xref: /dragonfly/sys/vfs/nfs/nfs_socket.c (revision 20c2db9a)
1 /*
2  * Copyright (c) 1989, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_socket.c	8.5 (Berkeley) 3/30/95
37  * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
38  */
39 
40 /*
41  * Socket operations for use by nfs
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/mbuf.h>
51 #include <sys/vnode.h>
52 #include <sys/fcntl.h>
53 #include <sys/protosw.h>
54 #include <sys/resourcevar.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/socketops.h>
58 #include <sys/syslog.h>
59 #include <sys/thread.h>
60 #include <sys/tprintf.h>
61 #include <sys/sysctl.h>
62 #include <sys/signalvar.h>
63 
64 #include <sys/signal2.h>
65 #include <sys/mutex2.h>
66 #include <sys/socketvar2.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <sys/thread2.h>
71 
72 #include "rpcv2.h"
73 #include "nfsproto.h"
74 #include "nfs.h"
75 #include "xdr_subs.h"
76 #include "nfsm_subs.h"
77 #include "nfsmount.h"
78 #include "nfsnode.h"
79 #include "nfsrtt.h"
80 
81 #define	TRUE	1
82 #define	FALSE	0
83 
84 /*
85  * RTT calculations are scaled by 256 (8 bits).  A proper fractional
86  * RTT will still be calculated even with a slow NFS timer.
87  */
88 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum]]
89 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum]]
90 #define NFS_RTT_SCALE_BITS	8	/* bits */
91 #define NFS_RTT_SCALE		256	/* value */
92 
93 /*
94  * Defines which timer to use for the procnum.
95  * 0 - default
96  * 1 - getattr
97  * 2 - lookup
98  * 3 - read
99  * 4 - write
100  */
101 static int proct[NFS_NPROCS] = {
102 	0, 1, 0, 2, 1, 3, 3, 4, 0, 0,	/* 00-09	*/
103 	0, 0, 0, 0, 0, 0, 3, 3, 0, 0,	/* 10-19	*/
104 	0, 5, 0, 0, 0, 0,		/* 20-29	*/
105 };
106 
107 static int multt[NFS_NPROCS] = {
108 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 00-09	*/
109 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 10-19	*/
110 	1, 2, 1, 1, 1, 1,		/* 20-29	*/
111 };
112 
113 static int nfs_backoff[8] = { 2, 3, 5, 8, 13, 21, 34, 55 };
114 static int nfs_realign_test;
115 static int nfs_realign_count;
116 static int nfs_showrtt;
117 static int nfs_showrexmit;
118 int nfs_maxasyncbio = NFS_MAXASYNCBIO;
119 
120 SYSCTL_DECL(_vfs_nfs);
121 
122 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0,
123     "Number of times mbufs have been tested for bad alignment");
124 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0,
125     "Number of realignments for badly aligned mbuf data");
126 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrtt, CTLFLAG_RW, &nfs_showrtt, 0,
127     "Show round trip time output");
128 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrexmit, CTLFLAG_RW, &nfs_showrexmit, 0,
129     "Show retransmits info");
130 SYSCTL_INT(_vfs_nfs, OID_AUTO, maxasyncbio, CTLFLAG_RW, &nfs_maxasyncbio, 0,
131     "Max number of asynchronous bio's");
132 
133 static int nfs_request_setup(nfsm_info_t info);
134 static int nfs_request_auth(struct nfsreq *rep);
135 static int nfs_request_try(struct nfsreq *rep);
136 static int nfs_request_waitreply(struct nfsreq *rep);
137 static int nfs_request_processreply(nfsm_info_t info, int);
138 
139 int nfsrtton = 0;
140 struct nfsrtt nfsrtt;
141 struct callout	nfs_timer_handle;
142 
143 static int	nfs_msg (struct thread *,char *,char *);
144 static int	nfs_rcvlock (struct nfsmount *nmp, struct nfsreq *myreq);
145 static void	nfs_rcvunlock (struct nfsmount *nmp);
146 static void	nfs_realign (struct mbuf **pm, int hsiz);
147 static int	nfs_receive (struct nfsmount *nmp, struct nfsreq *rep,
148 				struct sockaddr **aname, struct mbuf **mp);
149 static void	nfs_softterm (struct nfsreq *rep, int islocked);
150 static void	nfs_hardterm (struct nfsreq *rep, int islocked);
151 static int	nfs_reconnect (struct nfsmount *nmp, struct nfsreq *rep);
152 #ifndef NFS_NOSERVER
153 static int	nfsrv_getstream (struct nfssvc_sock *, int, int *);
154 static void	nfs_timer_req(struct nfsreq *req);
155 static void	nfs_checkpkt(struct mbuf *m, int len);
156 
157 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd,
158 				    struct nfssvc_sock *slp,
159 				    struct thread *td,
160 				    struct mbuf **mreqp) = {
161 	nfsrv_null,
162 	nfsrv_getattr,
163 	nfsrv_setattr,
164 	nfsrv_lookup,
165 	nfsrv3_access,
166 	nfsrv_readlink,
167 	nfsrv_read,
168 	nfsrv_write,
169 	nfsrv_create,
170 	nfsrv_mkdir,
171 	nfsrv_symlink,
172 	nfsrv_mknod,
173 	nfsrv_remove,
174 	nfsrv_rmdir,
175 	nfsrv_rename,
176 	nfsrv_link,
177 	nfsrv_readdir,
178 	nfsrv_readdirplus,
179 	nfsrv_statfs,
180 	nfsrv_fsinfo,
181 	nfsrv_pathconf,
182 	nfsrv_commit,
183 	nfsrv_noop,
184 	nfsrv_noop,
185 	nfsrv_noop,
186 	nfsrv_noop
187 };
188 #endif /* NFS_NOSERVER */
189 
190 /*
191  * Initialize sockets and congestion for a new NFS connection.
192  * We do not free the sockaddr if error.
193  */
194 int
195 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
196 {
197 	struct socket *so;
198 	int error;
199 	struct sockaddr *saddr;
200 	struct sockaddr_in *sin;
201 	struct thread *td = &thread0; /* only used for socreate and sobind */
202 
203 	nmp->nm_so = so = NULL;
204 	if (nmp->nm_flag & NFSMNT_FORCE)
205 		return (EINVAL);
206 	saddr = nmp->nm_nam;
207 	error = socreate(saddr->sa_family, &so, nmp->nm_sotype,
208 		nmp->nm_soproto, td);
209 	if (error)
210 		goto bad;
211 	nmp->nm_soflags = so->so_proto->pr_flags;
212 
213 	/*
214 	 * Some servers require that the client port be a reserved port number.
215 	 */
216 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
217 		struct sockopt sopt;
218 		int ip;
219 		struct sockaddr_in ssin;
220 
221 		bzero(&sopt, sizeof sopt);
222 		ip = IP_PORTRANGE_LOW;
223 		sopt.sopt_level = IPPROTO_IP;
224 		sopt.sopt_name = IP_PORTRANGE;
225 		sopt.sopt_val = (void *)&ip;
226 		sopt.sopt_valsize = sizeof(ip);
227 		sopt.sopt_td = NULL;
228 		error = sosetopt(so, &sopt);
229 		if (error)
230 			goto bad;
231 		bzero(&ssin, sizeof ssin);
232 		sin = &ssin;
233 		sin->sin_len = sizeof (struct sockaddr_in);
234 		sin->sin_family = AF_INET;
235 		sin->sin_addr.s_addr = INADDR_ANY;
236 		sin->sin_port = htons(0);
237 		error = sobind(so, (struct sockaddr *)sin, td);
238 		if (error)
239 			goto bad;
240 		bzero(&sopt, sizeof sopt);
241 		ip = IP_PORTRANGE_DEFAULT;
242 		sopt.sopt_level = IPPROTO_IP;
243 		sopt.sopt_name = IP_PORTRANGE;
244 		sopt.sopt_val = (void *)&ip;
245 		sopt.sopt_valsize = sizeof(ip);
246 		sopt.sopt_td = NULL;
247 		error = sosetopt(so, &sopt);
248 		if (error)
249 			goto bad;
250 	}
251 
252 	/*
253 	 * Protocols that do not require connections may be optionally left
254 	 * unconnected for servers that reply from a port other than NFS_PORT.
255 	 */
256 	if (nmp->nm_flag & NFSMNT_NOCONN) {
257 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
258 			error = ENOTCONN;
259 			goto bad;
260 		}
261 	} else {
262 		error = soconnect(so, nmp->nm_nam, td);
263 		if (error)
264 			goto bad;
265 
266 		/*
267 		 * Wait for the connection to complete. Cribbed from the
268 		 * connect system call but with the wait timing out so
269 		 * that interruptible mounts don't hang here for a long time.
270 		 */
271 		crit_enter();
272 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
273 			(void) tsleep((caddr_t)&so->so_timeo, 0,
274 				"nfscon", 2 * hz);
275 			if ((so->so_state & SS_ISCONNECTING) &&
276 			    so->so_error == 0 && rep &&
277 			    (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
278 				soclrstate(so, SS_ISCONNECTING);
279 				crit_exit();
280 				goto bad;
281 			}
282 		}
283 		if (so->so_error) {
284 			error = so->so_error;
285 			so->so_error = 0;
286 			crit_exit();
287 			goto bad;
288 		}
289 		crit_exit();
290 	}
291 	so->so_rcv.ssb_timeo = (5 * hz);
292 	so->so_snd.ssb_timeo = (5 * hz);
293 
294 	/*
295 	 * Get buffer reservation size from sysctl, but impose reasonable
296 	 * limits.
297 	 */
298 	if (nmp->nm_sotype == SOCK_STREAM) {
299 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
300 			struct sockopt sopt;
301 			int val;
302 
303 			bzero(&sopt, sizeof sopt);
304 			sopt.sopt_level = SOL_SOCKET;
305 			sopt.sopt_name = SO_KEEPALIVE;
306 			sopt.sopt_val = &val;
307 			sopt.sopt_valsize = sizeof val;
308 			val = 1;
309 			sosetopt(so, &sopt);
310 		}
311 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
312 			struct sockopt sopt;
313 			int val;
314 
315 			bzero(&sopt, sizeof sopt);
316 			sopt.sopt_level = IPPROTO_TCP;
317 			sopt.sopt_name = TCP_NODELAY;
318 			sopt.sopt_val = &val;
319 			sopt.sopt_valsize = sizeof val;
320 			val = 1;
321 			sosetopt(so, &sopt);
322 
323 			bzero(&sopt, sizeof sopt);
324 			sopt.sopt_level = IPPROTO_TCP;
325 			sopt.sopt_name = TCP_FASTKEEP;
326 			sopt.sopt_val = &val;
327 			sopt.sopt_valsize = sizeof val;
328 			val = 1;
329 			sosetopt(so, &sopt);
330 		}
331 	}
332 	error = soreserve(so, nfs_soreserve, nfs_soreserve, NULL);
333 	if (error)
334 		goto bad;
335 	atomic_set_int(&so->so_rcv.ssb_flags, SSB_NOINTR);
336 	atomic_set_int(&so->so_snd.ssb_flags, SSB_NOINTR);
337 
338 	/* Initialize other non-zero congestion variables */
339 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
340 		nmp->nm_srtt[3] = (NFS_TIMEO << NFS_RTT_SCALE_BITS);
341 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
342 		nmp->nm_sdrtt[3] = 0;
343 	nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
344 	nmp->nm_timeouts = 0;
345 
346 	/*
347 	 * Assign nm_so last.  The moment nm_so is assigned the nfs_timer()
348 	 * can mess with the socket.
349 	 */
350 	nmp->nm_so = so;
351 	return (0);
352 
353 bad:
354 	if (so) {
355 		soshutdown(so, SHUT_RDWR);
356 		soclose(so, FNONBLOCK);
357 	}
358 	return (error);
359 }
360 
361 /*
362  * Reconnect routine:
363  * Called when a connection is broken on a reliable protocol.
364  * - clean up the old socket
365  * - nfs_connect() again
366  * - set R_NEEDSXMIT for all outstanding requests on mount point
367  * If this fails the mount point is DEAD!
368  * nb: Must be called with the nfs_sndlock() set on the mount point.
369  */
370 static int
371 nfs_reconnect(struct nfsmount *nmp, struct nfsreq *rep)
372 {
373 	struct nfsreq *req;
374 	int error;
375 
376 	nfs_disconnect(nmp);
377 	if (nmp->nm_rxstate >= NFSSVC_STOPPING)
378 		return (EINTR);
379 	while ((error = nfs_connect(nmp, rep)) != 0) {
380 		if (error == EINTR || error == ERESTART)
381 			return (EINTR);
382 		if (error == EINVAL)
383 			return (error);
384 		if (nmp->nm_rxstate >= NFSSVC_STOPPING)
385 			return (EINTR);
386 		(void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0);
387 	}
388 
389 	/*
390 	 * Loop through outstanding request list and fix up all requests
391 	 * on old socket.
392 	 */
393 	crit_enter();
394 	TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
395 		KKASSERT(req->r_nmp == nmp);
396 		req->r_flags |= R_NEEDSXMIT;
397 	}
398 	crit_exit();
399 	return (0);
400 }
401 
402 /*
403  * NFS disconnect. Clean up and unlink.
404  */
405 void
406 nfs_disconnect(struct nfsmount *nmp)
407 {
408 	struct socket *so;
409 
410 	if (nmp->nm_so) {
411 		so = nmp->nm_so;
412 		nmp->nm_so = NULL;
413 		soshutdown(so, SHUT_RDWR);
414 		soclose(so, FNONBLOCK);
415 	}
416 }
417 
418 void
419 nfs_safedisconnect(struct nfsmount *nmp)
420 {
421 	nfs_rcvlock(nmp, NULL);
422 	nfs_disconnect(nmp);
423 	nfs_rcvunlock(nmp);
424 }
425 
426 /*
427  * This is the nfs send routine. For connection based socket types, it
428  * must be called with an nfs_sndlock() on the socket.
429  * "rep == NULL" indicates that it has been called from a server.
430  * For the client side:
431  * - return EINTR if the RPC is terminated, 0 otherwise
432  * - set R_NEEDSXMIT if the send fails for any reason
433  * - do any cleanup required by recoverable socket errors (?)
434  * For the server side:
435  * - return EINTR or ERESTART if interrupted by a signal
436  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
437  * - do any cleanup required by recoverable socket errors (?)
438  */
439 int
440 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top,
441 	 struct nfsreq *rep)
442 {
443 	struct sockaddr *sendnam;
444 	int error, soflags, flags;
445 
446 	if (rep) {
447 		if (rep->r_flags & R_SOFTTERM) {
448 			m_freem(top);
449 			return (EINTR);
450 		}
451 		if ((so = rep->r_nmp->nm_so) == NULL) {
452 			rep->r_flags |= R_NEEDSXMIT;
453 			m_freem(top);
454 			return (0);
455 		}
456 		rep->r_flags &= ~R_NEEDSXMIT;
457 		soflags = rep->r_nmp->nm_soflags;
458 	} else {
459 		soflags = so->so_proto->pr_flags;
460 	}
461 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
462 		sendnam = NULL;
463 	else
464 		sendnam = nam;
465 	if (so->so_type == SOCK_SEQPACKET)
466 		flags = MSG_EOR;
467 	else
468 		flags = 0;
469 
470 	/*
471 	 * calls pru_sosend -> sosend -> so_pru_send -> netrpc
472 	 */
473 	error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags,
474 			      curthread /*XXX*/);
475 
476 	/*
477 	 * ENOBUFS for dgram sockets is transient and non fatal.
478 	 * No need to log, and no need to break a soft mount.
479 	 */
480 	if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
481 		error = 0;
482 		/*
483 		 * do backoff retransmit on client
484 		 */
485 		if (rep) {
486 			if ((rep->r_nmp->nm_state & NFSSTA_SENDSPACE) == 0) {
487 				rep->r_nmp->nm_state |= NFSSTA_SENDSPACE;
488 				kprintf("Warning: NFS: Insufficient sendspace "
489 					"(%lu),\n"
490 					"\t You must increase vfs.nfs.soreserve"
491 					"or decrease vfs.nfs.maxasyncbio\n",
492 					so->so_snd.ssb_hiwat);
493 			}
494 			rep->r_flags |= R_NEEDSXMIT;
495 		}
496 	}
497 
498 	if (error) {
499 		if (rep) {
500 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
501 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
502 			/*
503 			 * Deal with errors for the client side.
504 			 */
505 			if (rep->r_flags & R_SOFTTERM)
506 				error = EINTR;
507 			else
508 				rep->r_flags |= R_NEEDSXMIT;
509 		} else {
510 			log(LOG_INFO, "nfsd send error %d\n", error);
511 		}
512 
513 		/*
514 		 * Handle any recoverable (soft) socket errors here. (?)
515 		 */
516 		if (error != EINTR && error != ERESTART &&
517 			error != EWOULDBLOCK && error != EPIPE)
518 			error = 0;
519 	}
520 	return (error);
521 }
522 
523 /*
524  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
525  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
526  * Mark and consolidate the data into a new mbuf list.
527  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
528  *     small mbufs.
529  * For SOCK_STREAM we must be very careful to read an entire record once
530  * we have read any of it, even if the system call has been interrupted.
531  */
532 static int
533 nfs_receive(struct nfsmount *nmp, struct nfsreq *rep,
534 	    struct sockaddr **aname, struct mbuf **mp)
535 {
536 	struct socket *so;
537 	struct sockbuf sio;
538 	struct uio auio;
539 	struct iovec aio;
540 	struct mbuf *m;
541 	struct mbuf *control;
542 	u_int32_t len;
543 	struct sockaddr **getnam;
544 	int error, sotype, rcvflg;
545 	struct thread *td = curthread;	/* XXX */
546 
547 	/*
548 	 * Set up arguments for soreceive()
549 	 */
550 	*mp = NULL;
551 	*aname = NULL;
552 	sotype = nmp->nm_sotype;
553 
554 	/*
555 	 * For reliable protocols, lock against other senders/receivers
556 	 * in case a reconnect is necessary.
557 	 * For SOCK_STREAM, first get the Record Mark to find out how much
558 	 * more there is to get.
559 	 * We must lock the socket against other receivers
560 	 * until we have an entire rpc request/reply.
561 	 */
562 	if (sotype != SOCK_DGRAM) {
563 		error = nfs_sndlock(nmp, rep);
564 		if (error)
565 			return (error);
566 tryagain:
567 		/*
568 		 * Check for fatal errors and resending request.
569 		 */
570 		/*
571 		 * Ugh: If a reconnect attempt just happened, nm_so
572 		 * would have changed. NULL indicates a failed
573 		 * attempt that has essentially shut down this
574 		 * mount point.
575 		 */
576 		if (rep && (rep->r_mrep || (rep->r_flags & R_SOFTTERM))) {
577 			nfs_sndunlock(nmp);
578 			return (EINTR);
579 		}
580 		so = nmp->nm_so;
581 		if (so == NULL) {
582 			error = nfs_reconnect(nmp, rep);
583 			if (error) {
584 				nfs_sndunlock(nmp);
585 				return (error);
586 			}
587 			goto tryagain;
588 		}
589 		while (rep && (rep->r_flags & R_NEEDSXMIT)) {
590 			m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
591 			nfsstats.rpcretries++;
592 			error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
593 			if (error) {
594 				if (error == EINTR || error == ERESTART ||
595 				    (error = nfs_reconnect(nmp, rep)) != 0) {
596 					nfs_sndunlock(nmp);
597 					return (error);
598 				}
599 				goto tryagain;
600 			}
601 		}
602 		nfs_sndunlock(nmp);
603 		if (sotype == SOCK_STREAM) {
604 			/*
605 			 * Get the length marker from the stream
606 			 */
607 			aio.iov_base = (caddr_t)&len;
608 			aio.iov_len = sizeof(u_int32_t);
609 			auio.uio_iov = &aio;
610 			auio.uio_iovcnt = 1;
611 			auio.uio_segflg = UIO_SYSSPACE;
612 			auio.uio_rw = UIO_READ;
613 			auio.uio_offset = 0;
614 			auio.uio_resid = sizeof(u_int32_t);
615 			auio.uio_td = td;
616 			do {
617 			   rcvflg = MSG_WAITALL;
618 			   error = so_pru_soreceive(so, NULL, &auio, NULL,
619 						    NULL, &rcvflg);
620 			   if (error == EWOULDBLOCK && rep) {
621 				if (rep->r_flags & R_SOFTTERM)
622 					return (EINTR);
623 			   }
624 			} while (error == EWOULDBLOCK);
625 
626 			if (error == 0 && auio.uio_resid > 0) {
627 			    /*
628 			     * Only log short packets if not EOF
629 			     */
630 			    if (auio.uio_resid != sizeof(u_int32_t)) {
631 				log(LOG_INFO,
632 				    "short receive (%d/%d) from nfs server %s\n",
633 				    (int)(sizeof(u_int32_t) - auio.uio_resid),
634 				    (int)sizeof(u_int32_t),
635 				    nmp->nm_mountp->mnt_stat.f_mntfromname);
636 			    }
637 			    error = EPIPE;
638 			}
639 			if (error)
640 				goto errout;
641 			len = ntohl(len) & ~0x80000000;
642 			/*
643 			 * This is SERIOUS! We are out of sync with the sender
644 			 * and forcing a disconnect/reconnect is all I can do.
645 			 */
646 			if (len > NFS_MAXPACKET) {
647 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
648 				"impossible packet length",
649 				len,
650 				nmp->nm_mountp->mnt_stat.f_mntfromname);
651 			    error = EFBIG;
652 			    goto errout;
653 			}
654 
655 			/*
656 			 * Get the rest of the packet as an mbuf chain
657 			 */
658 			sbinit(&sio, len);
659 			do {
660 			    rcvflg = MSG_WAITALL;
661 			    error = so_pru_soreceive(so, NULL, NULL, &sio,
662 						     NULL, &rcvflg);
663 			} while (error == EWOULDBLOCK || error == EINTR ||
664 				 error == ERESTART);
665 			if (error == 0 && sio.sb_cc != len) {
666 			    if (sio.sb_cc != 0) {
667 				log(LOG_INFO,
668 				    "short receive (%zu/%d) from nfs server %s\n",
669 				    (size_t)len - auio.uio_resid, len,
670 				    nmp->nm_mountp->mnt_stat.f_mntfromname);
671 			    }
672 			    error = EPIPE;
673 			}
674 			*mp = sio.sb_mb;
675 		} else {
676 			/*
677 			 * Non-stream, so get the whole packet by not
678 			 * specifying MSG_WAITALL and by specifying a large
679 			 * length.
680 			 *
681 			 * We have no use for control msg., but must grab them
682 			 * and then throw them away so we know what is going
683 			 * on.
684 			 */
685 			sbinit(&sio, 100000000);
686 			do {
687 			    rcvflg = 0;
688 			    error =  so_pru_soreceive(so, NULL, NULL, &sio,
689 						      &control, &rcvflg);
690 			    if (control)
691 				m_freem(control);
692 			    if (error == EWOULDBLOCK && rep) {
693 				if (rep->r_flags & R_SOFTTERM) {
694 					m_freem(sio.sb_mb);
695 					return (EINTR);
696 				}
697 			    }
698 			} while (error == EWOULDBLOCK ||
699 				 (error == 0 && sio.sb_mb == NULL && control));
700 			if ((rcvflg & MSG_EOR) == 0)
701 				kprintf("Egad!!\n");
702 			if (error == 0 && sio.sb_mb == NULL)
703 				error = EPIPE;
704 			len = sio.sb_cc;
705 			*mp = sio.sb_mb;
706 		}
707 errout:
708 		if (error && error != EINTR && error != ERESTART) {
709 			m_freem(*mp);
710 			*mp = NULL;
711 			if (error != EPIPE) {
712 				log(LOG_INFO,
713 				    "receive error %d from nfs server %s\n",
714 				    error,
715 				 nmp->nm_mountp->mnt_stat.f_mntfromname);
716 			}
717 			error = nfs_sndlock(nmp, rep);
718 			if (!error) {
719 				error = nfs_reconnect(nmp, rep);
720 				if (!error)
721 					goto tryagain;
722 				else
723 					nfs_sndunlock(nmp);
724 			}
725 		}
726 	} else {
727 		if ((so = nmp->nm_so) == NULL)
728 			return (EACCES);
729 		if (so->so_state & SS_ISCONNECTED)
730 			getnam = NULL;
731 		else
732 			getnam = aname;
733 		sbinit(&sio, 100000000);
734 		do {
735 			rcvflg = 0;
736 			error =  so_pru_soreceive(so, getnam, NULL, &sio,
737 						  NULL, &rcvflg);
738 			if (error == EWOULDBLOCK && rep &&
739 			    (rep->r_flags & R_SOFTTERM)) {
740 				m_freem(sio.sb_mb);
741 				return (EINTR);
742 			}
743 		} while (error == EWOULDBLOCK);
744 
745 		len = sio.sb_cc;
746 		*mp = sio.sb_mb;
747 
748 		/*
749 		 * A shutdown may result in no error and no mbuf.
750 		 * Convert to EPIPE.
751 		 */
752 		if (*mp == NULL && error == 0)
753 			error = EPIPE;
754 	}
755 	if (error) {
756 		m_freem(*mp);
757 		*mp = NULL;
758 	}
759 
760 	/*
761 	 * Search for any mbufs that are not a multiple of 4 bytes long
762 	 * or with m_data not longword aligned.
763 	 * These could cause pointer alignment problems, so copy them to
764 	 * well aligned mbufs.
765 	 */
766 	nfs_realign(mp, 5 * NFSX_UNSIGNED);
767 	return (error);
768 }
769 
770 /*
771  * Implement receipt of reply on a socket.
772  *
773  * We must search through the list of received datagrams matching them
774  * with outstanding requests using the xid, until ours is found.
775  *
776  * If myrep is NULL we process packets on the socket until
777  * interrupted or until nm_reqrxq is non-empty.
778  */
779 /* ARGSUSED */
780 int
781 nfs_reply(struct nfsmount *nmp, struct nfsreq *myrep)
782 {
783 	struct nfsreq *rep;
784 	struct sockaddr *nam;
785 	u_int32_t rxid;
786 	u_int32_t *tl;
787 	int error;
788 	struct nfsm_info info;
789 
790 	/*
791 	 * Loop around until we get our own reply
792 	 */
793 	for (;;) {
794 		/*
795 		 * Lock against other receivers so that I don't get stuck in
796 		 * sbwait() after someone else has received my reply for me.
797 		 * Also necessary for connection based protocols to avoid
798 		 * race conditions during a reconnect.
799 		 *
800 		 * If nfs_rcvlock() returns EALREADY, that means that
801 		 * the reply has already been recieved by another
802 		 * process and we can return immediately.  In this
803 		 * case, the lock is not taken to avoid races with
804 		 * other processes.
805 		 */
806 		info.mrep = NULL;
807 
808 		error = nfs_rcvlock(nmp, myrep);
809 		if (error == EALREADY)
810 			return (0);
811 		if (error)
812 			return (error);
813 
814 		/*
815 		 * If myrep is NULL we are the receiver helper thread.
816 		 * Stop waiting for incoming replies if there are
817 		 * messages sitting on reqrxq that we need to process,
818 		 * or if a shutdown request is pending.
819 		 */
820 		if (myrep == NULL && (TAILQ_FIRST(&nmp->nm_reqrxq) ||
821 		    nmp->nm_rxstate > NFSSVC_PENDING)) {
822 			nfs_rcvunlock(nmp);
823 			return(EWOULDBLOCK);
824 		}
825 
826 		/*
827 		 * Get the next Rpc reply off the socket
828 		 *
829 		 * We cannot release the receive lock until we've
830 		 * filled in rep->r_mrep, otherwise a waiting
831 		 * thread may deadlock in soreceive with no incoming
832 		 * packets expected.
833 		 */
834 		error = nfs_receive(nmp, myrep, &nam, &info.mrep);
835 		if (error) {
836 			/*
837 			 * Ignore routing errors on connectionless protocols??
838 			 */
839 			nfs_rcvunlock(nmp);
840 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
841 				if (nmp->nm_so == NULL)
842 					return (error);
843 				nmp->nm_so->so_error = 0;
844 				continue;
845 			}
846 			return (error);
847 		}
848 		if (nam)
849 			kfree(nam, M_SONAME);
850 
851 		/*
852 		 * Get the xid and check that it is an rpc reply
853 		 */
854 		info.md = info.mrep;
855 		info.dpos = mtod(info.md, caddr_t);
856 		NULLOUT(tl = nfsm_dissect(&info, 2*NFSX_UNSIGNED));
857 		rxid = *tl++;
858 		if (*tl != rpc_reply) {
859 			nfsstats.rpcinvalid++;
860 			m_freem(info.mrep);
861 			info.mrep = NULL;
862 nfsmout:
863 			nfs_rcvunlock(nmp);
864 			continue;
865 		}
866 
867 		/*
868 		 * Loop through the request list to match up the reply
869 		 * Iff no match, just drop the datagram.  On match, set
870 		 * r_mrep atomically to prevent the timer from messing
871 		 * around with the request after we have exited the critical
872 		 * section.
873 		 */
874 		crit_enter();
875 		TAILQ_FOREACH(rep, &nmp->nm_reqq, r_chain) {
876 			if (rep->r_mrep == NULL && rxid == rep->r_xid)
877 				break;
878 		}
879 
880 		/*
881 		 * Fill in the rest of the reply if we found a match.
882 		 *
883 		 * Deal with duplicate responses if there was no match.
884 		 */
885 		if (rep) {
886 			rep->r_md = info.md;
887 			rep->r_dpos = info.dpos;
888 			if (nfsrtton) {
889 				struct rttl *rt;
890 
891 				rt = &nfsrtt.rttl[nfsrtt.pos];
892 				rt->proc = rep->r_procnum;
893 				rt->rto = 0;
894 				rt->sent = 0;
895 				rt->cwnd = nmp->nm_maxasync_scaled;
896 				rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
897 				rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
898 				rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
899 				getmicrotime(&rt->tstamp);
900 				if (rep->r_flags & R_TIMING)
901 					rt->rtt = rep->r_rtt;
902 				else
903 					rt->rtt = 1000000;
904 				nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
905 			}
906 
907 			/*
908 			 * New congestion control is based only on async
909 			 * requests.
910 			 */
911 			if (nmp->nm_maxasync_scaled < NFS_MAXASYNC_SCALED)
912 				++nmp->nm_maxasync_scaled;
913 			if (rep->r_flags & R_SENT) {
914 				rep->r_flags &= ~R_SENT;
915 			}
916 			/*
917 			 * Update rtt using a gain of 0.125 on the mean
918 			 * and a gain of 0.25 on the deviation.
919 			 *
920 			 * NOTE SRTT/SDRTT are only good if R_TIMING is set.
921 			 */
922 			if ((rep->r_flags & R_TIMING) && rep->r_rexmit == 0) {
923 				/*
924 				 * Since the timer resolution of
925 				 * NFS_HZ is so course, it can often
926 				 * result in r_rtt == 0. Since
927 				 * r_rtt == N means that the actual
928 				 * rtt is between N+dt and N+2-dt ticks,
929 				 * add 1.
930 				 */
931 				int n;
932 				int d;
933 
934 #define NFSRSB	NFS_RTT_SCALE_BITS
935 				n = ((NFS_SRTT(rep) * 7) +
936 				     (rep->r_rtt << NFSRSB)) >> 3;
937 				d = n - NFS_SRTT(rep);
938 				NFS_SRTT(rep) = n;
939 
940 				/*
941 				 * Don't let the jitter calculation decay
942 				 * too quickly, but we want a fast rampup.
943 				 */
944 				if (d < 0)
945 					d = -d;
946 				d <<= NFSRSB;
947 				if (d < NFS_SDRTT(rep))
948 					n = ((NFS_SDRTT(rep) * 15) + d) >> 4;
949 				else
950 					n = ((NFS_SDRTT(rep) * 3) + d) >> 2;
951 				NFS_SDRTT(rep) = n;
952 #undef NFSRSB
953 			}
954 			nmp->nm_timeouts = 0;
955 			rep->r_mrep = info.mrep;
956 			nfs_hardterm(rep, 0);
957 		} else {
958 			/*
959 			 * Extract vers, prog, nfsver, procnum.  A duplicate
960 			 * response means we didn't wait long enough so
961 			 * we increase the SRTT to avoid future spurious
962 			 * timeouts.
963 			 */
964 			u_int procnum = nmp->nm_lastreprocnum;
965 			int n;
966 
967 			if (procnum < NFS_NPROCS && proct[procnum]) {
968 				if (nfs_showrexmit)
969 					kprintf("D");
970 				n = nmp->nm_srtt[proct[procnum]];
971 				n += NFS_ASYSCALE * NFS_HZ;
972 				if (n < NFS_ASYSCALE * NFS_HZ * 10)
973 					n = NFS_ASYSCALE * NFS_HZ * 10;
974 				nmp->nm_srtt[proct[procnum]] = n;
975 			}
976 		}
977 		nfs_rcvunlock(nmp);
978 		crit_exit();
979 
980 		/*
981 		 * If not matched to a request, drop it.
982 		 * If it's mine, get out.
983 		 */
984 		if (rep == NULL) {
985 			nfsstats.rpcunexpected++;
986 			m_freem(info.mrep);
987 			info.mrep = NULL;
988 		} else if (rep == myrep) {
989 			if (rep->r_mrep == NULL)
990 				panic("nfsreply nil");
991 			return (0);
992 		}
993 	}
994 }
995 
996 /*
997  * Run the request state machine until the target state is reached
998  * or a fatal error occurs.  The target state is not run.  Specifying
999  * a target of NFSM_STATE_DONE runs the state machine until the rpc
1000  * is complete.
1001  *
1002  * EINPROGRESS is returned for all states other then the DONE state,
1003  * indicating that the rpc is still in progress.
1004  */
1005 int
1006 nfs_request(struct nfsm_info *info, nfsm_state_t bstate, nfsm_state_t estate)
1007 {
1008 	struct nfsreq *req;
1009 
1010 	while (info->state >= bstate && info->state < estate) {
1011 		switch(info->state) {
1012 		case NFSM_STATE_SETUP:
1013 			/*
1014 			 * Setup the nfsreq.  Any error which occurs during
1015 			 * this state is fatal.
1016 			 */
1017 			info->error = nfs_request_setup(info);
1018 			if (info->error) {
1019 				info->state = NFSM_STATE_DONE;
1020 				return (info->error);
1021 			} else {
1022 				req = info->req;
1023 				req->r_mrp = &info->mrep;
1024 				req->r_mdp = &info->md;
1025 				req->r_dposp = &info->dpos;
1026 				info->state = NFSM_STATE_AUTH;
1027 			}
1028 			break;
1029 		case NFSM_STATE_AUTH:
1030 			/*
1031 			 * Authenticate the nfsreq.  Any error which occurs
1032 			 * during this state is fatal.
1033 			 */
1034 			info->error = nfs_request_auth(info->req);
1035 			if (info->error) {
1036 				info->state = NFSM_STATE_DONE;
1037 				return (info->error);
1038 			} else {
1039 				info->state = NFSM_STATE_TRY;
1040 			}
1041 			break;
1042 		case NFSM_STATE_TRY:
1043 			/*
1044 			 * Transmit or retransmit attempt.  An error in this
1045 			 * state is ignored and we always move on to the
1046 			 * next state.
1047 			 *
1048 			 * This can trivially race the receiver if the
1049 			 * request is asynchronous.  nfs_request_try()
1050 			 * will thus set the state for us and we
1051 			 * must also return immediately if we are
1052 			 * running an async state machine, because
1053 			 * info can become invalid due to races after
1054 			 * try() returns.
1055 			 */
1056 			if (info->req->r_flags & R_ASYNC) {
1057 				nfs_request_try(info->req);
1058 				if (estate == NFSM_STATE_WAITREPLY)
1059 					return (EINPROGRESS);
1060 			} else {
1061 				nfs_request_try(info->req);
1062 				info->state = NFSM_STATE_WAITREPLY;
1063 			}
1064 			break;
1065 		case NFSM_STATE_WAITREPLY:
1066 			/*
1067 			 * Wait for a reply or timeout and move on to the
1068 			 * next state.  The error returned by this state
1069 			 * is passed to the processing code in the next
1070 			 * state.
1071 			 */
1072 			info->error = nfs_request_waitreply(info->req);
1073 			info->state = NFSM_STATE_PROCESSREPLY;
1074 			break;
1075 		case NFSM_STATE_PROCESSREPLY:
1076 			/*
1077 			 * Process the reply or timeout.  Errors which occur
1078 			 * in this state may cause the state machine to
1079 			 * go back to an earlier state, and are fatal
1080 			 * otherwise.
1081 			 */
1082 			info->error = nfs_request_processreply(info,
1083 							       info->error);
1084 			switch(info->error) {
1085 			case ENEEDAUTH:
1086 				info->state = NFSM_STATE_AUTH;
1087 				break;
1088 			case EAGAIN:
1089 				info->state = NFSM_STATE_TRY;
1090 				break;
1091 			default:
1092 				/*
1093 				 * Operation complete, with or without an
1094 				 * error.  We are done.
1095 				 */
1096 				info->req = NULL;
1097 				info->state = NFSM_STATE_DONE;
1098 				return (info->error);
1099 			}
1100 			break;
1101 		case NFSM_STATE_DONE:
1102 			/*
1103 			 * Shouldn't be reached
1104 			 */
1105 			return (info->error);
1106 			/* NOT REACHED */
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * If we are done return the error code (if any).
1112 	 * Otherwise return EINPROGRESS.
1113 	 */
1114 	if (info->state == NFSM_STATE_DONE)
1115 		return (info->error);
1116 	return (EINPROGRESS);
1117 }
1118 
1119 /*
1120  * nfs_request - goes something like this
1121  *	- fill in request struct
1122  *	- links it into list
1123  *	- calls nfs_send() for first transmit
1124  *	- calls nfs_receive() to get reply
1125  *	- break down rpc header and return with nfs reply pointed to
1126  *	  by mrep or error
1127  * nb: always frees up mreq mbuf list
1128  */
1129 static int
1130 nfs_request_setup(nfsm_info_t info)
1131 {
1132 	struct nfsreq *req;
1133 	struct nfsmount *nmp;
1134 	struct mbuf *m;
1135 	int i;
1136 
1137 	/*
1138 	 * Reject requests while attempting a forced unmount.
1139 	 */
1140 	if (info->vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1141 		m_freem(info->mreq);
1142 		info->mreq = NULL;
1143 		return (EIO);
1144 	}
1145 	nmp = VFSTONFS(info->vp->v_mount);
1146 	req = kmalloc(sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
1147 	req->r_nmp = nmp;
1148 	req->r_vp = info->vp;
1149 	req->r_td = info->td;
1150 	req->r_procnum = info->procnum;
1151 	req->r_mreq = NULL;
1152 	req->r_cred = info->cred;
1153 
1154 	i = 0;
1155 	m = info->mreq;
1156 	while (m) {
1157 		i += m->m_len;
1158 		m = m->m_next;
1159 	}
1160 	req->r_mrest = info->mreq;
1161 	req->r_mrest_len = i;
1162 
1163 	/*
1164 	 * The presence of a non-NULL r_info in req indicates
1165 	 * async completion via our helper threads.  See the receiver
1166 	 * code.
1167 	 */
1168 	if (info->bio) {
1169 		req->r_info = info;
1170 		req->r_flags = R_ASYNC;
1171 	} else {
1172 		req->r_info = NULL;
1173 		req->r_flags = 0;
1174 	}
1175 	info->req = req;
1176 	return(0);
1177 }
1178 
1179 static int
1180 nfs_request_auth(struct nfsreq *rep)
1181 {
1182 	struct nfsmount *nmp = rep->r_nmp;
1183 	struct mbuf *m;
1184 	char nickv[RPCX_NICKVERF];
1185 	int error = 0, auth_len, auth_type;
1186 	int verf_len;
1187 	u_int32_t xid;
1188 	char *auth_str, *verf_str;
1189 	struct ucred *cred;
1190 
1191 	cred = rep->r_cred;
1192 	rep->r_failed_auth = 0;
1193 
1194 	/*
1195 	 * Get the RPC header with authorization.
1196 	 */
1197 	verf_str = auth_str = NULL;
1198 	if (nmp->nm_flag & NFSMNT_KERB) {
1199 		verf_str = nickv;
1200 		verf_len = sizeof (nickv);
1201 		auth_type = RPCAUTH_KERB4;
1202 		bzero((caddr_t)rep->r_key, sizeof(rep->r_key));
1203 		if (rep->r_failed_auth ||
1204 		    nfs_getnickauth(nmp, cred, &auth_str, &auth_len,
1205 				    verf_str, verf_len)) {
1206 			error = nfs_getauth(nmp, rep, cred, &auth_str,
1207 				&auth_len, verf_str, &verf_len, rep->r_key);
1208 			if (error) {
1209 				m_freem(rep->r_mrest);
1210 				rep->r_mrest = NULL;
1211 				kfree((caddr_t)rep, M_NFSREQ);
1212 				return (error);
1213 			}
1214 		}
1215 	} else {
1216 		auth_type = RPCAUTH_UNIX;
1217 		if (cred->cr_ngroups < 1)
1218 			panic("nfsreq nogrps");
1219 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
1220 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
1221 			5 * NFSX_UNSIGNED;
1222 	}
1223 	if (rep->r_mrest)
1224 		nfs_checkpkt(rep->r_mrest, rep->r_mrest_len);
1225 	m = nfsm_rpchead(cred, nmp->nm_flag, rep->r_procnum, auth_type,
1226 			auth_len, auth_str, verf_len, verf_str,
1227 			rep->r_mrest, rep->r_mrest_len, &rep->r_mheadend, &xid);
1228 	rep->r_mrest = NULL;
1229 	if (auth_str)
1230 		kfree(auth_str, M_TEMP);
1231 
1232 	/*
1233 	 * For stream protocols, insert a Sun RPC Record Mark.
1234 	 */
1235 	if (nmp->nm_sotype == SOCK_STREAM) {
1236 		M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT);
1237 		if (m == NULL) {
1238 			kfree(rep, M_NFSREQ);
1239 			return (ENOBUFS);
1240 		}
1241 		*mtod(m, u_int32_t *) = htonl(0x80000000 |
1242 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
1243 	}
1244 
1245 	nfs_checkpkt(m, m->m_pkthdr.len);
1246 
1247 	rep->r_mreq = m;
1248 	rep->r_xid = xid;
1249 	return (0);
1250 }
1251 
1252 static int
1253 nfs_request_try(struct nfsreq *rep)
1254 {
1255 	struct nfsmount *nmp = rep->r_nmp;
1256 	struct mbuf *m2;
1257 	int error;
1258 
1259 	/*
1260 	 * Request is not on any queue, only the owner has access to it
1261 	 * so it should not be locked by anyone atm.
1262 	 *
1263 	 * Interlock to prevent races.  While locked the only remote
1264 	 * action possible is for r_mrep to be set (once we enqueue it).
1265 	 */
1266 	if (rep->r_flags == 0xdeadc0de) {
1267 		print_backtrace(-1);
1268 		panic("flags nbad");
1269 	}
1270 	KKASSERT((rep->r_flags & (R_LOCKED | R_ONREQQ)) == 0);
1271 	if (nmp->nm_flag & NFSMNT_SOFT)
1272 		rep->r_retry = nmp->nm_retry;
1273 	else
1274 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
1275 	rep->r_rtt = rep->r_rexmit = 0;
1276 	if (proct[rep->r_procnum] > 0)
1277 		rep->r_flags |= R_TIMING | R_LOCKED;
1278 	else
1279 		rep->r_flags |= R_LOCKED;
1280 	rep->r_mrep = NULL;
1281 
1282 	nfsstats.rpcrequests++;
1283 
1284 	if (nmp->nm_flag & NFSMNT_FORCE) {
1285 		rep->r_flags |= R_SOFTTERM;
1286 		rep->r_flags &= ~R_LOCKED;
1287 		return (0);
1288 	}
1289 	rep->r_flags |= R_NEEDSXMIT;	/* in case send lock races us */
1290 
1291 	/*
1292 	 * Do the client side RPC.
1293 	 *
1294 	 * Chain request into list of outstanding requests. Be sure
1295 	 * to put it LAST so timer finds oldest requests first.  Note
1296 	 * that our control of R_LOCKED prevents the request from
1297 	 * getting ripped out from under us or transmitted by the
1298 	 * timer code.
1299 	 *
1300 	 * For requests with info structures we must atomically set the
1301 	 * info's state because the structure could become invalid upon
1302 	 * return due to races (i.e., if async)
1303 	 */
1304 	crit_enter();
1305 	mtx_link_init(&rep->r_link);
1306 	KKASSERT((rep->r_flags & R_ONREQQ) == 0);
1307 	TAILQ_INSERT_TAIL(&nmp->nm_reqq, rep, r_chain);
1308 	rep->r_flags |= R_ONREQQ;
1309 	++nmp->nm_reqqlen;
1310 	if (rep->r_flags & R_ASYNC)
1311 		rep->r_info->state = NFSM_STATE_WAITREPLY;
1312 	crit_exit();
1313 
1314 	error = 0;
1315 
1316 	/*
1317 	 * Send if we can.  Congestion control is not handled here any more
1318 	 * becausing trying to defer the initial send based on the nfs_timer
1319 	 * requires having a very fast nfs_timer, which is silly.
1320 	 */
1321 	if (nmp->nm_so) {
1322 		if (nmp->nm_soflags & PR_CONNREQUIRED)
1323 			error = nfs_sndlock(nmp, rep);
1324 		if (error == 0 && (rep->r_flags & R_NEEDSXMIT)) {
1325 			m2 = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
1326 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1327 			rep->r_flags &= ~R_NEEDSXMIT;
1328 			if ((rep->r_flags & R_SENT) == 0) {
1329 				rep->r_flags |= R_SENT;
1330 			}
1331 			if (nmp->nm_soflags & PR_CONNREQUIRED)
1332 				nfs_sndunlock(nmp);
1333 		}
1334 	} else {
1335 		rep->r_rtt = -1;
1336 	}
1337 	if (error == EPIPE)
1338 		error = 0;
1339 
1340 	/*
1341 	 * Release the lock.  The only remote action that may have occurred
1342 	 * would have been the setting of rep->r_mrep.  If this occured
1343 	 * and the request was async we have to move it to the reader
1344 	 * thread's queue for action.
1345 	 *
1346 	 * For async requests also make sure the reader is woken up so
1347 	 * it gets on the socket to read responses.
1348 	 */
1349 	crit_enter();
1350 	if (rep->r_flags & R_ASYNC) {
1351 		if (rep->r_mrep)
1352 			nfs_hardterm(rep, 1);
1353 		rep->r_flags &= ~R_LOCKED;
1354 		nfssvc_iod_reader_wakeup(nmp);
1355 	} else {
1356 		rep->r_flags &= ~R_LOCKED;
1357 	}
1358 	if (rep->r_flags & R_WANTED) {
1359 		rep->r_flags &= ~R_WANTED;
1360 		wakeup(rep);
1361 	}
1362 	crit_exit();
1363 	return (error);
1364 }
1365 
1366 /*
1367  * This code is only called for synchronous requests.  Completed synchronous
1368  * requests are left on reqq and we remove them before moving on to the
1369  * processing state.
1370  */
1371 static int
1372 nfs_request_waitreply(struct nfsreq *rep)
1373 {
1374 	struct nfsmount *nmp = rep->r_nmp;
1375 	int error;
1376 
1377 	KKASSERT((rep->r_flags & R_ASYNC) == 0);
1378 
1379 	/*
1380 	 * Wait until the request is finished.
1381 	 */
1382 	error = nfs_reply(nmp, rep);
1383 
1384 	/*
1385 	 * RPC done, unlink the request, but don't rip it out from under
1386 	 * the callout timer.
1387 	 *
1388 	 * Once unlinked no other receiver or the timer will have
1389 	 * visibility, so we do not have to set R_LOCKED.
1390 	 */
1391 	crit_enter();
1392 	while (rep->r_flags & R_LOCKED) {
1393 		rep->r_flags |= R_WANTED;
1394 		tsleep(rep, 0, "nfstrac", 0);
1395 	}
1396 	KKASSERT(rep->r_flags & R_ONREQQ);
1397 	TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
1398 	rep->r_flags &= ~R_ONREQQ;
1399 	--nmp->nm_reqqlen;
1400 	if (TAILQ_FIRST(&nmp->nm_bioq) &&
1401 	    nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
1402 		nfssvc_iod_writer_wakeup(nmp);
1403 	}
1404 	crit_exit();
1405 
1406 	/*
1407 	 * Decrement the outstanding request count.
1408 	 */
1409 	if (rep->r_flags & R_SENT) {
1410 		rep->r_flags &= ~R_SENT;
1411 	}
1412 	return (error);
1413 }
1414 
1415 /*
1416  * Process reply with error returned from nfs_requet_waitreply().
1417  *
1418  * Returns EAGAIN if it wants us to loop up to nfs_request_try() again.
1419  * Returns ENEEDAUTH if it wants us to loop up to nfs_request_auth() again.
1420  */
1421 static int
1422 nfs_request_processreply(nfsm_info_t info, int error)
1423 {
1424 	struct nfsreq *req = info->req;
1425 	struct nfsmount *nmp = req->r_nmp;
1426 	u_int32_t *tl;
1427 	int verf_type;
1428 	int i;
1429 
1430 	/*
1431 	 * If there was a successful reply and a tprintf msg.
1432 	 * tprintf a response.
1433 	 */
1434 	if (error == 0 && (req->r_flags & R_TPRINTFMSG)) {
1435 		nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1436 		    "is alive again");
1437 	}
1438 	info->mrep = req->r_mrep;
1439 	info->md = req->r_md;
1440 	info->dpos = req->r_dpos;
1441 	if (error) {
1442 		m_freem(req->r_mreq);
1443 		req->r_mreq = NULL;
1444 		kfree(req, M_NFSREQ);
1445 		info->req = NULL;
1446 		return (error);
1447 	}
1448 
1449 	/*
1450 	 * break down the rpc header and check if ok
1451 	 */
1452 	NULLOUT(tl = nfsm_dissect(info, 3 * NFSX_UNSIGNED));
1453 	if (*tl++ == rpc_msgdenied) {
1454 		if (*tl == rpc_mismatch) {
1455 			error = EOPNOTSUPP;
1456 		} else if ((nmp->nm_flag & NFSMNT_KERB) &&
1457 			   *tl++ == rpc_autherr) {
1458 			if (req->r_failed_auth == 0) {
1459 				req->r_failed_auth++;
1460 				req->r_mheadend->m_next = NULL;
1461 				m_freem(info->mrep);
1462 				info->mrep = NULL;
1463 				m_freem(req->r_mreq);
1464 				req->r_mreq = NULL;
1465 				return (ENEEDAUTH);
1466 			} else {
1467 				error = EAUTH;
1468 			}
1469 		} else {
1470 			error = EACCES;
1471 		}
1472 		m_freem(info->mrep);
1473 		info->mrep = NULL;
1474 		m_freem(req->r_mreq);
1475 		req->r_mreq = NULL;
1476 		kfree(req, M_NFSREQ);
1477 		info->req = NULL;
1478 		return (error);
1479 	}
1480 
1481 	/*
1482 	 * Grab any Kerberos verifier, otherwise just throw it away.
1483 	 */
1484 	verf_type = fxdr_unsigned(int, *tl++);
1485 	i = fxdr_unsigned(int32_t, *tl);
1486 	if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1487 		error = nfs_savenickauth(nmp, req->r_cred, i, req->r_key,
1488 					 &info->md, &info->dpos, info->mrep);
1489 		if (error)
1490 			goto nfsmout;
1491 	} else if (i > 0) {
1492 		ERROROUT(nfsm_adv(info, nfsm_rndup(i)));
1493 	}
1494 	NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1495 	/* 0 == ok */
1496 	if (*tl == 0) {
1497 		NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1498 		if (*tl != 0) {
1499 			error = fxdr_unsigned(int, *tl);
1500 
1501 			/*
1502 			 * Does anyone even implement this?  Just impose
1503 			 * a 1-second delay.
1504 			 */
1505 			if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1506 				error == NFSERR_TRYLATER) {
1507 				m_freem(info->mrep);
1508 				info->mrep = NULL;
1509 				error = 0;
1510 
1511 				tsleep((caddr_t)&lbolt, 0, "nqnfstry", 0);
1512 				return (EAGAIN);	/* goto tryagain */
1513 			}
1514 
1515 			/*
1516 			 * If the File Handle was stale, invalidate the
1517 			 * lookup cache, just in case.
1518 			 *
1519 			 * To avoid namecache<->vnode deadlocks we must
1520 			 * release the vnode lock if we hold it.
1521 			 */
1522 			if (error == ESTALE) {
1523 				struct vnode *vp = req->r_vp;
1524 				int ltype;
1525 
1526 				ltype = lockstatus(&vp->v_lock, curthread);
1527 				if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1528 					lockmgr(&vp->v_lock, LK_RELEASE);
1529 				cache_inval_vp(vp, CINV_CHILDREN);
1530 				if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1531 					lockmgr(&vp->v_lock, ltype);
1532 			}
1533 			if (nmp->nm_flag & NFSMNT_NFSV3) {
1534 				KKASSERT(*req->r_mrp == info->mrep);
1535 				KKASSERT(*req->r_mdp == info->md);
1536 				KKASSERT(*req->r_dposp == info->dpos);
1537 				error |= NFSERR_RETERR;
1538 			} else {
1539 				m_freem(info->mrep);
1540 				info->mrep = NULL;
1541 			}
1542 			m_freem(req->r_mreq);
1543 			req->r_mreq = NULL;
1544 			kfree(req, M_NFSREQ);
1545 			info->req = NULL;
1546 			return (error);
1547 		}
1548 
1549 		KKASSERT(*req->r_mrp == info->mrep);
1550 		KKASSERT(*req->r_mdp == info->md);
1551 		KKASSERT(*req->r_dposp == info->dpos);
1552 		m_freem(req->r_mreq);
1553 		req->r_mreq = NULL;
1554 		kfree(req, M_NFSREQ);
1555 		return (0);
1556 	}
1557 	m_freem(info->mrep);
1558 	info->mrep = NULL;
1559 	error = EPROTONOSUPPORT;
1560 nfsmout:
1561 	m_freem(req->r_mreq);
1562 	req->r_mreq = NULL;
1563 	kfree(req, M_NFSREQ);
1564 	info->req = NULL;
1565 	return (error);
1566 }
1567 
1568 #ifndef NFS_NOSERVER
1569 /*
1570  * Generate the rpc reply header
1571  * siz arg. is used to decide if adding a cluster is worthwhile
1572  */
1573 int
1574 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
1575 	    int err, struct mbuf **mrq, struct mbuf **mbp, caddr_t *bposp)
1576 {
1577 	u_int32_t *tl;
1578 	struct nfsm_info info;
1579 
1580 	siz += RPC_REPLYSIZ;
1581 	info.mb = m_getl(max_hdr + siz, MB_WAIT, MT_DATA, M_PKTHDR, NULL);
1582 	info.mreq = info.mb;
1583 	info.mreq->m_pkthdr.len = 0;
1584 	/*
1585 	 * If this is not a cluster, try and leave leading space
1586 	 * for the lower level headers.
1587 	 */
1588 	if ((max_hdr + siz) < MINCLSIZE)
1589 		info.mreq->m_data += max_hdr;
1590 	tl = mtod(info.mreq, u_int32_t *);
1591 	info.mreq->m_len = 6 * NFSX_UNSIGNED;
1592 	info.bpos = ((caddr_t)tl) + info.mreq->m_len;
1593 	*tl++ = txdr_unsigned(nd->nd_retxid);
1594 	*tl++ = rpc_reply;
1595 	if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1596 		*tl++ = rpc_msgdenied;
1597 		if (err & NFSERR_AUTHERR) {
1598 			*tl++ = rpc_autherr;
1599 			*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1600 			info.mreq->m_len -= NFSX_UNSIGNED;
1601 			info.bpos -= NFSX_UNSIGNED;
1602 		} else {
1603 			*tl++ = rpc_mismatch;
1604 			*tl++ = txdr_unsigned(RPC_VER2);
1605 			*tl = txdr_unsigned(RPC_VER2);
1606 		}
1607 	} else {
1608 		*tl++ = rpc_msgaccepted;
1609 
1610 		/*
1611 		 * For Kerberos authentication, we must send the nickname
1612 		 * verifier back, otherwise just RPCAUTH_NULL.
1613 		 */
1614 		if (nd->nd_flag & ND_KERBFULL) {
1615 		    struct nfsuid *nuidp;
1616 		    struct timeval ktvout;
1617 
1618 		    for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1619 			nuidp != NULL; nuidp = nuidp->nu_hash.le_next) {
1620 			if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1621 			    (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1622 			     &nuidp->nu_haddr, nd->nd_nam2)))
1623 			    break;
1624 		    }
1625 		    if (nuidp) {
1626 			/*
1627 			 * Encrypt the timestamp in ecb mode using the
1628 			 * session key.
1629 			 */
1630 #ifdef NFSKERB
1631 			XXX
1632 #else
1633 			ktvout.tv_sec = 0;
1634 			ktvout.tv_usec = 0;
1635 #endif
1636 
1637 			*tl++ = rpc_auth_kerb;
1638 			*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1639 			*tl = ktvout.tv_sec;
1640 			tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
1641 			*tl++ = ktvout.tv_usec;
1642 			*tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1643 		    } else {
1644 			*tl++ = 0;
1645 			*tl++ = 0;
1646 		    }
1647 		} else {
1648 			*tl++ = 0;
1649 			*tl++ = 0;
1650 		}
1651 		switch (err) {
1652 		case EPROGUNAVAIL:
1653 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1654 			break;
1655 		case EPROGMISMATCH:
1656 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1657 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1658 			*tl++ = txdr_unsigned(2);
1659 			*tl = txdr_unsigned(3);
1660 			break;
1661 		case EPROCUNAVAIL:
1662 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1663 			break;
1664 		case EBADRPC:
1665 			*tl = txdr_unsigned(RPC_GARBAGE);
1666 			break;
1667 		default:
1668 			*tl = 0;
1669 			if (err != NFSERR_RETVOID) {
1670 				tl = nfsm_build(&info, NFSX_UNSIGNED);
1671 				if (err)
1672 				    *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1673 				else
1674 				    *tl = 0;
1675 			}
1676 			break;
1677 		};
1678 	}
1679 
1680 	if (mrq != NULL)
1681 	    *mrq = info.mreq;
1682 	*mbp = info.mb;
1683 	*bposp = info.bpos;
1684 	if (err != 0 && err != NFSERR_RETVOID)
1685 		nfsstats.srvrpc_errs++;
1686 	return (0);
1687 }
1688 
1689 
1690 #endif /* NFS_NOSERVER */
1691 
1692 /*
1693  * Nfs timer routine.
1694  *
1695  * Scan the nfsreq list and retranmit any requests that have timed out
1696  * To avoid retransmission attempts on STREAM sockets (in the future) make
1697  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1698  *
1699  * Requests with attached responses, terminated requests, and
1700  * locked requests are ignored.  Locked requests will be picked up
1701  * in a later timer call.
1702  */
1703 void
1704 nfs_timer_callout(void *arg /* never used */)
1705 {
1706 	struct nfsmount *nmp;
1707 	struct nfsreq *req;
1708 #ifndef NFS_NOSERVER
1709 	struct nfssvc_sock *slp;
1710 	u_quad_t cur_usec;
1711 #endif /* NFS_NOSERVER */
1712 
1713 	lwkt_gettoken(&nfs_token);
1714 	TAILQ_FOREACH(nmp, &nfs_mountq, nm_entry) {
1715 		lwkt_gettoken(&nmp->nm_token);
1716 		TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1717 			KKASSERT(nmp == req->r_nmp);
1718 			if (req->r_mrep)
1719 				continue;
1720 			if (req->r_flags & (R_SOFTTERM | R_LOCKED))
1721 				continue;
1722 
1723 			/*
1724 			 * Handle timeout/retry.  Be sure to process r_mrep
1725 			 * for async requests that completed while we had
1726 			 * the request locked or they will hang in the reqq
1727 			 * forever.
1728 			 */
1729 			req->r_flags |= R_LOCKED;
1730 			if (nfs_sigintr(nmp, req, req->r_td)) {
1731 				nfs_softterm(req, 1);
1732 				req->r_flags &= ~R_LOCKED;
1733 			} else {
1734 				nfs_timer_req(req);
1735 				if (req->r_flags & R_ASYNC) {
1736 					if (req->r_mrep)
1737 						nfs_hardterm(req, 1);
1738 					req->r_flags &= ~R_LOCKED;
1739 					nfssvc_iod_reader_wakeup(nmp);
1740 				} else {
1741 					req->r_flags &= ~R_LOCKED;
1742 				}
1743 			}
1744 			if (req->r_flags & R_WANTED) {
1745 				req->r_flags &= ~R_WANTED;
1746 				wakeup(req);
1747 			}
1748 		}
1749 		lwkt_reltoken(&nmp->nm_token);
1750 	}
1751 #ifndef NFS_NOSERVER
1752 
1753 	/*
1754 	 * Scan the write gathering queues for writes that need to be
1755 	 * completed now.
1756 	 */
1757 	cur_usec = nfs_curusec();
1758 
1759 	TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1760 		/* XXX race against removal */
1761 		if (lwkt_trytoken(&slp->ns_token)) {
1762 			if (slp->ns_tq.lh_first &&
1763 			    (slp->ns_tq.lh_first->nd_time <= cur_usec)) {
1764 				nfsrv_wakenfsd(slp, 1);
1765 			}
1766 			lwkt_reltoken(&slp->ns_token);
1767 		}
1768 	}
1769 #endif /* NFS_NOSERVER */
1770 
1771 	callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer_callout, NULL);
1772 	lwkt_reltoken(&nfs_token);
1773 }
1774 
1775 static
1776 void
1777 nfs_timer_req(struct nfsreq *req)
1778 {
1779 	struct thread *td = &thread0; /* XXX for creds, will break if sleep */
1780 	struct nfsmount *nmp = req->r_nmp;
1781 	struct mbuf *m;
1782 	struct socket *so;
1783 	int timeo;
1784 	int error;
1785 
1786 	/*
1787 	 * rtt ticks and timeout calculation.  Return if the timeout
1788 	 * has not been reached yet, unless the packet is flagged
1789 	 * for an immediate send.
1790 	 *
1791 	 * The mean rtt doesn't help when we get random I/Os, we have
1792 	 * to multiply by fairly large numbers.
1793 	 */
1794 	if (req->r_rtt >= 0) {
1795 		/*
1796 		 * Calculate the timeout to test against.
1797 		 */
1798 		req->r_rtt++;
1799 		if (nmp->nm_flag & NFSMNT_DUMBTIMR) {
1800 			timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1801 		} else if (req->r_flags & R_TIMING) {
1802 			timeo = NFS_SRTT(req) + NFS_SDRTT(req);
1803 		} else {
1804 			timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1805 		}
1806 		timeo *= multt[req->r_procnum];
1807 		/* timeo is still scaled by SCALE_BITS */
1808 
1809 #define NFSFS	(NFS_RTT_SCALE * NFS_HZ)
1810 		if (req->r_flags & R_TIMING) {
1811 			static long last_time;
1812 			if (nfs_showrtt && last_time != time_second) {
1813 				kprintf("rpccmd %d NFS SRTT %d SDRTT %d "
1814 					"timeo %d.%03d\n",
1815 					proct[req->r_procnum],
1816 					NFS_SRTT(req), NFS_SDRTT(req),
1817 					timeo / NFSFS,
1818 					timeo % NFSFS * 1000 /  NFSFS);
1819 				last_time = time_second;
1820 			}
1821 		}
1822 #undef NFSFS
1823 
1824 		/*
1825 		 * deal with nfs_timer jitter.
1826 		 */
1827 		timeo = (timeo >> NFS_RTT_SCALE_BITS) + 1;
1828 		if (timeo < 2)
1829 			timeo = 2;
1830 
1831 		if (nmp->nm_timeouts > 0)
1832 			timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1833 		if (timeo > NFS_MAXTIMEO)
1834 			timeo = NFS_MAXTIMEO;
1835 		if (req->r_rtt <= timeo) {
1836 			if ((req->r_flags & R_NEEDSXMIT) == 0)
1837 				return;
1838 		} else if (nmp->nm_timeouts < 8) {
1839 			nmp->nm_timeouts++;
1840 		}
1841 	}
1842 
1843 	/*
1844 	 * Check for server not responding
1845 	 */
1846 	if ((req->r_flags & R_TPRINTFMSG) == 0 &&
1847 	     req->r_rexmit > nmp->nm_deadthresh) {
1848 		nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1849 			"not responding");
1850 		req->r_flags |= R_TPRINTFMSG;
1851 	}
1852 	if (req->r_rexmit >= req->r_retry) {	/* too many */
1853 		nfsstats.rpctimeouts++;
1854 		nfs_softterm(req, 1);
1855 		return;
1856 	}
1857 
1858 	/*
1859 	 * Generally disable retransmission on reliable sockets,
1860 	 * unless the request is flagged for immediate send.
1861 	 */
1862 	if (nmp->nm_sotype != SOCK_DGRAM) {
1863 		if (++req->r_rexmit > NFS_MAXREXMIT)
1864 			req->r_rexmit = NFS_MAXREXMIT;
1865 		if ((req->r_flags & R_NEEDSXMIT) == 0)
1866 			return;
1867 	}
1868 
1869 	/*
1870 	 * Stop here if we do not have a socket!
1871 	 */
1872 	if ((so = nmp->nm_so) == NULL)
1873 		return;
1874 
1875 	/*
1876 	 * If there is enough space and the window allows.. resend it.
1877 	 *
1878 	 * r_rtt is left intact in case we get an answer after the
1879 	 * retry that was a reply to the original packet.
1880 	 *
1881 	 * NOTE: so_pru_send()
1882 	 */
1883 	if (ssb_space(&so->so_snd) >= req->r_mreq->m_pkthdr.len &&
1884 	    (req->r_flags & (R_SENT | R_NEEDSXMIT)) &&
1885 	   (m = m_copym(req->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){
1886 		if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1887 		    error = so_pru_send(so, 0, m, NULL, NULL, td);
1888 		else
1889 		    error = so_pru_send(so, 0, m, nmp->nm_nam, NULL, td);
1890 		if (error) {
1891 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1892 				so->so_error = 0;
1893 			req->r_flags |= R_NEEDSXMIT;
1894 		} else if (req->r_mrep == NULL) {
1895 			/*
1896 			 * Iff first send, start timing
1897 			 * else turn timing off, backoff timer
1898 			 * and divide congestion window by 2.
1899 			 *
1900 			 * It is possible for the so_pru_send() to
1901 			 * block and for us to race a reply so we
1902 			 * only do this if the reply field has not
1903 			 * been filled in.  R_LOCKED will prevent
1904 			 * the request from being ripped out from under
1905 			 * us entirely.
1906 			 *
1907 			 * Record the last resent procnum to aid us
1908 			 * in duplicate detection on receive.
1909 			 */
1910 			if ((req->r_flags & R_NEEDSXMIT) == 0) {
1911 				if (nfs_showrexmit)
1912 					kprintf("X");
1913 				if (++req->r_rexmit > NFS_MAXREXMIT)
1914 					req->r_rexmit = NFS_MAXREXMIT;
1915 				nmp->nm_maxasync_scaled >>= 1;
1916 				if (nmp->nm_maxasync_scaled < NFS_MINASYNC_SCALED)
1917 					nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
1918 				nfsstats.rpcretries++;
1919 				nmp->nm_lastreprocnum = req->r_procnum;
1920 			} else {
1921 				req->r_flags |= R_SENT;
1922 				req->r_flags &= ~R_NEEDSXMIT;
1923 			}
1924 		}
1925 	}
1926 }
1927 
1928 /*
1929  * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1930  * wait for all requests to complete. This is used by forced unmounts
1931  * to terminate any outstanding RPCs.
1932  *
1933  * Locked requests cannot be canceled but will be marked for
1934  * soft-termination.
1935  */
1936 int
1937 nfs_nmcancelreqs(struct nfsmount *nmp)
1938 {
1939 	struct nfsreq *req;
1940 	int i;
1941 
1942 	crit_enter();
1943 	TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1944 		if (req->r_mrep != NULL || (req->r_flags & R_SOFTTERM))
1945 			continue;
1946 		nfs_softterm(req, 0);
1947 	}
1948 	/* XXX  the other two queues as well */
1949 	crit_exit();
1950 
1951 	for (i = 0; i < 30; i++) {
1952 		crit_enter();
1953 		TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1954 			if (nmp == req->r_nmp)
1955 				break;
1956 		}
1957 		crit_exit();
1958 		if (req == NULL)
1959 			return (0);
1960 		tsleep(&lbolt, 0, "nfscancel", 0);
1961 	}
1962 	return (EBUSY);
1963 }
1964 
1965 /*
1966  * Soft-terminate a request, effectively marking it as failed.
1967  *
1968  * Must be called from within a critical section.
1969  */
1970 static void
1971 nfs_softterm(struct nfsreq *rep, int islocked)
1972 {
1973 	rep->r_flags |= R_SOFTTERM;
1974 	nfs_hardterm(rep, islocked);
1975 }
1976 
1977 /*
1978  * Hard-terminate a request, typically after getting a response.
1979  *
1980  * The state machine can still decide to re-issue it later if necessary.
1981  *
1982  * Must be called from within a critical section.
1983  */
1984 static void
1985 nfs_hardterm(struct nfsreq *rep, int islocked)
1986 {
1987 	struct nfsmount *nmp = rep->r_nmp;
1988 
1989 	/*
1990 	 * The nm_send count is decremented now to avoid deadlocks
1991 	 * when the process in soreceive() hasn't yet managed to send
1992 	 * its own request.
1993 	 */
1994 	if (rep->r_flags & R_SENT) {
1995 		rep->r_flags &= ~R_SENT;
1996 	}
1997 
1998 	/*
1999 	 * If we locked the request or nobody else has locked the request,
2000 	 * and the request is async, we can move it to the reader thread's
2001 	 * queue now and fix up the state.
2002 	 *
2003 	 * If we locked the request or nobody else has locked the request,
2004 	 * we can wake up anyone blocked waiting for a response on the
2005 	 * request.
2006 	 */
2007 	if (islocked || (rep->r_flags & R_LOCKED) == 0) {
2008 		if ((rep->r_flags & (R_ONREQQ | R_ASYNC)) ==
2009 		    (R_ONREQQ | R_ASYNC)) {
2010 			rep->r_flags &= ~R_ONREQQ;
2011 			TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
2012 			--nmp->nm_reqqlen;
2013 			TAILQ_INSERT_TAIL(&nmp->nm_reqrxq, rep, r_chain);
2014 			KKASSERT(rep->r_info->state == NFSM_STATE_TRY ||
2015 				 rep->r_info->state == NFSM_STATE_WAITREPLY);
2016 			rep->r_info->state = NFSM_STATE_PROCESSREPLY;
2017 			nfssvc_iod_reader_wakeup(nmp);
2018 			if (TAILQ_FIRST(&nmp->nm_bioq) &&
2019 			    nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
2020 				nfssvc_iod_writer_wakeup(nmp);
2021 			}
2022 		}
2023 		mtx_abort_ex_link(&nmp->nm_rxlock, &rep->r_link);
2024 	}
2025 }
2026 
2027 /*
2028  * Test for a termination condition pending on the process.
2029  * This is used for NFSMNT_INT mounts.
2030  */
2031 int
2032 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
2033 {
2034 	sigset_t tmpset;
2035 	struct proc *p;
2036 	struct lwp *lp;
2037 
2038 	if (rep && (rep->r_flags & R_SOFTTERM))
2039 		return (EINTR);
2040 	/* Terminate all requests while attempting a forced unmount. */
2041 	if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
2042 		return (EINTR);
2043 	if (!(nmp->nm_flag & NFSMNT_INT))
2044 		return (0);
2045 	/* td might be NULL YYY */
2046 	if (td == NULL || (p = td->td_proc) == NULL)
2047 		return (0);
2048 
2049 	lp = td->td_lwp;
2050 	tmpset = lwp_sigpend(lp);
2051 	SIGSETNAND(tmpset, lp->lwp_sigmask);
2052 	SIGSETNAND(tmpset, p->p_sigignore);
2053 	if (SIGNOTEMPTY(tmpset) && NFSINT_SIGMASK(tmpset))
2054 		return (EINTR);
2055 
2056 	return (0);
2057 }
2058 
2059 /*
2060  * Lock a socket against others.
2061  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
2062  * and also to avoid race conditions between the processes with nfs requests
2063  * in progress when a reconnect is necessary.
2064  */
2065 int
2066 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
2067 {
2068 	mtx_t mtx = &nmp->nm_txlock;
2069 	struct thread *td;
2070 	int slptimeo;
2071 	int slpflag;
2072 	int error;
2073 
2074 	slpflag = 0;
2075 	slptimeo = 0;
2076 	td = rep ? rep->r_td : NULL;
2077 	if (nmp->nm_flag & NFSMNT_INT)
2078 		slpflag = PCATCH;
2079 
2080 	while ((error = mtx_lock_ex_try(mtx)) != 0) {
2081 		if (nfs_sigintr(nmp, rep, td)) {
2082 			error = EINTR;
2083 			break;
2084 		}
2085 		error = mtx_lock_ex(mtx, "nfsndlck", slpflag, slptimeo);
2086 		if (error == 0)
2087 			break;
2088 		if (slpflag == PCATCH) {
2089 			slpflag = 0;
2090 			slptimeo = 2 * hz;
2091 		}
2092 	}
2093 	/* Always fail if our request has been cancelled. */
2094 	if (rep && (rep->r_flags & R_SOFTTERM)) {
2095 		if (error == 0)
2096 			mtx_unlock(mtx);
2097 		error = EINTR;
2098 	}
2099 	return (error);
2100 }
2101 
2102 /*
2103  * Unlock the stream socket for others.
2104  */
2105 void
2106 nfs_sndunlock(struct nfsmount *nmp)
2107 {
2108 	mtx_unlock(&nmp->nm_txlock);
2109 }
2110 
2111 /*
2112  * Lock the receiver side of the socket.
2113  *
2114  * rep may be NULL.
2115  */
2116 static int
2117 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
2118 {
2119 	mtx_t mtx = &nmp->nm_rxlock;
2120 	int slpflag;
2121 	int slptimeo;
2122 	int error;
2123 
2124 	/*
2125 	 * Unconditionally check for completion in case another nfsiod
2126 	 * get the packet while the caller was blocked, before the caller
2127 	 * called us.  Packet reception is handled by mainline code which
2128 	 * is protected by the BGL at the moment.
2129 	 *
2130 	 * We do not strictly need the second check just before the
2131 	 * tsleep(), but it's good defensive programming.
2132 	 */
2133 	if (rep && rep->r_mrep != NULL)
2134 		return (EALREADY);
2135 
2136 	if (nmp->nm_flag & NFSMNT_INT)
2137 		slpflag = PCATCH;
2138 	else
2139 		slpflag = 0;
2140 	slptimeo = 0;
2141 
2142 	while ((error = mtx_lock_ex_try(mtx)) != 0) {
2143 		if (nfs_sigintr(nmp, rep, (rep ? rep->r_td : NULL))) {
2144 			error = EINTR;
2145 			break;
2146 		}
2147 		if (rep && rep->r_mrep != NULL) {
2148 			error = EALREADY;
2149 			break;
2150 		}
2151 
2152 		/*
2153 		 * NOTE: can return ENOLCK, but in that case rep->r_mrep
2154 		 *       will already be set.
2155 		 */
2156 		if (rep) {
2157 			error = mtx_lock_ex_link(mtx, &rep->r_link,
2158 						 "nfsrcvlk",
2159 						 slpflag, slptimeo);
2160 		} else {
2161 			error = mtx_lock_ex(mtx, "nfsrcvlk", slpflag, slptimeo);
2162 		}
2163 		if (error == 0)
2164 			break;
2165 
2166 		/*
2167 		 * If our reply was recieved while we were sleeping,
2168 		 * then just return without taking the lock to avoid a
2169 		 * situation where a single iod could 'capture' the
2170 		 * recieve lock.
2171 		 */
2172 		if (rep && rep->r_mrep != NULL) {
2173 			error = EALREADY;
2174 			break;
2175 		}
2176 		if (slpflag == PCATCH) {
2177 			slpflag = 0;
2178 			slptimeo = 2 * hz;
2179 		}
2180 	}
2181 	if (error == 0) {
2182 		if (rep && rep->r_mrep != NULL) {
2183 			error = EALREADY;
2184 			mtx_unlock(mtx);
2185 		}
2186 	}
2187 	return (error);
2188 }
2189 
2190 /*
2191  * Unlock the stream socket for others.
2192  */
2193 static void
2194 nfs_rcvunlock(struct nfsmount *nmp)
2195 {
2196 	mtx_unlock(&nmp->nm_rxlock);
2197 }
2198 
2199 /*
2200  * nfs_realign:
2201  *
2202  * Check for badly aligned mbuf data and realign by copying the unaligned
2203  * portion of the data into a new mbuf chain and freeing the portions
2204  * of the old chain that were replaced.
2205  *
2206  * We cannot simply realign the data within the existing mbuf chain
2207  * because the underlying buffers may contain other rpc commands and
2208  * we cannot afford to overwrite them.
2209  *
2210  * We would prefer to avoid this situation entirely.  The situation does
2211  * not occur with NFS/UDP and is supposed to only occassionally occur
2212  * with TCP.  Use vfs.nfs.realign_count and realign_test to check this.
2213  *
2214  * NOTE!  MB_DONTWAIT cannot be used here.  The mbufs must be acquired
2215  *	  because the rpc request OR reply cannot be thrown away.  TCP NFS
2216  *	  mounts do not retry their RPCs unless the TCP connection itself
2217  *	  is dropped so throwing away a RPC will basically cause the NFS
2218  *	  operation to lockup indefinitely.
2219  */
2220 static void
2221 nfs_realign(struct mbuf **pm, int hsiz)
2222 {
2223 	struct mbuf *m;
2224 	struct mbuf *n = NULL;
2225 
2226 	/*
2227 	 * Check for misalignemnt
2228 	 */
2229 	++nfs_realign_test;
2230 	while ((m = *pm) != NULL) {
2231 		if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3))
2232 			break;
2233 		pm = &m->m_next;
2234 	}
2235 
2236 	/*
2237 	 * If misalignment found make a completely new copy.
2238 	 */
2239 	if (m) {
2240 		++nfs_realign_count;
2241 		n = m_dup_data(m, MB_WAIT);
2242 		m_freem(*pm);
2243 		*pm = n;
2244 	}
2245 }
2246 
2247 #ifndef NFS_NOSERVER
2248 
2249 /*
2250  * Parse an RPC request
2251  * - verify it
2252  * - fill in the cred struct.
2253  */
2254 int
2255 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
2256 {
2257 	int len, i;
2258 	u_int32_t *tl;
2259 	struct uio uio;
2260 	struct iovec iov;
2261 	caddr_t cp;
2262 	u_int32_t nfsvers, auth_type;
2263 	uid_t nickuid;
2264 	int error = 0, ticklen;
2265 	struct nfsuid *nuidp;
2266 	struct timeval tvin, tvout;
2267 	struct nfsm_info info;
2268 #if 0				/* until encrypted keys are implemented */
2269 	NFSKERBKEYSCHED_T keys;	/* stores key schedule */
2270 #endif
2271 
2272 	info.mrep = nd->nd_mrep;
2273 	info.md = nd->nd_md;
2274 	info.dpos = nd->nd_dpos;
2275 
2276 	if (has_header) {
2277 		NULLOUT(tl = nfsm_dissect(&info, 10 * NFSX_UNSIGNED));
2278 		nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
2279 		if (*tl++ != rpc_call) {
2280 			m_freem(info.mrep);
2281 			return (EBADRPC);
2282 		}
2283 	} else {
2284 		NULLOUT(tl = nfsm_dissect(&info, 8 * NFSX_UNSIGNED));
2285 	}
2286 	nd->nd_repstat = 0;
2287 	nd->nd_flag = 0;
2288 	if (*tl++ != rpc_vers) {
2289 		nd->nd_repstat = ERPCMISMATCH;
2290 		nd->nd_procnum = NFSPROC_NOOP;
2291 		return (0);
2292 	}
2293 	if (*tl != nfs_prog) {
2294 		nd->nd_repstat = EPROGUNAVAIL;
2295 		nd->nd_procnum = NFSPROC_NOOP;
2296 		return (0);
2297 	}
2298 	tl++;
2299 	nfsvers = fxdr_unsigned(u_int32_t, *tl++);
2300 	if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
2301 		nd->nd_repstat = EPROGMISMATCH;
2302 		nd->nd_procnum = NFSPROC_NOOP;
2303 		return (0);
2304 	}
2305 	if (nfsvers == NFS_VER3)
2306 		nd->nd_flag = ND_NFSV3;
2307 	nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
2308 	if (nd->nd_procnum == NFSPROC_NULL)
2309 		return (0);
2310 	if (nd->nd_procnum >= NFS_NPROCS ||
2311 		(nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
2312 		(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
2313 		nd->nd_repstat = EPROCUNAVAIL;
2314 		nd->nd_procnum = NFSPROC_NOOP;
2315 		return (0);
2316 	}
2317 	if ((nd->nd_flag & ND_NFSV3) == 0)
2318 		nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
2319 	auth_type = *tl++;
2320 	len = fxdr_unsigned(int, *tl++);
2321 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2322 		m_freem(info.mrep);
2323 		return (EBADRPC);
2324 	}
2325 
2326 	nd->nd_flag &= ~ND_KERBAUTH;
2327 	/*
2328 	 * Handle auth_unix or auth_kerb.
2329 	 */
2330 	if (auth_type == rpc_auth_unix) {
2331 		len = fxdr_unsigned(int, *++tl);
2332 		if (len < 0 || len > NFS_MAXNAMLEN) {
2333 			m_freem(info.mrep);
2334 			return (EBADRPC);
2335 		}
2336 		ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2337 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2338 		bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
2339 		nd->nd_cr.cr_ref = 1;
2340 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2341 		nd->nd_cr.cr_ruid = nd->nd_cr.cr_svuid = nd->nd_cr.cr_uid;
2342 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2343 		nd->nd_cr.cr_rgid = nd->nd_cr.cr_svgid = nd->nd_cr.cr_gid;
2344 		len = fxdr_unsigned(int, *tl);
2345 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2346 			m_freem(info.mrep);
2347 			return (EBADRPC);
2348 		}
2349 		NULLOUT(tl = nfsm_dissect(&info, (len + 2) * NFSX_UNSIGNED));
2350 		for (i = 1; i <= len; i++)
2351 		    if (i < NGROUPS)
2352 			nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2353 		    else
2354 			tl++;
2355 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2356 		if (nd->nd_cr.cr_ngroups > 1)
2357 		    nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
2358 		len = fxdr_unsigned(int, *++tl);
2359 		if (len < 0 || len > RPCAUTH_MAXSIZ) {
2360 			m_freem(info.mrep);
2361 			return (EBADRPC);
2362 		}
2363 		if (len > 0) {
2364 			ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2365 		}
2366 	} else if (auth_type == rpc_auth_kerb) {
2367 		switch (fxdr_unsigned(int, *tl++)) {
2368 		case RPCAKN_FULLNAME:
2369 			ticklen = fxdr_unsigned(int, *tl);
2370 			*((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2371 			uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2372 			nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2373 			if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2374 				m_freem(info.mrep);
2375 				return (EBADRPC);
2376 			}
2377 			uio.uio_offset = 0;
2378 			uio.uio_iov = &iov;
2379 			uio.uio_iovcnt = 1;
2380 			uio.uio_segflg = UIO_SYSSPACE;
2381 			iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
2382 			iov.iov_len = RPCAUTH_MAXSIZ - 4;
2383 			ERROROUT(nfsm_mtouio(&info, &uio, uio.uio_resid));
2384 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2385 			if (*tl++ != rpc_auth_kerb ||
2386 				fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2387 				kprintf("Bad kerb verifier\n");
2388 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2389 				nd->nd_procnum = NFSPROC_NOOP;
2390 				return (0);
2391 			}
2392 			NULLOUT(cp = nfsm_dissect(&info, 4 * NFSX_UNSIGNED));
2393 			tl = (u_int32_t *)cp;
2394 			if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2395 				kprintf("Not fullname kerb verifier\n");
2396 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2397 				nd->nd_procnum = NFSPROC_NOOP;
2398 				return (0);
2399 			}
2400 			cp += NFSX_UNSIGNED;
2401 			bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
2402 			nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2403 			nd->nd_flag |= ND_KERBFULL;
2404 			nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2405 			break;
2406 		case RPCAKN_NICKNAME:
2407 			if (len != 2 * NFSX_UNSIGNED) {
2408 				kprintf("Kerb nickname short\n");
2409 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2410 				nd->nd_procnum = NFSPROC_NOOP;
2411 				return (0);
2412 			}
2413 			nickuid = fxdr_unsigned(uid_t, *tl);
2414 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2415 			if (*tl++ != rpc_auth_kerb ||
2416 				fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2417 				kprintf("Kerb nick verifier bad\n");
2418 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2419 				nd->nd_procnum = NFSPROC_NOOP;
2420 				return (0);
2421 			}
2422 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2423 			tvin.tv_sec = *tl++;
2424 			tvin.tv_usec = *tl;
2425 
2426 			for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
2427 			    nuidp != NULL; nuidp = nuidp->nu_hash.le_next) {
2428 				if (nuidp->nu_cr.cr_uid == nickuid &&
2429 				    (!nd->nd_nam2 ||
2430 				     netaddr_match(NU_NETFAM(nuidp),
2431 				      &nuidp->nu_haddr, nd->nd_nam2)))
2432 					break;
2433 			}
2434 			if (!nuidp) {
2435 				nd->nd_repstat =
2436 					(NFSERR_AUTHERR|AUTH_REJECTCRED);
2437 				nd->nd_procnum = NFSPROC_NOOP;
2438 				return (0);
2439 			}
2440 
2441 			/*
2442 			 * Now, decrypt the timestamp using the session key
2443 			 * and validate it.
2444 			 */
2445 #ifdef NFSKERB
2446 			XXX
2447 #else
2448 			tvout.tv_sec = 0;
2449 			tvout.tv_usec = 0;
2450 #endif
2451 
2452 			tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2453 			tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2454 			if (nuidp->nu_expire < time_second ||
2455 			    nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2456 			    (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2457 			     nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2458 				nuidp->nu_expire = 0;
2459 				nd->nd_repstat =
2460 				    (NFSERR_AUTHERR|AUTH_REJECTVERF);
2461 				nd->nd_procnum = NFSPROC_NOOP;
2462 				return (0);
2463 			}
2464 			nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
2465 			nd->nd_flag |= ND_KERBNICK;
2466 			break;
2467 		}
2468 	} else {
2469 		nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2470 		nd->nd_procnum = NFSPROC_NOOP;
2471 		return (0);
2472 	}
2473 
2474 	nd->nd_md = info.md;
2475 	nd->nd_dpos = info.dpos;
2476 	return (0);
2477 nfsmout:
2478 	return (error);
2479 }
2480 
2481 #endif
2482 
2483 /*
2484  * Send a message to the originating process's terminal.  The thread and/or
2485  * process may be NULL.  YYY the thread should not be NULL but there may
2486  * still be some uio_td's that are still being passed as NULL through to
2487  * nfsm_request().
2488  */
2489 static int
2490 nfs_msg(struct thread *td, char *server, char *msg)
2491 {
2492 	tpr_t tpr;
2493 
2494 	if (td && td->td_proc)
2495 		tpr = tprintf_open(td->td_proc);
2496 	else
2497 		tpr = NULL;
2498 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2499 	tprintf_close(tpr);
2500 	return (0);
2501 }
2502 
2503 #ifndef NFS_NOSERVER
2504 
2505 /*
2506  * Socket upcall routine for nfsd sockets.  This runs in the protocol
2507  * thread and passes waitflag == MB_DONTWAIT.
2508  */
2509 void
2510 nfsrv_rcv_upcall(struct socket *so, void *arg, int waitflag)
2511 {
2512 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2513 
2514 	if (slp->ns_needq_upcall == 0) {
2515 		slp->ns_needq_upcall = 1;	/* ok to race */
2516 		lwkt_gettoken(&nfs_token);
2517 		nfsrv_wakenfsd(slp, 1);
2518 		lwkt_reltoken(&nfs_token);
2519 	}
2520 #if 0
2521 	lwkt_gettoken(&slp->ns_token);
2522 	slp->ns_flag |= SLP_NEEDQ;
2523 	nfsrv_rcv(so, arg, waitflag);
2524 	lwkt_reltoken(&slp->ns_token);
2525 #endif
2526 }
2527 
2528 /*
2529  * Process new data on a receive socket.  Essentially do as much as we can
2530  * non-blocking, else punt and it will be called with MB_WAIT from an nfsd.
2531  *
2532  * slp->ns_token is held on call
2533  */
2534 void
2535 nfsrv_rcv(struct socket *so, void *arg, int waitflag)
2536 {
2537 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2538 	struct mbuf *m;
2539 	struct sockaddr *nam;
2540 	struct sockbuf sio;
2541 	int flags, error;
2542 	int nparallel_wakeup = 0;
2543 
2544 	ASSERT_LWKT_TOKEN_HELD(&slp->ns_token);
2545 
2546 	if ((slp->ns_flag & SLP_VALID) == 0)
2547 		return;
2548 
2549 	/*
2550 	 * Do not allow an infinite number of completed RPC records to build
2551 	 * up before we stop reading data from the socket.  Otherwise we could
2552 	 * end up holding onto an unreasonable number of mbufs for requests
2553 	 * waiting for service.
2554 	 *
2555 	 * This should give pretty good feedback to the TCP layer and
2556 	 * prevents a memory crunch for other protocols.
2557 	 *
2558 	 * Note that the same service socket can be dispatched to several
2559 	 * nfs servers simultaniously.  The tcp protocol callback calls us
2560 	 * with MB_DONTWAIT.  nfsd calls us with MB_WAIT (typically).
2561 	 */
2562 	if (NFSRV_RECLIMIT(slp))
2563 		return;
2564 
2565 	/*
2566 	 * Handle protocol specifics to parse an RPC request.  We always
2567 	 * pull from the socket using non-blocking I/O.
2568 	 */
2569 	if (so->so_type == SOCK_STREAM) {
2570 		/*
2571 		 * The data has to be read in an orderly fashion from a TCP
2572 		 * stream, unlike a UDP socket.  It is possible for soreceive
2573 		 * and/or nfsrv_getstream() to block, so make sure only one
2574 		 * entity is messing around with the TCP stream at any given
2575 		 * moment.  The receive sockbuf's lock in soreceive is not
2576 		 * sufficient.
2577 		 */
2578 		if (slp->ns_flag & SLP_GETSTREAM)
2579 			return;
2580 		slp->ns_flag |= SLP_GETSTREAM;
2581 
2582 		/*
2583 		 * Do soreceive().  Pull out as much data as possible without
2584 		 * blocking.
2585 		 */
2586 		sbinit(&sio, 1000000000);
2587 		flags = MSG_DONTWAIT;
2588 		error = so_pru_soreceive(so, &nam, NULL, &sio, NULL, &flags);
2589 		if (error || sio.sb_mb == NULL) {
2590 			if (error != EWOULDBLOCK)
2591 				slp->ns_flag |= SLP_DISCONN;
2592 			slp->ns_flag &= ~(SLP_GETSTREAM | SLP_NEEDQ);
2593 			goto done;
2594 		}
2595 		m = sio.sb_mb;
2596 		if (slp->ns_rawend) {
2597 			slp->ns_rawend->m_next = m;
2598 			slp->ns_cc += sio.sb_cc;
2599 		} else {
2600 			slp->ns_raw = m;
2601 			slp->ns_cc = sio.sb_cc;
2602 		}
2603 		while (m->m_next)
2604 			m = m->m_next;
2605 		slp->ns_rawend = m;
2606 
2607 		/*
2608 		 * Now try and parse as many record(s) as we can out of the
2609 		 * raw stream data.  This will set SLP_DOREC.
2610 		 */
2611 		error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup);
2612 		if (error && error != EWOULDBLOCK)
2613 			slp->ns_flag |= SLP_DISCONN;
2614 		slp->ns_flag &= ~SLP_GETSTREAM;
2615 	} else {
2616 		/*
2617 		 * For UDP soreceive typically pulls just one packet, loop
2618 		 * to get the whole batch.
2619 		 */
2620 		do {
2621 			sbinit(&sio, 1000000000);
2622 			flags = MSG_DONTWAIT;
2623 			error = so_pru_soreceive(so, &nam, NULL, &sio,
2624 						 NULL, &flags);
2625 			if (sio.sb_mb) {
2626 				struct nfsrv_rec *rec;
2627 				int mf = (waitflag & MB_DONTWAIT) ?
2628 					    M_NOWAIT : M_WAITOK;
2629 				rec = kmalloc(sizeof(struct nfsrv_rec),
2630 					     M_NFSRVDESC, mf);
2631 				if (!rec) {
2632 					if (nam)
2633 						kfree(nam, M_SONAME);
2634 					m_freem(sio.sb_mb);
2635 					continue;
2636 				}
2637 				nfs_realign(&sio.sb_mb, 10 * NFSX_UNSIGNED);
2638 				rec->nr_address = nam;
2639 				rec->nr_packet = sio.sb_mb;
2640 				STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2641 				++slp->ns_numrec;
2642 				slp->ns_flag |= SLP_DOREC;
2643 				++nparallel_wakeup;
2644 			} else {
2645 				slp->ns_flag &= ~SLP_NEEDQ;
2646 			}
2647 			if (error) {
2648 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2649 				    && error != EWOULDBLOCK) {
2650 					slp->ns_flag |= SLP_DISCONN;
2651 					break;
2652 				}
2653 			}
2654 			if (NFSRV_RECLIMIT(slp))
2655 				break;
2656 		} while (sio.sb_mb);
2657 	}
2658 
2659 	/*
2660 	 * If we were upcalled from the tcp protocol layer and we have
2661 	 * fully parsed records ready to go, or there is new data pending,
2662 	 * or something went wrong, try to wake up a nfsd thread to deal
2663 	 * with it.
2664 	 */
2665 done:
2666 	/* XXX this code is currently not executed (nfsrv_rcv_upcall) */
2667 	if (waitflag == MB_DONTWAIT && (slp->ns_flag & SLP_ACTION_MASK)) {
2668 		lwkt_gettoken(&nfs_token);
2669 		nfsrv_wakenfsd(slp, nparallel_wakeup);
2670 		lwkt_reltoken(&nfs_token);
2671 	}
2672 }
2673 
2674 /*
2675  * Try and extract an RPC request from the mbuf data list received on a
2676  * stream socket. The "waitflag" argument indicates whether or not it
2677  * can sleep.
2678  */
2679 static int
2680 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp)
2681 {
2682 	struct mbuf *m, **mpp;
2683 	char *cp1, *cp2;
2684 	int len;
2685 	struct mbuf *om, *m2, *recm;
2686 	u_int32_t recmark;
2687 
2688 	for (;;) {
2689 	    if (slp->ns_reclen == 0) {
2690 		if (slp->ns_cc < NFSX_UNSIGNED)
2691 			return (0);
2692 		m = slp->ns_raw;
2693 		if (m->m_len >= NFSX_UNSIGNED) {
2694 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2695 			m->m_data += NFSX_UNSIGNED;
2696 			m->m_len -= NFSX_UNSIGNED;
2697 		} else {
2698 			cp1 = (caddr_t)&recmark;
2699 			cp2 = mtod(m, caddr_t);
2700 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2701 				while (m->m_len == 0) {
2702 					m = m->m_next;
2703 					cp2 = mtod(m, caddr_t);
2704 				}
2705 				*cp1++ = *cp2++;
2706 				m->m_data++;
2707 				m->m_len--;
2708 			}
2709 		}
2710 		slp->ns_cc -= NFSX_UNSIGNED;
2711 		recmark = ntohl(recmark);
2712 		slp->ns_reclen = recmark & ~0x80000000;
2713 		if (recmark & 0x80000000)
2714 			slp->ns_flag |= SLP_LASTFRAG;
2715 		else
2716 			slp->ns_flag &= ~SLP_LASTFRAG;
2717 		if (slp->ns_reclen > NFS_MAXPACKET || slp->ns_reclen <= 0) {
2718 			log(LOG_ERR, "%s (%d) from nfs client\n",
2719 			    "impossible packet length",
2720 			    slp->ns_reclen);
2721 			return (EPERM);
2722 		}
2723 	    }
2724 
2725 	    /*
2726 	     * Now get the record part.
2727 	     *
2728 	     * Note that slp->ns_reclen may be 0.  Linux sometimes
2729 	     * generates 0-length RPCs
2730 	     */
2731 	    recm = NULL;
2732 	    if (slp->ns_cc == slp->ns_reclen) {
2733 		recm = slp->ns_raw;
2734 		slp->ns_raw = slp->ns_rawend = NULL;
2735 		slp->ns_cc = slp->ns_reclen = 0;
2736 	    } else if (slp->ns_cc > slp->ns_reclen) {
2737 		len = 0;
2738 		m = slp->ns_raw;
2739 		om = NULL;
2740 
2741 		while (len < slp->ns_reclen) {
2742 			if ((len + m->m_len) > slp->ns_reclen) {
2743 				m2 = m_copym(m, 0, slp->ns_reclen - len,
2744 					waitflag);
2745 				if (m2) {
2746 					if (om) {
2747 						om->m_next = m2;
2748 						recm = slp->ns_raw;
2749 					} else
2750 						recm = m2;
2751 					m->m_data += slp->ns_reclen - len;
2752 					m->m_len -= slp->ns_reclen - len;
2753 					len = slp->ns_reclen;
2754 				} else {
2755 					return (EWOULDBLOCK);
2756 				}
2757 			} else if ((len + m->m_len) == slp->ns_reclen) {
2758 				om = m;
2759 				len += m->m_len;
2760 				m = m->m_next;
2761 				recm = slp->ns_raw;
2762 				om->m_next = NULL;
2763 			} else {
2764 				om = m;
2765 				len += m->m_len;
2766 				m = m->m_next;
2767 			}
2768 		}
2769 		slp->ns_raw = m;
2770 		slp->ns_cc -= len;
2771 		slp->ns_reclen = 0;
2772 	    } else {
2773 		return (0);
2774 	    }
2775 
2776 	    /*
2777 	     * Accumulate the fragments into a record.
2778 	     */
2779 	    mpp = &slp->ns_frag;
2780 	    while (*mpp)
2781 		mpp = &((*mpp)->m_next);
2782 	    *mpp = recm;
2783 	    if (slp->ns_flag & SLP_LASTFRAG) {
2784 		struct nfsrv_rec *rec;
2785 		int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK;
2786 		rec = kmalloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf);
2787 		if (!rec) {
2788 		    m_freem(slp->ns_frag);
2789 		} else {
2790 		    nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2791 		    rec->nr_address = NULL;
2792 		    rec->nr_packet = slp->ns_frag;
2793 		    STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2794 		    ++slp->ns_numrec;
2795 		    slp->ns_flag |= SLP_DOREC;
2796 		    ++*countp;
2797 		}
2798 		slp->ns_frag = NULL;
2799 	    }
2800 	}
2801 }
2802 
2803 #ifdef INVARIANTS
2804 
2805 /*
2806  * Sanity check our mbuf chain.
2807  */
2808 static void
2809 nfs_checkpkt(struct mbuf *m, int len)
2810 {
2811 	int xlen = 0;
2812 	while (m) {
2813 		xlen += m->m_len;
2814 		m = m->m_next;
2815 	}
2816 	if (xlen != len) {
2817 		panic("nfs_checkpkt: len mismatch %d/%d mbuf %p",
2818 			xlen, len, m);
2819 	}
2820 }
2821 
2822 #else
2823 
2824 static void
2825 nfs_checkpkt(struct mbuf *m __unused, int len __unused)
2826 {
2827 }
2828 
2829 #endif
2830 
2831 /*
2832  * Parse an RPC header.
2833  *
2834  * If the socket is invalid or no records are pending we return ENOBUFS.
2835  * The caller must deal with NEEDQ races.
2836  */
2837 int
2838 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2839 	    struct nfsrv_descript **ndp)
2840 {
2841 	struct nfsrv_rec *rec;
2842 	struct mbuf *m;
2843 	struct sockaddr *nam;
2844 	struct nfsrv_descript *nd;
2845 	int error;
2846 
2847 	*ndp = NULL;
2848 	if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2849 		return (ENOBUFS);
2850 	rec = STAILQ_FIRST(&slp->ns_rec);
2851 	STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2852 	KKASSERT(slp->ns_numrec > 0);
2853 	if (--slp->ns_numrec == 0)
2854 		slp->ns_flag &= ~SLP_DOREC;
2855 	nam = rec->nr_address;
2856 	m = rec->nr_packet;
2857 	kfree(rec, M_NFSRVDESC);
2858 	nd = kmalloc(sizeof(struct nfsrv_descript), M_NFSRVDESC, M_WAITOK);
2859 	nd->nd_md = nd->nd_mrep = m;
2860 	nd->nd_nam2 = nam;
2861 	nd->nd_dpos = mtod(m, caddr_t);
2862 	error = nfs_getreq(nd, nfsd, TRUE);
2863 	if (error) {
2864 		if (nam) {
2865 			kfree(nam, M_SONAME);
2866 		}
2867 		kfree((caddr_t)nd, M_NFSRVDESC);
2868 		return (error);
2869 	}
2870 	*ndp = nd;
2871 	nfsd->nfsd_nd = nd;
2872 	return (0);
2873 }
2874 
2875 /*
2876  * Try to assign service sockets to nfsd threads based on the number
2877  * of new rpc requests that have been queued on the service socket.
2878  *
2879  * If no nfsd's are available or additonal requests are pending, set the
2880  * NFSD_CHECKSLP flag so that one of the running nfsds will go look for
2881  * the work in the nfssvc_sock list when it is finished processing its
2882  * current work.  This flag is only cleared when an nfsd can not find
2883  * any new work to perform.
2884  */
2885 void
2886 nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel)
2887 {
2888 	struct nfsd *nd;
2889 
2890 	if ((slp->ns_flag & SLP_VALID) == 0)
2891 		return;
2892 	if (nparallel <= 1)
2893 		nparallel = 1;
2894 	TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) {
2895 		if (nd->nfsd_flag & NFSD_WAITING) {
2896 			nd->nfsd_flag &= ~NFSD_WAITING;
2897 			if (nd->nfsd_slp)
2898 				panic("nfsd wakeup");
2899 			nfsrv_slpref(slp);
2900 			nd->nfsd_slp = slp;
2901 			wakeup((caddr_t)nd);
2902 			if (--nparallel == 0)
2903 				break;
2904 		}
2905 	}
2906 
2907 	/*
2908 	 * If we couldn't assign slp then the NFSDs are all busy and
2909 	 * we set a flag indicating that there is pending work.
2910 	 */
2911 	if (nparallel)
2912 		nfsd_head_flag |= NFSD_CHECKSLP;
2913 }
2914 #endif /* NFS_NOSERVER */
2915