xref: /dragonfly/sys/vfs/nfs/nfs_socket.c (revision 10cbe914)
1 /*
2  * Copyright (c) 1989, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_socket.c	8.5 (Berkeley) 3/30/95
37  * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.45 2007/05/18 17:05:13 dillon Exp $
39  */
40 
41 /*
42  * Socket operations for use by nfs
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/fcntl.h>
54 #include <sys/protosw.h>
55 #include <sys/resourcevar.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/socketops.h>
59 #include <sys/syslog.h>
60 #include <sys/thread.h>
61 #include <sys/tprintf.h>
62 #include <sys/sysctl.h>
63 #include <sys/signalvar.h>
64 
65 #include <sys/signal2.h>
66 #include <sys/mutex2.h>
67 #include <sys/socketvar2.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <sys/thread2.h>
72 
73 #include "rpcv2.h"
74 #include "nfsproto.h"
75 #include "nfs.h"
76 #include "xdr_subs.h"
77 #include "nfsm_subs.h"
78 #include "nfsmount.h"
79 #include "nfsnode.h"
80 #include "nfsrtt.h"
81 
82 #define	TRUE	1
83 #define	FALSE	0
84 
85 /*
86  * RTT calculations are scaled by 256 (8 bits).  A proper fractional
87  * RTT will still be calculated even with a slow NFS timer.
88  */
89 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum]]
90 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum]]
91 #define NFS_RTT_SCALE_BITS	8	/* bits */
92 #define NFS_RTT_SCALE		256	/* value */
93 
94 /*
95  * Defines which timer to use for the procnum.
96  * 0 - default
97  * 1 - getattr
98  * 2 - lookup
99  * 3 - read
100  * 4 - write
101  */
102 static int proct[NFS_NPROCS] = {
103 	0, 1, 0, 2, 1, 3, 3, 4, 0, 0,	/* 00-09	*/
104 	0, 0, 0, 0, 0, 0, 3, 3, 0, 0,	/* 10-19	*/
105 	0, 5, 0, 0, 0, 0,		/* 20-29	*/
106 };
107 
108 static int multt[NFS_NPROCS] = {
109 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 00-09	*/
110 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 10-19	*/
111 	1, 2, 1, 1, 1, 1,		/* 20-29	*/
112 };
113 
114 static int nfs_backoff[8] = { 2, 3, 5, 8, 13, 21, 34, 55 };
115 static int nfs_realign_test;
116 static int nfs_realign_count;
117 static int nfs_showrtt;
118 static int nfs_showrexmit;
119 int nfs_maxasyncbio = NFS_MAXASYNCBIO;
120 
121 SYSCTL_DECL(_vfs_nfs);
122 
123 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, "");
124 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, "");
125 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrtt, CTLFLAG_RW, &nfs_showrtt, 0, "");
126 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrexmit, CTLFLAG_RW, &nfs_showrexmit, 0, "");
127 SYSCTL_INT(_vfs_nfs, OID_AUTO, maxasyncbio, CTLFLAG_RW, &nfs_maxasyncbio, 0, "");
128 
129 static int nfs_request_setup(nfsm_info_t info);
130 static int nfs_request_auth(struct nfsreq *rep);
131 static int nfs_request_try(struct nfsreq *rep);
132 static int nfs_request_waitreply(struct nfsreq *rep);
133 static int nfs_request_processreply(nfsm_info_t info, int);
134 
135 int nfsrtton = 0;
136 struct nfsrtt nfsrtt;
137 struct callout	nfs_timer_handle;
138 
139 static int	nfs_msg (struct thread *,char *,char *);
140 static int	nfs_rcvlock (struct nfsmount *nmp, struct nfsreq *myreq);
141 static void	nfs_rcvunlock (struct nfsmount *nmp);
142 static void	nfs_realign (struct mbuf **pm, int hsiz);
143 static int	nfs_receive (struct nfsmount *nmp, struct nfsreq *rep,
144 				struct sockaddr **aname, struct mbuf **mp);
145 static void	nfs_softterm (struct nfsreq *rep, int islocked);
146 static void	nfs_hardterm (struct nfsreq *rep, int islocked);
147 static int	nfs_reconnect (struct nfsmount *nmp, struct nfsreq *rep);
148 #ifndef NFS_NOSERVER
149 static int	nfsrv_getstream (struct nfssvc_sock *, int, int *);
150 static void	nfs_timer_req(struct nfsreq *req);
151 static void	nfs_checkpkt(struct mbuf *m, int len);
152 
153 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd,
154 				    struct nfssvc_sock *slp,
155 				    struct thread *td,
156 				    struct mbuf **mreqp) = {
157 	nfsrv_null,
158 	nfsrv_getattr,
159 	nfsrv_setattr,
160 	nfsrv_lookup,
161 	nfsrv3_access,
162 	nfsrv_readlink,
163 	nfsrv_read,
164 	nfsrv_write,
165 	nfsrv_create,
166 	nfsrv_mkdir,
167 	nfsrv_symlink,
168 	nfsrv_mknod,
169 	nfsrv_remove,
170 	nfsrv_rmdir,
171 	nfsrv_rename,
172 	nfsrv_link,
173 	nfsrv_readdir,
174 	nfsrv_readdirplus,
175 	nfsrv_statfs,
176 	nfsrv_fsinfo,
177 	nfsrv_pathconf,
178 	nfsrv_commit,
179 	nfsrv_noop,
180 	nfsrv_noop,
181 	nfsrv_noop,
182 	nfsrv_noop
183 };
184 #endif /* NFS_NOSERVER */
185 
186 /*
187  * Initialize sockets and congestion for a new NFS connection.
188  * We do not free the sockaddr if error.
189  */
190 int
191 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
192 {
193 	struct socket *so;
194 	int error;
195 	struct sockaddr *saddr;
196 	struct sockaddr_in *sin;
197 	struct thread *td = &thread0; /* only used for socreate and sobind */
198 
199 	nmp->nm_so = so = NULL;
200 	if (nmp->nm_flag & NFSMNT_FORCE)
201 		return (EINVAL);
202 	saddr = nmp->nm_nam;
203 	error = socreate(saddr->sa_family, &so, nmp->nm_sotype,
204 		nmp->nm_soproto, td);
205 	if (error)
206 		goto bad;
207 	nmp->nm_soflags = so->so_proto->pr_flags;
208 
209 	/*
210 	 * Some servers require that the client port be a reserved port number.
211 	 */
212 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
213 		struct sockopt sopt;
214 		int ip;
215 		struct sockaddr_in ssin;
216 
217 		bzero(&sopt, sizeof sopt);
218 		ip = IP_PORTRANGE_LOW;
219 		sopt.sopt_level = IPPROTO_IP;
220 		sopt.sopt_name = IP_PORTRANGE;
221 		sopt.sopt_val = (void *)&ip;
222 		sopt.sopt_valsize = sizeof(ip);
223 		sopt.sopt_td = NULL;
224 		error = sosetopt(so, &sopt);
225 		if (error)
226 			goto bad;
227 		bzero(&ssin, sizeof ssin);
228 		sin = &ssin;
229 		sin->sin_len = sizeof (struct sockaddr_in);
230 		sin->sin_family = AF_INET;
231 		sin->sin_addr.s_addr = INADDR_ANY;
232 		sin->sin_port = htons(0);
233 		error = sobind(so, (struct sockaddr *)sin, td);
234 		if (error)
235 			goto bad;
236 		bzero(&sopt, sizeof sopt);
237 		ip = IP_PORTRANGE_DEFAULT;
238 		sopt.sopt_level = IPPROTO_IP;
239 		sopt.sopt_name = IP_PORTRANGE;
240 		sopt.sopt_val = (void *)&ip;
241 		sopt.sopt_valsize = sizeof(ip);
242 		sopt.sopt_td = NULL;
243 		error = sosetopt(so, &sopt);
244 		if (error)
245 			goto bad;
246 	}
247 
248 	/*
249 	 * Protocols that do not require connections may be optionally left
250 	 * unconnected for servers that reply from a port other than NFS_PORT.
251 	 */
252 	if (nmp->nm_flag & NFSMNT_NOCONN) {
253 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
254 			error = ENOTCONN;
255 			goto bad;
256 		}
257 	} else {
258 		error = soconnect(so, nmp->nm_nam, td);
259 		if (error)
260 			goto bad;
261 
262 		/*
263 		 * Wait for the connection to complete. Cribbed from the
264 		 * connect system call but with the wait timing out so
265 		 * that interruptible mounts don't hang here for a long time.
266 		 */
267 		crit_enter();
268 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
269 			(void) tsleep((caddr_t)&so->so_timeo, 0,
270 				"nfscon", 2 * hz);
271 			if ((so->so_state & SS_ISCONNECTING) &&
272 			    so->so_error == 0 && rep &&
273 			    (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
274 				soclrstate(so, SS_ISCONNECTING);
275 				crit_exit();
276 				goto bad;
277 			}
278 		}
279 		if (so->so_error) {
280 			error = so->so_error;
281 			so->so_error = 0;
282 			crit_exit();
283 			goto bad;
284 		}
285 		crit_exit();
286 	}
287 	so->so_rcv.ssb_timeo = (5 * hz);
288 	so->so_snd.ssb_timeo = (5 * hz);
289 
290 	/*
291 	 * Get buffer reservation size from sysctl, but impose reasonable
292 	 * limits.
293 	 */
294 	if (nmp->nm_sotype == SOCK_STREAM) {
295 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
296 			struct sockopt sopt;
297 			int val;
298 
299 			bzero(&sopt, sizeof sopt);
300 			sopt.sopt_level = SOL_SOCKET;
301 			sopt.sopt_name = SO_KEEPALIVE;
302 			sopt.sopt_val = &val;
303 			sopt.sopt_valsize = sizeof val;
304 			val = 1;
305 			sosetopt(so, &sopt);
306 		}
307 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
308 			struct sockopt sopt;
309 			int val;
310 
311 			bzero(&sopt, sizeof sopt);
312 			sopt.sopt_level = IPPROTO_TCP;
313 			sopt.sopt_name = TCP_NODELAY;
314 			sopt.sopt_val = &val;
315 			sopt.sopt_valsize = sizeof val;
316 			val = 1;
317 			sosetopt(so, &sopt);
318 
319 			bzero(&sopt, sizeof sopt);
320 			sopt.sopt_level = IPPROTO_TCP;
321 			sopt.sopt_name = TCP_FASTKEEP;
322 			sopt.sopt_val = &val;
323 			sopt.sopt_valsize = sizeof val;
324 			val = 1;
325 			sosetopt(so, &sopt);
326 		}
327 	}
328 	error = soreserve(so, nfs_soreserve, nfs_soreserve, NULL);
329 	if (error)
330 		goto bad;
331 	atomic_set_int(&so->so_rcv.ssb_flags, SSB_NOINTR);
332 	atomic_set_int(&so->so_snd.ssb_flags, SSB_NOINTR);
333 
334 	/* Initialize other non-zero congestion variables */
335 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
336 		nmp->nm_srtt[3] = (NFS_TIMEO << NFS_RTT_SCALE_BITS);
337 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
338 		nmp->nm_sdrtt[3] = 0;
339 	nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
340 	nmp->nm_timeouts = 0;
341 
342 	/*
343 	 * Assign nm_so last.  The moment nm_so is assigned the nfs_timer()
344 	 * can mess with the socket.
345 	 */
346 	nmp->nm_so = so;
347 	return (0);
348 
349 bad:
350 	if (so) {
351 		soshutdown(so, SHUT_RDWR);
352 		soclose(so, FNONBLOCK);
353 	}
354 	return (error);
355 }
356 
357 /*
358  * Reconnect routine:
359  * Called when a connection is broken on a reliable protocol.
360  * - clean up the old socket
361  * - nfs_connect() again
362  * - set R_NEEDSXMIT for all outstanding requests on mount point
363  * If this fails the mount point is DEAD!
364  * nb: Must be called with the nfs_sndlock() set on the mount point.
365  */
366 static int
367 nfs_reconnect(struct nfsmount *nmp, struct nfsreq *rep)
368 {
369 	struct nfsreq *req;
370 	int error;
371 
372 	nfs_disconnect(nmp);
373 	if (nmp->nm_rxstate >= NFSSVC_STOPPING)
374 		return (EINTR);
375 	while ((error = nfs_connect(nmp, rep)) != 0) {
376 		if (error == EINTR || error == ERESTART)
377 			return (EINTR);
378 		if (error == EINVAL)
379 			return (error);
380 		if (nmp->nm_rxstate >= NFSSVC_STOPPING)
381 			return (EINTR);
382 		(void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0);
383 	}
384 
385 	/*
386 	 * Loop through outstanding request list and fix up all requests
387 	 * on old socket.
388 	 */
389 	crit_enter();
390 	TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
391 		KKASSERT(req->r_nmp == nmp);
392 		req->r_flags |= R_NEEDSXMIT;
393 	}
394 	crit_exit();
395 	return (0);
396 }
397 
398 /*
399  * NFS disconnect. Clean up and unlink.
400  */
401 void
402 nfs_disconnect(struct nfsmount *nmp)
403 {
404 	struct socket *so;
405 
406 	if (nmp->nm_so) {
407 		so = nmp->nm_so;
408 		nmp->nm_so = NULL;
409 		soshutdown(so, SHUT_RDWR);
410 		soclose(so, FNONBLOCK);
411 	}
412 }
413 
414 void
415 nfs_safedisconnect(struct nfsmount *nmp)
416 {
417 	nfs_rcvlock(nmp, NULL);
418 	nfs_disconnect(nmp);
419 	nfs_rcvunlock(nmp);
420 }
421 
422 /*
423  * This is the nfs send routine. For connection based socket types, it
424  * must be called with an nfs_sndlock() on the socket.
425  * "rep == NULL" indicates that it has been called from a server.
426  * For the client side:
427  * - return EINTR if the RPC is terminated, 0 otherwise
428  * - set R_NEEDSXMIT if the send fails for any reason
429  * - do any cleanup required by recoverable socket errors (?)
430  * For the server side:
431  * - return EINTR or ERESTART if interrupted by a signal
432  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
433  * - do any cleanup required by recoverable socket errors (?)
434  */
435 int
436 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top,
437 	 struct nfsreq *rep)
438 {
439 	struct sockaddr *sendnam;
440 	int error, soflags, flags;
441 
442 	if (rep) {
443 		if (rep->r_flags & R_SOFTTERM) {
444 			m_freem(top);
445 			return (EINTR);
446 		}
447 		if ((so = rep->r_nmp->nm_so) == NULL) {
448 			rep->r_flags |= R_NEEDSXMIT;
449 			m_freem(top);
450 			return (0);
451 		}
452 		rep->r_flags &= ~R_NEEDSXMIT;
453 		soflags = rep->r_nmp->nm_soflags;
454 	} else {
455 		soflags = so->so_proto->pr_flags;
456 	}
457 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
458 		sendnam = NULL;
459 	else
460 		sendnam = nam;
461 	if (so->so_type == SOCK_SEQPACKET)
462 		flags = MSG_EOR;
463 	else
464 		flags = 0;
465 
466 	/*
467 	 * calls pru_sosend -> sosend -> so_pru_send -> netrpc
468 	 */
469 	error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags,
470 			      curthread /*XXX*/);
471 
472 	/*
473 	 * ENOBUFS for dgram sockets is transient and non fatal.
474 	 * No need to log, and no need to break a soft mount.
475 	 */
476 	if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
477 		error = 0;
478 		/*
479 		 * do backoff retransmit on client
480 		 */
481 		if (rep) {
482 			if ((rep->r_nmp->nm_state & NFSSTA_SENDSPACE) == 0) {
483 				rep->r_nmp->nm_state |= NFSSTA_SENDSPACE;
484 				kprintf("Warning: NFS: Insufficient sendspace "
485 					"(%lu),\n"
486 					"\t You must increase vfs.nfs.soreserve"
487 					"or decrease vfs.nfs.maxasyncbio\n",
488 					so->so_snd.ssb_hiwat);
489 			}
490 			rep->r_flags |= R_NEEDSXMIT;
491 		}
492 	}
493 
494 	if (error) {
495 		if (rep) {
496 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
497 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
498 			/*
499 			 * Deal with errors for the client side.
500 			 */
501 			if (rep->r_flags & R_SOFTTERM)
502 				error = EINTR;
503 			else
504 				rep->r_flags |= R_NEEDSXMIT;
505 		} else {
506 			log(LOG_INFO, "nfsd send error %d\n", error);
507 		}
508 
509 		/*
510 		 * Handle any recoverable (soft) socket errors here. (?)
511 		 */
512 		if (error != EINTR && error != ERESTART &&
513 			error != EWOULDBLOCK && error != EPIPE)
514 			error = 0;
515 	}
516 	return (error);
517 }
518 
519 /*
520  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
521  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
522  * Mark and consolidate the data into a new mbuf list.
523  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
524  *     small mbufs.
525  * For SOCK_STREAM we must be very careful to read an entire record once
526  * we have read any of it, even if the system call has been interrupted.
527  */
528 static int
529 nfs_receive(struct nfsmount *nmp, struct nfsreq *rep,
530 	    struct sockaddr **aname, struct mbuf **mp)
531 {
532 	struct socket *so;
533 	struct sockbuf sio;
534 	struct uio auio;
535 	struct iovec aio;
536 	struct mbuf *m;
537 	struct mbuf *control;
538 	u_int32_t len;
539 	struct sockaddr **getnam;
540 	int error, sotype, rcvflg;
541 	struct thread *td = curthread;	/* XXX */
542 
543 	/*
544 	 * Set up arguments for soreceive()
545 	 */
546 	*mp = NULL;
547 	*aname = NULL;
548 	sotype = nmp->nm_sotype;
549 
550 	/*
551 	 * For reliable protocols, lock against other senders/receivers
552 	 * in case a reconnect is necessary.
553 	 * For SOCK_STREAM, first get the Record Mark to find out how much
554 	 * more there is to get.
555 	 * We must lock the socket against other receivers
556 	 * until we have an entire rpc request/reply.
557 	 */
558 	if (sotype != SOCK_DGRAM) {
559 		error = nfs_sndlock(nmp, rep);
560 		if (error)
561 			return (error);
562 tryagain:
563 		/*
564 		 * Check for fatal errors and resending request.
565 		 */
566 		/*
567 		 * Ugh: If a reconnect attempt just happened, nm_so
568 		 * would have changed. NULL indicates a failed
569 		 * attempt that has essentially shut down this
570 		 * mount point.
571 		 */
572 		if (rep && (rep->r_mrep || (rep->r_flags & R_SOFTTERM))) {
573 			nfs_sndunlock(nmp);
574 			return (EINTR);
575 		}
576 		so = nmp->nm_so;
577 		if (so == NULL) {
578 			error = nfs_reconnect(nmp, rep);
579 			if (error) {
580 				nfs_sndunlock(nmp);
581 				return (error);
582 			}
583 			goto tryagain;
584 		}
585 		while (rep && (rep->r_flags & R_NEEDSXMIT)) {
586 			m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
587 			nfsstats.rpcretries++;
588 			error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
589 			if (error) {
590 				if (error == EINTR || error == ERESTART ||
591 				    (error = nfs_reconnect(nmp, rep)) != 0) {
592 					nfs_sndunlock(nmp);
593 					return (error);
594 				}
595 				goto tryagain;
596 			}
597 		}
598 		nfs_sndunlock(nmp);
599 		if (sotype == SOCK_STREAM) {
600 			/*
601 			 * Get the length marker from the stream
602 			 */
603 			aio.iov_base = (caddr_t)&len;
604 			aio.iov_len = sizeof(u_int32_t);
605 			auio.uio_iov = &aio;
606 			auio.uio_iovcnt = 1;
607 			auio.uio_segflg = UIO_SYSSPACE;
608 			auio.uio_rw = UIO_READ;
609 			auio.uio_offset = 0;
610 			auio.uio_resid = sizeof(u_int32_t);
611 			auio.uio_td = td;
612 			do {
613 			   rcvflg = MSG_WAITALL;
614 			   error = so_pru_soreceive(so, NULL, &auio, NULL,
615 						    NULL, &rcvflg);
616 			   if (error == EWOULDBLOCK && rep) {
617 				if (rep->r_flags & R_SOFTTERM)
618 					return (EINTR);
619 			   }
620 			} while (error == EWOULDBLOCK);
621 
622 			if (error == 0 && auio.uio_resid > 0) {
623 			    /*
624 			     * Only log short packets if not EOF
625 			     */
626 			    if (auio.uio_resid != sizeof(u_int32_t))
627 			    log(LOG_INFO,
628 				 "short receive (%d/%d) from nfs server %s\n",
629 				 (int)(sizeof(u_int32_t) - auio.uio_resid),
630 				 (int)sizeof(u_int32_t),
631 				 nmp->nm_mountp->mnt_stat.f_mntfromname);
632 			    error = EPIPE;
633 			}
634 			if (error)
635 				goto errout;
636 			len = ntohl(len) & ~0x80000000;
637 			/*
638 			 * This is SERIOUS! We are out of sync with the sender
639 			 * and forcing a disconnect/reconnect is all I can do.
640 			 */
641 			if (len > NFS_MAXPACKET) {
642 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
643 				"impossible packet length",
644 				len,
645 				nmp->nm_mountp->mnt_stat.f_mntfromname);
646 			    error = EFBIG;
647 			    goto errout;
648 			}
649 
650 			/*
651 			 * Get the rest of the packet as an mbuf chain
652 			 */
653 			sbinit(&sio, len);
654 			do {
655 			    rcvflg = MSG_WAITALL;
656 			    error = so_pru_soreceive(so, NULL, NULL, &sio,
657 						     NULL, &rcvflg);
658 			} while (error == EWOULDBLOCK || error == EINTR ||
659 				 error == ERESTART);
660 			if (error == 0 && sio.sb_cc != len) {
661 			    if (sio.sb_cc != 0)
662 			    log(LOG_INFO,
663 				"short receive (%zu/%d) from nfs server %s\n",
664 				(size_t)len - auio.uio_resid, len,
665 				nmp->nm_mountp->mnt_stat.f_mntfromname);
666 			    error = EPIPE;
667 			}
668 			*mp = sio.sb_mb;
669 		} else {
670 			/*
671 			 * Non-stream, so get the whole packet by not
672 			 * specifying MSG_WAITALL and by specifying a large
673 			 * length.
674 			 *
675 			 * We have no use for control msg., but must grab them
676 			 * and then throw them away so we know what is going
677 			 * on.
678 			 */
679 			sbinit(&sio, 100000000);
680 			do {
681 			    rcvflg = 0;
682 			    error =  so_pru_soreceive(so, NULL, NULL, &sio,
683 						      &control, &rcvflg);
684 			    if (control)
685 				m_freem(control);
686 			    if (error == EWOULDBLOCK && rep) {
687 				if (rep->r_flags & R_SOFTTERM) {
688 					m_freem(sio.sb_mb);
689 					return (EINTR);
690 				}
691 			    }
692 			} while (error == EWOULDBLOCK ||
693 				 (error == 0 && sio.sb_mb == NULL && control));
694 			if ((rcvflg & MSG_EOR) == 0)
695 				kprintf("Egad!!\n");
696 			if (error == 0 && sio.sb_mb == NULL)
697 				error = EPIPE;
698 			len = sio.sb_cc;
699 			*mp = sio.sb_mb;
700 		}
701 errout:
702 		if (error && error != EINTR && error != ERESTART) {
703 			m_freem(*mp);
704 			*mp = NULL;
705 			if (error != EPIPE) {
706 				log(LOG_INFO,
707 				    "receive error %d from nfs server %s\n",
708 				    error,
709 				 nmp->nm_mountp->mnt_stat.f_mntfromname);
710 			}
711 			error = nfs_sndlock(nmp, rep);
712 			if (!error) {
713 				error = nfs_reconnect(nmp, rep);
714 				if (!error)
715 					goto tryagain;
716 				else
717 					nfs_sndunlock(nmp);
718 			}
719 		}
720 	} else {
721 		if ((so = nmp->nm_so) == NULL)
722 			return (EACCES);
723 		if (so->so_state & SS_ISCONNECTED)
724 			getnam = NULL;
725 		else
726 			getnam = aname;
727 		sbinit(&sio, 100000000);
728 		do {
729 			rcvflg = 0;
730 			error =  so_pru_soreceive(so, getnam, NULL, &sio,
731 						  NULL, &rcvflg);
732 			if (error == EWOULDBLOCK && rep &&
733 			    (rep->r_flags & R_SOFTTERM)) {
734 				m_freem(sio.sb_mb);
735 				return (EINTR);
736 			}
737 		} while (error == EWOULDBLOCK);
738 
739 		len = sio.sb_cc;
740 		*mp = sio.sb_mb;
741 
742 		/*
743 		 * A shutdown may result in no error and no mbuf.
744 		 * Convert to EPIPE.
745 		 */
746 		if (*mp == NULL && error == 0)
747 			error = EPIPE;
748 	}
749 	if (error) {
750 		m_freem(*mp);
751 		*mp = NULL;
752 	}
753 
754 	/*
755 	 * Search for any mbufs that are not a multiple of 4 bytes long
756 	 * or with m_data not longword aligned.
757 	 * These could cause pointer alignment problems, so copy them to
758 	 * well aligned mbufs.
759 	 */
760 	nfs_realign(mp, 5 * NFSX_UNSIGNED);
761 	return (error);
762 }
763 
764 /*
765  * Implement receipt of reply on a socket.
766  *
767  * We must search through the list of received datagrams matching them
768  * with outstanding requests using the xid, until ours is found.
769  *
770  * If myrep is NULL we process packets on the socket until
771  * interrupted or until nm_reqrxq is non-empty.
772  */
773 /* ARGSUSED */
774 int
775 nfs_reply(struct nfsmount *nmp, struct nfsreq *myrep)
776 {
777 	struct nfsreq *rep;
778 	struct sockaddr *nam;
779 	u_int32_t rxid;
780 	u_int32_t *tl;
781 	int error;
782 	struct nfsm_info info;
783 
784 	/*
785 	 * Loop around until we get our own reply
786 	 */
787 	for (;;) {
788 		/*
789 		 * Lock against other receivers so that I don't get stuck in
790 		 * sbwait() after someone else has received my reply for me.
791 		 * Also necessary for connection based protocols to avoid
792 		 * race conditions during a reconnect.
793 		 *
794 		 * If nfs_rcvlock() returns EALREADY, that means that
795 		 * the reply has already been recieved by another
796 		 * process and we can return immediately.  In this
797 		 * case, the lock is not taken to avoid races with
798 		 * other processes.
799 		 */
800 		info.mrep = NULL;
801 
802 		error = nfs_rcvlock(nmp, myrep);
803 		if (error == EALREADY)
804 			return (0);
805 		if (error)
806 			return (error);
807 
808 		/*
809 		 * If myrep is NULL we are the receiver helper thread.
810 		 * Stop waiting for incoming replies if there are
811 		 * messages sitting on reqrxq that we need to process,
812 		 * or if a shutdown request is pending.
813 		 */
814 		if (myrep == NULL && (TAILQ_FIRST(&nmp->nm_reqrxq) ||
815 		    nmp->nm_rxstate > NFSSVC_PENDING)) {
816 			nfs_rcvunlock(nmp);
817 			return(EWOULDBLOCK);
818 		}
819 
820 		/*
821 		 * Get the next Rpc reply off the socket
822 		 *
823 		 * We cannot release the receive lock until we've
824 		 * filled in rep->r_mrep, otherwise a waiting
825 		 * thread may deadlock in soreceive with no incoming
826 		 * packets expected.
827 		 */
828 		error = nfs_receive(nmp, myrep, &nam, &info.mrep);
829 		if (error) {
830 			/*
831 			 * Ignore routing errors on connectionless protocols??
832 			 */
833 			nfs_rcvunlock(nmp);
834 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
835 				if (nmp->nm_so == NULL)
836 					return (error);
837 				nmp->nm_so->so_error = 0;
838 				continue;
839 			}
840 			return (error);
841 		}
842 		if (nam)
843 			FREE(nam, M_SONAME);
844 
845 		/*
846 		 * Get the xid and check that it is an rpc reply
847 		 */
848 		info.md = info.mrep;
849 		info.dpos = mtod(info.md, caddr_t);
850 		NULLOUT(tl = nfsm_dissect(&info, 2*NFSX_UNSIGNED));
851 		rxid = *tl++;
852 		if (*tl != rpc_reply) {
853 			nfsstats.rpcinvalid++;
854 			m_freem(info.mrep);
855 			info.mrep = NULL;
856 nfsmout:
857 			nfs_rcvunlock(nmp);
858 			continue;
859 		}
860 
861 		/*
862 		 * Loop through the request list to match up the reply
863 		 * Iff no match, just drop the datagram.  On match, set
864 		 * r_mrep atomically to prevent the timer from messing
865 		 * around with the request after we have exited the critical
866 		 * section.
867 		 */
868 		crit_enter();
869 		TAILQ_FOREACH(rep, &nmp->nm_reqq, r_chain) {
870 			if (rep->r_mrep == NULL && rxid == rep->r_xid)
871 				break;
872 		}
873 
874 		/*
875 		 * Fill in the rest of the reply if we found a match.
876 		 *
877 		 * Deal with duplicate responses if there was no match.
878 		 */
879 		if (rep) {
880 			rep->r_md = info.md;
881 			rep->r_dpos = info.dpos;
882 			if (nfsrtton) {
883 				struct rttl *rt;
884 
885 				rt = &nfsrtt.rttl[nfsrtt.pos];
886 				rt->proc = rep->r_procnum;
887 				rt->rto = 0;
888 				rt->sent = 0;
889 				rt->cwnd = nmp->nm_maxasync_scaled;
890 				rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
891 				rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
892 				rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
893 				getmicrotime(&rt->tstamp);
894 				if (rep->r_flags & R_TIMING)
895 					rt->rtt = rep->r_rtt;
896 				else
897 					rt->rtt = 1000000;
898 				nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
899 			}
900 
901 			/*
902 			 * New congestion control is based only on async
903 			 * requests.
904 			 */
905 			if (nmp->nm_maxasync_scaled < NFS_MAXASYNC_SCALED)
906 				++nmp->nm_maxasync_scaled;
907 			if (rep->r_flags & R_SENT) {
908 				rep->r_flags &= ~R_SENT;
909 			}
910 			/*
911 			 * Update rtt using a gain of 0.125 on the mean
912 			 * and a gain of 0.25 on the deviation.
913 			 *
914 			 * NOTE SRTT/SDRTT are only good if R_TIMING is set.
915 			 */
916 			if ((rep->r_flags & R_TIMING) && rep->r_rexmit == 0) {
917 				/*
918 				 * Since the timer resolution of
919 				 * NFS_HZ is so course, it can often
920 				 * result in r_rtt == 0. Since
921 				 * r_rtt == N means that the actual
922 				 * rtt is between N+dt and N+2-dt ticks,
923 				 * add 1.
924 				 */
925 				int n;
926 				int d;
927 
928 #define NFSRSB	NFS_RTT_SCALE_BITS
929 				n = ((NFS_SRTT(rep) * 7) +
930 				     (rep->r_rtt << NFSRSB)) >> 3;
931 				d = n - NFS_SRTT(rep);
932 				NFS_SRTT(rep) = n;
933 
934 				/*
935 				 * Don't let the jitter calculation decay
936 				 * too quickly, but we want a fast rampup.
937 				 */
938 				if (d < 0)
939 					d = -d;
940 				d <<= NFSRSB;
941 				if (d < NFS_SDRTT(rep))
942 					n = ((NFS_SDRTT(rep) * 15) + d) >> 4;
943 				else
944 					n = ((NFS_SDRTT(rep) * 3) + d) >> 2;
945 				NFS_SDRTT(rep) = n;
946 #undef NFSRSB
947 			}
948 			nmp->nm_timeouts = 0;
949 			rep->r_mrep = info.mrep;
950 			nfs_hardterm(rep, 0);
951 		} else {
952 			/*
953 			 * Extract vers, prog, nfsver, procnum.  A duplicate
954 			 * response means we didn't wait long enough so
955 			 * we increase the SRTT to avoid future spurious
956 			 * timeouts.
957 			 */
958 			u_int procnum = nmp->nm_lastreprocnum;
959 			int n;
960 
961 			if (procnum < NFS_NPROCS && proct[procnum]) {
962 				if (nfs_showrexmit)
963 					kprintf("D");
964 				n = nmp->nm_srtt[proct[procnum]];
965 				n += NFS_ASYSCALE * NFS_HZ;
966 				if (n < NFS_ASYSCALE * NFS_HZ * 10)
967 					n = NFS_ASYSCALE * NFS_HZ * 10;
968 				nmp->nm_srtt[proct[procnum]] = n;
969 			}
970 		}
971 		nfs_rcvunlock(nmp);
972 		crit_exit();
973 
974 		/*
975 		 * If not matched to a request, drop it.
976 		 * If it's mine, get out.
977 		 */
978 		if (rep == NULL) {
979 			nfsstats.rpcunexpected++;
980 			m_freem(info.mrep);
981 			info.mrep = NULL;
982 		} else if (rep == myrep) {
983 			if (rep->r_mrep == NULL)
984 				panic("nfsreply nil");
985 			return (0);
986 		}
987 	}
988 }
989 
990 /*
991  * Run the request state machine until the target state is reached
992  * or a fatal error occurs.  The target state is not run.  Specifying
993  * a target of NFSM_STATE_DONE runs the state machine until the rpc
994  * is complete.
995  *
996  * EINPROGRESS is returned for all states other then the DONE state,
997  * indicating that the rpc is still in progress.
998  */
999 int
1000 nfs_request(struct nfsm_info *info, nfsm_state_t bstate, nfsm_state_t estate)
1001 {
1002 	struct nfsreq *req;
1003 
1004 	while (info->state >= bstate && info->state < estate) {
1005 		switch(info->state) {
1006 		case NFSM_STATE_SETUP:
1007 			/*
1008 			 * Setup the nfsreq.  Any error which occurs during
1009 			 * this state is fatal.
1010 			 */
1011 			info->error = nfs_request_setup(info);
1012 			if (info->error) {
1013 				info->state = NFSM_STATE_DONE;
1014 				return (info->error);
1015 			} else {
1016 				req = info->req;
1017 				req->r_mrp = &info->mrep;
1018 				req->r_mdp = &info->md;
1019 				req->r_dposp = &info->dpos;
1020 				info->state = NFSM_STATE_AUTH;
1021 			}
1022 			break;
1023 		case NFSM_STATE_AUTH:
1024 			/*
1025 			 * Authenticate the nfsreq.  Any error which occurs
1026 			 * during this state is fatal.
1027 			 */
1028 			info->error = nfs_request_auth(info->req);
1029 			if (info->error) {
1030 				info->state = NFSM_STATE_DONE;
1031 				return (info->error);
1032 			} else {
1033 				info->state = NFSM_STATE_TRY;
1034 			}
1035 			break;
1036 		case NFSM_STATE_TRY:
1037 			/*
1038 			 * Transmit or retransmit attempt.  An error in this
1039 			 * state is ignored and we always move on to the
1040 			 * next state.
1041 			 *
1042 			 * This can trivially race the receiver if the
1043 			 * request is asynchronous.  nfs_request_try()
1044 			 * will thus set the state for us and we
1045 			 * must also return immediately if we are
1046 			 * running an async state machine, because
1047 			 * info can become invalid due to races after
1048 			 * try() returns.
1049 			 */
1050 			if (info->req->r_flags & R_ASYNC) {
1051 				nfs_request_try(info->req);
1052 				if (estate == NFSM_STATE_WAITREPLY)
1053 					return (EINPROGRESS);
1054 			} else {
1055 				nfs_request_try(info->req);
1056 				info->state = NFSM_STATE_WAITREPLY;
1057 			}
1058 			break;
1059 		case NFSM_STATE_WAITREPLY:
1060 			/*
1061 			 * Wait for a reply or timeout and move on to the
1062 			 * next state.  The error returned by this state
1063 			 * is passed to the processing code in the next
1064 			 * state.
1065 			 */
1066 			info->error = nfs_request_waitreply(info->req);
1067 			info->state = NFSM_STATE_PROCESSREPLY;
1068 			break;
1069 		case NFSM_STATE_PROCESSREPLY:
1070 			/*
1071 			 * Process the reply or timeout.  Errors which occur
1072 			 * in this state may cause the state machine to
1073 			 * go back to an earlier state, and are fatal
1074 			 * otherwise.
1075 			 */
1076 			info->error = nfs_request_processreply(info,
1077 							       info->error);
1078 			switch(info->error) {
1079 			case ENEEDAUTH:
1080 				info->state = NFSM_STATE_AUTH;
1081 				break;
1082 			case EAGAIN:
1083 				info->state = NFSM_STATE_TRY;
1084 				break;
1085 			default:
1086 				/*
1087 				 * Operation complete, with or without an
1088 				 * error.  We are done.
1089 				 */
1090 				info->req = NULL;
1091 				info->state = NFSM_STATE_DONE;
1092 				return (info->error);
1093 			}
1094 			break;
1095 		case NFSM_STATE_DONE:
1096 			/*
1097 			 * Shouldn't be reached
1098 			 */
1099 			return (info->error);
1100 			/* NOT REACHED */
1101 		}
1102 	}
1103 
1104 	/*
1105 	 * If we are done return the error code (if any).
1106 	 * Otherwise return EINPROGRESS.
1107 	 */
1108 	if (info->state == NFSM_STATE_DONE)
1109 		return (info->error);
1110 	return (EINPROGRESS);
1111 }
1112 
1113 /*
1114  * nfs_request - goes something like this
1115  *	- fill in request struct
1116  *	- links it into list
1117  *	- calls nfs_send() for first transmit
1118  *	- calls nfs_receive() to get reply
1119  *	- break down rpc header and return with nfs reply pointed to
1120  *	  by mrep or error
1121  * nb: always frees up mreq mbuf list
1122  */
1123 static int
1124 nfs_request_setup(nfsm_info_t info)
1125 {
1126 	struct nfsreq *req;
1127 	struct nfsmount *nmp;
1128 	struct mbuf *m;
1129 	int i;
1130 
1131 	/*
1132 	 * Reject requests while attempting a forced unmount.
1133 	 */
1134 	if (info->vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1135 		m_freem(info->mreq);
1136 		info->mreq = NULL;
1137 		return (ESTALE);
1138 	}
1139 	nmp = VFSTONFS(info->vp->v_mount);
1140 	req = kmalloc(sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
1141 	req->r_nmp = nmp;
1142 	req->r_vp = info->vp;
1143 	req->r_td = info->td;
1144 	req->r_procnum = info->procnum;
1145 	req->r_mreq = NULL;
1146 	req->r_cred = info->cred;
1147 
1148 	i = 0;
1149 	m = info->mreq;
1150 	while (m) {
1151 		i += m->m_len;
1152 		m = m->m_next;
1153 	}
1154 	req->r_mrest = info->mreq;
1155 	req->r_mrest_len = i;
1156 
1157 	/*
1158 	 * The presence of a non-NULL r_info in req indicates
1159 	 * async completion via our helper threads.  See the receiver
1160 	 * code.
1161 	 */
1162 	if (info->bio) {
1163 		req->r_info = info;
1164 		req->r_flags = R_ASYNC;
1165 	} else {
1166 		req->r_info = NULL;
1167 		req->r_flags = 0;
1168 	}
1169 	info->req = req;
1170 	return(0);
1171 }
1172 
1173 static int
1174 nfs_request_auth(struct nfsreq *rep)
1175 {
1176 	struct nfsmount *nmp = rep->r_nmp;
1177 	struct mbuf *m;
1178 	char nickv[RPCX_NICKVERF];
1179 	int error = 0, auth_len, auth_type;
1180 	int verf_len;
1181 	u_int32_t xid;
1182 	char *auth_str, *verf_str;
1183 	struct ucred *cred;
1184 
1185 	cred = rep->r_cred;
1186 	rep->r_failed_auth = 0;
1187 
1188 	/*
1189 	 * Get the RPC header with authorization.
1190 	 */
1191 	verf_str = auth_str = NULL;
1192 	if (nmp->nm_flag & NFSMNT_KERB) {
1193 		verf_str = nickv;
1194 		verf_len = sizeof (nickv);
1195 		auth_type = RPCAUTH_KERB4;
1196 		bzero((caddr_t)rep->r_key, sizeof(rep->r_key));
1197 		if (rep->r_failed_auth ||
1198 		    nfs_getnickauth(nmp, cred, &auth_str, &auth_len,
1199 				    verf_str, verf_len)) {
1200 			error = nfs_getauth(nmp, rep, cred, &auth_str,
1201 				&auth_len, verf_str, &verf_len, rep->r_key);
1202 			if (error) {
1203 				m_freem(rep->r_mrest);
1204 				rep->r_mrest = NULL;
1205 				kfree((caddr_t)rep, M_NFSREQ);
1206 				return (error);
1207 			}
1208 		}
1209 	} else {
1210 		auth_type = RPCAUTH_UNIX;
1211 		if (cred->cr_ngroups < 1)
1212 			panic("nfsreq nogrps");
1213 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
1214 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
1215 			5 * NFSX_UNSIGNED;
1216 	}
1217 	if (rep->r_mrest)
1218 		nfs_checkpkt(rep->r_mrest, rep->r_mrest_len);
1219 	m = nfsm_rpchead(cred, nmp->nm_flag, rep->r_procnum, auth_type,
1220 			auth_len, auth_str, verf_len, verf_str,
1221 			rep->r_mrest, rep->r_mrest_len, &rep->r_mheadend, &xid);
1222 	rep->r_mrest = NULL;
1223 	if (auth_str)
1224 		kfree(auth_str, M_TEMP);
1225 
1226 	/*
1227 	 * For stream protocols, insert a Sun RPC Record Mark.
1228 	 */
1229 	if (nmp->nm_sotype == SOCK_STREAM) {
1230 		M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT);
1231 		if (m == NULL) {
1232 			kfree(rep, M_NFSREQ);
1233 			return (ENOBUFS);
1234 		}
1235 		*mtod(m, u_int32_t *) = htonl(0x80000000 |
1236 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
1237 	}
1238 
1239 	nfs_checkpkt(m, m->m_pkthdr.len);
1240 
1241 	rep->r_mreq = m;
1242 	rep->r_xid = xid;
1243 	return (0);
1244 }
1245 
1246 static int
1247 nfs_request_try(struct nfsreq *rep)
1248 {
1249 	struct nfsmount *nmp = rep->r_nmp;
1250 	struct mbuf *m2;
1251 	int error;
1252 
1253 	/*
1254 	 * Request is not on any queue, only the owner has access to it
1255 	 * so it should not be locked by anyone atm.
1256 	 *
1257 	 * Interlock to prevent races.  While locked the only remote
1258 	 * action possible is for r_mrep to be set (once we enqueue it).
1259 	 */
1260 	if (rep->r_flags == 0xdeadc0de) {
1261 		print_backtrace(-1);
1262 		panic("flags nbad\n");
1263 	}
1264 	KKASSERT((rep->r_flags & (R_LOCKED | R_ONREQQ)) == 0);
1265 	if (nmp->nm_flag & NFSMNT_SOFT)
1266 		rep->r_retry = nmp->nm_retry;
1267 	else
1268 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
1269 	rep->r_rtt = rep->r_rexmit = 0;
1270 	if (proct[rep->r_procnum] > 0)
1271 		rep->r_flags |= R_TIMING | R_LOCKED;
1272 	else
1273 		rep->r_flags |= R_LOCKED;
1274 	rep->r_mrep = NULL;
1275 
1276 	nfsstats.rpcrequests++;
1277 
1278 	if (nmp->nm_flag & NFSMNT_FORCE) {
1279 		rep->r_flags |= R_SOFTTERM;
1280 		rep->r_flags &= ~R_LOCKED;
1281 		return (0);
1282 	}
1283 	rep->r_flags |= R_NEEDSXMIT;	/* in case send lock races us */
1284 
1285 	/*
1286 	 * Do the client side RPC.
1287 	 *
1288 	 * Chain request into list of outstanding requests. Be sure
1289 	 * to put it LAST so timer finds oldest requests first.  Note
1290 	 * that our control of R_LOCKED prevents the request from
1291 	 * getting ripped out from under us or transmitted by the
1292 	 * timer code.
1293 	 *
1294 	 * For requests with info structures we must atomically set the
1295 	 * info's state because the structure could become invalid upon
1296 	 * return due to races (i.e., if async)
1297 	 */
1298 	crit_enter();
1299 	mtx_link_init(&rep->r_link);
1300 	KKASSERT((rep->r_flags & R_ONREQQ) == 0);
1301 	TAILQ_INSERT_TAIL(&nmp->nm_reqq, rep, r_chain);
1302 	rep->r_flags |= R_ONREQQ;
1303 	++nmp->nm_reqqlen;
1304 	if (rep->r_flags & R_ASYNC)
1305 		rep->r_info->state = NFSM_STATE_WAITREPLY;
1306 	crit_exit();
1307 
1308 	error = 0;
1309 
1310 	/*
1311 	 * Send if we can.  Congestion control is not handled here any more
1312 	 * becausing trying to defer the initial send based on the nfs_timer
1313 	 * requires having a very fast nfs_timer, which is silly.
1314 	 */
1315 	if (nmp->nm_so) {
1316 		if (nmp->nm_soflags & PR_CONNREQUIRED)
1317 			error = nfs_sndlock(nmp, rep);
1318 		if (error == 0 && (rep->r_flags & R_NEEDSXMIT)) {
1319 			m2 = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
1320 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1321 			rep->r_flags &= ~R_NEEDSXMIT;
1322 			if ((rep->r_flags & R_SENT) == 0) {
1323 				rep->r_flags |= R_SENT;
1324 			}
1325 			if (nmp->nm_soflags & PR_CONNREQUIRED)
1326 				nfs_sndunlock(nmp);
1327 		}
1328 	} else {
1329 		rep->r_rtt = -1;
1330 	}
1331 	if (error == EPIPE)
1332 		error = 0;
1333 
1334 	/*
1335 	 * Release the lock.  The only remote action that may have occurred
1336 	 * would have been the setting of rep->r_mrep.  If this occured
1337 	 * and the request was async we have to move it to the reader
1338 	 * thread's queue for action.
1339 	 *
1340 	 * For async requests also make sure the reader is woken up so
1341 	 * it gets on the socket to read responses.
1342 	 */
1343 	crit_enter();
1344 	if (rep->r_flags & R_ASYNC) {
1345 		if (rep->r_mrep)
1346 			nfs_hardterm(rep, 1);
1347 		rep->r_flags &= ~R_LOCKED;
1348 		nfssvc_iod_reader_wakeup(nmp);
1349 	} else {
1350 		rep->r_flags &= ~R_LOCKED;
1351 	}
1352 	if (rep->r_flags & R_WANTED) {
1353 		rep->r_flags &= ~R_WANTED;
1354 		wakeup(rep);
1355 	}
1356 	crit_exit();
1357 	return (error);
1358 }
1359 
1360 /*
1361  * This code is only called for synchronous requests.  Completed synchronous
1362  * requests are left on reqq and we remove them before moving on to the
1363  * processing state.
1364  */
1365 static int
1366 nfs_request_waitreply(struct nfsreq *rep)
1367 {
1368 	struct nfsmount *nmp = rep->r_nmp;
1369 	int error;
1370 
1371 	KKASSERT((rep->r_flags & R_ASYNC) == 0);
1372 
1373 	/*
1374 	 * Wait until the request is finished.
1375 	 */
1376 	error = nfs_reply(nmp, rep);
1377 
1378 	/*
1379 	 * RPC done, unlink the request, but don't rip it out from under
1380 	 * the callout timer.
1381 	 *
1382 	 * Once unlinked no other receiver or the timer will have
1383 	 * visibility, so we do not have to set R_LOCKED.
1384 	 */
1385 	crit_enter();
1386 	while (rep->r_flags & R_LOCKED) {
1387 		rep->r_flags |= R_WANTED;
1388 		tsleep(rep, 0, "nfstrac", 0);
1389 	}
1390 	KKASSERT(rep->r_flags & R_ONREQQ);
1391 	TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
1392 	rep->r_flags &= ~R_ONREQQ;
1393 	--nmp->nm_reqqlen;
1394 	if (TAILQ_FIRST(&nmp->nm_bioq) &&
1395 	    nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
1396 		nfssvc_iod_writer_wakeup(nmp);
1397 	}
1398 	crit_exit();
1399 
1400 	/*
1401 	 * Decrement the outstanding request count.
1402 	 */
1403 	if (rep->r_flags & R_SENT) {
1404 		rep->r_flags &= ~R_SENT;
1405 	}
1406 	return (error);
1407 }
1408 
1409 /*
1410  * Process reply with error returned from nfs_requet_waitreply().
1411  *
1412  * Returns EAGAIN if it wants us to loop up to nfs_request_try() again.
1413  * Returns ENEEDAUTH if it wants us to loop up to nfs_request_auth() again.
1414  */
1415 static int
1416 nfs_request_processreply(nfsm_info_t info, int error)
1417 {
1418 	struct nfsreq *req = info->req;
1419 	struct nfsmount *nmp = req->r_nmp;
1420 	u_int32_t *tl;
1421 	int verf_type;
1422 	int i;
1423 
1424 	/*
1425 	 * If there was a successful reply and a tprintf msg.
1426 	 * tprintf a response.
1427 	 */
1428 	if (error == 0 && (req->r_flags & R_TPRINTFMSG)) {
1429 		nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1430 		    "is alive again");
1431 	}
1432 	info->mrep = req->r_mrep;
1433 	info->md = req->r_md;
1434 	info->dpos = req->r_dpos;
1435 	if (error) {
1436 		m_freem(req->r_mreq);
1437 		req->r_mreq = NULL;
1438 		kfree(req, M_NFSREQ);
1439 		info->req = NULL;
1440 		return (error);
1441 	}
1442 
1443 	/*
1444 	 * break down the rpc header and check if ok
1445 	 */
1446 	NULLOUT(tl = nfsm_dissect(info, 3 * NFSX_UNSIGNED));
1447 	if (*tl++ == rpc_msgdenied) {
1448 		if (*tl == rpc_mismatch) {
1449 			error = EOPNOTSUPP;
1450 		} else if ((nmp->nm_flag & NFSMNT_KERB) &&
1451 			   *tl++ == rpc_autherr) {
1452 			if (req->r_failed_auth == 0) {
1453 				req->r_failed_auth++;
1454 				req->r_mheadend->m_next = NULL;
1455 				m_freem(info->mrep);
1456 				info->mrep = NULL;
1457 				m_freem(req->r_mreq);
1458 				req->r_mreq = NULL;
1459 				return (ENEEDAUTH);
1460 			} else {
1461 				error = EAUTH;
1462 			}
1463 		} else {
1464 			error = EACCES;
1465 		}
1466 		m_freem(info->mrep);
1467 		info->mrep = NULL;
1468 		m_freem(req->r_mreq);
1469 		req->r_mreq = NULL;
1470 		kfree(req, M_NFSREQ);
1471 		info->req = NULL;
1472 		return (error);
1473 	}
1474 
1475 	/*
1476 	 * Grab any Kerberos verifier, otherwise just throw it away.
1477 	 */
1478 	verf_type = fxdr_unsigned(int, *tl++);
1479 	i = fxdr_unsigned(int32_t, *tl);
1480 	if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1481 		error = nfs_savenickauth(nmp, req->r_cred, i, req->r_key,
1482 					 &info->md, &info->dpos, info->mrep);
1483 		if (error)
1484 			goto nfsmout;
1485 	} else if (i > 0) {
1486 		ERROROUT(nfsm_adv(info, nfsm_rndup(i)));
1487 	}
1488 	NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1489 	/* 0 == ok */
1490 	if (*tl == 0) {
1491 		NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1492 		if (*tl != 0) {
1493 			error = fxdr_unsigned(int, *tl);
1494 
1495 			/*
1496 			 * Does anyone even implement this?  Just impose
1497 			 * a 1-second delay.
1498 			 */
1499 			if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1500 				error == NFSERR_TRYLATER) {
1501 				m_freem(info->mrep);
1502 				info->mrep = NULL;
1503 				error = 0;
1504 
1505 				tsleep((caddr_t)&lbolt, 0, "nqnfstry", 0);
1506 				return (EAGAIN);	/* goto tryagain */
1507 			}
1508 
1509 			/*
1510 			 * If the File Handle was stale, invalidate the
1511 			 * lookup cache, just in case.
1512 			 *
1513 			 * To avoid namecache<->vnode deadlocks we must
1514 			 * release the vnode lock if we hold it.
1515 			 */
1516 			if (error == ESTALE) {
1517 				struct vnode *vp = req->r_vp;
1518 				int ltype;
1519 
1520 				ltype = lockstatus(&vp->v_lock, curthread);
1521 				if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1522 					lockmgr(&vp->v_lock, LK_RELEASE);
1523 				cache_inval_vp(vp, CINV_CHILDREN);
1524 				if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1525 					lockmgr(&vp->v_lock, ltype);
1526 			}
1527 			if (nmp->nm_flag & NFSMNT_NFSV3) {
1528 				KKASSERT(*req->r_mrp == info->mrep);
1529 				KKASSERT(*req->r_mdp == info->md);
1530 				KKASSERT(*req->r_dposp == info->dpos);
1531 				error |= NFSERR_RETERR;
1532 			} else {
1533 				m_freem(info->mrep);
1534 				info->mrep = NULL;
1535 			}
1536 			m_freem(req->r_mreq);
1537 			req->r_mreq = NULL;
1538 			kfree(req, M_NFSREQ);
1539 			info->req = NULL;
1540 			return (error);
1541 		}
1542 
1543 		KKASSERT(*req->r_mrp == info->mrep);
1544 		KKASSERT(*req->r_mdp == info->md);
1545 		KKASSERT(*req->r_dposp == info->dpos);
1546 		m_freem(req->r_mreq);
1547 		req->r_mreq = NULL;
1548 		FREE(req, M_NFSREQ);
1549 		return (0);
1550 	}
1551 	m_freem(info->mrep);
1552 	info->mrep = NULL;
1553 	error = EPROTONOSUPPORT;
1554 nfsmout:
1555 	m_freem(req->r_mreq);
1556 	req->r_mreq = NULL;
1557 	kfree(req, M_NFSREQ);
1558 	info->req = NULL;
1559 	return (error);
1560 }
1561 
1562 #ifndef NFS_NOSERVER
1563 /*
1564  * Generate the rpc reply header
1565  * siz arg. is used to decide if adding a cluster is worthwhile
1566  */
1567 int
1568 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
1569 	    int err, struct mbuf **mrq, struct mbuf **mbp, caddr_t *bposp)
1570 {
1571 	u_int32_t *tl;
1572 	struct nfsm_info info;
1573 
1574 	siz += RPC_REPLYSIZ;
1575 	info.mb = m_getl(max_hdr + siz, MB_WAIT, MT_DATA, M_PKTHDR, NULL);
1576 	info.mreq = info.mb;
1577 	info.mreq->m_pkthdr.len = 0;
1578 	/*
1579 	 * If this is not a cluster, try and leave leading space
1580 	 * for the lower level headers.
1581 	 */
1582 	if ((max_hdr + siz) < MINCLSIZE)
1583 		info.mreq->m_data += max_hdr;
1584 	tl = mtod(info.mreq, u_int32_t *);
1585 	info.mreq->m_len = 6 * NFSX_UNSIGNED;
1586 	info.bpos = ((caddr_t)tl) + info.mreq->m_len;
1587 	*tl++ = txdr_unsigned(nd->nd_retxid);
1588 	*tl++ = rpc_reply;
1589 	if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1590 		*tl++ = rpc_msgdenied;
1591 		if (err & NFSERR_AUTHERR) {
1592 			*tl++ = rpc_autherr;
1593 			*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1594 			info.mreq->m_len -= NFSX_UNSIGNED;
1595 			info.bpos -= NFSX_UNSIGNED;
1596 		} else {
1597 			*tl++ = rpc_mismatch;
1598 			*tl++ = txdr_unsigned(RPC_VER2);
1599 			*tl = txdr_unsigned(RPC_VER2);
1600 		}
1601 	} else {
1602 		*tl++ = rpc_msgaccepted;
1603 
1604 		/*
1605 		 * For Kerberos authentication, we must send the nickname
1606 		 * verifier back, otherwise just RPCAUTH_NULL.
1607 		 */
1608 		if (nd->nd_flag & ND_KERBFULL) {
1609 		    struct nfsuid *nuidp;
1610 		    struct timeval ktvin, ktvout;
1611 
1612 		    for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1613 			nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1614 			if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1615 			    (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1616 			     &nuidp->nu_haddr, nd->nd_nam2)))
1617 			    break;
1618 		    }
1619 		    if (nuidp) {
1620 			ktvin.tv_sec =
1621 			    txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1622 			ktvin.tv_usec =
1623 			    txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1624 
1625 			/*
1626 			 * Encrypt the timestamp in ecb mode using the
1627 			 * session key.
1628 			 */
1629 #ifdef NFSKERB
1630 			XXX
1631 #else
1632 			ktvout.tv_sec = 0;
1633 			ktvout.tv_usec = 0;
1634 #endif
1635 
1636 			*tl++ = rpc_auth_kerb;
1637 			*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1638 			*tl = ktvout.tv_sec;
1639 			tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
1640 			*tl++ = ktvout.tv_usec;
1641 			*tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1642 		    } else {
1643 			*tl++ = 0;
1644 			*tl++ = 0;
1645 		    }
1646 		} else {
1647 			*tl++ = 0;
1648 			*tl++ = 0;
1649 		}
1650 		switch (err) {
1651 		case EPROGUNAVAIL:
1652 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1653 			break;
1654 		case EPROGMISMATCH:
1655 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1656 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1657 			*tl++ = txdr_unsigned(2);
1658 			*tl = txdr_unsigned(3);
1659 			break;
1660 		case EPROCUNAVAIL:
1661 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1662 			break;
1663 		case EBADRPC:
1664 			*tl = txdr_unsigned(RPC_GARBAGE);
1665 			break;
1666 		default:
1667 			*tl = 0;
1668 			if (err != NFSERR_RETVOID) {
1669 				tl = nfsm_build(&info, NFSX_UNSIGNED);
1670 				if (err)
1671 				    *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1672 				else
1673 				    *tl = 0;
1674 			}
1675 			break;
1676 		};
1677 	}
1678 
1679 	if (mrq != NULL)
1680 	    *mrq = info.mreq;
1681 	*mbp = info.mb;
1682 	*bposp = info.bpos;
1683 	if (err != 0 && err != NFSERR_RETVOID)
1684 		nfsstats.srvrpc_errs++;
1685 	return (0);
1686 }
1687 
1688 
1689 #endif /* NFS_NOSERVER */
1690 
1691 /*
1692  * Nfs timer routine.
1693  *
1694  * Scan the nfsreq list and retranmit any requests that have timed out
1695  * To avoid retransmission attempts on STREAM sockets (in the future) make
1696  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1697  *
1698  * Requests with attached responses, terminated requests, and
1699  * locked requests are ignored.  Locked requests will be picked up
1700  * in a later timer call.
1701  */
1702 void
1703 nfs_timer_callout(void *arg /* never used */)
1704 {
1705 	struct nfsmount *nmp;
1706 	struct nfsreq *req;
1707 #ifndef NFS_NOSERVER
1708 	struct nfssvc_sock *slp;
1709 	u_quad_t cur_usec;
1710 #endif /* NFS_NOSERVER */
1711 
1712 	lwkt_gettoken(&nfs_token);
1713 	TAILQ_FOREACH(nmp, &nfs_mountq, nm_entry) {
1714 		lwkt_gettoken(&nmp->nm_token);
1715 		TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1716 			KKASSERT(nmp == req->r_nmp);
1717 			if (req->r_mrep)
1718 				continue;
1719 			if (req->r_flags & (R_SOFTTERM | R_LOCKED))
1720 				continue;
1721 
1722 			/*
1723 			 * Handle timeout/retry.  Be sure to process r_mrep
1724 			 * for async requests that completed while we had
1725 			 * the request locked or they will hang in the reqq
1726 			 * forever.
1727 			 */
1728 			req->r_flags |= R_LOCKED;
1729 			if (nfs_sigintr(nmp, req, req->r_td)) {
1730 				nfs_softterm(req, 1);
1731 				req->r_flags &= ~R_LOCKED;
1732 			} else {
1733 				nfs_timer_req(req);
1734 				if (req->r_flags & R_ASYNC) {
1735 					if (req->r_mrep)
1736 						nfs_hardterm(req, 1);
1737 					req->r_flags &= ~R_LOCKED;
1738 					nfssvc_iod_reader_wakeup(nmp);
1739 				} else {
1740 					req->r_flags &= ~R_LOCKED;
1741 				}
1742 			}
1743 			if (req->r_flags & R_WANTED) {
1744 				req->r_flags &= ~R_WANTED;
1745 				wakeup(req);
1746 			}
1747 		}
1748 		lwkt_reltoken(&nmp->nm_token);
1749 	}
1750 #ifndef NFS_NOSERVER
1751 
1752 	/*
1753 	 * Scan the write gathering queues for writes that need to be
1754 	 * completed now.
1755 	 */
1756 	cur_usec = nfs_curusec();
1757 
1758 	TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1759 		/* XXX race against removal */
1760 		if (lwkt_trytoken(&slp->ns_token)) {
1761 			if (slp->ns_tq.lh_first &&
1762 			    (slp->ns_tq.lh_first->nd_time <= cur_usec)) {
1763 				nfsrv_wakenfsd(slp, 1);
1764 			}
1765 			lwkt_reltoken(&slp->ns_token);
1766 		}
1767 	}
1768 #endif /* NFS_NOSERVER */
1769 
1770 	callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer_callout, NULL);
1771 	lwkt_reltoken(&nfs_token);
1772 }
1773 
1774 static
1775 void
1776 nfs_timer_req(struct nfsreq *req)
1777 {
1778 	struct thread *td = &thread0; /* XXX for creds, will break if sleep */
1779 	struct nfsmount *nmp = req->r_nmp;
1780 	struct mbuf *m;
1781 	struct socket *so;
1782 	int timeo;
1783 	int error;
1784 
1785 	/*
1786 	 * rtt ticks and timeout calculation.  Return if the timeout
1787 	 * has not been reached yet, unless the packet is flagged
1788 	 * for an immediate send.
1789 	 *
1790 	 * The mean rtt doesn't help when we get random I/Os, we have
1791 	 * to multiply by fairly large numbers.
1792 	 */
1793 	if (req->r_rtt >= 0) {
1794 		/*
1795 		 * Calculate the timeout to test against.
1796 		 */
1797 		req->r_rtt++;
1798 		if (nmp->nm_flag & NFSMNT_DUMBTIMR) {
1799 			timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1800 		} else if (req->r_flags & R_TIMING) {
1801 			timeo = NFS_SRTT(req) + NFS_SDRTT(req);
1802 		} else {
1803 			timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1804 		}
1805 		timeo *= multt[req->r_procnum];
1806 		/* timeo is still scaled by SCALE_BITS */
1807 
1808 #define NFSFS	(NFS_RTT_SCALE * NFS_HZ)
1809 		if (req->r_flags & R_TIMING) {
1810 			static long last_time;
1811 			if (nfs_showrtt && last_time != time_second) {
1812 				kprintf("rpccmd %d NFS SRTT %d SDRTT %d "
1813 					"timeo %d.%03d\n",
1814 					proct[req->r_procnum],
1815 					NFS_SRTT(req), NFS_SDRTT(req),
1816 					timeo / NFSFS,
1817 					timeo % NFSFS * 1000 /  NFSFS);
1818 				last_time = time_second;
1819 			}
1820 		}
1821 #undef NFSFS
1822 
1823 		/*
1824 		 * deal with nfs_timer jitter.
1825 		 */
1826 		timeo = (timeo >> NFS_RTT_SCALE_BITS) + 1;
1827 		if (timeo < 2)
1828 			timeo = 2;
1829 
1830 		if (nmp->nm_timeouts > 0)
1831 			timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1832 		if (timeo > NFS_MAXTIMEO)
1833 			timeo = NFS_MAXTIMEO;
1834 		if (req->r_rtt <= timeo) {
1835 			if ((req->r_flags & R_NEEDSXMIT) == 0)
1836 				return;
1837 		} else if (nmp->nm_timeouts < 8) {
1838 			nmp->nm_timeouts++;
1839 		}
1840 	}
1841 
1842 	/*
1843 	 * Check for server not responding
1844 	 */
1845 	if ((req->r_flags & R_TPRINTFMSG) == 0 &&
1846 	     req->r_rexmit > nmp->nm_deadthresh) {
1847 		nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1848 			"not responding");
1849 		req->r_flags |= R_TPRINTFMSG;
1850 	}
1851 	if (req->r_rexmit >= req->r_retry) {	/* too many */
1852 		nfsstats.rpctimeouts++;
1853 		nfs_softterm(req, 1);
1854 		return;
1855 	}
1856 
1857 	/*
1858 	 * Generally disable retransmission on reliable sockets,
1859 	 * unless the request is flagged for immediate send.
1860 	 */
1861 	if (nmp->nm_sotype != SOCK_DGRAM) {
1862 		if (++req->r_rexmit > NFS_MAXREXMIT)
1863 			req->r_rexmit = NFS_MAXREXMIT;
1864 		if ((req->r_flags & R_NEEDSXMIT) == 0)
1865 			return;
1866 	}
1867 
1868 	/*
1869 	 * Stop here if we do not have a socket!
1870 	 */
1871 	if ((so = nmp->nm_so) == NULL)
1872 		return;
1873 
1874 	/*
1875 	 * If there is enough space and the window allows.. resend it.
1876 	 *
1877 	 * r_rtt is left intact in case we get an answer after the
1878 	 * retry that was a reply to the original packet.
1879 	 *
1880 	 * NOTE: so_pru_send()
1881 	 */
1882 	if (ssb_space(&so->so_snd) >= req->r_mreq->m_pkthdr.len &&
1883 	    (req->r_flags & (R_SENT | R_NEEDSXMIT)) &&
1884 	   (m = m_copym(req->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){
1885 		if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1886 		    error = so_pru_send(so, 0, m, NULL, NULL, td);
1887 		else
1888 		    error = so_pru_send(so, 0, m, nmp->nm_nam, NULL, td);
1889 		if (error) {
1890 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1891 				so->so_error = 0;
1892 			req->r_flags |= R_NEEDSXMIT;
1893 		} else if (req->r_mrep == NULL) {
1894 			/*
1895 			 * Iff first send, start timing
1896 			 * else turn timing off, backoff timer
1897 			 * and divide congestion window by 2.
1898 			 *
1899 			 * It is possible for the so_pru_send() to
1900 			 * block and for us to race a reply so we
1901 			 * only do this if the reply field has not
1902 			 * been filled in.  R_LOCKED will prevent
1903 			 * the request from being ripped out from under
1904 			 * us entirely.
1905 			 *
1906 			 * Record the last resent procnum to aid us
1907 			 * in duplicate detection on receive.
1908 			 */
1909 			if ((req->r_flags & R_NEEDSXMIT) == 0) {
1910 				if (nfs_showrexmit)
1911 					kprintf("X");
1912 				if (++req->r_rexmit > NFS_MAXREXMIT)
1913 					req->r_rexmit = NFS_MAXREXMIT;
1914 				nmp->nm_maxasync_scaled >>= 1;
1915 				if (nmp->nm_maxasync_scaled < NFS_MINASYNC_SCALED)
1916 					nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
1917 				nfsstats.rpcretries++;
1918 				nmp->nm_lastreprocnum = req->r_procnum;
1919 			} else {
1920 				req->r_flags |= R_SENT;
1921 				req->r_flags &= ~R_NEEDSXMIT;
1922 			}
1923 		}
1924 	}
1925 }
1926 
1927 /*
1928  * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1929  * wait for all requests to complete. This is used by forced unmounts
1930  * to terminate any outstanding RPCs.
1931  *
1932  * Locked requests cannot be canceled but will be marked for
1933  * soft-termination.
1934  */
1935 int
1936 nfs_nmcancelreqs(struct nfsmount *nmp)
1937 {
1938 	struct nfsreq *req;
1939 	int i;
1940 
1941 	crit_enter();
1942 	TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1943 		if (req->r_mrep != NULL || (req->r_flags & R_SOFTTERM))
1944 			continue;
1945 		nfs_softterm(req, 0);
1946 	}
1947 	/* XXX  the other two queues as well */
1948 	crit_exit();
1949 
1950 	for (i = 0; i < 30; i++) {
1951 		crit_enter();
1952 		TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1953 			if (nmp == req->r_nmp)
1954 				break;
1955 		}
1956 		crit_exit();
1957 		if (req == NULL)
1958 			return (0);
1959 		tsleep(&lbolt, 0, "nfscancel", 0);
1960 	}
1961 	return (EBUSY);
1962 }
1963 
1964 /*
1965  * Soft-terminate a request, effectively marking it as failed.
1966  *
1967  * Must be called from within a critical section.
1968  */
1969 static void
1970 nfs_softterm(struct nfsreq *rep, int islocked)
1971 {
1972 	rep->r_flags |= R_SOFTTERM;
1973 	nfs_hardterm(rep, islocked);
1974 }
1975 
1976 /*
1977  * Hard-terminate a request, typically after getting a response.
1978  *
1979  * The state machine can still decide to re-issue it later if necessary.
1980  *
1981  * Must be called from within a critical section.
1982  */
1983 static void
1984 nfs_hardterm(struct nfsreq *rep, int islocked)
1985 {
1986 	struct nfsmount *nmp = rep->r_nmp;
1987 
1988 	/*
1989 	 * The nm_send count is decremented now to avoid deadlocks
1990 	 * when the process in soreceive() hasn't yet managed to send
1991 	 * its own request.
1992 	 */
1993 	if (rep->r_flags & R_SENT) {
1994 		rep->r_flags &= ~R_SENT;
1995 	}
1996 
1997 	/*
1998 	 * If we locked the request or nobody else has locked the request,
1999 	 * and the request is async, we can move it to the reader thread's
2000 	 * queue now and fix up the state.
2001 	 *
2002 	 * If we locked the request or nobody else has locked the request,
2003 	 * we can wake up anyone blocked waiting for a response on the
2004 	 * request.
2005 	 */
2006 	if (islocked || (rep->r_flags & R_LOCKED) == 0) {
2007 		if ((rep->r_flags & (R_ONREQQ | R_ASYNC)) ==
2008 		    (R_ONREQQ | R_ASYNC)) {
2009 			rep->r_flags &= ~R_ONREQQ;
2010 			TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
2011 			--nmp->nm_reqqlen;
2012 			TAILQ_INSERT_TAIL(&nmp->nm_reqrxq, rep, r_chain);
2013 			KKASSERT(rep->r_info->state == NFSM_STATE_TRY ||
2014 				 rep->r_info->state == NFSM_STATE_WAITREPLY);
2015 			rep->r_info->state = NFSM_STATE_PROCESSREPLY;
2016 			nfssvc_iod_reader_wakeup(nmp);
2017 			if (TAILQ_FIRST(&nmp->nm_bioq) &&
2018 			    nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
2019 				nfssvc_iod_writer_wakeup(nmp);
2020 			}
2021 		}
2022 		mtx_abort_ex_link(&nmp->nm_rxlock, &rep->r_link);
2023 	}
2024 }
2025 
2026 /*
2027  * Test for a termination condition pending on the process.
2028  * This is used for NFSMNT_INT mounts.
2029  */
2030 int
2031 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
2032 {
2033 	sigset_t tmpset;
2034 	struct proc *p;
2035 	struct lwp *lp;
2036 
2037 	if (rep && (rep->r_flags & R_SOFTTERM))
2038 		return (EINTR);
2039 	/* Terminate all requests while attempting a forced unmount. */
2040 	if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
2041 		return (EINTR);
2042 	if (!(nmp->nm_flag & NFSMNT_INT))
2043 		return (0);
2044 	/* td might be NULL YYY */
2045 	if (td == NULL || (p = td->td_proc) == NULL)
2046 		return (0);
2047 
2048 	lp = td->td_lwp;
2049 	tmpset = lwp_sigpend(lp);
2050 	SIGSETNAND(tmpset, lp->lwp_sigmask);
2051 	SIGSETNAND(tmpset, p->p_sigignore);
2052 	if (SIGNOTEMPTY(tmpset) && NFSINT_SIGMASK(tmpset))
2053 		return (EINTR);
2054 
2055 	return (0);
2056 }
2057 
2058 /*
2059  * Lock a socket against others.
2060  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
2061  * and also to avoid race conditions between the processes with nfs requests
2062  * in progress when a reconnect is necessary.
2063  */
2064 int
2065 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
2066 {
2067 	mtx_t mtx = &nmp->nm_txlock;
2068 	struct thread *td;
2069 	int slptimeo;
2070 	int slpflag;
2071 	int error;
2072 
2073 	slpflag = 0;
2074 	slptimeo = 0;
2075 	td = rep ? rep->r_td : NULL;
2076 	if (nmp->nm_flag & NFSMNT_INT)
2077 		slpflag = PCATCH;
2078 
2079 	while ((error = mtx_lock_ex_try(mtx)) != 0) {
2080 		if (nfs_sigintr(nmp, rep, td)) {
2081 			error = EINTR;
2082 			break;
2083 		}
2084 		error = mtx_lock_ex(mtx, "nfsndlck", slpflag, slptimeo);
2085 		if (error == 0)
2086 			break;
2087 		if (slpflag == PCATCH) {
2088 			slpflag = 0;
2089 			slptimeo = 2 * hz;
2090 		}
2091 	}
2092 	/* Always fail if our request has been cancelled. */
2093 	if (rep && (rep->r_flags & R_SOFTTERM)) {
2094 		if (error == 0)
2095 			mtx_unlock(mtx);
2096 		error = EINTR;
2097 	}
2098 	return (error);
2099 }
2100 
2101 /*
2102  * Unlock the stream socket for others.
2103  */
2104 void
2105 nfs_sndunlock(struct nfsmount *nmp)
2106 {
2107 	mtx_unlock(&nmp->nm_txlock);
2108 }
2109 
2110 /*
2111  * Lock the receiver side of the socket.
2112  *
2113  * rep may be NULL.
2114  */
2115 static int
2116 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
2117 {
2118 	mtx_t mtx = &nmp->nm_rxlock;
2119 	int slpflag;
2120 	int slptimeo;
2121 	int error;
2122 
2123 	/*
2124 	 * Unconditionally check for completion in case another nfsiod
2125 	 * get the packet while the caller was blocked, before the caller
2126 	 * called us.  Packet reception is handled by mainline code which
2127 	 * is protected by the BGL at the moment.
2128 	 *
2129 	 * We do not strictly need the second check just before the
2130 	 * tsleep(), but it's good defensive programming.
2131 	 */
2132 	if (rep && rep->r_mrep != NULL)
2133 		return (EALREADY);
2134 
2135 	if (nmp->nm_flag & NFSMNT_INT)
2136 		slpflag = PCATCH;
2137 	else
2138 		slpflag = 0;
2139 	slptimeo = 0;
2140 
2141 	while ((error = mtx_lock_ex_try(mtx)) != 0) {
2142 		if (nfs_sigintr(nmp, rep, (rep ? rep->r_td : NULL))) {
2143 			error = EINTR;
2144 			break;
2145 		}
2146 		if (rep && rep->r_mrep != NULL) {
2147 			error = EALREADY;
2148 			break;
2149 		}
2150 
2151 		/*
2152 		 * NOTE: can return ENOLCK, but in that case rep->r_mrep
2153 		 *       will already be set.
2154 		 */
2155 		if (rep) {
2156 			error = mtx_lock_ex_link(mtx, &rep->r_link,
2157 						 "nfsrcvlk",
2158 						 slpflag, slptimeo);
2159 		} else {
2160 			error = mtx_lock_ex(mtx, "nfsrcvlk", slpflag, slptimeo);
2161 		}
2162 		if (error == 0)
2163 			break;
2164 
2165 		/*
2166 		 * If our reply was recieved while we were sleeping,
2167 		 * then just return without taking the lock to avoid a
2168 		 * situation where a single iod could 'capture' the
2169 		 * recieve lock.
2170 		 */
2171 		if (rep && rep->r_mrep != NULL) {
2172 			error = EALREADY;
2173 			break;
2174 		}
2175 		if (slpflag == PCATCH) {
2176 			slpflag = 0;
2177 			slptimeo = 2 * hz;
2178 		}
2179 	}
2180 	if (error == 0) {
2181 		if (rep && rep->r_mrep != NULL) {
2182 			error = EALREADY;
2183 			mtx_unlock(mtx);
2184 		}
2185 	}
2186 	return (error);
2187 }
2188 
2189 /*
2190  * Unlock the stream socket for others.
2191  */
2192 static void
2193 nfs_rcvunlock(struct nfsmount *nmp)
2194 {
2195 	mtx_unlock(&nmp->nm_rxlock);
2196 }
2197 
2198 /*
2199  * nfs_realign:
2200  *
2201  * Check for badly aligned mbuf data and realign by copying the unaligned
2202  * portion of the data into a new mbuf chain and freeing the portions
2203  * of the old chain that were replaced.
2204  *
2205  * We cannot simply realign the data within the existing mbuf chain
2206  * because the underlying buffers may contain other rpc commands and
2207  * we cannot afford to overwrite them.
2208  *
2209  * We would prefer to avoid this situation entirely.  The situation does
2210  * not occur with NFS/UDP and is supposed to only occassionally occur
2211  * with TCP.  Use vfs.nfs.realign_count and realign_test to check this.
2212  *
2213  * NOTE!  MB_DONTWAIT cannot be used here.  The mbufs must be acquired
2214  *	  because the rpc request OR reply cannot be thrown away.  TCP NFS
2215  *	  mounts do not retry their RPCs unless the TCP connection itself
2216  *	  is dropped so throwing away a RPC will basically cause the NFS
2217  *	  operation to lockup indefinitely.
2218  */
2219 static void
2220 nfs_realign(struct mbuf **pm, int hsiz)
2221 {
2222 	struct mbuf *m;
2223 	struct mbuf *n = NULL;
2224 
2225 	/*
2226 	 * Check for misalignemnt
2227 	 */
2228 	++nfs_realign_test;
2229 	while ((m = *pm) != NULL) {
2230 		if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3))
2231 			break;
2232 		pm = &m->m_next;
2233 	}
2234 
2235 	/*
2236 	 * If misalignment found make a completely new copy.
2237 	 */
2238 	if (m) {
2239 		++nfs_realign_count;
2240 		n = m_dup_data(m, MB_WAIT);
2241 		m_freem(*pm);
2242 		*pm = n;
2243 	}
2244 }
2245 
2246 #ifndef NFS_NOSERVER
2247 
2248 /*
2249  * Parse an RPC request
2250  * - verify it
2251  * - fill in the cred struct.
2252  */
2253 int
2254 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
2255 {
2256 	int len, i;
2257 	u_int32_t *tl;
2258 	struct uio uio;
2259 	struct iovec iov;
2260 	caddr_t cp;
2261 	u_int32_t nfsvers, auth_type;
2262 	uid_t nickuid;
2263 	int error = 0, ticklen;
2264 	struct nfsuid *nuidp;
2265 	struct timeval tvin, tvout;
2266 	struct nfsm_info info;
2267 #if 0				/* until encrypted keys are implemented */
2268 	NFSKERBKEYSCHED_T keys;	/* stores key schedule */
2269 #endif
2270 
2271 	info.mrep = nd->nd_mrep;
2272 	info.md = nd->nd_md;
2273 	info.dpos = nd->nd_dpos;
2274 
2275 	if (has_header) {
2276 		NULLOUT(tl = nfsm_dissect(&info, 10 * NFSX_UNSIGNED));
2277 		nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
2278 		if (*tl++ != rpc_call) {
2279 			m_freem(info.mrep);
2280 			return (EBADRPC);
2281 		}
2282 	} else {
2283 		NULLOUT(tl = nfsm_dissect(&info, 8 * NFSX_UNSIGNED));
2284 	}
2285 	nd->nd_repstat = 0;
2286 	nd->nd_flag = 0;
2287 	if (*tl++ != rpc_vers) {
2288 		nd->nd_repstat = ERPCMISMATCH;
2289 		nd->nd_procnum = NFSPROC_NOOP;
2290 		return (0);
2291 	}
2292 	if (*tl != nfs_prog) {
2293 		nd->nd_repstat = EPROGUNAVAIL;
2294 		nd->nd_procnum = NFSPROC_NOOP;
2295 		return (0);
2296 	}
2297 	tl++;
2298 	nfsvers = fxdr_unsigned(u_int32_t, *tl++);
2299 	if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
2300 		nd->nd_repstat = EPROGMISMATCH;
2301 		nd->nd_procnum = NFSPROC_NOOP;
2302 		return (0);
2303 	}
2304 	if (nfsvers == NFS_VER3)
2305 		nd->nd_flag = ND_NFSV3;
2306 	nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
2307 	if (nd->nd_procnum == NFSPROC_NULL)
2308 		return (0);
2309 	if (nd->nd_procnum >= NFS_NPROCS ||
2310 		(nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
2311 		(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
2312 		nd->nd_repstat = EPROCUNAVAIL;
2313 		nd->nd_procnum = NFSPROC_NOOP;
2314 		return (0);
2315 	}
2316 	if ((nd->nd_flag & ND_NFSV3) == 0)
2317 		nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
2318 	auth_type = *tl++;
2319 	len = fxdr_unsigned(int, *tl++);
2320 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2321 		m_freem(info.mrep);
2322 		return (EBADRPC);
2323 	}
2324 
2325 	nd->nd_flag &= ~ND_KERBAUTH;
2326 	/*
2327 	 * Handle auth_unix or auth_kerb.
2328 	 */
2329 	if (auth_type == rpc_auth_unix) {
2330 		len = fxdr_unsigned(int, *++tl);
2331 		if (len < 0 || len > NFS_MAXNAMLEN) {
2332 			m_freem(info.mrep);
2333 			return (EBADRPC);
2334 		}
2335 		ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2336 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2337 		bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
2338 		nd->nd_cr.cr_ref = 1;
2339 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2340 		nd->nd_cr.cr_ruid = nd->nd_cr.cr_svuid = nd->nd_cr.cr_uid;
2341 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2342 		nd->nd_cr.cr_rgid = nd->nd_cr.cr_svgid = nd->nd_cr.cr_gid;
2343 		len = fxdr_unsigned(int, *tl);
2344 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2345 			m_freem(info.mrep);
2346 			return (EBADRPC);
2347 		}
2348 		NULLOUT(tl = nfsm_dissect(&info, (len + 2) * NFSX_UNSIGNED));
2349 		for (i = 1; i <= len; i++)
2350 		    if (i < NGROUPS)
2351 			nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2352 		    else
2353 			tl++;
2354 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2355 		if (nd->nd_cr.cr_ngroups > 1)
2356 		    nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
2357 		len = fxdr_unsigned(int, *++tl);
2358 		if (len < 0 || len > RPCAUTH_MAXSIZ) {
2359 			m_freem(info.mrep);
2360 			return (EBADRPC);
2361 		}
2362 		if (len > 0) {
2363 			ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2364 		}
2365 	} else if (auth_type == rpc_auth_kerb) {
2366 		switch (fxdr_unsigned(int, *tl++)) {
2367 		case RPCAKN_FULLNAME:
2368 			ticklen = fxdr_unsigned(int, *tl);
2369 			*((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2370 			uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2371 			nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2372 			if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2373 				m_freem(info.mrep);
2374 				return (EBADRPC);
2375 			}
2376 			uio.uio_offset = 0;
2377 			uio.uio_iov = &iov;
2378 			uio.uio_iovcnt = 1;
2379 			uio.uio_segflg = UIO_SYSSPACE;
2380 			iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
2381 			iov.iov_len = RPCAUTH_MAXSIZ - 4;
2382 			ERROROUT(nfsm_mtouio(&info, &uio, uio.uio_resid));
2383 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2384 			if (*tl++ != rpc_auth_kerb ||
2385 				fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2386 				kprintf("Bad kerb verifier\n");
2387 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2388 				nd->nd_procnum = NFSPROC_NOOP;
2389 				return (0);
2390 			}
2391 			NULLOUT(cp = nfsm_dissect(&info, 4 * NFSX_UNSIGNED));
2392 			tl = (u_int32_t *)cp;
2393 			if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2394 				kprintf("Not fullname kerb verifier\n");
2395 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2396 				nd->nd_procnum = NFSPROC_NOOP;
2397 				return (0);
2398 			}
2399 			cp += NFSX_UNSIGNED;
2400 			bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
2401 			nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2402 			nd->nd_flag |= ND_KERBFULL;
2403 			nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2404 			break;
2405 		case RPCAKN_NICKNAME:
2406 			if (len != 2 * NFSX_UNSIGNED) {
2407 				kprintf("Kerb nickname short\n");
2408 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2409 				nd->nd_procnum = NFSPROC_NOOP;
2410 				return (0);
2411 			}
2412 			nickuid = fxdr_unsigned(uid_t, *tl);
2413 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2414 			if (*tl++ != rpc_auth_kerb ||
2415 				fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2416 				kprintf("Kerb nick verifier bad\n");
2417 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2418 				nd->nd_procnum = NFSPROC_NOOP;
2419 				return (0);
2420 			}
2421 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2422 			tvin.tv_sec = *tl++;
2423 			tvin.tv_usec = *tl;
2424 
2425 			for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
2426 			    nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
2427 				if (nuidp->nu_cr.cr_uid == nickuid &&
2428 				    (!nd->nd_nam2 ||
2429 				     netaddr_match(NU_NETFAM(nuidp),
2430 				      &nuidp->nu_haddr, nd->nd_nam2)))
2431 					break;
2432 			}
2433 			if (!nuidp) {
2434 				nd->nd_repstat =
2435 					(NFSERR_AUTHERR|AUTH_REJECTCRED);
2436 				nd->nd_procnum = NFSPROC_NOOP;
2437 				return (0);
2438 			}
2439 
2440 			/*
2441 			 * Now, decrypt the timestamp using the session key
2442 			 * and validate it.
2443 			 */
2444 #ifdef NFSKERB
2445 			XXX
2446 #else
2447 			tvout.tv_sec = 0;
2448 			tvout.tv_usec = 0;
2449 #endif
2450 
2451 			tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2452 			tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2453 			if (nuidp->nu_expire < time_second ||
2454 			    nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2455 			    (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2456 			     nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2457 				nuidp->nu_expire = 0;
2458 				nd->nd_repstat =
2459 				    (NFSERR_AUTHERR|AUTH_REJECTVERF);
2460 				nd->nd_procnum = NFSPROC_NOOP;
2461 				return (0);
2462 			}
2463 			nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
2464 			nd->nd_flag |= ND_KERBNICK;
2465 		};
2466 	} else {
2467 		nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2468 		nd->nd_procnum = NFSPROC_NOOP;
2469 		return (0);
2470 	}
2471 
2472 	nd->nd_md = info.md;
2473 	nd->nd_dpos = info.dpos;
2474 	return (0);
2475 nfsmout:
2476 	return (error);
2477 }
2478 
2479 #endif
2480 
2481 /*
2482  * Send a message to the originating process's terminal.  The thread and/or
2483  * process may be NULL.  YYY the thread should not be NULL but there may
2484  * still be some uio_td's that are still being passed as NULL through to
2485  * nfsm_request().
2486  */
2487 static int
2488 nfs_msg(struct thread *td, char *server, char *msg)
2489 {
2490 	tpr_t tpr;
2491 
2492 	if (td && td->td_proc)
2493 		tpr = tprintf_open(td->td_proc);
2494 	else
2495 		tpr = NULL;
2496 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2497 	tprintf_close(tpr);
2498 	return (0);
2499 }
2500 
2501 #ifndef NFS_NOSERVER
2502 
2503 /*
2504  * Socket upcall routine for nfsd sockets.  This runs in the protocol
2505  * thread and passes waitflag == MB_DONTWAIT.
2506  */
2507 void
2508 nfsrv_rcv_upcall(struct socket *so, void *arg, int waitflag)
2509 {
2510 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2511 
2512 	if (slp->ns_needq_upcall == 0) {
2513 		slp->ns_needq_upcall = 1;	/* ok to race */
2514 		lwkt_gettoken(&nfs_token);
2515 		nfsrv_wakenfsd(slp, 1);
2516 		lwkt_reltoken(&nfs_token);
2517 	}
2518 #if 0
2519 	lwkt_gettoken(&slp->ns_token);
2520 	slp->ns_flag |= SLP_NEEDQ;
2521 	nfsrv_rcv(so, arg, waitflag);
2522 	lwkt_reltoken(&slp->ns_token);
2523 #endif
2524 }
2525 
2526 /*
2527  * Process new data on a receive socket.  Essentially do as much as we can
2528  * non-blocking, else punt and it will be called with MB_WAIT from an nfsd.
2529  *
2530  * slp->ns_token is held on call
2531  */
2532 void
2533 nfsrv_rcv(struct socket *so, void *arg, int waitflag)
2534 {
2535 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2536 	struct mbuf *m;
2537 	struct sockaddr *nam;
2538 	struct sockbuf sio;
2539 	int flags, error;
2540 	int nparallel_wakeup = 0;
2541 
2542 	ASSERT_LWKT_TOKEN_HELD(&slp->ns_token);
2543 
2544 	if ((slp->ns_flag & SLP_VALID) == 0)
2545 		return;
2546 
2547 	/*
2548 	 * Do not allow an infinite number of completed RPC records to build
2549 	 * up before we stop reading data from the socket.  Otherwise we could
2550 	 * end up holding onto an unreasonable number of mbufs for requests
2551 	 * waiting for service.
2552 	 *
2553 	 * This should give pretty good feedback to the TCP layer and
2554 	 * prevents a memory crunch for other protocols.
2555 	 *
2556 	 * Note that the same service socket can be dispatched to several
2557 	 * nfs servers simultaniously.  The tcp protocol callback calls us
2558 	 * with MB_DONTWAIT.  nfsd calls us with MB_WAIT (typically).
2559 	 */
2560 	if (NFSRV_RECLIMIT(slp))
2561 		return;
2562 
2563 	/*
2564 	 * Handle protocol specifics to parse an RPC request.  We always
2565 	 * pull from the socket using non-blocking I/O.
2566 	 */
2567 	if (so->so_type == SOCK_STREAM) {
2568 		/*
2569 		 * The data has to be read in an orderly fashion from a TCP
2570 		 * stream, unlike a UDP socket.  It is possible for soreceive
2571 		 * and/or nfsrv_getstream() to block, so make sure only one
2572 		 * entity is messing around with the TCP stream at any given
2573 		 * moment.  The receive sockbuf's lock in soreceive is not
2574 		 * sufficient.
2575 		 */
2576 		if (slp->ns_flag & SLP_GETSTREAM)
2577 			return;
2578 		slp->ns_flag |= SLP_GETSTREAM;
2579 
2580 		/*
2581 		 * Do soreceive().  Pull out as much data as possible without
2582 		 * blocking.
2583 		 */
2584 		sbinit(&sio, 1000000000);
2585 		flags = MSG_DONTWAIT;
2586 		error = so_pru_soreceive(so, &nam, NULL, &sio, NULL, &flags);
2587 		if (error || sio.sb_mb == NULL) {
2588 			if (error != EWOULDBLOCK)
2589 				slp->ns_flag |= SLP_DISCONN;
2590 			slp->ns_flag &= ~(SLP_GETSTREAM | SLP_NEEDQ);
2591 			goto done;
2592 		}
2593 		m = sio.sb_mb;
2594 		if (slp->ns_rawend) {
2595 			slp->ns_rawend->m_next = m;
2596 			slp->ns_cc += sio.sb_cc;
2597 		} else {
2598 			slp->ns_raw = m;
2599 			slp->ns_cc = sio.sb_cc;
2600 		}
2601 		while (m->m_next)
2602 			m = m->m_next;
2603 		slp->ns_rawend = m;
2604 
2605 		/*
2606 		 * Now try and parse as many record(s) as we can out of the
2607 		 * raw stream data.  This will set SLP_DOREC.
2608 		 */
2609 		error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup);
2610 		if (error && error != EWOULDBLOCK)
2611 			slp->ns_flag |= SLP_DISCONN;
2612 		slp->ns_flag &= ~SLP_GETSTREAM;
2613 	} else {
2614 		/*
2615 		 * For UDP soreceive typically pulls just one packet, loop
2616 		 * to get the whole batch.
2617 		 */
2618 		do {
2619 			sbinit(&sio, 1000000000);
2620 			flags = MSG_DONTWAIT;
2621 			error = so_pru_soreceive(so, &nam, NULL, &sio,
2622 						 NULL, &flags);
2623 			if (sio.sb_mb) {
2624 				struct nfsrv_rec *rec;
2625 				int mf = (waitflag & MB_DONTWAIT) ?
2626 					    M_NOWAIT : M_WAITOK;
2627 				rec = kmalloc(sizeof(struct nfsrv_rec),
2628 					     M_NFSRVDESC, mf);
2629 				if (!rec) {
2630 					if (nam)
2631 						FREE(nam, M_SONAME);
2632 					m_freem(sio.sb_mb);
2633 					continue;
2634 				}
2635 				nfs_realign(&sio.sb_mb, 10 * NFSX_UNSIGNED);
2636 				rec->nr_address = nam;
2637 				rec->nr_packet = sio.sb_mb;
2638 				STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2639 				++slp->ns_numrec;
2640 				slp->ns_flag |= SLP_DOREC;
2641 				++nparallel_wakeup;
2642 			} else {
2643 				slp->ns_flag &= ~SLP_NEEDQ;
2644 			}
2645 			if (error) {
2646 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2647 				    && error != EWOULDBLOCK) {
2648 					slp->ns_flag |= SLP_DISCONN;
2649 					break;
2650 				}
2651 			}
2652 			if (NFSRV_RECLIMIT(slp))
2653 				break;
2654 		} while (sio.sb_mb);
2655 	}
2656 
2657 	/*
2658 	 * If we were upcalled from the tcp protocol layer and we have
2659 	 * fully parsed records ready to go, or there is new data pending,
2660 	 * or something went wrong, try to wake up a nfsd thread to deal
2661 	 * with it.
2662 	 */
2663 done:
2664 	/* XXX this code is currently not executed (nfsrv_rcv_upcall) */
2665 	if (waitflag == MB_DONTWAIT && (slp->ns_flag & SLP_ACTION_MASK)) {
2666 		lwkt_gettoken(&nfs_token);
2667 		nfsrv_wakenfsd(slp, nparallel_wakeup);
2668 		lwkt_reltoken(&nfs_token);
2669 	}
2670 }
2671 
2672 /*
2673  * Try and extract an RPC request from the mbuf data list received on a
2674  * stream socket. The "waitflag" argument indicates whether or not it
2675  * can sleep.
2676  */
2677 static int
2678 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp)
2679 {
2680 	struct mbuf *m, **mpp;
2681 	char *cp1, *cp2;
2682 	int len;
2683 	struct mbuf *om, *m2, *recm;
2684 	u_int32_t recmark;
2685 
2686 	for (;;) {
2687 	    if (slp->ns_reclen == 0) {
2688 		if (slp->ns_cc < NFSX_UNSIGNED)
2689 			return (0);
2690 		m = slp->ns_raw;
2691 		if (m->m_len >= NFSX_UNSIGNED) {
2692 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2693 			m->m_data += NFSX_UNSIGNED;
2694 			m->m_len -= NFSX_UNSIGNED;
2695 		} else {
2696 			cp1 = (caddr_t)&recmark;
2697 			cp2 = mtod(m, caddr_t);
2698 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2699 				while (m->m_len == 0) {
2700 					m = m->m_next;
2701 					cp2 = mtod(m, caddr_t);
2702 				}
2703 				*cp1++ = *cp2++;
2704 				m->m_data++;
2705 				m->m_len--;
2706 			}
2707 		}
2708 		slp->ns_cc -= NFSX_UNSIGNED;
2709 		recmark = ntohl(recmark);
2710 		slp->ns_reclen = recmark & ~0x80000000;
2711 		if (recmark & 0x80000000)
2712 			slp->ns_flag |= SLP_LASTFRAG;
2713 		else
2714 			slp->ns_flag &= ~SLP_LASTFRAG;
2715 		if (slp->ns_reclen > NFS_MAXPACKET || slp->ns_reclen <= 0) {
2716 			log(LOG_ERR, "%s (%d) from nfs client\n",
2717 			    "impossible packet length",
2718 			    slp->ns_reclen);
2719 			return (EPERM);
2720 		}
2721 	    }
2722 
2723 	    /*
2724 	     * Now get the record part.
2725 	     *
2726 	     * Note that slp->ns_reclen may be 0.  Linux sometimes
2727 	     * generates 0-length RPCs
2728 	     */
2729 	    recm = NULL;
2730 	    if (slp->ns_cc == slp->ns_reclen) {
2731 		recm = slp->ns_raw;
2732 		slp->ns_raw = slp->ns_rawend = NULL;
2733 		slp->ns_cc = slp->ns_reclen = 0;
2734 	    } else if (slp->ns_cc > slp->ns_reclen) {
2735 		len = 0;
2736 		m = slp->ns_raw;
2737 		om = NULL;
2738 
2739 		while (len < slp->ns_reclen) {
2740 			if ((len + m->m_len) > slp->ns_reclen) {
2741 				m2 = m_copym(m, 0, slp->ns_reclen - len,
2742 					waitflag);
2743 				if (m2) {
2744 					if (om) {
2745 						om->m_next = m2;
2746 						recm = slp->ns_raw;
2747 					} else
2748 						recm = m2;
2749 					m->m_data += slp->ns_reclen - len;
2750 					m->m_len -= slp->ns_reclen - len;
2751 					len = slp->ns_reclen;
2752 				} else {
2753 					return (EWOULDBLOCK);
2754 				}
2755 			} else if ((len + m->m_len) == slp->ns_reclen) {
2756 				om = m;
2757 				len += m->m_len;
2758 				m = m->m_next;
2759 				recm = slp->ns_raw;
2760 				om->m_next = NULL;
2761 			} else {
2762 				om = m;
2763 				len += m->m_len;
2764 				m = m->m_next;
2765 			}
2766 		}
2767 		slp->ns_raw = m;
2768 		slp->ns_cc -= len;
2769 		slp->ns_reclen = 0;
2770 	    } else {
2771 		return (0);
2772 	    }
2773 
2774 	    /*
2775 	     * Accumulate the fragments into a record.
2776 	     */
2777 	    mpp = &slp->ns_frag;
2778 	    while (*mpp)
2779 		mpp = &((*mpp)->m_next);
2780 	    *mpp = recm;
2781 	    if (slp->ns_flag & SLP_LASTFRAG) {
2782 		struct nfsrv_rec *rec;
2783 		int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK;
2784 		rec = kmalloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf);
2785 		if (!rec) {
2786 		    m_freem(slp->ns_frag);
2787 		} else {
2788 		    nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2789 		    rec->nr_address = NULL;
2790 		    rec->nr_packet = slp->ns_frag;
2791 		    STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2792 		    ++slp->ns_numrec;
2793 		    slp->ns_flag |= SLP_DOREC;
2794 		    ++*countp;
2795 		}
2796 		slp->ns_frag = NULL;
2797 	    }
2798 	}
2799 }
2800 
2801 #ifdef INVARIANTS
2802 
2803 /*
2804  * Sanity check our mbuf chain.
2805  */
2806 static void
2807 nfs_checkpkt(struct mbuf *m, int len)
2808 {
2809 	int xlen = 0;
2810 	while (m) {
2811 		xlen += m->m_len;
2812 		m = m->m_next;
2813 	}
2814 	if (xlen != len) {
2815 		panic("nfs_checkpkt: len mismatch %d/%d mbuf %p\n",
2816 			xlen, len, m);
2817 	}
2818 }
2819 
2820 #else
2821 
2822 static void
2823 nfs_checkpkt(struct mbuf *m __unused, int len __unused)
2824 {
2825 }
2826 
2827 #endif
2828 
2829 /*
2830  * Parse an RPC header.
2831  *
2832  * If the socket is invalid or no records are pending we return ENOBUFS.
2833  * The caller must deal with NEEDQ races.
2834  */
2835 int
2836 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2837 	    struct nfsrv_descript **ndp)
2838 {
2839 	struct nfsrv_rec *rec;
2840 	struct mbuf *m;
2841 	struct sockaddr *nam;
2842 	struct nfsrv_descript *nd;
2843 	int error;
2844 
2845 	*ndp = NULL;
2846 	if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2847 		return (ENOBUFS);
2848 	rec = STAILQ_FIRST(&slp->ns_rec);
2849 	STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2850 	KKASSERT(slp->ns_numrec > 0);
2851 	if (--slp->ns_numrec == 0)
2852 		slp->ns_flag &= ~SLP_DOREC;
2853 	nam = rec->nr_address;
2854 	m = rec->nr_packet;
2855 	kfree(rec, M_NFSRVDESC);
2856 	MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2857 		M_NFSRVDESC, M_WAITOK);
2858 	nd->nd_md = nd->nd_mrep = m;
2859 	nd->nd_nam2 = nam;
2860 	nd->nd_dpos = mtod(m, caddr_t);
2861 	error = nfs_getreq(nd, nfsd, TRUE);
2862 	if (error) {
2863 		if (nam) {
2864 			FREE(nam, M_SONAME);
2865 		}
2866 		kfree((caddr_t)nd, M_NFSRVDESC);
2867 		return (error);
2868 	}
2869 	*ndp = nd;
2870 	nfsd->nfsd_nd = nd;
2871 	return (0);
2872 }
2873 
2874 /*
2875  * Try to assign service sockets to nfsd threads based on the number
2876  * of new rpc requests that have been queued on the service socket.
2877  *
2878  * If no nfsd's are available or additonal requests are pending, set the
2879  * NFSD_CHECKSLP flag so that one of the running nfsds will go look for
2880  * the work in the nfssvc_sock list when it is finished processing its
2881  * current work.  This flag is only cleared when an nfsd can not find
2882  * any new work to perform.
2883  */
2884 void
2885 nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel)
2886 {
2887 	struct nfsd *nd;
2888 
2889 	if ((slp->ns_flag & SLP_VALID) == 0)
2890 		return;
2891 	if (nparallel <= 1)
2892 		nparallel = 1;
2893 	TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) {
2894 		if (nd->nfsd_flag & NFSD_WAITING) {
2895 			nd->nfsd_flag &= ~NFSD_WAITING;
2896 			if (nd->nfsd_slp)
2897 				panic("nfsd wakeup");
2898 			nfsrv_slpref(slp);
2899 			nd->nfsd_slp = slp;
2900 			wakeup((caddr_t)nd);
2901 			if (--nparallel == 0)
2902 				break;
2903 		}
2904 	}
2905 
2906 	/*
2907 	 * If we couldn't assign slp then the NFSDs are all busy and
2908 	 * we set a flag indicating that there is pending work.
2909 	 */
2910 	if (nparallel)
2911 		nfsd_head_flag |= NFSD_CHECKSLP;
2912 }
2913 #endif /* NFS_NOSERVER */
2914