xref: /dragonfly/sys/vfs/nfs/nfs_bio.c (revision 6e285212)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37  * $FreeBSD: src/sys/nfs/nfs_bio.c,v 1.83.2.4 2002/12/29 18:19:53 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.2 2003/06/17 04:28:54 dillon Exp $
39  */
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_pager.h>
57 #include <vm/vnode_pager.h>
58 
59 #include <nfs/rpcv2.h>
60 #include <nfs/nfsproto.h>
61 #include <nfs/nfs.h>
62 #include <nfs/nfsmount.h>
63 #include <nfs/nqnfs.h>
64 #include <nfs/nfsnode.h>
65 
66 static struct buf *nfs_getcacheblk __P((struct vnode *vp, daddr_t bn, int size,
67 					struct proc *p));
68 
69 extern int nfs_numasync;
70 extern int nfs_pbuf_freecnt;
71 extern struct nfsstats nfsstats;
72 
73 /*
74  * Vnode op for VM getpages.
75  */
76 int
77 nfs_getpages(ap)
78 	struct vop_getpages_args /* {
79 		struct vnode *a_vp;
80 		vm_page_t *a_m;
81 		int a_count;
82 		int a_reqpage;
83 		vm_ooffset_t a_offset;
84 	} */ *ap;
85 {
86 	int i, error, nextoff, size, toff, count, npages;
87 	struct uio uio;
88 	struct iovec iov;
89 	vm_offset_t kva;
90 	struct buf *bp;
91 	struct vnode *vp;
92 	struct proc *p;
93 	struct ucred *cred;
94 	struct nfsmount *nmp;
95 	vm_page_t *pages;
96 
97 	vp = ap->a_vp;
98 	p = curproc;				/* XXX */
99 	cred = curproc->p_ucred;		/* XXX */
100 	nmp = VFSTONFS(vp->v_mount);
101 	pages = ap->a_m;
102 	count = ap->a_count;
103 
104 	if (vp->v_object == NULL) {
105 		printf("nfs_getpages: called with non-merged cache vnode??\n");
106 		return VM_PAGER_ERROR;
107 	}
108 
109 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
110 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
111 		(void)nfs_fsinfo(nmp, vp, cred, p);
112 
113 	npages = btoc(count);
114 
115 	/*
116 	 * If the requested page is partially valid, just return it and
117 	 * allow the pager to zero-out the blanks.  Partially valid pages
118 	 * can only occur at the file EOF.
119 	 */
120 
121 	{
122 		vm_page_t m = pages[ap->a_reqpage];
123 
124 		if (m->valid != 0) {
125 			/* handled by vm_fault now	  */
126 			/* vm_page_zero_invalid(m, TRUE); */
127 			for (i = 0; i < npages; ++i) {
128 				if (i != ap->a_reqpage)
129 					vnode_pager_freepage(pages[i]);
130 			}
131 			return(0);
132 		}
133 	}
134 
135 	/*
136 	 * We use only the kva address for the buffer, but this is extremely
137 	 * convienient and fast.
138 	 */
139 	bp = getpbuf(&nfs_pbuf_freecnt);
140 
141 	kva = (vm_offset_t) bp->b_data;
142 	pmap_qenter(kva, pages, npages);
143 
144 	iov.iov_base = (caddr_t) kva;
145 	iov.iov_len = count;
146 	uio.uio_iov = &iov;
147 	uio.uio_iovcnt = 1;
148 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
149 	uio.uio_resid = count;
150 	uio.uio_segflg = UIO_SYSSPACE;
151 	uio.uio_rw = UIO_READ;
152 	uio.uio_procp = p;
153 
154 	error = nfs_readrpc(vp, &uio, cred);
155 	pmap_qremove(kva, npages);
156 
157 	relpbuf(bp, &nfs_pbuf_freecnt);
158 
159 	if (error && (uio.uio_resid == count)) {
160 		printf("nfs_getpages: error %d\n", error);
161 		for (i = 0; i < npages; ++i) {
162 			if (i != ap->a_reqpage)
163 				vnode_pager_freepage(pages[i]);
164 		}
165 		return VM_PAGER_ERROR;
166 	}
167 
168 	/*
169 	 * Calculate the number of bytes read and validate only that number
170 	 * of bytes.  Note that due to pending writes, size may be 0.  This
171 	 * does not mean that the remaining data is invalid!
172 	 */
173 
174 	size = count - uio.uio_resid;
175 
176 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
177 		vm_page_t m;
178 		nextoff = toff + PAGE_SIZE;
179 		m = pages[i];
180 
181 		m->flags &= ~PG_ZERO;
182 
183 		if (nextoff <= size) {
184 			/*
185 			 * Read operation filled an entire page
186 			 */
187 			m->valid = VM_PAGE_BITS_ALL;
188 			vm_page_undirty(m);
189 		} else if (size > toff) {
190 			/*
191 			 * Read operation filled a partial page.
192 			 */
193 			m->valid = 0;
194 			vm_page_set_validclean(m, 0, size - toff);
195 			/* handled by vm_fault now	  */
196 			/* vm_page_zero_invalid(m, TRUE); */
197 		} else {
198 			/*
199 			 * Read operation was short.  If no error occured
200 			 * we may have hit a zero-fill section.   We simply
201 			 * leave valid set to 0.
202 			 */
203 			;
204 		}
205 		if (i != ap->a_reqpage) {
206 			/*
207 			 * Whether or not to leave the page activated is up in
208 			 * the air, but we should put the page on a page queue
209 			 * somewhere (it already is in the object).  Result:
210 			 * It appears that emperical results show that
211 			 * deactivating pages is best.
212 			 */
213 
214 			/*
215 			 * Just in case someone was asking for this page we
216 			 * now tell them that it is ok to use.
217 			 */
218 			if (!error) {
219 				if (m->flags & PG_WANTED)
220 					vm_page_activate(m);
221 				else
222 					vm_page_deactivate(m);
223 				vm_page_wakeup(m);
224 			} else {
225 				vnode_pager_freepage(m);
226 			}
227 		}
228 	}
229 	return 0;
230 }
231 
232 /*
233  * Vnode op for VM putpages.
234  */
235 int
236 nfs_putpages(ap)
237 	struct vop_putpages_args /* {
238 		struct vnode *a_vp;
239 		vm_page_t *a_m;
240 		int a_count;
241 		int a_sync;
242 		int *a_rtvals;
243 		vm_ooffset_t a_offset;
244 	} */ *ap;
245 {
246 	struct uio uio;
247 	struct iovec iov;
248 	vm_offset_t kva;
249 	struct buf *bp;
250 	int iomode, must_commit, i, error, npages, count;
251 	off_t offset;
252 	int *rtvals;
253 	struct vnode *vp;
254 	struct proc *p;
255 	struct ucred *cred;
256 	struct nfsmount *nmp;
257 	struct nfsnode *np;
258 	vm_page_t *pages;
259 
260 	vp = ap->a_vp;
261 	np = VTONFS(vp);
262 	p = curproc;				/* XXX */
263 	cred = curproc->p_ucred;		/* XXX */
264 	nmp = VFSTONFS(vp->v_mount);
265 	pages = ap->a_m;
266 	count = ap->a_count;
267 	rtvals = ap->a_rtvals;
268 	npages = btoc(count);
269 	offset = IDX_TO_OFF(pages[0]->pindex);
270 
271 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
272 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
273 		(void)nfs_fsinfo(nmp, vp, cred, p);
274 
275 	for (i = 0; i < npages; i++) {
276 		rtvals[i] = VM_PAGER_AGAIN;
277 	}
278 
279 	/*
280 	 * When putting pages, do not extend file past EOF.
281 	 */
282 
283 	if (offset + count > np->n_size) {
284 		count = np->n_size - offset;
285 		if (count < 0)
286 			count = 0;
287 	}
288 
289 	/*
290 	 * We use only the kva address for the buffer, but this is extremely
291 	 * convienient and fast.
292 	 */
293 	bp = getpbuf(&nfs_pbuf_freecnt);
294 
295 	kva = (vm_offset_t) bp->b_data;
296 	pmap_qenter(kva, pages, npages);
297 
298 	iov.iov_base = (caddr_t) kva;
299 	iov.iov_len = count;
300 	uio.uio_iov = &iov;
301 	uio.uio_iovcnt = 1;
302 	uio.uio_offset = offset;
303 	uio.uio_resid = count;
304 	uio.uio_segflg = UIO_SYSSPACE;
305 	uio.uio_rw = UIO_WRITE;
306 	uio.uio_procp = p;
307 
308 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
309 	    iomode = NFSV3WRITE_UNSTABLE;
310 	else
311 	    iomode = NFSV3WRITE_FILESYNC;
312 
313 	error = nfs_writerpc(vp, &uio, cred, &iomode, &must_commit);
314 
315 	pmap_qremove(kva, npages);
316 	relpbuf(bp, &nfs_pbuf_freecnt);
317 
318 	if (!error) {
319 		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
320 		for (i = 0; i < nwritten; i++) {
321 			rtvals[i] = VM_PAGER_OK;
322 			vm_page_undirty(pages[i]);
323 		}
324 		if (must_commit)
325 			nfs_clearcommit(vp->v_mount);
326 	}
327 	return rtvals[0];
328 }
329 
330 /*
331  * Vnode op for read using bio
332  */
333 int
334 nfs_bioread(vp, uio, ioflag, cred)
335 	register struct vnode *vp;
336 	register struct uio *uio;
337 	int ioflag;
338 	struct ucred *cred;
339 {
340 	register struct nfsnode *np = VTONFS(vp);
341 	register int biosize, i;
342 	struct buf *bp = 0, *rabp;
343 	struct vattr vattr;
344 	struct proc *p;
345 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
346 	daddr_t lbn, rabn;
347 	int bcount;
348 	int seqcount;
349 	int nra, error = 0, n = 0, on = 0;
350 
351 #ifdef DIAGNOSTIC
352 	if (uio->uio_rw != UIO_READ)
353 		panic("nfs_read mode");
354 #endif
355 	if (uio->uio_resid == 0)
356 		return (0);
357 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
358 		return (EINVAL);
359 	p = uio->uio_procp;
360 
361 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
362 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
363 		(void)nfs_fsinfo(nmp, vp, cred, p);
364 	if (vp->v_type != VDIR &&
365 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
366 		return (EFBIG);
367 	biosize = vp->v_mount->mnt_stat.f_iosize;
368 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
369 	/*
370 	 * For nfs, cache consistency can only be maintained approximately.
371 	 * Although RFC1094 does not specify the criteria, the following is
372 	 * believed to be compatible with the reference port.
373 	 * For nqnfs, full cache consistency is maintained within the loop.
374 	 * For nfs:
375 	 * If the file's modify time on the server has changed since the
376 	 * last read rpc or you have written to the file,
377 	 * you may have lost data cache consistency with the
378 	 * server, so flush all of the file's data out of the cache.
379 	 * Then force a getattr rpc to ensure that you have up to date
380 	 * attributes.
381 	 * NB: This implies that cache data can be read when up to
382 	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
383 	 * attributes this could be forced by setting n_attrstamp to 0 before
384 	 * the VOP_GETATTR() call.
385 	 */
386 	if ((nmp->nm_flag & NFSMNT_NQNFS) == 0) {
387 		if (np->n_flag & NMODIFIED) {
388 			if (vp->v_type != VREG) {
389 				if (vp->v_type != VDIR)
390 					panic("nfs: bioread, not dir");
391 				nfs_invaldir(vp);
392 				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
393 				if (error)
394 					return (error);
395 			}
396 			np->n_attrstamp = 0;
397 			error = VOP_GETATTR(vp, &vattr, cred, p);
398 			if (error)
399 				return (error);
400 			np->n_mtime = vattr.va_mtime.tv_sec;
401 		} else {
402 			error = VOP_GETATTR(vp, &vattr, cred, p);
403 			if (error)
404 				return (error);
405 			if (np->n_mtime != vattr.va_mtime.tv_sec) {
406 				if (vp->v_type == VDIR)
407 					nfs_invaldir(vp);
408 				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
409 				if (error)
410 					return (error);
411 				np->n_mtime = vattr.va_mtime.tv_sec;
412 			}
413 		}
414 	}
415 	do {
416 
417 	    /*
418 	     * Get a valid lease. If cached data is stale, flush it.
419 	     */
420 	    if (nmp->nm_flag & NFSMNT_NQNFS) {
421 		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
422 		    do {
423 			error = nqnfs_getlease(vp, ND_READ, cred, p);
424 		    } while (error == NQNFS_EXPIRED);
425 		    if (error)
426 			return (error);
427 		    if (np->n_lrev != np->n_brev ||
428 			(np->n_flag & NQNFSNONCACHE) ||
429 			((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
430 			if (vp->v_type == VDIR)
431 			    nfs_invaldir(vp);
432 			error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
433 			if (error)
434 			    return (error);
435 			np->n_brev = np->n_lrev;
436 		    }
437 		} else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
438 		    nfs_invaldir(vp);
439 		    error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
440 		    if (error)
441 			return (error);
442 		}
443 	    }
444 	    if (np->n_flag & NQNFSNONCACHE) {
445 		switch (vp->v_type) {
446 		case VREG:
447 			return (nfs_readrpc(vp, uio, cred));
448 		case VLNK:
449 			return (nfs_readlinkrpc(vp, uio, cred));
450 		case VDIR:
451 			break;
452 		default:
453 			printf(" NQNFSNONCACHE: type %x unexpected\n",
454 				vp->v_type);
455 		};
456 	    }
457 	    switch (vp->v_type) {
458 	    case VREG:
459 		nfsstats.biocache_reads++;
460 		lbn = uio->uio_offset / biosize;
461 		on = uio->uio_offset & (biosize - 1);
462 
463 		/*
464 		 * Start the read ahead(s), as required.
465 		 */
466 		if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
467 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
468 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
469 			rabn = lbn + 1 + nra;
470 			if (!incore(vp, rabn)) {
471 			    rabp = nfs_getcacheblk(vp, rabn, biosize, p);
472 			    if (!rabp)
473 				return (EINTR);
474 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
475 				rabp->b_flags |= (B_READ | B_ASYNC);
476 				vfs_busy_pages(rabp, 0);
477 				if (nfs_asyncio(rabp, cred, p)) {
478 				    rabp->b_flags |= B_INVAL|B_ERROR;
479 				    vfs_unbusy_pages(rabp);
480 				    brelse(rabp);
481 				    break;
482 				}
483 			    } else {
484 				brelse(rabp);
485 			    }
486 			}
487 		    }
488 		}
489 
490 		/*
491 		 * Obtain the buffer cache block.  Figure out the buffer size
492 		 * when we are at EOF.  If we are modifying the size of the
493 		 * buffer based on an EOF condition we need to hold
494 		 * nfs_rslock() through obtaining the buffer to prevent
495 		 * a potential writer-appender from messing with n_size.
496 		 * Otherwise we may accidently truncate the buffer and
497 		 * lose dirty data.
498 		 *
499 		 * Note that bcount is *not* DEV_BSIZE aligned.
500 		 */
501 
502 again:
503 		bcount = biosize;
504 		if ((off_t)lbn * biosize >= np->n_size) {
505 			bcount = 0;
506 		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
507 			bcount = np->n_size - (off_t)lbn * biosize;
508 		}
509 		if (bcount != biosize) {
510 			switch(nfs_rslock(np, p)) {
511 			case ENOLCK:
512 				goto again;
513 				/* not reached */
514 			case EINTR:
515 			case ERESTART:
516 				return(EINTR);
517 				/* not reached */
518 			default:
519 				break;
520 			}
521 		}
522 
523 		bp = nfs_getcacheblk(vp, lbn, bcount, p);
524 
525 		if (bcount != biosize)
526 			nfs_rsunlock(np, p);
527 		if (!bp)
528 			return (EINTR);
529 
530 		/*
531 		 * If B_CACHE is not set, we must issue the read.  If this
532 		 * fails, we return an error.
533 		 */
534 
535 		if ((bp->b_flags & B_CACHE) == 0) {
536 		    bp->b_flags |= B_READ;
537 		    vfs_busy_pages(bp, 0);
538 		    error = nfs_doio(bp, cred, p);
539 		    if (error) {
540 			brelse(bp);
541 			return (error);
542 		    }
543 		}
544 
545 		/*
546 		 * on is the offset into the current bp.  Figure out how many
547 		 * bytes we can copy out of the bp.  Note that bcount is
548 		 * NOT DEV_BSIZE aligned.
549 		 *
550 		 * Then figure out how many bytes we can copy into the uio.
551 		 */
552 
553 		n = 0;
554 		if (on < bcount)
555 			n = min((unsigned)(bcount - on), uio->uio_resid);
556 		break;
557 	    case VLNK:
558 		nfsstats.biocache_readlinks++;
559 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
560 		if (!bp)
561 			return (EINTR);
562 		if ((bp->b_flags & B_CACHE) == 0) {
563 		    bp->b_flags |= B_READ;
564 		    vfs_busy_pages(bp, 0);
565 		    error = nfs_doio(bp, cred, p);
566 		    if (error) {
567 			bp->b_flags |= B_ERROR;
568 			brelse(bp);
569 			return (error);
570 		    }
571 		}
572 		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
573 		on = 0;
574 		break;
575 	    case VDIR:
576 		nfsstats.biocache_readdirs++;
577 		if (np->n_direofoffset
578 		    && uio->uio_offset >= np->n_direofoffset) {
579 		    return (0);
580 		}
581 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
582 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
583 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, p);
584 		if (!bp)
585 		    return (EINTR);
586 		if ((bp->b_flags & B_CACHE) == 0) {
587 		    bp->b_flags |= B_READ;
588 		    vfs_busy_pages(bp, 0);
589 		    error = nfs_doio(bp, cred, p);
590 		    if (error) {
591 			    brelse(bp);
592 		    }
593 		    while (error == NFSERR_BAD_COOKIE) {
594 			printf("got bad cookie vp %p bp %p\n", vp, bp);
595 			nfs_invaldir(vp);
596 			error = nfs_vinvalbuf(vp, 0, cred, p, 1);
597 			/*
598 			 * Yuck! The directory has been modified on the
599 			 * server. The only way to get the block is by
600 			 * reading from the beginning to get all the
601 			 * offset cookies.
602 			 *
603 			 * Leave the last bp intact unless there is an error.
604 			 * Loop back up to the while if the error is another
605 			 * NFSERR_BAD_COOKIE (double yuch!).
606 			 */
607 			for (i = 0; i <= lbn && !error; i++) {
608 			    if (np->n_direofoffset
609 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
610 				    return (0);
611 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, p);
612 			    if (!bp)
613 				return (EINTR);
614 			    if ((bp->b_flags & B_CACHE) == 0) {
615 				    bp->b_flags |= B_READ;
616 				    vfs_busy_pages(bp, 0);
617 				    error = nfs_doio(bp, cred, p);
618 				    /*
619 				     * no error + B_INVAL == directory EOF,
620 				     * use the block.
621 				     */
622 				    if (error == 0 && (bp->b_flags & B_INVAL))
623 					    break;
624 			    }
625 			    /*
626 			     * An error will throw away the block and the
627 			     * for loop will break out.  If no error and this
628 			     * is not the block we want, we throw away the
629 			     * block and go for the next one via the for loop.
630 			     */
631 			    if (error || i < lbn)
632 				    brelse(bp);
633 			}
634 		    }
635 		    /*
636 		     * The above while is repeated if we hit another cookie
637 		     * error.  If we hit an error and it wasn't a cookie error,
638 		     * we give up.
639 		     */
640 		    if (error)
641 			    return (error);
642 		}
643 
644 		/*
645 		 * If not eof and read aheads are enabled, start one.
646 		 * (You need the current block first, so that you have the
647 		 *  directory offset cookie of the next block.)
648 		 */
649 		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
650 		    (bp->b_flags & B_INVAL) == 0 &&
651 		    (np->n_direofoffset == 0 ||
652 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
653 		    !(np->n_flag & NQNFSNONCACHE) &&
654 		    !incore(vp, lbn + 1)) {
655 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, p);
656 			if (rabp) {
657 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
658 				rabp->b_flags |= (B_READ | B_ASYNC);
659 				vfs_busy_pages(rabp, 0);
660 				if (nfs_asyncio(rabp, cred, p)) {
661 				    rabp->b_flags |= B_INVAL|B_ERROR;
662 				    vfs_unbusy_pages(rabp);
663 				    brelse(rabp);
664 				}
665 			    } else {
666 				brelse(rabp);
667 			    }
668 			}
669 		}
670 		/*
671 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
672 		 * chopped for the EOF condition, we cannot tell how large
673 		 * NFS directories are going to be until we hit EOF.  So
674 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
675 		 * it just so happens that b_resid will effectively chop it
676 		 * to EOF.  *BUT* this information is lost if the buffer goes
677 		 * away and is reconstituted into a B_CACHE state ( due to
678 		 * being VMIO ) later.  So we keep track of the directory eof
679 		 * in np->n_direofoffset and chop it off as an extra step
680 		 * right here.
681 		 */
682 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
683 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
684 			n = np->n_direofoffset - uio->uio_offset;
685 		break;
686 	    default:
687 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
688 		break;
689 	    };
690 
691 	    if (n > 0) {
692 		    error = uiomove(bp->b_data + on, (int)n, uio);
693 	    }
694 	    switch (vp->v_type) {
695 	    case VREG:
696 		break;
697 	    case VLNK:
698 		n = 0;
699 		break;
700 	    case VDIR:
701 		/*
702 		 * Invalidate buffer if caching is disabled, forcing a
703 		 * re-read from the remote later.
704 		 */
705 		if (np->n_flag & NQNFSNONCACHE)
706 			bp->b_flags |= B_INVAL;
707 		break;
708 	    default:
709 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
710 	    }
711 	    brelse(bp);
712 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
713 	return (error);
714 }
715 
716 /*
717  * Vnode op for write using bio
718  */
719 int
720 nfs_write(ap)
721 	struct vop_write_args /* {
722 		struct vnode *a_vp;
723 		struct uio *a_uio;
724 		int  a_ioflag;
725 		struct ucred *a_cred;
726 	} */ *ap;
727 {
728 	int biosize;
729 	struct uio *uio = ap->a_uio;
730 	struct proc *p = uio->uio_procp;
731 	struct vnode *vp = ap->a_vp;
732 	struct nfsnode *np = VTONFS(vp);
733 	struct ucred *cred = ap->a_cred;
734 	int ioflag = ap->a_ioflag;
735 	struct buf *bp;
736 	struct vattr vattr;
737 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
738 	daddr_t lbn;
739 	int bcount;
740 	int n, on, error = 0, iomode, must_commit;
741 	int haverslock = 0;
742 
743 #ifdef DIAGNOSTIC
744 	if (uio->uio_rw != UIO_WRITE)
745 		panic("nfs_write mode");
746 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc)
747 		panic("nfs_write proc");
748 #endif
749 	if (vp->v_type != VREG)
750 		return (EIO);
751 	if (np->n_flag & NWRITEERR) {
752 		np->n_flag &= ~NWRITEERR;
753 		return (np->n_error);
754 	}
755 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
756 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
757 		(void)nfs_fsinfo(nmp, vp, cred, p);
758 
759 	/*
760 	 * Synchronously flush pending buffers if we are in synchronous
761 	 * mode or if we are appending.
762 	 */
763 	if (ioflag & (IO_APPEND | IO_SYNC)) {
764 		if (np->n_flag & NMODIFIED) {
765 			np->n_attrstamp = 0;
766 			error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
767 			if (error)
768 				return (error);
769 		}
770 	}
771 
772 	/*
773 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
774 	 * get the append lock.
775 	 */
776 restart:
777 	if (ioflag & IO_APPEND) {
778 		np->n_attrstamp = 0;
779 		error = VOP_GETATTR(vp, &vattr, cred, p);
780 		if (error)
781 			return (error);
782 		uio->uio_offset = np->n_size;
783 	}
784 
785 	if (uio->uio_offset < 0)
786 		return (EINVAL);
787 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
788 		return (EFBIG);
789 	if (uio->uio_resid == 0)
790 		return (0);
791 
792 	/*
793 	 * We need to obtain the rslock if we intend to modify np->n_size
794 	 * in order to guarentee the append point with multiple contending
795 	 * writers, to guarentee that no other appenders modify n_size
796 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
797 	 * accidently truncating data written by another appender due to
798 	 * the race), and to ensure that the buffer is populated prior to
799 	 * our extending of the file.  We hold rslock through the entire
800 	 * operation.
801 	 *
802 	 * Note that we do not synchronize the case where someone truncates
803 	 * the file while we are appending to it because attempting to lock
804 	 * this case may deadlock other parts of the system unexpectedly.
805 	 */
806 	if ((ioflag & IO_APPEND) ||
807 	    uio->uio_offset + uio->uio_resid > np->n_size) {
808 		switch(nfs_rslock(np, p)) {
809 		case ENOLCK:
810 			goto restart;
811 			/* not reached */
812 		case EINTR:
813 		case ERESTART:
814 			return(EINTR);
815 			/* not reached */
816 		default:
817 			break;
818 		}
819 		haverslock = 1;
820 	}
821 
822 	/*
823 	 * Maybe this should be above the vnode op call, but so long as
824 	 * file servers have no limits, i don't think it matters
825 	 */
826 	if (p && uio->uio_offset + uio->uio_resid >
827 	      p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
828 		psignal(p, SIGXFSZ);
829 		if (haverslock)
830 			nfs_rsunlock(np, p);
831 		return (EFBIG);
832 	}
833 
834 	biosize = vp->v_mount->mnt_stat.f_iosize;
835 
836 	do {
837 		/*
838 		 * Check for a valid write lease.
839 		 */
840 		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
841 		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
842 			do {
843 				error = nqnfs_getlease(vp, ND_WRITE, cred, p);
844 			} while (error == NQNFS_EXPIRED);
845 			if (error)
846 				break;
847 			if (np->n_lrev != np->n_brev ||
848 			    (np->n_flag & NQNFSNONCACHE)) {
849 				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
850 				if (error)
851 					break;
852 				np->n_brev = np->n_lrev;
853 			}
854 		}
855 		if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
856 		    iomode = NFSV3WRITE_FILESYNC;
857 		    error = nfs_writerpc(vp, uio, cred, &iomode, &must_commit);
858 		    if (must_commit)
859 			    nfs_clearcommit(vp->v_mount);
860 		    break;
861 		}
862 		nfsstats.biocache_writes++;
863 		lbn = uio->uio_offset / biosize;
864 		on = uio->uio_offset & (biosize-1);
865 		n = min((unsigned)(biosize - on), uio->uio_resid);
866 again:
867 		/*
868 		 * Handle direct append and file extension cases, calculate
869 		 * unaligned buffer size.
870 		 */
871 
872 		if (uio->uio_offset == np->n_size && n) {
873 			/*
874 			 * Get the buffer (in its pre-append state to maintain
875 			 * B_CACHE if it was previously set).  Resize the
876 			 * nfsnode after we have locked the buffer to prevent
877 			 * readers from reading garbage.
878 			 */
879 			bcount = on;
880 			bp = nfs_getcacheblk(vp, lbn, bcount, p);
881 
882 			if (bp != NULL) {
883 				long save;
884 
885 				np->n_size = uio->uio_offset + n;
886 				np->n_flag |= NMODIFIED;
887 				vnode_pager_setsize(vp, np->n_size);
888 
889 				save = bp->b_flags & B_CACHE;
890 				bcount += n;
891 				allocbuf(bp, bcount);
892 				bp->b_flags |= save;
893 			}
894 		} else {
895 			/*
896 			 * Obtain the locked cache block first, and then
897 			 * adjust the file's size as appropriate.
898 			 */
899 			bcount = on + n;
900 			if ((off_t)lbn * biosize + bcount < np->n_size) {
901 				if ((off_t)(lbn + 1) * biosize < np->n_size)
902 					bcount = biosize;
903 				else
904 					bcount = np->n_size - (off_t)lbn * biosize;
905 			}
906 			bp = nfs_getcacheblk(vp, lbn, bcount, p);
907 			if (uio->uio_offset + n > np->n_size) {
908 				np->n_size = uio->uio_offset + n;
909 				np->n_flag |= NMODIFIED;
910 				vnode_pager_setsize(vp, np->n_size);
911 			}
912 		}
913 
914 		if (!bp) {
915 			error = EINTR;
916 			break;
917 		}
918 
919 		/*
920 		 * Issue a READ if B_CACHE is not set.  In special-append
921 		 * mode, B_CACHE is based on the buffer prior to the write
922 		 * op and is typically set, avoiding the read.  If a read
923 		 * is required in special append mode, the server will
924 		 * probably send us a short-read since we extended the file
925 		 * on our end, resulting in b_resid == 0 and, thusly,
926 		 * B_CACHE getting set.
927 		 *
928 		 * We can also avoid issuing the read if the write covers
929 		 * the entire buffer.  We have to make sure the buffer state
930 		 * is reasonable in this case since we will not be initiating
931 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
932 		 * more information.
933 		 *
934 		 * B_CACHE may also be set due to the buffer being cached
935 		 * normally.
936 		 */
937 
938 		if (on == 0 && n == bcount) {
939 			bp->b_flags |= B_CACHE;
940 			bp->b_flags &= ~(B_ERROR | B_INVAL);
941 		}
942 
943 		if ((bp->b_flags & B_CACHE) == 0) {
944 			bp->b_flags |= B_READ;
945 			vfs_busy_pages(bp, 0);
946 			error = nfs_doio(bp, cred, p);
947 			if (error) {
948 				brelse(bp);
949 				break;
950 			}
951 		}
952 		if (!bp) {
953 			error = EINTR;
954 			break;
955 		}
956 		if (bp->b_wcred == NOCRED) {
957 			crhold(cred);
958 			bp->b_wcred = cred;
959 		}
960 		np->n_flag |= NMODIFIED;
961 
962 		/*
963 		 * If dirtyend exceeds file size, chop it down.  This should
964 		 * not normally occur but there is an append race where it
965 		 * might occur XXX, so we log it.
966 		 *
967 		 * If the chopping creates a reverse-indexed or degenerate
968 		 * situation with dirtyoff/end, we 0 both of them.
969 		 */
970 
971 		if (bp->b_dirtyend > bcount) {
972 			printf("NFS append race @%lx:%d\n",
973 			    (long)bp->b_blkno * DEV_BSIZE,
974 			    bp->b_dirtyend - bcount);
975 			bp->b_dirtyend = bcount;
976 		}
977 
978 		if (bp->b_dirtyoff >= bp->b_dirtyend)
979 			bp->b_dirtyoff = bp->b_dirtyend = 0;
980 
981 		/*
982 		 * If the new write will leave a contiguous dirty
983 		 * area, just update the b_dirtyoff and b_dirtyend,
984 		 * otherwise force a write rpc of the old dirty area.
985 		 *
986 		 * While it is possible to merge discontiguous writes due to
987 		 * our having a B_CACHE buffer ( and thus valid read data
988 		 * for the hole), we don't because it could lead to
989 		 * significant cache coherency problems with multiple clients,
990 		 * especially if locking is implemented later on.
991 		 *
992 		 * as an optimization we could theoretically maintain
993 		 * a linked list of discontinuous areas, but we would still
994 		 * have to commit them separately so there isn't much
995 		 * advantage to it except perhaps a bit of asynchronization.
996 		 */
997 
998 		if (bp->b_dirtyend > 0 &&
999 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1000 			if (VOP_BWRITE(bp->b_vp, bp) == EINTR) {
1001 				error = EINTR;
1002 				break;
1003 			}
1004 			goto again;
1005 		}
1006 
1007 		/*
1008 		 * Check for valid write lease and get one as required.
1009 		 * In case getblk() and/or bwrite() delayed us.
1010 		 */
1011 		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
1012 		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
1013 			do {
1014 				error = nqnfs_getlease(vp, ND_WRITE, cred, p);
1015 			} while (error == NQNFS_EXPIRED);
1016 			if (error) {
1017 				brelse(bp);
1018 				break;
1019 			}
1020 			if (np->n_lrev != np->n_brev ||
1021 			    (np->n_flag & NQNFSNONCACHE)) {
1022 				brelse(bp);
1023 				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
1024 				if (error)
1025 					break;
1026 				np->n_brev = np->n_lrev;
1027 				goto again;
1028 			}
1029 		}
1030 
1031 		error = uiomove((char *)bp->b_data + on, n, uio);
1032 
1033 		/*
1034 		 * Since this block is being modified, it must be written
1035 		 * again and not just committed.  Since write clustering does
1036 		 * not work for the stage 1 data write, only the stage 2
1037 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1038 		 */
1039 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1040 
1041 		if (error) {
1042 			bp->b_flags |= B_ERROR;
1043 			brelse(bp);
1044 			break;
1045 		}
1046 
1047 		/*
1048 		 * Only update dirtyoff/dirtyend if not a degenerate
1049 		 * condition.
1050 		 */
1051 		if (n) {
1052 			if (bp->b_dirtyend > 0) {
1053 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1054 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1055 			} else {
1056 				bp->b_dirtyoff = on;
1057 				bp->b_dirtyend = on + n;
1058 			}
1059 			vfs_bio_set_validclean(bp, on, n);
1060 		}
1061 		/*
1062 		 * If IO_NOWDRAIN then set B_NOWDRAIN (e.g. nfs-backed VN
1063 		 * filesystem).  XXX also use for loopback NFS mounts.
1064 		 */
1065 		if (ioflag & IO_NOWDRAIN)
1066 			bp->b_flags |= B_NOWDRAIN;
1067 
1068 		/*
1069 		 * If the lease is non-cachable or IO_SYNC do bwrite().
1070 		 *
1071 		 * IO_INVAL appears to be unused.  The idea appears to be
1072 		 * to turn off caching in this case.  Very odd.  XXX
1073 		 */
1074 		if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
1075 			if (ioflag & IO_INVAL)
1076 				bp->b_flags |= B_NOCACHE;
1077 			error = VOP_BWRITE(bp->b_vp, bp);
1078 			if (error)
1079 				break;
1080 			if (np->n_flag & NQNFSNONCACHE) {
1081 				error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
1082 				if (error)
1083 					break;
1084 			}
1085 		} else if ((n + on) == biosize &&
1086 			(nmp->nm_flag & NFSMNT_NQNFS) == 0) {
1087 			bp->b_flags |= B_ASYNC;
1088 			(void)nfs_writebp(bp, 0, 0);
1089 		} else {
1090 			bdwrite(bp);
1091 		}
1092 	} while (uio->uio_resid > 0 && n > 0);
1093 
1094 	if (haverslock)
1095 		nfs_rsunlock(np, p);
1096 
1097 	return (error);
1098 }
1099 
1100 /*
1101  * Get an nfs cache block.
1102  *
1103  * Allocate a new one if the block isn't currently in the cache
1104  * and return the block marked busy. If the calling process is
1105  * interrupted by a signal for an interruptible mount point, return
1106  * NULL.
1107  *
1108  * The caller must carefully deal with the possible B_INVAL state of
1109  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1110  * indirectly), so synchronous reads can be issued without worrying about
1111  * the B_INVAL state.  We have to be a little more careful when dealing
1112  * with writes (see comments in nfs_write()) when extending a file past
1113  * its EOF.
1114  */
1115 static struct buf *
1116 nfs_getcacheblk(vp, bn, size, p)
1117 	struct vnode *vp;
1118 	daddr_t bn;
1119 	int size;
1120 	struct proc *p;
1121 {
1122 	register struct buf *bp;
1123 	struct mount *mp;
1124 	struct nfsmount *nmp;
1125 
1126 	mp = vp->v_mount;
1127 	nmp = VFSTONFS(mp);
1128 
1129 	if (nmp->nm_flag & NFSMNT_INT) {
1130 		bp = getblk(vp, bn, size, PCATCH, 0);
1131 		while (bp == (struct buf *)0) {
1132 			if (nfs_sigintr(nmp, (struct nfsreq *)0, p))
1133 				return ((struct buf *)0);
1134 			bp = getblk(vp, bn, size, 0, 2 * hz);
1135 		}
1136 	} else {
1137 		bp = getblk(vp, bn, size, 0, 0);
1138 	}
1139 
1140 	if (vp->v_type == VREG) {
1141 		int biosize;
1142 
1143 		biosize = mp->mnt_stat.f_iosize;
1144 		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1145 	}
1146 	return (bp);
1147 }
1148 
1149 /*
1150  * Flush and invalidate all dirty buffers. If another process is already
1151  * doing the flush, just wait for completion.
1152  */
1153 int
1154 nfs_vinvalbuf(vp, flags, cred, p, intrflg)
1155 	struct vnode *vp;
1156 	int flags;
1157 	struct ucred *cred;
1158 	struct proc *p;
1159 	int intrflg;
1160 {
1161 	register struct nfsnode *np = VTONFS(vp);
1162 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1163 	int error = 0, slpflag, slptimeo;
1164 
1165 	if (vp->v_flag & VXLOCK) {
1166 		return (0);
1167 	}
1168 
1169 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1170 		intrflg = 0;
1171 	if (intrflg) {
1172 		slpflag = PCATCH;
1173 		slptimeo = 2 * hz;
1174 	} else {
1175 		slpflag = 0;
1176 		slptimeo = 0;
1177 	}
1178 	/*
1179 	 * First wait for any other process doing a flush to complete.
1180 	 */
1181 	while (np->n_flag & NFLUSHINPROG) {
1182 		np->n_flag |= NFLUSHWANT;
1183 		error = tsleep((caddr_t)&np->n_flag, PRIBIO + 2, "nfsvinval",
1184 			slptimeo);
1185 		if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p))
1186 			return (EINTR);
1187 	}
1188 
1189 	/*
1190 	 * Now, flush as required.
1191 	 */
1192 	np->n_flag |= NFLUSHINPROG;
1193 	error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
1194 	while (error) {
1195 		if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, p)) {
1196 			np->n_flag &= ~NFLUSHINPROG;
1197 			if (np->n_flag & NFLUSHWANT) {
1198 				np->n_flag &= ~NFLUSHWANT;
1199 				wakeup((caddr_t)&np->n_flag);
1200 			}
1201 			return (EINTR);
1202 		}
1203 		error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
1204 	}
1205 	np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
1206 	if (np->n_flag & NFLUSHWANT) {
1207 		np->n_flag &= ~NFLUSHWANT;
1208 		wakeup((caddr_t)&np->n_flag);
1209 	}
1210 	return (0);
1211 }
1212 
1213 /*
1214  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1215  * This is mainly to avoid queueing async I/O requests when the nfsiods
1216  * are all hung on a dead server.
1217  *
1218  * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1219  * is eventually dequeued by the async daemon, nfs_doio() *will*.
1220  */
1221 int
1222 nfs_asyncio(bp, cred, procp)
1223 	register struct buf *bp;
1224 	struct ucred *cred;
1225 	struct proc *procp;
1226 {
1227 	struct nfsmount *nmp;
1228 	int i;
1229 	int gotiod;
1230 	int slpflag = 0;
1231 	int slptimeo = 0;
1232 	int error;
1233 
1234 	/*
1235 	 * If no async daemons then return EIO to force caller to run the rpc
1236 	 * synchronously.
1237 	 */
1238 	if (nfs_numasync == 0)
1239 		return (EIO);
1240 
1241 	nmp = VFSTONFS(bp->b_vp->v_mount);
1242 
1243 	/*
1244 	 * Commits are usually short and sweet so lets save some cpu and
1245 	 * leave the async daemons for more important rpc's (such as reads
1246 	 * and writes).
1247 	 */
1248 	if ((bp->b_flags & (B_READ|B_NEEDCOMMIT)) == B_NEEDCOMMIT &&
1249 	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1250 		return(EIO);
1251 	}
1252 
1253 again:
1254 	if (nmp->nm_flag & NFSMNT_INT)
1255 		slpflag = PCATCH;
1256 	gotiod = FALSE;
1257 
1258 	/*
1259 	 * Find a free iod to process this request.
1260 	 */
1261 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1262 		if (nfs_iodwant[i]) {
1263 			/*
1264 			 * Found one, so wake it up and tell it which
1265 			 * mount to process.
1266 			 */
1267 			NFS_DPF(ASYNCIO,
1268 				("nfs_asyncio: waking iod %d for mount %p\n",
1269 				 i, nmp));
1270 			nfs_iodwant[i] = (struct proc *)0;
1271 			nfs_iodmount[i] = nmp;
1272 			nmp->nm_bufqiods++;
1273 			wakeup((caddr_t)&nfs_iodwant[i]);
1274 			gotiod = TRUE;
1275 			break;
1276 		}
1277 
1278 	/*
1279 	 * If none are free, we may already have an iod working on this mount
1280 	 * point.  If so, it will process our request.
1281 	 */
1282 	if (!gotiod) {
1283 		if (nmp->nm_bufqiods > 0) {
1284 			NFS_DPF(ASYNCIO,
1285 				("nfs_asyncio: %d iods are already processing mount %p\n",
1286 				 nmp->nm_bufqiods, nmp));
1287 			gotiod = TRUE;
1288 		}
1289 	}
1290 
1291 	/*
1292 	 * If we have an iod which can process the request, then queue
1293 	 * the buffer.
1294 	 */
1295 	if (gotiod) {
1296 		/*
1297 		 * Ensure that the queue never grows too large.  We still want
1298 		 * to asynchronize so we block rather then return EIO.
1299 		 */
1300 		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1301 			NFS_DPF(ASYNCIO,
1302 				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1303 			nmp->nm_bufqwant = TRUE;
1304 			error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
1305 				       "nfsaio", slptimeo);
1306 			if (error) {
1307 				if (nfs_sigintr(nmp, NULL, procp))
1308 					return (EINTR);
1309 				if (slpflag == PCATCH) {
1310 					slpflag = 0;
1311 					slptimeo = 2 * hz;
1312 				}
1313 			}
1314 			/*
1315 			 * We might have lost our iod while sleeping,
1316 			 * so check and loop if nescessary.
1317 			 */
1318 			if (nmp->nm_bufqiods == 0) {
1319 				NFS_DPF(ASYNCIO,
1320 					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1321 				goto again;
1322 			}
1323 		}
1324 
1325 		if (bp->b_flags & B_READ) {
1326 			if (bp->b_rcred == NOCRED && cred != NOCRED) {
1327 				crhold(cred);
1328 				bp->b_rcred = cred;
1329 			}
1330 		} else {
1331 			bp->b_flags |= B_WRITEINPROG;
1332 			if (bp->b_wcred == NOCRED && cred != NOCRED) {
1333 				crhold(cred);
1334 				bp->b_wcred = cred;
1335 			}
1336 		}
1337 
1338 		BUF_KERNPROC(bp);
1339 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1340 		nmp->nm_bufqlen++;
1341 		return (0);
1342 	}
1343 
1344 	/*
1345 	 * All the iods are busy on other mounts, so return EIO to
1346 	 * force the caller to process the i/o synchronously.
1347 	 */
1348 	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1349 	return (EIO);
1350 }
1351 
1352 /*
1353  * Do an I/O operation to/from a cache block. This may be called
1354  * synchronously or from an nfsiod.
1355  */
1356 int
1357 nfs_doio(bp, cr, p)
1358 	struct buf *bp;
1359 	struct ucred *cr;
1360 	struct proc *p;
1361 {
1362 	struct uio *uiop;
1363 	struct vnode *vp;
1364 	struct nfsnode *np;
1365 	struct nfsmount *nmp;
1366 	int error = 0, iomode, must_commit = 0;
1367 	struct uio uio;
1368 	struct iovec io;
1369 
1370 	vp = bp->b_vp;
1371 	np = VTONFS(vp);
1372 	nmp = VFSTONFS(vp->v_mount);
1373 	uiop = &uio;
1374 	uiop->uio_iov = &io;
1375 	uiop->uio_iovcnt = 1;
1376 	uiop->uio_segflg = UIO_SYSSPACE;
1377 	uiop->uio_procp = p;
1378 
1379 	/*
1380 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1381 	 * do this here so we do not have to do it in all the code that
1382 	 * calls us.
1383 	 */
1384 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1385 
1386 	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1387 
1388 	/*
1389 	 * Historically, paging was done with physio, but no more.
1390 	 */
1391 	if (bp->b_flags & B_PHYS) {
1392 	    /*
1393 	     * ...though reading /dev/drum still gets us here.
1394 	     */
1395 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1396 	    /* mapping was done by vmapbuf() */
1397 	    io.iov_base = bp->b_data;
1398 	    uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1399 	    if (bp->b_flags & B_READ) {
1400 		uiop->uio_rw = UIO_READ;
1401 		nfsstats.read_physios++;
1402 		error = nfs_readrpc(vp, uiop, cr);
1403 	    } else {
1404 		int com;
1405 
1406 		iomode = NFSV3WRITE_DATASYNC;
1407 		uiop->uio_rw = UIO_WRITE;
1408 		nfsstats.write_physios++;
1409 		error = nfs_writerpc(vp, uiop, cr, &iomode, &com);
1410 	    }
1411 	    if (error) {
1412 		bp->b_flags |= B_ERROR;
1413 		bp->b_error = error;
1414 	    }
1415 	} else if (bp->b_flags & B_READ) {
1416 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1417 	    io.iov_base = bp->b_data;
1418 	    uiop->uio_rw = UIO_READ;
1419 
1420 	    switch (vp->v_type) {
1421 	    case VREG:
1422 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1423 		nfsstats.read_bios++;
1424 		error = nfs_readrpc(vp, uiop, cr);
1425 
1426 		if (!error) {
1427 		    if (uiop->uio_resid) {
1428 			/*
1429 			 * If we had a short read with no error, we must have
1430 			 * hit a file hole.  We should zero-fill the remainder.
1431 			 * This can also occur if the server hits the file EOF.
1432 			 *
1433 			 * Holes used to be able to occur due to pending
1434 			 * writes, but that is not possible any longer.
1435 			 */
1436 			int nread = bp->b_bcount - uiop->uio_resid;
1437 			int left  = uiop->uio_resid;
1438 
1439 			if (left > 0)
1440 				bzero((char *)bp->b_data + nread, left);
1441 			uiop->uio_resid = 0;
1442 		    }
1443 		}
1444 		if (p && (vp->v_flag & VTEXT) &&
1445 			(((nmp->nm_flag & NFSMNT_NQNFS) &&
1446 			  NQNFS_CKINVALID(vp, np, ND_READ) &&
1447 			  np->n_lrev != np->n_brev) ||
1448 			 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
1449 			  np->n_mtime != np->n_vattr.va_mtime.tv_sec))) {
1450 			uprintf("Process killed due to text file modification\n");
1451 			psignal(p, SIGKILL);
1452 			PHOLD(p);
1453 		}
1454 		break;
1455 	    case VLNK:
1456 		uiop->uio_offset = (off_t)0;
1457 		nfsstats.readlink_bios++;
1458 		error = nfs_readlinkrpc(vp, uiop, cr);
1459 		break;
1460 	    case VDIR:
1461 		nfsstats.readdir_bios++;
1462 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1463 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1464 			error = nfs_readdirplusrpc(vp, uiop, cr);
1465 			if (error == NFSERR_NOTSUPP)
1466 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1467 		}
1468 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1469 			error = nfs_readdirrpc(vp, uiop, cr);
1470 		/*
1471 		 * end-of-directory sets B_INVAL but does not generate an
1472 		 * error.
1473 		 */
1474 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1475 			bp->b_flags |= B_INVAL;
1476 		break;
1477 	    default:
1478 		printf("nfs_doio:  type %x unexpected\n",vp->v_type);
1479 		break;
1480 	    };
1481 	    if (error) {
1482 		bp->b_flags |= B_ERROR;
1483 		bp->b_error = error;
1484 	    }
1485 	} else {
1486 	    /*
1487 	     * If we only need to commit, try to commit
1488 	     */
1489 	    if (bp->b_flags & B_NEEDCOMMIT) {
1490 		    int retv;
1491 		    off_t off;
1492 
1493 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1494 		    bp->b_flags |= B_WRITEINPROG;
1495 		    retv = nfs_commit(
1496 				bp->b_vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1497 				bp->b_wcred, p);
1498 		    bp->b_flags &= ~B_WRITEINPROG;
1499 		    if (retv == 0) {
1500 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1501 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1502 			    bp->b_resid = 0;
1503 			    biodone(bp);
1504 			    return (0);
1505 		    }
1506 		    if (retv == NFSERR_STALEWRITEVERF) {
1507 			    nfs_clearcommit(bp->b_vp->v_mount);
1508 		    }
1509 	    }
1510 
1511 	    /*
1512 	     * Setup for actual write
1513 	     */
1514 
1515 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1516 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1517 
1518 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1519 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1520 		    - bp->b_dirtyoff;
1521 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1522 		    + bp->b_dirtyoff;
1523 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1524 		uiop->uio_rw = UIO_WRITE;
1525 		nfsstats.write_bios++;
1526 
1527 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1528 		    iomode = NFSV3WRITE_UNSTABLE;
1529 		else
1530 		    iomode = NFSV3WRITE_FILESYNC;
1531 
1532 		bp->b_flags |= B_WRITEINPROG;
1533 		error = nfs_writerpc(vp, uiop, cr, &iomode, &must_commit);
1534 
1535 		/*
1536 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1537 		 * to cluster the buffers needing commit.  This will allow
1538 		 * the system to submit a single commit rpc for the whole
1539 		 * cluster.  We can do this even if the buffer is not 100%
1540 		 * dirty (relative to the NFS blocksize), so we optimize the
1541 		 * append-to-file-case.
1542 		 *
1543 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1544 		 * cleared because write clustering only works for commit
1545 		 * rpc's, not for the data portion of the write).
1546 		 */
1547 
1548 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1549 		    bp->b_flags |= B_NEEDCOMMIT;
1550 		    if (bp->b_dirtyoff == 0
1551 			&& bp->b_dirtyend == bp->b_bcount)
1552 			bp->b_flags |= B_CLUSTEROK;
1553 		} else {
1554 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1555 		}
1556 		bp->b_flags &= ~B_WRITEINPROG;
1557 
1558 		/*
1559 		 * For an interrupted write, the buffer is still valid
1560 		 * and the write hasn't been pushed to the server yet,
1561 		 * so we can't set B_ERROR and report the interruption
1562 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1563 		 * is not relevant, so the rpc attempt is essentially
1564 		 * a noop.  For the case of a V3 write rpc not being
1565 		 * committed to stable storage, the block is still
1566 		 * dirty and requires either a commit rpc or another
1567 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1568 		 * the block is reused. This is indicated by setting
1569 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1570 		 *
1571 		 * If the buffer is marked B_PAGING, it does not reside on
1572 		 * the vp's paging queues so we cannot call bdirty().  The
1573 		 * bp in this case is not an NFS cache block so we should
1574 		 * be safe. XXX
1575 		 */
1576     		if (error == EINTR
1577 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1578 			int s;
1579 
1580 			s = splbio();
1581 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1582 			if ((bp->b_flags & B_PAGING) == 0) {
1583 			    bdirty(bp);
1584 			    bp->b_flags &= ~B_DONE;
1585 			}
1586 			if (error && (bp->b_flags & B_ASYNC) == 0)
1587 			    bp->b_flags |= B_EINTR;
1588 			splx(s);
1589 	    	} else {
1590 		    if (error) {
1591 			bp->b_flags |= B_ERROR;
1592 			bp->b_error = np->n_error = error;
1593 			np->n_flag |= NWRITEERR;
1594 		    }
1595 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1596 		}
1597 	    } else {
1598 		bp->b_resid = 0;
1599 		biodone(bp);
1600 		return (0);
1601 	    }
1602 	}
1603 	bp->b_resid = uiop->uio_resid;
1604 	if (must_commit)
1605 	    nfs_clearcommit(vp->v_mount);
1606 	biodone(bp);
1607 	return (error);
1608 }
1609 
1610 /*
1611  * Used to aid in handling ftruncate() operations on the NFS client side.
1612  * Truncation creates a number of special problems for NFS.  We have to
1613  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1614  * we have to properly handle VM pages or (potentially dirty) buffers
1615  * that straddle the truncation point.
1616  */
1617 
1618 int
1619 nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct proc *p, u_quad_t nsize)
1620 {
1621 	struct nfsnode *np = VTONFS(vp);
1622 	u_quad_t tsize = np->n_size;
1623 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1624 	int error = 0;
1625 
1626 	np->n_size = nsize;
1627 
1628 	if (np->n_size < tsize) {
1629 		struct buf *bp;
1630 		daddr_t lbn;
1631 		int bufsize;
1632 
1633 		/*
1634 		 * vtruncbuf() doesn't get the buffer overlapping the
1635 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1636 		 * buffer that now needs to be truncated.
1637 		 */
1638 		error = vtruncbuf(vp, cred, p, nsize, biosize);
1639 		lbn = nsize / biosize;
1640 		bufsize = nsize & (biosize - 1);
1641 		bp = nfs_getcacheblk(vp, lbn, bufsize, p);
1642 		if (bp->b_dirtyoff > bp->b_bcount)
1643 			bp->b_dirtyoff = bp->b_bcount;
1644 		if (bp->b_dirtyend > bp->b_bcount)
1645 			bp->b_dirtyend = bp->b_bcount;
1646 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1647 		brelse(bp);
1648 	} else {
1649 		vnode_pager_setsize(vp, nsize);
1650 	}
1651 	return(error);
1652 }
1653 
1654