xref: /dragonfly/sys/vfs/nfs/nfs_subs.c (revision 40f79625)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_subs.c  8.8 (Berkeley) 5/22/95
37  * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_subs.c,v 1.128 2004/04/14 23:23:55 peadar Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_subs.c,v 1.34 2006/02/21 19:00:19 dillon Exp $
39  */
40 
41 /*
42  * These functions support the macros and help fiddle mbuf chains for
43  * the nfs op functions. They do things like create the rpc header and
44  * copy data between mbuf chains and uio lists.
45  */
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/buf.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/vnode.h>
53 #include <sys/nlookup.h>
54 #include <sys/namei.h>
55 #include <sys/mbuf.h>
56 #include <sys/socket.h>
57 #include <sys/stat.h>
58 #include <sys/malloc.h>
59 #include <sys/sysent.h>
60 #include <sys/syscall.h>
61 #include <sys/conf.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
67 
68 #include <sys/buf2.h>
69 
70 #include "rpcv2.h"
71 #include "nfsproto.h"
72 #include "nfs.h"
73 #include "nfsmount.h"
74 #include "nfsnode.h"
75 #include "xdr_subs.h"
76 #include "nfsm_subs.h"
77 #include "nqnfs.h"
78 #include "nfsrtt.h"
79 
80 #include <netinet/in.h>
81 
82 /*
83  * Data items converted to xdr at startup, since they are constant
84  * This is kinda hokey, but may save a little time doing byte swaps
85  */
86 u_int32_t nfs_xdrneg1;
87 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
88 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
89 	rpc_auth_kerb;
90 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
91 
92 /* And other global data */
93 static u_int32_t nfs_xid = 0;
94 static enum vtype nv2tov_type[8]= {
95 	VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON,  VNON
96 };
97 enum vtype nv3tov_type[8]= {
98 	VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO
99 };
100 
101 int nfs_ticks;
102 int nfs_pbuf_freecnt = -1;	/* start out unlimited */
103 
104 struct nfs_reqq nfs_reqq;
105 struct nfssvc_sockhead nfssvc_sockhead;
106 int nfssvc_sockhead_flag;
107 struct nfsd_head nfsd_head;
108 int nfsd_head_flag;
109 struct nfs_bufq nfs_bufq;
110 struct nqtimerhead nqtimerhead;
111 struct nqfhhashhead *nqfhhashtbl;
112 u_long nqfhhash;
113 
114 static void (*nfs_prev_lease_updatetime) (int);
115 static int nfs_prev_nfssvc_sy_narg;
116 static sy_call_t *nfs_prev_nfssvc_sy_call;
117 
118 #ifndef NFS_NOSERVER
119 
120 static int (*nfs_prev_vop_lease_check)(struct vop_lease_args *);
121 
122 /*
123  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
124  */
125 int nfsv3_procid[NFS_NPROCS] = {
126 	NFSPROC_NULL,
127 	NFSPROC_GETATTR,
128 	NFSPROC_SETATTR,
129 	NFSPROC_NOOP,
130 	NFSPROC_LOOKUP,
131 	NFSPROC_READLINK,
132 	NFSPROC_READ,
133 	NFSPROC_NOOP,
134 	NFSPROC_WRITE,
135 	NFSPROC_CREATE,
136 	NFSPROC_REMOVE,
137 	NFSPROC_RENAME,
138 	NFSPROC_LINK,
139 	NFSPROC_SYMLINK,
140 	NFSPROC_MKDIR,
141 	NFSPROC_RMDIR,
142 	NFSPROC_READDIR,
143 	NFSPROC_FSSTAT,
144 	NFSPROC_NOOP,
145 	NFSPROC_NOOP,
146 	NFSPROC_NOOP,
147 	NFSPROC_NOOP,
148 	NFSPROC_NOOP,
149 	NFSPROC_NOOP,
150 	NFSPROC_NOOP,
151 	NFSPROC_NOOP
152 };
153 
154 #endif /* NFS_NOSERVER */
155 /*
156  * and the reverse mapping from generic to Version 2 procedure numbers
157  */
158 int nfsv2_procid[NFS_NPROCS] = {
159 	NFSV2PROC_NULL,
160 	NFSV2PROC_GETATTR,
161 	NFSV2PROC_SETATTR,
162 	NFSV2PROC_LOOKUP,
163 	NFSV2PROC_NOOP,
164 	NFSV2PROC_READLINK,
165 	NFSV2PROC_READ,
166 	NFSV2PROC_WRITE,
167 	NFSV2PROC_CREATE,
168 	NFSV2PROC_MKDIR,
169 	NFSV2PROC_SYMLINK,
170 	NFSV2PROC_CREATE,
171 	NFSV2PROC_REMOVE,
172 	NFSV2PROC_RMDIR,
173 	NFSV2PROC_RENAME,
174 	NFSV2PROC_LINK,
175 	NFSV2PROC_READDIR,
176 	NFSV2PROC_NOOP,
177 	NFSV2PROC_STATFS,
178 	NFSV2PROC_NOOP,
179 	NFSV2PROC_NOOP,
180 	NFSV2PROC_NOOP,
181 	NFSV2PROC_NOOP,
182 	NFSV2PROC_NOOP,
183 	NFSV2PROC_NOOP,
184 	NFSV2PROC_NOOP,
185 };
186 
187 #ifndef NFS_NOSERVER
188 /*
189  * Maps errno values to nfs error numbers.
190  * Use NFSERR_IO as the catch all for ones not specifically defined in
191  * RFC 1094.
192  */
193 static u_char nfsrv_v2errmap[ELAST] = {
194   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
195   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
196   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
197   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
198   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
199   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
200   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
201   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
202   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
203   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
204   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
205   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
206   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
207   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
208   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
209   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
210   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
211   NFSERR_IO /* << Last is 86 */
212 };
213 
214 /*
215  * Maps errno values to nfs error numbers.
216  * Although it is not obvious whether or not NFS clients really care if
217  * a returned error value is in the specified list for the procedure, the
218  * safest thing to do is filter them appropriately. For Version 2, the
219  * X/Open XNFS document is the only specification that defines error values
220  * for each RPC (The RFC simply lists all possible error values for all RPCs),
221  * so I have decided to not do this for Version 2.
222  * The first entry is the default error return and the rest are the valid
223  * errors for that RPC in increasing numeric order.
224  */
225 static short nfsv3err_null[] = {
226 	0,
227 	0,
228 };
229 
230 static short nfsv3err_getattr[] = {
231 	NFSERR_IO,
232 	NFSERR_IO,
233 	NFSERR_STALE,
234 	NFSERR_BADHANDLE,
235 	NFSERR_SERVERFAULT,
236 	0,
237 };
238 
239 static short nfsv3err_setattr[] = {
240 	NFSERR_IO,
241 	NFSERR_PERM,
242 	NFSERR_IO,
243 	NFSERR_ACCES,
244 	NFSERR_INVAL,
245 	NFSERR_NOSPC,
246 	NFSERR_ROFS,
247 	NFSERR_DQUOT,
248 	NFSERR_STALE,
249 	NFSERR_BADHANDLE,
250 	NFSERR_NOT_SYNC,
251 	NFSERR_SERVERFAULT,
252 	0,
253 };
254 
255 static short nfsv3err_lookup[] = {
256 	NFSERR_IO,
257 	NFSERR_NOENT,
258 	NFSERR_IO,
259 	NFSERR_ACCES,
260 	NFSERR_NOTDIR,
261 	NFSERR_NAMETOL,
262 	NFSERR_STALE,
263 	NFSERR_BADHANDLE,
264 	NFSERR_SERVERFAULT,
265 	0,
266 };
267 
268 static short nfsv3err_access[] = {
269 	NFSERR_IO,
270 	NFSERR_IO,
271 	NFSERR_STALE,
272 	NFSERR_BADHANDLE,
273 	NFSERR_SERVERFAULT,
274 	0,
275 };
276 
277 static short nfsv3err_readlink[] = {
278 	NFSERR_IO,
279 	NFSERR_IO,
280 	NFSERR_ACCES,
281 	NFSERR_INVAL,
282 	NFSERR_STALE,
283 	NFSERR_BADHANDLE,
284 	NFSERR_NOTSUPP,
285 	NFSERR_SERVERFAULT,
286 	0,
287 };
288 
289 static short nfsv3err_read[] = {
290 	NFSERR_IO,
291 	NFSERR_IO,
292 	NFSERR_NXIO,
293 	NFSERR_ACCES,
294 	NFSERR_INVAL,
295 	NFSERR_STALE,
296 	NFSERR_BADHANDLE,
297 	NFSERR_SERVERFAULT,
298 	0,
299 };
300 
301 static short nfsv3err_write[] = {
302 	NFSERR_IO,
303 	NFSERR_IO,
304 	NFSERR_ACCES,
305 	NFSERR_INVAL,
306 	NFSERR_FBIG,
307 	NFSERR_NOSPC,
308 	NFSERR_ROFS,
309 	NFSERR_DQUOT,
310 	NFSERR_STALE,
311 	NFSERR_BADHANDLE,
312 	NFSERR_SERVERFAULT,
313 	0,
314 };
315 
316 static short nfsv3err_create[] = {
317 	NFSERR_IO,
318 	NFSERR_IO,
319 	NFSERR_ACCES,
320 	NFSERR_EXIST,
321 	NFSERR_NOTDIR,
322 	NFSERR_NOSPC,
323 	NFSERR_ROFS,
324 	NFSERR_NAMETOL,
325 	NFSERR_DQUOT,
326 	NFSERR_STALE,
327 	NFSERR_BADHANDLE,
328 	NFSERR_NOTSUPP,
329 	NFSERR_SERVERFAULT,
330 	0,
331 };
332 
333 static short nfsv3err_mkdir[] = {
334 	NFSERR_IO,
335 	NFSERR_IO,
336 	NFSERR_ACCES,
337 	NFSERR_EXIST,
338 	NFSERR_NOTDIR,
339 	NFSERR_NOSPC,
340 	NFSERR_ROFS,
341 	NFSERR_NAMETOL,
342 	NFSERR_DQUOT,
343 	NFSERR_STALE,
344 	NFSERR_BADHANDLE,
345 	NFSERR_NOTSUPP,
346 	NFSERR_SERVERFAULT,
347 	0,
348 };
349 
350 static short nfsv3err_symlink[] = {
351 	NFSERR_IO,
352 	NFSERR_IO,
353 	NFSERR_ACCES,
354 	NFSERR_EXIST,
355 	NFSERR_NOTDIR,
356 	NFSERR_NOSPC,
357 	NFSERR_ROFS,
358 	NFSERR_NAMETOL,
359 	NFSERR_DQUOT,
360 	NFSERR_STALE,
361 	NFSERR_BADHANDLE,
362 	NFSERR_NOTSUPP,
363 	NFSERR_SERVERFAULT,
364 	0,
365 };
366 
367 static short nfsv3err_mknod[] = {
368 	NFSERR_IO,
369 	NFSERR_IO,
370 	NFSERR_ACCES,
371 	NFSERR_EXIST,
372 	NFSERR_NOTDIR,
373 	NFSERR_NOSPC,
374 	NFSERR_ROFS,
375 	NFSERR_NAMETOL,
376 	NFSERR_DQUOT,
377 	NFSERR_STALE,
378 	NFSERR_BADHANDLE,
379 	NFSERR_NOTSUPP,
380 	NFSERR_SERVERFAULT,
381 	NFSERR_BADTYPE,
382 	0,
383 };
384 
385 static short nfsv3err_remove[] = {
386 	NFSERR_IO,
387 	NFSERR_NOENT,
388 	NFSERR_IO,
389 	NFSERR_ACCES,
390 	NFSERR_NOTDIR,
391 	NFSERR_ROFS,
392 	NFSERR_NAMETOL,
393 	NFSERR_STALE,
394 	NFSERR_BADHANDLE,
395 	NFSERR_SERVERFAULT,
396 	0,
397 };
398 
399 static short nfsv3err_rmdir[] = {
400 	NFSERR_IO,
401 	NFSERR_NOENT,
402 	NFSERR_IO,
403 	NFSERR_ACCES,
404 	NFSERR_EXIST,
405 	NFSERR_NOTDIR,
406 	NFSERR_INVAL,
407 	NFSERR_ROFS,
408 	NFSERR_NAMETOL,
409 	NFSERR_NOTEMPTY,
410 	NFSERR_STALE,
411 	NFSERR_BADHANDLE,
412 	NFSERR_NOTSUPP,
413 	NFSERR_SERVERFAULT,
414 	0,
415 };
416 
417 static short nfsv3err_rename[] = {
418 	NFSERR_IO,
419 	NFSERR_NOENT,
420 	NFSERR_IO,
421 	NFSERR_ACCES,
422 	NFSERR_EXIST,
423 	NFSERR_XDEV,
424 	NFSERR_NOTDIR,
425 	NFSERR_ISDIR,
426 	NFSERR_INVAL,
427 	NFSERR_NOSPC,
428 	NFSERR_ROFS,
429 	NFSERR_MLINK,
430 	NFSERR_NAMETOL,
431 	NFSERR_NOTEMPTY,
432 	NFSERR_DQUOT,
433 	NFSERR_STALE,
434 	NFSERR_BADHANDLE,
435 	NFSERR_NOTSUPP,
436 	NFSERR_SERVERFAULT,
437 	0,
438 };
439 
440 static short nfsv3err_link[] = {
441 	NFSERR_IO,
442 	NFSERR_IO,
443 	NFSERR_ACCES,
444 	NFSERR_EXIST,
445 	NFSERR_XDEV,
446 	NFSERR_NOTDIR,
447 	NFSERR_INVAL,
448 	NFSERR_NOSPC,
449 	NFSERR_ROFS,
450 	NFSERR_MLINK,
451 	NFSERR_NAMETOL,
452 	NFSERR_DQUOT,
453 	NFSERR_STALE,
454 	NFSERR_BADHANDLE,
455 	NFSERR_NOTSUPP,
456 	NFSERR_SERVERFAULT,
457 	0,
458 };
459 
460 static short nfsv3err_readdir[] = {
461 	NFSERR_IO,
462 	NFSERR_IO,
463 	NFSERR_ACCES,
464 	NFSERR_NOTDIR,
465 	NFSERR_STALE,
466 	NFSERR_BADHANDLE,
467 	NFSERR_BAD_COOKIE,
468 	NFSERR_TOOSMALL,
469 	NFSERR_SERVERFAULT,
470 	0,
471 };
472 
473 static short nfsv3err_readdirplus[] = {
474 	NFSERR_IO,
475 	NFSERR_IO,
476 	NFSERR_ACCES,
477 	NFSERR_NOTDIR,
478 	NFSERR_STALE,
479 	NFSERR_BADHANDLE,
480 	NFSERR_BAD_COOKIE,
481 	NFSERR_NOTSUPP,
482 	NFSERR_TOOSMALL,
483 	NFSERR_SERVERFAULT,
484 	0,
485 };
486 
487 static short nfsv3err_fsstat[] = {
488 	NFSERR_IO,
489 	NFSERR_IO,
490 	NFSERR_STALE,
491 	NFSERR_BADHANDLE,
492 	NFSERR_SERVERFAULT,
493 	0,
494 };
495 
496 static short nfsv3err_fsinfo[] = {
497 	NFSERR_STALE,
498 	NFSERR_STALE,
499 	NFSERR_BADHANDLE,
500 	NFSERR_SERVERFAULT,
501 	0,
502 };
503 
504 static short nfsv3err_pathconf[] = {
505 	NFSERR_STALE,
506 	NFSERR_STALE,
507 	NFSERR_BADHANDLE,
508 	NFSERR_SERVERFAULT,
509 	0,
510 };
511 
512 static short nfsv3err_commit[] = {
513 	NFSERR_IO,
514 	NFSERR_IO,
515 	NFSERR_STALE,
516 	NFSERR_BADHANDLE,
517 	NFSERR_SERVERFAULT,
518 	0,
519 };
520 
521 static short *nfsrv_v3errmap[] = {
522 	nfsv3err_null,
523 	nfsv3err_getattr,
524 	nfsv3err_setattr,
525 	nfsv3err_lookup,
526 	nfsv3err_access,
527 	nfsv3err_readlink,
528 	nfsv3err_read,
529 	nfsv3err_write,
530 	nfsv3err_create,
531 	nfsv3err_mkdir,
532 	nfsv3err_symlink,
533 	nfsv3err_mknod,
534 	nfsv3err_remove,
535 	nfsv3err_rmdir,
536 	nfsv3err_rename,
537 	nfsv3err_link,
538 	nfsv3err_readdir,
539 	nfsv3err_readdirplus,
540 	nfsv3err_fsstat,
541 	nfsv3err_fsinfo,
542 	nfsv3err_pathconf,
543 	nfsv3err_commit,
544 };
545 
546 #endif /* NFS_NOSERVER */
547 
548 extern struct nfsrtt nfsrtt;
549 extern time_t nqnfsstarttime;
550 extern int nqsrv_clockskew;
551 extern int nqsrv_writeslack;
552 extern int nqsrv_maxlease;
553 extern struct nfsstats nfsstats;
554 extern int nqnfs_piggy[NFS_NPROCS];
555 extern nfstype nfsv2_type[9];
556 extern nfstype nfsv3_type[9];
557 extern struct nfsnodehashhead *nfsnodehashtbl;
558 extern u_long nfsnodehash;
559 
560 struct nfssvc_args;
561 extern int nfssvc(struct proc *, struct nfssvc_args *, int *);
562 
563 LIST_HEAD(nfsnodehashhead, nfsnode);
564 
565 /*
566  * This needs to return a monotonically increasing or close to monotonically
567  * increasing result, otherwise the write gathering queues won't work
568  * properly.
569  */
570 u_quad_t
571 nfs_curusec(void)
572 {
573 	struct timeval tv;
574 
575 	getmicrouptime(&tv);
576 	return ((u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec);
577 }
578 
579 /*
580  * Create the header for an rpc request packet
581  * The hsiz is the size of the rest of the nfs request header.
582  * (just used to decide if a cluster is a good idea)
583  */
584 struct mbuf *
585 nfsm_reqh(struct vnode *vp, u_long procid, int hsiz, caddr_t *bposp)
586 {
587 	struct mbuf *mb;
588 	u_int32_t *tl;
589 	caddr_t bpos;
590 	struct mbuf *mb2;
591 	struct nfsmount *nmp;
592 	int nqflag;
593 
594 	mb = m_getl(hsiz, MB_WAIT, MT_DATA, 0, NULL);
595 	mb->m_len = 0;
596 	bpos = mtod(mb, caddr_t);
597 
598 	/*
599 	 * For NQNFS, add lease request.
600 	 */
601 	if (vp) {
602 		nmp = VFSTONFS(vp->v_mount);
603 		if (nmp->nm_flag & NFSMNT_NQNFS) {
604 			nqflag = NQNFS_NEEDLEASE(vp, procid);
605 			if (nqflag) {
606 				nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
607 				*tl++ = txdr_unsigned(nqflag);
608 				*tl = txdr_unsigned(nmp->nm_leaseterm);
609 			} else {
610 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
611 				*tl = 0;
612 			}
613 		}
614 	}
615 	/* Finally, return values */
616 	*bposp = bpos;
617 	return (mb);
618 }
619 
620 /*
621  * Build the RPC header and fill in the authorization info.
622  * The authorization string argument is only used when the credentials
623  * come from outside of the kernel.
624  * Returns the head of the mbuf list.
625  */
626 struct mbuf *
627 nfsm_rpchead(struct ucred *cr, int nmflag, int procid, int auth_type,
628 	     int auth_len, char *auth_str, int verf_len, char *verf_str,
629 	     struct mbuf *mrest, int mrest_len, struct mbuf **mbp,
630 	     u_int32_t *xidp)
631 {
632 	struct mbuf *mb;
633 	u_int32_t *tl;
634 	caddr_t bpos;
635 	int i;
636 	struct mbuf *mreq, *mb2;
637 	int siz, grpsiz, authsiz, dsiz;
638 
639 	authsiz = nfsm_rndup(auth_len);
640 	dsiz = authsiz + 10 * NFSX_UNSIGNED;
641 	mb = m_getl(dsiz, MB_WAIT, MT_DATA, M_PKTHDR, NULL);
642 	if (dsiz < MINCLSIZE) {
643 		if (dsiz < MHLEN)
644 			MH_ALIGN(mb, dsiz);
645 		else
646 			MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
647 	}
648 	mb->m_len = mb->m_pkthdr.len = 0;
649 	mreq = mb;
650 	bpos = mtod(mb, caddr_t);
651 
652 	/*
653 	 * First the RPC header.
654 	 */
655 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
656 
657 	/* Get a pretty random xid to start with */
658 	if (!nfs_xid)
659 		nfs_xid = random();
660 	/*
661 	 * Skip zero xid if it should ever happen.
662 	 */
663 	if (++nfs_xid == 0)
664 		nfs_xid++;
665 
666 	*tl++ = *xidp = txdr_unsigned(nfs_xid);
667 	*tl++ = rpc_call;
668 	*tl++ = rpc_vers;
669 	if (nmflag & NFSMNT_NQNFS) {
670 		*tl++ = txdr_unsigned(NQNFS_PROG);
671 		*tl++ = txdr_unsigned(NQNFS_VER3);
672 	} else {
673 		*tl++ = txdr_unsigned(NFS_PROG);
674 		if (nmflag & NFSMNT_NFSV3)
675 			*tl++ = txdr_unsigned(NFS_VER3);
676 		else
677 			*tl++ = txdr_unsigned(NFS_VER2);
678 	}
679 	if (nmflag & NFSMNT_NFSV3)
680 		*tl++ = txdr_unsigned(procid);
681 	else
682 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
683 
684 	/*
685 	 * And then the authorization cred.
686 	 */
687 	*tl++ = txdr_unsigned(auth_type);
688 	*tl = txdr_unsigned(authsiz);
689 	switch (auth_type) {
690 	case RPCAUTH_UNIX:
691 		nfsm_build(tl, u_int32_t *, auth_len);
692 		*tl++ = 0;		/* stamp ?? */
693 		*tl++ = 0;		/* NULL hostname */
694 		*tl++ = txdr_unsigned(cr->cr_uid);
695 		*tl++ = txdr_unsigned(cr->cr_groups[0]);
696 		grpsiz = (auth_len >> 2) - 5;
697 		*tl++ = txdr_unsigned(grpsiz);
698 		for (i = 1; i <= grpsiz; i++)
699 			*tl++ = txdr_unsigned(cr->cr_groups[i]);
700 		break;
701 	case RPCAUTH_KERB4:
702 		siz = auth_len;
703 		while (siz > 0) {
704 			if (M_TRAILINGSPACE(mb) == 0) {
705 				mb2 = m_getl(siz, MB_WAIT, MT_DATA, 0, NULL);
706 				mb2->m_len = 0;
707 				mb->m_next = mb2;
708 				mb = mb2;
709 				bpos = mtod(mb, caddr_t);
710 			}
711 			i = min(siz, M_TRAILINGSPACE(mb));
712 			bcopy(auth_str, bpos, i);
713 			mb->m_len += i;
714 			auth_str += i;
715 			bpos += i;
716 			siz -= i;
717 		}
718 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
719 			for (i = 0; i < siz; i++)
720 				*bpos++ = '\0';
721 			mb->m_len += siz;
722 		}
723 		break;
724 	};
725 
726 	/*
727 	 * And the verifier...
728 	 */
729 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
730 	if (verf_str) {
731 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
732 		*tl = txdr_unsigned(verf_len);
733 		siz = verf_len;
734 		while (siz > 0) {
735 			if (M_TRAILINGSPACE(mb) == 0) {
736 				mb2 = m_getl(siz, MB_WAIT, MT_DATA, 0, NULL);
737 				mb2->m_len = 0;
738 				mb->m_next = mb2;
739 				mb = mb2;
740 				bpos = mtod(mb, caddr_t);
741 			}
742 			i = min(siz, M_TRAILINGSPACE(mb));
743 			bcopy(verf_str, bpos, i);
744 			mb->m_len += i;
745 			verf_str += i;
746 			bpos += i;
747 			siz -= i;
748 		}
749 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
750 			for (i = 0; i < siz; i++)
751 				*bpos++ = '\0';
752 			mb->m_len += siz;
753 		}
754 	} else {
755 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
756 		*tl = 0;
757 	}
758 	mb->m_next = mrest;
759 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
760 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
761 	*mbp = mb;
762 	return (mreq);
763 }
764 
765 /*
766  * copies mbuf chain to the uio scatter/gather list
767  */
768 int
769 nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, caddr_t *dpos)
770 {
771 	char *mbufcp, *uiocp;
772 	int xfer, left, len;
773 	struct mbuf *mp;
774 	long uiosiz, rem;
775 	int error = 0;
776 
777 	mp = *mrep;
778 	mbufcp = *dpos;
779 	len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
780 	rem = nfsm_rndup(siz)-siz;
781 	while (siz > 0) {
782 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
783 			return (EFBIG);
784 		left = uiop->uio_iov->iov_len;
785 		uiocp = uiop->uio_iov->iov_base;
786 		if (left > siz)
787 			left = siz;
788 		uiosiz = left;
789 		while (left > 0) {
790 			while (len == 0) {
791 				mp = mp->m_next;
792 				if (mp == NULL)
793 					return (EBADRPC);
794 				mbufcp = mtod(mp, caddr_t);
795 				len = mp->m_len;
796 			}
797 			xfer = (left > len) ? len : left;
798 #ifdef notdef
799 			/* Not Yet.. */
800 			if (uiop->uio_iov->iov_op != NULL)
801 				(*(uiop->uio_iov->iov_op))
802 				(mbufcp, uiocp, xfer);
803 			else
804 #endif
805 			if (uiop->uio_segflg == UIO_SYSSPACE)
806 				bcopy(mbufcp, uiocp, xfer);
807 			else
808 				copyout(mbufcp, uiocp, xfer);
809 			left -= xfer;
810 			len -= xfer;
811 			mbufcp += xfer;
812 			uiocp += xfer;
813 			uiop->uio_offset += xfer;
814 			uiop->uio_resid -= xfer;
815 		}
816 		if (uiop->uio_iov->iov_len <= siz) {
817 			uiop->uio_iovcnt--;
818 			uiop->uio_iov++;
819 		} else {
820 			uiop->uio_iov->iov_base += uiosiz;
821 			uiop->uio_iov->iov_len -= uiosiz;
822 		}
823 		siz -= uiosiz;
824 	}
825 	*dpos = mbufcp;
826 	*mrep = mp;
827 	if (rem > 0) {
828 		if (len < rem)
829 			error = nfs_adv(mrep, dpos, rem, len);
830 		else
831 			*dpos += rem;
832 	}
833 	return (error);
834 }
835 
836 /*
837  * copies a uio scatter/gather list to an mbuf chain.
838  * NOTE: can ony handle iovcnt == 1
839  */
840 int
841 nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, caddr_t *bpos)
842 {
843 	char *uiocp;
844 	struct mbuf *mp, *mp2;
845 	int xfer, left, mlen;
846 	int uiosiz, rem;
847 	boolean_t getcluster;
848 	char *cp;
849 
850 #ifdef DIAGNOSTIC
851 	if (uiop->uio_iovcnt != 1)
852 		panic("nfsm_uiotombuf: iovcnt != 1");
853 #endif
854 
855 	if (siz >= MINCLSIZE)
856 		getcluster = TRUE;
857 	else
858 		getcluster = FALSE;
859 	rem = nfsm_rndup(siz) - siz;
860 	mp = mp2 = *mq;
861 	while (siz > 0) {
862 		left = uiop->uio_iov->iov_len;
863 		uiocp = uiop->uio_iov->iov_base;
864 		if (left > siz)
865 			left = siz;
866 		uiosiz = left;
867 		while (left > 0) {
868 			mlen = M_TRAILINGSPACE(mp);
869 			if (mlen == 0) {
870 				if (getcluster)
871 					mp = m_getcl(MB_WAIT, MT_DATA, 0);
872 				else
873 					mp = m_get(MB_WAIT, MT_DATA);
874 				mp->m_len = 0;
875 				mp2->m_next = mp;
876 				mp2 = mp;
877 				mlen = M_TRAILINGSPACE(mp);
878 			}
879 			xfer = (left > mlen) ? mlen : left;
880 #ifdef notdef
881 			/* Not Yet.. */
882 			if (uiop->uio_iov->iov_op != NULL)
883 				(*(uiop->uio_iov->iov_op))
884 				(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
885 			else
886 #endif
887 			if (uiop->uio_segflg == UIO_SYSSPACE)
888 				bcopy(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
889 			else
890 				copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
891 			mp->m_len += xfer;
892 			left -= xfer;
893 			uiocp += xfer;
894 			uiop->uio_offset += xfer;
895 			uiop->uio_resid -= xfer;
896 		}
897 		uiop->uio_iov->iov_base += uiosiz;
898 		uiop->uio_iov->iov_len -= uiosiz;
899 		siz -= uiosiz;
900 	}
901 	if (rem > 0) {
902 		if (rem > M_TRAILINGSPACE(mp)) {
903 			MGET(mp, MB_WAIT, MT_DATA);
904 			mp->m_len = 0;
905 			mp2->m_next = mp;
906 		}
907 		cp = mtod(mp, caddr_t)+mp->m_len;
908 		for (left = 0; left < rem; left++)
909 			*cp++ = '\0';
910 		mp->m_len += rem;
911 		*bpos = cp;
912 	} else
913 		*bpos = mtod(mp, caddr_t)+mp->m_len;
914 	*mq = mp;
915 	return (0);
916 }
917 
918 /*
919  * Help break down an mbuf chain by setting the first siz bytes contiguous
920  * pointed to by returned val.
921  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
922  * cases. (The macros use the vars. dpos and dpos2)
923  */
924 int
925 nfsm_disct(struct mbuf **mdp, caddr_t *dposp, int siz, int left, caddr_t *cp2)
926 {
927 	struct mbuf *mp, *mp2;
928 	int siz2, xfer;
929 	caddr_t p;
930 
931 	mp = *mdp;
932 	while (left == 0) {
933 		*mdp = mp = mp->m_next;
934 		if (mp == NULL)
935 			return (EBADRPC);
936 		left = mp->m_len;
937 		*dposp = mtod(mp, caddr_t);
938 	}
939 	if (left >= siz) {
940 		*cp2 = *dposp;
941 		*dposp += siz;
942 	} else if (mp->m_next == NULL) {
943 		return (EBADRPC);
944 	} else if (siz > MHLEN) {
945 		panic("nfs S too big");
946 	} else {
947 		MGET(mp2, MB_WAIT, MT_DATA);
948 		mp2->m_next = mp->m_next;
949 		mp->m_next = mp2;
950 		mp->m_len -= left;
951 		mp = mp2;
952 		*cp2 = p = mtod(mp, caddr_t);
953 		bcopy(*dposp, p, left);		/* Copy what was left */
954 		siz2 = siz-left;
955 		p += left;
956 		mp2 = mp->m_next;
957 		/* Loop around copying up the siz2 bytes */
958 		while (siz2 > 0) {
959 			if (mp2 == NULL)
960 				return (EBADRPC);
961 			xfer = (siz2 > mp2->m_len) ? mp2->m_len : siz2;
962 			if (xfer > 0) {
963 				bcopy(mtod(mp2, caddr_t), p, xfer);
964 				NFSMADV(mp2, xfer);
965 				mp2->m_len -= xfer;
966 				p += xfer;
967 				siz2 -= xfer;
968 			}
969 			if (siz2 > 0)
970 				mp2 = mp2->m_next;
971 		}
972 		mp->m_len = siz;
973 		*mdp = mp2;
974 		*dposp = mtod(mp2, caddr_t);
975 	}
976 	return (0);
977 }
978 
979 /*
980  * Advance the position in the mbuf chain.
981  */
982 int
983 nfs_adv(struct mbuf **mdp, caddr_t *dposp, int offs, int left)
984 {
985 	struct mbuf *m;
986 	int s;
987 
988 	m = *mdp;
989 	s = left;
990 	while (s < offs) {
991 		offs -= s;
992 		m = m->m_next;
993 		if (m == NULL)
994 			return (EBADRPC);
995 		s = m->m_len;
996 	}
997 	*mdp = m;
998 	*dposp = mtod(m, caddr_t)+offs;
999 	return (0);
1000 }
1001 
1002 /*
1003  * Copy a string into mbufs for the hard cases...
1004  */
1005 int
1006 nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz)
1007 {
1008 	struct mbuf *m1 = NULL, *m2;
1009 	long left, xfer, len, tlen;
1010 	u_int32_t *tl;
1011 	int putsize;
1012 
1013 	putsize = 1;
1014 	m2 = *mb;
1015 	left = M_TRAILINGSPACE(m2);
1016 	if (left > 0) {
1017 		tl = ((u_int32_t *)(*bpos));
1018 		*tl++ = txdr_unsigned(siz);
1019 		putsize = 0;
1020 		left -= NFSX_UNSIGNED;
1021 		m2->m_len += NFSX_UNSIGNED;
1022 		if (left > 0) {
1023 			bcopy(cp, (caddr_t) tl, left);
1024 			siz -= left;
1025 			cp += left;
1026 			m2->m_len += left;
1027 			left = 0;
1028 		}
1029 	}
1030 	/* Loop around adding mbufs */
1031 	while (siz > 0) {
1032 		int msize;
1033 
1034 		m1 = m_getl(siz, MB_WAIT, MT_DATA, 0, &msize);
1035 		m1->m_len = msize;
1036 		m2->m_next = m1;
1037 		m2 = m1;
1038 		tl = mtod(m1, u_int32_t *);
1039 		tlen = 0;
1040 		if (putsize) {
1041 			*tl++ = txdr_unsigned(siz);
1042 			m1->m_len -= NFSX_UNSIGNED;
1043 			tlen = NFSX_UNSIGNED;
1044 			putsize = 0;
1045 		}
1046 		if (siz < m1->m_len) {
1047 			len = nfsm_rndup(siz);
1048 			xfer = siz;
1049 			if (xfer < len)
1050 				*(tl+(xfer>>2)) = 0;
1051 		} else {
1052 			xfer = len = m1->m_len;
1053 		}
1054 		bcopy(cp, (caddr_t) tl, xfer);
1055 		m1->m_len = len+tlen;
1056 		siz -= xfer;
1057 		cp += xfer;
1058 	}
1059 	*mb = m1;
1060 	*bpos = mtod(m1, caddr_t)+m1->m_len;
1061 	return (0);
1062 }
1063 
1064 /*
1065  * Called once to initialize data structures...
1066  */
1067 int
1068 nfs_init(struct vfsconf *vfsp)
1069 {
1070 	int i;
1071 
1072 	callout_init(&nfs_timer_handle);
1073 	nfsmount_zone = zinit("NFSMOUNT", sizeof(struct nfsmount), 0, 0, 1);
1074 
1075 	nfs_mount_type = vfsp->vfc_typenum;
1076 	nfsrtt.pos = 0;
1077 	rpc_vers = txdr_unsigned(RPC_VER2);
1078 	rpc_call = txdr_unsigned(RPC_CALL);
1079 	rpc_reply = txdr_unsigned(RPC_REPLY);
1080 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1081 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1082 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1083 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1084 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1085 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1086 	nfs_prog = txdr_unsigned(NFS_PROG);
1087 	nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1088 	nfs_true = txdr_unsigned(TRUE);
1089 	nfs_false = txdr_unsigned(FALSE);
1090 	nfs_xdrneg1 = txdr_unsigned(-1);
1091 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1092 	if (nfs_ticks < 1)
1093 		nfs_ticks = 1;
1094 	/* Ensure async daemons disabled */
1095 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
1096 		nfs_iodwant[i] = NULL;
1097 		nfs_iodmount[i] = (struct nfsmount *)0;
1098 	}
1099 	nfs_nhinit();			/* Init the nfsnode table */
1100 #ifndef NFS_NOSERVER
1101 	nfsrv_init(0);			/* Init server data structures */
1102 	nfsrv_initcache();		/* Init the server request cache */
1103 #endif
1104 
1105 	/*
1106 	 * Initialize the nqnfs server stuff.
1107 	 */
1108 	if (nqnfsstarttime == 0) {
1109 		nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1110 			+ nqsrv_clockskew + nqsrv_writeslack;
1111 		NQLOADNOVRAM(nqnfsstarttime);
1112 		CIRCLEQ_INIT(&nqtimerhead);
1113 		nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, &nqfhhash);
1114 	}
1115 
1116 	/*
1117 	 * Initialize reply list and start timer
1118 	 */
1119 	TAILQ_INIT(&nfs_reqq);
1120 
1121 	nfs_timer(0);
1122 
1123 	/*
1124 	 * Set up lease_check and lease_updatetime so that other parts
1125 	 * of the system can call us, if we are loadable.
1126 	 */
1127 #ifndef NFS_NOSERVER
1128 	nfs_prev_vop_lease_check = default_vnode_vops->vop_lease;
1129 	default_vnode_vops->vop_lease = nqnfs_vop_lease_check;
1130 #endif
1131 	nfs_prev_lease_updatetime = lease_updatetime;
1132 	lease_updatetime = nfs_lease_updatetime;
1133 	nfs_prev_nfssvc_sy_narg = sysent[SYS_nfssvc].sy_narg;
1134 	sysent[SYS_nfssvc].sy_narg = 2;
1135 	nfs_prev_nfssvc_sy_call = sysent[SYS_nfssvc].sy_call;
1136 	sysent[SYS_nfssvc].sy_call = (sy_call_t *)nfssvc;
1137 
1138 	nfs_pbuf_freecnt = nswbuf / 2 + 1;
1139 
1140 	return (0);
1141 }
1142 
1143 int
1144 nfs_uninit(struct vfsconf *vfsp)
1145 {
1146 	callout_stop(&nfs_timer_handle);
1147 	nfs_mount_type = -1;
1148 #ifndef NFS_NOSERVER
1149 	default_vnode_vops->vop_lease = nfs_prev_vop_lease_check;
1150 #endif
1151 	lease_updatetime = nfs_prev_lease_updatetime;
1152 	sysent[SYS_nfssvc].sy_narg = nfs_prev_nfssvc_sy_narg;
1153 	sysent[SYS_nfssvc].sy_call = nfs_prev_nfssvc_sy_call;
1154 	return (0);
1155 }
1156 
1157 /*
1158  * Attribute cache routines.
1159  * nfs_loadattrcache() - loads or updates the cache contents from attributes
1160  *	that are on the mbuf list
1161  * nfs_getattrcache() - returns valid attributes if found in cache, returns
1162  *	error otherwise
1163  */
1164 
1165 /*
1166  * Load the attribute cache (that lives in the nfsnode entry) with
1167  * the values on the mbuf list.  Load *vaper with the attributes.  vaper
1168  * may be NULL.
1169  *
1170  * As a side effect n_mtime, which we use to determine if the file was
1171  * modified by some other host, is set to the attribute timestamp and
1172  * NRMODIFIED is set if the two values differ.
1173  *
1174  * WARNING: the mtime loaded into vaper does not necessarily represent
1175  * n_mtime or n_attr.mtime due to NACC and NUPD.
1176  */
1177 int
1178 nfs_loadattrcache(struct vnode **vpp, struct mbuf **mdp, caddr_t *dposp,
1179 		  struct vattr *vaper, int lattr_flags)
1180 {
1181 	struct vnode *vp = *vpp;
1182 	struct vattr *vap;
1183 	struct nfs_fattr *fp;
1184 	struct nfsnode *np;
1185 	int32_t t1;
1186 	caddr_t cp2;
1187 	int error = 0;
1188 	udev_t rdev;
1189 	struct mbuf *md;
1190 	enum vtype vtyp;
1191 	u_short vmode;
1192 	struct timespec mtime;
1193 	int v3 = NFS_ISV3(vp);
1194 
1195 	md = *mdp;
1196 	t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1197 	if ((error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2)) != 0)
1198 		return (error);
1199 	fp = (struct nfs_fattr *)cp2;
1200 	if (v3) {
1201 		vtyp = nfsv3tov_type(fp->fa_type);
1202 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1203 		rdev = makeudev(fxdr_unsigned(int, fp->fa3_rdev.specdata1),
1204 			fxdr_unsigned(int, fp->fa3_rdev.specdata2));
1205 		fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1206 	} else {
1207 		vtyp = nfsv2tov_type(fp->fa_type);
1208 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1209 		/*
1210 		 * XXX
1211 		 *
1212 		 * The duplicate information returned in fa_type and fa_mode
1213 		 * is an ambiguity in the NFS version 2 protocol.
1214 		 *
1215 		 * VREG should be taken literally as a regular file.  If a
1216 		 * server intents to return some type information differently
1217 		 * in the upper bits of the mode field (e.g. for sockets, or
1218 		 * FIFOs), NFSv2 mandates fa_type to be VNON.  Anyway, we
1219 		 * leave the examination of the mode bits even in the VREG
1220 		 * case to avoid breakage for bogus servers, but we make sure
1221 		 * that there are actually type bits set in the upper part of
1222 		 * fa_mode (and failing that, trust the va_type field).
1223 		 *
1224 		 * NFSv3 cleared the issue, and requires fa_mode to not
1225 		 * contain any type information (while also introduing sockets
1226 		 * and FIFOs for fa_type).
1227 		 */
1228 		if (vtyp == VNON || (vtyp == VREG && (vmode & S_IFMT) != 0))
1229 			vtyp = IFTOVT(vmode);
1230 		rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1231 		fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1232 
1233 		/*
1234 		 * Really ugly NFSv2 kludge.
1235 		 */
1236 		if (vtyp == VCHR && rdev == (udev_t)0xffffffff)
1237 			vtyp = VFIFO;
1238 	}
1239 
1240 	/*
1241 	 * If v_type == VNON it is a new node, so fill in the v_type,
1242 	 * n_mtime fields. Check to see if it represents a special
1243 	 * device, and if so, check for a possible alias. Once the
1244 	 * correct vnode has been obtained, fill in the rest of the
1245 	 * information.
1246 	 */
1247 	np = VTONFS(vp);
1248 	if (vp->v_type != vtyp) {
1249 		vp->v_type = vtyp;
1250 		if (vp->v_type == VFIFO) {
1251 			vp->v_ops = &vp->v_mount->mnt_vn_fifo_ops;
1252 		} else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1253 			vp->v_ops = &vp->v_mount->mnt_vn_spec_ops;
1254 			addaliasu(vp, rdev);
1255 		} else {
1256 			vp->v_ops = &vp->v_mount->mnt_vn_use_ops;
1257 		}
1258 		np->n_mtime = mtime.tv_sec;
1259 	} else if (np->n_mtime != mtime.tv_sec) {
1260 		/*
1261 		 * If we haven't modified the file locally and the server
1262 		 * timestamp does not match, then the server probably
1263 		 * modified the file.  We must flag this condition so
1264 		 * the proper syncnronization can be done.  We do not
1265 		 * try to synchronize the state here because that
1266 		 * could lead to an endless recursion.
1267 		 *
1268 		 * XXX loadattrcache can be set during the reply to a write,
1269 		 * before the write timestamp is properly processed.  To
1270 		 * avoid unconditionally setting the rmodified bit (which
1271 		 * has the effect of flushing the cache), we only do this
1272 		 * check if the lmodified bit is not set.
1273 		 */
1274 		np->n_mtime = mtime.tv_sec;
1275 		if ((lattr_flags & NFS_LATTR_NOMTIMECHECK) == 0)
1276 			np->n_flag |= NRMODIFIED;
1277 	}
1278 	vap = &np->n_vattr;
1279 	vap->va_type = vtyp;
1280 	vap->va_mode = (vmode & 07777);
1281 	vap->va_rdev = rdev;
1282 	vap->va_mtime = mtime;
1283 	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1284 	if (v3) {
1285 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1286 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1287 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1288 		vap->va_size = fxdr_hyper(&fp->fa3_size);
1289 		vap->va_blocksize = NFS_FABLKSIZE;
1290 		vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1291 		vap->va_fileid = fxdr_unsigned(int32_t,
1292 		    fp->fa3_fileid.nfsuquad[1]);
1293 		fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1294 		fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1295 		vap->va_flags = 0;
1296 		vap->va_filerev = 0;
1297 	} else {
1298 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1299 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1300 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1301 		vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1302 		vap->va_blocksize = fxdr_unsigned(int32_t, fp->fa2_blocksize);
1303 		vap->va_bytes = (u_quad_t)fxdr_unsigned(int32_t, fp->fa2_blocks)
1304 		    * NFS_FABLKSIZE;
1305 		vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1306 		fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1307 		vap->va_flags = 0;
1308 		vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1309 		    fp->fa2_ctime.nfsv2_sec);
1310 		vap->va_ctime.tv_nsec = 0;
1311 		vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1312 		vap->va_filerev = 0;
1313 	}
1314 	np->n_attrstamp = time_second;
1315 	if (vap->va_size != np->n_size) {
1316 		if (vap->va_type == VREG) {
1317 			if ((lattr_flags & NFS_LATTR_NOSHRINK) &&
1318 			    vap->va_size < np->n_size) {
1319 				/*
1320 				 * We've been told not to shrink the file;
1321 				 * zero np->n_attrstamp to indicate that
1322 				 * the attributes are stale.
1323 				 *
1324 				 * This occurs primarily due to recursive
1325 				 * NFS ops that are executed during periods
1326 				 * where we cannot safely reduce the size of
1327 				 * the file.
1328 				 *
1329 				 * Additionally, write rpcs are broken down
1330 				 * into buffers and np->n_size is
1331 				 * pre-extended.  Setting NRMODIFIED here
1332 				 * can result in n_size getting reset to a
1333 				 * lower value, which is NOT what we want.
1334 				 * XXX this needs to be cleaned up a lot
1335 				 * more.
1336 				 */
1337 				vap->va_size = np->n_size;
1338 				np->n_attrstamp = 0;
1339 				if ((np->n_flag & NLMODIFIED) == 0)
1340 					np->n_flag |= NRMODIFIED;
1341 			} else if (np->n_flag & NLMODIFIED) {
1342 				/*
1343 				 * We've modified the file: Use the larger
1344 				 * of our size, and the server's size.  At
1345 				 * this point the cache coherency is all
1346 				 * shot to hell.  To try to handle multiple
1347 				 * clients appending to the file at the same
1348 				 * time mark that the server has changed
1349 				 * the file if the server's notion of the
1350 				 * file size is larger then our notion.
1351 				 *
1352 				 * XXX this needs work.
1353 				 */
1354 				if (vap->va_size < np->n_size) {
1355 					vap->va_size = np->n_size;
1356 				} else {
1357 					np->n_size = vap->va_size;
1358 					np->n_flag |= NRMODIFIED;
1359 				}
1360 			} else {
1361 				/*
1362 				 * Someone changed the file's size on the
1363 				 * server and there are no local changes
1364 				 * to get in the way, set the size and mark
1365 				 * it.
1366 				 */
1367 				np->n_size = vap->va_size;
1368 				np->n_flag |= NRMODIFIED;
1369 			}
1370 			vnode_pager_setsize(vp, np->n_size);
1371 		} else {
1372 			np->n_size = vap->va_size;
1373 		}
1374 	}
1375 	if (vaper != NULL) {
1376 		bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
1377 		if (np->n_flag & NCHG) {
1378 			if (np->n_flag & NACC)
1379 				vaper->va_atime = np->n_atim;
1380 			if (np->n_flag & NUPD)
1381 				vaper->va_mtime = np->n_mtim;
1382 		}
1383 	}
1384 	return (0);
1385 }
1386 
1387 #ifdef NFS_ACDEBUG
1388 #include <sys/sysctl.h>
1389 SYSCTL_DECL(_vfs_nfs);
1390 static int nfs_acdebug;
1391 SYSCTL_INT(_vfs_nfs, OID_AUTO, acdebug, CTLFLAG_RW, &nfs_acdebug, 0, "");
1392 #endif
1393 
1394 /*
1395  * Check the time stamp
1396  * If the cache is valid, copy contents to *vap and return 0
1397  * otherwise return an error
1398  */
1399 int
1400 nfs_getattrcache(struct vnode *vp, struct vattr *vaper)
1401 {
1402 	struct nfsnode *np;
1403 	struct vattr *vap;
1404 	struct nfsmount *nmp;
1405 	int timeo;
1406 
1407 	np = VTONFS(vp);
1408 	vap = &np->n_vattr;
1409 	nmp = VFSTONFS(vp->v_mount);
1410 
1411 	/*
1412 	 * Dynamic timeout based on how recently the file was modified.
1413 	 * n_mtime is always valid.
1414 	 */
1415 	timeo = (get_approximate_time_t() - np->n_mtime) / 60;
1416 
1417 #ifdef NFS_ACDEBUG
1418 	if (nfs_acdebug>1)
1419 		printf("nfs_getattrcache: initial timeo = %d\n", timeo);
1420 #endif
1421 
1422 	if (vap->va_type == VDIR) {
1423 		if ((np->n_flag & NLMODIFIED) || timeo < nmp->nm_acdirmin)
1424 			timeo = nmp->nm_acdirmin;
1425 		else if (timeo > nmp->nm_acdirmax)
1426 			timeo = nmp->nm_acdirmax;
1427 	} else {
1428 		if ((np->n_flag & NLMODIFIED) || timeo < nmp->nm_acregmin)
1429 			timeo = nmp->nm_acregmin;
1430 		else if (timeo > nmp->nm_acregmax)
1431 			timeo = nmp->nm_acregmax;
1432 	}
1433 
1434 #ifdef NFS_ACDEBUG
1435 	if (nfs_acdebug > 2)
1436 		printf("acregmin %d; acregmax %d; acdirmin %d; acdirmax %d\n",
1437 			nmp->nm_acregmin, nmp->nm_acregmax,
1438 			nmp->nm_acdirmin, nmp->nm_acdirmax);
1439 
1440 	if (nfs_acdebug)
1441 		printf("nfs_getattrcache: age = %d; final timeo = %d\n",
1442 			(int)(time_second - np->n_attrstamp), timeo);
1443 #endif
1444 
1445 	if (np->n_attrstamp == 0 || (time_second - np->n_attrstamp) >= timeo) {
1446 		nfsstats.attrcache_misses++;
1447 		return (ENOENT);
1448 	}
1449 	nfsstats.attrcache_hits++;
1450 
1451 	/*
1452 	 * Our attribute cache can be stale due to modifications made on
1453 	 * this host.  XXX this is a bad hack.  We need a more deterministic
1454 	 * means of finding out which np fields are valid verses attr cache
1455 	 * fields.  We really should update the vattr info on the fly when
1456 	 * making local changes.
1457 	 */
1458 	if (vap->va_size != np->n_size) {
1459 		if (vap->va_type == VREG) {
1460 			if (np->n_flag & NLMODIFIED) {
1461 				if (vap->va_size < np->n_size)
1462 					vap->va_size = np->n_size;
1463 				else
1464 					np->n_size = vap->va_size;
1465 			} else {
1466 				np->n_size = vap->va_size;
1467 			}
1468 			vnode_pager_setsize(vp, np->n_size);
1469 		} else {
1470 			np->n_size = vap->va_size;
1471 		}
1472 	}
1473 	bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(struct vattr));
1474 	if (np->n_flag & NCHG) {
1475 		if (np->n_flag & NACC)
1476 			vaper->va_atime = np->n_atim;
1477 		if (np->n_flag & NUPD)
1478 			vaper->va_mtime = np->n_mtim;
1479 	}
1480 	return (0);
1481 }
1482 
1483 #ifndef NFS_NOSERVER
1484 
1485 /*
1486  * Set up nameidata for a lookup() call and do it.
1487  *
1488  * If pubflag is set, this call is done for a lookup operation on the
1489  * public filehandle. In that case we allow crossing mountpoints and
1490  * absolute pathnames. However, the caller is expected to check that
1491  * the lookup result is within the public fs, and deny access if
1492  * it is not.
1493  *
1494  * dirp may be set whether an error is returned or not, and must be
1495  * released by the caller.
1496  *
1497  * On return nd->nl_ncp usually points to the target ncp, which may represent
1498  * a negative hit.
1499  *
1500  * NOTE: the caller must call nlookup_done(nd) unconditionally on return
1501  * to cleanup.
1502  */
1503 int
1504 nfs_namei(struct nlookupdata *nd, struct ucred *cred, int nameiop,
1505 	struct vnode **dvpp, struct vnode **vpp,
1506 	fhandle_t *fhp, int len,
1507 	struct nfssvc_sock *slp, struct sockaddr *nam, struct mbuf **mdp,
1508 	caddr_t *dposp, struct vnode **dirpp, struct thread *td,
1509 	int kerbflag, int pubflag)
1510 {
1511 	int i, rem;
1512 	int flags;
1513 	struct mbuf *md;
1514 	char *fromcp, *tocp, *cp;
1515 	char *namebuf;
1516 	struct namecache *ncp;
1517 	struct vnode *dp;
1518 	int error, rdonly;
1519 
1520 	namebuf = zalloc(namei_zone);
1521 	flags = 0;
1522 	*dirpp = NULL;
1523 
1524 	/*
1525 	 * Copy the name from the mbuf list to namebuf.
1526 	 */
1527 	fromcp = *dposp;
1528 	tocp = namebuf;
1529 	md = *mdp;
1530 	rem = mtod(md, caddr_t) + md->m_len - fromcp;
1531 	for (i = 0; i < len; i++) {
1532 		while (rem == 0) {
1533 			md = md->m_next;
1534 			if (md == NULL) {
1535 				error = EBADRPC;
1536 				goto out;
1537 			}
1538 			fromcp = mtod(md, caddr_t);
1539 			rem = md->m_len;
1540 		}
1541 		if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1542 			error = EACCES;
1543 			goto out;
1544 		}
1545 		*tocp++ = *fromcp++;
1546 		rem--;
1547 	}
1548 	*tocp = '\0';
1549 	*mdp = md;
1550 	*dposp = fromcp;
1551 	len = nfsm_rndup(len)-len;
1552 	if (len > 0) {
1553 		if (rem >= len)
1554 			*dposp += len;
1555 		else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1556 			goto out;
1557 	}
1558 
1559 	/*
1560 	 * Extract and set starting directory.  The returned dp is refd
1561 	 * but not locked.
1562 	 */
1563 	error = nfsrv_fhtovp(fhp, FALSE, &dp, cred, slp,
1564 				nam, &rdonly, kerbflag, pubflag);
1565 	if (error)
1566 		goto out;
1567 	if (dp->v_type != VDIR) {
1568 		vrele(dp);
1569 		error = ENOTDIR;
1570 		goto out;
1571 	}
1572 
1573 	/*
1574 	 * Set return directory.  Reference to dp is implicitly transfered
1575 	 * to the returned pointer.  This must be set before we potentially
1576 	 * goto out below.
1577 	 */
1578 	*dirpp = dp;
1579 
1580 	if (pubflag) {
1581 		/*
1582 		 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1583 		 * and the 'native path' indicator.
1584 		 */
1585 		cp = zalloc(namei_zone);
1586 		fromcp = namebuf;
1587 		tocp = cp;
1588 		if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1589 			switch ((unsigned char)*fromcp) {
1590 			case WEBNFS_NATIVE_CHAR:
1591 				/*
1592 				 * 'Native' path for us is the same
1593 				 * as a path according to the NFS spec,
1594 				 * just skip the escape char.
1595 				 */
1596 				fromcp++;
1597 				break;
1598 			/*
1599 			 * More may be added in the future, range 0x80-0xff
1600 			 */
1601 			default:
1602 				error = EIO;
1603 				zfree(namei_zone, cp);
1604 				goto out;
1605 			}
1606 		}
1607 		/*
1608 		 * Translate the '%' escapes, URL-style.
1609 		 */
1610 		while (*fromcp != '\0') {
1611 			if (*fromcp == WEBNFS_ESC_CHAR) {
1612 				if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1613 					fromcp++;
1614 					*tocp++ = HEXSTRTOI(fromcp);
1615 					fromcp += 2;
1616 					continue;
1617 				} else {
1618 					error = ENOENT;
1619 					zfree(namei_zone, cp);
1620 					goto out;
1621 				}
1622 			} else
1623 				*tocp++ = *fromcp++;
1624 		}
1625 		*tocp = '\0';
1626 		zfree(namei_zone, namebuf);
1627 		namebuf = cp;
1628 	}
1629 
1630 	/*
1631 	 * Setup for search.  We need to get a start directory from dp.  Note
1632 	 * that dp is ref'd, but we no longer 'own' the ref (*dirpp owns it).
1633 	 */
1634 	if (pubflag == 0) {
1635 		flags |= NLC_NFS_NOSOFTLINKTRAV;
1636 		flags |= NLC_NOCROSSMOUNT;
1637 	}
1638 	if (rdonly)
1639 		flags |= NLC_NFS_RDONLY;
1640 	if (nameiop == NAMEI_CREATE || nameiop == NAMEI_RENAME)
1641 		flags |= NLC_CREATE;
1642 
1643 	/*
1644 	 * We need a starting ncp from the directory vnode dp.  dp must not
1645 	 * be locked.  The returned ncp will be refd but not locked.
1646 	 *
1647 	 * If no suitable ncp is found we instruct cache_fromdvp() to create
1648 	 * one.  If this fails the directory has probably been removed while
1649 	 * the target was chdir'd into it and any further lookup will fail.
1650 	 */
1651 	if ((ncp = cache_fromdvp(dp, cred, 1)) == NULL) {
1652 		error = EINVAL;
1653 		goto out;
1654 	}
1655 	nlookup_init_raw(nd, namebuf, UIO_SYSSPACE, flags, cred, ncp);
1656 	cache_drop(ncp);
1657 
1658 	/*
1659 	 * Ok, do the lookup.
1660 	 */
1661 	error = nlookup(nd);
1662 
1663 	/*
1664 	 * If no error occured return the requested dvpp and vpp.  If
1665 	 * NLC_CREATE was specified nd->nl_ncp may represent a negative
1666 	 * cache hit in which case we do not attempt to obtain the vp.
1667 	 */
1668 	if (error == 0) {
1669 		ncp = nd->nl_ncp;
1670 		if (dvpp) {
1671 			if (ncp->nc_parent &&
1672 			    ncp->nc_parent->nc_mount == ncp->nc_mount) {
1673 				error = cache_vget(ncp->nc_parent, nd->nl_cred,
1674 						LK_EXCLUSIVE, dvpp);
1675 			} else {
1676 				error = ENXIO;
1677 			}
1678 		}
1679 		if (vpp && ncp->nc_vp) {
1680 			error = cache_vget(ncp, nd->nl_cred, LK_EXCLUSIVE, vpp);
1681 		}
1682 		if (error) {
1683 			if (dvpp && *dvpp) {
1684 				vput(*dvpp);
1685 				*dvpp = NULL;
1686 			}
1687 			if (vpp && *vpp) {
1688 				vput(*vpp);
1689 				*vpp = NULL;
1690 			}
1691 		}
1692 	}
1693 
1694 	/*
1695 	 * Finish up.
1696 	 */
1697 out:
1698 	zfree(namei_zone, namebuf);
1699 	return (error);
1700 }
1701 
1702 /*
1703  * A fiddled version of m_adj() that ensures null fill to a long
1704  * boundary and only trims off the back end
1705  */
1706 void
1707 nfsm_adj(struct mbuf *mp, int len, int nul)
1708 {
1709 	struct mbuf *m;
1710 	int count, i;
1711 	char *cp;
1712 
1713 	/*
1714 	 * Trim from tail.  Scan the mbuf chain,
1715 	 * calculating its length and finding the last mbuf.
1716 	 * If the adjustment only affects this mbuf, then just
1717 	 * adjust and return.  Otherwise, rescan and truncate
1718 	 * after the remaining size.
1719 	 */
1720 	count = 0;
1721 	m = mp;
1722 	for (;;) {
1723 		count += m->m_len;
1724 		if (m->m_next == (struct mbuf *)0)
1725 			break;
1726 		m = m->m_next;
1727 	}
1728 	if (m->m_len > len) {
1729 		m->m_len -= len;
1730 		if (nul > 0) {
1731 			cp = mtod(m, caddr_t)+m->m_len-nul;
1732 			for (i = 0; i < nul; i++)
1733 				*cp++ = '\0';
1734 		}
1735 		return;
1736 	}
1737 	count -= len;
1738 	if (count < 0)
1739 		count = 0;
1740 	/*
1741 	 * Correct length for chain is "count".
1742 	 * Find the mbuf with last data, adjust its length,
1743 	 * and toss data from remaining mbufs on chain.
1744 	 */
1745 	for (m = mp; m; m = m->m_next) {
1746 		if (m->m_len >= count) {
1747 			m->m_len = count;
1748 			if (nul > 0) {
1749 				cp = mtod(m, caddr_t)+m->m_len-nul;
1750 				for (i = 0; i < nul; i++)
1751 					*cp++ = '\0';
1752 			}
1753 			break;
1754 		}
1755 		count -= m->m_len;
1756 	}
1757 	for (m = m->m_next;m;m = m->m_next)
1758 		m->m_len = 0;
1759 }
1760 
1761 /*
1762  * Make these functions instead of macros, so that the kernel text size
1763  * doesn't get too big...
1764  */
1765 void
1766 nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret,
1767 	    struct vattr *before_vap, int after_ret, struct vattr *after_vap,
1768 	    struct mbuf **mbp, char **bposp)
1769 {
1770 	struct mbuf *mb = *mbp, *mb2;
1771 	char *bpos = *bposp;
1772 	u_int32_t *tl;
1773 
1774 	/*
1775 	 * before_ret is 0 if before_vap is valid, non-zero if it isn't.
1776 	 */
1777 	if (before_ret) {
1778 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1779 		*tl = nfs_false;
1780 	} else {
1781 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
1782 		*tl++ = nfs_true;
1783 		txdr_hyper(before_vap->va_size, tl);
1784 		tl += 2;
1785 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
1786 		tl += 2;
1787 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
1788 	}
1789 	*bposp = bpos;
1790 	*mbp = mb;
1791 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
1792 }
1793 
1794 void
1795 nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret,
1796 		   struct vattr *after_vap, struct mbuf **mbp, char **bposp)
1797 {
1798 	struct mbuf *mb = *mbp, *mb2;
1799 	char *bpos = *bposp;
1800 	u_int32_t *tl;
1801 	struct nfs_fattr *fp;
1802 
1803 	if (after_ret) {
1804 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1805 		*tl = nfs_false;
1806 	} else {
1807 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
1808 		*tl++ = nfs_true;
1809 		fp = (struct nfs_fattr *)tl;
1810 		nfsm_srvfattr(nfsd, after_vap, fp);
1811 	}
1812 	*mbp = mb;
1813 	*bposp = bpos;
1814 }
1815 
1816 void
1817 nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap,
1818 	      struct nfs_fattr *fp)
1819 {
1820 
1821 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
1822 	fp->fa_uid = txdr_unsigned(vap->va_uid);
1823 	fp->fa_gid = txdr_unsigned(vap->va_gid);
1824 	if (nfsd->nd_flag & ND_NFSV3) {
1825 		fp->fa_type = vtonfsv3_type(vap->va_type);
1826 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
1827 		txdr_hyper(vap->va_size, &fp->fa3_size);
1828 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
1829 		fp->fa3_rdev.specdata1 = txdr_unsigned(umajor(vap->va_rdev));
1830 		fp->fa3_rdev.specdata2 = txdr_unsigned(uminor(vap->va_rdev));
1831 		fp->fa3_fsid.nfsuquad[0] = 0;
1832 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
1833 		fp->fa3_fileid.nfsuquad[0] = 0;
1834 		fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
1835 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
1836 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
1837 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
1838 	} else {
1839 		fp->fa_type = vtonfsv2_type(vap->va_type);
1840 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1841 		fp->fa2_size = txdr_unsigned(vap->va_size);
1842 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
1843 		if (vap->va_type == VFIFO)
1844 			fp->fa2_rdev = 0xffffffff;
1845 		else
1846 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
1847 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
1848 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
1849 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
1850 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
1851 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
1852 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
1853 	}
1854 }
1855 
1856 /*
1857  * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
1858  * 	- look up fsid in mount list (if not found ret error)
1859  *	- get vp and export rights by calling VFS_FHTOVP()
1860  *	- if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
1861  *	- if not lockflag unlock it with VOP_UNLOCK()
1862  */
1863 int
1864 nfsrv_fhtovp(fhandle_t *fhp, int lockflag, struct vnode **vpp,
1865 	     struct ucred *cred, struct nfssvc_sock *slp, struct sockaddr *nam,
1866 	     int *rdonlyp, int kerbflag, int pubflag)
1867 {
1868 	struct thread *td = curthread; /* XXX */
1869 	struct mount *mp;
1870 	int i;
1871 	struct ucred *credanon;
1872 	int error, exflags;
1873 #ifdef MNT_EXNORESPORT		/* XXX needs mountd and /etc/exports help yet */
1874 	struct sockaddr_int *saddr;
1875 #endif
1876 
1877 	*vpp = (struct vnode *)0;
1878 
1879 	if (nfs_ispublicfh(fhp)) {
1880 		if (!pubflag || !nfs_pub.np_valid)
1881 			return (ESTALE);
1882 		fhp = &nfs_pub.np_handle;
1883 	}
1884 
1885 	mp = vfs_getvfs(&fhp->fh_fsid);
1886 	if (!mp)
1887 		return (ESTALE);
1888 	error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
1889 	if (error)
1890 		return (error);
1891 	error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
1892 	if (error)
1893 		return (error);
1894 #ifdef MNT_EXNORESPORT
1895 	if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
1896 		saddr = (struct sockaddr_in *)nam;
1897 		if (saddr->sin_family == AF_INET &&
1898 		    ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
1899 			vput(*vpp);
1900 			*vpp = NULL;
1901 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
1902 		}
1903 	}
1904 #endif
1905 	/*
1906 	 * Check/setup credentials.
1907 	 */
1908 	if (exflags & MNT_EXKERB) {
1909 		if (!kerbflag) {
1910 			vput(*vpp);
1911 			*vpp = NULL;
1912 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
1913 		}
1914 	} else if (kerbflag) {
1915 		vput(*vpp);
1916 		*vpp = NULL;
1917 		return (NFSERR_AUTHERR | AUTH_TOOWEAK);
1918 	} else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
1919 		cred->cr_uid = credanon->cr_uid;
1920 		for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
1921 			cred->cr_groups[i] = credanon->cr_groups[i];
1922 		cred->cr_ngroups = i;
1923 	}
1924 	if (exflags & MNT_EXRDONLY)
1925 		*rdonlyp = 1;
1926 	else
1927 		*rdonlyp = 0;
1928 
1929 	nfsrv_object_create(*vpp);
1930 
1931 	if (!lockflag)
1932 		VOP_UNLOCK(*vpp, 0, td);
1933 	return (0);
1934 }
1935 
1936 
1937 /*
1938  * WebNFS: check if a filehandle is a public filehandle. For v3, this
1939  * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
1940  * transformed this to all zeroes in both cases, so check for it.
1941  */
1942 int
1943 nfs_ispublicfh(fhandle_t *fhp)
1944 {
1945 	char *cp = (char *)fhp;
1946 	int i;
1947 
1948 	for (i = 0; i < NFSX_V3FH; i++)
1949 		if (*cp++ != 0)
1950 			return (FALSE);
1951 	return (TRUE);
1952 }
1953 
1954 #endif /* NFS_NOSERVER */
1955 /*
1956  * This function compares two net addresses by family and returns TRUE
1957  * if they are the same host.
1958  * If there is any doubt, return FALSE.
1959  * The AF_INET family is handled as a special case so that address mbufs
1960  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
1961  */
1962 int
1963 netaddr_match(int family, union nethostaddr *haddr, struct sockaddr *nam)
1964 {
1965 	struct sockaddr_in *inetaddr;
1966 
1967 	switch (family) {
1968 	case AF_INET:
1969 		inetaddr = (struct sockaddr_in *)nam;
1970 		if (inetaddr->sin_family == AF_INET &&
1971 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
1972 			return (1);
1973 		break;
1974 	default:
1975 		break;
1976 	};
1977 	return (0);
1978 }
1979 
1980 static nfsuint64 nfs_nullcookie = { { 0, 0 } };
1981 /*
1982  * This function finds the directory cookie that corresponds to the
1983  * logical byte offset given.
1984  */
1985 nfsuint64 *
1986 nfs_getcookie(struct nfsnode *np, off_t off, int add)
1987 {
1988 	struct nfsdmap *dp, *dp2;
1989 	int pos;
1990 
1991 	pos = (uoff_t)off / NFS_DIRBLKSIZ;
1992 	if (pos == 0 || off < 0) {
1993 #ifdef DIAGNOSTIC
1994 		if (add)
1995 			panic("nfs getcookie add at <= 0");
1996 #endif
1997 		return (&nfs_nullcookie);
1998 	}
1999 	pos--;
2000 	dp = np->n_cookies.lh_first;
2001 	if (!dp) {
2002 		if (add) {
2003 			MALLOC(dp, struct nfsdmap *, sizeof (struct nfsdmap),
2004 				M_NFSDIROFF, M_WAITOK);
2005 			dp->ndm_eocookie = 0;
2006 			LIST_INSERT_HEAD(&np->n_cookies, dp, ndm_list);
2007 		} else
2008 			return ((nfsuint64 *)0);
2009 	}
2010 	while (pos >= NFSNUMCOOKIES) {
2011 		pos -= NFSNUMCOOKIES;
2012 		if (dp->ndm_list.le_next) {
2013 			if (!add && dp->ndm_eocookie < NFSNUMCOOKIES &&
2014 				pos >= dp->ndm_eocookie)
2015 				return ((nfsuint64 *)0);
2016 			dp = dp->ndm_list.le_next;
2017 		} else if (add) {
2018 			MALLOC(dp2, struct nfsdmap *, sizeof (struct nfsdmap),
2019 				M_NFSDIROFF, M_WAITOK);
2020 			dp2->ndm_eocookie = 0;
2021 			LIST_INSERT_AFTER(dp, dp2, ndm_list);
2022 			dp = dp2;
2023 		} else
2024 			return ((nfsuint64 *)0);
2025 	}
2026 	if (pos >= dp->ndm_eocookie) {
2027 		if (add)
2028 			dp->ndm_eocookie = pos + 1;
2029 		else
2030 			return ((nfsuint64 *)0);
2031 	}
2032 	return (&dp->ndm_cookies[pos]);
2033 }
2034 
2035 /*
2036  * Invalidate cached directory information, except for the actual directory
2037  * blocks (which are invalidated separately).
2038  * Done mainly to avoid the use of stale offset cookies.
2039  */
2040 void
2041 nfs_invaldir(struct vnode *vp)
2042 {
2043 	struct nfsnode *np = VTONFS(vp);
2044 
2045 #ifdef DIAGNOSTIC
2046 	if (vp->v_type != VDIR)
2047 		panic("nfs: invaldir not dir");
2048 #endif
2049 	np->n_direofoffset = 0;
2050 	np->n_cookieverf.nfsuquad[0] = 0;
2051 	np->n_cookieverf.nfsuquad[1] = 0;
2052 	if (np->n_cookies.lh_first)
2053 		np->n_cookies.lh_first->ndm_eocookie = 0;
2054 }
2055 
2056 /*
2057  * The write verifier has changed (probably due to a server reboot), so all
2058  * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2059  * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2060  * and B_CLUSTEROK flags.  Once done the new write verifier can be set for the
2061  * mount point.
2062  *
2063  * B_CLUSTEROK must be cleared along with B_NEEDCOMMIT because stage 1 data
2064  * writes are not clusterable.
2065  */
2066 
2067 static int nfs_clearcommit_bp(struct buf *bp, void *data __unused);
2068 
2069 void
2070 nfs_clearcommit(struct mount *mp)
2071 {
2072 	struct vnode *vp, *nvp;
2073 	lwkt_tokref ilock;
2074 
2075 	lwkt_gettoken(&ilock, &mntvnode_token);
2076 	crit_enter();
2077 	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
2078 		nvp = TAILQ_NEXT(vp, v_nmntvnodes);	/* ZZZ */
2079 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2080 			nfs_clearcommit_bp, NULL);
2081 	}
2082 	crit_exit();
2083 	lwkt_reltoken(&ilock);
2084 }
2085 
2086 static int
2087 nfs_clearcommit_bp(struct buf *bp, void *data __unused)
2088 {
2089 	if (BUF_REFCNT(bp) == 0 &&
2090 	    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2091 	     == (B_DELWRI | B_NEEDCOMMIT)) {
2092 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2093 	}
2094 	return(0);
2095 }
2096 
2097 #ifndef NFS_NOSERVER
2098 /*
2099  * Map errnos to NFS error numbers. For Version 3 also filter out error
2100  * numbers not specified for the associated procedure.
2101  */
2102 int
2103 nfsrv_errmap(struct nfsrv_descript *nd, int err)
2104 {
2105 	short *defaulterrp, *errp;
2106 
2107 	if (nd->nd_flag & ND_NFSV3) {
2108 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
2109 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2110 		while (*++errp) {
2111 			if (*errp == err)
2112 				return (err);
2113 			else if (*errp > err)
2114 				break;
2115 		}
2116 		return ((int)*defaulterrp);
2117 	    } else
2118 		return (err & 0xffff);
2119 	}
2120 	if (err <= ELAST)
2121 		return ((int)nfsrv_v2errmap[err - 1]);
2122 	return (NFSERR_IO);
2123 }
2124 
2125 int
2126 nfsrv_object_create(struct vnode *vp)
2127 {
2128 	struct thread *td = curthread;
2129 
2130 	if (vp == NULL || vp->v_type != VREG)
2131 		return (1);
2132 	return (vfs_object_create(vp, td));
2133 }
2134 
2135 /*
2136  * Sort the group list in increasing numerical order.
2137  * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2138  *  that used to be here.)
2139  */
2140 void
2141 nfsrvw_sort(gid_t *list, int num)
2142 {
2143 	int i, j;
2144 	gid_t v;
2145 
2146 	/* Insertion sort. */
2147 	for (i = 1; i < num; i++) {
2148 		v = list[i];
2149 		/* find correct slot for value v, moving others up */
2150 		for (j = i; --j >= 0 && v < list[j];)
2151 			list[j + 1] = list[j];
2152 		list[j + 1] = v;
2153 	}
2154 }
2155 
2156 /*
2157  * copy credentials making sure that the result can be compared with bcmp().
2158  */
2159 void
2160 nfsrv_setcred(struct ucred *incred, struct ucred *outcred)
2161 {
2162 	int i;
2163 
2164 	bzero((caddr_t)outcred, sizeof (struct ucred));
2165 	outcred->cr_ref = 1;
2166 	outcred->cr_uid = incred->cr_uid;
2167 	outcred->cr_ngroups = incred->cr_ngroups;
2168 	for (i = 0; i < incred->cr_ngroups; i++)
2169 		outcred->cr_groups[i] = incred->cr_groups[i];
2170 	nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2171 }
2172 #endif /* NFS_NOSERVER */
2173