xref: /dragonfly/sys/vfs/nfs/nfs_socket.c (revision 40f79625)
1 /*
2  * Copyright (c) 1989, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_socket.c	8.5 (Berkeley) 3/30/95
37  * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.32 2006/03/01 15:09:35 drhodus Exp $
39  */
40 
41 /*
42  * Socket operations for use by nfs
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/protosw.h>
54 #include <sys/resourcevar.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/socketops.h>
58 #include <sys/syslog.h>
59 #include <sys/thread.h>
60 #include <sys/tprintf.h>
61 #include <sys/sysctl.h>
62 #include <sys/signalvar.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/tcp.h>
66 #include <sys/thread2.h>
67 
68 #include "rpcv2.h"
69 #include "nfsproto.h"
70 #include "nfs.h"
71 #include "xdr_subs.h"
72 #include "nfsm_subs.h"
73 #include "nfsmount.h"
74 #include "nfsnode.h"
75 #include "nfsrtt.h"
76 #include "nqnfs.h"
77 
78 #define	TRUE	1
79 #define	FALSE	0
80 
81 /*
82  * Estimate rto for an nfs rpc sent via. an unreliable datagram.
83  * Use the mean and mean deviation of rtt for the appropriate type of rpc
84  * for the frequent rpcs and a default for the others.
85  * The justification for doing "other" this way is that these rpcs
86  * happen so infrequently that timer est. would probably be stale.
87  * Also, since many of these rpcs are
88  * non-idempotent, a conservative timeout is desired.
89  * getattr, lookup - A+2D
90  * read, write     - A+4D
91  * other           - nm_timeo
92  */
93 #define	NFS_RTO(n, t) \
94 	((t) == 0 ? (n)->nm_timeo : \
95 	 ((t) < 3 ? \
96 	  (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
97 	  ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
98 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
99 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
100 /*
101  * External data, mostly RPC constants in XDR form
102  */
103 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
104 	rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
105 	rpc_auth_kerb;
106 extern u_int32_t nfs_prog, nqnfs_prog;
107 extern time_t nqnfsstarttime;
108 extern struct nfsstats nfsstats;
109 extern int nfsv3_procid[NFS_NPROCS];
110 extern int nfs_ticks;
111 
112 /*
113  * Defines which timer to use for the procnum.
114  * 0 - default
115  * 1 - getattr
116  * 2 - lookup
117  * 3 - read
118  * 4 - write
119  */
120 static int proct[NFS_NPROCS] = {
121 	0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
122 	0, 0, 0,
123 };
124 
125 static int nfs_realign_test;
126 static int nfs_realign_count;
127 static int nfs_bufpackets = 4;
128 static int nfs_timer_raced;
129 
130 SYSCTL_DECL(_vfs_nfs);
131 
132 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, "");
133 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, "");
134 SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, "");
135 
136 
137 /*
138  * There is a congestion window for outstanding rpcs maintained per mount
139  * point. The cwnd size is adjusted in roughly the way that:
140  * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
141  * SIGCOMM '88". ACM, August 1988.
142  * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
143  * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
144  * of rpcs is in progress.
145  * (The sent count and cwnd are scaled for integer arith.)
146  * Variants of "slow start" were tried and were found to be too much of a
147  * performance hit (ave. rtt 3 times larger),
148  * I suspect due to the large rtt that nfs rpcs have.
149  */
150 #define	NFS_CWNDSCALE	256
151 #define	NFS_MAXCWND	(NFS_CWNDSCALE * 32)
152 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
153 int nfsrtton = 0;
154 struct nfsrtt nfsrtt;
155 struct callout	nfs_timer_handle;
156 
157 static int	nfs_msg (struct thread *,char *,char *);
158 static int	nfs_rcvlock (struct nfsreq *);
159 static void	nfs_rcvunlock (struct nfsreq *);
160 static void	nfs_realign (struct mbuf **pm, int hsiz);
161 static int	nfs_receive (struct nfsreq *rep, struct sockaddr **aname,
162 				 struct mbuf **mp);
163 static void	nfs_softterm (struct nfsreq *rep);
164 static int	nfs_reconnect (struct nfsreq *rep);
165 #ifndef NFS_NOSERVER
166 static int	nfsrv_getstream (struct nfssvc_sock *, int, int *);
167 
168 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd,
169 				    struct nfssvc_sock *slp,
170 				    struct thread *td,
171 				    struct mbuf **mreqp) = {
172 	nfsrv_null,
173 	nfsrv_getattr,
174 	nfsrv_setattr,
175 	nfsrv_lookup,
176 	nfsrv3_access,
177 	nfsrv_readlink,
178 	nfsrv_read,
179 	nfsrv_write,
180 	nfsrv_create,
181 	nfsrv_mkdir,
182 	nfsrv_symlink,
183 	nfsrv_mknod,
184 	nfsrv_remove,
185 	nfsrv_rmdir,
186 	nfsrv_rename,
187 	nfsrv_link,
188 	nfsrv_readdir,
189 	nfsrv_readdirplus,
190 	nfsrv_statfs,
191 	nfsrv_fsinfo,
192 	nfsrv_pathconf,
193 	nfsrv_commit,
194 	nqnfsrv_getlease,
195 	nqnfsrv_vacated,
196 	nfsrv_noop,
197 	nfsrv_noop
198 };
199 #endif /* NFS_NOSERVER */
200 
201 /*
202  * Initialize sockets and congestion for a new NFS connection.
203  * We do not free the sockaddr if error.
204  */
205 int
206 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
207 {
208 	struct socket *so;
209 	int error, rcvreserve, sndreserve;
210 	int pktscale;
211 	struct sockaddr *saddr;
212 	struct sockaddr_in *sin;
213 	struct thread *td = &thread0; /* only used for socreate and sobind */
214 
215 	nmp->nm_so = (struct socket *)0;
216 	saddr = nmp->nm_nam;
217 	error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
218 		nmp->nm_soproto, td);
219 	if (error)
220 		goto bad;
221 	so = nmp->nm_so;
222 	nmp->nm_soflags = so->so_proto->pr_flags;
223 
224 	/*
225 	 * Some servers require that the client port be a reserved port number.
226 	 */
227 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
228 		struct sockopt sopt;
229 		int ip;
230 		struct sockaddr_in ssin;
231 
232 		bzero(&sopt, sizeof sopt);
233 		ip = IP_PORTRANGE_LOW;
234 		sopt.sopt_level = IPPROTO_IP;
235 		sopt.sopt_name = IP_PORTRANGE;
236 		sopt.sopt_val = (void *)&ip;
237 		sopt.sopt_valsize = sizeof(ip);
238 		sopt.sopt_td = NULL;
239 		error = sosetopt(so, &sopt);
240 		if (error)
241 			goto bad;
242 		bzero(&ssin, sizeof ssin);
243 		sin = &ssin;
244 		sin->sin_len = sizeof (struct sockaddr_in);
245 		sin->sin_family = AF_INET;
246 		sin->sin_addr.s_addr = INADDR_ANY;
247 		sin->sin_port = htons(0);
248 		error = sobind(so, (struct sockaddr *)sin, td);
249 		if (error)
250 			goto bad;
251 		bzero(&sopt, sizeof sopt);
252 		ip = IP_PORTRANGE_DEFAULT;
253 		sopt.sopt_level = IPPROTO_IP;
254 		sopt.sopt_name = IP_PORTRANGE;
255 		sopt.sopt_val = (void *)&ip;
256 		sopt.sopt_valsize = sizeof(ip);
257 		sopt.sopt_td = NULL;
258 		error = sosetopt(so, &sopt);
259 		if (error)
260 			goto bad;
261 	}
262 
263 	/*
264 	 * Protocols that do not require connections may be optionally left
265 	 * unconnected for servers that reply from a port other than NFS_PORT.
266 	 */
267 	if (nmp->nm_flag & NFSMNT_NOCONN) {
268 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
269 			error = ENOTCONN;
270 			goto bad;
271 		}
272 	} else {
273 		error = soconnect(so, nmp->nm_nam, td);
274 		if (error)
275 			goto bad;
276 
277 		/*
278 		 * Wait for the connection to complete. Cribbed from the
279 		 * connect system call but with the wait timing out so
280 		 * that interruptible mounts don't hang here for a long time.
281 		 */
282 		crit_enter();
283 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
284 			(void) tsleep((caddr_t)&so->so_timeo, 0,
285 				"nfscon", 2 * hz);
286 			if ((so->so_state & SS_ISCONNECTING) &&
287 			    so->so_error == 0 && rep &&
288 			    (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
289 				so->so_state &= ~SS_ISCONNECTING;
290 				crit_exit();
291 				goto bad;
292 			}
293 		}
294 		if (so->so_error) {
295 			error = so->so_error;
296 			so->so_error = 0;
297 			crit_exit();
298 			goto bad;
299 		}
300 		crit_exit();
301 	}
302 	so->so_rcv.sb_timeo = (5 * hz);
303 	so->so_snd.sb_timeo = (5 * hz);
304 
305 	/*
306 	 * Get buffer reservation size from sysctl, but impose reasonable
307 	 * limits.
308 	 */
309 	pktscale = nfs_bufpackets;
310 	if (pktscale < 2)
311 		pktscale = 2;
312 	if (pktscale > 64)
313 		pktscale = 64;
314 
315 	if (nmp->nm_sotype == SOCK_DGRAM) {
316 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale;
317 		rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
318 		    NFS_MAXPKTHDR) * pktscale;
319 	} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
320 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale;
321 		rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
322 		    NFS_MAXPKTHDR) * pktscale;
323 	} else {
324 		if (nmp->nm_sotype != SOCK_STREAM)
325 			panic("nfscon sotype");
326 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
327 			struct sockopt sopt;
328 			int val;
329 
330 			bzero(&sopt, sizeof sopt);
331 			sopt.sopt_level = SOL_SOCKET;
332 			sopt.sopt_name = SO_KEEPALIVE;
333 			sopt.sopt_val = &val;
334 			sopt.sopt_valsize = sizeof val;
335 			val = 1;
336 			sosetopt(so, &sopt);
337 		}
338 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
339 			struct sockopt sopt;
340 			int val;
341 
342 			bzero(&sopt, sizeof sopt);
343 			sopt.sopt_level = IPPROTO_TCP;
344 			sopt.sopt_name = TCP_NODELAY;
345 			sopt.sopt_val = &val;
346 			sopt.sopt_valsize = sizeof val;
347 			val = 1;
348 			sosetopt(so, &sopt);
349 		}
350 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
351 		    sizeof (u_int32_t)) * pktscale;
352 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
353 		    sizeof (u_int32_t)) * pktscale;
354 	}
355 	error = soreserve(so, sndreserve, rcvreserve,
356 			  &td->td_proc->p_rlimit[RLIMIT_SBSIZE]);
357 	if (error)
358 		goto bad;
359 	so->so_rcv.sb_flags |= SB_NOINTR;
360 	so->so_snd.sb_flags |= SB_NOINTR;
361 
362 	/* Initialize other non-zero congestion variables */
363 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
364 		nmp->nm_srtt[3] = (NFS_TIMEO << 3);
365 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
366 		nmp->nm_sdrtt[3] = 0;
367 	nmp->nm_cwnd = NFS_MAXCWND / 2;	    /* Initial send window */
368 	nmp->nm_sent = 0;
369 	nmp->nm_timeouts = 0;
370 	return (0);
371 
372 bad:
373 	nfs_disconnect(nmp);
374 	return (error);
375 }
376 
377 /*
378  * Reconnect routine:
379  * Called when a connection is broken on a reliable protocol.
380  * - clean up the old socket
381  * - nfs_connect() again
382  * - set R_MUSTRESEND for all outstanding requests on mount point
383  * If this fails the mount point is DEAD!
384  * nb: Must be called with the nfs_sndlock() set on the mount point.
385  */
386 static int
387 nfs_reconnect(struct nfsreq *rep)
388 {
389 	struct nfsreq *rp;
390 	struct nfsmount *nmp = rep->r_nmp;
391 	int error;
392 
393 	nfs_disconnect(nmp);
394 	while ((error = nfs_connect(nmp, rep)) != 0) {
395 		if (error == EINTR || error == ERESTART)
396 			return (EINTR);
397 		(void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0);
398 	}
399 
400 	/*
401 	 * Loop through outstanding request list and fix up all requests
402 	 * on old socket.
403 	 */
404 	crit_enter();
405 	TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
406 		if (rp->r_nmp == nmp)
407 			rp->r_flags |= R_MUSTRESEND;
408 	}
409 	crit_exit();
410 	return (0);
411 }
412 
413 /*
414  * NFS disconnect. Clean up and unlink.
415  */
416 void
417 nfs_disconnect(struct nfsmount *nmp)
418 {
419 	struct socket *so;
420 
421 	if (nmp->nm_so) {
422 		so = nmp->nm_so;
423 		nmp->nm_so = (struct socket *)0;
424 		soshutdown(so, 2);
425 		soclose(so);
426 	}
427 }
428 
429 void
430 nfs_safedisconnect(struct nfsmount *nmp)
431 {
432 	struct nfsreq dummyreq;
433 
434 	bzero(&dummyreq, sizeof(dummyreq));
435 	dummyreq.r_nmp = nmp;
436 	dummyreq.r_td = NULL;
437 	nfs_rcvlock(&dummyreq);
438 	nfs_disconnect(nmp);
439 	nfs_rcvunlock(&dummyreq);
440 }
441 
442 /*
443  * This is the nfs send routine. For connection based socket types, it
444  * must be called with an nfs_sndlock() on the socket.
445  * "rep == NULL" indicates that it has been called from a server.
446  * For the client side:
447  * - return EINTR if the RPC is terminated, 0 otherwise
448  * - set R_MUSTRESEND if the send fails for any reason
449  * - do any cleanup required by recoverable socket errors (?)
450  * For the server side:
451  * - return EINTR or ERESTART if interrupted by a signal
452  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
453  * - do any cleanup required by recoverable socket errors (?)
454  */
455 int
456 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top,
457 	 struct nfsreq *rep)
458 {
459 	struct sockaddr *sendnam;
460 	int error, soflags, flags;
461 
462 	if (rep) {
463 		if (rep->r_flags & R_SOFTTERM) {
464 			m_freem(top);
465 			return (EINTR);
466 		}
467 		if ((so = rep->r_nmp->nm_so) == NULL) {
468 			rep->r_flags |= R_MUSTRESEND;
469 			m_freem(top);
470 			return (0);
471 		}
472 		rep->r_flags &= ~R_MUSTRESEND;
473 		soflags = rep->r_nmp->nm_soflags;
474 	} else
475 		soflags = so->so_proto->pr_flags;
476 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
477 		sendnam = (struct sockaddr *)0;
478 	else
479 		sendnam = nam;
480 	if (so->so_type == SOCK_SEQPACKET)
481 		flags = MSG_EOR;
482 	else
483 		flags = 0;
484 
485 	error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags,
486 	    curthread /*XXX*/);
487 	/*
488 	 * ENOBUFS for dgram sockets is transient and non fatal.
489 	 * No need to log, and no need to break a soft mount.
490 	 */
491 	if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
492 		error = 0;
493 		if (rep)		/* do backoff retransmit on client */
494 			rep->r_flags |= R_MUSTRESEND;
495 	}
496 
497 	if (error) {
498 		if (rep) {
499 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
500 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
501 			/*
502 			 * Deal with errors for the client side.
503 			 */
504 			if (rep->r_flags & R_SOFTTERM)
505 				error = EINTR;
506 			else
507 				rep->r_flags |= R_MUSTRESEND;
508 		} else
509 			log(LOG_INFO, "nfsd send error %d\n", error);
510 
511 		/*
512 		 * Handle any recoverable (soft) socket errors here. (?)
513 		 */
514 		if (error != EINTR && error != ERESTART &&
515 			error != EWOULDBLOCK && error != EPIPE)
516 			error = 0;
517 	}
518 	return (error);
519 }
520 
521 /*
522  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
523  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
524  * Mark and consolidate the data into a new mbuf list.
525  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
526  *     small mbufs.
527  * For SOCK_STREAM we must be very careful to read an entire record once
528  * we have read any of it, even if the system call has been interrupted.
529  */
530 static int
531 nfs_receive(struct nfsreq *rep, struct sockaddr **aname, struct mbuf **mp)
532 {
533 	struct socket *so;
534 	struct uio auio;
535 	struct iovec aio;
536 	struct mbuf *m;
537 	struct mbuf *control;
538 	u_int32_t len;
539 	struct sockaddr **getnam;
540 	int error, sotype, rcvflg;
541 	struct thread *td = curthread;	/* XXX */
542 
543 	/*
544 	 * Set up arguments for soreceive()
545 	 */
546 	*mp = (struct mbuf *)0;
547 	*aname = (struct sockaddr *)0;
548 	sotype = rep->r_nmp->nm_sotype;
549 
550 	/*
551 	 * For reliable protocols, lock against other senders/receivers
552 	 * in case a reconnect is necessary.
553 	 * For SOCK_STREAM, first get the Record Mark to find out how much
554 	 * more there is to get.
555 	 * We must lock the socket against other receivers
556 	 * until we have an entire rpc request/reply.
557 	 */
558 	if (sotype != SOCK_DGRAM) {
559 		error = nfs_sndlock(rep);
560 		if (error)
561 			return (error);
562 tryagain:
563 		/*
564 		 * Check for fatal errors and resending request.
565 		 */
566 		/*
567 		 * Ugh: If a reconnect attempt just happened, nm_so
568 		 * would have changed. NULL indicates a failed
569 		 * attempt that has essentially shut down this
570 		 * mount point.
571 		 */
572 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
573 			nfs_sndunlock(rep);
574 			return (EINTR);
575 		}
576 		so = rep->r_nmp->nm_so;
577 		if (!so) {
578 			error = nfs_reconnect(rep);
579 			if (error) {
580 				nfs_sndunlock(rep);
581 				return (error);
582 			}
583 			goto tryagain;
584 		}
585 		while (rep->r_flags & R_MUSTRESEND) {
586 			m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
587 			nfsstats.rpcretries++;
588 			error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
589 			if (error) {
590 				if (error == EINTR || error == ERESTART ||
591 				    (error = nfs_reconnect(rep)) != 0) {
592 					nfs_sndunlock(rep);
593 					return (error);
594 				}
595 				goto tryagain;
596 			}
597 		}
598 		nfs_sndunlock(rep);
599 		if (sotype == SOCK_STREAM) {
600 			aio.iov_base = (caddr_t) &len;
601 			aio.iov_len = sizeof(u_int32_t);
602 			auio.uio_iov = &aio;
603 			auio.uio_iovcnt = 1;
604 			auio.uio_segflg = UIO_SYSSPACE;
605 			auio.uio_rw = UIO_READ;
606 			auio.uio_offset = 0;
607 			auio.uio_resid = sizeof(u_int32_t);
608 			auio.uio_td = td;
609 			do {
610 			   rcvflg = MSG_WAITALL;
611 			   error = so_pru_soreceive(so, NULL, &auio, NULL,
612 			       NULL, &rcvflg);
613 			   if (error == EWOULDBLOCK && rep) {
614 				if (rep->r_flags & R_SOFTTERM)
615 					return (EINTR);
616 			   }
617 			} while (error == EWOULDBLOCK);
618 			if (!error && auio.uio_resid > 0) {
619 			    /*
620 			     * Don't log a 0 byte receive; it means
621 			     * that the socket has been closed, and
622 			     * can happen during normal operation
623 			     * (forcible unmount or Solaris server).
624 			     */
625 			    if (auio.uio_resid != sizeof (u_int32_t))
626 			    log(LOG_INFO,
627 				 "short receive (%d/%d) from nfs server %s\n",
628 				 (int)(sizeof(u_int32_t) - auio.uio_resid),
629 				 (int)sizeof(u_int32_t),
630 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
631 			    error = EPIPE;
632 			}
633 			if (error)
634 				goto errout;
635 			len = ntohl(len) & ~0x80000000;
636 			/*
637 			 * This is SERIOUS! We are out of sync with the sender
638 			 * and forcing a disconnect/reconnect is all I can do.
639 			 */
640 			if (len > NFS_MAXPACKET) {
641 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
642 				"impossible packet length",
643 				len,
644 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
645 			    error = EFBIG;
646 			    goto errout;
647 			}
648 			auio.uio_resid = len;
649 			do {
650 			    rcvflg = MSG_WAITALL;
651 			    error =  so_pru_soreceive(so, NULL, &auio, mp,
652 			        NULL, &rcvflg);
653 			} while (error == EWOULDBLOCK || error == EINTR ||
654 				 error == ERESTART);
655 			if (!error && auio.uio_resid > 0) {
656 			    if (len != auio.uio_resid)
657 			    log(LOG_INFO,
658 				"short receive (%d/%d) from nfs server %s\n",
659 				len - auio.uio_resid, len,
660 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
661 			    error = EPIPE;
662 			}
663 		} else {
664 			/*
665 			 * NB: Since uio_resid is big, MSG_WAITALL is ignored
666 			 * and soreceive() will return when it has either a
667 			 * control msg or a data msg.
668 			 * We have no use for control msg., but must grab them
669 			 * and then throw them away so we know what is going
670 			 * on.
671 			 */
672 			auio.uio_resid = len = 100000000; /* Anything Big */
673 			auio.uio_td = td;
674 			do {
675 			    rcvflg = 0;
676 			    error =  so_pru_soreceive(so, NULL, &auio, mp,
677 			        &control, &rcvflg);
678 			    if (control)
679 				m_freem(control);
680 			    if (error == EWOULDBLOCK && rep) {
681 				if (rep->r_flags & R_SOFTTERM)
682 					return (EINTR);
683 			    }
684 			} while (error == EWOULDBLOCK ||
685 				 (!error && *mp == NULL && control));
686 			if ((rcvflg & MSG_EOR) == 0)
687 				printf("Egad!!\n");
688 			if (!error && *mp == NULL)
689 				error = EPIPE;
690 			len -= auio.uio_resid;
691 		}
692 errout:
693 		if (error && error != EINTR && error != ERESTART) {
694 			m_freem(*mp);
695 			*mp = (struct mbuf *)0;
696 			if (error != EPIPE)
697 				log(LOG_INFO,
698 				    "receive error %d from nfs server %s\n",
699 				    error,
700 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
701 			error = nfs_sndlock(rep);
702 			if (!error) {
703 				error = nfs_reconnect(rep);
704 				if (!error)
705 					goto tryagain;
706 				else
707 					nfs_sndunlock(rep);
708 			}
709 		}
710 	} else {
711 		if ((so = rep->r_nmp->nm_so) == NULL)
712 			return (EACCES);
713 		if (so->so_state & SS_ISCONNECTED)
714 			getnam = (struct sockaddr **)0;
715 		else
716 			getnam = aname;
717 		auio.uio_resid = len = 1000000;
718 		auio.uio_td = td;
719 		do {
720 			rcvflg = 0;
721 			error =  so_pru_soreceive(so, getnam, &auio, mp, NULL,
722 			    &rcvflg);
723 			if (error == EWOULDBLOCK &&
724 			    (rep->r_flags & R_SOFTTERM))
725 				return (EINTR);
726 		} while (error == EWOULDBLOCK);
727 		len -= auio.uio_resid;
728 	}
729 	if (error) {
730 		m_freem(*mp);
731 		*mp = (struct mbuf *)0;
732 	}
733 	/*
734 	 * Search for any mbufs that are not a multiple of 4 bytes long
735 	 * or with m_data not longword aligned.
736 	 * These could cause pointer alignment problems, so copy them to
737 	 * well aligned mbufs.
738 	 */
739 	nfs_realign(mp, 5 * NFSX_UNSIGNED);
740 	return (error);
741 }
742 
743 /*
744  * Implement receipt of reply on a socket.
745  * We must search through the list of received datagrams matching them
746  * with outstanding requests using the xid, until ours is found.
747  */
748 /* ARGSUSED */
749 int
750 nfs_reply(struct nfsreq *myrep)
751 {
752 	struct nfsreq *rep;
753 	struct nfsmount *nmp = myrep->r_nmp;
754 	int32_t t1;
755 	struct mbuf *mrep, *md;
756 	struct sockaddr *nam;
757 	u_int32_t rxid, *tl;
758 	caddr_t dpos, cp2;
759 	int error;
760 
761 	/*
762 	 * Loop around until we get our own reply
763 	 */
764 	for (;;) {
765 		/*
766 		 * Lock against other receivers so that I don't get stuck in
767 		 * sbwait() after someone else has received my reply for me.
768 		 * Also necessary for connection based protocols to avoid
769 		 * race conditions during a reconnect.
770 		 * If nfs_rcvlock() returns EALREADY, that means that
771 		 * the reply has already been recieved by another
772 		 * process and we can return immediately.  In this
773 		 * case, the lock is not taken to avoid races with
774 		 * other processes.
775 		 */
776 		error = nfs_rcvlock(myrep);
777 		if (error == EALREADY)
778 			return (0);
779 		if (error)
780 			return (error);
781 		/*
782 		 * Get the next Rpc reply off the socket
783 		 */
784 		error = nfs_receive(myrep, &nam, &mrep);
785 		nfs_rcvunlock(myrep);
786 		if (error) {
787 			/*
788 			 * Ignore routing errors on connectionless protocols??
789 			 */
790 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
791 				nmp->nm_so->so_error = 0;
792 				if (myrep->r_flags & R_GETONEREP)
793 					return (0);
794 				continue;
795 			}
796 			return (error);
797 		}
798 		if (nam)
799 			FREE(nam, M_SONAME);
800 
801 		/*
802 		 * Get the xid and check that it is an rpc reply
803 		 */
804 		md = mrep;
805 		dpos = mtod(md, caddr_t);
806 		nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
807 		rxid = *tl++;
808 		if (*tl != rpc_reply) {
809 #ifndef NFS_NOSERVER
810 			if (nmp->nm_flag & NFSMNT_NQNFS) {
811 				if (nqnfs_callback(nmp, mrep, md, dpos))
812 					nfsstats.rpcinvalid++;
813 			} else {
814 				nfsstats.rpcinvalid++;
815 				m_freem(mrep);
816 			}
817 #else
818 			nfsstats.rpcinvalid++;
819 			m_freem(mrep);
820 #endif
821 nfsmout:
822 			if (myrep->r_flags & R_GETONEREP)
823 				return (0);
824 			continue;
825 		}
826 
827 		/*
828 		 * Loop through the request list to match up the reply
829 		 * Iff no match, just drop the datagram.  On match, set
830 		 * r_mrep atomically to prevent the timer from messing
831 		 * around with the request after we have exited the critical
832 		 * section.
833 		 */
834 		crit_enter();
835 		TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
836 			if (rep->r_mrep == NULL && rxid == rep->r_xid) {
837 				rep->r_mrep = mrep;
838 				break;
839 			}
840 		}
841 		crit_exit();
842 
843 		/*
844 		 * Fill in the rest of the reply if we found a match.
845 		 */
846 		if (rep) {
847 			rep->r_md = md;
848 			rep->r_dpos = dpos;
849 			if (nfsrtton) {
850 				struct rttl *rt;
851 
852 				rt = &nfsrtt.rttl[nfsrtt.pos];
853 				rt->proc = rep->r_procnum;
854 				rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
855 				rt->sent = nmp->nm_sent;
856 				rt->cwnd = nmp->nm_cwnd;
857 				rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
858 				rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
859 				rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
860 				getmicrotime(&rt->tstamp);
861 				if (rep->r_flags & R_TIMING)
862 					rt->rtt = rep->r_rtt;
863 				else
864 					rt->rtt = 1000000;
865 				nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
866 			}
867 			/*
868 			 * Update congestion window.
869 			 * Do the additive increase of
870 			 * one rpc/rtt.
871 			 */
872 			if (nmp->nm_cwnd <= nmp->nm_sent) {
873 				nmp->nm_cwnd +=
874 				   (NFS_CWNDSCALE * NFS_CWNDSCALE +
875 				   (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
876 				if (nmp->nm_cwnd > NFS_MAXCWND)
877 					nmp->nm_cwnd = NFS_MAXCWND;
878 			}
879 			crit_enter();	/* nfs_timer interlock for nm_sent */
880 			if (rep->r_flags & R_SENT) {
881 				rep->r_flags &= ~R_SENT;
882 				nmp->nm_sent -= NFS_CWNDSCALE;
883 			}
884 			crit_exit();
885 			/*
886 			 * Update rtt using a gain of 0.125 on the mean
887 			 * and a gain of 0.25 on the deviation.
888 			 */
889 			if (rep->r_flags & R_TIMING) {
890 				/*
891 				 * Since the timer resolution of
892 				 * NFS_HZ is so course, it can often
893 				 * result in r_rtt == 0. Since
894 				 * r_rtt == N means that the actual
895 				 * rtt is between N+dt and N+2-dt ticks,
896 				 * add 1.
897 				 */
898 				t1 = rep->r_rtt + 1;
899 				t1 -= (NFS_SRTT(rep) >> 3);
900 				NFS_SRTT(rep) += t1;
901 				if (t1 < 0)
902 					t1 = -t1;
903 				t1 -= (NFS_SDRTT(rep) >> 2);
904 				NFS_SDRTT(rep) += t1;
905 			}
906 			nmp->nm_timeouts = 0;
907 		}
908 		/*
909 		 * If not matched to a request, drop it.
910 		 * If it's mine, get out.
911 		 */
912 		if (rep == NULL) {
913 			nfsstats.rpcunexpected++;
914 			m_freem(mrep);
915 		} else if (rep == myrep) {
916 			if (rep->r_mrep == NULL)
917 				panic("nfsreply nil");
918 			return (0);
919 		}
920 		if (myrep->r_flags & R_GETONEREP)
921 			return (0);
922 	}
923 }
924 
925 /*
926  * nfs_request - goes something like this
927  *	- fill in request struct
928  *	- links it into list
929  *	- calls nfs_send() for first transmit
930  *	- calls nfs_receive() to get reply
931  *	- break down rpc header and return with nfs reply pointed to
932  *	  by mrep or error
933  * nb: always frees up mreq mbuf list
934  */
935 int
936 nfs_request(struct vnode *vp, struct mbuf *mrest, int procnum,
937 	    struct thread *td, struct ucred *cred, struct mbuf **mrp,
938 	    struct mbuf **mdp, caddr_t *dposp)
939 {
940 	struct mbuf *mrep, *m2;
941 	struct nfsreq *rep;
942 	u_int32_t *tl;
943 	int i;
944 	struct nfsmount *nmp;
945 	struct mbuf *m, *md, *mheadend;
946 	struct nfsnode *np;
947 	char nickv[RPCX_NICKVERF];
948 	time_t reqtime, waituntil;
949 	caddr_t dpos, cp2;
950 	int t1, nqlflag, cachable, error = 0, mrest_len, auth_len, auth_type;
951 	int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
952 	int verf_len, verf_type;
953 	int retdummy;
954 	u_int32_t xid;
955 	u_quad_t frev;
956 	char *auth_str, *verf_str;
957 	NFSKERBKEY_T key;		/* save session key */
958 
959 	/* Reject requests while attempting a forced unmount. */
960 	if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
961 		m_freem(mrest);
962 		return (ESTALE);
963 	}
964 	nmp = VFSTONFS(vp->v_mount);
965 	MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
966 	rep->r_nmp = nmp;
967 	rep->r_vp = vp;
968 	rep->r_td = td;
969 	rep->r_procnum = procnum;
970 	rep->r_mreq = NULL;
971 	i = 0;
972 	m = mrest;
973 	while (m) {
974 		i += m->m_len;
975 		m = m->m_next;
976 	}
977 	mrest_len = i;
978 
979 	/*
980 	 * Get the RPC header with authorization.
981 	 */
982 kerbauth:
983 	verf_str = auth_str = (char *)0;
984 	if (nmp->nm_flag & NFSMNT_KERB) {
985 		verf_str = nickv;
986 		verf_len = sizeof (nickv);
987 		auth_type = RPCAUTH_KERB4;
988 		bzero((caddr_t)key, sizeof (key));
989 		if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
990 			&auth_len, verf_str, verf_len)) {
991 			error = nfs_getauth(nmp, rep, cred, &auth_str,
992 				&auth_len, verf_str, &verf_len, key);
993 			if (error) {
994 				free((caddr_t)rep, M_NFSREQ);
995 				m_freem(mrest);
996 				return (error);
997 			}
998 		}
999 	} else {
1000 		auth_type = RPCAUTH_UNIX;
1001 		if (cred->cr_ngroups < 1)
1002 			panic("nfsreq nogrps");
1003 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
1004 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
1005 			5 * NFSX_UNSIGNED;
1006 	}
1007 	m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
1008 	     auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
1009 	if (auth_str)
1010 		free(auth_str, M_TEMP);
1011 
1012 	/*
1013 	 * For stream protocols, insert a Sun RPC Record Mark.
1014 	 */
1015 	if (nmp->nm_sotype == SOCK_STREAM) {
1016 		M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT);
1017 		if (m == NULL) {
1018 			free(rep, M_NFSREQ);
1019 			return (ENOBUFS);
1020 		}
1021 		*mtod(m, u_int32_t *) = htonl(0x80000000 |
1022 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
1023 	}
1024 	rep->r_mreq = m;
1025 	rep->r_xid = xid;
1026 tryagain:
1027 	if (nmp->nm_flag & NFSMNT_SOFT)
1028 		rep->r_retry = nmp->nm_retry;
1029 	else
1030 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
1031 	rep->r_rtt = rep->r_rexmit = 0;
1032 	if (proct[procnum] > 0)
1033 		rep->r_flags = R_TIMING | R_MASKTIMER;
1034 	else
1035 		rep->r_flags = R_MASKTIMER;
1036 	rep->r_mrep = NULL;
1037 
1038 	/*
1039 	 * Do the client side RPC.
1040 	 */
1041 	nfsstats.rpcrequests++;
1042 
1043 	/*
1044 	 * Chain request into list of outstanding requests. Be sure
1045 	 * to put it LAST so timer finds oldest requests first.  Note
1046 	 * that R_MASKTIMER is set at the moment to prevent any timer
1047 	 * action on this request while we are still doing processing on
1048 	 * it below.  splsoftclock() primarily protects nm_sent.  Note
1049 	 * that we may block in this code so there is no atomicy guarentee.
1050 	 */
1051 	crit_enter();
1052 	TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1053 
1054 	/* Get send time for nqnfs */
1055 	reqtime = time_second;
1056 
1057 	/*
1058 	 * If backing off another request or avoiding congestion, don't
1059 	 * send this one now but let timer do it.  If not timing a request,
1060 	 * do it now.
1061 	 *
1062 	 * Even though the timer will not mess with our request there is
1063 	 * still the possibility that we will race a reply (which clears
1064 	 * R_SENT), especially on localhost connections, so be very careful
1065 	 * when setting R_SENT.  We could set R_SENT prior to calling
1066 	 * nfs_send() but why bother if the response occurs that quickly?
1067 	 */
1068 	if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1069 	    (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1070 	    nmp->nm_sent < nmp->nm_cwnd)) {
1071 		if (nmp->nm_soflags & PR_CONNREQUIRED)
1072 			error = nfs_sndlock(rep);
1073 		if (!error) {
1074 			m2 = m_copym(m, 0, M_COPYALL, MB_WAIT);
1075 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1076 			if (nmp->nm_soflags & PR_CONNREQUIRED)
1077 				nfs_sndunlock(rep);
1078 		}
1079 		if (!error && (rep->r_flags & R_MUSTRESEND) == 0 &&
1080 		    rep->r_mrep == NULL) {
1081 			KASSERT((rep->r_flags & R_SENT) == 0,
1082 				("R_SENT ASSERT %p", rep));
1083 			nmp->nm_sent += NFS_CWNDSCALE;
1084 			rep->r_flags |= R_SENT;
1085 		}
1086 	} else {
1087 		rep->r_rtt = -1;
1088 	}
1089 
1090 	/*
1091 	 * Let the timer do what it will with the request, then
1092 	 * wait for the reply from our send or the timer's.
1093 	 */
1094 	if (!error || error == EPIPE) {
1095 		rep->r_flags &= ~R_MASKTIMER;
1096 		crit_exit();
1097 		error = nfs_reply(rep);
1098 		crit_enter();
1099 	}
1100 
1101 	/*
1102 	 * RPC done, unlink the request, but don't rip it out from under
1103 	 * the callout timer.
1104 	 */
1105 	while (rep->r_flags & R_LOCKED) {
1106 		nfs_timer_raced = 1;
1107 		tsleep(&nfs_timer_raced, 0, "nfstrac", 0);
1108 	}
1109 	TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1110 
1111 	/*
1112 	 * Decrement the outstanding request count.
1113 	 */
1114 	if (rep->r_flags & R_SENT) {
1115 		rep->r_flags &= ~R_SENT;
1116 		nmp->nm_sent -= NFS_CWNDSCALE;
1117 	}
1118 	crit_exit();
1119 
1120 	/*
1121 	 * If there was a successful reply and a tprintf msg.
1122 	 * tprintf a response.
1123 	 */
1124 	if (!error && (rep->r_flags & R_TPRINTFMSG))
1125 		nfs_msg(rep->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1126 		    "is alive again");
1127 	mrep = rep->r_mrep;
1128 	md = rep->r_md;
1129 	dpos = rep->r_dpos;
1130 	if (error) {
1131 		m_freem(rep->r_mreq);
1132 		free((caddr_t)rep, M_NFSREQ);
1133 		return (error);
1134 	}
1135 
1136 	/*
1137 	 * break down the rpc header and check if ok
1138 	 */
1139 	nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1140 	if (*tl++ == rpc_msgdenied) {
1141 		if (*tl == rpc_mismatch)
1142 			error = EOPNOTSUPP;
1143 		else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1144 			if (!failed_auth) {
1145 				failed_auth++;
1146 				mheadend->m_next = (struct mbuf *)0;
1147 				m_freem(mrep);
1148 				m_freem(rep->r_mreq);
1149 				goto kerbauth;
1150 			} else
1151 				error = EAUTH;
1152 		} else
1153 			error = EACCES;
1154 		m_freem(mrep);
1155 		m_freem(rep->r_mreq);
1156 		free((caddr_t)rep, M_NFSREQ);
1157 		return (error);
1158 	}
1159 
1160 	/*
1161 	 * Grab any Kerberos verifier, otherwise just throw it away.
1162 	 */
1163 	verf_type = fxdr_unsigned(int, *tl++);
1164 	i = fxdr_unsigned(int32_t, *tl);
1165 	if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1166 		error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1167 		if (error)
1168 			goto nfsmout;
1169 	} else if (i > 0)
1170 		nfsm_adv(nfsm_rndup(i));
1171 	nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1172 	/* 0 == ok */
1173 	if (*tl == 0) {
1174 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1175 		if (*tl != 0) {
1176 			error = fxdr_unsigned(int, *tl);
1177 			if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1178 				error == NFSERR_TRYLATER) {
1179 				m_freem(mrep);
1180 				error = 0;
1181 				waituntil = time_second + trylater_delay;
1182 				while (time_second < waituntil)
1183 					(void) tsleep((caddr_t)&lbolt,
1184 						0, "nqnfstry", 0);
1185 				trylater_delay *= nfs_backoff[trylater_cnt];
1186 				if (trylater_cnt < 7)
1187 					trylater_cnt++;
1188 				goto tryagain;
1189 			}
1190 
1191 			/*
1192 			 * If the File Handle was stale, invalidate the
1193 			 * lookup cache, just in case.
1194 			 */
1195 			if (error == ESTALE) {
1196 				retdummy = 0;
1197 				cache_inval_vp(vp, CINV_CHILDREN, &retdummy);
1198 			}
1199 			if (nmp->nm_flag & NFSMNT_NFSV3) {
1200 				*mrp = mrep;
1201 				*mdp = md;
1202 				*dposp = dpos;
1203 				error |= NFSERR_RETERR;
1204 			} else
1205 				m_freem(mrep);
1206 			m_freem(rep->r_mreq);
1207 			free((caddr_t)rep, M_NFSREQ);
1208 			return (error);
1209 		}
1210 
1211 		/*
1212 		 * For nqnfs, get any lease in reply
1213 		 */
1214 		if (nmp->nm_flag & NFSMNT_NQNFS) {
1215 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1216 			if (*tl) {
1217 				np = VTONFS(vp);
1218 				nqlflag = fxdr_unsigned(int, *tl);
1219 				nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1220 				cachable = fxdr_unsigned(int, *tl++);
1221 				reqtime += fxdr_unsigned(int, *tl++);
1222 				if (reqtime > time_second) {
1223 				    frev = fxdr_hyper(tl);
1224 				    nqnfs_clientlease(nmp, np, nqlflag,
1225 					cachable, reqtime, frev);
1226 				}
1227 			}
1228 		}
1229 		*mrp = mrep;
1230 		*mdp = md;
1231 		*dposp = dpos;
1232 		m_freem(rep->r_mreq);
1233 		FREE((caddr_t)rep, M_NFSREQ);
1234 		return (0);
1235 	}
1236 	m_freem(mrep);
1237 	error = EPROTONOSUPPORT;
1238 nfsmout:
1239 	m_freem(rep->r_mreq);
1240 	free((caddr_t)rep, M_NFSREQ);
1241 	return (error);
1242 }
1243 
1244 #ifndef NFS_NOSERVER
1245 /*
1246  * Generate the rpc reply header
1247  * siz arg. is used to decide if adding a cluster is worthwhile
1248  */
1249 int
1250 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
1251 	    int err, int cache, u_quad_t *frev, struct mbuf **mrq,
1252 	    struct mbuf **mbp, caddr_t *bposp)
1253 {
1254 	u_int32_t *tl;
1255 	struct mbuf *mreq;
1256 	caddr_t bpos;
1257 	struct mbuf *mb, *mb2;
1258 
1259 	siz += RPC_REPLYSIZ;
1260 	mb = mreq = m_getl(max_hdr + siz, MB_WAIT, MT_DATA, M_PKTHDR, NULL);
1261 	mreq->m_pkthdr.len = 0;
1262 	/*
1263 	 * If this is not a cluster, try and leave leading space
1264 	 * for the lower level headers.
1265 	 */
1266 	if ((max_hdr + siz) < MINCLSIZE)
1267 		mreq->m_data += max_hdr;
1268 	tl = mtod(mreq, u_int32_t *);
1269 	mreq->m_len = 6 * NFSX_UNSIGNED;
1270 	bpos = ((caddr_t)tl) + mreq->m_len;
1271 	*tl++ = txdr_unsigned(nd->nd_retxid);
1272 	*tl++ = rpc_reply;
1273 	if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1274 		*tl++ = rpc_msgdenied;
1275 		if (err & NFSERR_AUTHERR) {
1276 			*tl++ = rpc_autherr;
1277 			*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1278 			mreq->m_len -= NFSX_UNSIGNED;
1279 			bpos -= NFSX_UNSIGNED;
1280 		} else {
1281 			*tl++ = rpc_mismatch;
1282 			*tl++ = txdr_unsigned(RPC_VER2);
1283 			*tl = txdr_unsigned(RPC_VER2);
1284 		}
1285 	} else {
1286 		*tl++ = rpc_msgaccepted;
1287 
1288 		/*
1289 		 * For Kerberos authentication, we must send the nickname
1290 		 * verifier back, otherwise just RPCAUTH_NULL.
1291 		 */
1292 		if (nd->nd_flag & ND_KERBFULL) {
1293 		    struct nfsuid *nuidp;
1294 		    struct timeval ktvin, ktvout;
1295 
1296 		    for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1297 			nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1298 			if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1299 			    (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1300 			     &nuidp->nu_haddr, nd->nd_nam2)))
1301 			    break;
1302 		    }
1303 		    if (nuidp) {
1304 			ktvin.tv_sec =
1305 			    txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1306 			ktvin.tv_usec =
1307 			    txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1308 
1309 			/*
1310 			 * Encrypt the timestamp in ecb mode using the
1311 			 * session key.
1312 			 */
1313 #ifdef NFSKERB
1314 			XXX
1315 #endif
1316 
1317 			*tl++ = rpc_auth_kerb;
1318 			*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1319 			*tl = ktvout.tv_sec;
1320 			nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1321 			*tl++ = ktvout.tv_usec;
1322 			*tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1323 		    } else {
1324 			*tl++ = 0;
1325 			*tl++ = 0;
1326 		    }
1327 		} else {
1328 			*tl++ = 0;
1329 			*tl++ = 0;
1330 		}
1331 		switch (err) {
1332 		case EPROGUNAVAIL:
1333 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1334 			break;
1335 		case EPROGMISMATCH:
1336 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1337 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1338 			if (nd->nd_flag & ND_NQNFS) {
1339 				*tl++ = txdr_unsigned(3);
1340 				*tl = txdr_unsigned(3);
1341 			} else {
1342 				*tl++ = txdr_unsigned(2);
1343 				*tl = txdr_unsigned(3);
1344 			}
1345 			break;
1346 		case EPROCUNAVAIL:
1347 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1348 			break;
1349 		case EBADRPC:
1350 			*tl = txdr_unsigned(RPC_GARBAGE);
1351 			break;
1352 		default:
1353 			*tl = 0;
1354 			if (err != NFSERR_RETVOID) {
1355 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1356 				if (err)
1357 				    *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1358 				else
1359 				    *tl = 0;
1360 			}
1361 			break;
1362 		};
1363 	}
1364 
1365 	/*
1366 	 * For nqnfs, piggyback lease as requested.
1367 	 */
1368 	if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1369 		if (nd->nd_flag & ND_LEASE) {
1370 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1371 			*tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1372 			*tl++ = txdr_unsigned(cache);
1373 			*tl++ = txdr_unsigned(nd->nd_duration);
1374 			txdr_hyper(*frev, tl);
1375 		} else {
1376 			nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1377 			*tl = 0;
1378 		}
1379 	}
1380 	if (mrq != NULL)
1381 	    *mrq = mreq;
1382 	*mbp = mb;
1383 	*bposp = bpos;
1384 	if (err != 0 && err != NFSERR_RETVOID)
1385 		nfsstats.srvrpc_errs++;
1386 	return (0);
1387 }
1388 
1389 
1390 #endif /* NFS_NOSERVER */
1391 /*
1392  * Nfs timer routine
1393  * Scan the nfsreq list and retranmit any requests that have timed out
1394  * To avoid retransmission attempts on STREAM sockets (in the future) make
1395  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1396  */
1397 void
1398 nfs_timer(void *arg /* never used */)
1399 {
1400 	struct nfsreq *rep;
1401 	struct mbuf *m;
1402 	struct socket *so;
1403 	struct nfsmount *nmp;
1404 	int timeo;
1405 	int error;
1406 #ifndef NFS_NOSERVER
1407 	static long lasttime = 0;
1408 	struct nfssvc_sock *slp;
1409 	u_quad_t cur_usec;
1410 #endif /* NFS_NOSERVER */
1411 	struct thread *td = &thread0; /* XXX for credentials, will break if sleep */
1412 
1413 	crit_enter();
1414 	TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
1415 		nmp = rep->r_nmp;
1416 		if (rep->r_mrep || (rep->r_flags & (R_SOFTTERM|R_MASKTIMER)))
1417 			continue;
1418 		rep->r_flags |= R_LOCKED;
1419 		if (nfs_sigintr(nmp, rep, rep->r_td)) {
1420 			nfs_softterm(rep);
1421 			goto skip;
1422 		}
1423 		if (rep->r_rtt >= 0) {
1424 			rep->r_rtt++;
1425 			if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1426 				timeo = nmp->nm_timeo;
1427 			else
1428 				timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1429 			if (nmp->nm_timeouts > 0)
1430 				timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1431 			if (rep->r_rtt <= timeo)
1432 				goto skip;
1433 			if (nmp->nm_timeouts < 8)
1434 				nmp->nm_timeouts++;
1435 		}
1436 		/*
1437 		 * Check for server not responding
1438 		 */
1439 		if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1440 		     rep->r_rexmit > nmp->nm_deadthresh) {
1441 			nfs_msg(rep->r_td,
1442 			    nmp->nm_mountp->mnt_stat.f_mntfromname,
1443 			    "not responding");
1444 			rep->r_flags |= R_TPRINTFMSG;
1445 		}
1446 		if (rep->r_rexmit >= rep->r_retry) {	/* too many */
1447 			nfsstats.rpctimeouts++;
1448 			nfs_softterm(rep);
1449 			goto skip;
1450 		}
1451 		if (nmp->nm_sotype != SOCK_DGRAM) {
1452 			if (++rep->r_rexmit > NFS_MAXREXMIT)
1453 				rep->r_rexmit = NFS_MAXREXMIT;
1454 			goto skip;
1455 		}
1456 		if ((so = nmp->nm_so) == NULL)
1457 			goto skip;
1458 
1459 		/*
1460 		 * If there is enough space and the window allows..
1461 		 *	Resend it
1462 		 * Set r_rtt to -1 in case we fail to send it now.
1463 		 */
1464 		rep->r_rtt = -1;
1465 		if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1466 		   ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1467 		    (rep->r_flags & R_SENT) ||
1468 		    nmp->nm_sent < nmp->nm_cwnd) &&
1469 		   (m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){
1470 			if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1471 			    error = so_pru_send(so, 0, m, (struct sockaddr *)0,
1472 				     (struct mbuf *)0, td);
1473 			else
1474 			    error = so_pru_send(so, 0, m, nmp->nm_nam,
1475 			        (struct mbuf *)0, td);
1476 			if (error) {
1477 				if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1478 					so->so_error = 0;
1479 			} else if (rep->r_mrep == NULL) {
1480 				/*
1481 				 * Iff first send, start timing
1482 				 * else turn timing off, backoff timer
1483 				 * and divide congestion window by 2.
1484 				 *
1485 				 * It is possible for the so_pru_send() to
1486 				 * block and for us to race a reply so we
1487 				 * only do this if the reply field has not
1488 				 * been filled in.  R_LOCKED will prevent
1489 				 * the request from being ripped out from under
1490 				 * us entirely.
1491 				 */
1492 				if (rep->r_flags & R_SENT) {
1493 					rep->r_flags &= ~R_TIMING;
1494 					if (++rep->r_rexmit > NFS_MAXREXMIT)
1495 						rep->r_rexmit = NFS_MAXREXMIT;
1496 					nmp->nm_cwnd >>= 1;
1497 					if (nmp->nm_cwnd < NFS_CWNDSCALE)
1498 						nmp->nm_cwnd = NFS_CWNDSCALE;
1499 					nfsstats.rpcretries++;
1500 				} else {
1501 					rep->r_flags |= R_SENT;
1502 					nmp->nm_sent += NFS_CWNDSCALE;
1503 				}
1504 				rep->r_rtt = 0;
1505 			}
1506 		}
1507 skip:
1508 		rep->r_flags &= ~R_LOCKED;
1509 	}
1510 #ifndef NFS_NOSERVER
1511 	/*
1512 	 * Call the nqnfs server timer once a second to handle leases.
1513 	 */
1514 	if (lasttime != time_second) {
1515 		lasttime = time_second;
1516 		nqnfs_serverd();
1517 	}
1518 
1519 	/*
1520 	 * Scan the write gathering queues for writes that need to be
1521 	 * completed now.
1522 	 */
1523 	cur_usec = nfs_curusec();
1524 	TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1525 	    if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1526 		nfsrv_wakenfsd(slp, 1);
1527 	}
1528 #endif /* NFS_NOSERVER */
1529 
1530 	/*
1531 	 * Due to possible blocking, a client operation may be waiting for
1532 	 * us to finish processing this request so it can remove it.
1533 	 */
1534 	if (nfs_timer_raced) {
1535 		nfs_timer_raced = 0;
1536 		wakeup(&nfs_timer_raced);
1537 	}
1538 	crit_exit();
1539 	callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer, NULL);
1540 }
1541 
1542 /*
1543  * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1544  * wait for all requests to complete. This is used by forced unmounts
1545  * to terminate any outstanding RPCs.
1546  */
1547 int
1548 nfs_nmcancelreqs(struct nfsmount *nmp)
1549 {
1550 	struct nfsreq *req;
1551 	int i;
1552 
1553 	crit_enter();
1554 	TAILQ_FOREACH(req, &nfs_reqq, r_chain) {
1555 		if (nmp != req->r_nmp || req->r_mrep != NULL ||
1556 		    (req->r_flags & R_SOFTTERM)) {
1557 			continue;
1558 		}
1559 		nfs_softterm(req);
1560 	}
1561 	crit_exit();
1562 
1563 	for (i = 0; i < 30; i++) {
1564 		crit_enter();
1565 		TAILQ_FOREACH(req, &nfs_reqq, r_chain) {
1566 			if (nmp == req->r_nmp)
1567 				break;
1568 		}
1569 		crit_exit();
1570 		if (req == NULL)
1571 			return (0);
1572 		tsleep(&lbolt, 0, "nfscancel", 0);
1573 	}
1574 	return (EBUSY);
1575 }
1576 
1577 /*
1578  * Flag a request as being about to terminate (due to NFSMNT_INT/NFSMNT_SOFT).
1579  * The nm_send count is decremented now to avoid deadlocks when the process in
1580  * soreceive() hasn't yet managed to send its own request.
1581  *
1582  * This routine must be called at splsoftclock() to protect r_flags and
1583  * nm_sent.
1584  */
1585 
1586 static void
1587 nfs_softterm(struct nfsreq *rep)
1588 {
1589 	rep->r_flags |= R_SOFTTERM;
1590 
1591 	if (rep->r_flags & R_SENT) {
1592 		rep->r_nmp->nm_sent -= NFS_CWNDSCALE;
1593 		rep->r_flags &= ~R_SENT;
1594 	}
1595 }
1596 
1597 /*
1598  * Test for a termination condition pending on the process.
1599  * This is used for NFSMNT_INT mounts.
1600  */
1601 int
1602 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
1603 {
1604 	sigset_t tmpset;
1605 	struct proc *p;
1606 
1607 	if (rep && (rep->r_flags & R_SOFTTERM))
1608 		return (EINTR);
1609 	/* Terminate all requests while attempting a forced unmount. */
1610 	if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
1611 		return (EINTR);
1612 	if (!(nmp->nm_flag & NFSMNT_INT))
1613 		return (0);
1614 	/* td might be NULL YYY */
1615 	if (td == NULL || (p = td->td_proc) == NULL)
1616 		return (0);
1617 
1618 	tmpset = p->p_siglist;
1619 	SIGSETNAND(tmpset, p->p_sigmask);
1620 	SIGSETNAND(tmpset, p->p_sigignore);
1621 	if (SIGNOTEMPTY(p->p_siglist) && NFSINT_SIGMASK(tmpset))
1622 		return (EINTR);
1623 
1624 	return (0);
1625 }
1626 
1627 /*
1628  * Lock a socket against others.
1629  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1630  * and also to avoid race conditions between the processes with nfs requests
1631  * in progress when a reconnect is necessary.
1632  */
1633 int
1634 nfs_sndlock(struct nfsreq *rep)
1635 {
1636 	int *statep = &rep->r_nmp->nm_state;
1637 	struct thread *td;
1638 	int slptimeo;
1639 	int slpflag;
1640 	int error;
1641 
1642 	slpflag = 0;
1643 	slptimeo = 0;
1644 	td = rep->r_td;
1645 	if (rep->r_nmp->nm_flag & NFSMNT_INT)
1646 		slpflag = PCATCH;
1647 
1648 	error = 0;
1649 	crit_enter();
1650 	while (*statep & NFSSTA_SNDLOCK) {
1651 		*statep |= NFSSTA_WANTSND;
1652 		if (nfs_sigintr(rep->r_nmp, rep, td)) {
1653 			error = EINTR;
1654 			break;
1655 		}
1656 		tsleep((caddr_t)statep, slpflag, "nfsndlck", slptimeo);
1657 		if (slpflag == PCATCH) {
1658 			slpflag = 0;
1659 			slptimeo = 2 * hz;
1660 		}
1661 	}
1662 	/* Always fail if our request has been cancelled. */
1663 	if ((rep->r_flags & R_SOFTTERM))
1664 		error = EINTR;
1665 	if (error == 0)
1666 		*statep |= NFSSTA_SNDLOCK;
1667 	crit_exit();
1668 	return (error);
1669 }
1670 
1671 /*
1672  * Unlock the stream socket for others.
1673  */
1674 void
1675 nfs_sndunlock(struct nfsreq *rep)
1676 {
1677 	int *statep = &rep->r_nmp->nm_state;
1678 
1679 	if ((*statep & NFSSTA_SNDLOCK) == 0)
1680 		panic("nfs sndunlock");
1681 	crit_enter();
1682 	*statep &= ~NFSSTA_SNDLOCK;
1683 	if (*statep & NFSSTA_WANTSND) {
1684 		*statep &= ~NFSSTA_WANTSND;
1685 		wakeup((caddr_t)statep);
1686 	}
1687 	crit_exit();
1688 }
1689 
1690 static int
1691 nfs_rcvlock(struct nfsreq *rep)
1692 {
1693 	int *statep = &rep->r_nmp->nm_state;
1694 	int slpflag;
1695 	int slptimeo;
1696 	int error;
1697 
1698 	/*
1699 	 * Unconditionally check for completion in case another nfsiod
1700 	 * get the packet while the caller was blocked, before the caller
1701 	 * called us.  Packet reception is handled by mainline code which
1702 	 * is protected by the BGL at the moment.
1703 	 *
1704 	 * We do not strictly need the second check just before the
1705 	 * tsleep(), but it's good defensive programming.
1706 	 */
1707 	if (rep->r_mrep != NULL)
1708 		return (EALREADY);
1709 
1710 	if (rep->r_nmp->nm_flag & NFSMNT_INT)
1711 		slpflag = PCATCH;
1712 	else
1713 		slpflag = 0;
1714 	slptimeo = 0;
1715 	error = 0;
1716 	crit_enter();
1717 	while (*statep & NFSSTA_RCVLOCK) {
1718 		if (nfs_sigintr(rep->r_nmp, rep, rep->r_td)) {
1719 			error = EINTR;
1720 			break;
1721 		}
1722 		if (rep->r_mrep != NULL) {
1723 			error = EALREADY;
1724 			break;
1725 		}
1726 		*statep |= NFSSTA_WANTRCV;
1727 		tsleep((caddr_t)statep, slpflag, "nfsrcvlk", slptimeo);
1728 		/*
1729 		 * If our reply was recieved while we were sleeping,
1730 		 * then just return without taking the lock to avoid a
1731 		 * situation where a single iod could 'capture' the
1732 		 * recieve lock.
1733 		 */
1734 		if (rep->r_mrep != NULL) {
1735 			error = EALREADY;
1736 			break;
1737 		}
1738 		if (slpflag == PCATCH) {
1739 			slpflag = 0;
1740 			slptimeo = 2 * hz;
1741 		}
1742 	}
1743 	if (error == 0) {
1744 		*statep |= NFSSTA_RCVLOCK;
1745 		rep->r_nmp->nm_rcvlock_td = curthread;	/* DEBUGGING */
1746 	}
1747 	crit_exit();
1748 	return (error);
1749 }
1750 
1751 /*
1752  * Unlock the stream socket for others.
1753  */
1754 static void
1755 nfs_rcvunlock(struct nfsreq *rep)
1756 {
1757 	int *statep = &rep->r_nmp->nm_state;
1758 
1759 	if ((*statep & NFSSTA_RCVLOCK) == 0)
1760 		panic("nfs rcvunlock");
1761 	crit_enter();
1762 	rep->r_nmp->nm_rcvlock_td = (void *)-1;	/* DEBUGGING */
1763 	*statep &= ~NFSSTA_RCVLOCK;
1764 	if (*statep & NFSSTA_WANTRCV) {
1765 		*statep &= ~NFSSTA_WANTRCV;
1766 		wakeup((caddr_t)statep);
1767 	}
1768 	crit_exit();
1769 }
1770 
1771 /*
1772  *	nfs_realign:
1773  *
1774  *	Check for badly aligned mbuf data and realign by copying the unaligned
1775  *	portion of the data into a new mbuf chain and freeing the portions
1776  *	of the old chain that were replaced.
1777  *
1778  *	We cannot simply realign the data within the existing mbuf chain
1779  *	because the underlying buffers may contain other rpc commands and
1780  *	we cannot afford to overwrite them.
1781  *
1782  *	We would prefer to avoid this situation entirely.  The situation does
1783  *	not occur with NFS/UDP and is supposed to only occassionally occur
1784  *	with TCP.  Use vfs.nfs.realign_count and realign_test to check this.
1785  */
1786 static void
1787 nfs_realign(struct mbuf **pm, int hsiz)
1788 {
1789 	struct mbuf *m;
1790 	struct mbuf *n = NULL;
1791 	int off = 0;
1792 
1793 	++nfs_realign_test;
1794 
1795 	while ((m = *pm) != NULL) {
1796 		if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) {
1797 			n = m_getl(m->m_len, MB_WAIT, MT_DATA, 0, NULL);
1798 			n->m_len = 0;
1799 			break;
1800 		}
1801 		pm = &m->m_next;
1802 	}
1803 
1804 	/*
1805 	 * If n is non-NULL, loop on m copying data, then replace the
1806 	 * portion of the chain that had to be realigned.
1807 	 */
1808 	if (n != NULL) {
1809 		++nfs_realign_count;
1810 		while (m) {
1811 			m_copyback(n, off, m->m_len, mtod(m, caddr_t));
1812 			off += m->m_len;
1813 			m = m->m_next;
1814 		}
1815 		m_freem(*pm);
1816 		*pm = n;
1817 	}
1818 }
1819 
1820 #ifndef NFS_NOSERVER
1821 
1822 /*
1823  * Parse an RPC request
1824  * - verify it
1825  * - fill in the cred struct.
1826  */
1827 int
1828 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
1829 {
1830 	int len, i;
1831 	u_int32_t *tl;
1832 	int32_t t1;
1833 	struct uio uio;
1834 	struct iovec iov;
1835 	caddr_t dpos, cp2, cp;
1836 	u_int32_t nfsvers, auth_type;
1837 	uid_t nickuid;
1838 	int error = 0, nqnfs = 0, ticklen;
1839 	struct mbuf *mrep, *md;
1840 	struct nfsuid *nuidp;
1841 	struct timeval tvin, tvout;
1842 #if 0				/* until encrypted keys are implemented */
1843 	NFSKERBKEYSCHED_T keys;	/* stores key schedule */
1844 #endif
1845 
1846 	mrep = nd->nd_mrep;
1847 	md = nd->nd_md;
1848 	dpos = nd->nd_dpos;
1849 	if (has_header) {
1850 		nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1851 		nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1852 		if (*tl++ != rpc_call) {
1853 			m_freem(mrep);
1854 			return (EBADRPC);
1855 		}
1856 	} else
1857 		nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1858 	nd->nd_repstat = 0;
1859 	nd->nd_flag = 0;
1860 	if (*tl++ != rpc_vers) {
1861 		nd->nd_repstat = ERPCMISMATCH;
1862 		nd->nd_procnum = NFSPROC_NOOP;
1863 		return (0);
1864 	}
1865 	if (*tl != nfs_prog) {
1866 		if (*tl == nqnfs_prog)
1867 			nqnfs++;
1868 		else {
1869 			nd->nd_repstat = EPROGUNAVAIL;
1870 			nd->nd_procnum = NFSPROC_NOOP;
1871 			return (0);
1872 		}
1873 	}
1874 	tl++;
1875 	nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1876 	if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1877 		(nfsvers != NQNFS_VER3 && nqnfs)) {
1878 		nd->nd_repstat = EPROGMISMATCH;
1879 		nd->nd_procnum = NFSPROC_NOOP;
1880 		return (0);
1881 	}
1882 	if (nqnfs)
1883 		nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1884 	else if (nfsvers == NFS_VER3)
1885 		nd->nd_flag = ND_NFSV3;
1886 	nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1887 	if (nd->nd_procnum == NFSPROC_NULL)
1888 		return (0);
1889 	if (nd->nd_procnum >= NFS_NPROCS ||
1890 		(!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1891 		(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1892 		nd->nd_repstat = EPROCUNAVAIL;
1893 		nd->nd_procnum = NFSPROC_NOOP;
1894 		return (0);
1895 	}
1896 	if ((nd->nd_flag & ND_NFSV3) == 0)
1897 		nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1898 	auth_type = *tl++;
1899 	len = fxdr_unsigned(int, *tl++);
1900 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
1901 		m_freem(mrep);
1902 		return (EBADRPC);
1903 	}
1904 
1905 	nd->nd_flag &= ~ND_KERBAUTH;
1906 	/*
1907 	 * Handle auth_unix or auth_kerb.
1908 	 */
1909 	if (auth_type == rpc_auth_unix) {
1910 		len = fxdr_unsigned(int, *++tl);
1911 		if (len < 0 || len > NFS_MAXNAMLEN) {
1912 			m_freem(mrep);
1913 			return (EBADRPC);
1914 		}
1915 		nfsm_adv(nfsm_rndup(len));
1916 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1917 		bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
1918 		nd->nd_cr.cr_ref = 1;
1919 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1920 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1921 		len = fxdr_unsigned(int, *tl);
1922 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1923 			m_freem(mrep);
1924 			return (EBADRPC);
1925 		}
1926 		nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1927 		for (i = 1; i <= len; i++)
1928 		    if (i < NGROUPS)
1929 			nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1930 		    else
1931 			tl++;
1932 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
1933 		if (nd->nd_cr.cr_ngroups > 1)
1934 		    nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1935 		len = fxdr_unsigned(int, *++tl);
1936 		if (len < 0 || len > RPCAUTH_MAXSIZ) {
1937 			m_freem(mrep);
1938 			return (EBADRPC);
1939 		}
1940 		if (len > 0)
1941 			nfsm_adv(nfsm_rndup(len));
1942 	} else if (auth_type == rpc_auth_kerb) {
1943 		switch (fxdr_unsigned(int, *tl++)) {
1944 		case RPCAKN_FULLNAME:
1945 			ticklen = fxdr_unsigned(int, *tl);
1946 			*((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1947 			uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1948 			nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1949 			if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1950 				m_freem(mrep);
1951 				return (EBADRPC);
1952 			}
1953 			uio.uio_offset = 0;
1954 			uio.uio_iov = &iov;
1955 			uio.uio_iovcnt = 1;
1956 			uio.uio_segflg = UIO_SYSSPACE;
1957 			iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1958 			iov.iov_len = RPCAUTH_MAXSIZ - 4;
1959 			nfsm_mtouio(&uio, uio.uio_resid);
1960 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1961 			if (*tl++ != rpc_auth_kerb ||
1962 				fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1963 				printf("Bad kerb verifier\n");
1964 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1965 				nd->nd_procnum = NFSPROC_NOOP;
1966 				return (0);
1967 			}
1968 			nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1969 			tl = (u_int32_t *)cp;
1970 			if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1971 				printf("Not fullname kerb verifier\n");
1972 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1973 				nd->nd_procnum = NFSPROC_NOOP;
1974 				return (0);
1975 			}
1976 			cp += NFSX_UNSIGNED;
1977 			bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
1978 			nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1979 			nd->nd_flag |= ND_KERBFULL;
1980 			nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1981 			break;
1982 		case RPCAKN_NICKNAME:
1983 			if (len != 2 * NFSX_UNSIGNED) {
1984 				printf("Kerb nickname short\n");
1985 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1986 				nd->nd_procnum = NFSPROC_NOOP;
1987 				return (0);
1988 			}
1989 			nickuid = fxdr_unsigned(uid_t, *tl);
1990 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1991 			if (*tl++ != rpc_auth_kerb ||
1992 				fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1993 				printf("Kerb nick verifier bad\n");
1994 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1995 				nd->nd_procnum = NFSPROC_NOOP;
1996 				return (0);
1997 			}
1998 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1999 			tvin.tv_sec = *tl++;
2000 			tvin.tv_usec = *tl;
2001 
2002 			for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
2003 			    nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
2004 				if (nuidp->nu_cr.cr_uid == nickuid &&
2005 				    (!nd->nd_nam2 ||
2006 				     netaddr_match(NU_NETFAM(nuidp),
2007 				      &nuidp->nu_haddr, nd->nd_nam2)))
2008 					break;
2009 			}
2010 			if (!nuidp) {
2011 				nd->nd_repstat =
2012 					(NFSERR_AUTHERR|AUTH_REJECTCRED);
2013 				nd->nd_procnum = NFSPROC_NOOP;
2014 				return (0);
2015 			}
2016 
2017 			/*
2018 			 * Now, decrypt the timestamp using the session key
2019 			 * and validate it.
2020 			 */
2021 #ifdef NFSKERB
2022 			XXX
2023 #endif
2024 
2025 			tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2026 			tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2027 			if (nuidp->nu_expire < time_second ||
2028 			    nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2029 			    (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2030 			     nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2031 				nuidp->nu_expire = 0;
2032 				nd->nd_repstat =
2033 				    (NFSERR_AUTHERR|AUTH_REJECTVERF);
2034 				nd->nd_procnum = NFSPROC_NOOP;
2035 				return (0);
2036 			}
2037 			nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
2038 			nd->nd_flag |= ND_KERBNICK;
2039 		};
2040 	} else {
2041 		nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2042 		nd->nd_procnum = NFSPROC_NOOP;
2043 		return (0);
2044 	}
2045 
2046 	/*
2047 	 * For nqnfs, get piggybacked lease request.
2048 	 */
2049 	if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
2050 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2051 		nd->nd_flag |= fxdr_unsigned(int, *tl);
2052 		if (nd->nd_flag & ND_LEASE) {
2053 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2054 			nd->nd_duration = fxdr_unsigned(int32_t, *tl);
2055 		} else
2056 			nd->nd_duration = NQ_MINLEASE;
2057 	} else
2058 		nd->nd_duration = NQ_MINLEASE;
2059 	nd->nd_md = md;
2060 	nd->nd_dpos = dpos;
2061 	return (0);
2062 nfsmout:
2063 	return (error);
2064 }
2065 
2066 #endif
2067 
2068 /*
2069  * Send a message to the originating process's terminal.  The thread and/or
2070  * process may be NULL.  YYY the thread should not be NULL but there may
2071  * still be some uio_td's that are still being passed as NULL through to
2072  * nfsm_request().
2073  */
2074 static int
2075 nfs_msg(struct thread *td, char *server, char *msg)
2076 {
2077 	tpr_t tpr;
2078 
2079 	if (td && td->td_proc)
2080 		tpr = tprintf_open(td->td_proc);
2081 	else
2082 		tpr = NULL;
2083 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2084 	tprintf_close(tpr);
2085 	return (0);
2086 }
2087 
2088 #ifndef NFS_NOSERVER
2089 /*
2090  * Socket upcall routine for the nfsd sockets.
2091  * The caddr_t arg is a pointer to the "struct nfssvc_sock".
2092  * Essentially do as much as possible non-blocking, else punt and it will
2093  * be called with MB_WAIT from an nfsd.
2094  */
2095 void
2096 nfsrv_rcv(struct socket *so, void *arg, int waitflag)
2097 {
2098 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2099 	struct mbuf *m;
2100 	struct mbuf *mp;
2101 	struct sockaddr *nam;
2102 	struct uio auio;
2103 	int flags, error;
2104 	int nparallel_wakeup = 0;
2105 
2106 	if ((slp->ns_flag & SLP_VALID) == 0)
2107 		return;
2108 
2109 	/*
2110 	 * Do not allow an infinite number of completed RPC records to build
2111 	 * up before we stop reading data from the socket.  Otherwise we could
2112 	 * end up holding onto an unreasonable number of mbufs for requests
2113 	 * waiting for service.
2114 	 *
2115 	 * This should give pretty good feedback to the TCP
2116 	 * layer and prevents a memory crunch for other protocols.
2117 	 *
2118 	 * Note that the same service socket can be dispatched to several
2119 	 * nfs servers simultaniously.
2120 	 *
2121 	 * the tcp protocol callback calls us with MB_DONTWAIT.
2122 	 * nfsd calls us with MB_WAIT (typically).
2123 	 */
2124 	if (waitflag == MB_DONTWAIT && slp->ns_numrec >= nfsd_waiting / 2 + 1) {
2125 		slp->ns_flag |= SLP_NEEDQ;
2126 		goto dorecs;
2127 	}
2128 
2129 	/*
2130 	 * Handle protocol specifics to parse an RPC request.  We always
2131 	 * pull from the socket using non-blocking I/O.
2132 	 */
2133 	auio.uio_td = NULL;
2134 	if (so->so_type == SOCK_STREAM) {
2135 		/*
2136 		 * The data has to be read in an orderly fashion from a TCP
2137 		 * stream, unlike a UDP socket.  It is possible for soreceive
2138 		 * and/or nfsrv_getstream() to block, so make sure only one
2139 		 * entity is messing around with the TCP stream at any given
2140 		 * moment.  The receive sockbuf's lock in soreceive is not
2141 		 * sufficient.
2142 		 *
2143 		 * Note that this procedure can be called from any number of
2144 		 * NFS severs *OR* can be upcalled directly from a TCP
2145 		 * protocol thread.
2146 		 */
2147 		if (slp->ns_flag & SLP_GETSTREAM) {
2148 			slp->ns_flag |= SLP_NEEDQ;
2149 			goto dorecs;
2150 		}
2151 		slp->ns_flag |= SLP_GETSTREAM;
2152 
2153 		/*
2154 		 * Do soreceive().
2155 		 */
2156 		auio.uio_resid = 1000000000;
2157 		flags = MSG_DONTWAIT;
2158 		error = so_pru_soreceive(so, &nam, &auio, &mp, NULL, &flags);
2159 		if (error || mp == (struct mbuf *)0) {
2160 			if (error == EWOULDBLOCK)
2161 				slp->ns_flag |= SLP_NEEDQ;
2162 			else
2163 				slp->ns_flag |= SLP_DISCONN;
2164 			slp->ns_flag &= ~SLP_GETSTREAM;
2165 			goto dorecs;
2166 		}
2167 		m = mp;
2168 		if (slp->ns_rawend) {
2169 			slp->ns_rawend->m_next = m;
2170 			slp->ns_cc += 1000000000 - auio.uio_resid;
2171 		} else {
2172 			slp->ns_raw = m;
2173 			slp->ns_cc = 1000000000 - auio.uio_resid;
2174 		}
2175 		while (m->m_next)
2176 			m = m->m_next;
2177 		slp->ns_rawend = m;
2178 
2179 		/*
2180 		 * Now try and parse as many record(s) as we can out of the
2181 		 * raw stream data.
2182 		 */
2183 		error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup);
2184 		if (error) {
2185 			if (error == EPERM)
2186 				slp->ns_flag |= SLP_DISCONN;
2187 			else
2188 				slp->ns_flag |= SLP_NEEDQ;
2189 		}
2190 		slp->ns_flag &= ~SLP_GETSTREAM;
2191 	} else {
2192 		/*
2193 		 * For UDP soreceive typically pulls just one packet, loop
2194 		 * to get the whole batch.
2195 		 */
2196 		do {
2197 			auio.uio_resid = 1000000000;
2198 			flags = MSG_DONTWAIT;
2199 			error = so_pru_soreceive(so, &nam, &auio, &mp, NULL,
2200 			    &flags);
2201 			if (mp) {
2202 				struct nfsrv_rec *rec;
2203 				int mf = (waitflag & MB_DONTWAIT) ?
2204 					    M_NOWAIT : M_WAITOK;
2205 				rec = malloc(sizeof(struct nfsrv_rec),
2206 					     M_NFSRVDESC, mf);
2207 				if (!rec) {
2208 					if (nam)
2209 						FREE(nam, M_SONAME);
2210 					m_freem(mp);
2211 					continue;
2212 				}
2213 				nfs_realign(&mp, 10 * NFSX_UNSIGNED);
2214 				rec->nr_address = nam;
2215 				rec->nr_packet = mp;
2216 				STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2217 				++slp->ns_numrec;
2218 				++nparallel_wakeup;
2219 			}
2220 			if (error) {
2221 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2222 					&& error != EWOULDBLOCK) {
2223 					slp->ns_flag |= SLP_DISCONN;
2224 					goto dorecs;
2225 				}
2226 			}
2227 		} while (mp);
2228 	}
2229 
2230 	/*
2231 	 * If we were upcalled from the tcp protocol layer and we have
2232 	 * fully parsed records ready to go, or there is new data pending,
2233 	 * or something went wrong, try to wake up an nfsd thread to deal
2234 	 * with it.
2235 	 */
2236 dorecs:
2237 	if (waitflag == MB_DONTWAIT && (slp->ns_numrec > 0
2238 	     || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) {
2239 		nfsrv_wakenfsd(slp, nparallel_wakeup);
2240 	}
2241 }
2242 
2243 /*
2244  * Try and extract an RPC request from the mbuf data list received on a
2245  * stream socket. The "waitflag" argument indicates whether or not it
2246  * can sleep.
2247  */
2248 static int
2249 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp)
2250 {
2251 	struct mbuf *m, **mpp;
2252 	char *cp1, *cp2;
2253 	int len;
2254 	struct mbuf *om, *m2, *recm;
2255 	u_int32_t recmark;
2256 
2257 	for (;;) {
2258 	    if (slp->ns_reclen == 0) {
2259 		if (slp->ns_cc < NFSX_UNSIGNED)
2260 			return (0);
2261 		m = slp->ns_raw;
2262 		if (m->m_len >= NFSX_UNSIGNED) {
2263 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2264 			m->m_data += NFSX_UNSIGNED;
2265 			m->m_len -= NFSX_UNSIGNED;
2266 		} else {
2267 			cp1 = (caddr_t)&recmark;
2268 			cp2 = mtod(m, caddr_t);
2269 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2270 				while (m->m_len == 0) {
2271 					m = m->m_next;
2272 					cp2 = mtod(m, caddr_t);
2273 				}
2274 				*cp1++ = *cp2++;
2275 				m->m_data++;
2276 				m->m_len--;
2277 			}
2278 		}
2279 		slp->ns_cc -= NFSX_UNSIGNED;
2280 		recmark = ntohl(recmark);
2281 		slp->ns_reclen = recmark & ~0x80000000;
2282 		if (recmark & 0x80000000)
2283 			slp->ns_flag |= SLP_LASTFRAG;
2284 		else
2285 			slp->ns_flag &= ~SLP_LASTFRAG;
2286 		if (slp->ns_reclen > NFS_MAXPACKET || slp->ns_reclen <= 0) {
2287 			log(LOG_ERR, "%s (%d) from nfs client\n",
2288 			    "impossible packet length",
2289 			    slp->ns_reclen);
2290 			return (EPERM);
2291 		}
2292 	    }
2293 
2294 	    /*
2295 	     * Now get the record part.
2296 	     *
2297 	     * Note that slp->ns_reclen may be 0.  Linux sometimes
2298 	     * generates 0-length RPCs
2299 	     */
2300 	    recm = NULL;
2301 	    if (slp->ns_cc == slp->ns_reclen) {
2302 		recm = slp->ns_raw;
2303 		slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2304 		slp->ns_cc = slp->ns_reclen = 0;
2305 	    } else if (slp->ns_cc > slp->ns_reclen) {
2306 		len = 0;
2307 		m = slp->ns_raw;
2308 		om = (struct mbuf *)0;
2309 
2310 		while (len < slp->ns_reclen) {
2311 			if ((len + m->m_len) > slp->ns_reclen) {
2312 				m2 = m_copym(m, 0, slp->ns_reclen - len,
2313 					waitflag);
2314 				if (m2) {
2315 					if (om) {
2316 						om->m_next = m2;
2317 						recm = slp->ns_raw;
2318 					} else
2319 						recm = m2;
2320 					m->m_data += slp->ns_reclen - len;
2321 					m->m_len -= slp->ns_reclen - len;
2322 					len = slp->ns_reclen;
2323 				} else {
2324 					return (EWOULDBLOCK);
2325 				}
2326 			} else if ((len + m->m_len) == slp->ns_reclen) {
2327 				om = m;
2328 				len += m->m_len;
2329 				m = m->m_next;
2330 				recm = slp->ns_raw;
2331 				om->m_next = (struct mbuf *)0;
2332 			} else {
2333 				om = m;
2334 				len += m->m_len;
2335 				m = m->m_next;
2336 			}
2337 		}
2338 		slp->ns_raw = m;
2339 		slp->ns_cc -= len;
2340 		slp->ns_reclen = 0;
2341 	    } else {
2342 		return (0);
2343 	    }
2344 
2345 	    /*
2346 	     * Accumulate the fragments into a record.
2347 	     */
2348 	    mpp = &slp->ns_frag;
2349 	    while (*mpp)
2350 		mpp = &((*mpp)->m_next);
2351 	    *mpp = recm;
2352 	    if (slp->ns_flag & SLP_LASTFRAG) {
2353 		struct nfsrv_rec *rec;
2354 		int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK;
2355 		rec = malloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf);
2356 		if (!rec) {
2357 		    m_freem(slp->ns_frag);
2358 		} else {
2359 		    nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2360 		    rec->nr_address = (struct sockaddr *)0;
2361 		    rec->nr_packet = slp->ns_frag;
2362 		    STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2363 		    ++slp->ns_numrec;
2364 		    ++*countp;
2365 		}
2366 		slp->ns_frag = (struct mbuf *)0;
2367 	    }
2368 	}
2369 }
2370 
2371 /*
2372  * Parse an RPC header.
2373  */
2374 int
2375 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2376 	    struct nfsrv_descript **ndp)
2377 {
2378 	struct nfsrv_rec *rec;
2379 	struct mbuf *m;
2380 	struct sockaddr *nam;
2381 	struct nfsrv_descript *nd;
2382 	int error;
2383 
2384 	*ndp = NULL;
2385 	if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2386 		return (ENOBUFS);
2387 	rec = STAILQ_FIRST(&slp->ns_rec);
2388 	STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2389 	KKASSERT(slp->ns_numrec > 0);
2390 	--slp->ns_numrec;
2391 	nam = rec->nr_address;
2392 	m = rec->nr_packet;
2393 	free(rec, M_NFSRVDESC);
2394 	MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2395 		M_NFSRVDESC, M_WAITOK);
2396 	nd->nd_md = nd->nd_mrep = m;
2397 	nd->nd_nam2 = nam;
2398 	nd->nd_dpos = mtod(m, caddr_t);
2399 	error = nfs_getreq(nd, nfsd, TRUE);
2400 	if (error) {
2401 		if (nam) {
2402 			FREE(nam, M_SONAME);
2403 		}
2404 		free((caddr_t)nd, M_NFSRVDESC);
2405 		return (error);
2406 	}
2407 	*ndp = nd;
2408 	nfsd->nfsd_nd = nd;
2409 	return (0);
2410 }
2411 
2412 /*
2413  * Try to assign service sockets to nfsd threads based on the number
2414  * of new rpc requests that have been queued on the service socket.
2415  *
2416  * If no nfsd's are available or additonal requests are pending, set the
2417  * NFSD_CHECKSLP flag so that one of the running nfsds will go look for
2418  * the work in the nfssvc_sock list when it is finished processing its
2419  * current work.  This flag is only cleared when an nfsd can not find
2420  * any new work to perform.
2421  */
2422 void
2423 nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel)
2424 {
2425 	struct nfsd *nd;
2426 
2427 	if ((slp->ns_flag & SLP_VALID) == 0)
2428 		return;
2429 	if (nparallel <= 1)
2430 		nparallel = 1;
2431 	TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) {
2432 		if (nd->nfsd_flag & NFSD_WAITING) {
2433 			nd->nfsd_flag &= ~NFSD_WAITING;
2434 			if (nd->nfsd_slp)
2435 				panic("nfsd wakeup");
2436 			slp->ns_sref++;
2437 			nd->nfsd_slp = slp;
2438 			wakeup((caddr_t)nd);
2439 			if (--nparallel == 0)
2440 				break;
2441 		}
2442 	}
2443 	if (nparallel) {
2444 		slp->ns_flag |= SLP_DOREC;
2445 		nfsd_head_flag |= NFSD_CHECKSLP;
2446 	}
2447 }
2448 #endif /* NFS_NOSERVER */
2449