xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 19fe1c42)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsspec_read (struct vop_read_args *);
98 static int	nfsspec_write (struct vop_write_args *);
99 static int	nfsfifo_read (struct vop_read_args *);
100 static int	nfsfifo_write (struct vop_write_args *);
101 static int	nfsspec_close (struct vop_close_args *);
102 static int	nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static	int	nfs_lookup (struct vop_old_lookup_args *);
106 static	int	nfs_create (struct vop_old_create_args *);
107 static	int	nfs_mknod (struct vop_old_mknod_args *);
108 static	int	nfs_open (struct vop_open_args *);
109 static	int	nfs_close (struct vop_close_args *);
110 static	int	nfs_access (struct vop_access_args *);
111 static	int	nfs_getattr (struct vop_getattr_args *);
112 static	int	nfs_setattr (struct vop_setattr_args *);
113 static	int	nfs_read (struct vop_read_args *);
114 static	int	nfs_mmap (struct vop_mmap_args *);
115 static	int	nfs_fsync (struct vop_fsync_args *);
116 static	int	nfs_remove (struct vop_old_remove_args *);
117 static	int	nfs_link (struct vop_old_link_args *);
118 static	int	nfs_rename (struct vop_old_rename_args *);
119 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
120 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
121 static	int	nfs_symlink (struct vop_old_symlink_args *);
122 static	int	nfs_readdir (struct vop_readdir_args *);
123 static	int	nfs_bmap (struct vop_bmap_args *);
124 static	int	nfs_strategy (struct vop_strategy_args *);
125 static	int	nfs_lookitup (struct vnode *, const char *, int,
126 			struct ucred *, struct thread *, struct nfsnode **);
127 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int	nfsspec_access (struct vop_access_args *);
129 static int	nfs_readlink (struct vop_readlink_args *);
130 static int	nfs_print (struct vop_print_args *);
131 static int	nfs_advlock (struct vop_advlock_args *);
132 
133 static	int	nfs_nresolve (struct vop_nresolve_args *);
134 /*
135  * Global vfs data structures for nfs
136  */
137 struct vop_ops nfsv2_vnode_vops = {
138 	.vop_default =		vop_defaultop,
139 	.vop_access =		nfs_access,
140 	.vop_advlock =		nfs_advlock,
141 	.vop_bmap =		nfs_bmap,
142 	.vop_close =		nfs_close,
143 	.vop_old_create =	nfs_create,
144 	.vop_fsync =		nfs_fsync,
145 	.vop_getattr =		nfs_getattr,
146 	.vop_getpages =		nfs_getpages,
147 	.vop_putpages =		nfs_putpages,
148 	.vop_inactive =		nfs_inactive,
149 	.vop_old_link =		nfs_link,
150 	.vop_old_lookup =	nfs_lookup,
151 	.vop_old_mkdir =	nfs_mkdir,
152 	.vop_old_mknod =	nfs_mknod,
153 	.vop_mmap =		nfs_mmap,
154 	.vop_open =		nfs_open,
155 	.vop_poll =		nfs_poll,
156 	.vop_print =		nfs_print,
157 	.vop_read =		nfs_read,
158 	.vop_readdir =		nfs_readdir,
159 	.vop_readlink =		nfs_readlink,
160 	.vop_reclaim =		nfs_reclaim,
161 	.vop_old_remove =	nfs_remove,
162 	.vop_old_rename =	nfs_rename,
163 	.vop_old_rmdir =	nfs_rmdir,
164 	.vop_setattr =		nfs_setattr,
165 	.vop_strategy =		nfs_strategy,
166 	.vop_old_symlink =	nfs_symlink,
167 	.vop_write =		nfs_write,
168 	.vop_nresolve =		nfs_nresolve
169 };
170 
171 /*
172  * Special device vnode ops
173  */
174 struct vop_ops nfsv2_spec_vops = {
175 	.vop_default =		spec_vnoperate,
176 	.vop_access =		nfsspec_access,
177 	.vop_close =		nfsspec_close,
178 	.vop_fsync =		nfs_fsync,
179 	.vop_getattr =		nfs_getattr,
180 	.vop_inactive =		nfs_inactive,
181 	.vop_print =		nfs_print,
182 	.vop_read =		nfsspec_read,
183 	.vop_reclaim =		nfs_reclaim,
184 	.vop_setattr =		nfs_setattr,
185 	.vop_write =		nfsspec_write
186 };
187 
188 struct vop_ops nfsv2_fifo_vops = {
189 	.vop_default =		fifo_vnoperate,
190 	.vop_access =		nfsspec_access,
191 	.vop_close =		nfsfifo_close,
192 	.vop_fsync =		nfs_fsync,
193 	.vop_getattr =		nfs_getattr,
194 	.vop_inactive =		nfs_inactive,
195 	.vop_print =		nfs_print,
196 	.vop_read =		nfsfifo_read,
197 	.vop_reclaim =		nfs_reclaim,
198 	.vop_setattr =		nfs_setattr,
199 	.vop_write =		nfsfifo_write
200 };
201 
202 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
203 				  struct componentname *cnp,
204 				  struct vattr *vap);
205 static int	nfs_removerpc (struct vnode *dvp, const char *name,
206 				   int namelen,
207 				   struct ucred *cred, struct thread *td);
208 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
209 				   int fnamelen, struct vnode *tdvp,
210 				   const char *tnameptr, int tnamelen,
211 				   struct ucred *cred, struct thread *td);
212 static int	nfs_renameit (struct vnode *sdvp,
213 				  struct componentname *scnp,
214 				  struct sillyrename *sp);
215 
216 /*
217  * Global variables
218  */
219 extern u_int32_t nfs_true, nfs_false;
220 extern u_int32_t nfs_xdrneg1;
221 extern struct nfsstats nfsstats;
222 extern nfstype nfsv3_type[9];
223 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
224 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
225 int nfs_numasync = 0;
226 
227 SYSCTL_DECL(_vfs_nfs);
228 
229 static int nfs_flush_on_rename = 1;
230 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
231 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
232 static int nfs_flush_on_hlink = 0;
233 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
234 	   &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
235 
236 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
237 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
238 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
239 
240 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
242 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
243 
244 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
245 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
246 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
247 
248 static int	nfsv3_commit_on_close = 0;
249 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
250 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
251 #if 0
252 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
253 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
254 
255 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
256 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
257 #endif
258 
259 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
260 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
261 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
262 static int
263 nfs3_access_otw(struct vnode *vp, int wmode,
264 		struct thread *td, struct ucred *cred)
265 {
266 	const int v3 = 1;
267 	u_int32_t *tl;
268 	int error = 0, attrflag;
269 
270 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
271 	caddr_t bpos, dpos, cp2;
272 	int32_t t1, t2;
273 	caddr_t cp;
274 	u_int32_t rmode;
275 	struct nfsnode *np = VTONFS(vp);
276 
277 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
278 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
279 	nfsm_fhtom(vp, v3);
280 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
281 	*tl = txdr_unsigned(wmode);
282 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
283 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
284 	if (!error) {
285 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
286 		rmode = fxdr_unsigned(u_int32_t, *tl);
287 		np->n_mode = rmode;
288 		np->n_modeuid = cred->cr_uid;
289 		np->n_modestamp = mycpu->gd_time_seconds;
290 	}
291 	m_freem(mrep);
292 nfsmout:
293 	return error;
294 }
295 
296 /*
297  * nfs access vnode op.
298  * For nfs version 2, just return ok. File accesses may fail later.
299  * For nfs version 3, use the access rpc to check accessibility. If file modes
300  * are changed on the server, accesses might still fail later.
301  *
302  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
303  */
304 static int
305 nfs_access(struct vop_access_args *ap)
306 {
307 	struct vnode *vp = ap->a_vp;
308 	thread_t td = curthread;
309 	int error = 0;
310 	u_int32_t mode, wmode;
311 	int v3 = NFS_ISV3(vp);
312 	struct nfsnode *np = VTONFS(vp);
313 
314 	/*
315 	 * Disallow write attempts on filesystems mounted read-only;
316 	 * unless the file is a socket, fifo, or a block or character
317 	 * device resident on the filesystem.
318 	 */
319 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
320 		switch (vp->v_type) {
321 		case VREG:
322 		case VDIR:
323 		case VLNK:
324 			return (EROFS);
325 		default:
326 			break;
327 		}
328 	}
329 	/*
330 	 * For nfs v3, check to see if we have done this recently, and if
331 	 * so return our cached result instead of making an ACCESS call.
332 	 * If not, do an access rpc, otherwise you are stuck emulating
333 	 * ufs_access() locally using the vattr. This may not be correct,
334 	 * since the server may apply other access criteria such as
335 	 * client uid-->server uid mapping that we do not know about.
336 	 */
337 	if (v3) {
338 		if (ap->a_mode & VREAD)
339 			mode = NFSV3ACCESS_READ;
340 		else
341 			mode = 0;
342 		if (vp->v_type != VDIR) {
343 			if (ap->a_mode & VWRITE)
344 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
345 			if (ap->a_mode & VEXEC)
346 				mode |= NFSV3ACCESS_EXECUTE;
347 		} else {
348 			if (ap->a_mode & VWRITE)
349 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
350 					 NFSV3ACCESS_DELETE);
351 			if (ap->a_mode & VEXEC)
352 				mode |= NFSV3ACCESS_LOOKUP;
353 		}
354 		/* XXX safety belt, only make blanket request if caching */
355 		if (nfsaccess_cache_timeout > 0) {
356 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
357 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
358 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
359 		} else {
360 			wmode = mode;
361 		}
362 
363 		/*
364 		 * Does our cached result allow us to give a definite yes to
365 		 * this request?
366 		 */
367 		if (np->n_modestamp &&
368 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
369 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
370 		   ((np->n_mode & mode) == mode)) {
371 			nfsstats.accesscache_hits++;
372 		} else {
373 			/*
374 			 * Either a no, or a don't know.  Go to the wire.
375 			 */
376 			nfsstats.accesscache_misses++;
377 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
378 			if (!error) {
379 				if ((np->n_mode & mode) != mode) {
380 					error = EACCES;
381 				}
382 			}
383 		}
384 	} else {
385 		if ((error = nfsspec_access(ap)) != 0)
386 			return (error);
387 
388 		/*
389 		 * Attempt to prevent a mapped root from accessing a file
390 		 * which it shouldn't.  We try to read a byte from the file
391 		 * if the user is root and the file is not zero length.
392 		 * After calling nfsspec_access, we should have the correct
393 		 * file size cached.
394 		 */
395 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
396 		    && VTONFS(vp)->n_size > 0) {
397 			struct iovec aiov;
398 			struct uio auio;
399 			char buf[1];
400 
401 			aiov.iov_base = buf;
402 			aiov.iov_len = 1;
403 			auio.uio_iov = &aiov;
404 			auio.uio_iovcnt = 1;
405 			auio.uio_offset = 0;
406 			auio.uio_resid = 1;
407 			auio.uio_segflg = UIO_SYSSPACE;
408 			auio.uio_rw = UIO_READ;
409 			auio.uio_td = td;
410 
411 			if (vp->v_type == VREG) {
412 				error = nfs_readrpc(vp, &auio);
413 			} else if (vp->v_type == VDIR) {
414 				char* bp;
415 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
416 				aiov.iov_base = bp;
417 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
418 				error = nfs_readdirrpc(vp, &auio);
419 				kfree(bp, M_TEMP);
420 			} else if (vp->v_type == VLNK) {
421 				error = nfs_readlinkrpc(vp, &auio);
422 			} else {
423 				error = EACCES;
424 			}
425 		}
426 	}
427 	/*
428 	 * [re]record creds for reading and/or writing if access
429 	 * was granted.  Assume the NFS server will grant read access
430 	 * for execute requests.
431 	 */
432 	if (error == 0) {
433 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
434 			crhold(ap->a_cred);
435 			if (np->n_rucred)
436 				crfree(np->n_rucred);
437 			np->n_rucred = ap->a_cred;
438 		}
439 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
440 			crhold(ap->a_cred);
441 			if (np->n_wucred)
442 				crfree(np->n_wucred);
443 			np->n_wucred = ap->a_cred;
444 		}
445 	}
446 	return(error);
447 }
448 
449 /*
450  * nfs open vnode op
451  * Check to see if the type is ok
452  * and that deletion is not in progress.
453  * For paged in text files, you will need to flush the page cache
454  * if consistency is lost.
455  *
456  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
457  *	    struct file *a_fp)
458  */
459 /* ARGSUSED */
460 static int
461 nfs_open(struct vop_open_args *ap)
462 {
463 	struct vnode *vp = ap->a_vp;
464 	struct nfsnode *np = VTONFS(vp);
465 	struct vattr vattr;
466 	int error;
467 
468 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
469 #ifdef DIAGNOSTIC
470 		kprintf("open eacces vtyp=%d\n",vp->v_type);
471 #endif
472 		return (EOPNOTSUPP);
473 	}
474 
475 	/*
476 	 * Clear the attribute cache only if opening with write access.  It
477 	 * is unclear if we should do this at all here, but we certainly
478 	 * should not clear the cache unconditionally simply because a file
479 	 * is being opened.
480 	 */
481 	if (ap->a_mode & FWRITE)
482 		np->n_attrstamp = 0;
483 
484 	/*
485 	 * For normal NFS, reconcile changes made locally verses
486 	 * changes made remotely.  Note that VOP_GETATTR only goes
487 	 * to the wire if the cached attribute has timed out or been
488 	 * cleared.
489 	 *
490 	 * If local modifications have been made clear the attribute
491 	 * cache to force an attribute and modified time check.  If
492 	 * GETATTR detects that the file has been changed by someone
493 	 * other then us it will set NRMODIFIED.
494 	 *
495 	 * If we are opening a directory and local changes have been
496 	 * made we have to invalidate the cache in order to ensure
497 	 * that we get the most up-to-date information from the
498 	 * server.  XXX
499 	 */
500 	if (np->n_flag & NLMODIFIED) {
501 		np->n_attrstamp = 0;
502 		if (vp->v_type == VDIR) {
503 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
504 			if (error == EINTR)
505 				return (error);
506 			nfs_invaldir(vp);
507 		}
508 	}
509 	error = VOP_GETATTR(vp, &vattr);
510 	if (error)
511 		return (error);
512 	if (np->n_flag & NRMODIFIED) {
513 		if (vp->v_type == VDIR)
514 			nfs_invaldir(vp);
515 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
516 		if (error == EINTR)
517 			return (error);
518 		np->n_flag &= ~NRMODIFIED;
519 	}
520 
521 	return (vop_stdopen(ap));
522 }
523 
524 /*
525  * nfs close vnode op
526  * What an NFS client should do upon close after writing is a debatable issue.
527  * Most NFS clients push delayed writes to the server upon close, basically for
528  * two reasons:
529  * 1 - So that any write errors may be reported back to the client process
530  *     doing the close system call. By far the two most likely errors are
531  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
532  * 2 - To put a worst case upper bound on cache inconsistency between
533  *     multiple clients for the file.
534  * There is also a consistency problem for Version 2 of the protocol w.r.t.
535  * not being able to tell if other clients are writing a file concurrently,
536  * since there is no way of knowing if the changed modify time in the reply
537  * is only due to the write for this client.
538  * (NFS Version 3 provides weak cache consistency data in the reply that
539  *  should be sufficient to detect and handle this case.)
540  *
541  * The current code does the following:
542  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
543  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
544  *                     or commit them (this satisfies 1 and 2 except for the
545  *                     case where the server crashes after this close but
546  *                     before the commit RPC, which is felt to be "good
547  *                     enough". Changing the last argument to nfs_flush() to
548  *                     a 1 would force a commit operation, if it is felt a
549  *                     commit is necessary now.
550  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
551  *                     1 should be dealt with via an fsync() system call for
552  *                     cases where write errors are important.
553  *
554  * nfs_close(struct vnode *a_vp, int a_fflag)
555  */
556 /* ARGSUSED */
557 static int
558 nfs_close(struct vop_close_args *ap)
559 {
560 	struct vnode *vp = ap->a_vp;
561 	struct nfsnode *np = VTONFS(vp);
562 	int error = 0;
563 	thread_t td = curthread;
564 
565 	if (vp->v_type == VREG) {
566 	    if (np->n_flag & NLMODIFIED) {
567 		if (NFS_ISV3(vp)) {
568 		    /*
569 		     * Under NFSv3 we have dirty buffers to dispose of.  We
570 		     * must flush them to the NFS server.  We have the option
571 		     * of waiting all the way through the commit rpc or just
572 		     * waiting for the initial write.  The default is to only
573 		     * wait through the initial write so the data is in the
574 		     * server's cache, which is roughly similar to the state
575 		     * a standard disk subsystem leaves the file in on close().
576 		     *
577 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
578 		     * potential races with other processes, and certainly
579 		     * cannot clear it if we don't commit.
580 		     */
581 		    int cm = nfsv3_commit_on_close ? 1 : 0;
582 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
583 		    /* np->n_flag &= ~NLMODIFIED; */
584 		} else {
585 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
586 		}
587 		np->n_attrstamp = 0;
588 	    }
589 	    if (np->n_flag & NWRITEERR) {
590 		np->n_flag &= ~NWRITEERR;
591 		error = np->n_error;
592 	    }
593 	}
594 	vop_stdclose(ap);
595 	return (error);
596 }
597 
598 /*
599  * nfs getattr call from vfs.
600  *
601  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
602  */
603 static int
604 nfs_getattr(struct vop_getattr_args *ap)
605 {
606 	struct vnode *vp = ap->a_vp;
607 	struct nfsnode *np = VTONFS(vp);
608 	caddr_t cp;
609 	u_int32_t *tl;
610 	int32_t t1, t2;
611 	caddr_t bpos, dpos;
612 	int error = 0;
613 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
614 	int v3 = NFS_ISV3(vp);
615 	thread_t td = curthread;
616 
617 	/*
618 	 * Update local times for special files.
619 	 */
620 	if (np->n_flag & (NACC | NUPD))
621 		np->n_flag |= NCHG;
622 	/*
623 	 * First look in the cache.
624 	 */
625 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
626 		return (0);
627 
628 	if (v3 && nfsaccess_cache_timeout > 0) {
629 		nfsstats.accesscache_misses++;
630 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
631 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
632 			return (0);
633 	}
634 
635 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
636 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
637 	nfsm_fhtom(vp, v3);
638 	nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
639 	if (!error) {
640 		nfsm_loadattr(vp, ap->a_vap);
641 	}
642 	m_freem(mrep);
643 nfsmout:
644 	return (error);
645 }
646 
647 /*
648  * nfs setattr call.
649  *
650  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
651  */
652 static int
653 nfs_setattr(struct vop_setattr_args *ap)
654 {
655 	struct vnode *vp = ap->a_vp;
656 	struct nfsnode *np = VTONFS(vp);
657 	struct vattr *vap = ap->a_vap;
658 	int error = 0;
659 	u_quad_t tsize;
660 	thread_t td = curthread;
661 
662 #ifndef nolint
663 	tsize = (u_quad_t)0;
664 #endif
665 
666 	/*
667 	 * Setting of flags is not supported.
668 	 */
669 	if (vap->va_flags != VNOVAL)
670 		return (EOPNOTSUPP);
671 
672 	/*
673 	 * Disallow write attempts if the filesystem is mounted read-only.
674 	 */
675   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
676 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
677 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
678 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
679 		return (EROFS);
680 
681 	if (vap->va_size != VNOVAL) {
682 		/*
683 		 * truncation requested
684 		 */
685  		switch (vp->v_type) {
686  		case VDIR:
687  			return (EISDIR);
688  		case VCHR:
689  		case VBLK:
690  		case VSOCK:
691  		case VFIFO:
692 			if (vap->va_mtime.tv_sec == VNOVAL &&
693 			    vap->va_atime.tv_sec == VNOVAL &&
694 			    vap->va_mode == (mode_t)VNOVAL &&
695 			    vap->va_uid == (uid_t)VNOVAL &&
696 			    vap->va_gid == (gid_t)VNOVAL)
697 				return (0);
698  			vap->va_size = VNOVAL;
699  			break;
700  		default:
701 			/*
702 			 * Disallow write attempts if the filesystem is
703 			 * mounted read-only.
704 			 */
705 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
706 				return (EROFS);
707 
708 			/*
709 			 * This is nasty.  The RPCs we send to flush pending
710 			 * data often return attribute information which is
711 			 * cached via a callback to nfs_loadattrcache(), which
712 			 * has the effect of changing our notion of the file
713 			 * size.  Due to flushed appends and other operations
714 			 * the file size can be set to virtually anything,
715 			 * including values that do not match either the old
716 			 * or intended file size.
717 			 *
718 			 * When this condition is detected we must loop to
719 			 * try the operation again.  Hopefully no more
720 			 * flushing is required on the loop so it works the
721 			 * second time around.  THIS CASE ALMOST ALWAYS
722 			 * HAPPENS!
723 			 */
724 			tsize = np->n_size;
725 again:
726 			error = nfs_meta_setsize(vp, td, vap->va_size);
727 
728  			if (np->n_flag & NLMODIFIED) {
729  			    if (vap->va_size == 0)
730  				error = nfs_vinvalbuf(vp, 0, 1);
731  			    else
732  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
733  			}
734 			/*
735 			 * note: this loop case almost always happens at
736 			 * least once per truncation.
737 			 */
738 			if (error == 0 && np->n_size != vap->va_size)
739 				goto again;
740 			np->n_vattr.va_size = vap->va_size;
741 			break;
742 		}
743 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
744 		/*
745 		 * What to do.  If we are modifying the mtime we lose
746 		 * mtime detection of changes made by the server or other
747 		 * clients.  But programs like rsync/rdist/cpdup are going
748 		 * to call utimes a lot.  We don't want to piecemeal sync.
749 		 *
750 		 * For now sync if any prior remote changes were detected,
751 		 * but allow us to lose track of remote changes made during
752 		 * the utimes operation.
753 		 */
754 		if (np->n_flag & NRMODIFIED)
755 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
756 		if (error == EINTR)
757 			return (error);
758 		if (error == 0) {
759 			if (vap->va_mtime.tv_sec != VNOVAL) {
760 				np->n_mtime = vap->va_mtime.tv_sec;
761 			}
762 		}
763 	}
764 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
765 
766 	/*
767 	 * Sanity check if a truncation was issued.  This should only occur
768 	 * if multiple processes are racing on the same file.
769 	 */
770 	if (error == 0 && vap->va_size != VNOVAL &&
771 	    np->n_size != vap->va_size) {
772 		kprintf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
773 		goto again;
774 	}
775 	if (error && vap->va_size != VNOVAL) {
776 		np->n_size = np->n_vattr.va_size = tsize;
777 		vnode_pager_setsize(vp, np->n_size);
778 	}
779 	return (error);
780 }
781 
782 /*
783  * Do an nfs setattr rpc.
784  */
785 static int
786 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
787 	       struct ucred *cred, struct thread *td)
788 {
789 	struct nfsv2_sattr *sp;
790 	struct nfsnode *np = VTONFS(vp);
791 	caddr_t cp;
792 	int32_t t1, t2;
793 	caddr_t bpos, dpos, cp2;
794 	u_int32_t *tl;
795 	int error = 0, wccflag = NFSV3_WCCRATTR;
796 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
797 	int v3 = NFS_ISV3(vp);
798 
799 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
800 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
801 	nfsm_fhtom(vp, v3);
802 	if (v3) {
803 		nfsm_v3attrbuild(vap, TRUE);
804 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
805 		*tl = nfs_false;
806 	} else {
807 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
808 		if (vap->va_mode == (mode_t)VNOVAL)
809 			sp->sa_mode = nfs_xdrneg1;
810 		else
811 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
812 		if (vap->va_uid == (uid_t)VNOVAL)
813 			sp->sa_uid = nfs_xdrneg1;
814 		else
815 			sp->sa_uid = txdr_unsigned(vap->va_uid);
816 		if (vap->va_gid == (gid_t)VNOVAL)
817 			sp->sa_gid = nfs_xdrneg1;
818 		else
819 			sp->sa_gid = txdr_unsigned(vap->va_gid);
820 		sp->sa_size = txdr_unsigned(vap->va_size);
821 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
822 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
823 	}
824 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
825 	if (v3) {
826 		np->n_modestamp = 0;
827 		nfsm_wcc_data(vp, wccflag);
828 	} else
829 		nfsm_loadattr(vp, (struct vattr *)0);
830 	m_freem(mrep);
831 nfsmout:
832 	return (error);
833 }
834 
835 static
836 void
837 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
838 {
839 	if (nctimeout == 0)
840 		nctimeout = 1;
841 	else
842 		nctimeout *= hz;
843 	cache_setvp(nch, vp);
844 	cache_settimeout(nch, nctimeout);
845 }
846 
847 /*
848  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
849  * nfs_lookup() until all remaining new api calls are implemented.
850  *
851  * Resolve a namecache entry.  This function is passed a locked ncp and
852  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
853  */
854 static int
855 nfs_nresolve(struct vop_nresolve_args *ap)
856 {
857 	struct thread *td = curthread;
858 	struct namecache *ncp;
859 	struct ucred *cred;
860 	struct nfsnode *np;
861 	struct vnode *dvp;
862 	struct vnode *nvp;
863 	nfsfh_t *fhp;
864 	int attrflag;
865 	int fhsize;
866 	int error;
867 	int len;
868 	int v3;
869 	/******NFSM MACROS********/
870 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
871 	caddr_t bpos, dpos, cp, cp2;
872 	u_int32_t *tl;
873 	int32_t t1, t2;
874 
875 	cred = ap->a_cred;
876 	dvp = ap->a_dvp;
877 
878 	if ((error = vget(dvp, LK_SHARED)) != 0)
879 		return (error);
880 
881 	nvp = NULL;
882 	v3 = NFS_ISV3(dvp);
883 	nfsstats.lookupcache_misses++;
884 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
885 	ncp = ap->a_nch->ncp;
886 	len = ncp->nc_nlen;
887 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
888 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
889 	nfsm_fhtom(dvp, v3);
890 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
891 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
892 	if (error) {
893 		/*
894 		 * Cache negatve lookups to reduce NFS traffic, but use
895 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
896 		 * XXX we should add a namecache flag for no-caching
897 		 * to uncache the negative hit as soon as possible, but
898 		 * we cannot simply destroy the entry because it is used
899 		 * as a placeholder by the caller.
900 		 */
901 		if (error == ENOENT)
902 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
903 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
904 		m_freem(mrep);
905 		goto nfsmout;
906 	}
907 
908 	/*
909 	 * Success, get the file handle, do various checks, and load
910 	 * post-operation data from the reply packet.  Theoretically
911 	 * we should never be looking up "." so, theoretically, we
912 	 * should never get the same file handle as our directory.  But
913 	 * we check anyway. XXX
914 	 *
915 	 * Note that no timeout is set for the positive cache hit.  We
916 	 * assume, theoretically, that ESTALE returns will be dealt with
917 	 * properly to handle NFS races and in anycase we cannot depend
918 	 * on a timeout to deal with NFS open/create/excl issues so instead
919 	 * of a bad hack here the rest of the NFS client code needs to do
920 	 * the right thing.
921 	 */
922 	nfsm_getfh(fhp, fhsize, v3);
923 
924 	np = VTONFS(dvp);
925 	if (NFS_CMPFH(np, fhp, fhsize)) {
926 		vref(dvp);
927 		nvp = dvp;
928 	} else {
929 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
930 		if (error) {
931 			m_freem(mrep);
932 			vput(dvp);
933 			return (error);
934 		}
935 		nvp = NFSTOV(np);
936 	}
937 	if (v3) {
938 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
939 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
940 	} else {
941 		nfsm_loadattr(nvp, NULL);
942 	}
943 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
944 	m_freem(mrep);
945 nfsmout:
946 	vput(dvp);
947 	if (nvp) {
948 		if (nvp == dvp)
949 			vrele(nvp);
950 		else
951 			vput(nvp);
952 	}
953 	return (error);
954 }
955 
956 /*
957  * 'cached' nfs directory lookup
958  *
959  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
960  *
961  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
962  *	      struct componentname *a_cnp)
963  */
964 static int
965 nfs_lookup(struct vop_old_lookup_args *ap)
966 {
967 	struct componentname *cnp = ap->a_cnp;
968 	struct vnode *dvp = ap->a_dvp;
969 	struct vnode **vpp = ap->a_vpp;
970 	int flags = cnp->cn_flags;
971 	struct vnode *newvp;
972 	u_int32_t *tl;
973 	caddr_t cp;
974 	int32_t t1, t2;
975 	struct nfsmount *nmp;
976 	caddr_t bpos, dpos, cp2;
977 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
978 	long len;
979 	nfsfh_t *fhp;
980 	struct nfsnode *np;
981 	int lockparent, wantparent, error = 0, attrflag, fhsize;
982 	int v3 = NFS_ISV3(dvp);
983 
984 	/*
985 	 * Read-only mount check and directory check.
986 	 */
987 	*vpp = NULLVP;
988 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
989 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
990 		return (EROFS);
991 
992 	if (dvp->v_type != VDIR)
993 		return (ENOTDIR);
994 
995 	/*
996 	 * Look it up in the cache.  Note that ENOENT is only returned if we
997 	 * previously entered a negative hit (see later on).  The additional
998 	 * nfsneg_cache_timeout check causes previously cached results to
999 	 * be instantly ignored if the negative caching is turned off.
1000 	 */
1001 	lockparent = flags & CNP_LOCKPARENT;
1002 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1003 	nmp = VFSTONFS(dvp->v_mount);
1004 	np = VTONFS(dvp);
1005 
1006 	/*
1007 	 * Go to the wire.
1008 	 */
1009 	error = 0;
1010 	newvp = NULLVP;
1011 	nfsstats.lookupcache_misses++;
1012 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1013 	len = cnp->cn_namelen;
1014 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
1015 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1016 	nfsm_fhtom(dvp, v3);
1017 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1018 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
1019 	if (error) {
1020 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1021 		m_freem(mrep);
1022 		goto nfsmout;
1023 	}
1024 	nfsm_getfh(fhp, fhsize, v3);
1025 
1026 	/*
1027 	 * Handle RENAME case...
1028 	 */
1029 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1030 		if (NFS_CMPFH(np, fhp, fhsize)) {
1031 			m_freem(mrep);
1032 			return (EISDIR);
1033 		}
1034 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1035 		if (error) {
1036 			m_freem(mrep);
1037 			return (error);
1038 		}
1039 		newvp = NFSTOV(np);
1040 		if (v3) {
1041 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1042 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1043 		} else
1044 			nfsm_loadattr(newvp, (struct vattr *)0);
1045 		*vpp = newvp;
1046 		m_freem(mrep);
1047 		if (!lockparent) {
1048 			vn_unlock(dvp);
1049 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1050 		}
1051 		return (0);
1052 	}
1053 
1054 	if (flags & CNP_ISDOTDOT) {
1055 		vn_unlock(dvp);
1056 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1057 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1058 		if (error) {
1059 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1060 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1061 			return (error); /* NOTE: return error from nget */
1062 		}
1063 		newvp = NFSTOV(np);
1064 		if (lockparent) {
1065 			error = vn_lock(dvp, LK_EXCLUSIVE);
1066 			if (error) {
1067 				vput(newvp);
1068 				return (error);
1069 			}
1070 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1071 		}
1072 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1073 		vref(dvp);
1074 		newvp = dvp;
1075 	} else {
1076 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1077 		if (error) {
1078 			m_freem(mrep);
1079 			return (error);
1080 		}
1081 		if (!lockparent) {
1082 			vn_unlock(dvp);
1083 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1084 		}
1085 		newvp = NFSTOV(np);
1086 	}
1087 	if (v3) {
1088 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1089 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1090 	} else
1091 		nfsm_loadattr(newvp, (struct vattr *)0);
1092 #if 0
1093 	/* XXX MOVE TO nfs_nremove() */
1094 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1095 	    cnp->cn_nameiop != NAMEI_DELETE) {
1096 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1097 	}
1098 #endif
1099 	*vpp = newvp;
1100 	m_freem(mrep);
1101 nfsmout:
1102 	if (error) {
1103 		if (newvp != NULLVP) {
1104 			vrele(newvp);
1105 			*vpp = NULLVP;
1106 		}
1107 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1108 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1109 		    error == ENOENT) {
1110 			if (!lockparent) {
1111 				vn_unlock(dvp);
1112 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1113 			}
1114 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1115 				error = EROFS;
1116 			else
1117 				error = EJUSTRETURN;
1118 		}
1119 	}
1120 	return (error);
1121 }
1122 
1123 /*
1124  * nfs read call.
1125  * Just call nfs_bioread() to do the work.
1126  *
1127  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1128  *	    struct ucred *a_cred)
1129  */
1130 static int
1131 nfs_read(struct vop_read_args *ap)
1132 {
1133 	struct vnode *vp = ap->a_vp;
1134 
1135 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1136 	switch (vp->v_type) {
1137 	case VREG:
1138 		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1139 	case VDIR:
1140 		return (EISDIR);
1141 	default:
1142 		return EOPNOTSUPP;
1143 	}
1144 }
1145 
1146 /*
1147  * nfs readlink call
1148  *
1149  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1150  */
1151 static int
1152 nfs_readlink(struct vop_readlink_args *ap)
1153 {
1154 	struct vnode *vp = ap->a_vp;
1155 
1156 	if (vp->v_type != VLNK)
1157 		return (EINVAL);
1158 	return (nfs_bioread(vp, ap->a_uio, 0));
1159 }
1160 
1161 /*
1162  * Do a readlink rpc.
1163  * Called by nfs_doio() from below the buffer cache.
1164  */
1165 int
1166 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1167 {
1168 	u_int32_t *tl;
1169 	caddr_t cp;
1170 	int32_t t1, t2;
1171 	caddr_t bpos, dpos, cp2;
1172 	int error = 0, len, attrflag;
1173 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1174 	int v3 = NFS_ISV3(vp);
1175 
1176 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1177 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1178 	nfsm_fhtom(vp, v3);
1179 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1180 	if (v3)
1181 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1182 	if (!error) {
1183 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1184 		if (len == NFS_MAXPATHLEN) {
1185 			struct nfsnode *np = VTONFS(vp);
1186 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1187 				len = np->n_size;
1188 		}
1189 		nfsm_mtouio(uiop, len);
1190 	}
1191 	m_freem(mrep);
1192 nfsmout:
1193 	return (error);
1194 }
1195 
1196 /*
1197  * nfs read rpc call
1198  * Ditto above
1199  */
1200 int
1201 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1202 {
1203 	u_int32_t *tl;
1204 	caddr_t cp;
1205 	int32_t t1, t2;
1206 	caddr_t bpos, dpos, cp2;
1207 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1208 	struct nfsmount *nmp;
1209 	int error = 0, len, retlen, tsiz, eof, attrflag;
1210 	int v3 = NFS_ISV3(vp);
1211 
1212 #ifndef nolint
1213 	eof = 0;
1214 #endif
1215 	nmp = VFSTONFS(vp->v_mount);
1216 	tsiz = uiop->uio_resid;
1217 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1218 		return (EFBIG);
1219 	while (tsiz > 0) {
1220 		nfsstats.rpccnt[NFSPROC_READ]++;
1221 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1222 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1223 		nfsm_fhtom(vp, v3);
1224 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1225 		if (v3) {
1226 			txdr_hyper(uiop->uio_offset, tl);
1227 			*(tl + 2) = txdr_unsigned(len);
1228 		} else {
1229 			*tl++ = txdr_unsigned(uiop->uio_offset);
1230 			*tl++ = txdr_unsigned(len);
1231 			*tl = 0;
1232 		}
1233 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1234 		if (v3) {
1235 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1236 			if (error) {
1237 				m_freem(mrep);
1238 				goto nfsmout;
1239 			}
1240 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1241 			eof = fxdr_unsigned(int, *(tl + 1));
1242 		} else
1243 			nfsm_loadattr(vp, (struct vattr *)0);
1244 		nfsm_strsiz(retlen, nmp->nm_rsize);
1245 		nfsm_mtouio(uiop, retlen);
1246 		m_freem(mrep);
1247 		tsiz -= retlen;
1248 		if (v3) {
1249 			if (eof || retlen == 0) {
1250 				tsiz = 0;
1251 			}
1252 		} else if (retlen < len) {
1253 			tsiz = 0;
1254 		}
1255 	}
1256 nfsmout:
1257 	return (error);
1258 }
1259 
1260 /*
1261  * nfs write call
1262  */
1263 int
1264 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1265 {
1266 	u_int32_t *tl;
1267 	caddr_t cp;
1268 	int32_t t1, t2, backup;
1269 	caddr_t bpos, dpos, cp2;
1270 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1271 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1272 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1273 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1274 
1275 #ifndef DIAGNOSTIC
1276 	if (uiop->uio_iovcnt != 1)
1277 		panic("nfs: writerpc iovcnt > 1");
1278 #endif
1279 	*must_commit = 0;
1280 	tsiz = uiop->uio_resid;
1281 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1282 		return (EFBIG);
1283 	while (tsiz > 0) {
1284 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1285 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1286 		nfsm_reqhead(vp, NFSPROC_WRITE,
1287 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1288 		nfsm_fhtom(vp, v3);
1289 		if (v3) {
1290 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1291 			txdr_hyper(uiop->uio_offset, tl);
1292 			tl += 2;
1293 			*tl++ = txdr_unsigned(len);
1294 			*tl++ = txdr_unsigned(*iomode);
1295 			*tl = txdr_unsigned(len);
1296 		} else {
1297 			u_int32_t x;
1298 
1299 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1300 			/* Set both "begin" and "current" to non-garbage. */
1301 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1302 			*tl++ = x;	/* "begin offset" */
1303 			*tl++ = x;	/* "current offset" */
1304 			x = txdr_unsigned(len);
1305 			*tl++ = x;	/* total to this offset */
1306 			*tl = x;	/* size of this write */
1307 		}
1308 		nfsm_uiotom(uiop, len);
1309 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1310 		if (v3) {
1311 			/*
1312 			 * The write RPC returns a before and after mtime.  The
1313 			 * nfsm_wcc_data() macro checks the before n_mtime
1314 			 * against the before time and stores the after time
1315 			 * in the nfsnode's cached vattr and n_mtime field.
1316 			 * The NRMODIFIED bit will be set if the before
1317 			 * time did not match the original mtime.
1318 			 */
1319 			wccflag = NFSV3_WCCCHK;
1320 			nfsm_wcc_data(vp, wccflag);
1321 			if (!error) {
1322 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1323 					+ NFSX_V3WRITEVERF);
1324 				rlen = fxdr_unsigned(int, *tl++);
1325 				if (rlen == 0) {
1326 					error = NFSERR_IO;
1327 					m_freem(mrep);
1328 					break;
1329 				} else if (rlen < len) {
1330 					backup = len - rlen;
1331 					uiop->uio_iov->iov_base -= backup;
1332 					uiop->uio_iov->iov_len += backup;
1333 					uiop->uio_offset -= backup;
1334 					uiop->uio_resid += backup;
1335 					len = rlen;
1336 				}
1337 				commit = fxdr_unsigned(int, *tl++);
1338 
1339 				/*
1340 				 * Return the lowest committment level
1341 				 * obtained by any of the RPCs.
1342 				 */
1343 				if (committed == NFSV3WRITE_FILESYNC)
1344 					committed = commit;
1345 				else if (committed == NFSV3WRITE_DATASYNC &&
1346 					commit == NFSV3WRITE_UNSTABLE)
1347 					committed = commit;
1348 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1349 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1350 					NFSX_V3WRITEVERF);
1351 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1352 				} else if (bcmp((caddr_t)tl,
1353 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1354 				    *must_commit = 1;
1355 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1356 					NFSX_V3WRITEVERF);
1357 				}
1358 			}
1359 		} else {
1360 			nfsm_loadattr(vp, (struct vattr *)0);
1361 		}
1362 		m_freem(mrep);
1363 		if (error)
1364 			break;
1365 		tsiz -= len;
1366 	}
1367 nfsmout:
1368 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1369 		committed = NFSV3WRITE_FILESYNC;
1370 	*iomode = committed;
1371 	if (error)
1372 		uiop->uio_resid = tsiz;
1373 	return (error);
1374 }
1375 
1376 /*
1377  * nfs mknod rpc
1378  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1379  * mode set to specify the file type and the size field for rdev.
1380  */
1381 static int
1382 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1383 	     struct vattr *vap)
1384 {
1385 	struct nfsv2_sattr *sp;
1386 	u_int32_t *tl;
1387 	caddr_t cp;
1388 	int32_t t1, t2;
1389 	struct vnode *newvp = (struct vnode *)0;
1390 	struct nfsnode *np = (struct nfsnode *)0;
1391 	struct vattr vattr;
1392 	char *cp2;
1393 	caddr_t bpos, dpos;
1394 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1395 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1396 	int rmajor, rminor;
1397 	int v3 = NFS_ISV3(dvp);
1398 
1399 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1400 		rmajor = txdr_unsigned(vap->va_rmajor);
1401 		rminor = txdr_unsigned(vap->va_rminor);
1402 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1403 		rmajor = nfs_xdrneg1;
1404 		rminor = nfs_xdrneg1;
1405 	} else {
1406 		return (EOPNOTSUPP);
1407 	}
1408 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1409 		return (error);
1410 	}
1411 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1412 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1413 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1414 	nfsm_fhtom(dvp, v3);
1415 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1416 	if (v3) {
1417 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1418 		*tl++ = vtonfsv3_type(vap->va_type);
1419 		nfsm_v3attrbuild(vap, FALSE);
1420 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1421 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1422 			*tl++ = txdr_unsigned(vap->va_rmajor);
1423 			*tl = txdr_unsigned(vap->va_rminor);
1424 		}
1425 	} else {
1426 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1427 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1428 		sp->sa_uid = nfs_xdrneg1;
1429 		sp->sa_gid = nfs_xdrneg1;
1430 		sp->sa_size = makeudev(rmajor, rminor);
1431 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1432 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1433 	}
1434 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1435 	if (!error) {
1436 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1437 		if (!gotvp) {
1438 			if (newvp) {
1439 				vput(newvp);
1440 				newvp = (struct vnode *)0;
1441 			}
1442 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1443 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1444 			if (!error)
1445 				newvp = NFSTOV(np);
1446 		}
1447 	}
1448 	if (v3)
1449 		nfsm_wcc_data(dvp, wccflag);
1450 	m_freem(mrep);
1451 nfsmout:
1452 	if (error) {
1453 		if (newvp)
1454 			vput(newvp);
1455 	} else {
1456 		*vpp = newvp;
1457 	}
1458 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1459 	if (!wccflag)
1460 		VTONFS(dvp)->n_attrstamp = 0;
1461 	return (error);
1462 }
1463 
1464 /*
1465  * nfs mknod vop
1466  * just call nfs_mknodrpc() to do the work.
1467  *
1468  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1469  *	     struct componentname *a_cnp, struct vattr *a_vap)
1470  */
1471 /* ARGSUSED */
1472 static int
1473 nfs_mknod(struct vop_old_mknod_args *ap)
1474 {
1475 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1476 }
1477 
1478 static u_long create_verf;
1479 /*
1480  * nfs file create call
1481  *
1482  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1483  *	      struct componentname *a_cnp, struct vattr *a_vap)
1484  */
1485 static int
1486 nfs_create(struct vop_old_create_args *ap)
1487 {
1488 	struct vnode *dvp = ap->a_dvp;
1489 	struct vattr *vap = ap->a_vap;
1490 	struct componentname *cnp = ap->a_cnp;
1491 	struct nfsv2_sattr *sp;
1492 	u_int32_t *tl;
1493 	caddr_t cp;
1494 	int32_t t1, t2;
1495 	struct nfsnode *np = (struct nfsnode *)0;
1496 	struct vnode *newvp = (struct vnode *)0;
1497 	caddr_t bpos, dpos, cp2;
1498 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1499 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1500 	struct vattr vattr;
1501 	int v3 = NFS_ISV3(dvp);
1502 
1503 	/*
1504 	 * Oops, not for me..
1505 	 */
1506 	if (vap->va_type == VSOCK)
1507 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1508 
1509 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1510 		return (error);
1511 	}
1512 	if (vap->va_vaflags & VA_EXCLUSIVE)
1513 		fmode |= O_EXCL;
1514 again:
1515 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1516 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1517 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1518 	nfsm_fhtom(dvp, v3);
1519 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1520 	if (v3) {
1521 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1522 		if (fmode & O_EXCL) {
1523 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1524 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1525 #ifdef INET
1526 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1527 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1528 			else
1529 #endif
1530 				*tl++ = create_verf;
1531 			*tl = ++create_verf;
1532 		} else {
1533 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1534 			nfsm_v3attrbuild(vap, FALSE);
1535 		}
1536 	} else {
1537 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1538 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1539 		sp->sa_uid = nfs_xdrneg1;
1540 		sp->sa_gid = nfs_xdrneg1;
1541 		sp->sa_size = 0;
1542 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1543 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1544 	}
1545 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1546 	if (!error) {
1547 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1548 		if (!gotvp) {
1549 			if (newvp) {
1550 				vput(newvp);
1551 				newvp = (struct vnode *)0;
1552 			}
1553 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1554 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1555 			if (!error)
1556 				newvp = NFSTOV(np);
1557 		}
1558 	}
1559 	if (v3)
1560 		nfsm_wcc_data(dvp, wccflag);
1561 	m_freem(mrep);
1562 nfsmout:
1563 	if (error) {
1564 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1565 			KKASSERT(newvp == NULL);
1566 			fmode &= ~O_EXCL;
1567 			goto again;
1568 		}
1569 	} else if (v3 && (fmode & O_EXCL)) {
1570 		/*
1571 		 * We are normally called with only a partially initialized
1572 		 * VAP.  Since the NFSv3 spec says that server may use the
1573 		 * file attributes to store the verifier, the spec requires
1574 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1575 		 * in atime, but we can't really assume that all servers will
1576 		 * so we ensure that our SETATTR sets both atime and mtime.
1577 		 */
1578 		if (vap->va_mtime.tv_sec == VNOVAL)
1579 			vfs_timestamp(&vap->va_mtime);
1580 		if (vap->va_atime.tv_sec == VNOVAL)
1581 			vap->va_atime = vap->va_mtime;
1582 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1583 	}
1584 	if (error == 0) {
1585 		/*
1586 		 * The new np may have enough info for access
1587 		 * checks, make sure rucred and wucred are
1588 		 * initialized for read and write rpc's.
1589 		 */
1590 		np = VTONFS(newvp);
1591 		if (np->n_rucred == NULL)
1592 			np->n_rucred = crhold(cnp->cn_cred);
1593 		if (np->n_wucred == NULL)
1594 			np->n_wucred = crhold(cnp->cn_cred);
1595 		*ap->a_vpp = newvp;
1596 	} else if (newvp) {
1597 		vput(newvp);
1598 	}
1599 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1600 	if (!wccflag)
1601 		VTONFS(dvp)->n_attrstamp = 0;
1602 	return (error);
1603 }
1604 
1605 /*
1606  * nfs file remove call
1607  * To try and make nfs semantics closer to ufs semantics, a file that has
1608  * other processes using the vnode is renamed instead of removed and then
1609  * removed later on the last close.
1610  * - If v_sysref.refcnt > 1
1611  *	  If a rename is not already in the works
1612  *	     call nfs_sillyrename() to set it up
1613  *     else
1614  *	  do the remove rpc
1615  *
1616  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1617  *	      struct componentname *a_cnp)
1618  */
1619 static int
1620 nfs_remove(struct vop_old_remove_args *ap)
1621 {
1622 	struct vnode *vp = ap->a_vp;
1623 	struct vnode *dvp = ap->a_dvp;
1624 	struct componentname *cnp = ap->a_cnp;
1625 	struct nfsnode *np = VTONFS(vp);
1626 	int error = 0;
1627 	struct vattr vattr;
1628 
1629 #ifndef DIAGNOSTIC
1630 	if (vp->v_sysref.refcnt < 1)
1631 		panic("nfs_remove: bad v_sysref.refcnt");
1632 #endif
1633 	if (vp->v_type == VDIR)
1634 		error = EPERM;
1635 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1636 	    VOP_GETATTR(vp, &vattr) == 0 &&
1637 	    vattr.va_nlink > 1)) {
1638 		/*
1639 		 * throw away biocache buffers, mainly to avoid
1640 		 * unnecessary delayed writes later.
1641 		 */
1642 		error = nfs_vinvalbuf(vp, 0, 1);
1643 		/* Do the rpc */
1644 		if (error != EINTR)
1645 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1646 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1647 		/*
1648 		 * Kludge City: If the first reply to the remove rpc is lost..
1649 		 *   the reply to the retransmitted request will be ENOENT
1650 		 *   since the file was in fact removed
1651 		 *   Therefore, we cheat and return success.
1652 		 */
1653 		if (error == ENOENT)
1654 			error = 0;
1655 	} else if (!np->n_sillyrename) {
1656 		error = nfs_sillyrename(dvp, vp, cnp);
1657 	}
1658 	np->n_attrstamp = 0;
1659 	return (error);
1660 }
1661 
1662 /*
1663  * nfs file remove rpc called from nfs_inactive
1664  */
1665 int
1666 nfs_removeit(struct sillyrename *sp)
1667 {
1668 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1669 		sp->s_cred, NULL));
1670 }
1671 
1672 /*
1673  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1674  */
1675 static int
1676 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1677 	      struct ucred *cred, struct thread *td)
1678 {
1679 	u_int32_t *tl;
1680 	caddr_t cp;
1681 	int32_t t1, t2;
1682 	caddr_t bpos, dpos, cp2;
1683 	int error = 0, wccflag = NFSV3_WCCRATTR;
1684 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1685 	int v3 = NFS_ISV3(dvp);
1686 
1687 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1688 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1689 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1690 	nfsm_fhtom(dvp, v3);
1691 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1692 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1693 	if (v3)
1694 		nfsm_wcc_data(dvp, wccflag);
1695 	m_freem(mrep);
1696 nfsmout:
1697 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1698 	if (!wccflag)
1699 		VTONFS(dvp)->n_attrstamp = 0;
1700 	return (error);
1701 }
1702 
1703 /*
1704  * nfs file rename call
1705  *
1706  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1707  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1708  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1709  */
1710 static int
1711 nfs_rename(struct vop_old_rename_args *ap)
1712 {
1713 	struct vnode *fvp = ap->a_fvp;
1714 	struct vnode *tvp = ap->a_tvp;
1715 	struct vnode *fdvp = ap->a_fdvp;
1716 	struct vnode *tdvp = ap->a_tdvp;
1717 	struct componentname *tcnp = ap->a_tcnp;
1718 	struct componentname *fcnp = ap->a_fcnp;
1719 	int error;
1720 
1721 	/* Check for cross-device rename */
1722 	if ((fvp->v_mount != tdvp->v_mount) ||
1723 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1724 		error = EXDEV;
1725 		goto out;
1726 	}
1727 
1728 	/*
1729 	 * We shouldn't have to flush fvp on rename for most server-side
1730 	 * filesystems as the file handle should not change.  Unfortunately
1731 	 * the inode for some filesystems (msdosfs) might be tied to the
1732 	 * file name or directory position so to be completely safe
1733 	 * vfs.nfs.flush_on_rename is set by default.  Clear to improve
1734 	 * performance.
1735 	 *
1736 	 * We must flush tvp on rename because it might become stale on the
1737 	 * server after the rename.
1738 	 */
1739 	if (nfs_flush_on_rename)
1740 	    VOP_FSYNC(fvp, MNT_WAIT);
1741 	if (tvp)
1742 	    VOP_FSYNC(tvp, MNT_WAIT);
1743 
1744 	/*
1745 	 * If the tvp exists and is in use, sillyrename it before doing the
1746 	 * rename of the new file over it.
1747 	 *
1748 	 * XXX Can't sillyrename a directory.
1749 	 *
1750 	 * We do not attempt to do any namecache purges in this old API
1751 	 * routine.  The new API compat functions have access to the actual
1752 	 * namecache structures and will do it for us.
1753 	 */
1754 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1755 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1756 		vput(tvp);
1757 		tvp = NULL;
1758 	} else if (tvp) {
1759 		;
1760 	}
1761 
1762 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1763 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1764 		tcnp->cn_td);
1765 
1766 out:
1767 	if (tdvp == tvp)
1768 		vrele(tdvp);
1769 	else
1770 		vput(tdvp);
1771 	if (tvp)
1772 		vput(tvp);
1773 	vrele(fdvp);
1774 	vrele(fvp);
1775 	/*
1776 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1777 	 */
1778 	if (error == ENOENT)
1779 		error = 0;
1780 	return (error);
1781 }
1782 
1783 /*
1784  * nfs file rename rpc called from nfs_remove() above
1785  */
1786 static int
1787 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1788 	     struct sillyrename *sp)
1789 {
1790 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1791 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1792 }
1793 
1794 /*
1795  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1796  */
1797 static int
1798 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1799 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1800 	      struct ucred *cred, struct thread *td)
1801 {
1802 	u_int32_t *tl;
1803 	caddr_t cp;
1804 	int32_t t1, t2;
1805 	caddr_t bpos, dpos, cp2;
1806 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1807 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1808 	int v3 = NFS_ISV3(fdvp);
1809 
1810 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1811 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1812 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1813 		nfsm_rndup(tnamelen));
1814 	nfsm_fhtom(fdvp, v3);
1815 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1816 	nfsm_fhtom(tdvp, v3);
1817 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1818 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1819 	if (v3) {
1820 		nfsm_wcc_data(fdvp, fwccflag);
1821 		nfsm_wcc_data(tdvp, twccflag);
1822 	}
1823 	m_freem(mrep);
1824 nfsmout:
1825 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1826 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1827 	if (!fwccflag)
1828 		VTONFS(fdvp)->n_attrstamp = 0;
1829 	if (!twccflag)
1830 		VTONFS(tdvp)->n_attrstamp = 0;
1831 	return (error);
1832 }
1833 
1834 /*
1835  * nfs hard link create call
1836  *
1837  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1838  *	    struct componentname *a_cnp)
1839  */
1840 static int
1841 nfs_link(struct vop_old_link_args *ap)
1842 {
1843 	struct vnode *vp = ap->a_vp;
1844 	struct vnode *tdvp = ap->a_tdvp;
1845 	struct componentname *cnp = ap->a_cnp;
1846 	u_int32_t *tl;
1847 	caddr_t cp;
1848 	int32_t t1, t2;
1849 	caddr_t bpos, dpos, cp2;
1850 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1851 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1852 	int v3;
1853 
1854 	if (vp->v_mount != tdvp->v_mount) {
1855 		return (EXDEV);
1856 	}
1857 
1858 	/*
1859 	 * The attribute cache may get out of sync with the server on link.
1860 	 * Pushing writes to the server before handle was inherited from
1861 	 * long long ago and it is unclear if we still need to do this.
1862 	 * Defaults to off.
1863 	 */
1864 	if (nfs_flush_on_hlink)
1865 		VOP_FSYNC(vp, MNT_WAIT);
1866 
1867 	v3 = NFS_ISV3(vp);
1868 	nfsstats.rpccnt[NFSPROC_LINK]++;
1869 	nfsm_reqhead(vp, NFSPROC_LINK,
1870 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1871 	nfsm_fhtom(vp, v3);
1872 	nfsm_fhtom(tdvp, v3);
1873 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1874 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1875 	if (v3) {
1876 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1877 		nfsm_wcc_data(tdvp, wccflag);
1878 	}
1879 	m_freem(mrep);
1880 nfsmout:
1881 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1882 	if (!attrflag)
1883 		VTONFS(vp)->n_attrstamp = 0;
1884 	if (!wccflag)
1885 		VTONFS(tdvp)->n_attrstamp = 0;
1886 	/*
1887 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1888 	 */
1889 	if (error == EEXIST)
1890 		error = 0;
1891 	return (error);
1892 }
1893 
1894 /*
1895  * nfs symbolic link create call
1896  *
1897  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1898  *		struct componentname *a_cnp, struct vattr *a_vap,
1899  *		char *a_target)
1900  */
1901 static int
1902 nfs_symlink(struct vop_old_symlink_args *ap)
1903 {
1904 	struct vnode *dvp = ap->a_dvp;
1905 	struct vattr *vap = ap->a_vap;
1906 	struct componentname *cnp = ap->a_cnp;
1907 	struct nfsv2_sattr *sp;
1908 	u_int32_t *tl;
1909 	caddr_t cp;
1910 	int32_t t1, t2;
1911 	caddr_t bpos, dpos, cp2;
1912 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1913 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1914 	struct vnode *newvp = (struct vnode *)0;
1915 	int v3 = NFS_ISV3(dvp);
1916 
1917 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1918 	slen = strlen(ap->a_target);
1919 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1920 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1921 	nfsm_fhtom(dvp, v3);
1922 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1923 	if (v3) {
1924 		nfsm_v3attrbuild(vap, FALSE);
1925 	}
1926 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1927 	if (!v3) {
1928 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1929 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1930 		sp->sa_uid = nfs_xdrneg1;
1931 		sp->sa_gid = nfs_xdrneg1;
1932 		sp->sa_size = nfs_xdrneg1;
1933 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1934 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1935 	}
1936 
1937 	/*
1938 	 * Issue the NFS request and get the rpc response.
1939 	 *
1940 	 * Only NFSv3 responses returning an error of 0 actually return
1941 	 * a file handle that can be converted into newvp without having
1942 	 * to do an extra lookup rpc.
1943 	 */
1944 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1945 	if (v3) {
1946 		if (error == 0)
1947 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1948 		nfsm_wcc_data(dvp, wccflag);
1949 	}
1950 
1951 	/*
1952 	 * out code jumps -> here, mrep is also freed.
1953 	 */
1954 
1955 	m_freem(mrep);
1956 nfsmout:
1957 
1958 	/*
1959 	 * If we get an EEXIST error, silently convert it to no-error
1960 	 * in case of an NFS retry.
1961 	 */
1962 	if (error == EEXIST)
1963 		error = 0;
1964 
1965 	/*
1966 	 * If we do not have (or no longer have) an error, and we could
1967 	 * not extract the newvp from the response due to the request being
1968 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1969 	 * to obtain a newvp to return.
1970 	 */
1971 	if (error == 0 && newvp == NULL) {
1972 		struct nfsnode *np = NULL;
1973 
1974 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1975 		    cnp->cn_cred, cnp->cn_td, &np);
1976 		if (!error)
1977 			newvp = NFSTOV(np);
1978 	}
1979 	if (error) {
1980 		if (newvp)
1981 			vput(newvp);
1982 	} else {
1983 		*ap->a_vpp = newvp;
1984 	}
1985 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1986 	if (!wccflag)
1987 		VTONFS(dvp)->n_attrstamp = 0;
1988 	return (error);
1989 }
1990 
1991 /*
1992  * nfs make dir call
1993  *
1994  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1995  *	     struct componentname *a_cnp, struct vattr *a_vap)
1996  */
1997 static int
1998 nfs_mkdir(struct vop_old_mkdir_args *ap)
1999 {
2000 	struct vnode *dvp = ap->a_dvp;
2001 	struct vattr *vap = ap->a_vap;
2002 	struct componentname *cnp = ap->a_cnp;
2003 	struct nfsv2_sattr *sp;
2004 	u_int32_t *tl;
2005 	caddr_t cp;
2006 	int32_t t1, t2;
2007 	int len;
2008 	struct nfsnode *np = (struct nfsnode *)0;
2009 	struct vnode *newvp = (struct vnode *)0;
2010 	caddr_t bpos, dpos, cp2;
2011 	int error = 0, wccflag = NFSV3_WCCRATTR;
2012 	int gotvp = 0;
2013 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2014 	struct vattr vattr;
2015 	int v3 = NFS_ISV3(dvp);
2016 
2017 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2018 		return (error);
2019 	}
2020 	len = cnp->cn_namelen;
2021 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2022 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
2023 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
2024 	nfsm_fhtom(dvp, v3);
2025 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
2026 	if (v3) {
2027 		nfsm_v3attrbuild(vap, FALSE);
2028 	} else {
2029 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2030 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2031 		sp->sa_uid = nfs_xdrneg1;
2032 		sp->sa_gid = nfs_xdrneg1;
2033 		sp->sa_size = nfs_xdrneg1;
2034 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2035 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2036 	}
2037 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2038 	if (!error)
2039 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2040 	if (v3)
2041 		nfsm_wcc_data(dvp, wccflag);
2042 	m_freem(mrep);
2043 nfsmout:
2044 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2045 	if (!wccflag)
2046 		VTONFS(dvp)->n_attrstamp = 0;
2047 	/*
2048 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2049 	 * if we can succeed in looking up the directory.
2050 	 */
2051 	if (error == EEXIST || (!error && !gotvp)) {
2052 		if (newvp) {
2053 			vrele(newvp);
2054 			newvp = (struct vnode *)0;
2055 		}
2056 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2057 			cnp->cn_td, &np);
2058 		if (!error) {
2059 			newvp = NFSTOV(np);
2060 			if (newvp->v_type != VDIR)
2061 				error = EEXIST;
2062 		}
2063 	}
2064 	if (error) {
2065 		if (newvp)
2066 			vrele(newvp);
2067 	} else
2068 		*ap->a_vpp = newvp;
2069 	return (error);
2070 }
2071 
2072 /*
2073  * nfs remove directory call
2074  *
2075  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2076  *	     struct componentname *a_cnp)
2077  */
2078 static int
2079 nfs_rmdir(struct vop_old_rmdir_args *ap)
2080 {
2081 	struct vnode *vp = ap->a_vp;
2082 	struct vnode *dvp = ap->a_dvp;
2083 	struct componentname *cnp = ap->a_cnp;
2084 	u_int32_t *tl;
2085 	caddr_t cp;
2086 	int32_t t1, t2;
2087 	caddr_t bpos, dpos, cp2;
2088 	int error = 0, wccflag = NFSV3_WCCRATTR;
2089 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2090 	int v3 = NFS_ISV3(dvp);
2091 
2092 	if (dvp == vp)
2093 		return (EINVAL);
2094 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2095 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2096 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2097 	nfsm_fhtom(dvp, v3);
2098 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2099 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2100 	if (v3)
2101 		nfsm_wcc_data(dvp, wccflag);
2102 	m_freem(mrep);
2103 nfsmout:
2104 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2105 	if (!wccflag)
2106 		VTONFS(dvp)->n_attrstamp = 0;
2107 	/*
2108 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2109 	 */
2110 	if (error == ENOENT)
2111 		error = 0;
2112 	return (error);
2113 }
2114 
2115 /*
2116  * nfs readdir call
2117  *
2118  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2119  */
2120 static int
2121 nfs_readdir(struct vop_readdir_args *ap)
2122 {
2123 	struct vnode *vp = ap->a_vp;
2124 	struct nfsnode *np = VTONFS(vp);
2125 	struct uio *uio = ap->a_uio;
2126 	int tresid, error;
2127 	struct vattr vattr;
2128 
2129 	if (vp->v_type != VDIR)
2130 		return (EPERM);
2131 
2132 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2133 		return (error);
2134 
2135 	/*
2136 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2137 	 * and then check that is still valid, or if this is an NQNFS mount
2138 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2139 	 * VOP_GETATTR() does not necessarily go to the wire.
2140 	 */
2141 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2142 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2143 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2144 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2145 		) {
2146 			nfsstats.direofcache_hits++;
2147 			goto done;
2148 		}
2149 	}
2150 
2151 	/*
2152 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2153 	 * own cache coherency checks so we do not have to.
2154 	 */
2155 	tresid = uio->uio_resid;
2156 	error = nfs_bioread(vp, uio, 0);
2157 
2158 	if (!error && uio->uio_resid == tresid)
2159 		nfsstats.direofcache_misses++;
2160 done:
2161 	vn_unlock(vp);
2162 	return (error);
2163 }
2164 
2165 /*
2166  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2167  *
2168  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2169  * offset/block and converts the nfs formatted directory entries for userland
2170  * consumption as well as deals with offsets into the middle of blocks.
2171  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2172  * be block-bounded.  It must convert to cookies for the actual RPC.
2173  */
2174 int
2175 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2176 {
2177 	int len, left;
2178 	struct nfs_dirent *dp = NULL;
2179 	u_int32_t *tl;
2180 	caddr_t cp;
2181 	int32_t t1, t2;
2182 	nfsuint64 *cookiep;
2183 	caddr_t bpos, dpos, cp2;
2184 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2185 	nfsuint64 cookie;
2186 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2187 	struct nfsnode *dnp = VTONFS(vp);
2188 	u_quad_t fileno;
2189 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2190 	int attrflag;
2191 	int v3 = NFS_ISV3(vp);
2192 
2193 #ifndef DIAGNOSTIC
2194 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2195 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2196 		panic("nfs readdirrpc bad uio");
2197 #endif
2198 
2199 	/*
2200 	 * If there is no cookie, assume directory was stale.
2201 	 */
2202 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2203 	if (cookiep)
2204 		cookie = *cookiep;
2205 	else
2206 		return (NFSERR_BAD_COOKIE);
2207 	/*
2208 	 * Loop around doing readdir rpc's of size nm_readdirsize
2209 	 * truncated to a multiple of DIRBLKSIZ.
2210 	 * The stopping criteria is EOF or buffer full.
2211 	 */
2212 	while (more_dirs && bigenough) {
2213 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2214 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2215 			NFSX_READDIR(v3));
2216 		nfsm_fhtom(vp, v3);
2217 		if (v3) {
2218 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2219 			*tl++ = cookie.nfsuquad[0];
2220 			*tl++ = cookie.nfsuquad[1];
2221 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2222 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2223 		} else {
2224 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2225 			*tl++ = cookie.nfsuquad[0];
2226 		}
2227 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2228 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2229 		if (v3) {
2230 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2231 			if (!error) {
2232 				nfsm_dissect(tl, u_int32_t *,
2233 				    2 * NFSX_UNSIGNED);
2234 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2235 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2236 			} else {
2237 				m_freem(mrep);
2238 				goto nfsmout;
2239 			}
2240 		}
2241 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2242 		more_dirs = fxdr_unsigned(int, *tl);
2243 
2244 		/* loop thru the dir entries, converting them to std form */
2245 		while (more_dirs && bigenough) {
2246 			if (v3) {
2247 				nfsm_dissect(tl, u_int32_t *,
2248 				    3 * NFSX_UNSIGNED);
2249 				fileno = fxdr_hyper(tl);
2250 				len = fxdr_unsigned(int, *(tl + 2));
2251 			} else {
2252 				nfsm_dissect(tl, u_int32_t *,
2253 				    2 * NFSX_UNSIGNED);
2254 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2255 				len = fxdr_unsigned(int, *tl);
2256 			}
2257 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2258 				error = EBADRPC;
2259 				m_freem(mrep);
2260 				goto nfsmout;
2261 			}
2262 
2263 			/*
2264 			 * len is the number of bytes in the path element
2265 			 * name, not including the \0 termination.
2266 			 *
2267 			 * tlen is the number of bytes w have to reserve for
2268 			 * the path element name.
2269 			 */
2270 			tlen = nfsm_rndup(len);
2271 			if (tlen == len)
2272 				tlen += 4;	/* To ensure null termination */
2273 
2274 			/*
2275 			 * If the entry would cross a DIRBLKSIZ boundary,
2276 			 * extend the previous nfs_dirent to cover the
2277 			 * remaining space.
2278 			 */
2279 			left = DIRBLKSIZ - blksiz;
2280 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2281 				dp->nfs_reclen += left;
2282 				uiop->uio_iov->iov_base += left;
2283 				uiop->uio_iov->iov_len -= left;
2284 				uiop->uio_offset += left;
2285 				uiop->uio_resid -= left;
2286 				blksiz = 0;
2287 			}
2288 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2289 				bigenough = 0;
2290 			if (bigenough) {
2291 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2292 				dp->nfs_ino = fileno;
2293 				dp->nfs_namlen = len;
2294 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2295 				dp->nfs_type = DT_UNKNOWN;
2296 				blksiz += dp->nfs_reclen;
2297 				if (blksiz == DIRBLKSIZ)
2298 					blksiz = 0;
2299 				uiop->uio_offset += sizeof(struct nfs_dirent);
2300 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2301 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2302 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2303 				nfsm_mtouio(uiop, len);
2304 
2305 				/*
2306 				 * The uiop has advanced by nfs_dirent + len
2307 				 * but really needs to advance by
2308 				 * nfs_dirent + tlen
2309 				 */
2310 				cp = uiop->uio_iov->iov_base;
2311 				tlen -= len;
2312 				*cp = '\0';	/* null terminate */
2313 				uiop->uio_iov->iov_base += tlen;
2314 				uiop->uio_iov->iov_len -= tlen;
2315 				uiop->uio_offset += tlen;
2316 				uiop->uio_resid -= tlen;
2317 			} else {
2318 				/*
2319 				 * NFS strings must be rounded up (nfsm_myouio
2320 				 * handled that in the bigenough case).
2321 				 */
2322 				nfsm_adv(nfsm_rndup(len));
2323 			}
2324 			if (v3) {
2325 				nfsm_dissect(tl, u_int32_t *,
2326 				    3 * NFSX_UNSIGNED);
2327 			} else {
2328 				nfsm_dissect(tl, u_int32_t *,
2329 				    2 * NFSX_UNSIGNED);
2330 			}
2331 
2332 			/*
2333 			 * If we were able to accomodate the last entry,
2334 			 * get the cookie for the next one.  Otherwise
2335 			 * hold-over the cookie for the one we were not
2336 			 * able to accomodate.
2337 			 */
2338 			if (bigenough) {
2339 				cookie.nfsuquad[0] = *tl++;
2340 				if (v3)
2341 					cookie.nfsuquad[1] = *tl++;
2342 			} else if (v3) {
2343 				tl += 2;
2344 			} else {
2345 				tl++;
2346 			}
2347 			more_dirs = fxdr_unsigned(int, *tl);
2348 		}
2349 		/*
2350 		 * If at end of rpc data, get the eof boolean
2351 		 */
2352 		if (!more_dirs) {
2353 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2354 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2355 		}
2356 		m_freem(mrep);
2357 	}
2358 	/*
2359 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2360 	 * by increasing d_reclen for the last record.
2361 	 */
2362 	if (blksiz > 0) {
2363 		left = DIRBLKSIZ - blksiz;
2364 		dp->nfs_reclen += left;
2365 		uiop->uio_iov->iov_base += left;
2366 		uiop->uio_iov->iov_len -= left;
2367 		uiop->uio_offset += left;
2368 		uiop->uio_resid -= left;
2369 	}
2370 
2371 	if (bigenough) {
2372 		/*
2373 		 * We hit the end of the directory, update direofoffset.
2374 		 */
2375 		dnp->n_direofoffset = uiop->uio_offset;
2376 	} else {
2377 		/*
2378 		 * There is more to go, insert the link cookie so the
2379 		 * next block can be read.
2380 		 */
2381 		if (uiop->uio_resid > 0)
2382 			kprintf("EEK! readdirrpc resid > 0\n");
2383 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2384 		*cookiep = cookie;
2385 	}
2386 nfsmout:
2387 	return (error);
2388 }
2389 
2390 /*
2391  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2392  */
2393 int
2394 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2395 {
2396 	int len, left;
2397 	struct nfs_dirent *dp;
2398 	u_int32_t *tl;
2399 	caddr_t cp;
2400 	int32_t t1, t2;
2401 	struct vnode *newvp;
2402 	nfsuint64 *cookiep;
2403 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2404 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2405 	nfsuint64 cookie;
2406 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2407 	struct nfsnode *dnp = VTONFS(vp), *np;
2408 	nfsfh_t *fhp;
2409 	u_quad_t fileno;
2410 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2411 	int attrflag, fhsize;
2412 	struct nchandle nch;
2413 	struct nchandle dnch;
2414 	struct nlcomponent nlc;
2415 
2416 #ifndef nolint
2417 	dp = NULL;
2418 #endif
2419 #ifndef DIAGNOSTIC
2420 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2421 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2422 		panic("nfs readdirplusrpc bad uio");
2423 #endif
2424 	/*
2425 	 * Obtain the namecache record for the directory so we have something
2426 	 * to use as a basis for creating the entries.  This function will
2427 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2428 	 * from the tree and cannot be used for upward traversals, and the
2429 	 * ncp may be unnamed.  Note that other unrelated operations may
2430 	 * cause the ncp to be named at any time.
2431 	 */
2432 	cache_fromdvp(vp, NULL, 0, &dnch);
2433 	bzero(&nlc, sizeof(nlc));
2434 	newvp = NULLVP;
2435 
2436 	/*
2437 	 * If there is no cookie, assume directory was stale.
2438 	 */
2439 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2440 	if (cookiep)
2441 		cookie = *cookiep;
2442 	else
2443 		return (NFSERR_BAD_COOKIE);
2444 	/*
2445 	 * Loop around doing readdir rpc's of size nm_readdirsize
2446 	 * truncated to a multiple of DIRBLKSIZ.
2447 	 * The stopping criteria is EOF or buffer full.
2448 	 */
2449 	while (more_dirs && bigenough) {
2450 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2451 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2452 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2453 		nfsm_fhtom(vp, 1);
2454  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2455 		*tl++ = cookie.nfsuquad[0];
2456 		*tl++ = cookie.nfsuquad[1];
2457 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2458 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2459 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2460 		*tl = txdr_unsigned(nmp->nm_rsize);
2461 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2462 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2463 		if (error) {
2464 			m_freem(mrep);
2465 			goto nfsmout;
2466 		}
2467 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2468 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2469 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2470 		more_dirs = fxdr_unsigned(int, *tl);
2471 
2472 		/* loop thru the dir entries, doctoring them to 4bsd form */
2473 		while (more_dirs && bigenough) {
2474 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2475 			fileno = fxdr_hyper(tl);
2476 			len = fxdr_unsigned(int, *(tl + 2));
2477 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2478 				error = EBADRPC;
2479 				m_freem(mrep);
2480 				goto nfsmout;
2481 			}
2482 			tlen = nfsm_rndup(len);
2483 			if (tlen == len)
2484 				tlen += 4;	/* To ensure null termination*/
2485 			left = DIRBLKSIZ - blksiz;
2486 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2487 				dp->nfs_reclen += left;
2488 				uiop->uio_iov->iov_base += left;
2489 				uiop->uio_iov->iov_len -= left;
2490 				uiop->uio_offset += left;
2491 				uiop->uio_resid -= left;
2492 				blksiz = 0;
2493 			}
2494 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2495 				bigenough = 0;
2496 			if (bigenough) {
2497 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2498 				dp->nfs_ino = fileno;
2499 				dp->nfs_namlen = len;
2500 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2501 				dp->nfs_type = DT_UNKNOWN;
2502 				blksiz += dp->nfs_reclen;
2503 				if (blksiz == DIRBLKSIZ)
2504 					blksiz = 0;
2505 				uiop->uio_offset += sizeof(struct nfs_dirent);
2506 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2507 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2508 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2509 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2510 				nlc.nlc_namelen = len;
2511 				nfsm_mtouio(uiop, len);
2512 				cp = uiop->uio_iov->iov_base;
2513 				tlen -= len;
2514 				*cp = '\0';
2515 				uiop->uio_iov->iov_base += tlen;
2516 				uiop->uio_iov->iov_len -= tlen;
2517 				uiop->uio_offset += tlen;
2518 				uiop->uio_resid -= tlen;
2519 			} else
2520 				nfsm_adv(nfsm_rndup(len));
2521 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2522 			if (bigenough) {
2523 				cookie.nfsuquad[0] = *tl++;
2524 				cookie.nfsuquad[1] = *tl++;
2525 			} else
2526 				tl += 2;
2527 
2528 			/*
2529 			 * Since the attributes are before the file handle
2530 			 * (sigh), we must skip over the attributes and then
2531 			 * come back and get them.
2532 			 */
2533 			attrflag = fxdr_unsigned(int, *tl);
2534 			if (attrflag) {
2535 			    dpossav1 = dpos;
2536 			    mdsav1 = md;
2537 			    nfsm_adv(NFSX_V3FATTR);
2538 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2539 			    doit = fxdr_unsigned(int, *tl);
2540 			    if (doit) {
2541 				nfsm_getfh(fhp, fhsize, 1);
2542 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2543 				    vref(vp);
2544 				    newvp = vp;
2545 				    np = dnp;
2546 				} else {
2547 				    error = nfs_nget(vp->v_mount, fhp,
2548 					fhsize, &np);
2549 				    if (error)
2550 					doit = 0;
2551 				    else
2552 					newvp = NFSTOV(np);
2553 				}
2554 			    }
2555 			    if (doit && bigenough) {
2556 				dpossav2 = dpos;
2557 				dpos = dpossav1;
2558 				mdsav2 = md;
2559 				md = mdsav1;
2560 				nfsm_loadattr(newvp, (struct vattr *)0);
2561 				dpos = dpossav2;
2562 				md = mdsav2;
2563 				dp->nfs_type =
2564 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2565 				if (dnch.ncp) {
2566 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2567 					nlc.nlc_namelen, nlc.nlc_namelen,
2568 					nlc.nlc_nameptr);
2569 				    nch = cache_nlookup(&dnch, &nlc);
2570 				    cache_setunresolved(&nch);
2571 				    nfs_cache_setvp(&nch, newvp,
2572 						    nfspos_cache_timeout);
2573 				    cache_put(&nch);
2574 				} else {
2575 				    kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2576 					" %*.*s\n",
2577 					nlc.nlc_namelen, nlc.nlc_namelen,
2578 					nlc.nlc_nameptr);
2579 				}
2580 			    }
2581 			} else {
2582 			    /* Just skip over the file handle */
2583 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2584 			    i = fxdr_unsigned(int, *tl);
2585 			    nfsm_adv(nfsm_rndup(i));
2586 			}
2587 			if (newvp != NULLVP) {
2588 			    if (newvp == vp)
2589 				vrele(newvp);
2590 			    else
2591 				vput(newvp);
2592 			    newvp = NULLVP;
2593 			}
2594 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2595 			more_dirs = fxdr_unsigned(int, *tl);
2596 		}
2597 		/*
2598 		 * If at end of rpc data, get the eof boolean
2599 		 */
2600 		if (!more_dirs) {
2601 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2602 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2603 		}
2604 		m_freem(mrep);
2605 	}
2606 	/*
2607 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2608 	 * by increasing d_reclen for the last record.
2609 	 */
2610 	if (blksiz > 0) {
2611 		left = DIRBLKSIZ - blksiz;
2612 		dp->nfs_reclen += left;
2613 		uiop->uio_iov->iov_base += left;
2614 		uiop->uio_iov->iov_len -= left;
2615 		uiop->uio_offset += left;
2616 		uiop->uio_resid -= left;
2617 	}
2618 
2619 	/*
2620 	 * We are now either at the end of the directory or have filled the
2621 	 * block.
2622 	 */
2623 	if (bigenough)
2624 		dnp->n_direofoffset = uiop->uio_offset;
2625 	else {
2626 		if (uiop->uio_resid > 0)
2627 			kprintf("EEK! readdirplusrpc resid > 0\n");
2628 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2629 		*cookiep = cookie;
2630 	}
2631 nfsmout:
2632 	if (newvp != NULLVP) {
2633 	        if (newvp == vp)
2634 			vrele(newvp);
2635 		else
2636 			vput(newvp);
2637 		newvp = NULLVP;
2638 	}
2639 	if (dnch.ncp)
2640 		cache_drop(&dnch);
2641 	return (error);
2642 }
2643 
2644 /*
2645  * Silly rename. To make the NFS filesystem that is stateless look a little
2646  * more like the "ufs" a remove of an active vnode is translated to a rename
2647  * to a funny looking filename that is removed by nfs_inactive on the
2648  * nfsnode. There is the potential for another process on a different client
2649  * to create the same funny name between the nfs_lookitup() fails and the
2650  * nfs_rename() completes, but...
2651  */
2652 static int
2653 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2654 {
2655 	struct sillyrename *sp;
2656 	struct nfsnode *np;
2657 	int error;
2658 
2659 	/*
2660 	 * We previously purged dvp instead of vp.  I don't know why, it
2661 	 * completely destroys performance.  We can't do it anyway with the
2662 	 * new VFS API since we would be breaking the namecache topology.
2663 	 */
2664 	cache_purge(vp);	/* XXX */
2665 	np = VTONFS(vp);
2666 #ifndef DIAGNOSTIC
2667 	if (vp->v_type == VDIR)
2668 		panic("nfs: sillyrename dir");
2669 #endif
2670 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2671 		M_NFSREQ, M_WAITOK);
2672 	sp->s_cred = crdup(cnp->cn_cred);
2673 	sp->s_dvp = dvp;
2674 	vref(dvp);
2675 
2676 	/* Fudge together a funny name */
2677 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2678 
2679 	/* Try lookitups until we get one that isn't there */
2680 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2681 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2682 		sp->s_name[4]++;
2683 		if (sp->s_name[4] > 'z') {
2684 			error = EINVAL;
2685 			goto bad;
2686 		}
2687 	}
2688 	error = nfs_renameit(dvp, cnp, sp);
2689 	if (error)
2690 		goto bad;
2691 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2692 		cnp->cn_td, &np);
2693 	np->n_sillyrename = sp;
2694 	return (0);
2695 bad:
2696 	vrele(sp->s_dvp);
2697 	crfree(sp->s_cred);
2698 	kfree((caddr_t)sp, M_NFSREQ);
2699 	return (error);
2700 }
2701 
2702 /*
2703  * Look up a file name and optionally either update the file handle or
2704  * allocate an nfsnode, depending on the value of npp.
2705  * npp == NULL	--> just do the lookup
2706  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2707  *			handled too
2708  * *npp != NULL --> update the file handle in the vnode
2709  */
2710 static int
2711 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2712 	     struct thread *td, struct nfsnode **npp)
2713 {
2714 	u_int32_t *tl;
2715 	caddr_t cp;
2716 	int32_t t1, t2;
2717 	struct vnode *newvp = (struct vnode *)0;
2718 	struct nfsnode *np, *dnp = VTONFS(dvp);
2719 	caddr_t bpos, dpos, cp2;
2720 	int error = 0, fhlen, attrflag;
2721 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2722 	nfsfh_t *nfhp;
2723 	int v3 = NFS_ISV3(dvp);
2724 
2725 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2726 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2727 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2728 	nfsm_fhtom(dvp, v3);
2729 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2730 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2731 	if (npp && !error) {
2732 		nfsm_getfh(nfhp, fhlen, v3);
2733 		if (*npp) {
2734 		    np = *npp;
2735 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2736 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2737 			np->n_fhp = &np->n_fh;
2738 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2739 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2740 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2741 		    np->n_fhsize = fhlen;
2742 		    newvp = NFSTOV(np);
2743 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2744 		    vref(dvp);
2745 		    newvp = dvp;
2746 		} else {
2747 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2748 		    if (error) {
2749 			m_freem(mrep);
2750 			return (error);
2751 		    }
2752 		    newvp = NFSTOV(np);
2753 		}
2754 		if (v3) {
2755 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2756 			if (!attrflag && *npp == NULL) {
2757 				m_freem(mrep);
2758 				if (newvp == dvp)
2759 					vrele(newvp);
2760 				else
2761 					vput(newvp);
2762 				return (ENOENT);
2763 			}
2764 		} else
2765 			nfsm_loadattr(newvp, (struct vattr *)0);
2766 	}
2767 	m_freem(mrep);
2768 nfsmout:
2769 	if (npp && *npp == NULL) {
2770 		if (error) {
2771 			if (newvp) {
2772 				if (newvp == dvp)
2773 					vrele(newvp);
2774 				else
2775 					vput(newvp);
2776 			}
2777 		} else
2778 			*npp = np;
2779 	}
2780 	return (error);
2781 }
2782 
2783 /*
2784  * Nfs Version 3 commit rpc
2785  */
2786 int
2787 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2788 {
2789 	caddr_t cp;
2790 	u_int32_t *tl;
2791 	int32_t t1, t2;
2792 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2793 	caddr_t bpos, dpos, cp2;
2794 	int error = 0, wccflag = NFSV3_WCCRATTR;
2795 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2796 
2797 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2798 		return (0);
2799 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2800 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2801 	nfsm_fhtom(vp, 1);
2802 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2803 	txdr_hyper(offset, tl);
2804 	tl += 2;
2805 	*tl = txdr_unsigned(cnt);
2806 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2807 	nfsm_wcc_data(vp, wccflag);
2808 	if (!error) {
2809 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2810 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2811 			NFSX_V3WRITEVERF)) {
2812 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2813 				NFSX_V3WRITEVERF);
2814 			error = NFSERR_STALEWRITEVERF;
2815 		}
2816 	}
2817 	m_freem(mrep);
2818 nfsmout:
2819 	return (error);
2820 }
2821 
2822 /*
2823  * Kludge City..
2824  * - make nfs_bmap() essentially a no-op that does no translation
2825  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2826  *   (Maybe I could use the process's page mapping, but I was concerned that
2827  *    Kernel Write might not be enabled and also figured copyout() would do
2828  *    a lot more work than bcopy() and also it currently happens in the
2829  *    context of the swapper process (2).
2830  *
2831  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2832  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2833  */
2834 static int
2835 nfs_bmap(struct vop_bmap_args *ap)
2836 {
2837 	if (ap->a_doffsetp != NULL)
2838 		*ap->a_doffsetp = ap->a_loffset;
2839 	if (ap->a_runp != NULL)
2840 		*ap->a_runp = 0;
2841 	if (ap->a_runb != NULL)
2842 		*ap->a_runb = 0;
2843 	return (0);
2844 }
2845 
2846 /*
2847  * Strategy routine.
2848  *
2849  * For async requests when nfsiod(s) are running, queue the request by
2850  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2851  * request.
2852  */
2853 static int
2854 nfs_strategy(struct vop_strategy_args *ap)
2855 {
2856 	struct bio *bio = ap->a_bio;
2857 	struct bio *nbio;
2858 	struct buf *bp = bio->bio_buf;
2859 	struct thread *td;
2860 	int error = 0;
2861 
2862 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2863 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2864 	KASSERT(BUF_REFCNT(bp) > 0,
2865 		("nfs_strategy: buffer %p not locked", bp));
2866 
2867 	if (bp->b_flags & B_ASYNC)
2868 		td = NULL;
2869 	else
2870 		td = curthread;	/* XXX */
2871 
2872         /*
2873 	 * We probably don't need to push an nbio any more since no
2874 	 * block conversion is required due to the use of 64 bit byte
2875 	 * offsets, but do it anyway.
2876          */
2877 	nbio = push_bio(bio);
2878 	nbio->bio_offset = bio->bio_offset;
2879 
2880 	/*
2881 	 * If the op is asynchronous and an i/o daemon is waiting
2882 	 * queue the request, wake it up and wait for completion
2883 	 * otherwise just do it ourselves.
2884 	 */
2885 	if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2886 		error = nfs_doio(ap->a_vp, nbio, td);
2887 	return (error);
2888 }
2889 
2890 /*
2891  * Mmap a file
2892  *
2893  * NB Currently unsupported.
2894  *
2895  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
2896  */
2897 /* ARGSUSED */
2898 static int
2899 nfs_mmap(struct vop_mmap_args *ap)
2900 {
2901 	return (EINVAL);
2902 }
2903 
2904 /*
2905  * fsync vnode op. Just call nfs_flush() with commit == 1.
2906  *
2907  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
2908  */
2909 /* ARGSUSED */
2910 static int
2911 nfs_fsync(struct vop_fsync_args *ap)
2912 {
2913 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2914 }
2915 
2916 /*
2917  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2918  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2919  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2920  * set the buffer contains data that has already been written to the server
2921  * and which now needs a commit RPC.
2922  *
2923  * If commit is 0 we only take one pass and only flush buffers containing new
2924  * dirty data.
2925  *
2926  * If commit is 1 we take two passes, issuing a commit RPC in the second
2927  * pass.
2928  *
2929  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2930  * to completely flush all pending data.
2931  *
2932  * Note that the RB_SCAN code properly handles the case where the
2933  * callback might block and directly or indirectly (another thread) cause
2934  * the RB tree to change.
2935  */
2936 
2937 #ifndef NFS_COMMITBVECSIZ
2938 #define NFS_COMMITBVECSIZ	16
2939 #endif
2940 
2941 struct nfs_flush_info {
2942 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2943 	struct thread *td;
2944 	struct vnode *vp;
2945 	int waitfor;
2946 	int slpflag;
2947 	int slptimeo;
2948 	int loops;
2949 	struct buf *bvary[NFS_COMMITBVECSIZ];
2950 	int bvsize;
2951 	off_t beg_off;
2952 	off_t end_off;
2953 };
2954 
2955 static int nfs_flush_bp(struct buf *bp, void *data);
2956 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2957 
2958 int
2959 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2960 {
2961 	struct nfsnode *np = VTONFS(vp);
2962 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2963 	struct nfs_flush_info info;
2964 	int error;
2965 
2966 	bzero(&info, sizeof(info));
2967 	info.td = td;
2968 	info.vp = vp;
2969 	info.waitfor = waitfor;
2970 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2971 	info.loops = 0;
2972 
2973 	do {
2974 		/*
2975 		 * Flush mode
2976 		 */
2977 		info.mode = NFI_FLUSHNEW;
2978 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2979 				nfs_flush_bp, &info);
2980 
2981 		/*
2982 		 * Take a second pass if committing and no error occured.
2983 		 * Clean up any left over collection (whether an error
2984 		 * occurs or not).
2985 		 */
2986 		if (commit && error == 0) {
2987 			info.mode = NFI_COMMIT;
2988 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2989 					nfs_flush_bp, &info);
2990 			if (info.bvsize)
2991 				error = nfs_flush_docommit(&info, error);
2992 		}
2993 
2994 		/*
2995 		 * Wait for pending I/O to complete before checking whether
2996 		 * any further dirty buffers exist.
2997 		 */
2998 		while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
2999 			vp->v_track_write.bk_waitflag = 1;
3000 			error = tsleep(&vp->v_track_write,
3001 				info.slpflag, "nfsfsync", info.slptimeo);
3002 			if (error) {
3003 				/*
3004 				 * We have to be able to break out if this
3005 				 * is an 'intr' mount.
3006 				 */
3007 				if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
3008 					error = -EINTR;
3009 					break;
3010 				}
3011 
3012 				/*
3013 				 * Since we do not process pending signals,
3014 				 * once we get a PCATCH our tsleep() will no
3015 				 * longer sleep, switch to a fixed timeout
3016 				 * instead.
3017 				 */
3018 				if (info.slpflag == PCATCH) {
3019 					info.slpflag = 0;
3020 					info.slptimeo = 2 * hz;
3021 				}
3022 				error = 0;
3023 			}
3024 		}
3025 		++info.loops;
3026 		/*
3027 		 * Loop if we are flushing synchronous as well as committing,
3028 		 * and dirty buffers are still present.  Otherwise we might livelock.
3029 		 */
3030 	} while (waitfor == MNT_WAIT && commit &&
3031 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3032 
3033 	/*
3034 	 * The callbacks have to return a negative error to terminate the
3035 	 * RB scan.
3036 	 */
3037 	if (error < 0)
3038 		error = -error;
3039 
3040 	/*
3041 	 * Deal with any error collection
3042 	 */
3043 	if (np->n_flag & NWRITEERR) {
3044 		error = np->n_error;
3045 		np->n_flag &= ~NWRITEERR;
3046 	}
3047 	return (error);
3048 }
3049 
3050 
3051 static
3052 int
3053 nfs_flush_bp(struct buf *bp, void *data)
3054 {
3055 	struct nfs_flush_info *info = data;
3056 	off_t toff;
3057 	int error;
3058 
3059 	error = 0;
3060 	switch(info->mode) {
3061 	case NFI_FLUSHNEW:
3062 		crit_enter();
3063 		if (info->loops && info->waitfor == MNT_WAIT) {
3064 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3065 			if (error) {
3066 				int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3067 				if (info->slpflag & PCATCH)
3068 					lkflags |= LK_PCATCH;
3069 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3070 						     info->slptimeo);
3071 			}
3072 		} else {
3073 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3074 		}
3075 		if (error == 0) {
3076 			KKASSERT(bp->b_vp == info->vp);
3077 
3078 			if ((bp->b_flags & B_DELWRI) == 0)
3079 				panic("nfs_fsync: not dirty");
3080 			if (bp->b_flags & B_NEEDCOMMIT) {
3081 				BUF_UNLOCK(bp);
3082 				crit_exit();
3083 				break;
3084 			}
3085 			bremfree(bp);
3086 
3087 			crit_exit();
3088 			bawrite(bp);
3089 		} else {
3090 			crit_exit();
3091 			error = 0;
3092 		}
3093 		break;
3094 	case NFI_COMMIT:
3095 		/*
3096 		 * Only process buffers in need of a commit which we can
3097 		 * immediately lock.  This may prevent a buffer from being
3098 		 * committed, but the normal flush loop will block on the
3099 		 * same buffer so we shouldn't get into an endless loop.
3100 		 */
3101 		crit_enter();
3102 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3103 		    (B_DELWRI | B_NEEDCOMMIT) ||
3104 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3105 			crit_exit();
3106 			break;
3107 		}
3108 
3109 		KKASSERT(bp->b_vp == info->vp);
3110 		bremfree(bp);
3111 
3112 		/*
3113 		 * NOTE: storing the bp in the bvary[] basically sets
3114 		 * it up for a commit operation.
3115 		 *
3116 		 * We must call vfs_busy_pages() now so the commit operation
3117 		 * is interlocked with user modifications to memory mapped
3118 		 * pages.
3119 		 *
3120 		 * Note: to avoid loopback deadlocks, we do not
3121 		 * assign b_runningbufspace.
3122 		 */
3123 		bp->b_cmd = BUF_CMD_WRITE;
3124 		vfs_busy_pages(bp->b_vp, bp);
3125 		info->bvary[info->bvsize] = bp;
3126 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3127 		if (info->bvsize == 0 || toff < info->beg_off)
3128 			info->beg_off = toff;
3129 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3130 		if (info->bvsize == 0 || toff > info->end_off)
3131 			info->end_off = toff;
3132 		++info->bvsize;
3133 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3134 			error = nfs_flush_docommit(info, 0);
3135 			KKASSERT(info->bvsize == 0);
3136 		}
3137 		crit_exit();
3138 	}
3139 	return (error);
3140 }
3141 
3142 static
3143 int
3144 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3145 {
3146 	struct vnode *vp;
3147 	struct buf *bp;
3148 	off_t bytes;
3149 	int retv;
3150 	int i;
3151 
3152 	vp = info->vp;
3153 
3154 	if (info->bvsize > 0) {
3155 		/*
3156 		 * Commit data on the server, as required.  Note that
3157 		 * nfs_commit will use the vnode's cred for the commit.
3158 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3159 		 */
3160 		bytes = info->end_off - info->beg_off;
3161 		if (bytes > 0x40000000)
3162 			bytes = 0x40000000;
3163 		if (error) {
3164 			retv = -error;
3165 		} else {
3166 			retv = nfs_commit(vp, info->beg_off,
3167 					    (int)bytes, info->td);
3168 			if (retv == NFSERR_STALEWRITEVERF)
3169 				nfs_clearcommit(vp->v_mount);
3170 		}
3171 
3172 		/*
3173 		 * Now, either mark the blocks I/O done or mark the
3174 		 * blocks dirty, depending on whether the commit
3175 		 * succeeded.
3176 		 */
3177 		for (i = 0; i < info->bvsize; ++i) {
3178 			bp = info->bvary[i];
3179 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3180 			if (retv) {
3181 				/*
3182 				 * Error, leave B_DELWRI intact
3183 				 */
3184 				vfs_unbusy_pages(bp);
3185 				bp->b_cmd = BUF_CMD_DONE;
3186 				brelse(bp);
3187 			} else {
3188 				/*
3189 				 * Success, remove B_DELWRI ( bundirty() ).
3190 				 *
3191 				 * b_dirtyoff/b_dirtyend seem to be NFS
3192 				 * specific.  We should probably move that
3193 				 * into bundirty(). XXX
3194 				 *
3195 				 * We are faking an I/O write, we have to
3196 				 * start the transaction in order to
3197 				 * immediately biodone() it.
3198 				 */
3199 				crit_enter();
3200 				bp->b_flags |= B_ASYNC;
3201 				bundirty(bp);
3202 				bp->b_flags &= ~B_ERROR;
3203 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3204 				crit_exit();
3205 				biodone(&bp->b_bio1);
3206 			}
3207 		}
3208 		info->bvsize = 0;
3209 	}
3210 	return (error);
3211 }
3212 
3213 /*
3214  * NFS advisory byte-level locks.
3215  * Currently unsupported.
3216  *
3217  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3218  *		int a_flags)
3219  */
3220 static int
3221 nfs_advlock(struct vop_advlock_args *ap)
3222 {
3223 	struct nfsnode *np = VTONFS(ap->a_vp);
3224 
3225 	/*
3226 	 * The following kludge is to allow diskless support to work
3227 	 * until a real NFS lockd is implemented. Basically, just pretend
3228 	 * that this is a local lock.
3229 	 */
3230 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3231 }
3232 
3233 /*
3234  * Print out the contents of an nfsnode.
3235  *
3236  * nfs_print(struct vnode *a_vp)
3237  */
3238 static int
3239 nfs_print(struct vop_print_args *ap)
3240 {
3241 	struct vnode *vp = ap->a_vp;
3242 	struct nfsnode *np = VTONFS(vp);
3243 
3244 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3245 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3246 	if (vp->v_type == VFIFO)
3247 		fifo_printinfo(vp);
3248 	kprintf("\n");
3249 	return (0);
3250 }
3251 
3252 /*
3253  * nfs special file access vnode op.
3254  * Essentially just get vattr and then imitate iaccess() since the device is
3255  * local to the client.
3256  *
3257  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3258  */
3259 static int
3260 nfsspec_access(struct vop_access_args *ap)
3261 {
3262 	struct vattr *vap;
3263 	gid_t *gp;
3264 	struct ucred *cred = ap->a_cred;
3265 	struct vnode *vp = ap->a_vp;
3266 	mode_t mode = ap->a_mode;
3267 	struct vattr vattr;
3268 	int i;
3269 	int error;
3270 
3271 	/*
3272 	 * Disallow write attempts on filesystems mounted read-only;
3273 	 * unless the file is a socket, fifo, or a block or character
3274 	 * device resident on the filesystem.
3275 	 */
3276 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3277 		switch (vp->v_type) {
3278 		case VREG:
3279 		case VDIR:
3280 		case VLNK:
3281 			return (EROFS);
3282 		default:
3283 			break;
3284 		}
3285 	}
3286 	/*
3287 	 * If you're the super-user,
3288 	 * you always get access.
3289 	 */
3290 	if (cred->cr_uid == 0)
3291 		return (0);
3292 	vap = &vattr;
3293 	error = VOP_GETATTR(vp, vap);
3294 	if (error)
3295 		return (error);
3296 	/*
3297 	 * Access check is based on only one of owner, group, public.
3298 	 * If not owner, then check group. If not a member of the
3299 	 * group, then check public access.
3300 	 */
3301 	if (cred->cr_uid != vap->va_uid) {
3302 		mode >>= 3;
3303 		gp = cred->cr_groups;
3304 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3305 			if (vap->va_gid == *gp)
3306 				goto found;
3307 		mode >>= 3;
3308 found:
3309 		;
3310 	}
3311 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3312 	return (error);
3313 }
3314 
3315 /*
3316  * Read wrapper for special devices.
3317  *
3318  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3319  *		struct ucred *a_cred)
3320  */
3321 static int
3322 nfsspec_read(struct vop_read_args *ap)
3323 {
3324 	struct nfsnode *np = VTONFS(ap->a_vp);
3325 
3326 	/*
3327 	 * Set access flag.
3328 	 */
3329 	np->n_flag |= NACC;
3330 	getnanotime(&np->n_atim);
3331 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3332 }
3333 
3334 /*
3335  * Write wrapper for special devices.
3336  *
3337  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3338  *		 struct ucred *a_cred)
3339  */
3340 static int
3341 nfsspec_write(struct vop_write_args *ap)
3342 {
3343 	struct nfsnode *np = VTONFS(ap->a_vp);
3344 
3345 	/*
3346 	 * Set update flag.
3347 	 */
3348 	np->n_flag |= NUPD;
3349 	getnanotime(&np->n_mtim);
3350 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3351 }
3352 
3353 /*
3354  * Close wrapper for special devices.
3355  *
3356  * Update the times on the nfsnode then do device close.
3357  *
3358  * nfsspec_close(struct vnode *a_vp, int a_fflag)
3359  */
3360 static int
3361 nfsspec_close(struct vop_close_args *ap)
3362 {
3363 	struct vnode *vp = ap->a_vp;
3364 	struct nfsnode *np = VTONFS(vp);
3365 	struct vattr vattr;
3366 
3367 	if (np->n_flag & (NACC | NUPD)) {
3368 		np->n_flag |= NCHG;
3369 		if (vp->v_sysref.refcnt == 1 &&
3370 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3371 			VATTR_NULL(&vattr);
3372 			if (np->n_flag & NACC)
3373 				vattr.va_atime = np->n_atim;
3374 			if (np->n_flag & NUPD)
3375 				vattr.va_mtime = np->n_mtim;
3376 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3377 		}
3378 	}
3379 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3380 }
3381 
3382 /*
3383  * Read wrapper for fifos.
3384  *
3385  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3386  *		struct ucred *a_cred)
3387  */
3388 static int
3389 nfsfifo_read(struct vop_read_args *ap)
3390 {
3391 	struct nfsnode *np = VTONFS(ap->a_vp);
3392 
3393 	/*
3394 	 * Set access flag.
3395 	 */
3396 	np->n_flag |= NACC;
3397 	getnanotime(&np->n_atim);
3398 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3399 }
3400 
3401 /*
3402  * Write wrapper for fifos.
3403  *
3404  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3405  *		 struct ucred *a_cred)
3406  */
3407 static int
3408 nfsfifo_write(struct vop_write_args *ap)
3409 {
3410 	struct nfsnode *np = VTONFS(ap->a_vp);
3411 
3412 	/*
3413 	 * Set update flag.
3414 	 */
3415 	np->n_flag |= NUPD;
3416 	getnanotime(&np->n_mtim);
3417 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3418 }
3419 
3420 /*
3421  * Close wrapper for fifos.
3422  *
3423  * Update the times on the nfsnode then do fifo close.
3424  *
3425  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3426  */
3427 static int
3428 nfsfifo_close(struct vop_close_args *ap)
3429 {
3430 	struct vnode *vp = ap->a_vp;
3431 	struct nfsnode *np = VTONFS(vp);
3432 	struct vattr vattr;
3433 	struct timespec ts;
3434 
3435 	if (np->n_flag & (NACC | NUPD)) {
3436 		getnanotime(&ts);
3437 		if (np->n_flag & NACC)
3438 			np->n_atim = ts;
3439 		if (np->n_flag & NUPD)
3440 			np->n_mtim = ts;
3441 		np->n_flag |= NCHG;
3442 		if (vp->v_sysref.refcnt == 1 &&
3443 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3444 			VATTR_NULL(&vattr);
3445 			if (np->n_flag & NACC)
3446 				vattr.va_atime = np->n_atim;
3447 			if (np->n_flag & NUPD)
3448 				vattr.va_mtime = np->n_mtim;
3449 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3450 		}
3451 	}
3452 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3453 }
3454 
3455