xref: /dragonfly/sys/vfs/nfs/nfs_socket.c (revision 92fc8b5c)
1 /*
2  * Copyright (c) 1989, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_socket.c	8.5 (Berkeley) 3/30/95
37  * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.45 2007/05/18 17:05:13 dillon Exp $
39  */
40 
41 /*
42  * Socket operations for use by nfs
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/fcntl.h>
54 #include <sys/protosw.h>
55 #include <sys/resourcevar.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/socketops.h>
59 #include <sys/syslog.h>
60 #include <sys/thread.h>
61 #include <sys/tprintf.h>
62 #include <sys/sysctl.h>
63 #include <sys/signalvar.h>
64 
65 #include <sys/signal2.h>
66 #include <sys/mutex2.h>
67 #include <sys/socketvar2.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <sys/thread2.h>
72 
73 #include "rpcv2.h"
74 #include "nfsproto.h"
75 #include "nfs.h"
76 #include "xdr_subs.h"
77 #include "nfsm_subs.h"
78 #include "nfsmount.h"
79 #include "nfsnode.h"
80 #include "nfsrtt.h"
81 
82 #define	TRUE	1
83 #define	FALSE	0
84 
85 /*
86  * RTT calculations are scaled by 256 (8 bits).  A proper fractional
87  * RTT will still be calculated even with a slow NFS timer.
88  */
89 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum]]
90 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum]]
91 #define NFS_RTT_SCALE_BITS	8	/* bits */
92 #define NFS_RTT_SCALE		256	/* value */
93 
94 /*
95  * Defines which timer to use for the procnum.
96  * 0 - default
97  * 1 - getattr
98  * 2 - lookup
99  * 3 - read
100  * 4 - write
101  */
102 static int proct[NFS_NPROCS] = {
103 	0, 1, 0, 2, 1, 3, 3, 4, 0, 0,	/* 00-09	*/
104 	0, 0, 0, 0, 0, 0, 3, 3, 0, 0,	/* 10-19	*/
105 	0, 5, 0, 0, 0, 0,		/* 20-29	*/
106 };
107 
108 static int multt[NFS_NPROCS] = {
109 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 00-09	*/
110 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 10-19	*/
111 	1, 2, 1, 1, 1, 1,		/* 20-29	*/
112 };
113 
114 static int nfs_backoff[8] = { 2, 3, 5, 8, 13, 21, 34, 55 };
115 static int nfs_realign_test;
116 static int nfs_realign_count;
117 static int nfs_showrtt;
118 static int nfs_showrexmit;
119 int nfs_maxasyncbio = NFS_MAXASYNCBIO;
120 
121 SYSCTL_DECL(_vfs_nfs);
122 
123 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0,
124     "Number of times mbufs have been tested for bad alignment");
125 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0,
126     "Number of realignments for badly aligned mbuf data");
127 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrtt, CTLFLAG_RW, &nfs_showrtt, 0,
128     "Show round trip time output");
129 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrexmit, CTLFLAG_RW, &nfs_showrexmit, 0,
130     "Show retransmits info");
131 SYSCTL_INT(_vfs_nfs, OID_AUTO, maxasyncbio, CTLFLAG_RW, &nfs_maxasyncbio, 0,
132     "Max number of asynchronous bio's");
133 
134 static int nfs_request_setup(nfsm_info_t info);
135 static int nfs_request_auth(struct nfsreq *rep);
136 static int nfs_request_try(struct nfsreq *rep);
137 static int nfs_request_waitreply(struct nfsreq *rep);
138 static int nfs_request_processreply(nfsm_info_t info, int);
139 
140 int nfsrtton = 0;
141 struct nfsrtt nfsrtt;
142 struct callout	nfs_timer_handle;
143 
144 static int	nfs_msg (struct thread *,char *,char *);
145 static int	nfs_rcvlock (struct nfsmount *nmp, struct nfsreq *myreq);
146 static void	nfs_rcvunlock (struct nfsmount *nmp);
147 static void	nfs_realign (struct mbuf **pm, int hsiz);
148 static int	nfs_receive (struct nfsmount *nmp, struct nfsreq *rep,
149 				struct sockaddr **aname, struct mbuf **mp);
150 static void	nfs_softterm (struct nfsreq *rep, int islocked);
151 static void	nfs_hardterm (struct nfsreq *rep, int islocked);
152 static int	nfs_reconnect (struct nfsmount *nmp, struct nfsreq *rep);
153 #ifndef NFS_NOSERVER
154 static int	nfsrv_getstream (struct nfssvc_sock *, int, int *);
155 static void	nfs_timer_req(struct nfsreq *req);
156 static void	nfs_checkpkt(struct mbuf *m, int len);
157 
158 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd,
159 				    struct nfssvc_sock *slp,
160 				    struct thread *td,
161 				    struct mbuf **mreqp) = {
162 	nfsrv_null,
163 	nfsrv_getattr,
164 	nfsrv_setattr,
165 	nfsrv_lookup,
166 	nfsrv3_access,
167 	nfsrv_readlink,
168 	nfsrv_read,
169 	nfsrv_write,
170 	nfsrv_create,
171 	nfsrv_mkdir,
172 	nfsrv_symlink,
173 	nfsrv_mknod,
174 	nfsrv_remove,
175 	nfsrv_rmdir,
176 	nfsrv_rename,
177 	nfsrv_link,
178 	nfsrv_readdir,
179 	nfsrv_readdirplus,
180 	nfsrv_statfs,
181 	nfsrv_fsinfo,
182 	nfsrv_pathconf,
183 	nfsrv_commit,
184 	nfsrv_noop,
185 	nfsrv_noop,
186 	nfsrv_noop,
187 	nfsrv_noop
188 };
189 #endif /* NFS_NOSERVER */
190 
191 /*
192  * Initialize sockets and congestion for a new NFS connection.
193  * We do not free the sockaddr if error.
194  */
195 int
196 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
197 {
198 	struct socket *so;
199 	int error;
200 	struct sockaddr *saddr;
201 	struct sockaddr_in *sin;
202 	struct thread *td = &thread0; /* only used for socreate and sobind */
203 
204 	nmp->nm_so = so = NULL;
205 	if (nmp->nm_flag & NFSMNT_FORCE)
206 		return (EINVAL);
207 	saddr = nmp->nm_nam;
208 	error = socreate(saddr->sa_family, &so, nmp->nm_sotype,
209 		nmp->nm_soproto, td);
210 	if (error)
211 		goto bad;
212 	nmp->nm_soflags = so->so_proto->pr_flags;
213 
214 	/*
215 	 * Some servers require that the client port be a reserved port number.
216 	 */
217 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
218 		struct sockopt sopt;
219 		int ip;
220 		struct sockaddr_in ssin;
221 
222 		bzero(&sopt, sizeof sopt);
223 		ip = IP_PORTRANGE_LOW;
224 		sopt.sopt_level = IPPROTO_IP;
225 		sopt.sopt_name = IP_PORTRANGE;
226 		sopt.sopt_val = (void *)&ip;
227 		sopt.sopt_valsize = sizeof(ip);
228 		sopt.sopt_td = NULL;
229 		error = sosetopt(so, &sopt);
230 		if (error)
231 			goto bad;
232 		bzero(&ssin, sizeof ssin);
233 		sin = &ssin;
234 		sin->sin_len = sizeof (struct sockaddr_in);
235 		sin->sin_family = AF_INET;
236 		sin->sin_addr.s_addr = INADDR_ANY;
237 		sin->sin_port = htons(0);
238 		error = sobind(so, (struct sockaddr *)sin, td);
239 		if (error)
240 			goto bad;
241 		bzero(&sopt, sizeof sopt);
242 		ip = IP_PORTRANGE_DEFAULT;
243 		sopt.sopt_level = IPPROTO_IP;
244 		sopt.sopt_name = IP_PORTRANGE;
245 		sopt.sopt_val = (void *)&ip;
246 		sopt.sopt_valsize = sizeof(ip);
247 		sopt.sopt_td = NULL;
248 		error = sosetopt(so, &sopt);
249 		if (error)
250 			goto bad;
251 	}
252 
253 	/*
254 	 * Protocols that do not require connections may be optionally left
255 	 * unconnected for servers that reply from a port other than NFS_PORT.
256 	 */
257 	if (nmp->nm_flag & NFSMNT_NOCONN) {
258 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
259 			error = ENOTCONN;
260 			goto bad;
261 		}
262 	} else {
263 		error = soconnect(so, nmp->nm_nam, td);
264 		if (error)
265 			goto bad;
266 
267 		/*
268 		 * Wait for the connection to complete. Cribbed from the
269 		 * connect system call but with the wait timing out so
270 		 * that interruptible mounts don't hang here for a long time.
271 		 */
272 		crit_enter();
273 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
274 			(void) tsleep((caddr_t)&so->so_timeo, 0,
275 				"nfscon", 2 * hz);
276 			if ((so->so_state & SS_ISCONNECTING) &&
277 			    so->so_error == 0 && rep &&
278 			    (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
279 				soclrstate(so, SS_ISCONNECTING);
280 				crit_exit();
281 				goto bad;
282 			}
283 		}
284 		if (so->so_error) {
285 			error = so->so_error;
286 			so->so_error = 0;
287 			crit_exit();
288 			goto bad;
289 		}
290 		crit_exit();
291 	}
292 	so->so_rcv.ssb_timeo = (5 * hz);
293 	so->so_snd.ssb_timeo = (5 * hz);
294 
295 	/*
296 	 * Get buffer reservation size from sysctl, but impose reasonable
297 	 * limits.
298 	 */
299 	if (nmp->nm_sotype == SOCK_STREAM) {
300 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
301 			struct sockopt sopt;
302 			int val;
303 
304 			bzero(&sopt, sizeof sopt);
305 			sopt.sopt_level = SOL_SOCKET;
306 			sopt.sopt_name = SO_KEEPALIVE;
307 			sopt.sopt_val = &val;
308 			sopt.sopt_valsize = sizeof val;
309 			val = 1;
310 			sosetopt(so, &sopt);
311 		}
312 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
313 			struct sockopt sopt;
314 			int val;
315 
316 			bzero(&sopt, sizeof sopt);
317 			sopt.sopt_level = IPPROTO_TCP;
318 			sopt.sopt_name = TCP_NODELAY;
319 			sopt.sopt_val = &val;
320 			sopt.sopt_valsize = sizeof val;
321 			val = 1;
322 			sosetopt(so, &sopt);
323 
324 			bzero(&sopt, sizeof sopt);
325 			sopt.sopt_level = IPPROTO_TCP;
326 			sopt.sopt_name = TCP_FASTKEEP;
327 			sopt.sopt_val = &val;
328 			sopt.sopt_valsize = sizeof val;
329 			val = 1;
330 			sosetopt(so, &sopt);
331 		}
332 	}
333 	error = soreserve(so, nfs_soreserve, nfs_soreserve, NULL);
334 	if (error)
335 		goto bad;
336 	atomic_set_int(&so->so_rcv.ssb_flags, SSB_NOINTR);
337 	atomic_set_int(&so->so_snd.ssb_flags, SSB_NOINTR);
338 
339 	/* Initialize other non-zero congestion variables */
340 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
341 		nmp->nm_srtt[3] = (NFS_TIMEO << NFS_RTT_SCALE_BITS);
342 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
343 		nmp->nm_sdrtt[3] = 0;
344 	nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
345 	nmp->nm_timeouts = 0;
346 
347 	/*
348 	 * Assign nm_so last.  The moment nm_so is assigned the nfs_timer()
349 	 * can mess with the socket.
350 	 */
351 	nmp->nm_so = so;
352 	return (0);
353 
354 bad:
355 	if (so) {
356 		soshutdown(so, SHUT_RDWR);
357 		soclose(so, FNONBLOCK);
358 	}
359 	return (error);
360 }
361 
362 /*
363  * Reconnect routine:
364  * Called when a connection is broken on a reliable protocol.
365  * - clean up the old socket
366  * - nfs_connect() again
367  * - set R_NEEDSXMIT for all outstanding requests on mount point
368  * If this fails the mount point is DEAD!
369  * nb: Must be called with the nfs_sndlock() set on the mount point.
370  */
371 static int
372 nfs_reconnect(struct nfsmount *nmp, struct nfsreq *rep)
373 {
374 	struct nfsreq *req;
375 	int error;
376 
377 	nfs_disconnect(nmp);
378 	if (nmp->nm_rxstate >= NFSSVC_STOPPING)
379 		return (EINTR);
380 	while ((error = nfs_connect(nmp, rep)) != 0) {
381 		if (error == EINTR || error == ERESTART)
382 			return (EINTR);
383 		if (error == EINVAL)
384 			return (error);
385 		if (nmp->nm_rxstate >= NFSSVC_STOPPING)
386 			return (EINTR);
387 		(void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0);
388 	}
389 
390 	/*
391 	 * Loop through outstanding request list and fix up all requests
392 	 * on old socket.
393 	 */
394 	crit_enter();
395 	TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
396 		KKASSERT(req->r_nmp == nmp);
397 		req->r_flags |= R_NEEDSXMIT;
398 	}
399 	crit_exit();
400 	return (0);
401 }
402 
403 /*
404  * NFS disconnect. Clean up and unlink.
405  */
406 void
407 nfs_disconnect(struct nfsmount *nmp)
408 {
409 	struct socket *so;
410 
411 	if (nmp->nm_so) {
412 		so = nmp->nm_so;
413 		nmp->nm_so = NULL;
414 		soshutdown(so, SHUT_RDWR);
415 		soclose(so, FNONBLOCK);
416 	}
417 }
418 
419 void
420 nfs_safedisconnect(struct nfsmount *nmp)
421 {
422 	nfs_rcvlock(nmp, NULL);
423 	nfs_disconnect(nmp);
424 	nfs_rcvunlock(nmp);
425 }
426 
427 /*
428  * This is the nfs send routine. For connection based socket types, it
429  * must be called with an nfs_sndlock() on the socket.
430  * "rep == NULL" indicates that it has been called from a server.
431  * For the client side:
432  * - return EINTR if the RPC is terminated, 0 otherwise
433  * - set R_NEEDSXMIT if the send fails for any reason
434  * - do any cleanup required by recoverable socket errors (?)
435  * For the server side:
436  * - return EINTR or ERESTART if interrupted by a signal
437  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
438  * - do any cleanup required by recoverable socket errors (?)
439  */
440 int
441 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top,
442 	 struct nfsreq *rep)
443 {
444 	struct sockaddr *sendnam;
445 	int error, soflags, flags;
446 
447 	if (rep) {
448 		if (rep->r_flags & R_SOFTTERM) {
449 			m_freem(top);
450 			return (EINTR);
451 		}
452 		if ((so = rep->r_nmp->nm_so) == NULL) {
453 			rep->r_flags |= R_NEEDSXMIT;
454 			m_freem(top);
455 			return (0);
456 		}
457 		rep->r_flags &= ~R_NEEDSXMIT;
458 		soflags = rep->r_nmp->nm_soflags;
459 	} else {
460 		soflags = so->so_proto->pr_flags;
461 	}
462 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
463 		sendnam = NULL;
464 	else
465 		sendnam = nam;
466 	if (so->so_type == SOCK_SEQPACKET)
467 		flags = MSG_EOR;
468 	else
469 		flags = 0;
470 
471 	/*
472 	 * calls pru_sosend -> sosend -> so_pru_send -> netrpc
473 	 */
474 	error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags,
475 			      curthread /*XXX*/);
476 
477 	/*
478 	 * ENOBUFS for dgram sockets is transient and non fatal.
479 	 * No need to log, and no need to break a soft mount.
480 	 */
481 	if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
482 		error = 0;
483 		/*
484 		 * do backoff retransmit on client
485 		 */
486 		if (rep) {
487 			if ((rep->r_nmp->nm_state & NFSSTA_SENDSPACE) == 0) {
488 				rep->r_nmp->nm_state |= NFSSTA_SENDSPACE;
489 				kprintf("Warning: NFS: Insufficient sendspace "
490 					"(%lu),\n"
491 					"\t You must increase vfs.nfs.soreserve"
492 					"or decrease vfs.nfs.maxasyncbio\n",
493 					so->so_snd.ssb_hiwat);
494 			}
495 			rep->r_flags |= R_NEEDSXMIT;
496 		}
497 	}
498 
499 	if (error) {
500 		if (rep) {
501 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
502 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
503 			/*
504 			 * Deal with errors for the client side.
505 			 */
506 			if (rep->r_flags & R_SOFTTERM)
507 				error = EINTR;
508 			else
509 				rep->r_flags |= R_NEEDSXMIT;
510 		} else {
511 			log(LOG_INFO, "nfsd send error %d\n", error);
512 		}
513 
514 		/*
515 		 * Handle any recoverable (soft) socket errors here. (?)
516 		 */
517 		if (error != EINTR && error != ERESTART &&
518 			error != EWOULDBLOCK && error != EPIPE)
519 			error = 0;
520 	}
521 	return (error);
522 }
523 
524 /*
525  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
526  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
527  * Mark and consolidate the data into a new mbuf list.
528  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
529  *     small mbufs.
530  * For SOCK_STREAM we must be very careful to read an entire record once
531  * we have read any of it, even if the system call has been interrupted.
532  */
533 static int
534 nfs_receive(struct nfsmount *nmp, struct nfsreq *rep,
535 	    struct sockaddr **aname, struct mbuf **mp)
536 {
537 	struct socket *so;
538 	struct sockbuf sio;
539 	struct uio auio;
540 	struct iovec aio;
541 	struct mbuf *m;
542 	struct mbuf *control;
543 	u_int32_t len;
544 	struct sockaddr **getnam;
545 	int error, sotype, rcvflg;
546 	struct thread *td = curthread;	/* XXX */
547 
548 	/*
549 	 * Set up arguments for soreceive()
550 	 */
551 	*mp = NULL;
552 	*aname = NULL;
553 	sotype = nmp->nm_sotype;
554 
555 	/*
556 	 * For reliable protocols, lock against other senders/receivers
557 	 * in case a reconnect is necessary.
558 	 * For SOCK_STREAM, first get the Record Mark to find out how much
559 	 * more there is to get.
560 	 * We must lock the socket against other receivers
561 	 * until we have an entire rpc request/reply.
562 	 */
563 	if (sotype != SOCK_DGRAM) {
564 		error = nfs_sndlock(nmp, rep);
565 		if (error)
566 			return (error);
567 tryagain:
568 		/*
569 		 * Check for fatal errors and resending request.
570 		 */
571 		/*
572 		 * Ugh: If a reconnect attempt just happened, nm_so
573 		 * would have changed. NULL indicates a failed
574 		 * attempt that has essentially shut down this
575 		 * mount point.
576 		 */
577 		if (rep && (rep->r_mrep || (rep->r_flags & R_SOFTTERM))) {
578 			nfs_sndunlock(nmp);
579 			return (EINTR);
580 		}
581 		so = nmp->nm_so;
582 		if (so == NULL) {
583 			error = nfs_reconnect(nmp, rep);
584 			if (error) {
585 				nfs_sndunlock(nmp);
586 				return (error);
587 			}
588 			goto tryagain;
589 		}
590 		while (rep && (rep->r_flags & R_NEEDSXMIT)) {
591 			m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
592 			nfsstats.rpcretries++;
593 			error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
594 			if (error) {
595 				if (error == EINTR || error == ERESTART ||
596 				    (error = nfs_reconnect(nmp, rep)) != 0) {
597 					nfs_sndunlock(nmp);
598 					return (error);
599 				}
600 				goto tryagain;
601 			}
602 		}
603 		nfs_sndunlock(nmp);
604 		if (sotype == SOCK_STREAM) {
605 			/*
606 			 * Get the length marker from the stream
607 			 */
608 			aio.iov_base = (caddr_t)&len;
609 			aio.iov_len = sizeof(u_int32_t);
610 			auio.uio_iov = &aio;
611 			auio.uio_iovcnt = 1;
612 			auio.uio_segflg = UIO_SYSSPACE;
613 			auio.uio_rw = UIO_READ;
614 			auio.uio_offset = 0;
615 			auio.uio_resid = sizeof(u_int32_t);
616 			auio.uio_td = td;
617 			do {
618 			   rcvflg = MSG_WAITALL;
619 			   error = so_pru_soreceive(so, NULL, &auio, NULL,
620 						    NULL, &rcvflg);
621 			   if (error == EWOULDBLOCK && rep) {
622 				if (rep->r_flags & R_SOFTTERM)
623 					return (EINTR);
624 			   }
625 			} while (error == EWOULDBLOCK);
626 
627 			if (error == 0 && auio.uio_resid > 0) {
628 			    /*
629 			     * Only log short packets if not EOF
630 			     */
631 			    if (auio.uio_resid != sizeof(u_int32_t))
632 			    log(LOG_INFO,
633 				 "short receive (%d/%d) from nfs server %s\n",
634 				 (int)(sizeof(u_int32_t) - auio.uio_resid),
635 				 (int)sizeof(u_int32_t),
636 				 nmp->nm_mountp->mnt_stat.f_mntfromname);
637 			    error = EPIPE;
638 			}
639 			if (error)
640 				goto errout;
641 			len = ntohl(len) & ~0x80000000;
642 			/*
643 			 * This is SERIOUS! We are out of sync with the sender
644 			 * and forcing a disconnect/reconnect is all I can do.
645 			 */
646 			if (len > NFS_MAXPACKET) {
647 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
648 				"impossible packet length",
649 				len,
650 				nmp->nm_mountp->mnt_stat.f_mntfromname);
651 			    error = EFBIG;
652 			    goto errout;
653 			}
654 
655 			/*
656 			 * Get the rest of the packet as an mbuf chain
657 			 */
658 			sbinit(&sio, len);
659 			do {
660 			    rcvflg = MSG_WAITALL;
661 			    error = so_pru_soreceive(so, NULL, NULL, &sio,
662 						     NULL, &rcvflg);
663 			} while (error == EWOULDBLOCK || error == EINTR ||
664 				 error == ERESTART);
665 			if (error == 0 && sio.sb_cc != len) {
666 			    if (sio.sb_cc != 0)
667 			    log(LOG_INFO,
668 				"short receive (%zu/%d) from nfs server %s\n",
669 				(size_t)len - auio.uio_resid, len,
670 				nmp->nm_mountp->mnt_stat.f_mntfromname);
671 			    error = EPIPE;
672 			}
673 			*mp = sio.sb_mb;
674 		} else {
675 			/*
676 			 * Non-stream, so get the whole packet by not
677 			 * specifying MSG_WAITALL and by specifying a large
678 			 * length.
679 			 *
680 			 * We have no use for control msg., but must grab them
681 			 * and then throw them away so we know what is going
682 			 * on.
683 			 */
684 			sbinit(&sio, 100000000);
685 			do {
686 			    rcvflg = 0;
687 			    error =  so_pru_soreceive(so, NULL, NULL, &sio,
688 						      &control, &rcvflg);
689 			    if (control)
690 				m_freem(control);
691 			    if (error == EWOULDBLOCK && rep) {
692 				if (rep->r_flags & R_SOFTTERM) {
693 					m_freem(sio.sb_mb);
694 					return (EINTR);
695 				}
696 			    }
697 			} while (error == EWOULDBLOCK ||
698 				 (error == 0 && sio.sb_mb == NULL && control));
699 			if ((rcvflg & MSG_EOR) == 0)
700 				kprintf("Egad!!\n");
701 			if (error == 0 && sio.sb_mb == NULL)
702 				error = EPIPE;
703 			len = sio.sb_cc;
704 			*mp = sio.sb_mb;
705 		}
706 errout:
707 		if (error && error != EINTR && error != ERESTART) {
708 			m_freem(*mp);
709 			*mp = NULL;
710 			if (error != EPIPE) {
711 				log(LOG_INFO,
712 				    "receive error %d from nfs server %s\n",
713 				    error,
714 				 nmp->nm_mountp->mnt_stat.f_mntfromname);
715 			}
716 			error = nfs_sndlock(nmp, rep);
717 			if (!error) {
718 				error = nfs_reconnect(nmp, rep);
719 				if (!error)
720 					goto tryagain;
721 				else
722 					nfs_sndunlock(nmp);
723 			}
724 		}
725 	} else {
726 		if ((so = nmp->nm_so) == NULL)
727 			return (EACCES);
728 		if (so->so_state & SS_ISCONNECTED)
729 			getnam = NULL;
730 		else
731 			getnam = aname;
732 		sbinit(&sio, 100000000);
733 		do {
734 			rcvflg = 0;
735 			error =  so_pru_soreceive(so, getnam, NULL, &sio,
736 						  NULL, &rcvflg);
737 			if (error == EWOULDBLOCK && rep &&
738 			    (rep->r_flags & R_SOFTTERM)) {
739 				m_freem(sio.sb_mb);
740 				return (EINTR);
741 			}
742 		} while (error == EWOULDBLOCK);
743 
744 		len = sio.sb_cc;
745 		*mp = sio.sb_mb;
746 
747 		/*
748 		 * A shutdown may result in no error and no mbuf.
749 		 * Convert to EPIPE.
750 		 */
751 		if (*mp == NULL && error == 0)
752 			error = EPIPE;
753 	}
754 	if (error) {
755 		m_freem(*mp);
756 		*mp = NULL;
757 	}
758 
759 	/*
760 	 * Search for any mbufs that are not a multiple of 4 bytes long
761 	 * or with m_data not longword aligned.
762 	 * These could cause pointer alignment problems, so copy them to
763 	 * well aligned mbufs.
764 	 */
765 	nfs_realign(mp, 5 * NFSX_UNSIGNED);
766 	return (error);
767 }
768 
769 /*
770  * Implement receipt of reply on a socket.
771  *
772  * We must search through the list of received datagrams matching them
773  * with outstanding requests using the xid, until ours is found.
774  *
775  * If myrep is NULL we process packets on the socket until
776  * interrupted or until nm_reqrxq is non-empty.
777  */
778 /* ARGSUSED */
779 int
780 nfs_reply(struct nfsmount *nmp, struct nfsreq *myrep)
781 {
782 	struct nfsreq *rep;
783 	struct sockaddr *nam;
784 	u_int32_t rxid;
785 	u_int32_t *tl;
786 	int error;
787 	struct nfsm_info info;
788 
789 	/*
790 	 * Loop around until we get our own reply
791 	 */
792 	for (;;) {
793 		/*
794 		 * Lock against other receivers so that I don't get stuck in
795 		 * sbwait() after someone else has received my reply for me.
796 		 * Also necessary for connection based protocols to avoid
797 		 * race conditions during a reconnect.
798 		 *
799 		 * If nfs_rcvlock() returns EALREADY, that means that
800 		 * the reply has already been recieved by another
801 		 * process and we can return immediately.  In this
802 		 * case, the lock is not taken to avoid races with
803 		 * other processes.
804 		 */
805 		info.mrep = NULL;
806 
807 		error = nfs_rcvlock(nmp, myrep);
808 		if (error == EALREADY)
809 			return (0);
810 		if (error)
811 			return (error);
812 
813 		/*
814 		 * If myrep is NULL we are the receiver helper thread.
815 		 * Stop waiting for incoming replies if there are
816 		 * messages sitting on reqrxq that we need to process,
817 		 * or if a shutdown request is pending.
818 		 */
819 		if (myrep == NULL && (TAILQ_FIRST(&nmp->nm_reqrxq) ||
820 		    nmp->nm_rxstate > NFSSVC_PENDING)) {
821 			nfs_rcvunlock(nmp);
822 			return(EWOULDBLOCK);
823 		}
824 
825 		/*
826 		 * Get the next Rpc reply off the socket
827 		 *
828 		 * We cannot release the receive lock until we've
829 		 * filled in rep->r_mrep, otherwise a waiting
830 		 * thread may deadlock in soreceive with no incoming
831 		 * packets expected.
832 		 */
833 		error = nfs_receive(nmp, myrep, &nam, &info.mrep);
834 		if (error) {
835 			/*
836 			 * Ignore routing errors on connectionless protocols??
837 			 */
838 			nfs_rcvunlock(nmp);
839 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
840 				if (nmp->nm_so == NULL)
841 					return (error);
842 				nmp->nm_so->so_error = 0;
843 				continue;
844 			}
845 			return (error);
846 		}
847 		if (nam)
848 			FREE(nam, M_SONAME);
849 
850 		/*
851 		 * Get the xid and check that it is an rpc reply
852 		 */
853 		info.md = info.mrep;
854 		info.dpos = mtod(info.md, caddr_t);
855 		NULLOUT(tl = nfsm_dissect(&info, 2*NFSX_UNSIGNED));
856 		rxid = *tl++;
857 		if (*tl != rpc_reply) {
858 			nfsstats.rpcinvalid++;
859 			m_freem(info.mrep);
860 			info.mrep = NULL;
861 nfsmout:
862 			nfs_rcvunlock(nmp);
863 			continue;
864 		}
865 
866 		/*
867 		 * Loop through the request list to match up the reply
868 		 * Iff no match, just drop the datagram.  On match, set
869 		 * r_mrep atomically to prevent the timer from messing
870 		 * around with the request after we have exited the critical
871 		 * section.
872 		 */
873 		crit_enter();
874 		TAILQ_FOREACH(rep, &nmp->nm_reqq, r_chain) {
875 			if (rep->r_mrep == NULL && rxid == rep->r_xid)
876 				break;
877 		}
878 
879 		/*
880 		 * Fill in the rest of the reply if we found a match.
881 		 *
882 		 * Deal with duplicate responses if there was no match.
883 		 */
884 		if (rep) {
885 			rep->r_md = info.md;
886 			rep->r_dpos = info.dpos;
887 			if (nfsrtton) {
888 				struct rttl *rt;
889 
890 				rt = &nfsrtt.rttl[nfsrtt.pos];
891 				rt->proc = rep->r_procnum;
892 				rt->rto = 0;
893 				rt->sent = 0;
894 				rt->cwnd = nmp->nm_maxasync_scaled;
895 				rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
896 				rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
897 				rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
898 				getmicrotime(&rt->tstamp);
899 				if (rep->r_flags & R_TIMING)
900 					rt->rtt = rep->r_rtt;
901 				else
902 					rt->rtt = 1000000;
903 				nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
904 			}
905 
906 			/*
907 			 * New congestion control is based only on async
908 			 * requests.
909 			 */
910 			if (nmp->nm_maxasync_scaled < NFS_MAXASYNC_SCALED)
911 				++nmp->nm_maxasync_scaled;
912 			if (rep->r_flags & R_SENT) {
913 				rep->r_flags &= ~R_SENT;
914 			}
915 			/*
916 			 * Update rtt using a gain of 0.125 on the mean
917 			 * and a gain of 0.25 on the deviation.
918 			 *
919 			 * NOTE SRTT/SDRTT are only good if R_TIMING is set.
920 			 */
921 			if ((rep->r_flags & R_TIMING) && rep->r_rexmit == 0) {
922 				/*
923 				 * Since the timer resolution of
924 				 * NFS_HZ is so course, it can often
925 				 * result in r_rtt == 0. Since
926 				 * r_rtt == N means that the actual
927 				 * rtt is between N+dt and N+2-dt ticks,
928 				 * add 1.
929 				 */
930 				int n;
931 				int d;
932 
933 #define NFSRSB	NFS_RTT_SCALE_BITS
934 				n = ((NFS_SRTT(rep) * 7) +
935 				     (rep->r_rtt << NFSRSB)) >> 3;
936 				d = n - NFS_SRTT(rep);
937 				NFS_SRTT(rep) = n;
938 
939 				/*
940 				 * Don't let the jitter calculation decay
941 				 * too quickly, but we want a fast rampup.
942 				 */
943 				if (d < 0)
944 					d = -d;
945 				d <<= NFSRSB;
946 				if (d < NFS_SDRTT(rep))
947 					n = ((NFS_SDRTT(rep) * 15) + d) >> 4;
948 				else
949 					n = ((NFS_SDRTT(rep) * 3) + d) >> 2;
950 				NFS_SDRTT(rep) = n;
951 #undef NFSRSB
952 			}
953 			nmp->nm_timeouts = 0;
954 			rep->r_mrep = info.mrep;
955 			nfs_hardterm(rep, 0);
956 		} else {
957 			/*
958 			 * Extract vers, prog, nfsver, procnum.  A duplicate
959 			 * response means we didn't wait long enough so
960 			 * we increase the SRTT to avoid future spurious
961 			 * timeouts.
962 			 */
963 			u_int procnum = nmp->nm_lastreprocnum;
964 			int n;
965 
966 			if (procnum < NFS_NPROCS && proct[procnum]) {
967 				if (nfs_showrexmit)
968 					kprintf("D");
969 				n = nmp->nm_srtt[proct[procnum]];
970 				n += NFS_ASYSCALE * NFS_HZ;
971 				if (n < NFS_ASYSCALE * NFS_HZ * 10)
972 					n = NFS_ASYSCALE * NFS_HZ * 10;
973 				nmp->nm_srtt[proct[procnum]] = n;
974 			}
975 		}
976 		nfs_rcvunlock(nmp);
977 		crit_exit();
978 
979 		/*
980 		 * If not matched to a request, drop it.
981 		 * If it's mine, get out.
982 		 */
983 		if (rep == NULL) {
984 			nfsstats.rpcunexpected++;
985 			m_freem(info.mrep);
986 			info.mrep = NULL;
987 		} else if (rep == myrep) {
988 			if (rep->r_mrep == NULL)
989 				panic("nfsreply nil");
990 			return (0);
991 		}
992 	}
993 }
994 
995 /*
996  * Run the request state machine until the target state is reached
997  * or a fatal error occurs.  The target state is not run.  Specifying
998  * a target of NFSM_STATE_DONE runs the state machine until the rpc
999  * is complete.
1000  *
1001  * EINPROGRESS is returned for all states other then the DONE state,
1002  * indicating that the rpc is still in progress.
1003  */
1004 int
1005 nfs_request(struct nfsm_info *info, nfsm_state_t bstate, nfsm_state_t estate)
1006 {
1007 	struct nfsreq *req;
1008 
1009 	while (info->state >= bstate && info->state < estate) {
1010 		switch(info->state) {
1011 		case NFSM_STATE_SETUP:
1012 			/*
1013 			 * Setup the nfsreq.  Any error which occurs during
1014 			 * this state is fatal.
1015 			 */
1016 			info->error = nfs_request_setup(info);
1017 			if (info->error) {
1018 				info->state = NFSM_STATE_DONE;
1019 				return (info->error);
1020 			} else {
1021 				req = info->req;
1022 				req->r_mrp = &info->mrep;
1023 				req->r_mdp = &info->md;
1024 				req->r_dposp = &info->dpos;
1025 				info->state = NFSM_STATE_AUTH;
1026 			}
1027 			break;
1028 		case NFSM_STATE_AUTH:
1029 			/*
1030 			 * Authenticate the nfsreq.  Any error which occurs
1031 			 * during this state is fatal.
1032 			 */
1033 			info->error = nfs_request_auth(info->req);
1034 			if (info->error) {
1035 				info->state = NFSM_STATE_DONE;
1036 				return (info->error);
1037 			} else {
1038 				info->state = NFSM_STATE_TRY;
1039 			}
1040 			break;
1041 		case NFSM_STATE_TRY:
1042 			/*
1043 			 * Transmit or retransmit attempt.  An error in this
1044 			 * state is ignored and we always move on to the
1045 			 * next state.
1046 			 *
1047 			 * This can trivially race the receiver if the
1048 			 * request is asynchronous.  nfs_request_try()
1049 			 * will thus set the state for us and we
1050 			 * must also return immediately if we are
1051 			 * running an async state machine, because
1052 			 * info can become invalid due to races after
1053 			 * try() returns.
1054 			 */
1055 			if (info->req->r_flags & R_ASYNC) {
1056 				nfs_request_try(info->req);
1057 				if (estate == NFSM_STATE_WAITREPLY)
1058 					return (EINPROGRESS);
1059 			} else {
1060 				nfs_request_try(info->req);
1061 				info->state = NFSM_STATE_WAITREPLY;
1062 			}
1063 			break;
1064 		case NFSM_STATE_WAITREPLY:
1065 			/*
1066 			 * Wait for a reply or timeout and move on to the
1067 			 * next state.  The error returned by this state
1068 			 * is passed to the processing code in the next
1069 			 * state.
1070 			 */
1071 			info->error = nfs_request_waitreply(info->req);
1072 			info->state = NFSM_STATE_PROCESSREPLY;
1073 			break;
1074 		case NFSM_STATE_PROCESSREPLY:
1075 			/*
1076 			 * Process the reply or timeout.  Errors which occur
1077 			 * in this state may cause the state machine to
1078 			 * go back to an earlier state, and are fatal
1079 			 * otherwise.
1080 			 */
1081 			info->error = nfs_request_processreply(info,
1082 							       info->error);
1083 			switch(info->error) {
1084 			case ENEEDAUTH:
1085 				info->state = NFSM_STATE_AUTH;
1086 				break;
1087 			case EAGAIN:
1088 				info->state = NFSM_STATE_TRY;
1089 				break;
1090 			default:
1091 				/*
1092 				 * Operation complete, with or without an
1093 				 * error.  We are done.
1094 				 */
1095 				info->req = NULL;
1096 				info->state = NFSM_STATE_DONE;
1097 				return (info->error);
1098 			}
1099 			break;
1100 		case NFSM_STATE_DONE:
1101 			/*
1102 			 * Shouldn't be reached
1103 			 */
1104 			return (info->error);
1105 			/* NOT REACHED */
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * If we are done return the error code (if any).
1111 	 * Otherwise return EINPROGRESS.
1112 	 */
1113 	if (info->state == NFSM_STATE_DONE)
1114 		return (info->error);
1115 	return (EINPROGRESS);
1116 }
1117 
1118 /*
1119  * nfs_request - goes something like this
1120  *	- fill in request struct
1121  *	- links it into list
1122  *	- calls nfs_send() for first transmit
1123  *	- calls nfs_receive() to get reply
1124  *	- break down rpc header and return with nfs reply pointed to
1125  *	  by mrep or error
1126  * nb: always frees up mreq mbuf list
1127  */
1128 static int
1129 nfs_request_setup(nfsm_info_t info)
1130 {
1131 	struct nfsreq *req;
1132 	struct nfsmount *nmp;
1133 	struct mbuf *m;
1134 	int i;
1135 
1136 	/*
1137 	 * Reject requests while attempting a forced unmount.
1138 	 */
1139 	if (info->vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1140 		m_freem(info->mreq);
1141 		info->mreq = NULL;
1142 		return (ESTALE);
1143 	}
1144 	nmp = VFSTONFS(info->vp->v_mount);
1145 	req = kmalloc(sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
1146 	req->r_nmp = nmp;
1147 	req->r_vp = info->vp;
1148 	req->r_td = info->td;
1149 	req->r_procnum = info->procnum;
1150 	req->r_mreq = NULL;
1151 	req->r_cred = info->cred;
1152 
1153 	i = 0;
1154 	m = info->mreq;
1155 	while (m) {
1156 		i += m->m_len;
1157 		m = m->m_next;
1158 	}
1159 	req->r_mrest = info->mreq;
1160 	req->r_mrest_len = i;
1161 
1162 	/*
1163 	 * The presence of a non-NULL r_info in req indicates
1164 	 * async completion via our helper threads.  See the receiver
1165 	 * code.
1166 	 */
1167 	if (info->bio) {
1168 		req->r_info = info;
1169 		req->r_flags = R_ASYNC;
1170 	} else {
1171 		req->r_info = NULL;
1172 		req->r_flags = 0;
1173 	}
1174 	info->req = req;
1175 	return(0);
1176 }
1177 
1178 static int
1179 nfs_request_auth(struct nfsreq *rep)
1180 {
1181 	struct nfsmount *nmp = rep->r_nmp;
1182 	struct mbuf *m;
1183 	char nickv[RPCX_NICKVERF];
1184 	int error = 0, auth_len, auth_type;
1185 	int verf_len;
1186 	u_int32_t xid;
1187 	char *auth_str, *verf_str;
1188 	struct ucred *cred;
1189 
1190 	cred = rep->r_cred;
1191 	rep->r_failed_auth = 0;
1192 
1193 	/*
1194 	 * Get the RPC header with authorization.
1195 	 */
1196 	verf_str = auth_str = NULL;
1197 	if (nmp->nm_flag & NFSMNT_KERB) {
1198 		verf_str = nickv;
1199 		verf_len = sizeof (nickv);
1200 		auth_type = RPCAUTH_KERB4;
1201 		bzero((caddr_t)rep->r_key, sizeof(rep->r_key));
1202 		if (rep->r_failed_auth ||
1203 		    nfs_getnickauth(nmp, cred, &auth_str, &auth_len,
1204 				    verf_str, verf_len)) {
1205 			error = nfs_getauth(nmp, rep, cred, &auth_str,
1206 				&auth_len, verf_str, &verf_len, rep->r_key);
1207 			if (error) {
1208 				m_freem(rep->r_mrest);
1209 				rep->r_mrest = NULL;
1210 				kfree((caddr_t)rep, M_NFSREQ);
1211 				return (error);
1212 			}
1213 		}
1214 	} else {
1215 		auth_type = RPCAUTH_UNIX;
1216 		if (cred->cr_ngroups < 1)
1217 			panic("nfsreq nogrps");
1218 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
1219 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
1220 			5 * NFSX_UNSIGNED;
1221 	}
1222 	if (rep->r_mrest)
1223 		nfs_checkpkt(rep->r_mrest, rep->r_mrest_len);
1224 	m = nfsm_rpchead(cred, nmp->nm_flag, rep->r_procnum, auth_type,
1225 			auth_len, auth_str, verf_len, verf_str,
1226 			rep->r_mrest, rep->r_mrest_len, &rep->r_mheadend, &xid);
1227 	rep->r_mrest = NULL;
1228 	if (auth_str)
1229 		kfree(auth_str, M_TEMP);
1230 
1231 	/*
1232 	 * For stream protocols, insert a Sun RPC Record Mark.
1233 	 */
1234 	if (nmp->nm_sotype == SOCK_STREAM) {
1235 		M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT);
1236 		if (m == NULL) {
1237 			kfree(rep, M_NFSREQ);
1238 			return (ENOBUFS);
1239 		}
1240 		*mtod(m, u_int32_t *) = htonl(0x80000000 |
1241 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
1242 	}
1243 
1244 	nfs_checkpkt(m, m->m_pkthdr.len);
1245 
1246 	rep->r_mreq = m;
1247 	rep->r_xid = xid;
1248 	return (0);
1249 }
1250 
1251 static int
1252 nfs_request_try(struct nfsreq *rep)
1253 {
1254 	struct nfsmount *nmp = rep->r_nmp;
1255 	struct mbuf *m2;
1256 	int error;
1257 
1258 	/*
1259 	 * Request is not on any queue, only the owner has access to it
1260 	 * so it should not be locked by anyone atm.
1261 	 *
1262 	 * Interlock to prevent races.  While locked the only remote
1263 	 * action possible is for r_mrep to be set (once we enqueue it).
1264 	 */
1265 	if (rep->r_flags == 0xdeadc0de) {
1266 		print_backtrace(-1);
1267 		panic("flags nbad\n");
1268 	}
1269 	KKASSERT((rep->r_flags & (R_LOCKED | R_ONREQQ)) == 0);
1270 	if (nmp->nm_flag & NFSMNT_SOFT)
1271 		rep->r_retry = nmp->nm_retry;
1272 	else
1273 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
1274 	rep->r_rtt = rep->r_rexmit = 0;
1275 	if (proct[rep->r_procnum] > 0)
1276 		rep->r_flags |= R_TIMING | R_LOCKED;
1277 	else
1278 		rep->r_flags |= R_LOCKED;
1279 	rep->r_mrep = NULL;
1280 
1281 	nfsstats.rpcrequests++;
1282 
1283 	if (nmp->nm_flag & NFSMNT_FORCE) {
1284 		rep->r_flags |= R_SOFTTERM;
1285 		rep->r_flags &= ~R_LOCKED;
1286 		return (0);
1287 	}
1288 	rep->r_flags |= R_NEEDSXMIT;	/* in case send lock races us */
1289 
1290 	/*
1291 	 * Do the client side RPC.
1292 	 *
1293 	 * Chain request into list of outstanding requests. Be sure
1294 	 * to put it LAST so timer finds oldest requests first.  Note
1295 	 * that our control of R_LOCKED prevents the request from
1296 	 * getting ripped out from under us or transmitted by the
1297 	 * timer code.
1298 	 *
1299 	 * For requests with info structures we must atomically set the
1300 	 * info's state because the structure could become invalid upon
1301 	 * return due to races (i.e., if async)
1302 	 */
1303 	crit_enter();
1304 	mtx_link_init(&rep->r_link);
1305 	KKASSERT((rep->r_flags & R_ONREQQ) == 0);
1306 	TAILQ_INSERT_TAIL(&nmp->nm_reqq, rep, r_chain);
1307 	rep->r_flags |= R_ONREQQ;
1308 	++nmp->nm_reqqlen;
1309 	if (rep->r_flags & R_ASYNC)
1310 		rep->r_info->state = NFSM_STATE_WAITREPLY;
1311 	crit_exit();
1312 
1313 	error = 0;
1314 
1315 	/*
1316 	 * Send if we can.  Congestion control is not handled here any more
1317 	 * becausing trying to defer the initial send based on the nfs_timer
1318 	 * requires having a very fast nfs_timer, which is silly.
1319 	 */
1320 	if (nmp->nm_so) {
1321 		if (nmp->nm_soflags & PR_CONNREQUIRED)
1322 			error = nfs_sndlock(nmp, rep);
1323 		if (error == 0 && (rep->r_flags & R_NEEDSXMIT)) {
1324 			m2 = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
1325 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1326 			rep->r_flags &= ~R_NEEDSXMIT;
1327 			if ((rep->r_flags & R_SENT) == 0) {
1328 				rep->r_flags |= R_SENT;
1329 			}
1330 			if (nmp->nm_soflags & PR_CONNREQUIRED)
1331 				nfs_sndunlock(nmp);
1332 		}
1333 	} else {
1334 		rep->r_rtt = -1;
1335 	}
1336 	if (error == EPIPE)
1337 		error = 0;
1338 
1339 	/*
1340 	 * Release the lock.  The only remote action that may have occurred
1341 	 * would have been the setting of rep->r_mrep.  If this occured
1342 	 * and the request was async we have to move it to the reader
1343 	 * thread's queue for action.
1344 	 *
1345 	 * For async requests also make sure the reader is woken up so
1346 	 * it gets on the socket to read responses.
1347 	 */
1348 	crit_enter();
1349 	if (rep->r_flags & R_ASYNC) {
1350 		if (rep->r_mrep)
1351 			nfs_hardterm(rep, 1);
1352 		rep->r_flags &= ~R_LOCKED;
1353 		nfssvc_iod_reader_wakeup(nmp);
1354 	} else {
1355 		rep->r_flags &= ~R_LOCKED;
1356 	}
1357 	if (rep->r_flags & R_WANTED) {
1358 		rep->r_flags &= ~R_WANTED;
1359 		wakeup(rep);
1360 	}
1361 	crit_exit();
1362 	return (error);
1363 }
1364 
1365 /*
1366  * This code is only called for synchronous requests.  Completed synchronous
1367  * requests are left on reqq and we remove them before moving on to the
1368  * processing state.
1369  */
1370 static int
1371 nfs_request_waitreply(struct nfsreq *rep)
1372 {
1373 	struct nfsmount *nmp = rep->r_nmp;
1374 	int error;
1375 
1376 	KKASSERT((rep->r_flags & R_ASYNC) == 0);
1377 
1378 	/*
1379 	 * Wait until the request is finished.
1380 	 */
1381 	error = nfs_reply(nmp, rep);
1382 
1383 	/*
1384 	 * RPC done, unlink the request, but don't rip it out from under
1385 	 * the callout timer.
1386 	 *
1387 	 * Once unlinked no other receiver or the timer will have
1388 	 * visibility, so we do not have to set R_LOCKED.
1389 	 */
1390 	crit_enter();
1391 	while (rep->r_flags & R_LOCKED) {
1392 		rep->r_flags |= R_WANTED;
1393 		tsleep(rep, 0, "nfstrac", 0);
1394 	}
1395 	KKASSERT(rep->r_flags & R_ONREQQ);
1396 	TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
1397 	rep->r_flags &= ~R_ONREQQ;
1398 	--nmp->nm_reqqlen;
1399 	if (TAILQ_FIRST(&nmp->nm_bioq) &&
1400 	    nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
1401 		nfssvc_iod_writer_wakeup(nmp);
1402 	}
1403 	crit_exit();
1404 
1405 	/*
1406 	 * Decrement the outstanding request count.
1407 	 */
1408 	if (rep->r_flags & R_SENT) {
1409 		rep->r_flags &= ~R_SENT;
1410 	}
1411 	return (error);
1412 }
1413 
1414 /*
1415  * Process reply with error returned from nfs_requet_waitreply().
1416  *
1417  * Returns EAGAIN if it wants us to loop up to nfs_request_try() again.
1418  * Returns ENEEDAUTH if it wants us to loop up to nfs_request_auth() again.
1419  */
1420 static int
1421 nfs_request_processreply(nfsm_info_t info, int error)
1422 {
1423 	struct nfsreq *req = info->req;
1424 	struct nfsmount *nmp = req->r_nmp;
1425 	u_int32_t *tl;
1426 	int verf_type;
1427 	int i;
1428 
1429 	/*
1430 	 * If there was a successful reply and a tprintf msg.
1431 	 * tprintf a response.
1432 	 */
1433 	if (error == 0 && (req->r_flags & R_TPRINTFMSG)) {
1434 		nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1435 		    "is alive again");
1436 	}
1437 	info->mrep = req->r_mrep;
1438 	info->md = req->r_md;
1439 	info->dpos = req->r_dpos;
1440 	if (error) {
1441 		m_freem(req->r_mreq);
1442 		req->r_mreq = NULL;
1443 		kfree(req, M_NFSREQ);
1444 		info->req = NULL;
1445 		return (error);
1446 	}
1447 
1448 	/*
1449 	 * break down the rpc header and check if ok
1450 	 */
1451 	NULLOUT(tl = nfsm_dissect(info, 3 * NFSX_UNSIGNED));
1452 	if (*tl++ == rpc_msgdenied) {
1453 		if (*tl == rpc_mismatch) {
1454 			error = EOPNOTSUPP;
1455 		} else if ((nmp->nm_flag & NFSMNT_KERB) &&
1456 			   *tl++ == rpc_autherr) {
1457 			if (req->r_failed_auth == 0) {
1458 				req->r_failed_auth++;
1459 				req->r_mheadend->m_next = NULL;
1460 				m_freem(info->mrep);
1461 				info->mrep = NULL;
1462 				m_freem(req->r_mreq);
1463 				req->r_mreq = NULL;
1464 				return (ENEEDAUTH);
1465 			} else {
1466 				error = EAUTH;
1467 			}
1468 		} else {
1469 			error = EACCES;
1470 		}
1471 		m_freem(info->mrep);
1472 		info->mrep = NULL;
1473 		m_freem(req->r_mreq);
1474 		req->r_mreq = NULL;
1475 		kfree(req, M_NFSREQ);
1476 		info->req = NULL;
1477 		return (error);
1478 	}
1479 
1480 	/*
1481 	 * Grab any Kerberos verifier, otherwise just throw it away.
1482 	 */
1483 	verf_type = fxdr_unsigned(int, *tl++);
1484 	i = fxdr_unsigned(int32_t, *tl);
1485 	if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1486 		error = nfs_savenickauth(nmp, req->r_cred, i, req->r_key,
1487 					 &info->md, &info->dpos, info->mrep);
1488 		if (error)
1489 			goto nfsmout;
1490 	} else if (i > 0) {
1491 		ERROROUT(nfsm_adv(info, nfsm_rndup(i)));
1492 	}
1493 	NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1494 	/* 0 == ok */
1495 	if (*tl == 0) {
1496 		NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1497 		if (*tl != 0) {
1498 			error = fxdr_unsigned(int, *tl);
1499 
1500 			/*
1501 			 * Does anyone even implement this?  Just impose
1502 			 * a 1-second delay.
1503 			 */
1504 			if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1505 				error == NFSERR_TRYLATER) {
1506 				m_freem(info->mrep);
1507 				info->mrep = NULL;
1508 				error = 0;
1509 
1510 				tsleep((caddr_t)&lbolt, 0, "nqnfstry", 0);
1511 				return (EAGAIN);	/* goto tryagain */
1512 			}
1513 
1514 			/*
1515 			 * If the File Handle was stale, invalidate the
1516 			 * lookup cache, just in case.
1517 			 *
1518 			 * To avoid namecache<->vnode deadlocks we must
1519 			 * release the vnode lock if we hold it.
1520 			 */
1521 			if (error == ESTALE) {
1522 				struct vnode *vp = req->r_vp;
1523 				int ltype;
1524 
1525 				ltype = lockstatus(&vp->v_lock, curthread);
1526 				if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1527 					lockmgr(&vp->v_lock, LK_RELEASE);
1528 				cache_inval_vp(vp, CINV_CHILDREN);
1529 				if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1530 					lockmgr(&vp->v_lock, ltype);
1531 			}
1532 			if (nmp->nm_flag & NFSMNT_NFSV3) {
1533 				KKASSERT(*req->r_mrp == info->mrep);
1534 				KKASSERT(*req->r_mdp == info->md);
1535 				KKASSERT(*req->r_dposp == info->dpos);
1536 				error |= NFSERR_RETERR;
1537 			} else {
1538 				m_freem(info->mrep);
1539 				info->mrep = NULL;
1540 			}
1541 			m_freem(req->r_mreq);
1542 			req->r_mreq = NULL;
1543 			kfree(req, M_NFSREQ);
1544 			info->req = NULL;
1545 			return (error);
1546 		}
1547 
1548 		KKASSERT(*req->r_mrp == info->mrep);
1549 		KKASSERT(*req->r_mdp == info->md);
1550 		KKASSERT(*req->r_dposp == info->dpos);
1551 		m_freem(req->r_mreq);
1552 		req->r_mreq = NULL;
1553 		FREE(req, M_NFSREQ);
1554 		return (0);
1555 	}
1556 	m_freem(info->mrep);
1557 	info->mrep = NULL;
1558 	error = EPROTONOSUPPORT;
1559 nfsmout:
1560 	m_freem(req->r_mreq);
1561 	req->r_mreq = NULL;
1562 	kfree(req, M_NFSREQ);
1563 	info->req = NULL;
1564 	return (error);
1565 }
1566 
1567 #ifndef NFS_NOSERVER
1568 /*
1569  * Generate the rpc reply header
1570  * siz arg. is used to decide if adding a cluster is worthwhile
1571  */
1572 int
1573 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
1574 	    int err, struct mbuf **mrq, struct mbuf **mbp, caddr_t *bposp)
1575 {
1576 	u_int32_t *tl;
1577 	struct nfsm_info info;
1578 
1579 	siz += RPC_REPLYSIZ;
1580 	info.mb = m_getl(max_hdr + siz, MB_WAIT, MT_DATA, M_PKTHDR, NULL);
1581 	info.mreq = info.mb;
1582 	info.mreq->m_pkthdr.len = 0;
1583 	/*
1584 	 * If this is not a cluster, try and leave leading space
1585 	 * for the lower level headers.
1586 	 */
1587 	if ((max_hdr + siz) < MINCLSIZE)
1588 		info.mreq->m_data += max_hdr;
1589 	tl = mtod(info.mreq, u_int32_t *);
1590 	info.mreq->m_len = 6 * NFSX_UNSIGNED;
1591 	info.bpos = ((caddr_t)tl) + info.mreq->m_len;
1592 	*tl++ = txdr_unsigned(nd->nd_retxid);
1593 	*tl++ = rpc_reply;
1594 	if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1595 		*tl++ = rpc_msgdenied;
1596 		if (err & NFSERR_AUTHERR) {
1597 			*tl++ = rpc_autherr;
1598 			*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1599 			info.mreq->m_len -= NFSX_UNSIGNED;
1600 			info.bpos -= NFSX_UNSIGNED;
1601 		} else {
1602 			*tl++ = rpc_mismatch;
1603 			*tl++ = txdr_unsigned(RPC_VER2);
1604 			*tl = txdr_unsigned(RPC_VER2);
1605 		}
1606 	} else {
1607 		*tl++ = rpc_msgaccepted;
1608 
1609 		/*
1610 		 * For Kerberos authentication, we must send the nickname
1611 		 * verifier back, otherwise just RPCAUTH_NULL.
1612 		 */
1613 		if (nd->nd_flag & ND_KERBFULL) {
1614 		    struct nfsuid *nuidp;
1615 		    struct timeval ktvin, ktvout;
1616 
1617 		    for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1618 			nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1619 			if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1620 			    (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1621 			     &nuidp->nu_haddr, nd->nd_nam2)))
1622 			    break;
1623 		    }
1624 		    if (nuidp) {
1625 			ktvin.tv_sec =
1626 			    txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1627 			ktvin.tv_usec =
1628 			    txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1629 
1630 			/*
1631 			 * Encrypt the timestamp in ecb mode using the
1632 			 * session key.
1633 			 */
1634 #ifdef NFSKERB
1635 			XXX
1636 #else
1637 			ktvout.tv_sec = 0;
1638 			ktvout.tv_usec = 0;
1639 #endif
1640 
1641 			*tl++ = rpc_auth_kerb;
1642 			*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1643 			*tl = ktvout.tv_sec;
1644 			tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
1645 			*tl++ = ktvout.tv_usec;
1646 			*tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1647 		    } else {
1648 			*tl++ = 0;
1649 			*tl++ = 0;
1650 		    }
1651 		} else {
1652 			*tl++ = 0;
1653 			*tl++ = 0;
1654 		}
1655 		switch (err) {
1656 		case EPROGUNAVAIL:
1657 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1658 			break;
1659 		case EPROGMISMATCH:
1660 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1661 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1662 			*tl++ = txdr_unsigned(2);
1663 			*tl = txdr_unsigned(3);
1664 			break;
1665 		case EPROCUNAVAIL:
1666 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1667 			break;
1668 		case EBADRPC:
1669 			*tl = txdr_unsigned(RPC_GARBAGE);
1670 			break;
1671 		default:
1672 			*tl = 0;
1673 			if (err != NFSERR_RETVOID) {
1674 				tl = nfsm_build(&info, NFSX_UNSIGNED);
1675 				if (err)
1676 				    *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1677 				else
1678 				    *tl = 0;
1679 			}
1680 			break;
1681 		};
1682 	}
1683 
1684 	if (mrq != NULL)
1685 	    *mrq = info.mreq;
1686 	*mbp = info.mb;
1687 	*bposp = info.bpos;
1688 	if (err != 0 && err != NFSERR_RETVOID)
1689 		nfsstats.srvrpc_errs++;
1690 	return (0);
1691 }
1692 
1693 
1694 #endif /* NFS_NOSERVER */
1695 
1696 /*
1697  * Nfs timer routine.
1698  *
1699  * Scan the nfsreq list and retranmit any requests that have timed out
1700  * To avoid retransmission attempts on STREAM sockets (in the future) make
1701  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1702  *
1703  * Requests with attached responses, terminated requests, and
1704  * locked requests are ignored.  Locked requests will be picked up
1705  * in a later timer call.
1706  */
1707 void
1708 nfs_timer_callout(void *arg /* never used */)
1709 {
1710 	struct nfsmount *nmp;
1711 	struct nfsreq *req;
1712 #ifndef NFS_NOSERVER
1713 	struct nfssvc_sock *slp;
1714 	u_quad_t cur_usec;
1715 #endif /* NFS_NOSERVER */
1716 
1717 	lwkt_gettoken(&nfs_token);
1718 	TAILQ_FOREACH(nmp, &nfs_mountq, nm_entry) {
1719 		lwkt_gettoken(&nmp->nm_token);
1720 		TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1721 			KKASSERT(nmp == req->r_nmp);
1722 			if (req->r_mrep)
1723 				continue;
1724 			if (req->r_flags & (R_SOFTTERM | R_LOCKED))
1725 				continue;
1726 
1727 			/*
1728 			 * Handle timeout/retry.  Be sure to process r_mrep
1729 			 * for async requests that completed while we had
1730 			 * the request locked or they will hang in the reqq
1731 			 * forever.
1732 			 */
1733 			req->r_flags |= R_LOCKED;
1734 			if (nfs_sigintr(nmp, req, req->r_td)) {
1735 				nfs_softterm(req, 1);
1736 				req->r_flags &= ~R_LOCKED;
1737 			} else {
1738 				nfs_timer_req(req);
1739 				if (req->r_flags & R_ASYNC) {
1740 					if (req->r_mrep)
1741 						nfs_hardterm(req, 1);
1742 					req->r_flags &= ~R_LOCKED;
1743 					nfssvc_iod_reader_wakeup(nmp);
1744 				} else {
1745 					req->r_flags &= ~R_LOCKED;
1746 				}
1747 			}
1748 			if (req->r_flags & R_WANTED) {
1749 				req->r_flags &= ~R_WANTED;
1750 				wakeup(req);
1751 			}
1752 		}
1753 		lwkt_reltoken(&nmp->nm_token);
1754 	}
1755 #ifndef NFS_NOSERVER
1756 
1757 	/*
1758 	 * Scan the write gathering queues for writes that need to be
1759 	 * completed now.
1760 	 */
1761 	cur_usec = nfs_curusec();
1762 
1763 	TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1764 		/* XXX race against removal */
1765 		if (lwkt_trytoken(&slp->ns_token)) {
1766 			if (slp->ns_tq.lh_first &&
1767 			    (slp->ns_tq.lh_first->nd_time <= cur_usec)) {
1768 				nfsrv_wakenfsd(slp, 1);
1769 			}
1770 			lwkt_reltoken(&slp->ns_token);
1771 		}
1772 	}
1773 #endif /* NFS_NOSERVER */
1774 
1775 	callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer_callout, NULL);
1776 	lwkt_reltoken(&nfs_token);
1777 }
1778 
1779 static
1780 void
1781 nfs_timer_req(struct nfsreq *req)
1782 {
1783 	struct thread *td = &thread0; /* XXX for creds, will break if sleep */
1784 	struct nfsmount *nmp = req->r_nmp;
1785 	struct mbuf *m;
1786 	struct socket *so;
1787 	int timeo;
1788 	int error;
1789 
1790 	/*
1791 	 * rtt ticks and timeout calculation.  Return if the timeout
1792 	 * has not been reached yet, unless the packet is flagged
1793 	 * for an immediate send.
1794 	 *
1795 	 * The mean rtt doesn't help when we get random I/Os, we have
1796 	 * to multiply by fairly large numbers.
1797 	 */
1798 	if (req->r_rtt >= 0) {
1799 		/*
1800 		 * Calculate the timeout to test against.
1801 		 */
1802 		req->r_rtt++;
1803 		if (nmp->nm_flag & NFSMNT_DUMBTIMR) {
1804 			timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1805 		} else if (req->r_flags & R_TIMING) {
1806 			timeo = NFS_SRTT(req) + NFS_SDRTT(req);
1807 		} else {
1808 			timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1809 		}
1810 		timeo *= multt[req->r_procnum];
1811 		/* timeo is still scaled by SCALE_BITS */
1812 
1813 #define NFSFS	(NFS_RTT_SCALE * NFS_HZ)
1814 		if (req->r_flags & R_TIMING) {
1815 			static long last_time;
1816 			if (nfs_showrtt && last_time != time_second) {
1817 				kprintf("rpccmd %d NFS SRTT %d SDRTT %d "
1818 					"timeo %d.%03d\n",
1819 					proct[req->r_procnum],
1820 					NFS_SRTT(req), NFS_SDRTT(req),
1821 					timeo / NFSFS,
1822 					timeo % NFSFS * 1000 /  NFSFS);
1823 				last_time = time_second;
1824 			}
1825 		}
1826 #undef NFSFS
1827 
1828 		/*
1829 		 * deal with nfs_timer jitter.
1830 		 */
1831 		timeo = (timeo >> NFS_RTT_SCALE_BITS) + 1;
1832 		if (timeo < 2)
1833 			timeo = 2;
1834 
1835 		if (nmp->nm_timeouts > 0)
1836 			timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1837 		if (timeo > NFS_MAXTIMEO)
1838 			timeo = NFS_MAXTIMEO;
1839 		if (req->r_rtt <= timeo) {
1840 			if ((req->r_flags & R_NEEDSXMIT) == 0)
1841 				return;
1842 		} else if (nmp->nm_timeouts < 8) {
1843 			nmp->nm_timeouts++;
1844 		}
1845 	}
1846 
1847 	/*
1848 	 * Check for server not responding
1849 	 */
1850 	if ((req->r_flags & R_TPRINTFMSG) == 0 &&
1851 	     req->r_rexmit > nmp->nm_deadthresh) {
1852 		nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1853 			"not responding");
1854 		req->r_flags |= R_TPRINTFMSG;
1855 	}
1856 	if (req->r_rexmit >= req->r_retry) {	/* too many */
1857 		nfsstats.rpctimeouts++;
1858 		nfs_softterm(req, 1);
1859 		return;
1860 	}
1861 
1862 	/*
1863 	 * Generally disable retransmission on reliable sockets,
1864 	 * unless the request is flagged for immediate send.
1865 	 */
1866 	if (nmp->nm_sotype != SOCK_DGRAM) {
1867 		if (++req->r_rexmit > NFS_MAXREXMIT)
1868 			req->r_rexmit = NFS_MAXREXMIT;
1869 		if ((req->r_flags & R_NEEDSXMIT) == 0)
1870 			return;
1871 	}
1872 
1873 	/*
1874 	 * Stop here if we do not have a socket!
1875 	 */
1876 	if ((so = nmp->nm_so) == NULL)
1877 		return;
1878 
1879 	/*
1880 	 * If there is enough space and the window allows.. resend it.
1881 	 *
1882 	 * r_rtt is left intact in case we get an answer after the
1883 	 * retry that was a reply to the original packet.
1884 	 *
1885 	 * NOTE: so_pru_send()
1886 	 */
1887 	if (ssb_space(&so->so_snd) >= req->r_mreq->m_pkthdr.len &&
1888 	    (req->r_flags & (R_SENT | R_NEEDSXMIT)) &&
1889 	   (m = m_copym(req->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){
1890 		if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1891 		    error = so_pru_send(so, 0, m, NULL, NULL, td);
1892 		else
1893 		    error = so_pru_send(so, 0, m, nmp->nm_nam, NULL, td);
1894 		if (error) {
1895 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1896 				so->so_error = 0;
1897 			req->r_flags |= R_NEEDSXMIT;
1898 		} else if (req->r_mrep == NULL) {
1899 			/*
1900 			 * Iff first send, start timing
1901 			 * else turn timing off, backoff timer
1902 			 * and divide congestion window by 2.
1903 			 *
1904 			 * It is possible for the so_pru_send() to
1905 			 * block and for us to race a reply so we
1906 			 * only do this if the reply field has not
1907 			 * been filled in.  R_LOCKED will prevent
1908 			 * the request from being ripped out from under
1909 			 * us entirely.
1910 			 *
1911 			 * Record the last resent procnum to aid us
1912 			 * in duplicate detection on receive.
1913 			 */
1914 			if ((req->r_flags & R_NEEDSXMIT) == 0) {
1915 				if (nfs_showrexmit)
1916 					kprintf("X");
1917 				if (++req->r_rexmit > NFS_MAXREXMIT)
1918 					req->r_rexmit = NFS_MAXREXMIT;
1919 				nmp->nm_maxasync_scaled >>= 1;
1920 				if (nmp->nm_maxasync_scaled < NFS_MINASYNC_SCALED)
1921 					nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
1922 				nfsstats.rpcretries++;
1923 				nmp->nm_lastreprocnum = req->r_procnum;
1924 			} else {
1925 				req->r_flags |= R_SENT;
1926 				req->r_flags &= ~R_NEEDSXMIT;
1927 			}
1928 		}
1929 	}
1930 }
1931 
1932 /*
1933  * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1934  * wait for all requests to complete. This is used by forced unmounts
1935  * to terminate any outstanding RPCs.
1936  *
1937  * Locked requests cannot be canceled but will be marked for
1938  * soft-termination.
1939  */
1940 int
1941 nfs_nmcancelreqs(struct nfsmount *nmp)
1942 {
1943 	struct nfsreq *req;
1944 	int i;
1945 
1946 	crit_enter();
1947 	TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1948 		if (req->r_mrep != NULL || (req->r_flags & R_SOFTTERM))
1949 			continue;
1950 		nfs_softterm(req, 0);
1951 	}
1952 	/* XXX  the other two queues as well */
1953 	crit_exit();
1954 
1955 	for (i = 0; i < 30; i++) {
1956 		crit_enter();
1957 		TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1958 			if (nmp == req->r_nmp)
1959 				break;
1960 		}
1961 		crit_exit();
1962 		if (req == NULL)
1963 			return (0);
1964 		tsleep(&lbolt, 0, "nfscancel", 0);
1965 	}
1966 	return (EBUSY);
1967 }
1968 
1969 /*
1970  * Soft-terminate a request, effectively marking it as failed.
1971  *
1972  * Must be called from within a critical section.
1973  */
1974 static void
1975 nfs_softterm(struct nfsreq *rep, int islocked)
1976 {
1977 	rep->r_flags |= R_SOFTTERM;
1978 	nfs_hardterm(rep, islocked);
1979 }
1980 
1981 /*
1982  * Hard-terminate a request, typically after getting a response.
1983  *
1984  * The state machine can still decide to re-issue it later if necessary.
1985  *
1986  * Must be called from within a critical section.
1987  */
1988 static void
1989 nfs_hardterm(struct nfsreq *rep, int islocked)
1990 {
1991 	struct nfsmount *nmp = rep->r_nmp;
1992 
1993 	/*
1994 	 * The nm_send count is decremented now to avoid deadlocks
1995 	 * when the process in soreceive() hasn't yet managed to send
1996 	 * its own request.
1997 	 */
1998 	if (rep->r_flags & R_SENT) {
1999 		rep->r_flags &= ~R_SENT;
2000 	}
2001 
2002 	/*
2003 	 * If we locked the request or nobody else has locked the request,
2004 	 * and the request is async, we can move it to the reader thread's
2005 	 * queue now and fix up the state.
2006 	 *
2007 	 * If we locked the request or nobody else has locked the request,
2008 	 * we can wake up anyone blocked waiting for a response on the
2009 	 * request.
2010 	 */
2011 	if (islocked || (rep->r_flags & R_LOCKED) == 0) {
2012 		if ((rep->r_flags & (R_ONREQQ | R_ASYNC)) ==
2013 		    (R_ONREQQ | R_ASYNC)) {
2014 			rep->r_flags &= ~R_ONREQQ;
2015 			TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
2016 			--nmp->nm_reqqlen;
2017 			TAILQ_INSERT_TAIL(&nmp->nm_reqrxq, rep, r_chain);
2018 			KKASSERT(rep->r_info->state == NFSM_STATE_TRY ||
2019 				 rep->r_info->state == NFSM_STATE_WAITREPLY);
2020 			rep->r_info->state = NFSM_STATE_PROCESSREPLY;
2021 			nfssvc_iod_reader_wakeup(nmp);
2022 			if (TAILQ_FIRST(&nmp->nm_bioq) &&
2023 			    nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
2024 				nfssvc_iod_writer_wakeup(nmp);
2025 			}
2026 		}
2027 		mtx_abort_ex_link(&nmp->nm_rxlock, &rep->r_link);
2028 	}
2029 }
2030 
2031 /*
2032  * Test for a termination condition pending on the process.
2033  * This is used for NFSMNT_INT mounts.
2034  */
2035 int
2036 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
2037 {
2038 	sigset_t tmpset;
2039 	struct proc *p;
2040 	struct lwp *lp;
2041 
2042 	if (rep && (rep->r_flags & R_SOFTTERM))
2043 		return (EINTR);
2044 	/* Terminate all requests while attempting a forced unmount. */
2045 	if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
2046 		return (EINTR);
2047 	if (!(nmp->nm_flag & NFSMNT_INT))
2048 		return (0);
2049 	/* td might be NULL YYY */
2050 	if (td == NULL || (p = td->td_proc) == NULL)
2051 		return (0);
2052 
2053 	lp = td->td_lwp;
2054 	tmpset = lwp_sigpend(lp);
2055 	SIGSETNAND(tmpset, lp->lwp_sigmask);
2056 	SIGSETNAND(tmpset, p->p_sigignore);
2057 	if (SIGNOTEMPTY(tmpset) && NFSINT_SIGMASK(tmpset))
2058 		return (EINTR);
2059 
2060 	return (0);
2061 }
2062 
2063 /*
2064  * Lock a socket against others.
2065  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
2066  * and also to avoid race conditions between the processes with nfs requests
2067  * in progress when a reconnect is necessary.
2068  */
2069 int
2070 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
2071 {
2072 	mtx_t mtx = &nmp->nm_txlock;
2073 	struct thread *td;
2074 	int slptimeo;
2075 	int slpflag;
2076 	int error;
2077 
2078 	slpflag = 0;
2079 	slptimeo = 0;
2080 	td = rep ? rep->r_td : NULL;
2081 	if (nmp->nm_flag & NFSMNT_INT)
2082 		slpflag = PCATCH;
2083 
2084 	while ((error = mtx_lock_ex_try(mtx)) != 0) {
2085 		if (nfs_sigintr(nmp, rep, td)) {
2086 			error = EINTR;
2087 			break;
2088 		}
2089 		error = mtx_lock_ex(mtx, "nfsndlck", slpflag, slptimeo);
2090 		if (error == 0)
2091 			break;
2092 		if (slpflag == PCATCH) {
2093 			slpflag = 0;
2094 			slptimeo = 2 * hz;
2095 		}
2096 	}
2097 	/* Always fail if our request has been cancelled. */
2098 	if (rep && (rep->r_flags & R_SOFTTERM)) {
2099 		if (error == 0)
2100 			mtx_unlock(mtx);
2101 		error = EINTR;
2102 	}
2103 	return (error);
2104 }
2105 
2106 /*
2107  * Unlock the stream socket for others.
2108  */
2109 void
2110 nfs_sndunlock(struct nfsmount *nmp)
2111 {
2112 	mtx_unlock(&nmp->nm_txlock);
2113 }
2114 
2115 /*
2116  * Lock the receiver side of the socket.
2117  *
2118  * rep may be NULL.
2119  */
2120 static int
2121 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
2122 {
2123 	mtx_t mtx = &nmp->nm_rxlock;
2124 	int slpflag;
2125 	int slptimeo;
2126 	int error;
2127 
2128 	/*
2129 	 * Unconditionally check for completion in case another nfsiod
2130 	 * get the packet while the caller was blocked, before the caller
2131 	 * called us.  Packet reception is handled by mainline code which
2132 	 * is protected by the BGL at the moment.
2133 	 *
2134 	 * We do not strictly need the second check just before the
2135 	 * tsleep(), but it's good defensive programming.
2136 	 */
2137 	if (rep && rep->r_mrep != NULL)
2138 		return (EALREADY);
2139 
2140 	if (nmp->nm_flag & NFSMNT_INT)
2141 		slpflag = PCATCH;
2142 	else
2143 		slpflag = 0;
2144 	slptimeo = 0;
2145 
2146 	while ((error = mtx_lock_ex_try(mtx)) != 0) {
2147 		if (nfs_sigintr(nmp, rep, (rep ? rep->r_td : NULL))) {
2148 			error = EINTR;
2149 			break;
2150 		}
2151 		if (rep && rep->r_mrep != NULL) {
2152 			error = EALREADY;
2153 			break;
2154 		}
2155 
2156 		/*
2157 		 * NOTE: can return ENOLCK, but in that case rep->r_mrep
2158 		 *       will already be set.
2159 		 */
2160 		if (rep) {
2161 			error = mtx_lock_ex_link(mtx, &rep->r_link,
2162 						 "nfsrcvlk",
2163 						 slpflag, slptimeo);
2164 		} else {
2165 			error = mtx_lock_ex(mtx, "nfsrcvlk", slpflag, slptimeo);
2166 		}
2167 		if (error == 0)
2168 			break;
2169 
2170 		/*
2171 		 * If our reply was recieved while we were sleeping,
2172 		 * then just return without taking the lock to avoid a
2173 		 * situation where a single iod could 'capture' the
2174 		 * recieve lock.
2175 		 */
2176 		if (rep && rep->r_mrep != NULL) {
2177 			error = EALREADY;
2178 			break;
2179 		}
2180 		if (slpflag == PCATCH) {
2181 			slpflag = 0;
2182 			slptimeo = 2 * hz;
2183 		}
2184 	}
2185 	if (error == 0) {
2186 		if (rep && rep->r_mrep != NULL) {
2187 			error = EALREADY;
2188 			mtx_unlock(mtx);
2189 		}
2190 	}
2191 	return (error);
2192 }
2193 
2194 /*
2195  * Unlock the stream socket for others.
2196  */
2197 static void
2198 nfs_rcvunlock(struct nfsmount *nmp)
2199 {
2200 	mtx_unlock(&nmp->nm_rxlock);
2201 }
2202 
2203 /*
2204  * nfs_realign:
2205  *
2206  * Check for badly aligned mbuf data and realign by copying the unaligned
2207  * portion of the data into a new mbuf chain and freeing the portions
2208  * of the old chain that were replaced.
2209  *
2210  * We cannot simply realign the data within the existing mbuf chain
2211  * because the underlying buffers may contain other rpc commands and
2212  * we cannot afford to overwrite them.
2213  *
2214  * We would prefer to avoid this situation entirely.  The situation does
2215  * not occur with NFS/UDP and is supposed to only occassionally occur
2216  * with TCP.  Use vfs.nfs.realign_count and realign_test to check this.
2217  *
2218  * NOTE!  MB_DONTWAIT cannot be used here.  The mbufs must be acquired
2219  *	  because the rpc request OR reply cannot be thrown away.  TCP NFS
2220  *	  mounts do not retry their RPCs unless the TCP connection itself
2221  *	  is dropped so throwing away a RPC will basically cause the NFS
2222  *	  operation to lockup indefinitely.
2223  */
2224 static void
2225 nfs_realign(struct mbuf **pm, int hsiz)
2226 {
2227 	struct mbuf *m;
2228 	struct mbuf *n = NULL;
2229 
2230 	/*
2231 	 * Check for misalignemnt
2232 	 */
2233 	++nfs_realign_test;
2234 	while ((m = *pm) != NULL) {
2235 		if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3))
2236 			break;
2237 		pm = &m->m_next;
2238 	}
2239 
2240 	/*
2241 	 * If misalignment found make a completely new copy.
2242 	 */
2243 	if (m) {
2244 		++nfs_realign_count;
2245 		n = m_dup_data(m, MB_WAIT);
2246 		m_freem(*pm);
2247 		*pm = n;
2248 	}
2249 }
2250 
2251 #ifndef NFS_NOSERVER
2252 
2253 /*
2254  * Parse an RPC request
2255  * - verify it
2256  * - fill in the cred struct.
2257  */
2258 int
2259 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
2260 {
2261 	int len, i;
2262 	u_int32_t *tl;
2263 	struct uio uio;
2264 	struct iovec iov;
2265 	caddr_t cp;
2266 	u_int32_t nfsvers, auth_type;
2267 	uid_t nickuid;
2268 	int error = 0, ticklen;
2269 	struct nfsuid *nuidp;
2270 	struct timeval tvin, tvout;
2271 	struct nfsm_info info;
2272 #if 0				/* until encrypted keys are implemented */
2273 	NFSKERBKEYSCHED_T keys;	/* stores key schedule */
2274 #endif
2275 
2276 	info.mrep = nd->nd_mrep;
2277 	info.md = nd->nd_md;
2278 	info.dpos = nd->nd_dpos;
2279 
2280 	if (has_header) {
2281 		NULLOUT(tl = nfsm_dissect(&info, 10 * NFSX_UNSIGNED));
2282 		nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
2283 		if (*tl++ != rpc_call) {
2284 			m_freem(info.mrep);
2285 			return (EBADRPC);
2286 		}
2287 	} else {
2288 		NULLOUT(tl = nfsm_dissect(&info, 8 * NFSX_UNSIGNED));
2289 	}
2290 	nd->nd_repstat = 0;
2291 	nd->nd_flag = 0;
2292 	if (*tl++ != rpc_vers) {
2293 		nd->nd_repstat = ERPCMISMATCH;
2294 		nd->nd_procnum = NFSPROC_NOOP;
2295 		return (0);
2296 	}
2297 	if (*tl != nfs_prog) {
2298 		nd->nd_repstat = EPROGUNAVAIL;
2299 		nd->nd_procnum = NFSPROC_NOOP;
2300 		return (0);
2301 	}
2302 	tl++;
2303 	nfsvers = fxdr_unsigned(u_int32_t, *tl++);
2304 	if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
2305 		nd->nd_repstat = EPROGMISMATCH;
2306 		nd->nd_procnum = NFSPROC_NOOP;
2307 		return (0);
2308 	}
2309 	if (nfsvers == NFS_VER3)
2310 		nd->nd_flag = ND_NFSV3;
2311 	nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
2312 	if (nd->nd_procnum == NFSPROC_NULL)
2313 		return (0);
2314 	if (nd->nd_procnum >= NFS_NPROCS ||
2315 		(nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
2316 		(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
2317 		nd->nd_repstat = EPROCUNAVAIL;
2318 		nd->nd_procnum = NFSPROC_NOOP;
2319 		return (0);
2320 	}
2321 	if ((nd->nd_flag & ND_NFSV3) == 0)
2322 		nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
2323 	auth_type = *tl++;
2324 	len = fxdr_unsigned(int, *tl++);
2325 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2326 		m_freem(info.mrep);
2327 		return (EBADRPC);
2328 	}
2329 
2330 	nd->nd_flag &= ~ND_KERBAUTH;
2331 	/*
2332 	 * Handle auth_unix or auth_kerb.
2333 	 */
2334 	if (auth_type == rpc_auth_unix) {
2335 		len = fxdr_unsigned(int, *++tl);
2336 		if (len < 0 || len > NFS_MAXNAMLEN) {
2337 			m_freem(info.mrep);
2338 			return (EBADRPC);
2339 		}
2340 		ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2341 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2342 		bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
2343 		nd->nd_cr.cr_ref = 1;
2344 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2345 		nd->nd_cr.cr_ruid = nd->nd_cr.cr_svuid = nd->nd_cr.cr_uid;
2346 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2347 		nd->nd_cr.cr_rgid = nd->nd_cr.cr_svgid = nd->nd_cr.cr_gid;
2348 		len = fxdr_unsigned(int, *tl);
2349 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2350 			m_freem(info.mrep);
2351 			return (EBADRPC);
2352 		}
2353 		NULLOUT(tl = nfsm_dissect(&info, (len + 2) * NFSX_UNSIGNED));
2354 		for (i = 1; i <= len; i++)
2355 		    if (i < NGROUPS)
2356 			nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2357 		    else
2358 			tl++;
2359 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2360 		if (nd->nd_cr.cr_ngroups > 1)
2361 		    nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
2362 		len = fxdr_unsigned(int, *++tl);
2363 		if (len < 0 || len > RPCAUTH_MAXSIZ) {
2364 			m_freem(info.mrep);
2365 			return (EBADRPC);
2366 		}
2367 		if (len > 0) {
2368 			ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2369 		}
2370 	} else if (auth_type == rpc_auth_kerb) {
2371 		switch (fxdr_unsigned(int, *tl++)) {
2372 		case RPCAKN_FULLNAME:
2373 			ticklen = fxdr_unsigned(int, *tl);
2374 			*((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2375 			uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2376 			nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2377 			if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2378 				m_freem(info.mrep);
2379 				return (EBADRPC);
2380 			}
2381 			uio.uio_offset = 0;
2382 			uio.uio_iov = &iov;
2383 			uio.uio_iovcnt = 1;
2384 			uio.uio_segflg = UIO_SYSSPACE;
2385 			iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
2386 			iov.iov_len = RPCAUTH_MAXSIZ - 4;
2387 			ERROROUT(nfsm_mtouio(&info, &uio, uio.uio_resid));
2388 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2389 			if (*tl++ != rpc_auth_kerb ||
2390 				fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2391 				kprintf("Bad kerb verifier\n");
2392 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2393 				nd->nd_procnum = NFSPROC_NOOP;
2394 				return (0);
2395 			}
2396 			NULLOUT(cp = nfsm_dissect(&info, 4 * NFSX_UNSIGNED));
2397 			tl = (u_int32_t *)cp;
2398 			if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2399 				kprintf("Not fullname kerb verifier\n");
2400 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2401 				nd->nd_procnum = NFSPROC_NOOP;
2402 				return (0);
2403 			}
2404 			cp += NFSX_UNSIGNED;
2405 			bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
2406 			nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2407 			nd->nd_flag |= ND_KERBFULL;
2408 			nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2409 			break;
2410 		case RPCAKN_NICKNAME:
2411 			if (len != 2 * NFSX_UNSIGNED) {
2412 				kprintf("Kerb nickname short\n");
2413 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2414 				nd->nd_procnum = NFSPROC_NOOP;
2415 				return (0);
2416 			}
2417 			nickuid = fxdr_unsigned(uid_t, *tl);
2418 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2419 			if (*tl++ != rpc_auth_kerb ||
2420 				fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2421 				kprintf("Kerb nick verifier bad\n");
2422 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2423 				nd->nd_procnum = NFSPROC_NOOP;
2424 				return (0);
2425 			}
2426 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2427 			tvin.tv_sec = *tl++;
2428 			tvin.tv_usec = *tl;
2429 
2430 			for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
2431 			    nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
2432 				if (nuidp->nu_cr.cr_uid == nickuid &&
2433 				    (!nd->nd_nam2 ||
2434 				     netaddr_match(NU_NETFAM(nuidp),
2435 				      &nuidp->nu_haddr, nd->nd_nam2)))
2436 					break;
2437 			}
2438 			if (!nuidp) {
2439 				nd->nd_repstat =
2440 					(NFSERR_AUTHERR|AUTH_REJECTCRED);
2441 				nd->nd_procnum = NFSPROC_NOOP;
2442 				return (0);
2443 			}
2444 
2445 			/*
2446 			 * Now, decrypt the timestamp using the session key
2447 			 * and validate it.
2448 			 */
2449 #ifdef NFSKERB
2450 			XXX
2451 #else
2452 			tvout.tv_sec = 0;
2453 			tvout.tv_usec = 0;
2454 #endif
2455 
2456 			tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2457 			tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2458 			if (nuidp->nu_expire < time_second ||
2459 			    nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2460 			    (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2461 			     nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2462 				nuidp->nu_expire = 0;
2463 				nd->nd_repstat =
2464 				    (NFSERR_AUTHERR|AUTH_REJECTVERF);
2465 				nd->nd_procnum = NFSPROC_NOOP;
2466 				return (0);
2467 			}
2468 			nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
2469 			nd->nd_flag |= ND_KERBNICK;
2470 		};
2471 	} else {
2472 		nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2473 		nd->nd_procnum = NFSPROC_NOOP;
2474 		return (0);
2475 	}
2476 
2477 	nd->nd_md = info.md;
2478 	nd->nd_dpos = info.dpos;
2479 	return (0);
2480 nfsmout:
2481 	return (error);
2482 }
2483 
2484 #endif
2485 
2486 /*
2487  * Send a message to the originating process's terminal.  The thread and/or
2488  * process may be NULL.  YYY the thread should not be NULL but there may
2489  * still be some uio_td's that are still being passed as NULL through to
2490  * nfsm_request().
2491  */
2492 static int
2493 nfs_msg(struct thread *td, char *server, char *msg)
2494 {
2495 	tpr_t tpr;
2496 
2497 	if (td && td->td_proc)
2498 		tpr = tprintf_open(td->td_proc);
2499 	else
2500 		tpr = NULL;
2501 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2502 	tprintf_close(tpr);
2503 	return (0);
2504 }
2505 
2506 #ifndef NFS_NOSERVER
2507 
2508 /*
2509  * Socket upcall routine for nfsd sockets.  This runs in the protocol
2510  * thread and passes waitflag == MB_DONTWAIT.
2511  */
2512 void
2513 nfsrv_rcv_upcall(struct socket *so, void *arg, int waitflag)
2514 {
2515 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2516 
2517 	if (slp->ns_needq_upcall == 0) {
2518 		slp->ns_needq_upcall = 1;	/* ok to race */
2519 		lwkt_gettoken(&nfs_token);
2520 		nfsrv_wakenfsd(slp, 1);
2521 		lwkt_reltoken(&nfs_token);
2522 	}
2523 #if 0
2524 	lwkt_gettoken(&slp->ns_token);
2525 	slp->ns_flag |= SLP_NEEDQ;
2526 	nfsrv_rcv(so, arg, waitflag);
2527 	lwkt_reltoken(&slp->ns_token);
2528 #endif
2529 }
2530 
2531 /*
2532  * Process new data on a receive socket.  Essentially do as much as we can
2533  * non-blocking, else punt and it will be called with MB_WAIT from an nfsd.
2534  *
2535  * slp->ns_token is held on call
2536  */
2537 void
2538 nfsrv_rcv(struct socket *so, void *arg, int waitflag)
2539 {
2540 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2541 	struct mbuf *m;
2542 	struct sockaddr *nam;
2543 	struct sockbuf sio;
2544 	int flags, error;
2545 	int nparallel_wakeup = 0;
2546 
2547 	ASSERT_LWKT_TOKEN_HELD(&slp->ns_token);
2548 
2549 	if ((slp->ns_flag & SLP_VALID) == 0)
2550 		return;
2551 
2552 	/*
2553 	 * Do not allow an infinite number of completed RPC records to build
2554 	 * up before we stop reading data from the socket.  Otherwise we could
2555 	 * end up holding onto an unreasonable number of mbufs for requests
2556 	 * waiting for service.
2557 	 *
2558 	 * This should give pretty good feedback to the TCP layer and
2559 	 * prevents a memory crunch for other protocols.
2560 	 *
2561 	 * Note that the same service socket can be dispatched to several
2562 	 * nfs servers simultaniously.  The tcp protocol callback calls us
2563 	 * with MB_DONTWAIT.  nfsd calls us with MB_WAIT (typically).
2564 	 */
2565 	if (NFSRV_RECLIMIT(slp))
2566 		return;
2567 
2568 	/*
2569 	 * Handle protocol specifics to parse an RPC request.  We always
2570 	 * pull from the socket using non-blocking I/O.
2571 	 */
2572 	if (so->so_type == SOCK_STREAM) {
2573 		/*
2574 		 * The data has to be read in an orderly fashion from a TCP
2575 		 * stream, unlike a UDP socket.  It is possible for soreceive
2576 		 * and/or nfsrv_getstream() to block, so make sure only one
2577 		 * entity is messing around with the TCP stream at any given
2578 		 * moment.  The receive sockbuf's lock in soreceive is not
2579 		 * sufficient.
2580 		 */
2581 		if (slp->ns_flag & SLP_GETSTREAM)
2582 			return;
2583 		slp->ns_flag |= SLP_GETSTREAM;
2584 
2585 		/*
2586 		 * Do soreceive().  Pull out as much data as possible without
2587 		 * blocking.
2588 		 */
2589 		sbinit(&sio, 1000000000);
2590 		flags = MSG_DONTWAIT;
2591 		error = so_pru_soreceive(so, &nam, NULL, &sio, NULL, &flags);
2592 		if (error || sio.sb_mb == NULL) {
2593 			if (error != EWOULDBLOCK)
2594 				slp->ns_flag |= SLP_DISCONN;
2595 			slp->ns_flag &= ~(SLP_GETSTREAM | SLP_NEEDQ);
2596 			goto done;
2597 		}
2598 		m = sio.sb_mb;
2599 		if (slp->ns_rawend) {
2600 			slp->ns_rawend->m_next = m;
2601 			slp->ns_cc += sio.sb_cc;
2602 		} else {
2603 			slp->ns_raw = m;
2604 			slp->ns_cc = sio.sb_cc;
2605 		}
2606 		while (m->m_next)
2607 			m = m->m_next;
2608 		slp->ns_rawend = m;
2609 
2610 		/*
2611 		 * Now try and parse as many record(s) as we can out of the
2612 		 * raw stream data.  This will set SLP_DOREC.
2613 		 */
2614 		error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup);
2615 		if (error && error != EWOULDBLOCK)
2616 			slp->ns_flag |= SLP_DISCONN;
2617 		slp->ns_flag &= ~SLP_GETSTREAM;
2618 	} else {
2619 		/*
2620 		 * For UDP soreceive typically pulls just one packet, loop
2621 		 * to get the whole batch.
2622 		 */
2623 		do {
2624 			sbinit(&sio, 1000000000);
2625 			flags = MSG_DONTWAIT;
2626 			error = so_pru_soreceive(so, &nam, NULL, &sio,
2627 						 NULL, &flags);
2628 			if (sio.sb_mb) {
2629 				struct nfsrv_rec *rec;
2630 				int mf = (waitflag & MB_DONTWAIT) ?
2631 					    M_NOWAIT : M_WAITOK;
2632 				rec = kmalloc(sizeof(struct nfsrv_rec),
2633 					     M_NFSRVDESC, mf);
2634 				if (!rec) {
2635 					if (nam)
2636 						FREE(nam, M_SONAME);
2637 					m_freem(sio.sb_mb);
2638 					continue;
2639 				}
2640 				nfs_realign(&sio.sb_mb, 10 * NFSX_UNSIGNED);
2641 				rec->nr_address = nam;
2642 				rec->nr_packet = sio.sb_mb;
2643 				STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2644 				++slp->ns_numrec;
2645 				slp->ns_flag |= SLP_DOREC;
2646 				++nparallel_wakeup;
2647 			} else {
2648 				slp->ns_flag &= ~SLP_NEEDQ;
2649 			}
2650 			if (error) {
2651 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2652 				    && error != EWOULDBLOCK) {
2653 					slp->ns_flag |= SLP_DISCONN;
2654 					break;
2655 				}
2656 			}
2657 			if (NFSRV_RECLIMIT(slp))
2658 				break;
2659 		} while (sio.sb_mb);
2660 	}
2661 
2662 	/*
2663 	 * If we were upcalled from the tcp protocol layer and we have
2664 	 * fully parsed records ready to go, or there is new data pending,
2665 	 * or something went wrong, try to wake up a nfsd thread to deal
2666 	 * with it.
2667 	 */
2668 done:
2669 	/* XXX this code is currently not executed (nfsrv_rcv_upcall) */
2670 	if (waitflag == MB_DONTWAIT && (slp->ns_flag & SLP_ACTION_MASK)) {
2671 		lwkt_gettoken(&nfs_token);
2672 		nfsrv_wakenfsd(slp, nparallel_wakeup);
2673 		lwkt_reltoken(&nfs_token);
2674 	}
2675 }
2676 
2677 /*
2678  * Try and extract an RPC request from the mbuf data list received on a
2679  * stream socket. The "waitflag" argument indicates whether or not it
2680  * can sleep.
2681  */
2682 static int
2683 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp)
2684 {
2685 	struct mbuf *m, **mpp;
2686 	char *cp1, *cp2;
2687 	int len;
2688 	struct mbuf *om, *m2, *recm;
2689 	u_int32_t recmark;
2690 
2691 	for (;;) {
2692 	    if (slp->ns_reclen == 0) {
2693 		if (slp->ns_cc < NFSX_UNSIGNED)
2694 			return (0);
2695 		m = slp->ns_raw;
2696 		if (m->m_len >= NFSX_UNSIGNED) {
2697 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2698 			m->m_data += NFSX_UNSIGNED;
2699 			m->m_len -= NFSX_UNSIGNED;
2700 		} else {
2701 			cp1 = (caddr_t)&recmark;
2702 			cp2 = mtod(m, caddr_t);
2703 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2704 				while (m->m_len == 0) {
2705 					m = m->m_next;
2706 					cp2 = mtod(m, caddr_t);
2707 				}
2708 				*cp1++ = *cp2++;
2709 				m->m_data++;
2710 				m->m_len--;
2711 			}
2712 		}
2713 		slp->ns_cc -= NFSX_UNSIGNED;
2714 		recmark = ntohl(recmark);
2715 		slp->ns_reclen = recmark & ~0x80000000;
2716 		if (recmark & 0x80000000)
2717 			slp->ns_flag |= SLP_LASTFRAG;
2718 		else
2719 			slp->ns_flag &= ~SLP_LASTFRAG;
2720 		if (slp->ns_reclen > NFS_MAXPACKET || slp->ns_reclen <= 0) {
2721 			log(LOG_ERR, "%s (%d) from nfs client\n",
2722 			    "impossible packet length",
2723 			    slp->ns_reclen);
2724 			return (EPERM);
2725 		}
2726 	    }
2727 
2728 	    /*
2729 	     * Now get the record part.
2730 	     *
2731 	     * Note that slp->ns_reclen may be 0.  Linux sometimes
2732 	     * generates 0-length RPCs
2733 	     */
2734 	    recm = NULL;
2735 	    if (slp->ns_cc == slp->ns_reclen) {
2736 		recm = slp->ns_raw;
2737 		slp->ns_raw = slp->ns_rawend = NULL;
2738 		slp->ns_cc = slp->ns_reclen = 0;
2739 	    } else if (slp->ns_cc > slp->ns_reclen) {
2740 		len = 0;
2741 		m = slp->ns_raw;
2742 		om = NULL;
2743 
2744 		while (len < slp->ns_reclen) {
2745 			if ((len + m->m_len) > slp->ns_reclen) {
2746 				m2 = m_copym(m, 0, slp->ns_reclen - len,
2747 					waitflag);
2748 				if (m2) {
2749 					if (om) {
2750 						om->m_next = m2;
2751 						recm = slp->ns_raw;
2752 					} else
2753 						recm = m2;
2754 					m->m_data += slp->ns_reclen - len;
2755 					m->m_len -= slp->ns_reclen - len;
2756 					len = slp->ns_reclen;
2757 				} else {
2758 					return (EWOULDBLOCK);
2759 				}
2760 			} else if ((len + m->m_len) == slp->ns_reclen) {
2761 				om = m;
2762 				len += m->m_len;
2763 				m = m->m_next;
2764 				recm = slp->ns_raw;
2765 				om->m_next = NULL;
2766 			} else {
2767 				om = m;
2768 				len += m->m_len;
2769 				m = m->m_next;
2770 			}
2771 		}
2772 		slp->ns_raw = m;
2773 		slp->ns_cc -= len;
2774 		slp->ns_reclen = 0;
2775 	    } else {
2776 		return (0);
2777 	    }
2778 
2779 	    /*
2780 	     * Accumulate the fragments into a record.
2781 	     */
2782 	    mpp = &slp->ns_frag;
2783 	    while (*mpp)
2784 		mpp = &((*mpp)->m_next);
2785 	    *mpp = recm;
2786 	    if (slp->ns_flag & SLP_LASTFRAG) {
2787 		struct nfsrv_rec *rec;
2788 		int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK;
2789 		rec = kmalloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf);
2790 		if (!rec) {
2791 		    m_freem(slp->ns_frag);
2792 		} else {
2793 		    nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2794 		    rec->nr_address = NULL;
2795 		    rec->nr_packet = slp->ns_frag;
2796 		    STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2797 		    ++slp->ns_numrec;
2798 		    slp->ns_flag |= SLP_DOREC;
2799 		    ++*countp;
2800 		}
2801 		slp->ns_frag = NULL;
2802 	    }
2803 	}
2804 }
2805 
2806 #ifdef INVARIANTS
2807 
2808 /*
2809  * Sanity check our mbuf chain.
2810  */
2811 static void
2812 nfs_checkpkt(struct mbuf *m, int len)
2813 {
2814 	int xlen = 0;
2815 	while (m) {
2816 		xlen += m->m_len;
2817 		m = m->m_next;
2818 	}
2819 	if (xlen != len) {
2820 		panic("nfs_checkpkt: len mismatch %d/%d mbuf %p\n",
2821 			xlen, len, m);
2822 	}
2823 }
2824 
2825 #else
2826 
2827 static void
2828 nfs_checkpkt(struct mbuf *m __unused, int len __unused)
2829 {
2830 }
2831 
2832 #endif
2833 
2834 /*
2835  * Parse an RPC header.
2836  *
2837  * If the socket is invalid or no records are pending we return ENOBUFS.
2838  * The caller must deal with NEEDQ races.
2839  */
2840 int
2841 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2842 	    struct nfsrv_descript **ndp)
2843 {
2844 	struct nfsrv_rec *rec;
2845 	struct mbuf *m;
2846 	struct sockaddr *nam;
2847 	struct nfsrv_descript *nd;
2848 	int error;
2849 
2850 	*ndp = NULL;
2851 	if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2852 		return (ENOBUFS);
2853 	rec = STAILQ_FIRST(&slp->ns_rec);
2854 	STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2855 	KKASSERT(slp->ns_numrec > 0);
2856 	if (--slp->ns_numrec == 0)
2857 		slp->ns_flag &= ~SLP_DOREC;
2858 	nam = rec->nr_address;
2859 	m = rec->nr_packet;
2860 	kfree(rec, M_NFSRVDESC);
2861 	MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2862 		M_NFSRVDESC, M_WAITOK);
2863 	nd->nd_md = nd->nd_mrep = m;
2864 	nd->nd_nam2 = nam;
2865 	nd->nd_dpos = mtod(m, caddr_t);
2866 	error = nfs_getreq(nd, nfsd, TRUE);
2867 	if (error) {
2868 		if (nam) {
2869 			FREE(nam, M_SONAME);
2870 		}
2871 		kfree((caddr_t)nd, M_NFSRVDESC);
2872 		return (error);
2873 	}
2874 	*ndp = nd;
2875 	nfsd->nfsd_nd = nd;
2876 	return (0);
2877 }
2878 
2879 /*
2880  * Try to assign service sockets to nfsd threads based on the number
2881  * of new rpc requests that have been queued on the service socket.
2882  *
2883  * If no nfsd's are available or additonal requests are pending, set the
2884  * NFSD_CHECKSLP flag so that one of the running nfsds will go look for
2885  * the work in the nfssvc_sock list when it is finished processing its
2886  * current work.  This flag is only cleared when an nfsd can not find
2887  * any new work to perform.
2888  */
2889 void
2890 nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel)
2891 {
2892 	struct nfsd *nd;
2893 
2894 	if ((slp->ns_flag & SLP_VALID) == 0)
2895 		return;
2896 	if (nparallel <= 1)
2897 		nparallel = 1;
2898 	TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) {
2899 		if (nd->nfsd_flag & NFSD_WAITING) {
2900 			nd->nfsd_flag &= ~NFSD_WAITING;
2901 			if (nd->nfsd_slp)
2902 				panic("nfsd wakeup");
2903 			nfsrv_slpref(slp);
2904 			nd->nfsd_slp = slp;
2905 			wakeup((caddr_t)nd);
2906 			if (--nparallel == 0)
2907 				break;
2908 		}
2909 	}
2910 
2911 	/*
2912 	 * If we couldn't assign slp then the NFSDs are all busy and
2913 	 * we set a flag indicating that there is pending work.
2914 	 */
2915 	if (nparallel)
2916 		nfsd_head_flag |= NFSD_CHECKSLP;
2917 }
2918 #endif /* NFS_NOSERVER */
2919