xref: /dragonfly/sys/vfs/nfs/nfs_bio.c (revision 6693db17)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37  * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.45 2008/07/18 00:09:39 dillon Exp $
39  */
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/mbuf.h>
52 #include <sys/msfbuf.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_pager.h>
59 #include <vm/vnode_pager.h>
60 
61 #include <sys/buf2.h>
62 #include <sys/thread2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "rpcv2.h"
66 #include "nfsproto.h"
67 #include "nfs.h"
68 #include "nfsmount.h"
69 #include "nfsnode.h"
70 #include "xdr_subs.h"
71 #include "nfsm_subs.h"
72 
73 
74 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset,
75 				   int size, struct thread *td);
76 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen);
77 static void nfsiodone_sync(struct bio *bio);
78 static void nfs_readrpc_bio_done(nfsm_info_t info);
79 static void nfs_writerpc_bio_done(nfsm_info_t info);
80 static void nfs_commitrpc_bio_done(nfsm_info_t info);
81 
82 /*
83  * Vnode op for VM getpages.
84  *
85  * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count,
86  *		int a_reqpage, vm_ooffset_t a_offset)
87  */
88 int
89 nfs_getpages(struct vop_getpages_args *ap)
90 {
91 	struct thread *td = curthread;		/* XXX */
92 	int i, error, nextoff, size, toff, count, npages;
93 	struct uio uio;
94 	struct iovec iov;
95 	char *kva;
96 	struct vnode *vp;
97 	struct nfsmount *nmp;
98 	vm_page_t *pages;
99 	vm_page_t m;
100 	struct msf_buf *msf;
101 
102 	vp = ap->a_vp;
103 	nmp = VFSTONFS(vp->v_mount);
104 	pages = ap->a_m;
105 	count = ap->a_count;
106 
107 	if (vp->v_object == NULL) {
108 		kprintf("nfs_getpages: called with non-merged cache vnode??\n");
109 		return VM_PAGER_ERROR;
110 	}
111 
112 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
113 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
114 		(void)nfs_fsinfo(nmp, vp, td);
115 
116 	npages = btoc(count);
117 
118 	/*
119 	 * NOTE that partially valid pages may occur in cases other
120 	 * then file EOF, such as when a file is partially written and
121 	 * ftruncate()-extended to a larger size.   It is also possible
122 	 * for the valid bits to be set on garbage beyond the file EOF and
123 	 * clear in the area before EOF (e.g. m->valid == 0xfc), which can
124 	 * occur due to vtruncbuf() and the buffer cache's handling of
125 	 * pages which 'straddle' buffers or when b_bufsize is not a
126 	 * multiple of PAGE_SIZE.... the buffer cache cannot normally
127 	 * clear the extra bits.  This kind of situation occurs when you
128 	 * make a small write() (m->valid == 0x03) and then mmap() and
129 	 * fault in the buffer(m->valid = 0xFF).  When NFS flushes the
130 	 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess.
131 	 *
132 	 * This is combined with the possibility that the pages are partially
133 	 * dirty or that there is a buffer backing the pages that is dirty
134 	 * (even if m->dirty is 0).
135 	 *
136 	 * To solve this problem several hacks have been made:  (1) NFS
137 	 * guarentees that the IO block size is a multiple of PAGE_SIZE and
138 	 * (2) The buffer cache, when invalidating an NFS buffer, will
139 	 * disregard the buffer's fragmentory b_bufsize and invalidate
140 	 * the whole page rather then just the piece the buffer owns.
141 	 *
142 	 * This allows us to assume that a partially valid page found here
143 	 * is fully valid (vm_fault will zero'd out areas of the page not
144 	 * marked as valid).
145 	 */
146 	m = pages[ap->a_reqpage];
147 	if (m->valid != 0) {
148 		for (i = 0; i < npages; ++i) {
149 			if (i != ap->a_reqpage)
150 				vnode_pager_freepage(pages[i]);
151 		}
152 		return(0);
153 	}
154 
155 	/*
156 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
157 	 */
158 	msf_map_pagelist(&msf, pages, npages, 0);
159 	KKASSERT(msf);
160 	kva = msf_buf_kva(msf);
161 
162 	iov.iov_base = kva;
163 	iov.iov_len = count;
164 	uio.uio_iov = &iov;
165 	uio.uio_iovcnt = 1;
166 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
167 	uio.uio_resid = count;
168 	uio.uio_segflg = UIO_SYSSPACE;
169 	uio.uio_rw = UIO_READ;
170 	uio.uio_td = td;
171 
172 	error = nfs_readrpc_uio(vp, &uio);
173 	msf_buf_free(msf);
174 
175 	if (error && ((int)uio.uio_resid == count)) {
176 		kprintf("nfs_getpages: error %d\n", error);
177 		for (i = 0; i < npages; ++i) {
178 			if (i != ap->a_reqpage)
179 				vnode_pager_freepage(pages[i]);
180 		}
181 		return VM_PAGER_ERROR;
182 	}
183 
184 	/*
185 	 * Calculate the number of bytes read and validate only that number
186 	 * of bytes.  Note that due to pending writes, size may be 0.  This
187 	 * does not mean that the remaining data is invalid!
188 	 */
189 
190 	size = count - (int)uio.uio_resid;
191 
192 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
193 		nextoff = toff + PAGE_SIZE;
194 		m = pages[i];
195 
196 		m->flags &= ~PG_ZERO;
197 
198 		/*
199 		 * NOTE: vm_page_undirty/clear_dirty etc do not clear the
200 		 *       pmap modified bit.
201 		 */
202 		if (nextoff <= size) {
203 			/*
204 			 * Read operation filled an entire page
205 			 */
206 			m->valid = VM_PAGE_BITS_ALL;
207 			vm_page_undirty(m);
208 		} else if (size > toff) {
209 			/*
210 			 * Read operation filled a partial page.
211 			 */
212 			m->valid = 0;
213 			vm_page_set_valid(m, 0, size - toff);
214 			vm_page_clear_dirty_end_nonincl(m, 0, size - toff);
215 			/* handled by vm_fault now	  */
216 			/* vm_page_zero_invalid(m, TRUE); */
217 		} else {
218 			/*
219 			 * Read operation was short.  If no error occured
220 			 * we may have hit a zero-fill section.   We simply
221 			 * leave valid set to 0.
222 			 */
223 			;
224 		}
225 		if (i != ap->a_reqpage) {
226 			/*
227 			 * Whether or not to leave the page activated is up in
228 			 * the air, but we should put the page on a page queue
229 			 * somewhere (it already is in the object).  Result:
230 			 * It appears that emperical results show that
231 			 * deactivating pages is best.
232 			 */
233 
234 			/*
235 			 * Just in case someone was asking for this page we
236 			 * now tell them that it is ok to use.
237 			 */
238 			if (!error) {
239 				if (m->flags & PG_WANTED)
240 					vm_page_activate(m);
241 				else
242 					vm_page_deactivate(m);
243 				vm_page_wakeup(m);
244 			} else {
245 				vnode_pager_freepage(m);
246 			}
247 		}
248 	}
249 	return 0;
250 }
251 
252 /*
253  * Vnode op for VM putpages.
254  *
255  * The pmap modified bit was cleared prior to the putpages and probably
256  * couldn't get set again until after our I/O completed, since the page
257  * should not be mapped.  But don't count on it.  The m->dirty bits must
258  * be completely cleared when we finish even if the count is truncated.
259  *
260  * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync,
261  *		int *a_rtvals, vm_ooffset_t a_offset)
262  */
263 int
264 nfs_putpages(struct vop_putpages_args *ap)
265 {
266 	struct thread *td = curthread;
267 	struct uio uio;
268 	struct iovec iov;
269 	char *kva;
270 	int iomode, must_commit, i, error, npages, count;
271 	off_t offset;
272 	int *rtvals;
273 	struct vnode *vp;
274 	struct nfsmount *nmp;
275 	struct nfsnode *np;
276 	vm_page_t *pages;
277 	struct msf_buf *msf;
278 
279 	vp = ap->a_vp;
280 	np = VTONFS(vp);
281 	nmp = VFSTONFS(vp->v_mount);
282 	pages = ap->a_m;
283 	count = ap->a_count;
284 	rtvals = ap->a_rtvals;
285 	npages = btoc(count);
286 	offset = IDX_TO_OFF(pages[0]->pindex);
287 
288 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
289 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
290 		(void)nfs_fsinfo(nmp, vp, td);
291 
292 	for (i = 0; i < npages; i++) {
293 		rtvals[i] = VM_PAGER_AGAIN;
294 	}
295 
296 	/*
297 	 * When putting pages, do not extend file past EOF.
298 	 */
299 
300 	if (offset + count > np->n_size) {
301 		count = np->n_size - offset;
302 		if (count < 0)
303 			count = 0;
304 	}
305 
306 	/*
307 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
308 	 */
309 	msf_map_pagelist(&msf, pages, npages, 0);
310 	KKASSERT(msf);
311 	kva = msf_buf_kva(msf);
312 
313 	iov.iov_base = kva;
314 	iov.iov_len = count;
315 	uio.uio_iov = &iov;
316 	uio.uio_iovcnt = 1;
317 	uio.uio_offset = offset;
318 	uio.uio_resid = (size_t)count;
319 	uio.uio_segflg = UIO_SYSSPACE;
320 	uio.uio_rw = UIO_WRITE;
321 	uio.uio_td = td;
322 
323 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
324 	    iomode = NFSV3WRITE_UNSTABLE;
325 	else
326 	    iomode = NFSV3WRITE_FILESYNC;
327 
328 	error = nfs_writerpc_uio(vp, &uio, &iomode, &must_commit);
329 
330 	msf_buf_free(msf);
331 
332 	if (error == 0) {
333 		int nwritten;
334 
335 		nwritten = round_page(count - (int)uio.uio_resid) / PAGE_SIZE;
336 		for (i = 0; i < nwritten; i++) {
337 			rtvals[i] = VM_PAGER_OK;
338 			vm_page_undirty(pages[i]);
339 		}
340 		if (must_commit)
341 			nfs_clearcommit(vp->v_mount);
342 	}
343 	return rtvals[0];
344 }
345 
346 /*
347  * Vnode op for read using bio
348  */
349 int
350 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
351 {
352 	struct nfsnode *np = VTONFS(vp);
353 	int biosize, i;
354 	struct buf *bp, *rabp;
355 	struct vattr vattr;
356 	struct thread *td;
357 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
358 	off_t lbn, rabn;
359 	off_t raoffset;
360 	off_t loffset;
361 	int seqcount;
362 	int nra, error = 0;
363 	int boff = 0;
364 	size_t n;
365 
366 #ifdef DIAGNOSTIC
367 	if (uio->uio_rw != UIO_READ)
368 		panic("nfs_read mode");
369 #endif
370 	if (uio->uio_resid == 0)
371 		return (0);
372 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
373 		return (EINVAL);
374 	td = uio->uio_td;
375 
376 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
377 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
378 		(void)nfs_fsinfo(nmp, vp, td);
379 	if (vp->v_type != VDIR &&
380 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
381 		return (EFBIG);
382 	biosize = vp->v_mount->mnt_stat.f_iosize;
383 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
384 
385 	/*
386 	 * For nfs, cache consistency can only be maintained approximately.
387 	 * Although RFC1094 does not specify the criteria, the following is
388 	 * believed to be compatible with the reference port.
389 	 *
390 	 * NFS:		If local changes have been made and this is a
391 	 *		directory, the directory must be invalidated and
392 	 *		the attribute cache must be cleared.
393 	 *
394 	 *		GETATTR is called to synchronize the file size.
395 	 *
396 	 *		If remote changes are detected local data is flushed
397 	 *		and the cache is invalidated.
398 	 *
399 	 *		NOTE: In the normal case the attribute cache is not
400 	 *		cleared which means GETATTR may use cached data and
401 	 *		not immediately detect changes made on the server.
402 	 */
403 	if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) {
404 		nfs_invaldir(vp);
405 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
406 		if (error)
407 			return (error);
408 		np->n_attrstamp = 0;
409 	}
410 	error = VOP_GETATTR(vp, &vattr);
411 	if (error)
412 		return (error);
413 	if (np->n_flag & NRMODIFIED) {
414 		if (vp->v_type == VDIR)
415 			nfs_invaldir(vp);
416 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
417 		if (error)
418 			return (error);
419 		np->n_flag &= ~NRMODIFIED;
420 	}
421 
422 	/*
423 	 * Loop until uio exhausted or we hit EOF
424 	 */
425 	do {
426 	    bp = NULL;
427 
428 	    switch (vp->v_type) {
429 	    case VREG:
430 		nfsstats.biocache_reads++;
431 		lbn = uio->uio_offset / biosize;
432 		boff = uio->uio_offset & (biosize - 1);
433 		loffset = (off_t)lbn * biosize;
434 
435 		/*
436 		 * Start the read ahead(s), as required.
437 		 */
438 		if (nmp->nm_readahead > 0 && nfs_asyncok(nmp)) {
439 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
440 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
441 			rabn = lbn + 1 + nra;
442 			raoffset = (off_t)rabn * biosize;
443 			if (findblk(vp, raoffset, FINDBLK_TEST) == NULL) {
444 			    rabp = nfs_getcacheblk(vp, raoffset, biosize, td);
445 			    if (!rabp)
446 				return (EINTR);
447 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
448 				rabp->b_cmd = BUF_CMD_READ;
449 				vfs_busy_pages(vp, rabp);
450 				nfs_asyncio(vp, &rabp->b_bio2);
451 			    } else {
452 				brelse(rabp);
453 			    }
454 			}
455 		    }
456 		}
457 
458 		/*
459 		 * Obtain the buffer cache block.  Figure out the buffer size
460 		 * when we are at EOF.  If we are modifying the size of the
461 		 * buffer based on an EOF condition we need to hold
462 		 * nfs_rslock() through obtaining the buffer to prevent
463 		 * a potential writer-appender from messing with n_size.
464 		 * Otherwise we may accidently truncate the buffer and
465 		 * lose dirty data.
466 		 *
467 		 * Note that bcount is *not* DEV_BSIZE aligned.
468 		 */
469 		if (loffset + boff >= np->n_size) {
470 			n = 0;
471 			break;
472 		}
473 		bp = nfs_getcacheblk(vp, loffset, biosize, td);
474 
475 		if (bp == NULL)
476 			return (EINTR);
477 
478 		/*
479 		 * If B_CACHE is not set, we must issue the read.  If this
480 		 * fails, we return an error.
481 		 */
482 		if ((bp->b_flags & B_CACHE) == 0) {
483 			bp->b_cmd = BUF_CMD_READ;
484 			bp->b_bio2.bio_done = nfsiodone_sync;
485 			bp->b_bio2.bio_flags |= BIO_SYNC;
486 			vfs_busy_pages(vp, bp);
487 			error = nfs_doio(vp, &bp->b_bio2, td);
488 			if (error) {
489 				brelse(bp);
490 				return (error);
491 			}
492 		}
493 
494 		/*
495 		 * on is the offset into the current bp.  Figure out how many
496 		 * bytes we can copy out of the bp.  Note that bcount is
497 		 * NOT DEV_BSIZE aligned.
498 		 *
499 		 * Then figure out how many bytes we can copy into the uio.
500 		 */
501 		n = biosize - boff;
502 		if (n > uio->uio_resid)
503 			n = uio->uio_resid;
504 		if (loffset + boff + n > np->n_size)
505 			n = np->n_size - loffset - boff;
506 		break;
507 	    case VLNK:
508 		biosize = min(NFS_MAXPATHLEN, np->n_size);
509 		nfsstats.biocache_readlinks++;
510 		bp = nfs_getcacheblk(vp, (off_t)0, biosize, td);
511 		if (bp == NULL)
512 			return (EINTR);
513 		if ((bp->b_flags & B_CACHE) == 0) {
514 			bp->b_cmd = BUF_CMD_READ;
515 			bp->b_bio2.bio_done = nfsiodone_sync;
516 			bp->b_bio2.bio_flags |= BIO_SYNC;
517 			vfs_busy_pages(vp, bp);
518 			error = nfs_doio(vp, &bp->b_bio2, td);
519 			if (error) {
520 				bp->b_flags |= B_ERROR | B_INVAL;
521 				brelse(bp);
522 				return (error);
523 			}
524 		}
525 		n = szmin(uio->uio_resid, (size_t)bp->b_bcount - bp->b_resid);
526 		boff = 0;
527 		break;
528 	    case VDIR:
529 		nfsstats.biocache_readdirs++;
530 		if (np->n_direofoffset &&
531 		    uio->uio_offset >= np->n_direofoffset
532 		) {
533 			return (0);
534 		}
535 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
536 		boff = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
537 		loffset = uio->uio_offset - boff;
538 		bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td);
539 		if (bp == NULL)
540 			return (EINTR);
541 
542 		if ((bp->b_flags & B_CACHE) == 0) {
543 		    bp->b_cmd = BUF_CMD_READ;
544 		    bp->b_bio2.bio_done = nfsiodone_sync;
545 		    bp->b_bio2.bio_flags |= BIO_SYNC;
546 		    vfs_busy_pages(vp, bp);
547 		    error = nfs_doio(vp, &bp->b_bio2, td);
548 		    if (error)
549 			    brelse(bp);
550 		    while (error == NFSERR_BAD_COOKIE) {
551 			kprintf("got bad cookie vp %p bp %p\n", vp, bp);
552 			nfs_invaldir(vp);
553 			error = nfs_vinvalbuf(vp, 0, 1);
554 			/*
555 			 * Yuck! The directory has been modified on the
556 			 * server. The only way to get the block is by
557 			 * reading from the beginning to get all the
558 			 * offset cookies.
559 			 *
560 			 * Leave the last bp intact unless there is an error.
561 			 * Loop back up to the while if the error is another
562 			 * NFSERR_BAD_COOKIE (double yuch!).
563 			 */
564 			for (i = 0; i <= lbn && !error; i++) {
565 			    if (np->n_direofoffset
566 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
567 				    return (0);
568 			    bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ,
569 						 NFS_DIRBLKSIZ, td);
570 			    if (!bp)
571 				return (EINTR);
572 			    if ((bp->b_flags & B_CACHE) == 0) {
573 				    bp->b_cmd = BUF_CMD_READ;
574 				    bp->b_bio2.bio_done = nfsiodone_sync;
575 				    bp->b_bio2.bio_flags |= BIO_SYNC;
576 				    vfs_busy_pages(vp, bp);
577 				    error = nfs_doio(vp, &bp->b_bio2, td);
578 				    /*
579 				     * no error + B_INVAL == directory EOF,
580 				     * use the block.
581 				     */
582 				    if (error == 0 && (bp->b_flags & B_INVAL))
583 					    break;
584 			    }
585 			    /*
586 			     * An error will throw away the block and the
587 			     * for loop will break out.  If no error and this
588 			     * is not the block we want, we throw away the
589 			     * block and go for the next one via the for loop.
590 			     */
591 			    if (error || i < lbn)
592 				    brelse(bp);
593 			}
594 		    }
595 		    /*
596 		     * The above while is repeated if we hit another cookie
597 		     * error.  If we hit an error and it wasn't a cookie error,
598 		     * we give up.
599 		     */
600 		    if (error)
601 			    return (error);
602 		}
603 
604 		/*
605 		 * If not eof and read aheads are enabled, start one.
606 		 * (You need the current block first, so that you have the
607 		 *  directory offset cookie of the next block.)
608 		 */
609 		if (nmp->nm_readahead > 0 && nfs_asyncok(nmp) &&
610 		    (bp->b_flags & B_INVAL) == 0 &&
611 		    (np->n_direofoffset == 0 ||
612 		    loffset + NFS_DIRBLKSIZ < np->n_direofoffset) &&
613 		    findblk(vp, loffset + NFS_DIRBLKSIZ, FINDBLK_TEST) == NULL
614 		) {
615 			rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ,
616 					       NFS_DIRBLKSIZ, td);
617 			if (rabp) {
618 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
619 				rabp->b_cmd = BUF_CMD_READ;
620 				vfs_busy_pages(vp, rabp);
621 				nfs_asyncio(vp, &rabp->b_bio2);
622 			    } else {
623 				brelse(rabp);
624 			    }
625 			}
626 		}
627 		/*
628 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
629 		 * chopped for the EOF condition, we cannot tell how large
630 		 * NFS directories are going to be until we hit EOF.  So
631 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
632 		 * it just so happens that b_resid will effectively chop it
633 		 * to EOF.  *BUT* this information is lost if the buffer goes
634 		 * away and is reconstituted into a B_CACHE state ( due to
635 		 * being VMIO ) later.  So we keep track of the directory eof
636 		 * in np->n_direofoffset and chop it off as an extra step
637 		 * right here.
638 		 *
639 		 * NOTE: boff could already be beyond EOF.
640 		 */
641 		if ((size_t)boff > NFS_DIRBLKSIZ - bp->b_resid) {
642 			n = 0;
643 		} else {
644 			n = szmin(uio->uio_resid,
645 				  NFS_DIRBLKSIZ - bp->b_resid - (size_t)boff);
646 		}
647 		if (np->n_direofoffset &&
648 		    n > (size_t)(np->n_direofoffset - uio->uio_offset)) {
649 			n = (size_t)(np->n_direofoffset - uio->uio_offset);
650 		}
651 		break;
652 	    default:
653 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
654 		n = 0;
655 		break;
656 	    };
657 
658 	    switch (vp->v_type) {
659 	    case VREG:
660 		if (n > 0)
661 		    error = uiomove(bp->b_data + boff, n, uio);
662 		break;
663 	    case VLNK:
664 		if (n > 0)
665 		    error = uiomove(bp->b_data + boff, n, uio);
666 		n = 0;
667 		break;
668 	    case VDIR:
669 		if (n > 0) {
670 		    off_t old_off = uio->uio_offset;
671 		    caddr_t cpos, epos;
672 		    struct nfs_dirent *dp;
673 
674 		    /*
675 		     * We are casting cpos to nfs_dirent, it must be
676 		     * int-aligned.
677 		     */
678 		    if (boff & 3) {
679 			error = EINVAL;
680 			break;
681 		    }
682 
683 		    cpos = bp->b_data + boff;
684 		    epos = bp->b_data + boff + n;
685 		    while (cpos < epos && error == 0 && uio->uio_resid > 0) {
686 			    dp = (struct nfs_dirent *)cpos;
687 			    error = nfs_check_dirent(dp, (int)(epos - cpos));
688 			    if (error)
689 				    break;
690 			    if (vop_write_dirent(&error, uio, dp->nfs_ino,
691 				dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) {
692 				    break;
693 			    }
694 			    cpos += dp->nfs_reclen;
695 		    }
696 		    n = 0;
697 		    if (error == 0) {
698 			    uio->uio_offset = old_off + cpos -
699 					      bp->b_data - boff;
700 		    }
701 		}
702 		break;
703 	    default:
704 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
705 	    }
706 	    if (bp)
707 		    brelse(bp);
708 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
709 	return (error);
710 }
711 
712 /*
713  * Userland can supply any 'seek' offset when reading a NFS directory.
714  * Validate the structure so we don't panic the kernel.  Note that
715  * the element name is nul terminated and the nul is not included
716  * in nfs_namlen.
717  */
718 static
719 int
720 nfs_check_dirent(struct nfs_dirent *dp, int maxlen)
721 {
722 	int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]);
723 
724 	if (nfs_name_off >= maxlen)
725 		return (EINVAL);
726 	if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen)
727 		return (EINVAL);
728 	if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen)
729 		return (EINVAL);
730 	if (dp->nfs_reclen & 3)
731 		return (EINVAL);
732 	return (0);
733 }
734 
735 /*
736  * Vnode op for write using bio
737  *
738  * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
739  *	     struct ucred *a_cred)
740  */
741 int
742 nfs_write(struct vop_write_args *ap)
743 {
744 	struct uio *uio = ap->a_uio;
745 	struct thread *td = uio->uio_td;
746 	struct vnode *vp = ap->a_vp;
747 	struct nfsnode *np = VTONFS(vp);
748 	int ioflag = ap->a_ioflag;
749 	struct buf *bp;
750 	struct vattr vattr;
751 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
752 	off_t loffset;
753 	int boff, bytes;
754 	int error = 0;
755 	int haverslock = 0;
756 	int bcount;
757 	int biosize;
758 
759 #ifdef DIAGNOSTIC
760 	if (uio->uio_rw != UIO_WRITE)
761 		panic("nfs_write mode");
762 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
763 		panic("nfs_write proc");
764 #endif
765 	if (vp->v_type != VREG)
766 		return (EIO);
767 	if (np->n_flag & NWRITEERR) {
768 		np->n_flag &= ~NWRITEERR;
769 		return (np->n_error);
770 	}
771 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
772 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
773 		(void)nfs_fsinfo(nmp, vp, td);
774 
775 	/*
776 	 * Synchronously flush pending buffers if we are in synchronous
777 	 * mode or if we are appending.
778 	 */
779 	if (ioflag & (IO_APPEND | IO_SYNC)) {
780 		if (np->n_flag & NLMODIFIED) {
781 			np->n_attrstamp = 0;
782 			error = nfs_flush(vp, MNT_WAIT, td, 0);
783 			/* error = nfs_vinvalbuf(vp, V_SAVE, 1); */
784 			if (error)
785 				return (error);
786 		}
787 	}
788 
789 	/*
790 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
791 	 * get the append lock.
792 	 */
793 restart:
794 	if (ioflag & IO_APPEND) {
795 		np->n_attrstamp = 0;
796 		error = VOP_GETATTR(vp, &vattr);
797 		if (error)
798 			return (error);
799 		uio->uio_offset = np->n_size;
800 	}
801 
802 	if (uio->uio_offset < 0)
803 		return (EINVAL);
804 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
805 		return (EFBIG);
806 	if (uio->uio_resid == 0)
807 		return (0);
808 
809 	/*
810 	 * We need to obtain the rslock if we intend to modify np->n_size
811 	 * in order to guarentee the append point with multiple contending
812 	 * writers, to guarentee that no other appenders modify n_size
813 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
814 	 * accidently truncating data written by another appender due to
815 	 * the race), and to ensure that the buffer is populated prior to
816 	 * our extending of the file.  We hold rslock through the entire
817 	 * operation.
818 	 *
819 	 * Note that we do not synchronize the case where someone truncates
820 	 * the file while we are appending to it because attempting to lock
821 	 * this case may deadlock other parts of the system unexpectedly.
822 	 */
823 	if ((ioflag & IO_APPEND) ||
824 	    uio->uio_offset + uio->uio_resid > np->n_size) {
825 		switch(nfs_rslock(np)) {
826 		case ENOLCK:
827 			goto restart;
828 			/* not reached */
829 		case EINTR:
830 		case ERESTART:
831 			return(EINTR);
832 			/* not reached */
833 		default:
834 			break;
835 		}
836 		haverslock = 1;
837 	}
838 
839 	/*
840 	 * Maybe this should be above the vnode op call, but so long as
841 	 * file servers have no limits, i don't think it matters
842 	 */
843 	if (td->td_proc && uio->uio_offset + uio->uio_resid >
844 	      td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
845 		lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
846 		if (haverslock)
847 			nfs_rsunlock(np);
848 		return (EFBIG);
849 	}
850 
851 	biosize = vp->v_mount->mnt_stat.f_iosize;
852 
853 	do {
854 		nfsstats.biocache_writes++;
855 		boff = uio->uio_offset & (biosize-1);
856 		loffset = uio->uio_offset - boff;
857 		bytes = (int)szmin((unsigned)(biosize - boff), uio->uio_resid);
858 again:
859 		/*
860 		 * Handle direct append and file extension cases, calculate
861 		 * unaligned buffer size.  When extending B_CACHE will be
862 		 * set if possible.  See UIO_NOCOPY note below.
863 		 */
864 		if (uio->uio_offset + bytes > np->n_size) {
865 			np->n_flag |= NLMODIFIED;
866 			bp = nfs_meta_setsize(vp, td, loffset, boff, bytes);
867 		} else {
868 			bp = nfs_getcacheblk(vp, loffset, biosize, td);
869 		}
870 		if (bp == NULL) {
871 			error = EINTR;
872 			break;
873 		}
874 
875 		/*
876 		 * Actual bytes in buffer which we care about
877 		 */
878 		if (loffset + biosize < np->n_size)
879 			bcount = biosize;
880 		else
881 			bcount = (int)(np->n_size - loffset);
882 
883 		/*
884 		 * Avoid a read by setting B_CACHE where the data we
885 		 * intend to write covers the entire buffer.  Note
886 		 * that the buffer may have been set to B_CACHE by
887 		 * nfs_meta_setsize() above or otherwise inherited the
888 		 * flag, but if B_CACHE isn't set the buffer may be
889 		 * uninitialized and must be zero'd to accomodate
890 		 * future seek+write's.
891 		 *
892 		 * See the comments in kern/vfs_bio.c's getblk() for
893 		 * more information.
894 		 *
895 		 * When doing a UIO_NOCOPY write the buffer is not
896 		 * overwritten and we cannot just set B_CACHE unconditionally
897 		 * for full-block writes.
898 		 */
899 		if (boff == 0 && bytes == biosize &&
900 		    uio->uio_segflg != UIO_NOCOPY) {
901 			bp->b_flags |= B_CACHE;
902 			bp->b_flags &= ~(B_ERROR | B_INVAL);
903 		}
904 
905 		/*
906 		 * b_resid may be set due to file EOF if we extended out.
907 		 * The NFS bio code will zero the difference anyway so
908 		 * just acknowledged the fact and set b_resid to 0.
909 		 */
910 		if ((bp->b_flags & B_CACHE) == 0) {
911 			bp->b_cmd = BUF_CMD_READ;
912 			bp->b_bio2.bio_done = nfsiodone_sync;
913 			bp->b_bio2.bio_flags |= BIO_SYNC;
914 			vfs_busy_pages(vp, bp);
915 			error = nfs_doio(vp, &bp->b_bio2, td);
916 			if (error) {
917 				brelse(bp);
918 				break;
919 			}
920 			bp->b_resid = 0;
921 		}
922 		np->n_flag |= NLMODIFIED;
923 
924 		/*
925 		 * If dirtyend exceeds file size, chop it down.  This should
926 		 * not normally occur but there is an append race where it
927 		 * might occur XXX, so we log it.
928 		 *
929 		 * If the chopping creates a reverse-indexed or degenerate
930 		 * situation with dirtyoff/end, we 0 both of them.
931 		 */
932 		if (bp->b_dirtyend > bcount) {
933 			kprintf("NFS append race @%08llx:%d\n",
934 			    (long long)bp->b_bio2.bio_offset,
935 			    bp->b_dirtyend - bcount);
936 			bp->b_dirtyend = bcount;
937 		}
938 
939 		if (bp->b_dirtyoff >= bp->b_dirtyend)
940 			bp->b_dirtyoff = bp->b_dirtyend = 0;
941 
942 		/*
943 		 * If the new write will leave a contiguous dirty
944 		 * area, just update the b_dirtyoff and b_dirtyend,
945 		 * otherwise force a write rpc of the old dirty area.
946 		 *
947 		 * While it is possible to merge discontiguous writes due to
948 		 * our having a B_CACHE buffer ( and thus valid read data
949 		 * for the hole), we don't because it could lead to
950 		 * significant cache coherency problems with multiple clients,
951 		 * especially if locking is implemented later on.
952 		 *
953 		 * as an optimization we could theoretically maintain
954 		 * a linked list of discontinuous areas, but we would still
955 		 * have to commit them separately so there isn't much
956 		 * advantage to it except perhaps a bit of asynchronization.
957 		 */
958 		if (bp->b_dirtyend > 0 &&
959 		    (boff > bp->b_dirtyend ||
960 		     (boff + bytes) < bp->b_dirtyoff)
961 		) {
962 			if (bwrite(bp) == EINTR) {
963 				error = EINTR;
964 				break;
965 			}
966 			goto again;
967 		}
968 
969 		error = uiomove(bp->b_data + boff, bytes, uio);
970 
971 		/*
972 		 * Since this block is being modified, it must be written
973 		 * again and not just committed.  Since write clustering does
974 		 * not work for the stage 1 data write, only the stage 2
975 		 * commit rpc, we have to clear B_CLUSTEROK as well.
976 		 */
977 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
978 
979 		if (error) {
980 			brelse(bp);
981 			break;
982 		}
983 
984 		/*
985 		 * Only update dirtyoff/dirtyend if not a degenerate
986 		 * condition.
987 		 *
988 		 * The underlying VM pages have been marked valid by
989 		 * virtue of acquiring the bp.  Because the entire buffer
990 		 * is marked dirty we do not have to worry about cleaning
991 		 * out the related dirty bits (and wouldn't really know
992 		 * how to deal with byte ranges anyway)
993 		 */
994 		if (bytes) {
995 			if (bp->b_dirtyend > 0) {
996 				bp->b_dirtyoff = imin(boff, bp->b_dirtyoff);
997 				bp->b_dirtyend = imax(boff + bytes,
998 						      bp->b_dirtyend);
999 			} else {
1000 				bp->b_dirtyoff = boff;
1001 				bp->b_dirtyend = boff + bytes;
1002 			}
1003 		}
1004 
1005 		/*
1006 		 * If the lease is non-cachable or IO_SYNC do bwrite().
1007 		 *
1008 		 * IO_INVAL appears to be unused.  The idea appears to be
1009 		 * to turn off caching in this case.  Very odd.  XXX
1010 		 *
1011 		 * If nfs_async is set bawrite() will use an unstable write
1012 		 * (build dirty bufs on the server), so we might as well
1013 		 * push it out with bawrite().  If nfs_async is not set we
1014 		 * use bdwrite() to cache dirty bufs on the client.
1015 		 */
1016 		if (ioflag & IO_SYNC) {
1017 			if (ioflag & IO_INVAL)
1018 				bp->b_flags |= B_NOCACHE;
1019 			error = bwrite(bp);
1020 			if (error)
1021 				break;
1022 		} else if (boff + bytes == biosize && nfs_async) {
1023 			bawrite(bp);
1024 		} else {
1025 			bdwrite(bp);
1026 		}
1027 	} while (uio->uio_resid > 0 && bytes > 0);
1028 
1029 	if (haverslock)
1030 		nfs_rsunlock(np);
1031 
1032 	return (error);
1033 }
1034 
1035 /*
1036  * Get an nfs cache block.
1037  *
1038  * Allocate a new one if the block isn't currently in the cache
1039  * and return the block marked busy. If the calling process is
1040  * interrupted by a signal for an interruptible mount point, return
1041  * NULL.
1042  *
1043  * The caller must carefully deal with the possible B_INVAL state of
1044  * the buffer.  nfs_startio() clears B_INVAL (and nfs_asyncio() clears it
1045  * indirectly), so synchronous reads can be issued without worrying about
1046  * the B_INVAL state.  We have to be a little more careful when dealing
1047  * with writes (see comments in nfs_write()) when extending a file past
1048  * its EOF.
1049  */
1050 static struct buf *
1051 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td)
1052 {
1053 	struct buf *bp;
1054 	struct mount *mp;
1055 	struct nfsmount *nmp;
1056 
1057 	mp = vp->v_mount;
1058 	nmp = VFSTONFS(mp);
1059 
1060 	if (nmp->nm_flag & NFSMNT_INT) {
1061 		bp = getblk(vp, loffset, size, GETBLK_PCATCH, 0);
1062 		while (bp == NULL) {
1063 			if (nfs_sigintr(nmp, NULL, td))
1064 				return (NULL);
1065 			bp = getblk(vp, loffset, size, 0, 2 * hz);
1066 		}
1067 	} else {
1068 		bp = getblk(vp, loffset, size, 0, 0);
1069 	}
1070 
1071 	/*
1072 	 * bio2, the 'device' layer.  Since BIOs use 64 bit byte offsets
1073 	 * now, no translation is necessary.
1074 	 */
1075 	bp->b_bio2.bio_offset = loffset;
1076 	return (bp);
1077 }
1078 
1079 /*
1080  * Flush and invalidate all dirty buffers. If another process is already
1081  * doing the flush, just wait for completion.
1082  */
1083 int
1084 nfs_vinvalbuf(struct vnode *vp, int flags, int intrflg)
1085 {
1086 	struct nfsnode *np = VTONFS(vp);
1087 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1088 	int error = 0, slpflag, slptimeo;
1089 	thread_t td = curthread;
1090 
1091 	if (vp->v_flag & VRECLAIMED)
1092 		return (0);
1093 
1094 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1095 		intrflg = 0;
1096 	if (intrflg) {
1097 		slpflag = PCATCH;
1098 		slptimeo = 2 * hz;
1099 	} else {
1100 		slpflag = 0;
1101 		slptimeo = 0;
1102 	}
1103 	/*
1104 	 * First wait for any other process doing a flush to complete.
1105 	 */
1106 	while (np->n_flag & NFLUSHINPROG) {
1107 		np->n_flag |= NFLUSHWANT;
1108 		error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
1109 		if (error && intrflg && nfs_sigintr(nmp, NULL, td))
1110 			return (EINTR);
1111 	}
1112 
1113 	/*
1114 	 * Now, flush as required.
1115 	 */
1116 	np->n_flag |= NFLUSHINPROG;
1117 	error = vinvalbuf(vp, flags, slpflag, 0);
1118 	while (error) {
1119 		if (intrflg && nfs_sigintr(nmp, NULL, td)) {
1120 			np->n_flag &= ~NFLUSHINPROG;
1121 			if (np->n_flag & NFLUSHWANT) {
1122 				np->n_flag &= ~NFLUSHWANT;
1123 				wakeup((caddr_t)&np->n_flag);
1124 			}
1125 			return (EINTR);
1126 		}
1127 		error = vinvalbuf(vp, flags, 0, slptimeo);
1128 	}
1129 	np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG);
1130 	if (np->n_flag & NFLUSHWANT) {
1131 		np->n_flag &= ~NFLUSHWANT;
1132 		wakeup((caddr_t)&np->n_flag);
1133 	}
1134 	return (0);
1135 }
1136 
1137 /*
1138  * Return true (non-zero) if the txthread and rxthread are operational
1139  * and we do not already have too many not-yet-started BIO's built up.
1140  */
1141 int
1142 nfs_asyncok(struct nfsmount *nmp)
1143 {
1144 	return (nmp->nm_bioqlen < nfs_maxasyncbio &&
1145 		nmp->nm_bioqlen < nmp->nm_maxasync_scaled / NFS_ASYSCALE &&
1146 		nmp->nm_rxstate <= NFSSVC_PENDING &&
1147 		nmp->nm_txstate <= NFSSVC_PENDING);
1148 }
1149 
1150 /*
1151  * The read-ahead code calls this to queue a bio to the txthread.
1152  *
1153  * We don't touch the bio otherwise... that is, we do not even
1154  * construct or send the initial rpc.  The txthread will do it
1155  * for us.
1156  *
1157  * NOTE!  nm_bioqlen is not decremented until the request completes,
1158  *	  so it does not reflect the number of bio's on bioq.
1159  */
1160 void
1161 nfs_asyncio(struct vnode *vp, struct bio *bio)
1162 {
1163 	struct buf *bp = bio->bio_buf;
1164 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1165 
1166 	KKASSERT(vp->v_tag == VT_NFS);
1167 	BUF_KERNPROC(bp);
1168 	bio->bio_driver_info = vp;
1169 	crit_enter();
1170 	TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act);
1171 	atomic_add_int(&nmp->nm_bioqlen, 1);
1172 	crit_exit();
1173 	nfssvc_iod_writer_wakeup(nmp);
1174 }
1175 
1176 /*
1177  * nfs_dio()	- Execute a BIO operation synchronously.  The BIO will be
1178  *		  completed and its error returned.  The caller is responsible
1179  *		  for brelse()ing it.  ONLY USE FOR BIO_SYNC IOs!  Otherwise
1180  *		  our error probe will be against an invalid pointer.
1181  *
1182  * nfs_startio()- Execute a BIO operation assynchronously.
1183  *
1184  * NOTE: nfs_asyncio() is used to initiate an asynchronous BIO operation,
1185  *	 which basically just queues it to the txthread.  nfs_startio()
1186  *	 actually initiates the I/O AFTER it has gotten to the txthread.
1187  *
1188  * NOTE: td might be NULL.
1189  *
1190  * NOTE: Caller has already busied the I/O.
1191  */
1192 void
1193 nfs_startio(struct vnode *vp, struct bio *bio, struct thread *td)
1194 {
1195 	struct buf *bp = bio->bio_buf;
1196 	struct nfsnode *np;
1197 	struct nfsmount *nmp;
1198 
1199 	KKASSERT(vp->v_tag == VT_NFS);
1200 	np = VTONFS(vp);
1201 	nmp = VFSTONFS(vp->v_mount);
1202 
1203 	/*
1204 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1205 	 * do this here so we do not have to do it in all the code that
1206 	 * calls us.
1207 	 */
1208 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1209 
1210 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
1211 		("nfs_doio: bp %p already marked done!", bp));
1212 
1213 	if (bp->b_cmd == BUF_CMD_READ) {
1214 	    switch (vp->v_type) {
1215 	    case VREG:
1216 		nfsstats.read_bios++;
1217 		nfs_readrpc_bio(vp, bio);
1218 		break;
1219 	    case VLNK:
1220 #if 0
1221 		bio->bio_offset = 0;
1222 		nfsstats.readlink_bios++;
1223 		nfs_readlinkrpc_bio(vp, bio);
1224 #else
1225 		nfs_doio(vp, bio, td);
1226 #endif
1227 		break;
1228 	    case VDIR:
1229 		/*
1230 		 * NOTE: If nfs_readdirplusrpc_bio() is requested but
1231 		 *	 not supported, it will chain to
1232 		 *	 nfs_readdirrpc_bio().
1233 		 */
1234 #if 0
1235 		nfsstats.readdir_bios++;
1236 		uiop->uio_offset = bio->bio_offset;
1237 		if (nmp->nm_flag & NFSMNT_RDIRPLUS)
1238 			nfs_readdirplusrpc_bio(vp, bio);
1239 		else
1240 			nfs_readdirrpc_bio(vp, bio);
1241 #else
1242 		nfs_doio(vp, bio, td);
1243 #endif
1244 		break;
1245 	    default:
1246 		kprintf("nfs_doio:  type %x unexpected\n",vp->v_type);
1247 		bp->b_flags |= B_ERROR;
1248 		bp->b_error = EINVAL;
1249 		biodone(bio);
1250 		break;
1251 	    }
1252 	} else {
1253 	    /*
1254 	     * If we only need to commit, try to commit.  If this fails
1255 	     * it will chain through to the write.  Basically all the logic
1256 	     * in nfs_doio() is replicated.
1257 	     */
1258 	    KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1259 	    if (bp->b_flags & B_NEEDCOMMIT)
1260 		nfs_commitrpc_bio(vp, bio);
1261 	    else
1262 		nfs_writerpc_bio(vp, bio);
1263 	}
1264 }
1265 
1266 int
1267 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td)
1268 {
1269 	struct buf *bp = bio->bio_buf;
1270 	struct uio *uiop;
1271 	struct nfsnode *np;
1272 	struct nfsmount *nmp;
1273 	int error = 0;
1274 	int iomode, must_commit;
1275 	size_t n;
1276 	struct uio uio;
1277 	struct iovec io;
1278 
1279 	KKASSERT(vp->v_tag == VT_NFS);
1280 	np = VTONFS(vp);
1281 	nmp = VFSTONFS(vp->v_mount);
1282 	uiop = &uio;
1283 	uiop->uio_iov = &io;
1284 	uiop->uio_iovcnt = 1;
1285 	uiop->uio_segflg = UIO_SYSSPACE;
1286 	uiop->uio_td = td;
1287 
1288 	/*
1289 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1290 	 * do this here so we do not have to do it in all the code that
1291 	 * calls us.
1292 	 */
1293 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1294 
1295 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
1296 		("nfs_doio: bp %p already marked done!", bp));
1297 
1298 	if (bp->b_cmd == BUF_CMD_READ) {
1299 	    io.iov_len = uiop->uio_resid = (size_t)bp->b_bcount;
1300 	    io.iov_base = bp->b_data;
1301 	    uiop->uio_rw = UIO_READ;
1302 
1303 	    switch (vp->v_type) {
1304 	    case VREG:
1305 		/*
1306 		 * When reading from a regular file zero-fill any residual.
1307 		 * Note that this residual has nothing to do with NFS short
1308 		 * reads, which nfs_readrpc_uio() will handle for us.
1309 		 *
1310 		 * We have to do this because when we are write extending
1311 		 * a file the server may not have the same notion of
1312 		 * filesize as we do.  Our BIOs should already be sized
1313 		 * (b_bcount) to account for the file EOF.
1314 		 */
1315 		nfsstats.read_bios++;
1316 		uiop->uio_offset = bio->bio_offset;
1317 		error = nfs_readrpc_uio(vp, uiop);
1318 		if (error == 0 && uiop->uio_resid) {
1319 			n = (size_t)bp->b_bcount - uiop->uio_resid;
1320 			bzero(bp->b_data + n, bp->b_bcount - n);
1321 			uiop->uio_resid = 0;
1322 		}
1323 		if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1324 		    np->n_mtime != np->n_vattr.va_mtime.tv_sec) {
1325 			uprintf("Process killed due to text file modification\n");
1326 			ksignal(td->td_proc, SIGKILL);
1327 		}
1328 		break;
1329 	    case VLNK:
1330 		uiop->uio_offset = 0;
1331 		nfsstats.readlink_bios++;
1332 		error = nfs_readlinkrpc_uio(vp, uiop);
1333 		break;
1334 	    case VDIR:
1335 		nfsstats.readdir_bios++;
1336 		uiop->uio_offset = bio->bio_offset;
1337 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1338 			error = nfs_readdirplusrpc_uio(vp, uiop);
1339 			if (error == NFSERR_NOTSUPP)
1340 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1341 		}
1342 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1343 			error = nfs_readdirrpc_uio(vp, uiop);
1344 		/*
1345 		 * end-of-directory sets B_INVAL but does not generate an
1346 		 * error.
1347 		 */
1348 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1349 			bp->b_flags |= B_INVAL;
1350 		break;
1351 	    default:
1352 		kprintf("nfs_doio:  type %x unexpected\n",vp->v_type);
1353 		break;
1354 	    };
1355 	    if (error) {
1356 		bp->b_flags |= B_ERROR;
1357 		bp->b_error = error;
1358 	    }
1359 	    bp->b_resid = uiop->uio_resid;
1360 	} else {
1361 	    /*
1362 	     * If we only need to commit, try to commit.
1363 	     *
1364 	     * NOTE: The I/O has already been staged for the write and
1365 	     *	     its pages busied, so b_dirtyoff/end is valid.
1366 	     */
1367 	    KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1368 	    if (bp->b_flags & B_NEEDCOMMIT) {
1369 		    int retv;
1370 		    off_t off;
1371 
1372 		    off = bio->bio_offset + bp->b_dirtyoff;
1373 		    retv = nfs_commitrpc_uio(vp, off,
1374 					     bp->b_dirtyend - bp->b_dirtyoff,
1375 					     td);
1376 		    if (retv == 0) {
1377 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1378 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1379 			    bp->b_resid = 0;
1380 			    biodone(bio);
1381 			    return(0);
1382 		    }
1383 		    if (retv == NFSERR_STALEWRITEVERF) {
1384 			    nfs_clearcommit(vp->v_mount);
1385 		    }
1386 	    }
1387 
1388 	    /*
1389 	     * Setup for actual write
1390 	     */
1391 	    if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1392 		bp->b_dirtyend = np->n_size - bio->bio_offset;
1393 
1394 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1395 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1396 		    - bp->b_dirtyoff;
1397 		uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff;
1398 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1399 		uiop->uio_rw = UIO_WRITE;
1400 		nfsstats.write_bios++;
1401 
1402 		if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1403 		    iomode = NFSV3WRITE_UNSTABLE;
1404 		else
1405 		    iomode = NFSV3WRITE_FILESYNC;
1406 
1407 		must_commit = 0;
1408 		error = nfs_writerpc_uio(vp, uiop, &iomode, &must_commit);
1409 
1410 		/*
1411 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1412 		 * to cluster the buffers needing commit.  This will allow
1413 		 * the system to submit a single commit rpc for the whole
1414 		 * cluster.  We can do this even if the buffer is not 100%
1415 		 * dirty (relative to the NFS blocksize), so we optimize the
1416 		 * append-to-file-case.
1417 		 *
1418 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1419 		 * cleared because write clustering only works for commit
1420 		 * rpc's, not for the data portion of the write).
1421 		 */
1422 
1423 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1424 		    bp->b_flags |= B_NEEDCOMMIT;
1425 		    if (bp->b_dirtyoff == 0
1426 			&& bp->b_dirtyend == bp->b_bcount)
1427 			bp->b_flags |= B_CLUSTEROK;
1428 		} else {
1429 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1430 		}
1431 
1432 		/*
1433 		 * For an interrupted write, the buffer is still valid
1434 		 * and the write hasn't been pushed to the server yet,
1435 		 * so we can't set B_ERROR and report the interruption
1436 		 * by setting B_EINTR. For the async case, B_EINTR
1437 		 * is not relevant, so the rpc attempt is essentially
1438 		 * a noop.  For the case of a V3 write rpc not being
1439 		 * committed to stable storage, the block is still
1440 		 * dirty and requires either a commit rpc or another
1441 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1442 		 * the block is reused. This is indicated by setting
1443 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1444 		 *
1445 		 * If the buffer is marked B_PAGING, it does not reside on
1446 		 * the vp's paging queues so we cannot call bdirty().  The
1447 		 * bp in this case is not an NFS cache block so we should
1448 		 * be safe. XXX
1449 		 */
1450     		if (error == EINTR
1451 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1452 			crit_enter();
1453 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1454 			if ((bp->b_flags & B_PAGING) == 0)
1455 			    bdirty(bp);
1456 			if (error)
1457 			    bp->b_flags |= B_EINTR;
1458 			crit_exit();
1459 	    	} else {
1460 		    if (error) {
1461 			bp->b_flags |= B_ERROR;
1462 			bp->b_error = np->n_error = error;
1463 			np->n_flag |= NWRITEERR;
1464 		    }
1465 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1466 		}
1467 		if (must_commit)
1468 		    nfs_clearcommit(vp->v_mount);
1469 		bp->b_resid = uiop->uio_resid;
1470 	    } else {
1471 		bp->b_resid = 0;
1472 	    }
1473 	}
1474 
1475 	/*
1476 	 * I/O was run synchronously, biodone() it and calculate the
1477 	 * error to return.
1478 	 */
1479 	biodone(bio);
1480 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
1481 	if (bp->b_flags & B_EINTR)
1482 		return (EINTR);
1483 	if (bp->b_flags & B_ERROR)
1484 		return (bp->b_error ? bp->b_error : EIO);
1485 	return (0);
1486 }
1487 
1488 /*
1489  * Used to aid in handling ftruncate() and non-trivial write-extend
1490  * operations on the NFS client side.  Note that trivial write-extend
1491  * operations (appending with no write hole) are handled by nfs_write()
1492  * directly to avoid silly flushes.
1493  *
1494  * Truncation creates a number of special problems for NFS.  We have to
1495  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1496  * we have to properly handle VM pages or (potentially dirty) buffers
1497  * that straddle the truncation point.
1498  *
1499  * File extension no longer has an issue now that the buffer size is
1500  * fixed.  When extending the intended overwrite area is specified
1501  * by (boff, bytes).  This function uses the parameters to determine
1502  * what areas must be zerod.  If there are no gaps we set B_CACHE.
1503  */
1504 struct buf *
1505 nfs_meta_setsize(struct vnode *vp, struct thread *td, off_t nbase,
1506 		 int boff, int bytes)
1507 {
1508 
1509 	struct nfsnode *np = VTONFS(vp);
1510 	off_t osize = np->n_size;
1511 	off_t nsize;
1512 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1513 	int error = 0;
1514 	struct buf *bp;
1515 
1516 	nsize = nbase + boff + bytes;
1517 	np->n_size = nsize;
1518 
1519 	if (nsize < osize) {
1520 		/*
1521 		 * vtruncbuf() doesn't get the buffer overlapping the
1522 		 * truncation point, but it will invalidate pages in
1523 		 * that buffer and zero the appropriate byte range in
1524 		 * the page straddling EOF.
1525 		 */
1526 		error = vtruncbuf(vp, nsize, biosize);
1527 
1528 		/*
1529 		 * NFS doesn't do a good job tracking changes in the EOF
1530 		 * so it may not revisit the buffer if the file is extended.
1531 		 *
1532 		 * After truncating just clear B_CACHE on the buffer
1533 		 * straddling EOF.  If the buffer is dirty then clean
1534 		 * out the portion beyond the file EOF.
1535 		 */
1536 		if (error) {
1537 			bp = NULL;
1538 		} else {
1539 			bp = nfs_getcacheblk(vp, nbase, biosize, td);
1540 			if (bp->b_flags & B_DELWRI) {
1541 				if (bp->b_dirtyoff > bp->b_bcount)
1542 					bp->b_dirtyoff = bp->b_bcount;
1543 				if (bp->b_dirtyend > bp->b_bcount)
1544 					bp->b_dirtyend = bp->b_bcount;
1545 				boff = (int)nsize & (biosize - 1);
1546 				bzero(bp->b_data + boff, biosize - boff);
1547 			} else if (nsize != nbase) {
1548 				boff = (int)nsize & (biosize - 1);
1549 				bzero(bp->b_data + boff, biosize - boff);
1550 			}
1551 		}
1552 	} else {
1553 		/*
1554 		 * The newly expanded portions of the buffer should already
1555 		 * be zero'd out if B_CACHE is set.  If B_CACHE is not
1556 		 * set and the buffer is beyond osize we can safely zero it
1557 		 * and set B_CACHE to avoid issuing unnecessary degenerate
1558 		 * read rpcs.
1559 		 *
1560 		 * Don't do this if the caller is going to overwrite the
1561 		 * entire buffer anyway (and also don't set B_CACHE!).
1562 		 * This allows the caller to optimize the operation.
1563 		 */
1564 		KKASSERT(nsize >= 0);
1565 		vnode_pager_setsize(vp, (vm_ooffset_t)nsize);
1566 
1567 		bp = nfs_getcacheblk(vp, nbase, biosize, td);
1568 		if ((bp->b_flags & B_CACHE) == 0 && nbase >= osize &&
1569 		    !(boff == 0 && bytes == biosize)
1570 		) {
1571 			bzero(bp->b_data, biosize);
1572 			bp->b_flags |= B_CACHE;
1573 			bp->b_flags &= ~(B_ERROR | B_INVAL);
1574 		}
1575 	}
1576 	return(bp);
1577 }
1578 
1579 /*
1580  * Synchronous completion for nfs_doio.  Call bpdone() with elseit=FALSE.
1581  * Caller is responsible for brelse()'ing the bp.
1582  */
1583 static void
1584 nfsiodone_sync(struct bio *bio)
1585 {
1586 	bio->bio_flags = 0;
1587 	bpdone(bio->bio_buf, 0);
1588 }
1589 
1590 /*
1591  * nfs read rpc - BIO version
1592  */
1593 void
1594 nfs_readrpc_bio(struct vnode *vp, struct bio *bio)
1595 {
1596 	struct buf *bp = bio->bio_buf;
1597 	u_int32_t *tl;
1598 	struct nfsmount *nmp;
1599 	int error = 0, len, tsiz;
1600 	struct nfsm_info *info;
1601 
1602 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1603 	info->mrep = NULL;
1604 	info->v3 = NFS_ISV3(vp);
1605 
1606 	nmp = VFSTONFS(vp->v_mount);
1607 	tsiz = bp->b_bcount;
1608 	KKASSERT(tsiz <= nmp->nm_rsize);
1609 	if (bio->bio_offset + tsiz > nmp->nm_maxfilesize) {
1610 		error = EFBIG;
1611 		goto nfsmout;
1612 	}
1613 	nfsstats.rpccnt[NFSPROC_READ]++;
1614 	len = tsiz;
1615 	nfsm_reqhead(info, vp, NFSPROC_READ,
1616 		     NFSX_FH(info->v3) + NFSX_UNSIGNED * 3);
1617 	ERROROUT(nfsm_fhtom(info, vp));
1618 	tl = nfsm_build(info, NFSX_UNSIGNED * 3);
1619 	if (info->v3) {
1620 		txdr_hyper(bio->bio_offset, tl);
1621 		*(tl + 2) = txdr_unsigned(len);
1622 	} else {
1623 		*tl++ = txdr_unsigned(bio->bio_offset);
1624 		*tl++ = txdr_unsigned(len);
1625 		*tl = 0;
1626 	}
1627 	info->bio = bio;
1628 	info->done = nfs_readrpc_bio_done;
1629 	nfsm_request_bio(info, vp, NFSPROC_READ, NULL,
1630 			 nfs_vpcred(vp, ND_READ));
1631 	return;
1632 nfsmout:
1633 	kfree(info, M_NFSREQ);
1634 	bp->b_error = error;
1635 	bp->b_flags |= B_ERROR;
1636 	biodone(bio);
1637 }
1638 
1639 static void
1640 nfs_readrpc_bio_done(nfsm_info_t info)
1641 {
1642 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1643 	struct bio *bio = info->bio;
1644 	struct buf *bp = bio->bio_buf;
1645 	u_int32_t *tl;
1646 	int attrflag;
1647 	int retlen;
1648 	int eof;
1649 	int error = 0;
1650 
1651 	KKASSERT(info->state == NFSM_STATE_DONE);
1652 
1653 	if (info->v3) {
1654 		ERROROUT(nfsm_postop_attr(info, info->vp, &attrflag,
1655 					 NFS_LATTR_NOSHRINK));
1656 		NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED));
1657 		eof = fxdr_unsigned(int, *(tl + 1));
1658 	} else {
1659 		ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1660 		eof = 0;
1661 	}
1662 	NEGATIVEOUT(retlen = nfsm_strsiz(info, nmp->nm_rsize));
1663 	ERROROUT(nfsm_mtobio(info, bio, retlen));
1664 	m_freem(info->mrep);
1665 	info->mrep = NULL;
1666 
1667 	/*
1668 	 * No error occured, if retlen is less then bcount and no EOF
1669 	 * and NFSv3 a zero-fill short read occured.
1670 	 *
1671 	 * For NFSv2 a short-read indicates EOF.
1672 	 */
1673 	if (retlen < bp->b_bcount && info->v3 && eof == 0) {
1674 		bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1675 		retlen = bp->b_bcount;
1676 	}
1677 
1678 	/*
1679 	 * If we hit an EOF we still zero-fill, but return the expected
1680 	 * b_resid anyway.  This should normally not occur since async
1681 	 * BIOs are not used for read-before-write case.  Races against
1682 	 * the server can cause it though and we don't want to leave
1683 	 * garbage in the buffer.
1684 	 */
1685 	if (retlen < bp->b_bcount) {
1686 		bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1687 	}
1688 	bp->b_resid = 0;
1689 	/* bp->b_resid = bp->b_bcount - retlen; */
1690 nfsmout:
1691 	kfree(info, M_NFSREQ);
1692 	if (error) {
1693 		bp->b_error = error;
1694 		bp->b_flags |= B_ERROR;
1695 	}
1696 	biodone(bio);
1697 }
1698 
1699 /*
1700  * nfs write call - BIO version
1701  *
1702  * NOTE: Caller has already busied the I/O.
1703  */
1704 void
1705 nfs_writerpc_bio(struct vnode *vp, struct bio *bio)
1706 {
1707 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1708 	struct nfsnode *np = VTONFS(vp);
1709 	struct buf *bp = bio->bio_buf;
1710 	u_int32_t *tl;
1711 	int len;
1712 	int iomode;
1713 	int error = 0;
1714 	struct nfsm_info *info;
1715 	off_t offset;
1716 
1717 	/*
1718 	 * Setup for actual write.  Just clean up the bio if there
1719 	 * is nothing to do.  b_dirtyoff/end have already been staged
1720 	 * by the bp's pages getting busied.
1721 	 */
1722 	if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1723 		bp->b_dirtyend = np->n_size - bio->bio_offset;
1724 
1725 	if (bp->b_dirtyend <= bp->b_dirtyoff) {
1726 		bp->b_resid = 0;
1727 		biodone(bio);
1728 		return;
1729 	}
1730 	len = bp->b_dirtyend - bp->b_dirtyoff;
1731 	offset = bio->bio_offset + bp->b_dirtyoff;
1732 	if (offset + len > nmp->nm_maxfilesize) {
1733 		bp->b_flags |= B_ERROR;
1734 		bp->b_error = EFBIG;
1735 		biodone(bio);
1736 		return;
1737 	}
1738 	bp->b_resid = len;
1739 	nfsstats.write_bios++;
1740 
1741 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1742 	info->mrep = NULL;
1743 	info->v3 = NFS_ISV3(vp);
1744 	info->info_writerpc.must_commit = 0;
1745 	if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1746 		iomode = NFSV3WRITE_UNSTABLE;
1747 	else
1748 		iomode = NFSV3WRITE_FILESYNC;
1749 
1750 	KKASSERT(len <= nmp->nm_wsize);
1751 
1752 	nfsstats.rpccnt[NFSPROC_WRITE]++;
1753 	nfsm_reqhead(info, vp, NFSPROC_WRITE,
1754 		     NFSX_FH(info->v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1755 	ERROROUT(nfsm_fhtom(info, vp));
1756 	if (info->v3) {
1757 		tl = nfsm_build(info, 5 * NFSX_UNSIGNED);
1758 		txdr_hyper(offset, tl);
1759 		tl += 2;
1760 		*tl++ = txdr_unsigned(len);
1761 		*tl++ = txdr_unsigned(iomode);
1762 		*tl = txdr_unsigned(len);
1763 	} else {
1764 		u_int32_t x;
1765 
1766 		tl = nfsm_build(info, 4 * NFSX_UNSIGNED);
1767 		/* Set both "begin" and "current" to non-garbage. */
1768 		x = txdr_unsigned((u_int32_t)offset);
1769 		*tl++ = x;	/* "begin offset" */
1770 		*tl++ = x;	/* "current offset" */
1771 		x = txdr_unsigned(len);
1772 		*tl++ = x;	/* total to this offset */
1773 		*tl = x;	/* size of this write */
1774 	}
1775 	ERROROUT(nfsm_biotom(info, bio, bp->b_dirtyoff, len));
1776 	info->bio = bio;
1777 	info->done = nfs_writerpc_bio_done;
1778 	nfsm_request_bio(info, vp, NFSPROC_WRITE, NULL,
1779 			 nfs_vpcred(vp, ND_WRITE));
1780 	return;
1781 nfsmout:
1782 	kfree(info, M_NFSREQ);
1783 	bp->b_error = error;
1784 	bp->b_flags |= B_ERROR;
1785 	biodone(bio);
1786 }
1787 
1788 static void
1789 nfs_writerpc_bio_done(nfsm_info_t info)
1790 {
1791 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1792 	struct nfsnode *np = VTONFS(info->vp);
1793 	struct bio *bio = info->bio;
1794 	struct buf *bp = bio->bio_buf;
1795 	int wccflag = NFSV3_WCCRATTR;
1796 	int iomode = NFSV3WRITE_FILESYNC;
1797 	int commit;
1798 	int rlen;
1799 	int error;
1800 	int len = bp->b_resid;	/* b_resid was set to shortened length */
1801 	u_int32_t *tl;
1802 
1803 	if (info->v3) {
1804 		/*
1805 		 * The write RPC returns a before and after mtime.  The
1806 		 * nfsm_wcc_data() macro checks the before n_mtime
1807 		 * against the before time and stores the after time
1808 		 * in the nfsnode's cached vattr and n_mtime field.
1809 		 * The NRMODIFIED bit will be set if the before
1810 		 * time did not match the original mtime.
1811 		 */
1812 		wccflag = NFSV3_WCCCHK;
1813 		ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1814 		if (error == 0) {
1815 			NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1816 			rlen = fxdr_unsigned(int, *tl++);
1817 			if (rlen == 0) {
1818 				error = NFSERR_IO;
1819 				m_freem(info->mrep);
1820 				info->mrep = NULL;
1821 				goto nfsmout;
1822 			} else if (rlen < len) {
1823 #if 0
1824 				/*
1825 				 * XXX what do we do here?
1826 				 */
1827 				backup = len - rlen;
1828 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1829 				uiop->uio_iov->iov_len += backup;
1830 				uiop->uio_offset -= backup;
1831 				uiop->uio_resid += backup;
1832 				len = rlen;
1833 #endif
1834 			}
1835 			commit = fxdr_unsigned(int, *tl++);
1836 
1837 			/*
1838 			 * Return the lowest committment level
1839 			 * obtained by any of the RPCs.
1840 			 */
1841 			if (iomode == NFSV3WRITE_FILESYNC)
1842 				iomode = commit;
1843 			else if (iomode == NFSV3WRITE_DATASYNC &&
1844 				commit == NFSV3WRITE_UNSTABLE)
1845 				iomode = commit;
1846 			if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1847 			    bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1848 			    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1849 			} else if (bcmp(tl, nmp->nm_verf, NFSX_V3WRITEVERF)) {
1850 			    info->info_writerpc.must_commit = 1;
1851 			    bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1852 			}
1853 		}
1854 	} else {
1855 		ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1856 	}
1857 	m_freem(info->mrep);
1858 	info->mrep = NULL;
1859 	len = 0;
1860 nfsmout:
1861 	if (info->vp->v_mount->mnt_flag & MNT_ASYNC)
1862 		iomode = NFSV3WRITE_FILESYNC;
1863 	bp->b_resid = len;
1864 
1865 	/*
1866 	 * End of RPC.  Now clean up the bp.
1867 	 *
1868 	 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1869 	 * to cluster the buffers needing commit.  This will allow
1870 	 * the system to submit a single commit rpc for the whole
1871 	 * cluster.  We can do this even if the buffer is not 100%
1872 	 * dirty (relative to the NFS blocksize), so we optimize the
1873 	 * append-to-file-case.
1874 	 *
1875 	 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1876 	 * cleared because write clustering only works for commit
1877 	 * rpc's, not for the data portion of the write).
1878 	 */
1879 	if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1880 		bp->b_flags |= B_NEEDCOMMIT;
1881 		if (bp->b_dirtyoff == 0 && bp->b_dirtyend == bp->b_bcount)
1882 			bp->b_flags |= B_CLUSTEROK;
1883 	} else {
1884 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1885 	}
1886 
1887 	/*
1888 	 * For an interrupted write, the buffer is still valid
1889 	 * and the write hasn't been pushed to the server yet,
1890 	 * so we can't set B_ERROR and report the interruption
1891 	 * by setting B_EINTR. For the async case, B_EINTR
1892 	 * is not relevant, so the rpc attempt is essentially
1893 	 * a noop.  For the case of a V3 write rpc not being
1894 	 * committed to stable storage, the block is still
1895 	 * dirty and requires either a commit rpc or another
1896 	 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1897 	 * the block is reused. This is indicated by setting
1898 	 * the B_DELWRI and B_NEEDCOMMIT flags.
1899 	 *
1900 	 * If the buffer is marked B_PAGING, it does not reside on
1901 	 * the vp's paging queues so we cannot call bdirty().  The
1902 	 * bp in this case is not an NFS cache block so we should
1903 	 * be safe. XXX
1904 	 */
1905 	if (error == EINTR || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1906 		crit_enter();
1907 		bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1908 		if ((bp->b_flags & B_PAGING) == 0)
1909 			bdirty(bp);
1910 		if (error)
1911 			bp->b_flags |= B_EINTR;
1912 		crit_exit();
1913 	} else {
1914 		if (error) {
1915 			bp->b_flags |= B_ERROR;
1916 			bp->b_error = np->n_error = error;
1917 			np->n_flag |= NWRITEERR;
1918 		}
1919 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1920 	}
1921 	if (info->info_writerpc.must_commit)
1922 		nfs_clearcommit(info->vp->v_mount);
1923 	kfree(info, M_NFSREQ);
1924 	if (error) {
1925 		bp->b_flags |= B_ERROR;
1926 		bp->b_error = error;
1927 	}
1928 	biodone(bio);
1929 }
1930 
1931 /*
1932  * Nfs Version 3 commit rpc - BIO version
1933  *
1934  * This function issues the commit rpc and will chain to a write
1935  * rpc if necessary.
1936  */
1937 void
1938 nfs_commitrpc_bio(struct vnode *vp, struct bio *bio)
1939 {
1940 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1941 	struct buf *bp = bio->bio_buf;
1942 	struct nfsm_info *info;
1943 	int error = 0;
1944 	u_int32_t *tl;
1945 
1946 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
1947 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1948 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1949 		bp->b_resid = 0;
1950 		biodone(bio);
1951 		return;
1952 	}
1953 
1954 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1955 	info->mrep = NULL;
1956 	info->v3 = 1;
1957 
1958 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
1959 	nfsm_reqhead(info, vp, NFSPROC_COMMIT, NFSX_FH(1));
1960 	ERROROUT(nfsm_fhtom(info, vp));
1961 	tl = nfsm_build(info, 3 * NFSX_UNSIGNED);
1962 	txdr_hyper(bio->bio_offset + bp->b_dirtyoff, tl);
1963 	tl += 2;
1964 	*tl = txdr_unsigned(bp->b_dirtyend - bp->b_dirtyoff);
1965 	info->bio = bio;
1966 	info->done = nfs_commitrpc_bio_done;
1967 	nfsm_request_bio(info, vp, NFSPROC_COMMIT, NULL,
1968 			 nfs_vpcred(vp, ND_WRITE));
1969 	return;
1970 nfsmout:
1971 	/*
1972 	 * Chain to write RPC on (early) error
1973 	 */
1974 	kfree(info, M_NFSREQ);
1975 	nfs_writerpc_bio(vp, bio);
1976 }
1977 
1978 static void
1979 nfs_commitrpc_bio_done(nfsm_info_t info)
1980 {
1981 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1982 	struct bio *bio = info->bio;
1983 	struct buf *bp = bio->bio_buf;
1984 	u_int32_t *tl;
1985 	int wccflag = NFSV3_WCCRATTR;
1986 	int error = 0;
1987 
1988 	ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1989 	if (error == 0) {
1990 		NULLOUT(tl = nfsm_dissect(info, NFSX_V3WRITEVERF));
1991 		if (bcmp(nmp->nm_verf, tl, NFSX_V3WRITEVERF)) {
1992 			bcopy(tl, nmp->nm_verf, NFSX_V3WRITEVERF);
1993 			error = NFSERR_STALEWRITEVERF;
1994 		}
1995 	}
1996 	m_freem(info->mrep);
1997 	info->mrep = NULL;
1998 
1999 	/*
2000 	 * On completion we must chain to a write bio if an
2001 	 * error occurred.
2002 	 */
2003 nfsmout:
2004 	kfree(info, M_NFSREQ);
2005 	if (error == 0) {
2006 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2007 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2008 		bp->b_resid = 0;
2009 		biodone(bio);
2010 	} else {
2011 		nfs_writerpc_bio(info->vp, bio);
2012 	}
2013 }
2014 
2015