int retlen;
1642 	int eof;
1643 	int error = 0;
1644 
1645 	KKASSERT(info->state == NFSM_STATE_DONE);
1646 
1647 	if (info->v3) {
1648 		ERROROUT(nfsm_postop_attr(info, info->vp, &attrflag,
1649 					 NFS_LATTR_NOSHRINK));
1650 		NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED));
1651 		eof = fxdr_unsigned(int, *(tl + 1));
1652 	} else {
1653 		ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1654 		eof = 0;
1655 	}
1656 	NEGATIVEOUT(retlen = nfsm_strsiz(info, nmp->nm_rsize));
1657 	ERROROUT(nfsm_mtobio(info, bio, retlen));
1658 	m_freem(info->mrep);
1659 	info->mrep = NULL;
1660 
1661 	/*
1662 	 * No error occured, if retlen is less then bcount and no EOF
1663 	 * and NFSv3 a zero-fill short read occured.
1664 	 *
1665 	 * For NFSv2 a short-read indicates EOF.
1666 	 */
1667 	if (retlen < bp->b_bcount && info->v3 && eof == 0) {
1668 		bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1669 		retlen = bp->b_bcount;
1670 	}
1671 
1672 	/*
1673 	 * If we hit an EOF we still zero-fill, but return the expected
1674 	 * b_resid anyway.  This should normally not occur since async
1675 	 * BIOs are not used for read-before-write case.  Races against
1676 	 * the server can cause it though and we don't want to leave
1677 	 * garbage in the buffer.
1678 	 */
1679 	if (retlen < bp->b_bcount) {
1680 		bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1681 	}
1682 	bp->b_resid = 0;
1683 	/* bp->b_resid = bp->b_bcount - retlen; */
1684 nfsmout:
1685 	kfree(info, M_NFSREQ);
1686 	if (error) {
1687 		bp->b_error = error;
1688 		bp->b_flags |= B_ERROR;
1689 	}
1690 	biodone(bio);
1691 }
1692 
1693 /*
1694  * nfs write call - BIO version
1695  *
1696  * NOTE: Caller has already busied the I/O.
1697  */
1698 void
1699 nfs_writerpc_bio(struct vnode *vp, struct bio *bio)
1700 {
1701 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1702 	struct nfsnode *np = VTONFS(vp);
1703 	struct buf *bp = bio->bio_buf;
1704 	u_int32_t *tl;
1705 	int len;
1706 	int iomode;
1707 	int error = 0;
1708 	struct nfsm_info *info;
1709 	off_t offset;
1710 
1711 	/*
1712 	 * Setup for actual write.  Just clean up the bio if there
1713 	 * is nothing to do.  b_dirtyoff/end have already been staged
1714 	 * by the bp's pages getting busied.
1715 	 */
1716 	if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1717 		bp->b_dirtyend = np->n_size - bio->bio_offset;
1718 
1719 	if (bp->b_dirtyend <= bp->b_dirtyoff) {
1720 		bp->b_resid = 0;
1721 		biodone(bio);
1722 		return;
1723 	}
1724 	len = bp->b_dirtyend - bp->b_dirtyoff;
1725 	offset = bio->bio_offset + bp->b_dirtyoff;
1726 	if (offset + len > nmp->nm_maxfilesize) {
1727 		bp->b_flags |= B_ERROR;
1728 		bp->b_error = EFBIG;
1729 		biodone(bio);
1730 		return;
1731 	}
1732 	bp->b_resid = len;
1733 	nfsstats.write_bios++;
1734 
1735 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1736 	info->mrep = NULL;
1737 	info->v3 = NFS_ISV3(vp);
1738 	info->info_writerpc.must_commit = 0;
1739 	if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1740 		iomode = NFSV3WRITE_UNSTABLE;
1741 	else
1742 		iomode = NFSV3WRITE_FILESYNC;
1743 
1744 	KKASSERT(len <= nmp->nm_wsize);
1745 
1746 	nfsstats.rpccnt[NFSPROC_WRITE]++;
1747 	nfsm_reqhead(info, vp, NFSPROC_WRITE,
1748 		     NFSX_FH(info->v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1749 	ERROROUT(nfsm_fhtom(info, vp));
1750 	if (info->v3) {
1751 		tl = nfsm_build(info, 5 * NFSX_UNSIGNED);
1752 		txdr_hyper(offset, tl);
1753 		tl += 2;
1754 		*tl++ = txdr_unsigned(len);
1755 		*tl++ = txdr_unsigned(iomode);
1756 		*tl = txdr_unsigned(len);
1757 	} else {
1758 		u_int32_t x;
1759 
1760 		tl = nfsm_build(info, 4 * NFSX_UNSIGNED);
1761 		/* Set both "begin" and "current" to non-garbage. */
1762 		x = txdr_unsigned((u_int32_t)offset);
1763 		*tl++ = x;	/* "begin offset" */
1764 		*tl++ = x;	/* "current offset" */
1765 		x = txdr_unsigned(len);
1766 		*tl++ = x;	/* total to this offset */
1767 		*tl = x;	/* size of this write */
1768 	}
1769 	ERROROUT(nfsm_biotom(info, bio, bp->b_dirtyoff, len));
1770 	info->bio = bio;
1771 	info->done = nfs_writerpc_bio_done;
1772 	nfsm_request_bio(info, vp, NFSPROC_WRITE, NULL,
1773 			 nfs_vpcred(vp, ND_WRITE));
1774 	return;
1775 nfsmout:
1776 	kfree(info, M_NFSREQ);
1777 	bp->b_error = error;
1778 	bp->b_flags |= B_ERROR;
1779 	biodone(bio);
1780 }
1781 
1782 static void
1783 nfs_writerpc_bio_done(nfsm_info_t info)
1784 {
1785 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1786 	struct nfsnode *np = VTONFS(info->vp);
1787 	struct bio *bio = info->bio;
1788 	struct buf *bp = bio->bio_buf;
1789 	int wccflag = NFSV3_WCCRATTR;
1790 	int iomode = NFSV3WRITE_FILESYNC;
1791 	int commit;
1792 	int rlen;
1793 	int error;
1794 	int len = bp->b_resid;	/* b_resid was set to shortened length */
1795 	u_int32_t *tl;
1796 
1797 	if (info->v3) {
1798 		/*
1799 		 * The write RPC returns a before and after mtime.  The
1800 		 * nfsm_wcc_data() macro checks the before n_mtime
1801 		 * against the before time and stores the after time
1802 		 * in the nfsnode's cached vattr and n_mtime field.
1803 		 * The NRMODIFIED bit will be set if the before
1804 		 * time did not match the original mtime.
1805 		 */
1806 		wccflag = NFSV3_WCCCHK;
1807 		ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1808 		if (error == 0) {
1809 			NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1810 			rlen = fxdr_unsigned(int, *tl++);
1811 			if (rlen == 0) {
1812 				error = NFSERR_IO;
1813 				m_freem(info->mrep);
1814 				info->mrep = NULL;
1815 				goto nfsmout;
1816 			} else if (rlen < len) {
1817 #if 0
1818 				/*
1819 				 * XXX what do we do here?
1820 				 */
1821 				backup = len - rlen;
1822 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1823 				uiop->uio_iov->iov_len += backup;
1824 				uiop->uio_offset -= backup;
1825 				uiop->uio_resid += backup;
1826 				len = rlen;
1827 #endif
1828 			}
1829 			commit = fxdr_unsigned(int, *tl++);
1830 
1831 			/*
1832 			 * Return the lowest committment level
1833 			 * obtained by any of the RPCs.
1834 			 */
1835 			if (iomode == NFSV3WRITE_FILESYNC)
1836 				iomode = commit;
1837 			else if (iomode == NFSV3WRITE_DATASYNC &&
1838 				commit == NFSV3WRITE_UNSTABLE)
1839 				iomode = commit;
1840 			if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1841 			    bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1842 			    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1843 			} else if (bcmp(tl, nmp->nm_verf, NFSX_V3WRITEVERF)) {
1844 			    info->info_writerpc.must_commit = 1;
1845 			    bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1846 			}
1847 		}
1848 	} else {
1849 		ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1850 	}
1851 	m_freem(info->mrep);
1852 	info->mrep = NULL;
1853 	len = 0;
1854 nfsmout:
1855 	if (info->vp->v_mount->mnt_flag & MNT_ASYNC)
1856 		iomode = NFSV3WRITE_FILESYNC;
1857 	bp->b_resid = len;
1858 
1859 	/*
1860 	 * End of RPC.  Now clean up the bp.
1861 	 *
1862 	 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1863 	 * to cluster the buffers needing commit.  This will allow
1864 	 * the system to submit a single commit rpc for the whole
1865 	 * cluster.  We can do this even if the buffer is not 100%
1866 	 * dirty (relative to the NFS blocksize), so we optimize the
1867 	 * append-to-file-case.
1868 	 *
1869 	 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1870 	 * cleared because write clustering only works for commit
1871 	 * rpc's, not for the data portion of the write).
1872 	 */
1873 	if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1874 		bp->b_flags |= B_NEEDCOMMIT;
1875 		if (bp->b_dirtyoff == 0 && bp->b_dirtyend == bp->b_bcount)
1876 			bp->b_flags |= B_CLUSTEROK;
1877 	} else {
1878 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1879 	}
1880 
1881 	/*
1882 	 * For an interrupted write, the buffer is still valid
1883 	 * and the write hasn't been pushed to the server yet,
1884 	 * so we can't set B_ERROR and report the interruption
1885 	 * by setting B_EINTR. For the async case, B_EINTR
1886 	 * is not relevant, so the rpc attempt is essentially
1887 	 * a noop.  For the case of a V3 write rpc not being
1888 	 * committed to stable storage, the block is still
1889 	 * dirty and requires either a commit rpc or another
1890 	 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1891 	 * the block is reused. This is indicated by setting
1892 	 * the B_DELWRI and B_NEEDCOMMIT flags.
1893 	 *
1894 	 * If the buffer is marked B_PAGING, it does not reside on
1895 	 * the vp's paging queues so we cannot call bdirty().  The
1896 	 * bp in this case is not an NFS cache block so we should
1897 	 * be safe. XXX
1898 	 */
1899 	if (error == EINTR || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1900 		crit_enter();
1901 		bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1902 		if ((bp->b_flags & B_PAGING) == 0)
1903 			bdirty(bp);
1904 		if (error)
1905 			bp->b_flags |= B_EINTR;
1906 		crit_exit();
1907 	} else {
1908 		if (error) {
1909 			bp->b_flags |= B_ERROR;
1910 			bp->b_error = np->n_error = error;
1911 			np->n_flag |= NWRITEERR;
1912 		}
1913 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1914 	}
1915 	if (info->info_writerpc.must_commit)
1916 		nfs_clearcommit(info->vp->v_mount);
1917 	kfree(info, M_NFSREQ);
1918 	if (error) {
1919 		bp->b_flags |= B_ERROR;
1920 		bp->b_error = error;
1921 	}
1922 	biodone(bio);
1923 }
1924 
1925 /*
1926  * Nfs Version 3 commit rpc - BIO version
1927  *
1928  * This function issues the commit rpc and will chain to a write
1929  * rpc if necessary.
1930  */
1931 void
1932 nfs_commitrpc_bio(struct vnode *vp, struct bio *bio)
1933 {
1934 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1935 	struct buf *bp = bio->bio_buf;
1936 	struct nfsm_info *info;
1937 	int error = 0;
1938 	u_int32_t *tl;
1939 
1940 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
1941 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1942 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1943 		bp->b_resid = 0;
1944 		biodone(bio);
1945 		return;
1946 	}
1947 
1948 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1949 	info->mrep = NULL;
1950 	info->v3 = 1;
1951 
1952 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
1953 	nfsm_reqhead(info, vp, NFSPROC_COMMIT, NFSX_FH(1));
1954 	ERROROUT(nfsm_fhtom(info, vp));
1955 	tl = nfsm_build(info, 3 * NFSX_UNSIGNED);
1956 	txdr_hyper(bio->bio_offset + bp->b_dirtyoff, tl);
1957 	tl += 2;
1958 	*tl = txdr_unsigned(bp->b_dirtyend - bp->b_dirtyoff);
1959 	info->bio = bio;
1960 	info->done = nfs_commitrpc_bio_done;
1961 	nfsm_request_bio(info, vp, NFSPROC_COMMIT, NULL,
1962 			 nfs_vpcred(vp, ND_WRITE));
1963 	return;
1964 nfsmout:
1965 	/*
1966 	 * Chain to write RPC on (early) error
1967 	 */
1968 	kfree(info, M_NFSREQ);
1969 	nfs_writerpc_bio(vp, bio);
1970 }
1971 
1972 static void
1973 nfs_commitrpc_bio_done(nfsm_info_t info)
1974 {
1975 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1976 	struct bio *bio = info->bio;
1977 	struct buf *bp = bio->bio_buf;
1978 	u_int32_t *tl;
1979 	int wccflag = NFSV3_WCCRATTR;
1980 	int error = 0;
1981 
1982 	ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1983 	if (error == 0) {
1984 		NULLOUT(tl = nfsm_dissect(info, NFSX_V3WRITEVERF));
1985 		if (bcmp(nmp->nm_verf, tl, NFSX_V3WRITEVERF)) {
1986 			bcopy(tl, nmp->nm_verf, NFSX_V3WRITEVERF);
1987 			error = NFSERR_STALEWRITEVERF;
1988 		}
1989 	}
1990 	m_freem(info->mrep);
1991 	info->mrep = NULL;
1992 
1993 	/*
1994 	 * On completion we must chain to a write bio if an
1995 	 * error occurred.
1996 	 */
1997 nfsmout:
1998 	kfree(info, M_NFSREQ);
1999 	if (error == 0) {
2000 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2001 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2002 		bp->b_resid = 0;
2003 		biodone(bio);
2004 	} else {
2005 		nfs_writerpc_bio(info->vp, bio);
2006 	}
2007 }
2008 
2009