xref: /dragonfly/sys/vfs/nfs/nfs_socket.c (revision e3543cd5)
1 /*
2  * Copyright (c) 1989, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_socket.c	8.5 (Berkeley) 3/30/95
37  * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.45 2007/05/18 17:05:13 dillon Exp $
39  */
40 
41 /*
42  * Socket operations for use by nfs
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/fcntl.h>
54 #include <sys/protosw.h>
55 #include <sys/resourcevar.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/socketops.h>
59 #include <sys/syslog.h>
60 #include <sys/thread.h>
61 #include <sys/tprintf.h>
62 #include <sys/sysctl.h>
63 #include <sys/signalvar.h>
64 #include <sys/mutex.h>
65 
66 #include <sys/signal2.h>
67 #include <sys/mutex2.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <sys/thread2.h>
72 
73 #include "rpcv2.h"
74 #include "nfsproto.h"
75 #include "nfs.h"
76 #include "xdr_subs.h"
77 #include "nfsm_subs.h"
78 #include "nfsmount.h"
79 #include "nfsnode.h"
80 #include "nfsrtt.h"
81 
82 #define	TRUE	1
83 #define	FALSE	0
84 
85 /*
86  * RTT calculations are scaled by 256 (8 bits).  A proper fractional
87  * RTT will still be calculated even with a slow NFS timer.
88  */
89 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum]]
90 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum]]
91 #define NFS_RTT_SCALE_BITS	8	/* bits */
92 #define NFS_RTT_SCALE		256	/* value */
93 
94 /*
95  * Defines which timer to use for the procnum.
96  * 0 - default
97  * 1 - getattr
98  * 2 - lookup
99  * 3 - read
100  * 4 - write
101  */
102 static int proct[NFS_NPROCS] = {
103 	0, 1, 0, 2, 1, 3, 3, 4, 0, 0,	/* 00-09	*/
104 	0, 0, 0, 0, 0, 0, 3, 3, 0, 0,	/* 10-19	*/
105 	0, 5, 0, 0, 0, 0,		/* 20-29	*/
106 };
107 
108 static int multt[NFS_NPROCS] = {
109 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 00-09	*/
110 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 10-19	*/
111 	1, 2, 1, 1, 1, 1,		/* 20-29	*/
112 };
113 
114 static int nfs_backoff[8] = { 2, 3, 5, 8, 13, 21, 34, 55 };
115 static int nfs_realign_test;
116 static int nfs_realign_count;
117 static int nfs_showrtt;
118 static int nfs_showrexmit;
119 int nfs_maxasyncbio = NFS_MAXASYNCBIO;
120 
121 SYSCTL_DECL(_vfs_nfs);
122 
123 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, "");
124 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, "");
125 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrtt, CTLFLAG_RW, &nfs_showrtt, 0, "");
126 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrexmit, CTLFLAG_RW, &nfs_showrexmit, 0, "");
127 SYSCTL_INT(_vfs_nfs, OID_AUTO, maxasyncbio, CTLFLAG_RW, &nfs_maxasyncbio, 0, "");
128 
129 static int nfs_request_setup(nfsm_info_t info);
130 static int nfs_request_auth(struct nfsreq *rep);
131 static int nfs_request_try(struct nfsreq *rep);
132 static int nfs_request_waitreply(struct nfsreq *rep);
133 static int nfs_request_processreply(nfsm_info_t info, int);
134 
135 int nfsrtton = 0;
136 struct nfsrtt nfsrtt;
137 struct callout	nfs_timer_handle;
138 
139 static int	nfs_msg (struct thread *,char *,char *);
140 static int	nfs_rcvlock (struct nfsmount *nmp, struct nfsreq *myreq);
141 static void	nfs_rcvunlock (struct nfsmount *nmp);
142 static void	nfs_realign (struct mbuf **pm, int hsiz);
143 static int	nfs_receive (struct nfsmount *nmp, struct nfsreq *rep,
144 				struct sockaddr **aname, struct mbuf **mp);
145 static void	nfs_softterm (struct nfsreq *rep, int islocked);
146 static void	nfs_hardterm (struct nfsreq *rep, int islocked);
147 static int	nfs_reconnect (struct nfsmount *nmp, struct nfsreq *rep);
148 #ifndef NFS_NOSERVER
149 static int	nfsrv_getstream (struct nfssvc_sock *, int, int *);
150 static void	nfs_timer_req(struct nfsreq *req);
151 
152 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd,
153 				    struct nfssvc_sock *slp,
154 				    struct thread *td,
155 				    struct mbuf **mreqp) = {
156 	nfsrv_null,
157 	nfsrv_getattr,
158 	nfsrv_setattr,
159 	nfsrv_lookup,
160 	nfsrv3_access,
161 	nfsrv_readlink,
162 	nfsrv_read,
163 	nfsrv_write,
164 	nfsrv_create,
165 	nfsrv_mkdir,
166 	nfsrv_symlink,
167 	nfsrv_mknod,
168 	nfsrv_remove,
169 	nfsrv_rmdir,
170 	nfsrv_rename,
171 	nfsrv_link,
172 	nfsrv_readdir,
173 	nfsrv_readdirplus,
174 	nfsrv_statfs,
175 	nfsrv_fsinfo,
176 	nfsrv_pathconf,
177 	nfsrv_commit,
178 	nfsrv_noop,
179 	nfsrv_noop,
180 	nfsrv_noop,
181 	nfsrv_noop
182 };
183 #endif /* NFS_NOSERVER */
184 
185 /*
186  * Initialize sockets and congestion for a new NFS connection.
187  * We do not free the sockaddr if error.
188  */
189 int
190 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
191 {
192 	struct socket *so;
193 	int error;
194 	struct sockaddr *saddr;
195 	struct sockaddr_in *sin;
196 	struct thread *td = &thread0; /* only used for socreate and sobind */
197 
198 	nmp->nm_so = so = NULL;
199 	if (nmp->nm_flag & NFSMNT_FORCE)
200 		return (EINVAL);
201 	saddr = nmp->nm_nam;
202 	error = socreate(saddr->sa_family, &so, nmp->nm_sotype,
203 		nmp->nm_soproto, td);
204 	if (error)
205 		goto bad;
206 	nmp->nm_soflags = so->so_proto->pr_flags;
207 
208 	/*
209 	 * Some servers require that the client port be a reserved port number.
210 	 */
211 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
212 		struct sockopt sopt;
213 		int ip;
214 		struct sockaddr_in ssin;
215 
216 		bzero(&sopt, sizeof sopt);
217 		ip = IP_PORTRANGE_LOW;
218 		sopt.sopt_level = IPPROTO_IP;
219 		sopt.sopt_name = IP_PORTRANGE;
220 		sopt.sopt_val = (void *)&ip;
221 		sopt.sopt_valsize = sizeof(ip);
222 		sopt.sopt_td = NULL;
223 		error = sosetopt(so, &sopt);
224 		if (error)
225 			goto bad;
226 		bzero(&ssin, sizeof ssin);
227 		sin = &ssin;
228 		sin->sin_len = sizeof (struct sockaddr_in);
229 		sin->sin_family = AF_INET;
230 		sin->sin_addr.s_addr = INADDR_ANY;
231 		sin->sin_port = htons(0);
232 		error = sobind(so, (struct sockaddr *)sin, td);
233 		if (error)
234 			goto bad;
235 		bzero(&sopt, sizeof sopt);
236 		ip = IP_PORTRANGE_DEFAULT;
237 		sopt.sopt_level = IPPROTO_IP;
238 		sopt.sopt_name = IP_PORTRANGE;
239 		sopt.sopt_val = (void *)&ip;
240 		sopt.sopt_valsize = sizeof(ip);
241 		sopt.sopt_td = NULL;
242 		error = sosetopt(so, &sopt);
243 		if (error)
244 			goto bad;
245 	}
246 
247 	/*
248 	 * Protocols that do not require connections may be optionally left
249 	 * unconnected for servers that reply from a port other than NFS_PORT.
250 	 */
251 	if (nmp->nm_flag & NFSMNT_NOCONN) {
252 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
253 			error = ENOTCONN;
254 			goto bad;
255 		}
256 	} else {
257 		error = soconnect(so, nmp->nm_nam, td);
258 		if (error)
259 			goto bad;
260 
261 		/*
262 		 * Wait for the connection to complete. Cribbed from the
263 		 * connect system call but with the wait timing out so
264 		 * that interruptible mounts don't hang here for a long time.
265 		 */
266 		crit_enter();
267 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
268 			(void) tsleep((caddr_t)&so->so_timeo, 0,
269 				"nfscon", 2 * hz);
270 			if ((so->so_state & SS_ISCONNECTING) &&
271 			    so->so_error == 0 && rep &&
272 			    (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
273 				so->so_state &= ~SS_ISCONNECTING;
274 				crit_exit();
275 				goto bad;
276 			}
277 		}
278 		if (so->so_error) {
279 			error = so->so_error;
280 			so->so_error = 0;
281 			crit_exit();
282 			goto bad;
283 		}
284 		crit_exit();
285 	}
286 	so->so_rcv.ssb_timeo = (5 * hz);
287 	so->so_snd.ssb_timeo = (5 * hz);
288 
289 	/*
290 	 * Get buffer reservation size from sysctl, but impose reasonable
291 	 * limits.
292 	 */
293 	if (nmp->nm_sotype == SOCK_STREAM) {
294 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
295 			struct sockopt sopt;
296 			int val;
297 
298 			bzero(&sopt, sizeof sopt);
299 			sopt.sopt_level = SOL_SOCKET;
300 			sopt.sopt_name = SO_KEEPALIVE;
301 			sopt.sopt_val = &val;
302 			sopt.sopt_valsize = sizeof val;
303 			val = 1;
304 			sosetopt(so, &sopt);
305 		}
306 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
307 			struct sockopt sopt;
308 			int val;
309 
310 			bzero(&sopt, sizeof sopt);
311 			sopt.sopt_level = IPPROTO_TCP;
312 			sopt.sopt_name = TCP_NODELAY;
313 			sopt.sopt_val = &val;
314 			sopt.sopt_valsize = sizeof val;
315 			val = 1;
316 			sosetopt(so, &sopt);
317 		}
318 	}
319 	error = soreserve(so, nfs_soreserve, nfs_soreserve, NULL);
320 	if (error)
321 		goto bad;
322 	so->so_rcv.ssb_flags |= SSB_NOINTR;
323 	so->so_snd.ssb_flags |= SSB_NOINTR;
324 
325 	/* Initialize other non-zero congestion variables */
326 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
327 		nmp->nm_srtt[3] = (NFS_TIMEO << NFS_RTT_SCALE_BITS);
328 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
329 		nmp->nm_sdrtt[3] = 0;
330 	nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
331 	nmp->nm_timeouts = 0;
332 
333 	/*
334 	 * Assign nm_so last.  The moment nm_so is assigned the nfs_timer()
335 	 * can mess with the socket.
336 	 */
337 	nmp->nm_so = so;
338 	return (0);
339 
340 bad:
341 	if (so) {
342 		soshutdown(so, SHUT_RDWR);
343 		soclose(so, FNONBLOCK);
344 	}
345 	return (error);
346 }
347 
348 /*
349  * Reconnect routine:
350  * Called when a connection is broken on a reliable protocol.
351  * - clean up the old socket
352  * - nfs_connect() again
353  * - set R_NEEDSXMIT for all outstanding requests on mount point
354  * If this fails the mount point is DEAD!
355  * nb: Must be called with the nfs_sndlock() set on the mount point.
356  */
357 static int
358 nfs_reconnect(struct nfsmount *nmp, struct nfsreq *rep)
359 {
360 	struct nfsreq *req;
361 	int error;
362 
363 	nfs_disconnect(nmp);
364 	while ((error = nfs_connect(nmp, rep)) != 0) {
365 		if (error == EINTR || error == ERESTART)
366 			return (EINTR);
367 		if (error == EINVAL)
368 			return (error);
369 		(void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0);
370 	}
371 
372 	/*
373 	 * Loop through outstanding request list and fix up all requests
374 	 * on old socket.
375 	 */
376 	crit_enter();
377 	TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
378 		KKASSERT(req->r_nmp == nmp);
379 		req->r_flags |= R_NEEDSXMIT;
380 	}
381 	crit_exit();
382 	return (0);
383 }
384 
385 /*
386  * NFS disconnect. Clean up and unlink.
387  */
388 void
389 nfs_disconnect(struct nfsmount *nmp)
390 {
391 	struct socket *so;
392 
393 	if (nmp->nm_so) {
394 		so = nmp->nm_so;
395 		nmp->nm_so = NULL;
396 		soshutdown(so, SHUT_RDWR);
397 		soclose(so, FNONBLOCK);
398 	}
399 }
400 
401 void
402 nfs_safedisconnect(struct nfsmount *nmp)
403 {
404 	nfs_rcvlock(nmp, NULL);
405 	nfs_disconnect(nmp);
406 	nfs_rcvunlock(nmp);
407 }
408 
409 /*
410  * This is the nfs send routine. For connection based socket types, it
411  * must be called with an nfs_sndlock() on the socket.
412  * "rep == NULL" indicates that it has been called from a server.
413  * For the client side:
414  * - return EINTR if the RPC is terminated, 0 otherwise
415  * - set R_NEEDSXMIT if the send fails for any reason
416  * - do any cleanup required by recoverable socket errors (?)
417  * For the server side:
418  * - return EINTR or ERESTART if interrupted by a signal
419  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
420  * - do any cleanup required by recoverable socket errors (?)
421  */
422 int
423 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top,
424 	 struct nfsreq *rep)
425 {
426 	struct sockaddr *sendnam;
427 	int error, soflags, flags;
428 
429 	if (rep) {
430 		if (rep->r_flags & R_SOFTTERM) {
431 			m_freem(top);
432 			return (EINTR);
433 		}
434 		if ((so = rep->r_nmp->nm_so) == NULL) {
435 			rep->r_flags |= R_NEEDSXMIT;
436 			m_freem(top);
437 			return (0);
438 		}
439 		rep->r_flags &= ~R_NEEDSXMIT;
440 		soflags = rep->r_nmp->nm_soflags;
441 	} else {
442 		soflags = so->so_proto->pr_flags;
443 	}
444 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
445 		sendnam = NULL;
446 	else
447 		sendnam = nam;
448 	if (so->so_type == SOCK_SEQPACKET)
449 		flags = MSG_EOR;
450 	else
451 		flags = 0;
452 
453 	error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags,
454 	    curthread /*XXX*/);
455 	/*
456 	 * ENOBUFS for dgram sockets is transient and non fatal.
457 	 * No need to log, and no need to break a soft mount.
458 	 */
459 	if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
460 		error = 0;
461 		/*
462 		 * do backoff retransmit on client
463 		 */
464 		if (rep) {
465 			if ((rep->r_nmp->nm_state & NFSSTA_SENDSPACE) == 0) {
466 				rep->r_nmp->nm_state |= NFSSTA_SENDSPACE;
467 				kprintf("Warning: NFS: Insufficient sendspace "
468 					"(%lu),\n"
469 					"\t You must increase vfs.nfs.soreserve"
470 					"or decrease vfs.nfs.maxasyncbio\n",
471 					so->so_snd.ssb_hiwat);
472 			}
473 			rep->r_flags |= R_NEEDSXMIT;
474 		}
475 	}
476 
477 	if (error) {
478 		if (rep) {
479 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
480 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
481 			/*
482 			 * Deal with errors for the client side.
483 			 */
484 			if (rep->r_flags & R_SOFTTERM)
485 				error = EINTR;
486 			else
487 				rep->r_flags |= R_NEEDSXMIT;
488 		} else {
489 			log(LOG_INFO, "nfsd send error %d\n", error);
490 		}
491 
492 		/*
493 		 * Handle any recoverable (soft) socket errors here. (?)
494 		 */
495 		if (error != EINTR && error != ERESTART &&
496 			error != EWOULDBLOCK && error != EPIPE)
497 			error = 0;
498 	}
499 	return (error);
500 }
501 
502 /*
503  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
504  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
505  * Mark and consolidate the data into a new mbuf list.
506  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
507  *     small mbufs.
508  * For SOCK_STREAM we must be very careful to read an entire record once
509  * we have read any of it, even if the system call has been interrupted.
510  */
511 static int
512 nfs_receive(struct nfsmount *nmp, struct nfsreq *rep,
513 	    struct sockaddr **aname, struct mbuf **mp)
514 {
515 	struct socket *so;
516 	struct sockbuf sio;
517 	struct uio auio;
518 	struct iovec aio;
519 	struct mbuf *m;
520 	struct mbuf *control;
521 	u_int32_t len;
522 	struct sockaddr **getnam;
523 	int error, sotype, rcvflg;
524 	struct thread *td = curthread;	/* XXX */
525 
526 	/*
527 	 * Set up arguments for soreceive()
528 	 */
529 	*mp = NULL;
530 	*aname = NULL;
531 	sotype = nmp->nm_sotype;
532 
533 	/*
534 	 * For reliable protocols, lock against other senders/receivers
535 	 * in case a reconnect is necessary.
536 	 * For SOCK_STREAM, first get the Record Mark to find out how much
537 	 * more there is to get.
538 	 * We must lock the socket against other receivers
539 	 * until we have an entire rpc request/reply.
540 	 */
541 	if (sotype != SOCK_DGRAM) {
542 		error = nfs_sndlock(nmp, rep);
543 		if (error)
544 			return (error);
545 tryagain:
546 		/*
547 		 * Check for fatal errors and resending request.
548 		 */
549 		/*
550 		 * Ugh: If a reconnect attempt just happened, nm_so
551 		 * would have changed. NULL indicates a failed
552 		 * attempt that has essentially shut down this
553 		 * mount point.
554 		 */
555 		if (rep && (rep->r_mrep || (rep->r_flags & R_SOFTTERM))) {
556 			nfs_sndunlock(nmp);
557 			return (EINTR);
558 		}
559 		so = nmp->nm_so;
560 		if (so == NULL) {
561 			error = nfs_reconnect(nmp, rep);
562 			if (error) {
563 				nfs_sndunlock(nmp);
564 				return (error);
565 			}
566 			goto tryagain;
567 		}
568 		while (rep && (rep->r_flags & R_NEEDSXMIT)) {
569 			m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
570 			nfsstats.rpcretries++;
571 			error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
572 			if (error) {
573 				if (error == EINTR || error == ERESTART ||
574 				    (error = nfs_reconnect(nmp, rep)) != 0) {
575 					nfs_sndunlock(nmp);
576 					return (error);
577 				}
578 				goto tryagain;
579 			}
580 		}
581 		nfs_sndunlock(nmp);
582 		if (sotype == SOCK_STREAM) {
583 			/*
584 			 * Get the length marker from the stream
585 			 */
586 			aio.iov_base = (caddr_t)&len;
587 			aio.iov_len = sizeof(u_int32_t);
588 			auio.uio_iov = &aio;
589 			auio.uio_iovcnt = 1;
590 			auio.uio_segflg = UIO_SYSSPACE;
591 			auio.uio_rw = UIO_READ;
592 			auio.uio_offset = 0;
593 			auio.uio_resid = sizeof(u_int32_t);
594 			auio.uio_td = td;
595 			do {
596 			   rcvflg = MSG_WAITALL;
597 			   error = so_pru_soreceive(so, NULL, &auio, NULL,
598 						    NULL, &rcvflg);
599 			   if (error == EWOULDBLOCK && rep) {
600 				if (rep->r_flags & R_SOFTTERM)
601 					return (EINTR);
602 			   }
603 			} while (error == EWOULDBLOCK);
604 
605 			if (error == 0 && auio.uio_resid > 0) {
606 			    /*
607 			     * Only log short packets if not EOF
608 			     */
609 			    if (auio.uio_resid != sizeof(u_int32_t))
610 			    log(LOG_INFO,
611 				 "short receive (%d/%d) from nfs server %s\n",
612 				 (int)(sizeof(u_int32_t) - auio.uio_resid),
613 				 (int)sizeof(u_int32_t),
614 				 nmp->nm_mountp->mnt_stat.f_mntfromname);
615 			    error = EPIPE;
616 			}
617 			if (error)
618 				goto errout;
619 			len = ntohl(len) & ~0x80000000;
620 			/*
621 			 * This is SERIOUS! We are out of sync with the sender
622 			 * and forcing a disconnect/reconnect is all I can do.
623 			 */
624 			if (len > NFS_MAXPACKET) {
625 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
626 				"impossible packet length",
627 				len,
628 				nmp->nm_mountp->mnt_stat.f_mntfromname);
629 			    error = EFBIG;
630 			    goto errout;
631 			}
632 
633 			/*
634 			 * Get the rest of the packet as an mbuf chain
635 			 */
636 			sbinit(&sio, len);
637 			do {
638 			    rcvflg = MSG_WAITALL;
639 			    error = so_pru_soreceive(so, NULL, NULL, &sio,
640 						     NULL, &rcvflg);
641 			} while (error == EWOULDBLOCK || error == EINTR ||
642 				 error == ERESTART);
643 			if (error == 0 && sio.sb_cc != len) {
644 			    if (sio.sb_cc != 0)
645 			    log(LOG_INFO,
646 				"short receive (%d/%d) from nfs server %s\n",
647 				len - auio.uio_resid, len,
648 				nmp->nm_mountp->mnt_stat.f_mntfromname);
649 			    error = EPIPE;
650 			}
651 			*mp = sio.sb_mb;
652 		} else {
653 			/*
654 			 * Non-stream, so get the whole packet by not
655 			 * specifying MSG_WAITALL and by specifying a large
656 			 * length.
657 			 *
658 			 * We have no use for control msg., but must grab them
659 			 * and then throw them away so we know what is going
660 			 * on.
661 			 */
662 			sbinit(&sio, 100000000);
663 			do {
664 			    rcvflg = 0;
665 			    error =  so_pru_soreceive(so, NULL, NULL, &sio,
666 						      &control, &rcvflg);
667 			    if (control)
668 				m_freem(control);
669 			    if (error == EWOULDBLOCK && rep) {
670 				if (rep->r_flags & R_SOFTTERM) {
671 					m_freem(sio.sb_mb);
672 					return (EINTR);
673 				}
674 			    }
675 			} while (error == EWOULDBLOCK ||
676 				 (error == 0 && sio.sb_mb == NULL && control));
677 			if ((rcvflg & MSG_EOR) == 0)
678 				kprintf("Egad!!\n");
679 			if (error == 0 && sio.sb_mb == NULL)
680 				error = EPIPE;
681 			len = sio.sb_cc;
682 			*mp = sio.sb_mb;
683 		}
684 errout:
685 		if (error && error != EINTR && error != ERESTART) {
686 			m_freem(*mp);
687 			*mp = NULL;
688 			if (error != EPIPE) {
689 				log(LOG_INFO,
690 				    "receive error %d from nfs server %s\n",
691 				    error,
692 				 nmp->nm_mountp->mnt_stat.f_mntfromname);
693 			}
694 			error = nfs_sndlock(nmp, rep);
695 			if (!error) {
696 				error = nfs_reconnect(nmp, rep);
697 				if (!error)
698 					goto tryagain;
699 				else
700 					nfs_sndunlock(nmp);
701 			}
702 		}
703 	} else {
704 		if ((so = nmp->nm_so) == NULL)
705 			return (EACCES);
706 		if (so->so_state & SS_ISCONNECTED)
707 			getnam = NULL;
708 		else
709 			getnam = aname;
710 		sbinit(&sio, 100000000);
711 		do {
712 			rcvflg = 0;
713 			error =  so_pru_soreceive(so, getnam, NULL, &sio,
714 						  NULL, &rcvflg);
715 			if (error == EWOULDBLOCK && rep &&
716 			    (rep->r_flags & R_SOFTTERM)) {
717 				m_freem(sio.sb_mb);
718 				return (EINTR);
719 			}
720 		} while (error == EWOULDBLOCK);
721 
722 		len = sio.sb_cc;
723 		*mp = sio.sb_mb;
724 
725 		/*
726 		 * A shutdown may result in no error and no mbuf.
727 		 * Convert to EPIPE.
728 		 */
729 		if (*mp == NULL && error == 0)
730 			error = EPIPE;
731 	}
732 	if (error) {
733 		m_freem(*mp);
734 		*mp = NULL;
735 	}
736 
737 	/*
738 	 * Search for any mbufs that are not a multiple of 4 bytes long
739 	 * or with m_data not longword aligned.
740 	 * These could cause pointer alignment problems, so copy them to
741 	 * well aligned mbufs.
742 	 */
743 	nfs_realign(mp, 5 * NFSX_UNSIGNED);
744 	return (error);
745 }
746 
747 /*
748  * Implement receipt of reply on a socket.
749  *
750  * We must search through the list of received datagrams matching them
751  * with outstanding requests using the xid, until ours is found.
752  *
753  * If myrep is NULL we process packets on the socket until
754  * interrupted or until nm_reqrxq is non-empty.
755  */
756 /* ARGSUSED */
757 int
758 nfs_reply(struct nfsmount *nmp, struct nfsreq *myrep)
759 {
760 	struct nfsreq *rep;
761 	struct sockaddr *nam;
762 	u_int32_t rxid;
763 	u_int32_t *tl;
764 	int error;
765 	struct nfsm_info info;
766 
767 	/*
768 	 * Loop around until we get our own reply
769 	 */
770 	for (;;) {
771 		/*
772 		 * Lock against other receivers so that I don't get stuck in
773 		 * sbwait() after someone else has received my reply for me.
774 		 * Also necessary for connection based protocols to avoid
775 		 * race conditions during a reconnect.
776 		 *
777 		 * If nfs_rcvlock() returns EALREADY, that means that
778 		 * the reply has already been recieved by another
779 		 * process and we can return immediately.  In this
780 		 * case, the lock is not taken to avoid races with
781 		 * other processes.
782 		 */
783 		info.mrep = NULL;
784 
785 		error = nfs_rcvlock(nmp, myrep);
786 		if (error == EALREADY)
787 			return (0);
788 		if (error)
789 			return (error);
790 
791 		/*
792 		 * If myrep is NULL we are the receiver helper thread.
793 		 * Stop waiting for incoming replies if there are
794 		 * messages sitting on reqrxq that we need to process,
795 		 * or if a shutdown request is pending.
796 		 */
797 		if (myrep == NULL && (TAILQ_FIRST(&nmp->nm_reqrxq) ||
798 		    nmp->nm_rxstate > NFSSVC_PENDING)) {
799 			nfs_rcvunlock(nmp);
800 			return(EWOULDBLOCK);
801 		}
802 
803 		/*
804 		 * Get the next Rpc reply off the socket
805 		 *
806 		 * We cannot release the receive lock until we've
807 		 * filled in rep->r_mrep, otherwise a waiting
808 		 * thread may deadlock in soreceive with no incoming
809 		 * packets expected.
810 		 */
811 		error = nfs_receive(nmp, myrep, &nam, &info.mrep);
812 		if (error) {
813 			/*
814 			 * Ignore routing errors on connectionless protocols??
815 			 */
816 			nfs_rcvunlock(nmp);
817 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
818 				if (nmp->nm_so == NULL)
819 					return (error);
820 				nmp->nm_so->so_error = 0;
821 				continue;
822 			}
823 			return (error);
824 		}
825 		if (nam)
826 			FREE(nam, M_SONAME);
827 
828 		/*
829 		 * Get the xid and check that it is an rpc reply
830 		 */
831 		info.md = info.mrep;
832 		info.dpos = mtod(info.md, caddr_t);
833 		NULLOUT(tl = nfsm_dissect(&info, 2*NFSX_UNSIGNED));
834 		rxid = *tl++;
835 		if (*tl != rpc_reply) {
836 			nfsstats.rpcinvalid++;
837 			m_freem(info.mrep);
838 			info.mrep = NULL;
839 nfsmout:
840 			nfs_rcvunlock(nmp);
841 			continue;
842 		}
843 
844 		/*
845 		 * Loop through the request list to match up the reply
846 		 * Iff no match, just drop the datagram.  On match, set
847 		 * r_mrep atomically to prevent the timer from messing
848 		 * around with the request after we have exited the critical
849 		 * section.
850 		 */
851 		crit_enter();
852 		TAILQ_FOREACH(rep, &nmp->nm_reqq, r_chain) {
853 			if (rep->r_mrep == NULL && rxid == rep->r_xid)
854 				break;
855 		}
856 
857 		/*
858 		 * Fill in the rest of the reply if we found a match.
859 		 *
860 		 * Deal with duplicate responses if there was no match.
861 		 */
862 		if (rep) {
863 			rep->r_md = info.md;
864 			rep->r_dpos = info.dpos;
865 			if (nfsrtton) {
866 				struct rttl *rt;
867 
868 				rt = &nfsrtt.rttl[nfsrtt.pos];
869 				rt->proc = rep->r_procnum;
870 				rt->rto = 0;
871 				rt->sent = 0;
872 				rt->cwnd = nmp->nm_maxasync_scaled;
873 				rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
874 				rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
875 				rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
876 				getmicrotime(&rt->tstamp);
877 				if (rep->r_flags & R_TIMING)
878 					rt->rtt = rep->r_rtt;
879 				else
880 					rt->rtt = 1000000;
881 				nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
882 			}
883 
884 			/*
885 			 * New congestion control is based only on async
886 			 * requests.
887 			 */
888 			if (nmp->nm_maxasync_scaled < NFS_MAXASYNC_SCALED)
889 				++nmp->nm_maxasync_scaled;
890 			if (rep->r_flags & R_SENT) {
891 				rep->r_flags &= ~R_SENT;
892 			}
893 			/*
894 			 * Update rtt using a gain of 0.125 on the mean
895 			 * and a gain of 0.25 on the deviation.
896 			 *
897 			 * NOTE SRTT/SDRTT are only good if R_TIMING is set.
898 			 */
899 			if ((rep->r_flags & R_TIMING) && rep->r_rexmit == 0) {
900 				/*
901 				 * Since the timer resolution of
902 				 * NFS_HZ is so course, it can often
903 				 * result in r_rtt == 0. Since
904 				 * r_rtt == N means that the actual
905 				 * rtt is between N+dt and N+2-dt ticks,
906 				 * add 1.
907 				 */
908 				int n;
909 				int d;
910 
911 #define NFSRSB	NFS_RTT_SCALE_BITS
912 				n = ((NFS_SRTT(rep) * 7) +
913 				     (rep->r_rtt << NFSRSB)) >> 3;
914 				d = n - NFS_SRTT(rep);
915 				NFS_SRTT(rep) = n;
916 
917 				/*
918 				 * Don't let the jitter calculation decay
919 				 * too quickly, but we want a fast rampup.
920 				 */
921 				if (d < 0)
922 					d = -d;
923 				d <<= NFSRSB;
924 				if (d < NFS_SDRTT(rep))
925 					n = ((NFS_SDRTT(rep) * 15) + d) >> 4;
926 				else
927 					n = ((NFS_SDRTT(rep) * 3) + d) >> 2;
928 				NFS_SDRTT(rep) = n;
929 #undef NFSRSB
930 			}
931 			nmp->nm_timeouts = 0;
932 			rep->r_mrep = info.mrep;
933 			nfs_hardterm(rep, 0);
934 		} else {
935 			/*
936 			 * Extract vers, prog, nfsver, procnum.  A duplicate
937 			 * response means we didn't wait long enough so
938 			 * we increase the SRTT to avoid future spurious
939 			 * timeouts.
940 			 */
941 			u_int procnum = nmp->nm_lastreprocnum;
942 			int n;
943 
944 			if (procnum < NFS_NPROCS && proct[procnum]) {
945 				if (nfs_showrexmit)
946 					kprintf("D");
947 				n = nmp->nm_srtt[proct[procnum]];
948 				n += NFS_ASYSCALE * NFS_HZ;
949 				if (n < NFS_ASYSCALE * NFS_HZ * 10)
950 					n = NFS_ASYSCALE * NFS_HZ * 10;
951 				nmp->nm_srtt[proct[procnum]] = n;
952 			}
953 		}
954 		nfs_rcvunlock(nmp);
955 		crit_exit();
956 
957 		/*
958 		 * If not matched to a request, drop it.
959 		 * If it's mine, get out.
960 		 */
961 		if (rep == NULL) {
962 			nfsstats.rpcunexpected++;
963 			m_freem(info.mrep);
964 			info.mrep = NULL;
965 		} else if (rep == myrep) {
966 			if (rep->r_mrep == NULL)
967 				panic("nfsreply nil");
968 			return (0);
969 		}
970 	}
971 }
972 
973 /*
974  * Run the request state machine until the target state is reached
975  * or a fatal error occurs.  The target state is not run.  Specifying
976  * a target of NFSM_STATE_DONE runs the state machine until the rpc
977  * is complete.
978  *
979  * EINPROGRESS is returned for all states other then the DONE state,
980  * indicating that the rpc is still in progress.
981  */
982 int
983 nfs_request(struct nfsm_info *info, nfsm_state_t bstate, nfsm_state_t estate)
984 {
985 	struct nfsreq *req;
986 
987 	while (info->state >= bstate && info->state < estate) {
988 		switch(info->state) {
989 		case NFSM_STATE_SETUP:
990 			/*
991 			 * Setup the nfsreq.  Any error which occurs during
992 			 * this state is fatal.
993 			 */
994 			info->error = nfs_request_setup(info);
995 			if (info->error) {
996 				info->state = NFSM_STATE_DONE;
997 				return (info->error);
998 			} else {
999 				req = info->req;
1000 				req->r_mrp = &info->mrep;
1001 				req->r_mdp = &info->md;
1002 				req->r_dposp = &info->dpos;
1003 				info->state = NFSM_STATE_AUTH;
1004 			}
1005 			break;
1006 		case NFSM_STATE_AUTH:
1007 			/*
1008 			 * Authenticate the nfsreq.  Any error which occurs
1009 			 * during this state is fatal.
1010 			 */
1011 			info->error = nfs_request_auth(info->req);
1012 			if (info->error) {
1013 				info->state = NFSM_STATE_DONE;
1014 				return (info->error);
1015 			} else {
1016 				info->state = NFSM_STATE_TRY;
1017 			}
1018 			break;
1019 		case NFSM_STATE_TRY:
1020 			/*
1021 			 * Transmit or retransmit attempt.  An error in this
1022 			 * state is ignored and we always move on to the
1023 			 * next state.
1024 			 *
1025 			 * This can trivially race the receiver if the
1026 			 * request is asynchronous.  nfs_request_try()
1027 			 * will thus set the state for us and we
1028 			 * must also return immediately if we are
1029 			 * running an async state machine, because
1030 			 * info can become invalid due to races after
1031 			 * try() returns.
1032 			 */
1033 			if (info->req->r_flags & R_ASYNC) {
1034 				nfs_request_try(info->req);
1035 				if (estate == NFSM_STATE_WAITREPLY)
1036 					return (EINPROGRESS);
1037 			} else {
1038 				nfs_request_try(info->req);
1039 				info->state = NFSM_STATE_WAITREPLY;
1040 			}
1041 			break;
1042 		case NFSM_STATE_WAITREPLY:
1043 			/*
1044 			 * Wait for a reply or timeout and move on to the
1045 			 * next state.  The error returned by this state
1046 			 * is passed to the processing code in the next
1047 			 * state.
1048 			 */
1049 			info->error = nfs_request_waitreply(info->req);
1050 			info->state = NFSM_STATE_PROCESSREPLY;
1051 			break;
1052 		case NFSM_STATE_PROCESSREPLY:
1053 			/*
1054 			 * Process the reply or timeout.  Errors which occur
1055 			 * in this state may cause the state machine to
1056 			 * go back to an earlier state, and are fatal
1057 			 * otherwise.
1058 			 */
1059 			info->error = nfs_request_processreply(info,
1060 							       info->error);
1061 			switch(info->error) {
1062 			case ENEEDAUTH:
1063 				info->state = NFSM_STATE_AUTH;
1064 				break;
1065 			case EAGAIN:
1066 				info->state = NFSM_STATE_TRY;
1067 				break;
1068 			default:
1069 				/*
1070 				 * Operation complete, with or without an
1071 				 * error.  We are done.
1072 				 */
1073 				info->req = NULL;
1074 				info->state = NFSM_STATE_DONE;
1075 				return (info->error);
1076 			}
1077 			break;
1078 		case NFSM_STATE_DONE:
1079 			/*
1080 			 * Shouldn't be reached
1081 			 */
1082 			return (info->error);
1083 			/* NOT REACHED */
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * If we are done return the error code (if any).
1089 	 * Otherwise return EINPROGRESS.
1090 	 */
1091 	if (info->state == NFSM_STATE_DONE)
1092 		return (info->error);
1093 	return (EINPROGRESS);
1094 }
1095 
1096 /*
1097  * nfs_request - goes something like this
1098  *	- fill in request struct
1099  *	- links it into list
1100  *	- calls nfs_send() for first transmit
1101  *	- calls nfs_receive() to get reply
1102  *	- break down rpc header and return with nfs reply pointed to
1103  *	  by mrep or error
1104  * nb: always frees up mreq mbuf list
1105  */
1106 static int
1107 nfs_request_setup(nfsm_info_t info)
1108 {
1109 	struct nfsreq *req;
1110 	struct nfsmount *nmp;
1111 	struct mbuf *m;
1112 	int i;
1113 
1114 	/*
1115 	 * Reject requests while attempting a forced unmount.
1116 	 */
1117 	if (info->vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1118 		m_freem(info->mreq);
1119 		info->mreq = NULL;
1120 		return (ESTALE);
1121 	}
1122 	nmp = VFSTONFS(info->vp->v_mount);
1123 	req = kmalloc(sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
1124 	req->r_nmp = nmp;
1125 	req->r_vp = info->vp;
1126 	req->r_td = info->td;
1127 	req->r_procnum = info->procnum;
1128 	req->r_mreq = NULL;
1129 	req->r_cred = info->cred;
1130 
1131 	i = 0;
1132 	m = info->mreq;
1133 	while (m) {
1134 		i += m->m_len;
1135 		m = m->m_next;
1136 	}
1137 	req->r_mrest = info->mreq;
1138 	req->r_mrest_len = i;
1139 
1140 	/*
1141 	 * The presence of a non-NULL r_info in req indicates
1142 	 * async completion via our helper threads.  See the receiver
1143 	 * code.
1144 	 */
1145 	if (info->bio) {
1146 		req->r_info = info;
1147 		req->r_flags = R_ASYNC;
1148 	} else {
1149 		req->r_info = NULL;
1150 		req->r_flags = 0;
1151 	}
1152 	info->req = req;
1153 	return(0);
1154 }
1155 
1156 static int
1157 nfs_request_auth(struct nfsreq *rep)
1158 {
1159 	struct nfsmount *nmp = rep->r_nmp;
1160 	struct mbuf *m;
1161 	char nickv[RPCX_NICKVERF];
1162 	int error = 0, auth_len, auth_type;
1163 	int verf_len;
1164 	u_int32_t xid;
1165 	char *auth_str, *verf_str;
1166 	struct ucred *cred;
1167 
1168 	cred = rep->r_cred;
1169 	rep->r_failed_auth = 0;
1170 
1171 	/*
1172 	 * Get the RPC header with authorization.
1173 	 */
1174 	verf_str = auth_str = NULL;
1175 	if (nmp->nm_flag & NFSMNT_KERB) {
1176 		verf_str = nickv;
1177 		verf_len = sizeof (nickv);
1178 		auth_type = RPCAUTH_KERB4;
1179 		bzero((caddr_t)rep->r_key, sizeof(rep->r_key));
1180 		if (rep->r_failed_auth ||
1181 		    nfs_getnickauth(nmp, cred, &auth_str, &auth_len,
1182 				    verf_str, verf_len)) {
1183 			error = nfs_getauth(nmp, rep, cred, &auth_str,
1184 				&auth_len, verf_str, &verf_len, rep->r_key);
1185 			if (error) {
1186 				m_freem(rep->r_mrest);
1187 				rep->r_mrest = NULL;
1188 				kfree((caddr_t)rep, M_NFSREQ);
1189 				return (error);
1190 			}
1191 		}
1192 	} else {
1193 		auth_type = RPCAUTH_UNIX;
1194 		if (cred->cr_ngroups < 1)
1195 			panic("nfsreq nogrps");
1196 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
1197 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
1198 			5 * NFSX_UNSIGNED;
1199 	}
1200 	m = nfsm_rpchead(cred, nmp->nm_flag, rep->r_procnum, auth_type,
1201 			auth_len, auth_str, verf_len, verf_str,
1202 			rep->r_mrest, rep->r_mrest_len, &rep->r_mheadend, &xid);
1203 	rep->r_mrest = NULL;
1204 	if (auth_str)
1205 		kfree(auth_str, M_TEMP);
1206 
1207 	/*
1208 	 * For stream protocols, insert a Sun RPC Record Mark.
1209 	 */
1210 	if (nmp->nm_sotype == SOCK_STREAM) {
1211 		M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT);
1212 		if (m == NULL) {
1213 			kfree(rep, M_NFSREQ);
1214 			return (ENOBUFS);
1215 		}
1216 		*mtod(m, u_int32_t *) = htonl(0x80000000 |
1217 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
1218 	}
1219 	rep->r_mreq = m;
1220 	rep->r_xid = xid;
1221 	return (0);
1222 }
1223 
1224 static int
1225 nfs_request_try(struct nfsreq *rep)
1226 {
1227 	struct nfsmount *nmp = rep->r_nmp;
1228 	struct mbuf *m2;
1229 	int error;
1230 
1231 	/*
1232 	 * Request is not on any queue, only the owner has access to it
1233 	 * so it should not be locked by anyone atm.
1234 	 *
1235 	 * Interlock to prevent races.  While locked the only remote
1236 	 * action possible is for r_mrep to be set (once we enqueue it).
1237 	 */
1238 	if (rep->r_flags == 0xdeadc0de) {
1239 		print_backtrace();
1240 		panic("flags nbad\n");
1241 	}
1242 	KKASSERT((rep->r_flags & (R_LOCKED | R_ONREQQ)) == 0);
1243 	if (nmp->nm_flag & NFSMNT_SOFT)
1244 		rep->r_retry = nmp->nm_retry;
1245 	else
1246 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
1247 	rep->r_rtt = rep->r_rexmit = 0;
1248 	if (proct[rep->r_procnum] > 0)
1249 		rep->r_flags |= R_TIMING | R_LOCKED;
1250 	else
1251 		rep->r_flags |= R_LOCKED;
1252 	rep->r_mrep = NULL;
1253 
1254 	/*
1255 	 * Do the client side RPC.
1256 	 */
1257 	nfsstats.rpcrequests++;
1258 
1259 	if (nmp->nm_flag & NFSMNT_FORCE) {
1260 		rep->r_flags |= R_SOFTTERM;
1261 		rep->r_flags &= ~R_LOCKED;
1262 		return (0);
1263 	}
1264 
1265 	/*
1266 	 * Chain request into list of outstanding requests. Be sure
1267 	 * to put it LAST so timer finds oldest requests first.  Note
1268 	 * that our control of R_LOCKED prevents the request from
1269 	 * getting ripped out from under us or transmitted by the
1270 	 * timer code.
1271 	 *
1272 	 * For requests with info structures we must atomically set the
1273 	 * info's state because the structure could become invalid upon
1274 	 * return due to races (i.e., if async)
1275 	 */
1276 	crit_enter();
1277 	mtx_link_init(&rep->r_link);
1278 	TAILQ_INSERT_TAIL(&nmp->nm_reqq, rep, r_chain);
1279 	rep->r_flags |= R_ONREQQ;
1280 	++nmp->nm_reqqlen;
1281 	if (rep->r_flags & R_ASYNC)
1282 		rep->r_info->state = NFSM_STATE_WAITREPLY;
1283 	crit_exit();
1284 
1285 	error = 0;
1286 
1287 	/*
1288 	 * Send if we can.  Congestion control is not handled here any more
1289 	 * becausing trying to defer the initial send based on the nfs_timer
1290 	 * requires having a very fast nfs_timer, which is silly.
1291 	 */
1292 	if (nmp->nm_so) {
1293 		if (nmp->nm_soflags & PR_CONNREQUIRED)
1294 			error = nfs_sndlock(nmp, rep);
1295 		if (error == 0) {
1296 			m2 = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
1297 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1298 			if (nmp->nm_soflags & PR_CONNREQUIRED)
1299 				nfs_sndunlock(nmp);
1300 			rep->r_flags &= ~R_NEEDSXMIT;
1301 			if ((rep->r_flags & R_SENT) == 0) {
1302 				rep->r_flags |= R_SENT;
1303 			}
1304 		} else {
1305 			rep->r_flags |= R_NEEDSXMIT;
1306 		}
1307 	} else {
1308 		rep->r_flags |= R_NEEDSXMIT;
1309 		rep->r_rtt = -1;
1310 	}
1311 	if (error == EPIPE)
1312 		error = 0;
1313 
1314 	/*
1315 	 * Release the lock.  The only remote action that may have occurred
1316 	 * would have been the setting of rep->r_mrep.  If this occured
1317 	 * and the request was async we have to move it to the reader
1318 	 * thread's queue for action.
1319 	 *
1320 	 * For async requests also make sure the reader is woken up so
1321 	 * it gets on the socket to read responses.
1322 	 */
1323 	crit_enter();
1324 	if (rep->r_flags & R_ASYNC) {
1325 		if (rep->r_mrep)
1326 			nfs_hardterm(rep, 1);
1327 		rep->r_flags &= ~R_LOCKED;
1328 		nfssvc_iod_reader_wakeup(nmp);
1329 	} else {
1330 		rep->r_flags &= ~R_LOCKED;
1331 	}
1332 	if (rep->r_flags & R_WANTED) {
1333 		rep->r_flags &= ~R_WANTED;
1334 		wakeup(rep);
1335 	}
1336 	crit_exit();
1337 	return (error);
1338 }
1339 
1340 /*
1341  * This code is only called for synchronous requests.  Completed synchronous
1342  * requests are left on reqq and we remove them before moving on to the
1343  * processing state.
1344  */
1345 static int
1346 nfs_request_waitreply(struct nfsreq *rep)
1347 {
1348 	struct nfsmount *nmp = rep->r_nmp;
1349 	int error;
1350 
1351 	KKASSERT((rep->r_flags & R_ASYNC) == 0);
1352 
1353 	/*
1354 	 * Wait until the request is finished.
1355 	 */
1356 	error = nfs_reply(nmp, rep);
1357 
1358 	/*
1359 	 * RPC done, unlink the request, but don't rip it out from under
1360 	 * the callout timer.
1361 	 *
1362 	 * Once unlinked no other receiver or the timer will have
1363 	 * visibility, so we do not have to set R_LOCKED.
1364 	 */
1365 	crit_enter();
1366 	while (rep->r_flags & R_LOCKED) {
1367 		rep->r_flags |= R_WANTED;
1368 		tsleep(rep, 0, "nfstrac", 0);
1369 	}
1370 	KKASSERT(rep->r_flags & R_ONREQQ);
1371 	TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
1372 	rep->r_flags &= ~R_ONREQQ;
1373 	--nmp->nm_reqqlen;
1374 	if (TAILQ_FIRST(&nmp->nm_bioq) &&
1375 	    nmp->nm_reqqlen == NFS_MAXASYNCBIO * 2 / 3) {
1376 		nfssvc_iod_writer_wakeup(nmp);
1377 	}
1378 	crit_exit();
1379 
1380 	/*
1381 	 * Decrement the outstanding request count.
1382 	 */
1383 	if (rep->r_flags & R_SENT) {
1384 		rep->r_flags &= ~R_SENT;
1385 	}
1386 	return (error);
1387 }
1388 
1389 /*
1390  * Process reply with error returned from nfs_requet_waitreply().
1391  *
1392  * Returns EAGAIN if it wants us to loop up to nfs_request_try() again.
1393  * Returns ENEEDAUTH if it wants us to loop up to nfs_request_auth() again.
1394  */
1395 static int
1396 nfs_request_processreply(nfsm_info_t info, int error)
1397 {
1398 	struct nfsreq *req = info->req;
1399 	struct nfsmount *nmp = req->r_nmp;
1400 	u_int32_t *tl;
1401 	int verf_type;
1402 	int i;
1403 
1404 	/*
1405 	 * If there was a successful reply and a tprintf msg.
1406 	 * tprintf a response.
1407 	 */
1408 	if (error == 0 && (req->r_flags & R_TPRINTFMSG)) {
1409 		nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1410 		    "is alive again");
1411 	}
1412 	info->mrep = req->r_mrep;
1413 	info->md = req->r_md;
1414 	info->dpos = req->r_dpos;
1415 	if (error) {
1416 		m_freem(req->r_mreq);
1417 		req->r_mreq = NULL;
1418 		kfree(req, M_NFSREQ);
1419 		info->req = NULL;
1420 		return (error);
1421 	}
1422 
1423 	/*
1424 	 * break down the rpc header and check if ok
1425 	 */
1426 	NULLOUT(tl = nfsm_dissect(info, 3 * NFSX_UNSIGNED));
1427 	if (*tl++ == rpc_msgdenied) {
1428 		if (*tl == rpc_mismatch) {
1429 			error = EOPNOTSUPP;
1430 		} else if ((nmp->nm_flag & NFSMNT_KERB) &&
1431 			   *tl++ == rpc_autherr) {
1432 			if (req->r_failed_auth == 0) {
1433 				req->r_failed_auth++;
1434 				req->r_mheadend->m_next = NULL;
1435 				m_freem(info->mrep);
1436 				info->mrep = NULL;
1437 				m_freem(req->r_mreq);
1438 				return (ENEEDAUTH);
1439 			} else {
1440 				error = EAUTH;
1441 			}
1442 		} else {
1443 			error = EACCES;
1444 		}
1445 		m_freem(info->mrep);
1446 		info->mrep = NULL;
1447 		m_freem(req->r_mreq);
1448 		req->r_mreq = NULL;
1449 		kfree(req, M_NFSREQ);
1450 		info->req = NULL;
1451 		return (error);
1452 	}
1453 
1454 	/*
1455 	 * Grab any Kerberos verifier, otherwise just throw it away.
1456 	 */
1457 	verf_type = fxdr_unsigned(int, *tl++);
1458 	i = fxdr_unsigned(int32_t, *tl);
1459 	if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1460 		error = nfs_savenickauth(nmp, req->r_cred, i, req->r_key,
1461 					 &info->md, &info->dpos, info->mrep);
1462 		if (error)
1463 			goto nfsmout;
1464 	} else if (i > 0) {
1465 		ERROROUT(nfsm_adv(info, nfsm_rndup(i)));
1466 	}
1467 	NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1468 	/* 0 == ok */
1469 	if (*tl == 0) {
1470 		NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1471 		if (*tl != 0) {
1472 			error = fxdr_unsigned(int, *tl);
1473 
1474 			/*
1475 			 * Does anyone even implement this?  Just impose
1476 			 * a 1-second delay.
1477 			 */
1478 			if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1479 				error == NFSERR_TRYLATER) {
1480 				m_freem(info->mrep);
1481 				info->mrep = NULL;
1482 				error = 0;
1483 
1484 				tsleep((caddr_t)&lbolt, 0, "nqnfstry", 0);
1485 				return (EAGAIN);	/* goto tryagain */
1486 			}
1487 
1488 			/*
1489 			 * If the File Handle was stale, invalidate the
1490 			 * lookup cache, just in case.
1491 			 *
1492 			 * To avoid namecache<->vnode deadlocks we must
1493 			 * release the vnode lock if we hold it.
1494 			 */
1495 			if (error == ESTALE) {
1496 				struct vnode *vp = req->r_vp;
1497 				int ltype;
1498 
1499 				ltype = lockstatus(&vp->v_lock, curthread);
1500 				if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1501 					lockmgr(&vp->v_lock, LK_RELEASE);
1502 				cache_inval_vp(vp, CINV_CHILDREN);
1503 				if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1504 					lockmgr(&vp->v_lock, ltype);
1505 			}
1506 			if (nmp->nm_flag & NFSMNT_NFSV3) {
1507 				KKASSERT(*req->r_mrp == info->mrep);
1508 				KKASSERT(*req->r_mdp == info->md);
1509 				KKASSERT(*req->r_dposp == info->dpos);
1510 				error |= NFSERR_RETERR;
1511 			} else {
1512 				m_freem(info->mrep);
1513 				info->mrep = NULL;
1514 			}
1515 			m_freem(req->r_mreq);
1516 			req->r_mreq = NULL;
1517 			kfree(req, M_NFSREQ);
1518 			info->req = NULL;
1519 			return (error);
1520 		}
1521 
1522 		KKASSERT(*req->r_mrp == info->mrep);
1523 		KKASSERT(*req->r_mdp == info->md);
1524 		KKASSERT(*req->r_dposp == info->dpos);
1525 		m_freem(req->r_mreq);
1526 		req->r_mreq = NULL;
1527 		FREE(req, M_NFSREQ);
1528 		return (0);
1529 	}
1530 	m_freem(info->mrep);
1531 	info->mrep = NULL;
1532 	error = EPROTONOSUPPORT;
1533 nfsmout:
1534 	m_freem(req->r_mreq);
1535 	req->r_mreq = NULL;
1536 	kfree(req, M_NFSREQ);
1537 	info->req = NULL;
1538 	return (error);
1539 }
1540 
1541 #ifndef NFS_NOSERVER
1542 /*
1543  * Generate the rpc reply header
1544  * siz arg. is used to decide if adding a cluster is worthwhile
1545  */
1546 int
1547 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
1548 	    int err, struct mbuf **mrq, struct mbuf **mbp, caddr_t *bposp)
1549 {
1550 	u_int32_t *tl;
1551 	struct nfsm_info info;
1552 
1553 	siz += RPC_REPLYSIZ;
1554 	info.mb = m_getl(max_hdr + siz, MB_WAIT, MT_DATA, M_PKTHDR, NULL);
1555 	info.mreq = info.mb;
1556 	info.mreq->m_pkthdr.len = 0;
1557 	/*
1558 	 * If this is not a cluster, try and leave leading space
1559 	 * for the lower level headers.
1560 	 */
1561 	if ((max_hdr + siz) < MINCLSIZE)
1562 		info.mreq->m_data += max_hdr;
1563 	tl = mtod(info.mreq, u_int32_t *);
1564 	info.mreq->m_len = 6 * NFSX_UNSIGNED;
1565 	info.bpos = ((caddr_t)tl) + info.mreq->m_len;
1566 	*tl++ = txdr_unsigned(nd->nd_retxid);
1567 	*tl++ = rpc_reply;
1568 	if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1569 		*tl++ = rpc_msgdenied;
1570 		if (err & NFSERR_AUTHERR) {
1571 			*tl++ = rpc_autherr;
1572 			*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1573 			info.mreq->m_len -= NFSX_UNSIGNED;
1574 			info.bpos -= NFSX_UNSIGNED;
1575 		} else {
1576 			*tl++ = rpc_mismatch;
1577 			*tl++ = txdr_unsigned(RPC_VER2);
1578 			*tl = txdr_unsigned(RPC_VER2);
1579 		}
1580 	} else {
1581 		*tl++ = rpc_msgaccepted;
1582 
1583 		/*
1584 		 * For Kerberos authentication, we must send the nickname
1585 		 * verifier back, otherwise just RPCAUTH_NULL.
1586 		 */
1587 		if (nd->nd_flag & ND_KERBFULL) {
1588 		    struct nfsuid *nuidp;
1589 		    struct timeval ktvin, ktvout;
1590 
1591 		    for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1592 			nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1593 			if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1594 			    (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1595 			     &nuidp->nu_haddr, nd->nd_nam2)))
1596 			    break;
1597 		    }
1598 		    if (nuidp) {
1599 			ktvin.tv_sec =
1600 			    txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1601 			ktvin.tv_usec =
1602 			    txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1603 
1604 			/*
1605 			 * Encrypt the timestamp in ecb mode using the
1606 			 * session key.
1607 			 */
1608 #ifdef NFSKERB
1609 			XXX
1610 #else
1611 			ktvout.tv_sec = 0;
1612 			ktvout.tv_usec = 0;
1613 #endif
1614 
1615 			*tl++ = rpc_auth_kerb;
1616 			*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1617 			*tl = ktvout.tv_sec;
1618 			tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
1619 			*tl++ = ktvout.tv_usec;
1620 			*tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1621 		    } else {
1622 			*tl++ = 0;
1623 			*tl++ = 0;
1624 		    }
1625 		} else {
1626 			*tl++ = 0;
1627 			*tl++ = 0;
1628 		}
1629 		switch (err) {
1630 		case EPROGUNAVAIL:
1631 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1632 			break;
1633 		case EPROGMISMATCH:
1634 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1635 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1636 			*tl++ = txdr_unsigned(2);
1637 			*tl = txdr_unsigned(3);
1638 			break;
1639 		case EPROCUNAVAIL:
1640 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1641 			break;
1642 		case EBADRPC:
1643 			*tl = txdr_unsigned(RPC_GARBAGE);
1644 			break;
1645 		default:
1646 			*tl = 0;
1647 			if (err != NFSERR_RETVOID) {
1648 				tl = nfsm_build(&info, NFSX_UNSIGNED);
1649 				if (err)
1650 				    *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1651 				else
1652 				    *tl = 0;
1653 			}
1654 			break;
1655 		};
1656 	}
1657 
1658 	if (mrq != NULL)
1659 	    *mrq = info.mreq;
1660 	*mbp = info.mb;
1661 	*bposp = info.bpos;
1662 	if (err != 0 && err != NFSERR_RETVOID)
1663 		nfsstats.srvrpc_errs++;
1664 	return (0);
1665 }
1666 
1667 
1668 #endif /* NFS_NOSERVER */
1669 
1670 /*
1671  * Nfs timer routine.
1672  *
1673  * Scan the nfsreq list and retranmit any requests that have timed out
1674  * To avoid retransmission attempts on STREAM sockets (in the future) make
1675  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1676  *
1677  * Requests with attached responses, terminated requests, and
1678  * locked requests are ignored.  Locked requests will be picked up
1679  * in a later timer call.
1680  */
1681 void
1682 nfs_timer(void *arg /* never used */)
1683 {
1684 	struct nfsmount *nmp;
1685 	struct nfsreq *req;
1686 #ifndef NFS_NOSERVER
1687 	struct nfssvc_sock *slp;
1688 	u_quad_t cur_usec;
1689 #endif /* NFS_NOSERVER */
1690 
1691 	crit_enter();
1692 	TAILQ_FOREACH(nmp, &nfs_mountq, nm_entry) {
1693 		TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1694 			KKASSERT(nmp == req->r_nmp);
1695 			if (req->r_mrep)
1696 				continue;
1697 			if (req->r_flags & (R_SOFTTERM | R_LOCKED))
1698 				continue;
1699 			req->r_flags |= R_LOCKED;
1700 			if (nfs_sigintr(nmp, req, req->r_td)) {
1701 				nfs_softterm(req, 1);
1702 			} else {
1703 				nfs_timer_req(req);
1704 			}
1705 			req->r_flags &= ~R_LOCKED;
1706 			if (req->r_flags & R_WANTED) {
1707 				req->r_flags &= ~R_WANTED;
1708 				wakeup(req);
1709 			}
1710 		}
1711 	}
1712 #ifndef NFS_NOSERVER
1713 
1714 	/*
1715 	 * Scan the write gathering queues for writes that need to be
1716 	 * completed now.
1717 	 */
1718 	cur_usec = nfs_curusec();
1719 	TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1720 	    if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1721 		nfsrv_wakenfsd(slp, 1);
1722 	}
1723 #endif /* NFS_NOSERVER */
1724 	crit_exit();
1725 	callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer, NULL);
1726 }
1727 
1728 static
1729 void
1730 nfs_timer_req(struct nfsreq *req)
1731 {
1732 	struct thread *td = &thread0; /* XXX for creds, will break if sleep */
1733 	struct nfsmount *nmp = req->r_nmp;
1734 	struct mbuf *m;
1735 	struct socket *so;
1736 	int timeo;
1737 	int error;
1738 
1739 	/*
1740 	 * rtt ticks and timeout calculation.  Return if the timeout
1741 	 * has not been reached yet, unless the packet is flagged
1742 	 * for an immediate send.
1743 	 *
1744 	 * The mean rtt doesn't help when we get random I/Os, we have
1745 	 * to multiply by fairly large numbers.
1746 	 */
1747 	if (req->r_rtt >= 0) {
1748 		/*
1749 		 * Calculate the timeout to test against.
1750 		 */
1751 		req->r_rtt++;
1752 		if (nmp->nm_flag & NFSMNT_DUMBTIMR) {
1753 			timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1754 		} else if (req->r_flags & R_TIMING) {
1755 			timeo = NFS_SRTT(req) + NFS_SDRTT(req);
1756 		} else {
1757 			timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1758 		}
1759 		timeo *= multt[req->r_procnum];
1760 		/* timeo is still scaled by SCALE_BITS */
1761 
1762 #define NFSFS	(NFS_RTT_SCALE * NFS_HZ)
1763 		if (req->r_flags & R_TIMING) {
1764 			static long last_time;
1765 			if (nfs_showrtt && last_time != time_second) {
1766 				kprintf("rpccmd %d NFS SRTT %d SDRTT %d "
1767 					"timeo %d.%03d\n",
1768 					proct[req->r_procnum],
1769 					NFS_SRTT(req), NFS_SDRTT(req),
1770 					timeo / NFSFS,
1771 					timeo % NFSFS * 1000 /  NFSFS);
1772 				last_time = time_second;
1773 			}
1774 		}
1775 #undef NFSFS
1776 
1777 		/*
1778 		 * deal with nfs_timer jitter.
1779 		 */
1780 		timeo = (timeo >> NFS_RTT_SCALE_BITS) + 1;
1781 		if (timeo < 2)
1782 			timeo = 2;
1783 
1784 		if (nmp->nm_timeouts > 0)
1785 			timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1786 		if (timeo > NFS_MAXTIMEO)
1787 			timeo = NFS_MAXTIMEO;
1788 		if (req->r_rtt <= timeo) {
1789 			if ((req->r_flags & R_NEEDSXMIT) == 0)
1790 				return;
1791 		} else if (nmp->nm_timeouts < 8) {
1792 			nmp->nm_timeouts++;
1793 		}
1794 	}
1795 
1796 	/*
1797 	 * Check for server not responding
1798 	 */
1799 	if ((req->r_flags & R_TPRINTFMSG) == 0 &&
1800 	     req->r_rexmit > nmp->nm_deadthresh) {
1801 		nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1802 			"not responding");
1803 		req->r_flags |= R_TPRINTFMSG;
1804 	}
1805 	if (req->r_rexmit >= req->r_retry) {	/* too many */
1806 		nfsstats.rpctimeouts++;
1807 		nfs_softterm(req, 1);
1808 		return;
1809 	}
1810 
1811 	/*
1812 	 * Generally disable retransmission on reliable sockets,
1813 	 * unless the request is flagged for immediate send.
1814 	 */
1815 	if (nmp->nm_sotype != SOCK_DGRAM) {
1816 		if (++req->r_rexmit > NFS_MAXREXMIT)
1817 			req->r_rexmit = NFS_MAXREXMIT;
1818 		if ((req->r_flags & R_NEEDSXMIT) == 0)
1819 			return;
1820 	}
1821 
1822 	/*
1823 	 * Stop here if we do not have a socket!
1824 	 */
1825 	if ((so = nmp->nm_so) == NULL)
1826 		return;
1827 
1828 	/*
1829 	 * If there is enough space and the window allows.. resend it.
1830 	 *
1831 	 * r_rtt is left intact in case we get an answer after the
1832 	 * retry that was a reply to the original packet.
1833 	 */
1834 	if (ssb_space(&so->so_snd) >= req->r_mreq->m_pkthdr.len &&
1835 	    (req->r_flags & (R_SENT | R_NEEDSXMIT)) &&
1836 	   (m = m_copym(req->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){
1837 		if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1838 		    error = so_pru_send(so, 0, m, NULL, NULL, td);
1839 		else
1840 		    error = so_pru_send(so, 0, m, nmp->nm_nam,
1841 			NULL, td);
1842 		if (error) {
1843 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1844 				so->so_error = 0;
1845 			req->r_flags |= R_NEEDSXMIT;
1846 		} else if (req->r_mrep == NULL) {
1847 			/*
1848 			 * Iff first send, start timing
1849 			 * else turn timing off, backoff timer
1850 			 * and divide congestion window by 2.
1851 			 *
1852 			 * It is possible for the so_pru_send() to
1853 			 * block and for us to race a reply so we
1854 			 * only do this if the reply field has not
1855 			 * been filled in.  R_LOCKED will prevent
1856 			 * the request from being ripped out from under
1857 			 * us entirely.
1858 			 *
1859 			 * Record the last resent procnum to aid us
1860 			 * in duplicate detection on receive.
1861 			 */
1862 			if ((req->r_flags & R_NEEDSXMIT) == 0) {
1863 				if (nfs_showrexmit)
1864 					kprintf("X");
1865 				if (++req->r_rexmit > NFS_MAXREXMIT)
1866 					req->r_rexmit = NFS_MAXREXMIT;
1867 				nmp->nm_maxasync_scaled >>= 1;
1868 				if (nmp->nm_maxasync_scaled < NFS_MINASYNC_SCALED)
1869 					nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
1870 				nfsstats.rpcretries++;
1871 				nmp->nm_lastreprocnum = req->r_procnum;
1872 			} else {
1873 				req->r_flags |= R_SENT;
1874 				req->r_flags &= ~R_NEEDSXMIT;
1875 			}
1876 		}
1877 	}
1878 }
1879 
1880 /*
1881  * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1882  * wait for all requests to complete. This is used by forced unmounts
1883  * to terminate any outstanding RPCs.
1884  *
1885  * Locked requests cannot be canceled but will be marked for
1886  * soft-termination.
1887  */
1888 int
1889 nfs_nmcancelreqs(struct nfsmount *nmp)
1890 {
1891 	struct nfsreq *req;
1892 	int i;
1893 
1894 	crit_enter();
1895 	TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1896 		if (req->r_mrep != NULL || (req->r_flags & R_SOFTTERM))
1897 			continue;
1898 		nfs_softterm(req, 0);
1899 	}
1900 	/* XXX  the other two queues as well */
1901 	crit_exit();
1902 
1903 	for (i = 0; i < 30; i++) {
1904 		crit_enter();
1905 		TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1906 			if (nmp == req->r_nmp)
1907 				break;
1908 		}
1909 		crit_exit();
1910 		if (req == NULL)
1911 			return (0);
1912 		tsleep(&lbolt, 0, "nfscancel", 0);
1913 	}
1914 	return (EBUSY);
1915 }
1916 
1917 /*
1918  * Soft-terminate a request, effectively marking it as failed.
1919  *
1920  * Must be called from within a critical section.
1921  */
1922 static void
1923 nfs_softterm(struct nfsreq *rep, int islocked)
1924 {
1925 	rep->r_flags |= R_SOFTTERM;
1926 	nfs_hardterm(rep, islocked);
1927 }
1928 
1929 /*
1930  * Hard-terminate a request, typically after getting a response.
1931  *
1932  * The state machine can still decide to re-issue it later if necessary.
1933  *
1934  * Must be called from within a critical section.
1935  */
1936 static void
1937 nfs_hardterm(struct nfsreq *rep, int islocked)
1938 {
1939 	struct nfsmount *nmp = rep->r_nmp;
1940 
1941 	/*
1942 	 * The nm_send count is decremented now to avoid deadlocks
1943 	 * when the process in soreceive() hasn't yet managed to send
1944 	 * its own request.
1945 	 */
1946 	if (rep->r_flags & R_SENT) {
1947 		rep->r_flags &= ~R_SENT;
1948 	}
1949 
1950 	/*
1951 	 * If we locked the request or nobody else has locked the request,
1952 	 * and the request is async, we can move it to the reader thread's
1953 	 * queue now and fix up the state.
1954 	 *
1955 	 * If we locked the request or nobody else has locked the request,
1956 	 * we can wake up anyone blocked waiting for a response on the
1957 	 * request.
1958 	 */
1959 	if (islocked || (rep->r_flags & R_LOCKED) == 0) {
1960 		if ((rep->r_flags & (R_ONREQQ | R_ASYNC)) ==
1961 		    (R_ONREQQ | R_ASYNC)) {
1962 			rep->r_flags &= ~R_ONREQQ;
1963 			TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
1964 			--nmp->nm_reqqlen;
1965 			TAILQ_INSERT_TAIL(&nmp->nm_reqrxq, rep, r_chain);
1966 			KKASSERT(rep->r_info->state == NFSM_STATE_TRY ||
1967 				 rep->r_info->state == NFSM_STATE_WAITREPLY);
1968 			rep->r_info->state = NFSM_STATE_PROCESSREPLY;
1969 			nfssvc_iod_reader_wakeup(nmp);
1970 			if (TAILQ_FIRST(&nmp->nm_bioq) &&
1971 			    nmp->nm_reqqlen == NFS_MAXASYNCBIO * 2 / 3) {
1972 				nfssvc_iod_writer_wakeup(nmp);
1973 			}
1974 		}
1975 		mtx_abort_ex_link(&nmp->nm_rxlock, &rep->r_link);
1976 	}
1977 }
1978 
1979 /*
1980  * Test for a termination condition pending on the process.
1981  * This is used for NFSMNT_INT mounts.
1982  */
1983 int
1984 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
1985 {
1986 	sigset_t tmpset;
1987 	struct proc *p;
1988 	struct lwp *lp;
1989 
1990 	if (rep && (rep->r_flags & R_SOFTTERM))
1991 		return (EINTR);
1992 	/* Terminate all requests while attempting a forced unmount. */
1993 	if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
1994 		return (EINTR);
1995 	if (!(nmp->nm_flag & NFSMNT_INT))
1996 		return (0);
1997 	/* td might be NULL YYY */
1998 	if (td == NULL || (p = td->td_proc) == NULL)
1999 		return (0);
2000 
2001 	lp = td->td_lwp;
2002 	tmpset = lwp_sigpend(lp);
2003 	SIGSETNAND(tmpset, lp->lwp_sigmask);
2004 	SIGSETNAND(tmpset, p->p_sigignore);
2005 	if (SIGNOTEMPTY(tmpset) && NFSINT_SIGMASK(tmpset))
2006 		return (EINTR);
2007 
2008 	return (0);
2009 }
2010 
2011 /*
2012  * Lock a socket against others.
2013  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
2014  * and also to avoid race conditions between the processes with nfs requests
2015  * in progress when a reconnect is necessary.
2016  */
2017 int
2018 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
2019 {
2020 	mtx_t mtx = &nmp->nm_txlock;
2021 	struct thread *td;
2022 	int slptimeo;
2023 	int slpflag;
2024 	int error;
2025 
2026 	slpflag = 0;
2027 	slptimeo = 0;
2028 	td = rep ? rep->r_td : NULL;
2029 	if (nmp->nm_flag & NFSMNT_INT)
2030 		slpflag = PCATCH;
2031 
2032 	while ((error = mtx_lock_ex_try(mtx)) != 0) {
2033 		if (nfs_sigintr(nmp, rep, td)) {
2034 			error = EINTR;
2035 			break;
2036 		}
2037 		error = mtx_lock_ex(mtx, "nfsndlck", slpflag, slptimeo);
2038 		if (error == 0)
2039 			break;
2040 		if (slpflag == PCATCH) {
2041 			slpflag = 0;
2042 			slptimeo = 2 * hz;
2043 		}
2044 	}
2045 	/* Always fail if our request has been cancelled. */
2046 	if (rep && (rep->r_flags & R_SOFTTERM)) {
2047 		if (error == 0)
2048 			mtx_unlock(mtx);
2049 		error = EINTR;
2050 	}
2051 	return (error);
2052 }
2053 
2054 /*
2055  * Unlock the stream socket for others.
2056  */
2057 void
2058 nfs_sndunlock(struct nfsmount *nmp)
2059 {
2060 	mtx_unlock(&nmp->nm_txlock);
2061 }
2062 
2063 /*
2064  * Lock the receiver side of the socket.
2065  *
2066  * rep may be NULL.
2067  */
2068 static int
2069 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
2070 {
2071 	mtx_t mtx = &nmp->nm_rxlock;
2072 	int slpflag;
2073 	int slptimeo;
2074 	int error;
2075 
2076 	/*
2077 	 * Unconditionally check for completion in case another nfsiod
2078 	 * get the packet while the caller was blocked, before the caller
2079 	 * called us.  Packet reception is handled by mainline code which
2080 	 * is protected by the BGL at the moment.
2081 	 *
2082 	 * We do not strictly need the second check just before the
2083 	 * tsleep(), but it's good defensive programming.
2084 	 */
2085 	if (rep && rep->r_mrep != NULL)
2086 		return (EALREADY);
2087 
2088 	if (nmp->nm_flag & NFSMNT_INT)
2089 		slpflag = PCATCH;
2090 	else
2091 		slpflag = 0;
2092 	slptimeo = 0;
2093 
2094 	while ((error = mtx_lock_ex_try(mtx)) != 0) {
2095 		if (nfs_sigintr(nmp, rep, (rep ? rep->r_td : NULL))) {
2096 			error = EINTR;
2097 			break;
2098 		}
2099 		if (rep && rep->r_mrep != NULL) {
2100 			error = EALREADY;
2101 			break;
2102 		}
2103 
2104 		/*
2105 		 * NOTE: can return ENOLCK, but in that case rep->r_mrep
2106 		 *       will already be set.
2107 		 */
2108 		if (rep) {
2109 			error = mtx_lock_ex_link(mtx, &rep->r_link,
2110 						 "nfsrcvlk",
2111 						 slpflag, slptimeo);
2112 		} else {
2113 			error = mtx_lock_ex(mtx, "nfsrcvlk", slpflag, slptimeo);
2114 		}
2115 		if (error == 0)
2116 			break;
2117 
2118 		/*
2119 		 * If our reply was recieved while we were sleeping,
2120 		 * then just return without taking the lock to avoid a
2121 		 * situation where a single iod could 'capture' the
2122 		 * recieve lock.
2123 		 */
2124 		if (rep && rep->r_mrep != NULL) {
2125 			error = EALREADY;
2126 			break;
2127 		}
2128 		if (slpflag == PCATCH) {
2129 			slpflag = 0;
2130 			slptimeo = 2 * hz;
2131 		}
2132 	}
2133 	if (error == 0) {
2134 		if (rep && rep->r_mrep != NULL) {
2135 			error = EALREADY;
2136 			mtx_unlock(mtx);
2137 		}
2138 	}
2139 	return (error);
2140 }
2141 
2142 /*
2143  * Unlock the stream socket for others.
2144  */
2145 static void
2146 nfs_rcvunlock(struct nfsmount *nmp)
2147 {
2148 	mtx_unlock(&nmp->nm_rxlock);
2149 }
2150 
2151 /*
2152  *	nfs_realign:
2153  *
2154  *	Check for badly aligned mbuf data and realign by copying the unaligned
2155  *	portion of the data into a new mbuf chain and freeing the portions
2156  *	of the old chain that were replaced.
2157  *
2158  *	We cannot simply realign the data within the existing mbuf chain
2159  *	because the underlying buffers may contain other rpc commands and
2160  *	we cannot afford to overwrite them.
2161  *
2162  *	We would prefer to avoid this situation entirely.  The situation does
2163  *	not occur with NFS/UDP and is supposed to only occassionally occur
2164  *	with TCP.  Use vfs.nfs.realign_count and realign_test to check this.
2165  */
2166 static void
2167 nfs_realign(struct mbuf **pm, int hsiz)
2168 {
2169 	struct mbuf *m;
2170 	struct mbuf *n = NULL;
2171 	int off = 0;
2172 
2173 	++nfs_realign_test;
2174 
2175 	while ((m = *pm) != NULL) {
2176 		if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) {
2177 			n = m_getl(m->m_len, MB_WAIT, MT_DATA, 0, NULL);
2178 			n->m_len = 0;
2179 			break;
2180 		}
2181 		pm = &m->m_next;
2182 	}
2183 
2184 	/*
2185 	 * If n is non-NULL, loop on m copying data, then replace the
2186 	 * portion of the chain that had to be realigned.
2187 	 */
2188 	if (n != NULL) {
2189 		++nfs_realign_count;
2190 		while (m) {
2191 			m_copyback(n, off, m->m_len, mtod(m, caddr_t));
2192 			off += m->m_len;
2193 			m = m->m_next;
2194 		}
2195 		m_freem(*pm);
2196 		*pm = n;
2197 	}
2198 }
2199 
2200 #ifndef NFS_NOSERVER
2201 
2202 /*
2203  * Parse an RPC request
2204  * - verify it
2205  * - fill in the cred struct.
2206  */
2207 int
2208 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
2209 {
2210 	int len, i;
2211 	u_int32_t *tl;
2212 	struct uio uio;
2213 	struct iovec iov;
2214 	caddr_t cp;
2215 	u_int32_t nfsvers, auth_type;
2216 	uid_t nickuid;
2217 	int error = 0, ticklen;
2218 	struct nfsuid *nuidp;
2219 	struct timeval tvin, tvout;
2220 	struct nfsm_info info;
2221 #if 0				/* until encrypted keys are implemented */
2222 	NFSKERBKEYSCHED_T keys;	/* stores key schedule */
2223 #endif
2224 
2225 	info.mrep = nd->nd_mrep;
2226 	info.md = nd->nd_md;
2227 	info.dpos = nd->nd_dpos;
2228 
2229 	if (has_header) {
2230 		NULLOUT(tl = nfsm_dissect(&info, 10 * NFSX_UNSIGNED));
2231 		nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
2232 		if (*tl++ != rpc_call) {
2233 			m_freem(info.mrep);
2234 			return (EBADRPC);
2235 		}
2236 	} else {
2237 		NULLOUT(tl = nfsm_dissect(&info, 8 * NFSX_UNSIGNED));
2238 	}
2239 	nd->nd_repstat = 0;
2240 	nd->nd_flag = 0;
2241 	if (*tl++ != rpc_vers) {
2242 		nd->nd_repstat = ERPCMISMATCH;
2243 		nd->nd_procnum = NFSPROC_NOOP;
2244 		return (0);
2245 	}
2246 	if (*tl != nfs_prog) {
2247 		nd->nd_repstat = EPROGUNAVAIL;
2248 		nd->nd_procnum = NFSPROC_NOOP;
2249 		return (0);
2250 	}
2251 	tl++;
2252 	nfsvers = fxdr_unsigned(u_int32_t, *tl++);
2253 	if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
2254 		nd->nd_repstat = EPROGMISMATCH;
2255 		nd->nd_procnum = NFSPROC_NOOP;
2256 		return (0);
2257 	}
2258 	if (nfsvers == NFS_VER3)
2259 		nd->nd_flag = ND_NFSV3;
2260 	nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
2261 	if (nd->nd_procnum == NFSPROC_NULL)
2262 		return (0);
2263 	if (nd->nd_procnum >= NFS_NPROCS ||
2264 		(nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
2265 		(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
2266 		nd->nd_repstat = EPROCUNAVAIL;
2267 		nd->nd_procnum = NFSPROC_NOOP;
2268 		return (0);
2269 	}
2270 	if ((nd->nd_flag & ND_NFSV3) == 0)
2271 		nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
2272 	auth_type = *tl++;
2273 	len = fxdr_unsigned(int, *tl++);
2274 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2275 		m_freem(info.mrep);
2276 		return (EBADRPC);
2277 	}
2278 
2279 	nd->nd_flag &= ~ND_KERBAUTH;
2280 	/*
2281 	 * Handle auth_unix or auth_kerb.
2282 	 */
2283 	if (auth_type == rpc_auth_unix) {
2284 		len = fxdr_unsigned(int, *++tl);
2285 		if (len < 0 || len > NFS_MAXNAMLEN) {
2286 			m_freem(info.mrep);
2287 			return (EBADRPC);
2288 		}
2289 		ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2290 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2291 		bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
2292 		nd->nd_cr.cr_ref = 1;
2293 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2294 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2295 		len = fxdr_unsigned(int, *tl);
2296 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2297 			m_freem(info.mrep);
2298 			return (EBADRPC);
2299 		}
2300 		NULLOUT(tl = nfsm_dissect(&info, (len + 2) * NFSX_UNSIGNED));
2301 		for (i = 1; i <= len; i++)
2302 		    if (i < NGROUPS)
2303 			nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2304 		    else
2305 			tl++;
2306 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2307 		if (nd->nd_cr.cr_ngroups > 1)
2308 		    nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
2309 		len = fxdr_unsigned(int, *++tl);
2310 		if (len < 0 || len > RPCAUTH_MAXSIZ) {
2311 			m_freem(info.mrep);
2312 			return (EBADRPC);
2313 		}
2314 		if (len > 0) {
2315 			ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2316 		}
2317 	} else if (auth_type == rpc_auth_kerb) {
2318 		switch (fxdr_unsigned(int, *tl++)) {
2319 		case RPCAKN_FULLNAME:
2320 			ticklen = fxdr_unsigned(int, *tl);
2321 			*((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2322 			uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2323 			nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2324 			if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2325 				m_freem(info.mrep);
2326 				return (EBADRPC);
2327 			}
2328 			uio.uio_offset = 0;
2329 			uio.uio_iov = &iov;
2330 			uio.uio_iovcnt = 1;
2331 			uio.uio_segflg = UIO_SYSSPACE;
2332 			iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
2333 			iov.iov_len = RPCAUTH_MAXSIZ - 4;
2334 			ERROROUT(nfsm_mtouio(&info, &uio, uio.uio_resid));
2335 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2336 			if (*tl++ != rpc_auth_kerb ||
2337 				fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2338 				kprintf("Bad kerb verifier\n");
2339 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2340 				nd->nd_procnum = NFSPROC_NOOP;
2341 				return (0);
2342 			}
2343 			NULLOUT(cp = nfsm_dissect(&info, 4 * NFSX_UNSIGNED));
2344 			tl = (u_int32_t *)cp;
2345 			if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2346 				kprintf("Not fullname kerb verifier\n");
2347 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2348 				nd->nd_procnum = NFSPROC_NOOP;
2349 				return (0);
2350 			}
2351 			cp += NFSX_UNSIGNED;
2352 			bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
2353 			nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2354 			nd->nd_flag |= ND_KERBFULL;
2355 			nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2356 			break;
2357 		case RPCAKN_NICKNAME:
2358 			if (len != 2 * NFSX_UNSIGNED) {
2359 				kprintf("Kerb nickname short\n");
2360 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2361 				nd->nd_procnum = NFSPROC_NOOP;
2362 				return (0);
2363 			}
2364 			nickuid = fxdr_unsigned(uid_t, *tl);
2365 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2366 			if (*tl++ != rpc_auth_kerb ||
2367 				fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2368 				kprintf("Kerb nick verifier bad\n");
2369 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2370 				nd->nd_procnum = NFSPROC_NOOP;
2371 				return (0);
2372 			}
2373 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2374 			tvin.tv_sec = *tl++;
2375 			tvin.tv_usec = *tl;
2376 
2377 			for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
2378 			    nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
2379 				if (nuidp->nu_cr.cr_uid == nickuid &&
2380 				    (!nd->nd_nam2 ||
2381 				     netaddr_match(NU_NETFAM(nuidp),
2382 				      &nuidp->nu_haddr, nd->nd_nam2)))
2383 					break;
2384 			}
2385 			if (!nuidp) {
2386 				nd->nd_repstat =
2387 					(NFSERR_AUTHERR|AUTH_REJECTCRED);
2388 				nd->nd_procnum = NFSPROC_NOOP;
2389 				return (0);
2390 			}
2391 
2392 			/*
2393 			 * Now, decrypt the timestamp using the session key
2394 			 * and validate it.
2395 			 */
2396 #ifdef NFSKERB
2397 			XXX
2398 #else
2399 			tvout.tv_sec = 0;
2400 			tvout.tv_usec = 0;
2401 #endif
2402 
2403 			tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2404 			tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2405 			if (nuidp->nu_expire < time_second ||
2406 			    nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2407 			    (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2408 			     nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2409 				nuidp->nu_expire = 0;
2410 				nd->nd_repstat =
2411 				    (NFSERR_AUTHERR|AUTH_REJECTVERF);
2412 				nd->nd_procnum = NFSPROC_NOOP;
2413 				return (0);
2414 			}
2415 			nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
2416 			nd->nd_flag |= ND_KERBNICK;
2417 		};
2418 	} else {
2419 		nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2420 		nd->nd_procnum = NFSPROC_NOOP;
2421 		return (0);
2422 	}
2423 
2424 	nd->nd_md = info.md;
2425 	nd->nd_dpos = info.dpos;
2426 	return (0);
2427 nfsmout:
2428 	return (error);
2429 }
2430 
2431 #endif
2432 
2433 /*
2434  * Send a message to the originating process's terminal.  The thread and/or
2435  * process may be NULL.  YYY the thread should not be NULL but there may
2436  * still be some uio_td's that are still being passed as NULL through to
2437  * nfsm_request().
2438  */
2439 static int
2440 nfs_msg(struct thread *td, char *server, char *msg)
2441 {
2442 	tpr_t tpr;
2443 
2444 	if (td && td->td_proc)
2445 		tpr = tprintf_open(td->td_proc);
2446 	else
2447 		tpr = NULL;
2448 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2449 	tprintf_close(tpr);
2450 	return (0);
2451 }
2452 
2453 #ifndef NFS_NOSERVER
2454 /*
2455  * Socket upcall routine for the nfsd sockets.
2456  * The caddr_t arg is a pointer to the "struct nfssvc_sock".
2457  * Essentially do as much as possible non-blocking, else punt and it will
2458  * be called with MB_WAIT from an nfsd.
2459  */
2460 void
2461 nfsrv_rcv(struct socket *so, void *arg, int waitflag)
2462 {
2463 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2464 	struct mbuf *m;
2465 	struct sockaddr *nam;
2466 	struct sockbuf sio;
2467 	int flags, error;
2468 	int nparallel_wakeup = 0;
2469 
2470 	if ((slp->ns_flag & SLP_VALID) == 0)
2471 		return;
2472 
2473 	/*
2474 	 * Do not allow an infinite number of completed RPC records to build
2475 	 * up before we stop reading data from the socket.  Otherwise we could
2476 	 * end up holding onto an unreasonable number of mbufs for requests
2477 	 * waiting for service.
2478 	 *
2479 	 * This should give pretty good feedback to the TCP
2480 	 * layer and prevents a memory crunch for other protocols.
2481 	 *
2482 	 * Note that the same service socket can be dispatched to several
2483 	 * nfs servers simultaniously.
2484 	 *
2485 	 * the tcp protocol callback calls us with MB_DONTWAIT.
2486 	 * nfsd calls us with MB_WAIT (typically).
2487 	 */
2488 	if (waitflag == MB_DONTWAIT && slp->ns_numrec >= nfsd_waiting / 2 + 1) {
2489 		slp->ns_flag |= SLP_NEEDQ;
2490 		goto dorecs;
2491 	}
2492 
2493 	/*
2494 	 * Handle protocol specifics to parse an RPC request.  We always
2495 	 * pull from the socket using non-blocking I/O.
2496 	 */
2497 	if (so->so_type == SOCK_STREAM) {
2498 		/*
2499 		 * The data has to be read in an orderly fashion from a TCP
2500 		 * stream, unlike a UDP socket.  It is possible for soreceive
2501 		 * and/or nfsrv_getstream() to block, so make sure only one
2502 		 * entity is messing around with the TCP stream at any given
2503 		 * moment.  The receive sockbuf's lock in soreceive is not
2504 		 * sufficient.
2505 		 *
2506 		 * Note that this procedure can be called from any number of
2507 		 * NFS severs *OR* can be upcalled directly from a TCP
2508 		 * protocol thread.
2509 		 */
2510 		if (slp->ns_flag & SLP_GETSTREAM) {
2511 			slp->ns_flag |= SLP_NEEDQ;
2512 			goto dorecs;
2513 		}
2514 		slp->ns_flag |= SLP_GETSTREAM;
2515 
2516 		/*
2517 		 * Do soreceive().  Pull out as much data as possible without
2518 		 * blocking.
2519 		 */
2520 		sbinit(&sio, 1000000000);
2521 		flags = MSG_DONTWAIT;
2522 		error = so_pru_soreceive(so, &nam, NULL, &sio, NULL, &flags);
2523 		if (error || sio.sb_mb == NULL) {
2524 			if (error == EWOULDBLOCK)
2525 				slp->ns_flag |= SLP_NEEDQ;
2526 			else
2527 				slp->ns_flag |= SLP_DISCONN;
2528 			slp->ns_flag &= ~SLP_GETSTREAM;
2529 			goto dorecs;
2530 		}
2531 		m = sio.sb_mb;
2532 		if (slp->ns_rawend) {
2533 			slp->ns_rawend->m_next = m;
2534 			slp->ns_cc += sio.sb_cc;
2535 		} else {
2536 			slp->ns_raw = m;
2537 			slp->ns_cc = sio.sb_cc;
2538 		}
2539 		while (m->m_next)
2540 			m = m->m_next;
2541 		slp->ns_rawend = m;
2542 
2543 		/*
2544 		 * Now try and parse as many record(s) as we can out of the
2545 		 * raw stream data.
2546 		 */
2547 		error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup);
2548 		if (error) {
2549 			if (error == EPERM)
2550 				slp->ns_flag |= SLP_DISCONN;
2551 			else
2552 				slp->ns_flag |= SLP_NEEDQ;
2553 		}
2554 		slp->ns_flag &= ~SLP_GETSTREAM;
2555 	} else {
2556 		/*
2557 		 * For UDP soreceive typically pulls just one packet, loop
2558 		 * to get the whole batch.
2559 		 */
2560 		do {
2561 			sbinit(&sio, 1000000000);
2562 			flags = MSG_DONTWAIT;
2563 			error = so_pru_soreceive(so, &nam, NULL, &sio,
2564 						 NULL, &flags);
2565 			if (sio.sb_mb) {
2566 				struct nfsrv_rec *rec;
2567 				int mf = (waitflag & MB_DONTWAIT) ?
2568 					    M_NOWAIT : M_WAITOK;
2569 				rec = kmalloc(sizeof(struct nfsrv_rec),
2570 					     M_NFSRVDESC, mf);
2571 				if (!rec) {
2572 					if (nam)
2573 						FREE(nam, M_SONAME);
2574 					m_freem(sio.sb_mb);
2575 					continue;
2576 				}
2577 				nfs_realign(&sio.sb_mb, 10 * NFSX_UNSIGNED);
2578 				rec->nr_address = nam;
2579 				rec->nr_packet = sio.sb_mb;
2580 				STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2581 				++slp->ns_numrec;
2582 				++nparallel_wakeup;
2583 			}
2584 			if (error) {
2585 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2586 					&& error != EWOULDBLOCK) {
2587 					slp->ns_flag |= SLP_DISCONN;
2588 					goto dorecs;
2589 				}
2590 			}
2591 		} while (sio.sb_mb);
2592 	}
2593 
2594 	/*
2595 	 * If we were upcalled from the tcp protocol layer and we have
2596 	 * fully parsed records ready to go, or there is new data pending,
2597 	 * or something went wrong, try to wake up an nfsd thread to deal
2598 	 * with it.
2599 	 */
2600 dorecs:
2601 	if (waitflag == MB_DONTWAIT && (slp->ns_numrec > 0
2602 	     || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) {
2603 		nfsrv_wakenfsd(slp, nparallel_wakeup);
2604 	}
2605 }
2606 
2607 /*
2608  * Try and extract an RPC request from the mbuf data list received on a
2609  * stream socket. The "waitflag" argument indicates whether or not it
2610  * can sleep.
2611  */
2612 static int
2613 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp)
2614 {
2615 	struct mbuf *m, **mpp;
2616 	char *cp1, *cp2;
2617 	int len;
2618 	struct mbuf *om, *m2, *recm;
2619 	u_int32_t recmark;
2620 
2621 	for (;;) {
2622 	    if (slp->ns_reclen == 0) {
2623 		if (slp->ns_cc < NFSX_UNSIGNED)
2624 			return (0);
2625 		m = slp->ns_raw;
2626 		if (m->m_len >= NFSX_UNSIGNED) {
2627 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2628 			m->m_data += NFSX_UNSIGNED;
2629 			m->m_len -= NFSX_UNSIGNED;
2630 		} else {
2631 			cp1 = (caddr_t)&recmark;
2632 			cp2 = mtod(m, caddr_t);
2633 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2634 				while (m->m_len == 0) {
2635 					m = m->m_next;
2636 					cp2 = mtod(m, caddr_t);
2637 				}
2638 				*cp1++ = *cp2++;
2639 				m->m_data++;
2640 				m->m_len--;
2641 			}
2642 		}
2643 		slp->ns_cc -= NFSX_UNSIGNED;
2644 		recmark = ntohl(recmark);
2645 		slp->ns_reclen = recmark & ~0x80000000;
2646 		if (recmark & 0x80000000)
2647 			slp->ns_flag |= SLP_LASTFRAG;
2648 		else
2649 			slp->ns_flag &= ~SLP_LASTFRAG;
2650 		if (slp->ns_reclen > NFS_MAXPACKET || slp->ns_reclen <= 0) {
2651 			log(LOG_ERR, "%s (%d) from nfs client\n",
2652 			    "impossible packet length",
2653 			    slp->ns_reclen);
2654 			return (EPERM);
2655 		}
2656 	    }
2657 
2658 	    /*
2659 	     * Now get the record part.
2660 	     *
2661 	     * Note that slp->ns_reclen may be 0.  Linux sometimes
2662 	     * generates 0-length RPCs
2663 	     */
2664 	    recm = NULL;
2665 	    if (slp->ns_cc == slp->ns_reclen) {
2666 		recm = slp->ns_raw;
2667 		slp->ns_raw = slp->ns_rawend = NULL;
2668 		slp->ns_cc = slp->ns_reclen = 0;
2669 	    } else if (slp->ns_cc > slp->ns_reclen) {
2670 		len = 0;
2671 		m = slp->ns_raw;
2672 		om = NULL;
2673 
2674 		while (len < slp->ns_reclen) {
2675 			if ((len + m->m_len) > slp->ns_reclen) {
2676 				m2 = m_copym(m, 0, slp->ns_reclen - len,
2677 					waitflag);
2678 				if (m2) {
2679 					if (om) {
2680 						om->m_next = m2;
2681 						recm = slp->ns_raw;
2682 					} else
2683 						recm = m2;
2684 					m->m_data += slp->ns_reclen - len;
2685 					m->m_len -= slp->ns_reclen - len;
2686 					len = slp->ns_reclen;
2687 				} else {
2688 					return (EWOULDBLOCK);
2689 				}
2690 			} else if ((len + m->m_len) == slp->ns_reclen) {
2691 				om = m;
2692 				len += m->m_len;
2693 				m = m->m_next;
2694 				recm = slp->ns_raw;
2695 				om->m_next = NULL;
2696 			} else {
2697 				om = m;
2698 				len += m->m_len;
2699 				m = m->m_next;
2700 			}
2701 		}
2702 		slp->ns_raw = m;
2703 		slp->ns_cc -= len;
2704 		slp->ns_reclen = 0;
2705 	    } else {
2706 		return (0);
2707 	    }
2708 
2709 	    /*
2710 	     * Accumulate the fragments into a record.
2711 	     */
2712 	    mpp = &slp->ns_frag;
2713 	    while (*mpp)
2714 		mpp = &((*mpp)->m_next);
2715 	    *mpp = recm;
2716 	    if (slp->ns_flag & SLP_LASTFRAG) {
2717 		struct nfsrv_rec *rec;
2718 		int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK;
2719 		rec = kmalloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf);
2720 		if (!rec) {
2721 		    m_freem(slp->ns_frag);
2722 		} else {
2723 		    nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2724 		    rec->nr_address = NULL;
2725 		    rec->nr_packet = slp->ns_frag;
2726 		    STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2727 		    ++slp->ns_numrec;
2728 		    ++*countp;
2729 		}
2730 		slp->ns_frag = NULL;
2731 	    }
2732 	}
2733 }
2734 
2735 /*
2736  * Parse an RPC header.
2737  */
2738 int
2739 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2740 	    struct nfsrv_descript **ndp)
2741 {
2742 	struct nfsrv_rec *rec;
2743 	struct mbuf *m;
2744 	struct sockaddr *nam;
2745 	struct nfsrv_descript *nd;
2746 	int error;
2747 
2748 	*ndp = NULL;
2749 	if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2750 		return (ENOBUFS);
2751 	rec = STAILQ_FIRST(&slp->ns_rec);
2752 	STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2753 	KKASSERT(slp->ns_numrec > 0);
2754 	--slp->ns_numrec;
2755 	nam = rec->nr_address;
2756 	m = rec->nr_packet;
2757 	kfree(rec, M_NFSRVDESC);
2758 	MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2759 		M_NFSRVDESC, M_WAITOK);
2760 	nd->nd_md = nd->nd_mrep = m;
2761 	nd->nd_nam2 = nam;
2762 	nd->nd_dpos = mtod(m, caddr_t);
2763 	error = nfs_getreq(nd, nfsd, TRUE);
2764 	if (error) {
2765 		if (nam) {
2766 			FREE(nam, M_SONAME);
2767 		}
2768 		kfree((caddr_t)nd, M_NFSRVDESC);
2769 		return (error);
2770 	}
2771 	*ndp = nd;
2772 	nfsd->nfsd_nd = nd;
2773 	return (0);
2774 }
2775 
2776 /*
2777  * Try to assign service sockets to nfsd threads based on the number
2778  * of new rpc requests that have been queued on the service socket.
2779  *
2780  * If no nfsd's are available or additonal requests are pending, set the
2781  * NFSD_CHECKSLP flag so that one of the running nfsds will go look for
2782  * the work in the nfssvc_sock list when it is finished processing its
2783  * current work.  This flag is only cleared when an nfsd can not find
2784  * any new work to perform.
2785  */
2786 void
2787 nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel)
2788 {
2789 	struct nfsd *nd;
2790 
2791 	if ((slp->ns_flag & SLP_VALID) == 0)
2792 		return;
2793 	if (nparallel <= 1)
2794 		nparallel = 1;
2795 	TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) {
2796 		if (nd->nfsd_flag & NFSD_WAITING) {
2797 			nd->nfsd_flag &= ~NFSD_WAITING;
2798 			if (nd->nfsd_slp)
2799 				panic("nfsd wakeup");
2800 			slp->ns_sref++;
2801 			nd->nfsd_slp = slp;
2802 			wakeup((caddr_t)nd);
2803 			if (--nparallel == 0)
2804 				break;
2805 		}
2806 	}
2807 	if (nparallel) {
2808 		slp->ns_flag |= SLP_DOREC;
2809 		nfsd_head_flag |= NFSD_CHECKSLP;
2810 	}
2811 }
2812 #endif /* NFS_NOSERVER */
2813