xref: /dragonfly/sys/vfs/nfs/nfs_bio.c (revision 7c4f4eee)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33  * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
34  */
35 
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/resourcevar.h>
40 #include <sys/signalvar.h>
41 #include <sys/proc.h>
42 #include <sys/buf.h>
43 #include <sys/vnode.h>
44 #include <sys/mount.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50 #include <vm/vm_page.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_pager.h>
53 #include <vm/vnode_pager.h>
54 
55 #include <sys/buf2.h>
56 #include <sys/thread2.h>
57 #include <vm/vm_page2.h>
58 
59 #include "rpcv2.h"
60 #include "nfsproto.h"
61 #include "nfs.h"
62 #include "nfsmount.h"
63 #include "nfsnode.h"
64 #include "xdr_subs.h"
65 #include "nfsm_subs.h"
66 
67 
68 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset,
69 				   int size, struct thread *td);
70 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen);
71 static void nfsiodone_sync(struct bio *bio);
72 static void nfs_readrpc_bio_done(nfsm_info_t info);
73 static void nfs_writerpc_bio_done(nfsm_info_t info);
74 static void nfs_commitrpc_bio_done(nfsm_info_t info);
75 
76 static __inline
77 void
78 nfs_knote(struct vnode *vp, int flags)
79 {
80 	if (flags)
81 		KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, flags);
82 }
83 
84 /*
85  * Vnode op for read using bio
86  */
87 int
88 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
89 {
90 	struct nfsnode *np = VTONFS(vp);
91 	int biosize, i;
92 	struct buf *bp, *rabp;
93 	struct vattr vattr;
94 	struct thread *td;
95 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
96 	off_t lbn, rabn;
97 	off_t raoffset;
98 	off_t loffset;
99 	int seqcount;
100 	int nra, error = 0;
101 	int boff = 0;
102 	size_t n;
103 
104 #ifdef DIAGNOSTIC
105 	if (uio->uio_rw != UIO_READ)
106 		panic("nfs_read mode");
107 #endif
108 	if (uio->uio_resid == 0)
109 		return (0);
110 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
111 		return (EINVAL);
112 	td = uio->uio_td;
113 
114 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
115 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
116 		(void)nfs_fsinfo(nmp, vp, td);
117 	if (vp->v_type != VDIR &&
118 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
119 		return (EFBIG);
120 	biosize = vp->v_mount->mnt_stat.f_iosize;
121 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / MAXBSIZE);
122 
123 	/*
124 	 * For nfs, cache consistency can only be maintained approximately.
125 	 * Although RFC1094 does not specify the criteria, the following is
126 	 * believed to be compatible with the reference port.
127 	 *
128 	 * NFS:		If local changes have been made and this is a
129 	 *		directory, the directory must be invalidated and
130 	 *		the attribute cache must be cleared.
131 	 *
132 	 *		GETATTR is called to synchronize the file size.  To
133 	 *		avoid a deadlock again the VM system, we cannot do
134 	 *		this for UIO_NOCOPY reads.
135 	 *
136 	 *		If remote changes are detected local data is flushed
137 	 *		and the cache is invalidated.
138 	 *
139 	 *		NOTE: In the normal case the attribute cache is not
140 	 *		cleared which means GETATTR may use cached data and
141 	 *		not immediately detect changes made on the server.
142 	 */
143 	if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) {
144 		nfs_invaldir(vp);
145 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
146 		if (error)
147 			return (error);
148 		np->n_attrstamp = 0;
149 	}
150 
151 	/*
152 	 * Synchronize the file size when possible.  We can't do this without
153 	 * risking a deadlock if this is NOCOPY read from a vm_fault->getpages
154 	 * sequence.
155 	 */
156 	if (uio->uio_segflg != UIO_NOCOPY) {
157 		error = VOP_GETATTR(vp, &vattr);
158 		if (error)
159 			return (error);
160 	}
161 
162 	/*
163 	 * This can deadlock getpages/putpages for regular
164 	 * files.  Only do it for directories.
165 	 */
166 	if (np->n_flag & NRMODIFIED) {
167 		if (vp->v_type == VDIR) {
168 			nfs_invaldir(vp);
169 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
170 			if (error)
171 				return (error);
172 			np->n_flag &= ~NRMODIFIED;
173 		}
174 	}
175 
176 	/*
177 	 * Loop until uio exhausted or we hit EOF
178 	 */
179 	do {
180 	    bp = NULL;
181 
182 	    switch (vp->v_type) {
183 	    case VREG:
184 		nfsstats.biocache_reads++;
185 		lbn = uio->uio_offset / biosize;
186 		boff = uio->uio_offset & (biosize - 1);
187 		loffset = lbn * biosize;
188 
189 		/*
190 		 * Start the read ahead(s), as required.
191 		 */
192 		if (nmp->nm_readahead > 0 && nfs_asyncok(nmp)) {
193 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
194 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
195 			rabn = lbn + 1 + nra;
196 			raoffset = rabn * biosize;
197 			if (findblk(vp, raoffset, FINDBLK_TEST) == NULL) {
198 			    rabp = nfs_getcacheblk(vp, raoffset, biosize, td);
199 			    if (!rabp)
200 				return (EINTR);
201 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
202 				rabp->b_cmd = BUF_CMD_READ;
203 				vfs_busy_pages(vp, rabp);
204 				nfs_asyncio(vp, &rabp->b_bio2);
205 			    } else {
206 				brelse(rabp);
207 			    }
208 			}
209 		    }
210 		}
211 
212 		/*
213 		 * Obtain the buffer cache block.  Figure out the buffer size
214 		 * when we are at EOF.  If we are modifying the size of the
215 		 * buffer based on an EOF condition we need to hold
216 		 * nfs_rslock() through obtaining the buffer to prevent
217 		 * a potential writer-appender from messing with n_size.
218 		 * Otherwise we may accidently truncate the buffer and
219 		 * lose dirty data.
220 		 *
221 		 * Note that bcount is *not* DEV_BSIZE aligned.
222 		 */
223 		if (loffset + boff >= np->n_size) {
224 			n = 0;
225 			break;
226 		}
227 		bp = nfs_getcacheblk(vp, loffset, biosize, td);
228 
229 		if (bp == NULL)
230 			return (EINTR);
231 
232 		/*
233 		 * If B_CACHE is not set, we must issue the read.  If this
234 		 * fails, we return an error.
235 		 */
236 		if ((bp->b_flags & B_CACHE) == 0) {
237 			bp->b_cmd = BUF_CMD_READ;
238 			bp->b_bio2.bio_done = nfsiodone_sync;
239 			bp->b_bio2.bio_flags |= BIO_SYNC;
240 			vfs_busy_pages(vp, bp);
241 			error = nfs_doio(vp, &bp->b_bio2, td);
242 			if (error) {
243 				brelse(bp);
244 				return (error);
245 			}
246 		}
247 
248 		/*
249 		 * on is the offset into the current bp.  Figure out how many
250 		 * bytes we can copy out of the bp.  Note that bcount is
251 		 * NOT DEV_BSIZE aligned.
252 		 *
253 		 * Then figure out how many bytes we can copy into the uio.
254 		 */
255 		n = biosize - boff;
256 		if (n > uio->uio_resid)
257 			n = uio->uio_resid;
258 		if (loffset + boff + n > np->n_size)
259 			n = np->n_size - loffset - boff;
260 		break;
261 	    case VLNK:
262 		biosize = min(NFS_MAXPATHLEN, np->n_size);
263 		nfsstats.biocache_readlinks++;
264 		bp = nfs_getcacheblk(vp, (off_t)0, biosize, td);
265 		if (bp == NULL)
266 			return (EINTR);
267 		if ((bp->b_flags & B_CACHE) == 0) {
268 			bp->b_cmd = BUF_CMD_READ;
269 			bp->b_bio2.bio_done = nfsiodone_sync;
270 			bp->b_bio2.bio_flags |= BIO_SYNC;
271 			vfs_busy_pages(vp, bp);
272 			error = nfs_doio(vp, &bp->b_bio2, td);
273 			if (error) {
274 				bp->b_flags |= B_ERROR | B_INVAL;
275 				brelse(bp);
276 				return (error);
277 			}
278 		}
279 		n = szmin(uio->uio_resid, (size_t)bp->b_bcount - bp->b_resid);
280 		boff = 0;
281 		break;
282 	    case VDIR:
283 		nfsstats.biocache_readdirs++;
284 		if (np->n_direofoffset &&
285 		    uio->uio_offset >= np->n_direofoffset
286 		) {
287 			return (0);
288 		}
289 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
290 		boff = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
291 		loffset = uio->uio_offset - boff;
292 		bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td);
293 		if (bp == NULL)
294 			return (EINTR);
295 
296 		if ((bp->b_flags & B_CACHE) == 0) {
297 		    bp->b_cmd = BUF_CMD_READ;
298 		    bp->b_bio2.bio_done = nfsiodone_sync;
299 		    bp->b_bio2.bio_flags |= BIO_SYNC;
300 		    vfs_busy_pages(vp, bp);
301 		    error = nfs_doio(vp, &bp->b_bio2, td);
302 		    if (error)
303 			    brelse(bp);
304 		    while (error == NFSERR_BAD_COOKIE) {
305 			kprintf("got bad cookie vp %p bp %p\n", vp, bp);
306 			nfs_invaldir(vp);
307 			error = nfs_vinvalbuf(vp, 0, 1);
308 			/*
309 			 * Yuck! The directory has been modified on the
310 			 * server. The only way to get the block is by
311 			 * reading from the beginning to get all the
312 			 * offset cookies.
313 			 *
314 			 * Leave the last bp intact unless there is an error.
315 			 * Loop back up to the while if the error is another
316 			 * NFSERR_BAD_COOKIE (double yuch!).
317 			 */
318 			for (i = 0; i <= lbn && !error; i++) {
319 			    if (np->n_direofoffset
320 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
321 				    return (0);
322 			    bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ,
323 						 NFS_DIRBLKSIZ, td);
324 			    if (!bp)
325 				return (EINTR);
326 			    if ((bp->b_flags & B_CACHE) == 0) {
327 				    bp->b_cmd = BUF_CMD_READ;
328 				    bp->b_bio2.bio_done = nfsiodone_sync;
329 				    bp->b_bio2.bio_flags |= BIO_SYNC;
330 				    vfs_busy_pages(vp, bp);
331 				    error = nfs_doio(vp, &bp->b_bio2, td);
332 				    /*
333 				     * no error + B_INVAL == directory EOF,
334 				     * use the block.
335 				     */
336 				    if (error == 0 && (bp->b_flags & B_INVAL))
337 					    break;
338 			    }
339 			    /*
340 			     * An error will throw away the block and the
341 			     * for loop will break out.  If no error and this
342 			     * is not the block we want, we throw away the
343 			     * block and go for the next one via the for loop.
344 			     */
345 			    if (error || i < lbn)
346 				    brelse(bp);
347 			}
348 		    }
349 		    /*
350 		     * The above while is repeated if we hit another cookie
351 		     * error.  If we hit an error and it wasn't a cookie error,
352 		     * we give up.
353 		     */
354 		    if (error)
355 			    return (error);
356 		}
357 
358 		/*
359 		 * If not eof and read aheads are enabled, start one.
360 		 * (You need the current block first, so that you have the
361 		 *  directory offset cookie of the next block.)
362 		 */
363 		if (nmp->nm_readahead > 0 && nfs_asyncok(nmp) &&
364 		    (bp->b_flags & B_INVAL) == 0 &&
365 		    (np->n_direofoffset == 0 ||
366 		    loffset + NFS_DIRBLKSIZ < np->n_direofoffset) &&
367 		    findblk(vp, loffset + NFS_DIRBLKSIZ, FINDBLK_TEST) == NULL
368 		) {
369 			rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ,
370 					       NFS_DIRBLKSIZ, td);
371 			if (rabp) {
372 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
373 				rabp->b_cmd = BUF_CMD_READ;
374 				vfs_busy_pages(vp, rabp);
375 				nfs_asyncio(vp, &rabp->b_bio2);
376 			    } else {
377 				brelse(rabp);
378 			    }
379 			}
380 		}
381 		/*
382 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
383 		 * chopped for the EOF condition, we cannot tell how large
384 		 * NFS directories are going to be until we hit EOF.  So
385 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
386 		 * it just so happens that b_resid will effectively chop it
387 		 * to EOF.  *BUT* this information is lost if the buffer goes
388 		 * away and is reconstituted into a B_CACHE state ( due to
389 		 * being VMIO ) later.  So we keep track of the directory eof
390 		 * in np->n_direofoffset and chop it off as an extra step
391 		 * right here.
392 		 *
393 		 * NOTE: boff could already be beyond EOF.
394 		 */
395 		if ((size_t)boff > NFS_DIRBLKSIZ - bp->b_resid) {
396 			n = 0;
397 		} else {
398 			n = szmin(uio->uio_resid,
399 				  NFS_DIRBLKSIZ - bp->b_resid - (size_t)boff);
400 		}
401 		if (np->n_direofoffset &&
402 		    n > (size_t)(np->n_direofoffset - uio->uio_offset)) {
403 			n = (size_t)(np->n_direofoffset - uio->uio_offset);
404 		}
405 		break;
406 	    default:
407 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
408 		n = 0;
409 		break;
410 	    }
411 
412 	    switch (vp->v_type) {
413 	    case VREG:
414 		if (n > 0)
415 		    error = uiomovebp(bp, bp->b_data + boff, n, uio);
416 		break;
417 	    case VLNK:
418 		if (n > 0)
419 		    error = uiomovebp(bp, bp->b_data + boff, n, uio);
420 		n = 0;
421 		break;
422 	    case VDIR:
423 		if (n > 0) {
424 		    off_t old_off = uio->uio_offset;
425 		    caddr_t cpos, epos;
426 		    struct nfs_dirent *dp;
427 
428 		    /*
429 		     * We are casting cpos to nfs_dirent, it must be
430 		     * int-aligned.
431 		     */
432 		    if (boff & 3) {
433 			error = EINVAL;
434 			break;
435 		    }
436 
437 		    cpos = bp->b_data + boff;
438 		    epos = bp->b_data + boff + n;
439 		    while (cpos < epos && error == 0 && uio->uio_resid > 0) {
440 			    dp = (struct nfs_dirent *)cpos;
441 			    error = nfs_check_dirent(dp, (int)(epos - cpos));
442 			    if (error)
443 				    break;
444 			    if (vop_write_dirent(&error, uio, dp->nfs_ino,
445 				dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) {
446 				    break;
447 			    }
448 			    cpos += dp->nfs_reclen;
449 		    }
450 		    n = 0;
451 		    if (error == 0) {
452 			    uio->uio_offset = old_off + cpos -
453 					      bp->b_data - boff;
454 		    }
455 		}
456 		break;
457 	    default:
458 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
459 	    }
460 	    if (bp)
461 		    brelse(bp);
462 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
463 	return (error);
464 }
465 
466 /*
467  * Userland can supply any 'seek' offset when reading a NFS directory.
468  * Validate the structure so we don't panic the kernel.  Note that
469  * the element name is nul terminated and the nul is not included
470  * in nfs_namlen.
471  */
472 static
473 int
474 nfs_check_dirent(struct nfs_dirent *dp, int maxlen)
475 {
476 	int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]);
477 
478 	if (nfs_name_off >= maxlen)
479 		return (EINVAL);
480 	if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen)
481 		return (EINVAL);
482 	if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen)
483 		return (EINVAL);
484 	if (dp->nfs_reclen & 3)
485 		return (EINVAL);
486 	return (0);
487 }
488 
489 /*
490  * Vnode op for write using bio
491  *
492  * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
493  *	     struct ucred *a_cred)
494  */
495 int
496 nfs_write(struct vop_write_args *ap)
497 {
498 	struct uio *uio = ap->a_uio;
499 	struct thread *td = uio->uio_td;
500 	struct vnode *vp = ap->a_vp;
501 	struct nfsnode *np = VTONFS(vp);
502 	int ioflag = ap->a_ioflag;
503 	struct buf *bp;
504 	struct vattr vattr;
505 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
506 	off_t loffset;
507 	int boff, bytes;
508 	int error = 0;
509 	int haverslock = 0;
510 	int bcount;
511 	int biosize;
512 	int trivial;
513 	int kflags = 0;
514 
515 #ifdef DIAGNOSTIC
516 	if (uio->uio_rw != UIO_WRITE)
517 		panic("nfs_write mode");
518 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
519 		panic("nfs_write proc");
520 #endif
521 	if (vp->v_type != VREG)
522 		return (EIO);
523 
524 	lwkt_gettoken(&nmp->nm_token);
525 
526 	if (np->n_flag & NWRITEERR) {
527 		np->n_flag &= ~NWRITEERR;
528 		lwkt_reltoken(&nmp->nm_token);
529 		return (np->n_error);
530 	}
531 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
532 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
533 		(void)nfs_fsinfo(nmp, vp, td);
534 	}
535 
536 	/*
537 	 * Synchronously flush pending buffers if we are in synchronous
538 	 * mode or if we are appending.
539 	 */
540 	if (ioflag & (IO_APPEND | IO_SYNC)) {
541 		if (np->n_flag & NLMODIFIED) {
542 			np->n_attrstamp = 0;
543 			error = nfs_flush(vp, MNT_WAIT, td, 0);
544 			/* error = nfs_vinvalbuf(vp, V_SAVE, 1); */
545 			if (error)
546 				goto  done;
547 		}
548 	}
549 
550 	/*
551 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
552 	 * get the append lock.
553 	 */
554 restart:
555 	if (ioflag & IO_APPEND) {
556 		np->n_attrstamp = 0;
557 		error = VOP_GETATTR(vp, &vattr);
558 		if (error)
559 			goto done;
560 		uio->uio_offset = np->n_size;
561 	}
562 
563 	if (uio->uio_offset < 0) {
564 		error = EINVAL;
565 		goto done;
566 	}
567 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) {
568 		error = EFBIG;
569 		goto done;
570 	}
571 	if (uio->uio_resid == 0) {
572 		error = 0;
573 		goto done;
574 	}
575 
576 	/*
577 	 * We need to obtain the rslock if we intend to modify np->n_size
578 	 * in order to guarentee the append point with multiple contending
579 	 * writers, to guarentee that no other appenders modify n_size
580 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
581 	 * accidently truncating data written by another appender due to
582 	 * the race), and to ensure that the buffer is populated prior to
583 	 * our extending of the file.  We hold rslock through the entire
584 	 * operation.
585 	 *
586 	 * Note that we do not synchronize the case where someone truncates
587 	 * the file while we are appending to it because attempting to lock
588 	 * this case may deadlock other parts of the system unexpectedly.
589 	 */
590 	if ((ioflag & IO_APPEND) ||
591 	    uio->uio_offset + uio->uio_resid > np->n_size) {
592 		switch(nfs_rslock(np)) {
593 		case ENOLCK:
594 			goto restart;
595 			/* not reached */
596 		case EINTR:
597 		case ERESTART:
598 			error = EINTR;
599 			goto done;
600 			/* not reached */
601 		default:
602 			break;
603 		}
604 		haverslock = 1;
605 	}
606 
607 	/*
608 	 * Maybe this should be above the vnode op call, but so long as
609 	 * file servers have no limits, i don't think it matters
610 	 */
611 	if (td && td->td_proc && uio->uio_offset + uio->uio_resid >
612 	      td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
613 		lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
614 		if (haverslock)
615 			nfs_rsunlock(np);
616 		error = EFBIG;
617 		goto done;
618 	}
619 
620 	biosize = vp->v_mount->mnt_stat.f_iosize;
621 
622 	do {
623 		nfsstats.biocache_writes++;
624 		boff = uio->uio_offset & (biosize-1);
625 		loffset = uio->uio_offset - boff;
626 		bytes = (int)szmin((unsigned)(biosize - boff), uio->uio_resid);
627 again:
628 		/*
629 		 * Handle direct append and file extension cases, calculate
630 		 * unaligned buffer size.  When extending B_CACHE will be
631 		 * set if possible.  See UIO_NOCOPY note below.
632 		 */
633 		if (uio->uio_offset + bytes > np->n_size) {
634 			np->n_flag |= NLMODIFIED;
635 			trivial = (uio->uio_segflg != UIO_NOCOPY &&
636 				   uio->uio_offset <= np->n_size);
637 			nfs_meta_setsize(vp, td, uio->uio_offset + bytes,
638 					 trivial);
639 			kflags |= NOTE_EXTEND;
640 		}
641 		bp = nfs_getcacheblk(vp, loffset, biosize, td);
642 		if (bp == NULL) {
643 			error = EINTR;
644 			break;
645 		}
646 
647 		/*
648 		 * Actual bytes in buffer which we care about
649 		 */
650 		if (loffset + biosize < np->n_size)
651 			bcount = biosize;
652 		else
653 			bcount = (int)(np->n_size - loffset);
654 
655 		/*
656 		 * Avoid a read by setting B_CACHE where the data we
657 		 * intend to write covers the entire buffer.  Note
658 		 * that the buffer may have been set to B_CACHE by
659 		 * nfs_meta_setsize() above or otherwise inherited the
660 		 * flag, but if B_CACHE isn't set the buffer may be
661 		 * uninitialized and must be zero'd to accomodate
662 		 * future seek+write's.
663 		 *
664 		 * See the comments in kern/vfs_bio.c's getblk() for
665 		 * more information.
666 		 *
667 		 * When doing a UIO_NOCOPY write the buffer is not
668 		 * overwritten and we cannot just set B_CACHE unconditionally
669 		 * for full-block writes.
670 		 */
671 		if (boff == 0 && bytes == biosize &&
672 		    uio->uio_segflg != UIO_NOCOPY) {
673 			bp->b_flags |= B_CACHE;
674 			bp->b_flags &= ~(B_ERROR | B_INVAL);
675 		}
676 
677 		/*
678 		 * b_resid may be set due to file EOF if we extended out.
679 		 * The NFS bio code will zero the difference anyway so
680 		 * just acknowledged the fact and set b_resid to 0.
681 		 */
682 		if ((bp->b_flags & B_CACHE) == 0) {
683 			bp->b_cmd = BUF_CMD_READ;
684 			bp->b_bio2.bio_done = nfsiodone_sync;
685 			bp->b_bio2.bio_flags |= BIO_SYNC;
686 			vfs_busy_pages(vp, bp);
687 			error = nfs_doio(vp, &bp->b_bio2, td);
688 			if (error) {
689 				brelse(bp);
690 				break;
691 			}
692 			bp->b_resid = 0;
693 		}
694 		np->n_flag |= NLMODIFIED;
695 		kflags |= NOTE_WRITE;
696 
697 		/*
698 		 * If dirtyend exceeds file size, chop it down.  This should
699 		 * not normally occur but there is an append race where it
700 		 * might occur XXX, so we log it.
701 		 *
702 		 * If the chopping creates a reverse-indexed or degenerate
703 		 * situation with dirtyoff/end, we 0 both of them.
704 		 */
705 		if (bp->b_dirtyend > bcount) {
706 			kprintf("NFS append race @%08llx:%d\n",
707 			    (long long)bp->b_bio2.bio_offset,
708 			    bp->b_dirtyend - bcount);
709 			bp->b_dirtyend = bcount;
710 		}
711 
712 		if (bp->b_dirtyoff >= bp->b_dirtyend)
713 			bp->b_dirtyoff = bp->b_dirtyend = 0;
714 
715 		/*
716 		 * If the new write will leave a contiguous dirty
717 		 * area, just update the b_dirtyoff and b_dirtyend,
718 		 * otherwise force a write rpc of the old dirty area.
719 		 *
720 		 * While it is possible to merge discontiguous writes due to
721 		 * our having a B_CACHE buffer ( and thus valid read data
722 		 * for the hole), we don't because it could lead to
723 		 * significant cache coherency problems with multiple clients,
724 		 * especially if locking is implemented later on.
725 		 *
726 		 * as an optimization we could theoretically maintain
727 		 * a linked list of discontinuous areas, but we would still
728 		 * have to commit them separately so there isn't much
729 		 * advantage to it except perhaps a bit of asynchronization.
730 		 */
731 		if (bp->b_dirtyend > 0 &&
732 		    (boff > bp->b_dirtyend ||
733 		     (boff + bytes) < bp->b_dirtyoff)
734 		) {
735 			if (bwrite(bp) == EINTR) {
736 				error = EINTR;
737 				break;
738 			}
739 			goto again;
740 		}
741 
742 		error = uiomovebp(bp, bp->b_data + boff, bytes, uio);
743 
744 		/*
745 		 * Since this block is being modified, it must be written
746 		 * again and not just committed.  Since write clustering does
747 		 * not work for the stage 1 data write, only the stage 2
748 		 * commit rpc, we have to clear B_CLUSTEROK as well.
749 		 */
750 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
751 
752 		if (error) {
753 			brelse(bp);
754 			break;
755 		}
756 
757 		/*
758 		 * Only update dirtyoff/dirtyend if not a degenerate
759 		 * condition.
760 		 *
761 		 * The underlying VM pages have been marked valid by
762 		 * virtue of acquiring the bp.  Because the entire buffer
763 		 * is marked dirty we do not have to worry about cleaning
764 		 * out the related dirty bits (and wouldn't really know
765 		 * how to deal with byte ranges anyway)
766 		 */
767 		if (bytes) {
768 			if (bp->b_dirtyend > 0) {
769 				bp->b_dirtyoff = imin(boff, bp->b_dirtyoff);
770 				bp->b_dirtyend = imax(boff + bytes,
771 						      bp->b_dirtyend);
772 			} else {
773 				bp->b_dirtyoff = boff;
774 				bp->b_dirtyend = boff + bytes;
775 			}
776 		}
777 
778 		/*
779 		 * If the lease is non-cachable or IO_SYNC do bwrite().
780 		 *
781 		 * IO_INVAL appears to be unused.  The idea appears to be
782 		 * to turn off caching in this case.  Very odd.  XXX
783 		 *
784 		 * If nfs_async is set bawrite() will use an unstable write
785 		 * (build dirty bufs on the server), so we might as well
786 		 * push it out with bawrite().  If nfs_async is not set we
787 		 * use bdwrite() to cache dirty bufs on the client.
788 		 */
789 		if (ioflag & IO_SYNC) {
790 			if (ioflag & IO_INVAL)
791 				bp->b_flags |= B_NOCACHE;
792 			error = bwrite(bp);
793 			if (error)
794 				break;
795 		} else if (boff + bytes == biosize && nfs_async) {
796 			bawrite(bp);
797 		} else {
798 			bdwrite(bp);
799 		}
800 	} while (uio->uio_resid > 0 && bytes > 0);
801 
802 	if (haverslock)
803 		nfs_rsunlock(np);
804 
805 done:
806 	nfs_knote(vp, kflags);
807 	lwkt_reltoken(&nmp->nm_token);
808 	return (error);
809 }
810 
811 /*
812  * Get an nfs cache block.
813  *
814  * Allocate a new one if the block isn't currently in the cache
815  * and return the block marked busy. If the calling process is
816  * interrupted by a signal for an interruptible mount point, return
817  * NULL.
818  *
819  * The caller must carefully deal with the possible B_INVAL state of
820  * the buffer.  nfs_startio() clears B_INVAL (and nfs_asyncio() clears it
821  * indirectly), so synchronous reads can be issued without worrying about
822  * the B_INVAL state.  We have to be a little more careful when dealing
823  * with writes (see comments in nfs_write()) when extending a file past
824  * its EOF.
825  */
826 static struct buf *
827 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td)
828 {
829 	struct buf *bp;
830 	struct mount *mp;
831 	struct nfsmount *nmp;
832 
833 	mp = vp->v_mount;
834 	nmp = VFSTONFS(mp);
835 
836 	if (nmp->nm_flag & NFSMNT_INT) {
837 		bp = getblk(vp, loffset, size, GETBLK_PCATCH, 0);
838 		while (bp == NULL) {
839 			if (nfs_sigintr(nmp, NULL, td))
840 				return (NULL);
841 			bp = getblk(vp, loffset, size, 0, 2 * hz);
842 		}
843 	} else {
844 		bp = getblk(vp, loffset, size, 0, 0);
845 	}
846 
847 	/*
848 	 * bio2, the 'device' layer.  Since BIOs use 64 bit byte offsets
849 	 * now, no translation is necessary.
850 	 */
851 	bp->b_bio2.bio_offset = loffset;
852 	return (bp);
853 }
854 
855 /*
856  * Flush and invalidate all dirty buffers. If another process is already
857  * doing the flush, just wait for completion.
858  */
859 int
860 nfs_vinvalbuf(struct vnode *vp, int flags, int intrflg)
861 {
862 	struct nfsnode *np = VTONFS(vp);
863 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
864 	int error = 0, slpflag, slptimeo;
865 	thread_t td = curthread;
866 
867 	if (vp->v_flag & VRECLAIMED)
868 		return (0);
869 
870 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
871 		intrflg = 0;
872 	if (intrflg) {
873 		slpflag = PCATCH;
874 		slptimeo = 2 * hz;
875 	} else {
876 		slpflag = 0;
877 		slptimeo = 0;
878 	}
879 	/*
880 	 * First wait for any other process doing a flush to complete.
881 	 */
882 	while (np->n_flag & NFLUSHINPROG) {
883 		np->n_flag |= NFLUSHWANT;
884 		error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
885 		if (error && intrflg && nfs_sigintr(nmp, NULL, td))
886 			return (EINTR);
887 	}
888 
889 	/*
890 	 * Now, flush as required.
891 	 */
892 	np->n_flag |= NFLUSHINPROG;
893 	error = vinvalbuf(vp, flags, slpflag, 0);
894 	while (error) {
895 		if (intrflg && nfs_sigintr(nmp, NULL, td)) {
896 			np->n_flag &= ~NFLUSHINPROG;
897 			if (np->n_flag & NFLUSHWANT) {
898 				np->n_flag &= ~NFLUSHWANT;
899 				wakeup((caddr_t)&np->n_flag);
900 			}
901 			return (EINTR);
902 		}
903 		error = vinvalbuf(vp, flags, 0, slptimeo);
904 	}
905 	np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG);
906 	if (np->n_flag & NFLUSHWANT) {
907 		np->n_flag &= ~NFLUSHWANT;
908 		wakeup((caddr_t)&np->n_flag);
909 	}
910 	return (0);
911 }
912 
913 /*
914  * Return true (non-zero) if the txthread and rxthread are operational
915  * and we do not already have too many not-yet-started BIO's built up.
916  */
917 int
918 nfs_asyncok(struct nfsmount *nmp)
919 {
920 	return (nmp->nm_bioqlen < nfs_maxasyncbio &&
921 		nmp->nm_bioqlen < nmp->nm_maxasync_scaled / NFS_ASYSCALE &&
922 		nmp->nm_rxstate <= NFSSVC_PENDING &&
923 		nmp->nm_txstate <= NFSSVC_PENDING);
924 }
925 
926 /*
927  * The read-ahead code calls this to queue a bio to the txthread.
928  *
929  * We don't touch the bio otherwise... that is, we do not even
930  * construct or send the initial rpc.  The txthread will do it
931  * for us.
932  *
933  * NOTE!  nm_bioqlen is not decremented until the request completes,
934  *	  so it does not reflect the number of bio's on bioq.
935  */
936 void
937 nfs_asyncio(struct vnode *vp, struct bio *bio)
938 {
939 	struct buf *bp = bio->bio_buf;
940 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
941 
942 	KKASSERT(vp->v_tag == VT_NFS);
943 	BUF_KERNPROC(bp);
944 
945 	/*
946 	 * Shortcut swap cache (not done automatically because we are not
947 	 * using bread()).
948 	 */
949 	if (vn_cache_strategy(vp, bio))
950 		return;
951 
952 	bio->bio_driver_info = vp;
953 	crit_enter();
954 	TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act);
955 	atomic_add_int(&nmp->nm_bioqlen, 1);
956 	crit_exit();
957 	nfssvc_iod_writer_wakeup(nmp);
958 }
959 
960 /*
961  * nfs_doio()	- Execute a BIO operation synchronously.  The BIO will be
962  *		  completed and its error returned.  The caller is responsible
963  *		  for brelse()ing it.  ONLY USE FOR BIO_SYNC IOs!  Otherwise
964  *		  our error probe will be against an invalid pointer.
965  *
966  * nfs_startio()- Execute a BIO operation assynchronously.
967  *
968  * NOTE: nfs_asyncio() is used to initiate an asynchronous BIO operation,
969  *	 which basically just queues it to the txthread.  nfs_startio()
970  *	 actually initiates the I/O AFTER it has gotten to the txthread.
971  *
972  * NOTE: td might be NULL.
973  *
974  * NOTE: Caller has already busied the I/O.
975  */
976 void
977 nfs_startio(struct vnode *vp, struct bio *bio, struct thread *td)
978 {
979 	struct buf *bp = bio->bio_buf;
980 
981 	KKASSERT(vp->v_tag == VT_NFS);
982 
983 	/*
984 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
985 	 * do this here so we do not have to do it in all the code that
986 	 * calls us.
987 	 */
988 	bp->b_flags &= ~(B_ERROR | B_INVAL);
989 
990 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
991 		("nfs_doio: bp %p already marked done!", bp));
992 
993 	if (bp->b_cmd == BUF_CMD_READ) {
994 	    switch (vp->v_type) {
995 	    case VREG:
996 		nfsstats.read_bios++;
997 		nfs_readrpc_bio(vp, bio);
998 		break;
999 	    case VLNK:
1000 #if 0
1001 		bio->bio_offset = 0;
1002 		nfsstats.readlink_bios++;
1003 		nfs_readlinkrpc_bio(vp, bio);
1004 #else
1005 		nfs_doio(vp, bio, td);
1006 #endif
1007 		break;
1008 	    case VDIR:
1009 		/*
1010 		 * NOTE: If nfs_readdirplusrpc_bio() is requested but
1011 		 *	 not supported, it will chain to
1012 		 *	 nfs_readdirrpc_bio().
1013 		 */
1014 #if 0
1015 		nfsstats.readdir_bios++;
1016 		uiop->uio_offset = bio->bio_offset;
1017 		if (nmp->nm_flag & NFSMNT_RDIRPLUS)
1018 			nfs_readdirplusrpc_bio(vp, bio);
1019 		else
1020 			nfs_readdirrpc_bio(vp, bio);
1021 #else
1022 		nfs_doio(vp, bio, td);
1023 #endif
1024 		break;
1025 	    default:
1026 		kprintf("nfs_doio:  type %x unexpected\n",vp->v_type);
1027 		bp->b_flags |= B_ERROR;
1028 		bp->b_error = EINVAL;
1029 		biodone(bio);
1030 		break;
1031 	    }
1032 	} else {
1033 	    /*
1034 	     * If we only need to commit, try to commit.  If this fails
1035 	     * it will chain through to the write.  Basically all the logic
1036 	     * in nfs_doio() is replicated.
1037 	     */
1038 	    KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1039 	    if (bp->b_flags & B_NEEDCOMMIT)
1040 		nfs_commitrpc_bio(vp, bio);
1041 	    else
1042 		nfs_writerpc_bio(vp, bio);
1043 	}
1044 }
1045 
1046 int
1047 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td)
1048 {
1049 	struct buf *bp = bio->bio_buf;
1050 	struct uio *uiop;
1051 	struct nfsnode *np;
1052 	struct nfsmount *nmp;
1053 	int error = 0;
1054 	int iomode, must_commit;
1055 	size_t n;
1056 	struct uio uio;
1057 	struct iovec io;
1058 
1059 #if 0
1060 	/*
1061 	 * Shortcut swap cache (not done automatically because we are not
1062 	 * using bread()).
1063 	 *
1064 	 * XXX The biowait is a hack until we can figure out how to stop a
1065 	 * biodone chain when a middle element is BIO_SYNC.  BIO_SYNC is
1066 	 * set so the bp shouldn't get ripped out from under us.  The only
1067 	 * use-cases are fully synchronous I/O cases.
1068 	 *
1069 	 * XXX This is having problems, give up for now.
1070 	 */
1071 	if (vn_cache_strategy(vp, bio)) {
1072 		error = biowait(&bio->bio_buf->b_bio1, "nfsrsw");
1073 		return (error);
1074 	}
1075 #endif
1076 
1077 	KKASSERT(vp->v_tag == VT_NFS);
1078 	np = VTONFS(vp);
1079 	nmp = VFSTONFS(vp->v_mount);
1080 	uiop = &uio;
1081 	uiop->uio_iov = &io;
1082 	uiop->uio_iovcnt = 1;
1083 	uiop->uio_segflg = UIO_SYSSPACE;
1084 	uiop->uio_td = td;
1085 
1086 	/*
1087 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1088 	 * do this here so we do not have to do it in all the code that
1089 	 * calls us.
1090 	 */
1091 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1092 
1093 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
1094 		("nfs_doio: bp %p already marked done!", bp));
1095 
1096 	if (bp->b_cmd == BUF_CMD_READ) {
1097 	    io.iov_len = uiop->uio_resid = (size_t)bp->b_bcount;
1098 	    io.iov_base = bp->b_data;
1099 	    uiop->uio_rw = UIO_READ;
1100 
1101 	    switch (vp->v_type) {
1102 	    case VREG:
1103 		/*
1104 		 * When reading from a regular file zero-fill any residual.
1105 		 * Note that this residual has nothing to do with NFS short
1106 		 * reads, which nfs_readrpc_uio() will handle for us.
1107 		 *
1108 		 * We have to do this because when we are write extending
1109 		 * a file the server may not have the same notion of
1110 		 * filesize as we do.  Our BIOs should already be sized
1111 		 * (b_bcount) to account for the file EOF.
1112 		 */
1113 		nfsstats.read_bios++;
1114 		uiop->uio_offset = bio->bio_offset;
1115 		error = nfs_readrpc_uio(vp, uiop);
1116 		if (error == 0 && uiop->uio_resid) {
1117 			n = (size_t)bp->b_bcount - uiop->uio_resid;
1118 			bzero(bp->b_data + n, bp->b_bcount - n);
1119 			uiop->uio_resid = 0;
1120 		}
1121 		if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1122 		    np->n_mtime != np->n_vattr.va_mtime.tv_sec) {
1123 			uprintf("Process killed due to text file modification\n");
1124 			ksignal(td->td_proc, SIGKILL);
1125 		}
1126 		break;
1127 	    case VLNK:
1128 		uiop->uio_offset = 0;
1129 		nfsstats.readlink_bios++;
1130 		error = nfs_readlinkrpc_uio(vp, uiop);
1131 		break;
1132 	    case VDIR:
1133 		nfsstats.readdir_bios++;
1134 		uiop->uio_offset = bio->bio_offset;
1135 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1136 			error = nfs_readdirplusrpc_uio(vp, uiop);
1137 			if (error == NFSERR_NOTSUPP)
1138 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1139 		}
1140 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1141 			error = nfs_readdirrpc_uio(vp, uiop);
1142 		/*
1143 		 * end-of-directory sets B_INVAL but does not generate an
1144 		 * error.
1145 		 */
1146 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1147 			bp->b_flags |= B_INVAL;
1148 		break;
1149 	    default:
1150 		kprintf("nfs_doio:  type %x unexpected\n",vp->v_type);
1151 		break;
1152 	    }
1153 	    if (error) {
1154 		bp->b_flags |= B_ERROR;
1155 		bp->b_error = error;
1156 	    }
1157 	    bp->b_resid = uiop->uio_resid;
1158 	} else {
1159 	    /*
1160 	     * If we only need to commit, try to commit.
1161 	     *
1162 	     * NOTE: The I/O has already been staged for the write and
1163 	     *	     its pages busied, so b_dirtyoff/end is valid.
1164 	     */
1165 	    KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1166 	    if (bp->b_flags & B_NEEDCOMMIT) {
1167 		    int retv;
1168 		    off_t off;
1169 
1170 		    off = bio->bio_offset + bp->b_dirtyoff;
1171 		    retv = nfs_commitrpc_uio(vp, off,
1172 					     bp->b_dirtyend - bp->b_dirtyoff,
1173 					     td);
1174 		    if (retv == 0) {
1175 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1176 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1177 			    bp->b_resid = 0;
1178 			    biodone(bio);
1179 			    return(0);
1180 		    }
1181 		    if (retv == NFSERR_STALEWRITEVERF) {
1182 			    nfs_clearcommit(vp->v_mount);
1183 		    }
1184 	    }
1185 
1186 	    /*
1187 	     * Setup for actual write
1188 	     */
1189 	    if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1190 		bp->b_dirtyend = np->n_size - bio->bio_offset;
1191 
1192 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1193 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1194 		    - bp->b_dirtyoff;
1195 		uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff;
1196 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1197 		uiop->uio_rw = UIO_WRITE;
1198 		nfsstats.write_bios++;
1199 
1200 		if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1201 		    iomode = NFSV3WRITE_UNSTABLE;
1202 		else
1203 		    iomode = NFSV3WRITE_FILESYNC;
1204 
1205 		must_commit = 0;
1206 		error = nfs_writerpc_uio(vp, uiop, &iomode, &must_commit);
1207 
1208 		/*
1209 		 * We no longer try to use kern/vfs_bio's cluster code to
1210 		 * cluster commits, so B_CLUSTEROK is no longer set with
1211 		 * B_NEEDCOMMIT.  The problem is that a vfs_busy_pages()
1212 		 * may have to clear B_NEEDCOMMIT if it finds underlying
1213 		 * pages have been redirtied through a memory mapping
1214 		 * and doing this on a clustered bp will probably cause
1215 		 * a panic, plus the flag in the underlying NFS bufs
1216 		 * making up the cluster bp will not be properly cleared.
1217 		 */
1218 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1219 		    bp->b_flags |= B_NEEDCOMMIT;
1220 #if 0
1221 		    /* XXX do not enable commit clustering */
1222 		    if (bp->b_dirtyoff == 0
1223 			&& bp->b_dirtyend == bp->b_bcount)
1224 			bp->b_flags |= B_CLUSTEROK;
1225 #endif
1226 		} else {
1227 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1228 		}
1229 
1230 		/*
1231 		 * For an interrupted write, the buffer is still valid
1232 		 * and the write hasn't been pushed to the server yet,
1233 		 * so we can't set B_ERROR and report the interruption
1234 		 * by setting B_EINTR. For the async case, B_EINTR
1235 		 * is not relevant, so the rpc attempt is essentially
1236 		 * a noop.  For the case of a V3 write rpc not being
1237 		 * committed to stable storage, the block is still
1238 		 * dirty and requires either a commit rpc or another
1239 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1240 		 * the block is reused. This is indicated by setting
1241 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1242 		 *
1243 		 * If the buffer is marked B_PAGING, it does not reside on
1244 		 * the vp's paging queues so we cannot call bdirty().  The
1245 		 * bp in this case is not an NFS cache block so we should
1246 		 * be safe. XXX
1247 		 */
1248     		if (error == EINTR
1249 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1250 			crit_enter();
1251 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1252 			if ((bp->b_flags & B_PAGING) == 0)
1253 			    bdirty(bp);
1254 			if (error)
1255 			    bp->b_flags |= B_EINTR;
1256 			crit_exit();
1257 	    	} else {
1258 		    if (error) {
1259 			bp->b_flags |= B_ERROR;
1260 			bp->b_error = np->n_error = error;
1261 			np->n_flag |= NWRITEERR;
1262 		    }
1263 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1264 		}
1265 		if (must_commit)
1266 		    nfs_clearcommit(vp->v_mount);
1267 		bp->b_resid = uiop->uio_resid;
1268 	    } else {
1269 		bp->b_resid = 0;
1270 	    }
1271 	}
1272 
1273 	/*
1274 	 * I/O was run synchronously, biodone() it and calculate the
1275 	 * error to return.
1276 	 */
1277 	biodone(bio);
1278 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
1279 	if (bp->b_flags & B_EINTR)
1280 		return (EINTR);
1281 	if (bp->b_flags & B_ERROR)
1282 		return (bp->b_error ? bp->b_error : EIO);
1283 	return (0);
1284 }
1285 
1286 /*
1287  * Handle all truncation, write-extend, and ftruncate()-extend operations
1288  * on the NFS lcient side.
1289  *
1290  * We use the new API in kern/vfs_vm.c to perform these operations in a
1291  * VM-friendly way.  With this API VM pages are properly zerod and pages
1292  * still mapped into the buffer straddling EOF are not invalidated.
1293  */
1294 int
1295 nfs_meta_setsize(struct vnode *vp, struct thread *td, off_t nsize, int trivial)
1296 {
1297 	struct nfsnode *np = VTONFS(vp);
1298 	off_t osize;
1299 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1300 	int error;
1301 
1302 	osize = np->n_size;
1303 	np->n_size = nsize;
1304 
1305 	if (nsize < osize) {
1306 		error = nvtruncbuf(vp, nsize, biosize, -1, 0);
1307 	} else {
1308 		error = nvextendbuf(vp, osize, nsize,
1309 				    biosize, biosize, -1, -1,
1310 				    trivial);
1311 	}
1312 	return(error);
1313 }
1314 
1315 /*
1316  * Synchronous completion for nfs_doio.  Call bpdone() with elseit=FALSE.
1317  * Caller is responsible for brelse()'ing the bp.
1318  */
1319 static void
1320 nfsiodone_sync(struct bio *bio)
1321 {
1322 	bio->bio_flags = 0;
1323 	bpdone(bio->bio_buf, 0);
1324 }
1325 
1326 /*
1327  * nfs read rpc - BIO version
1328  */
1329 void
1330 nfs_readrpc_bio(struct vnode *vp, struct bio *bio)
1331 {
1332 	struct buf *bp = bio->bio_buf;
1333 	u_int32_t *tl;
1334 	struct nfsmount *nmp;
1335 	int error = 0, len, tsiz;
1336 	struct nfsm_info *info;
1337 
1338 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1339 	info->mrep = NULL;
1340 	info->v3 = NFS_ISV3(vp);
1341 
1342 	nmp = VFSTONFS(vp->v_mount);
1343 	tsiz = bp->b_bcount;
1344 	KKASSERT(tsiz <= nmp->nm_rsize);
1345 	if (bio->bio_offset + tsiz > nmp->nm_maxfilesize) {
1346 		error = EFBIG;
1347 		goto nfsmout;
1348 	}
1349 	nfsstats.rpccnt[NFSPROC_READ]++;
1350 	len = tsiz;
1351 	nfsm_reqhead(info, vp, NFSPROC_READ,
1352 		     NFSX_FH(info->v3) + NFSX_UNSIGNED * 3);
1353 	ERROROUT(nfsm_fhtom(info, vp));
1354 	tl = nfsm_build(info, NFSX_UNSIGNED * 3);
1355 	if (info->v3) {
1356 		txdr_hyper(bio->bio_offset, tl);
1357 		*(tl + 2) = txdr_unsigned(len);
1358 	} else {
1359 		*tl++ = txdr_unsigned(bio->bio_offset);
1360 		*tl++ = txdr_unsigned(len);
1361 		*tl = 0;
1362 	}
1363 	info->bio = bio;
1364 	info->done = nfs_readrpc_bio_done;
1365 	nfsm_request_bio(info, vp, NFSPROC_READ, NULL,
1366 			 nfs_vpcred(vp, ND_READ));
1367 	return;
1368 nfsmout:
1369 	kfree(info, M_NFSREQ);
1370 	bp->b_error = error;
1371 	bp->b_flags |= B_ERROR;
1372 	biodone(bio);
1373 }
1374 
1375 static void
1376 nfs_readrpc_bio_done(nfsm_info_t info)
1377 {
1378 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1379 	struct bio *bio = info->bio;
1380 	struct buf *bp = bio->bio_buf;
1381 	u_int32_t *tl;
1382 	int attrflag;
1383 	int retlen;
1384 	int eof;
1385 	int error = 0;
1386 
1387 	KKASSERT(info->state == NFSM_STATE_DONE);
1388 
1389 	lwkt_gettoken(&nmp->nm_token);
1390 
1391 	ERROROUT(info->error);
1392 	if (info->v3) {
1393 		ERROROUT(nfsm_postop_attr(info, info->vp, &attrflag,
1394 					 NFS_LATTR_NOSHRINK));
1395 		NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED));
1396 		eof = fxdr_unsigned(int, *(tl + 1));
1397 	} else {
1398 		ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1399 		eof = 0;
1400 	}
1401 	NEGATIVEOUT(retlen = nfsm_strsiz(info, nmp->nm_rsize));
1402 	ERROROUT(nfsm_mtobio(info, bio, retlen));
1403 	m_freem(info->mrep);
1404 	info->mrep = NULL;
1405 
1406 	/*
1407 	 * No error occured, if retlen is less then bcount and no EOF
1408 	 * and NFSv3 a zero-fill short read occured.
1409 	 *
1410 	 * For NFSv2 a short-read indicates EOF.
1411 	 */
1412 	if (retlen < bp->b_bcount && info->v3 && eof == 0) {
1413 		bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1414 		retlen = bp->b_bcount;
1415 	}
1416 
1417 	/*
1418 	 * If we hit an EOF we still zero-fill, but return the expected
1419 	 * b_resid anyway.  This should normally not occur since async
1420 	 * BIOs are not used for read-before-write case.  Races against
1421 	 * the server can cause it though and we don't want to leave
1422 	 * garbage in the buffer.
1423 	 */
1424 	if (retlen < bp->b_bcount) {
1425 		bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1426 	}
1427 	bp->b_resid = 0;
1428 	/* bp->b_resid = bp->b_bcount - retlen; */
1429 nfsmout:
1430 	lwkt_reltoken(&nmp->nm_token);
1431 	kfree(info, M_NFSREQ);
1432 	if (error) {
1433 		bp->b_error = error;
1434 		bp->b_flags |= B_ERROR;
1435 	}
1436 	biodone(bio);
1437 }
1438 
1439 /*
1440  * nfs write call - BIO version
1441  *
1442  * NOTE: Caller has already busied the I/O.
1443  */
1444 void
1445 nfs_writerpc_bio(struct vnode *vp, struct bio *bio)
1446 {
1447 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1448 	struct nfsnode *np = VTONFS(vp);
1449 	struct buf *bp = bio->bio_buf;
1450 	u_int32_t *tl;
1451 	int len;
1452 	int iomode;
1453 	int error = 0;
1454 	struct nfsm_info *info;
1455 	off_t offset;
1456 
1457 	/*
1458 	 * Setup for actual write.  Just clean up the bio if there
1459 	 * is nothing to do.  b_dirtyoff/end have already been staged
1460 	 * by the bp's pages getting busied.
1461 	 */
1462 	if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1463 		bp->b_dirtyend = np->n_size - bio->bio_offset;
1464 
1465 	if (bp->b_dirtyend <= bp->b_dirtyoff) {
1466 		bp->b_resid = 0;
1467 		biodone(bio);
1468 		return;
1469 	}
1470 	len = bp->b_dirtyend - bp->b_dirtyoff;
1471 	offset = bio->bio_offset + bp->b_dirtyoff;
1472 	if (offset + len > nmp->nm_maxfilesize) {
1473 		bp->b_flags |= B_ERROR;
1474 		bp->b_error = EFBIG;
1475 		biodone(bio);
1476 		return;
1477 	}
1478 	bp->b_resid = len;
1479 	nfsstats.write_bios++;
1480 
1481 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1482 	info->mrep = NULL;
1483 	info->v3 = NFS_ISV3(vp);
1484 	info->info_writerpc.must_commit = 0;
1485 	if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1486 		iomode = NFSV3WRITE_UNSTABLE;
1487 	else
1488 		iomode = NFSV3WRITE_FILESYNC;
1489 
1490 	KKASSERT(len <= nmp->nm_wsize);
1491 
1492 	nfsstats.rpccnt[NFSPROC_WRITE]++;
1493 	nfsm_reqhead(info, vp, NFSPROC_WRITE,
1494 		     NFSX_FH(info->v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1495 	ERROROUT(nfsm_fhtom(info, vp));
1496 	if (info->v3) {
1497 		tl = nfsm_build(info, 5 * NFSX_UNSIGNED);
1498 		txdr_hyper(offset, tl);
1499 		tl += 2;
1500 		*tl++ = txdr_unsigned(len);
1501 		*tl++ = txdr_unsigned(iomode);
1502 		*tl = txdr_unsigned(len);
1503 	} else {
1504 		u_int32_t x;
1505 
1506 		tl = nfsm_build(info, 4 * NFSX_UNSIGNED);
1507 		/* Set both "begin" and "current" to non-garbage. */
1508 		x = txdr_unsigned((u_int32_t)offset);
1509 		*tl++ = x;	/* "begin offset" */
1510 		*tl++ = x;	/* "current offset" */
1511 		x = txdr_unsigned(len);
1512 		*tl++ = x;	/* total to this offset */
1513 		*tl = x;	/* size of this write */
1514 	}
1515 	ERROROUT(nfsm_biotom(info, bio, bp->b_dirtyoff, len));
1516 	info->bio = bio;
1517 	info->done = nfs_writerpc_bio_done;
1518 	nfsm_request_bio(info, vp, NFSPROC_WRITE, NULL,
1519 			 nfs_vpcred(vp, ND_WRITE));
1520 	return;
1521 nfsmout:
1522 	kfree(info, M_NFSREQ);
1523 	bp->b_error = error;
1524 	bp->b_flags |= B_ERROR;
1525 	biodone(bio);
1526 }
1527 
1528 static void
1529 nfs_writerpc_bio_done(nfsm_info_t info)
1530 {
1531 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1532 	struct nfsnode *np = VTONFS(info->vp);
1533 	struct bio *bio = info->bio;
1534 	struct buf *bp = bio->bio_buf;
1535 	int wccflag = NFSV3_WCCRATTR;
1536 	int iomode = NFSV3WRITE_FILESYNC;
1537 	int commit;
1538 	int rlen;
1539 	int error;
1540 	int len = bp->b_resid;	/* b_resid was set to shortened length */
1541 	u_int32_t *tl;
1542 
1543 	lwkt_gettoken(&nmp->nm_token);
1544 
1545 	ERROROUT(info->error);
1546 	if (info->v3) {
1547 		/*
1548 		 * The write RPC returns a before and after mtime.  The
1549 		 * nfsm_wcc_data() macro checks the before n_mtime
1550 		 * against the before time and stores the after time
1551 		 * in the nfsnode's cached vattr and n_mtime field.
1552 		 * The NRMODIFIED bit will be set if the before
1553 		 * time did not match the original mtime.
1554 		 */
1555 		wccflag = NFSV3_WCCCHK;
1556 		ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1557 		if (error == 0) {
1558 			NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1559 			rlen = fxdr_unsigned(int, *tl++);
1560 			if (rlen == 0) {
1561 				error = NFSERR_IO;
1562 				m_freem(info->mrep);
1563 				info->mrep = NULL;
1564 				goto nfsmout;
1565 			} else if (rlen < len) {
1566 #if 0
1567 				/*
1568 				 * XXX what do we do here?
1569 				 */
1570 				backup = len - rlen;
1571 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1572 				uiop->uio_iov->iov_len += backup;
1573 				uiop->uio_offset -= backup;
1574 				uiop->uio_resid += backup;
1575 				len = rlen;
1576 #endif
1577 			}
1578 			commit = fxdr_unsigned(int, *tl++);
1579 
1580 			/*
1581 			 * Return the lowest committment level
1582 			 * obtained by any of the RPCs.
1583 			 */
1584 			if (iomode == NFSV3WRITE_FILESYNC)
1585 				iomode = commit;
1586 			else if (iomode == NFSV3WRITE_DATASYNC &&
1587 				commit == NFSV3WRITE_UNSTABLE)
1588 				iomode = commit;
1589 			if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1590 			    bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1591 			    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1592 			} else if (bcmp(tl, nmp->nm_verf, NFSX_V3WRITEVERF)) {
1593 			    info->info_writerpc.must_commit = 1;
1594 			    bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1595 			}
1596 		}
1597 	} else {
1598 		ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1599 	}
1600 	m_freem(info->mrep);
1601 	info->mrep = NULL;
1602 	len = 0;
1603 nfsmout:
1604 	if (info->vp->v_mount->mnt_flag & MNT_ASYNC)
1605 		iomode = NFSV3WRITE_FILESYNC;
1606 	bp->b_resid = len;
1607 
1608 	/*
1609 	 * End of RPC.  Now clean up the bp.
1610 	 *
1611 	 * We no longer enable write clustering for commit operations,
1612 	 * See around line 1157 for a more detailed comment.
1613 	 */
1614 	if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1615 		bp->b_flags |= B_NEEDCOMMIT;
1616 #if 0
1617 		/* XXX do not enable commit clustering */
1618 		if (bp->b_dirtyoff == 0 && bp->b_dirtyend == bp->b_bcount)
1619 			bp->b_flags |= B_CLUSTEROK;
1620 #endif
1621 	} else {
1622 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1623 	}
1624 
1625 	/*
1626 	 * For an interrupted write, the buffer is still valid
1627 	 * and the write hasn't been pushed to the server yet,
1628 	 * so we can't set B_ERROR and report the interruption
1629 	 * by setting B_EINTR. For the async case, B_EINTR
1630 	 * is not relevant, so the rpc attempt is essentially
1631 	 * a noop.  For the case of a V3 write rpc not being
1632 	 * committed to stable storage, the block is still
1633 	 * dirty and requires either a commit rpc or another
1634 	 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1635 	 * the block is reused. This is indicated by setting
1636 	 * the B_DELWRI and B_NEEDCOMMIT flags.
1637 	 *
1638 	 * If the buffer is marked B_PAGING, it does not reside on
1639 	 * the vp's paging queues so we cannot call bdirty().  The
1640 	 * bp in this case is not an NFS cache block so we should
1641 	 * be safe. XXX
1642 	 */
1643 	if (error == EINTR || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1644 		crit_enter();
1645 		bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1646 		if ((bp->b_flags & B_PAGING) == 0)
1647 			bdirty(bp);
1648 		if (error)
1649 			bp->b_flags |= B_EINTR;
1650 		crit_exit();
1651 	} else {
1652 		if (error) {
1653 			bp->b_flags |= B_ERROR;
1654 			bp->b_error = np->n_error = error;
1655 			np->n_flag |= NWRITEERR;
1656 		}
1657 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1658 	}
1659 	if (info->info_writerpc.must_commit)
1660 		nfs_clearcommit(info->vp->v_mount);
1661 	lwkt_reltoken(&nmp->nm_token);
1662 
1663 	kfree(info, M_NFSREQ);
1664 	if (error) {
1665 		bp->b_flags |= B_ERROR;
1666 		bp->b_error = error;
1667 	}
1668 	biodone(bio);
1669 }
1670 
1671 /*
1672  * Nfs Version 3 commit rpc - BIO version
1673  *
1674  * This function issues the commit rpc and will chain to a write
1675  * rpc if necessary.
1676  */
1677 void
1678 nfs_commitrpc_bio(struct vnode *vp, struct bio *bio)
1679 {
1680 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1681 	struct buf *bp = bio->bio_buf;
1682 	struct nfsm_info *info;
1683 	int error = 0;
1684 	u_int32_t *tl;
1685 
1686 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
1687 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1688 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1689 		bp->b_resid = 0;
1690 		biodone(bio);
1691 		return;
1692 	}
1693 
1694 	info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1695 	info->mrep = NULL;
1696 	info->v3 = 1;
1697 
1698 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
1699 	nfsm_reqhead(info, vp, NFSPROC_COMMIT, NFSX_FH(1));
1700 	ERROROUT(nfsm_fhtom(info, vp));
1701 	tl = nfsm_build(info, 3 * NFSX_UNSIGNED);
1702 	txdr_hyper(bio->bio_offset + bp->b_dirtyoff, tl);
1703 	tl += 2;
1704 	*tl = txdr_unsigned(bp->b_dirtyend - bp->b_dirtyoff);
1705 	info->bio = bio;
1706 	info->done = nfs_commitrpc_bio_done;
1707 	nfsm_request_bio(info, vp, NFSPROC_COMMIT, NULL,
1708 			 nfs_vpcred(vp, ND_WRITE));
1709 	return;
1710 nfsmout:
1711 	/*
1712 	 * Chain to write RPC on (early) error
1713 	 */
1714 	kfree(info, M_NFSREQ);
1715 	nfs_writerpc_bio(vp, bio);
1716 }
1717 
1718 static void
1719 nfs_commitrpc_bio_done(nfsm_info_t info)
1720 {
1721 	struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1722 	struct bio *bio = info->bio;
1723 	struct buf *bp = bio->bio_buf;
1724 	u_int32_t *tl;
1725 	int wccflag = NFSV3_WCCRATTR;
1726 	int error = 0;
1727 
1728 	lwkt_gettoken(&nmp->nm_token);
1729 
1730 	ERROROUT(info->error);
1731 	ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1732 	if (error == 0) {
1733 		NULLOUT(tl = nfsm_dissect(info, NFSX_V3WRITEVERF));
1734 		if (bcmp(nmp->nm_verf, tl, NFSX_V3WRITEVERF)) {
1735 			bcopy(tl, nmp->nm_verf, NFSX_V3WRITEVERF);
1736 			error = NFSERR_STALEWRITEVERF;
1737 		}
1738 	}
1739 	m_freem(info->mrep);
1740 	info->mrep = NULL;
1741 
1742 	/*
1743 	 * On completion we must chain to a write bio if an
1744 	 * error occurred.
1745 	 */
1746 nfsmout:
1747 	if (error == 0) {
1748 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1749 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1750 		bp->b_resid = 0;
1751 		biodone(bio);
1752 	} else {
1753 		nfs_writerpc_bio(info->vp, bio);
1754 	}
1755 	kfree(info, M_NFSREQ);
1756 	lwkt_reltoken(&nmp->nm_token);
1757 }
1758 
1759