xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 1ab20d67)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.23 2004/05/08 04:11:48 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/socket.h>
59 #include <sys/vnode.h>
60 #include <sys/dirent.h>
61 #include <sys/fcntl.h>
62 #include <sys/lockf.h>
63 #include <sys/stat.h>
64 #include <sys/sysctl.h>
65 #include <sys/conf.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_extern.h>
69 #include <vm/vm_zone.h>
70 
71 #include <sys/buf2.h>
72 
73 #include <vfs/fifofs/fifo.h>
74 
75 #include "rpcv2.h"
76 #include "nfsproto.h"
77 #include "nfs.h"
78 #include "nfsmount.h"
79 #include "nfsnode.h"
80 #include "xdr_subs.h"
81 #include "nfsm_subs.h"
82 #include "nqnfs.h"
83 
84 #include <net/if.h>
85 #include <netinet/in.h>
86 #include <netinet/in_var.h>
87 
88 /* Defs */
89 #define	TRUE	1
90 #define	FALSE	0
91 
92 /*
93  * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
94  * calls are not in getblk() and brelse() so that they would not be necessary
95  * here.
96  */
97 #ifndef B_VMIO
98 #define vfs_busy_pages(bp, f)
99 #endif
100 
101 static int	nfsspec_read (struct vop_read_args *);
102 static int	nfsspec_write (struct vop_write_args *);
103 static int	nfsfifo_read (struct vop_read_args *);
104 static int	nfsfifo_write (struct vop_write_args *);
105 static int	nfsspec_close (struct vop_close_args *);
106 static int	nfsfifo_close (struct vop_close_args *);
107 #define nfs_poll vop_nopoll
108 static int	nfs_flush (struct vnode *,int,struct thread *,int);
109 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
110 static	int	nfs_lookup (struct vop_lookup_args *);
111 static	int	nfs_create (struct vop_create_args *);
112 static	int	nfs_mknod (struct vop_mknod_args *);
113 static	int	nfs_open (struct vop_open_args *);
114 static	int	nfs_close (struct vop_close_args *);
115 static	int	nfs_access (struct vop_access_args *);
116 static	int	nfs_getattr (struct vop_getattr_args *);
117 static	int	nfs_setattr (struct vop_setattr_args *);
118 static	int	nfs_read (struct vop_read_args *);
119 static	int	nfs_mmap (struct vop_mmap_args *);
120 static	int	nfs_fsync (struct vop_fsync_args *);
121 static	int	nfs_remove (struct vop_remove_args *);
122 static	int	nfs_link (struct vop_link_args *);
123 static	int	nfs_rename (struct vop_rename_args *);
124 static	int	nfs_mkdir (struct vop_mkdir_args *);
125 static	int	nfs_rmdir (struct vop_rmdir_args *);
126 static	int	nfs_symlink (struct vop_symlink_args *);
127 static	int	nfs_readdir (struct vop_readdir_args *);
128 static	int	nfs_bmap (struct vop_bmap_args *);
129 static	int	nfs_strategy (struct vop_strategy_args *);
130 static	int	nfs_lookitup (struct vnode *, const char *, int,
131 			struct ucred *, struct thread *, struct nfsnode **);
132 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
133 static int	nfsspec_access (struct vop_access_args *);
134 static int	nfs_readlink (struct vop_readlink_args *);
135 static int	nfs_print (struct vop_print_args *);
136 static int	nfs_advlock (struct vop_advlock_args *);
137 static int	nfs_bwrite (struct vop_bwrite_args *);
138 /*
139  * Global vfs data structures for nfs
140  */
141 vop_t **nfsv2_vnodeop_p;
142 static struct vnodeopv_entry_desc nfsv2_vnodeop_entries[] = {
143 	{ &vop_default_desc,		(vop_t *) vop_defaultop },
144 	{ &vop_access_desc,		(vop_t *) nfs_access },
145 	{ &vop_advlock_desc,		(vop_t *) nfs_advlock },
146 	{ &vop_bmap_desc,		(vop_t *) nfs_bmap },
147 	{ &vop_bwrite_desc,		(vop_t *) nfs_bwrite },
148 	{ &vop_close_desc,		(vop_t *) nfs_close },
149 	{ &vop_create_desc,		(vop_t *) nfs_create },
150 	{ &vop_fsync_desc,		(vop_t *) nfs_fsync },
151 	{ &vop_getattr_desc,		(vop_t *) nfs_getattr },
152 	{ &vop_getpages_desc,		(vop_t *) nfs_getpages },
153 	{ &vop_putpages_desc,		(vop_t *) nfs_putpages },
154 	{ &vop_inactive_desc,		(vop_t *) nfs_inactive },
155 	{ &vop_islocked_desc,		(vop_t *) vop_stdislocked },
156 	{ &vop_lease_desc,		(vop_t *) vop_null },
157 	{ &vop_link_desc,		(vop_t *) nfs_link },
158 	{ &vop_lock_desc,		(vop_t *) vop_sharedlock },
159 	{ &vop_lookup_desc,		(vop_t *) nfs_lookup },
160 	{ &vop_mkdir_desc,		(vop_t *) nfs_mkdir },
161 	{ &vop_mknod_desc,		(vop_t *) nfs_mknod },
162 	{ &vop_mmap_desc,		(vop_t *) nfs_mmap },
163 	{ &vop_open_desc,		(vop_t *) nfs_open },
164 	{ &vop_poll_desc,		(vop_t *) nfs_poll },
165 	{ &vop_print_desc,		(vop_t *) nfs_print },
166 	{ &vop_read_desc,		(vop_t *) nfs_read },
167 	{ &vop_readdir_desc,		(vop_t *) nfs_readdir },
168 	{ &vop_readlink_desc,		(vop_t *) nfs_readlink },
169 	{ &vop_reclaim_desc,		(vop_t *) nfs_reclaim },
170 	{ &vop_remove_desc,		(vop_t *) nfs_remove },
171 	{ &vop_rename_desc,		(vop_t *) nfs_rename },
172 	{ &vop_rmdir_desc,		(vop_t *) nfs_rmdir },
173 	{ &vop_setattr_desc,		(vop_t *) nfs_setattr },
174 	{ &vop_strategy_desc,		(vop_t *) nfs_strategy },
175 	{ &vop_symlink_desc,		(vop_t *) nfs_symlink },
176 	{ &vop_unlock_desc,		(vop_t *) vop_stdunlock },
177 	{ &vop_write_desc,		(vop_t *) nfs_write },
178 	{ NULL, NULL }
179 };
180 static struct vnodeopv_desc nfsv2_vnodeop_opv_desc =
181 	{ &nfsv2_vnodeop_p, nfsv2_vnodeop_entries };
182 VNODEOP_SET(nfsv2_vnodeop_opv_desc);
183 
184 /*
185  * Special device vnode ops
186  */
187 vop_t **spec_nfsv2nodeop_p;
188 static struct vnodeopv_entry_desc nfsv2_specop_entries[] = {
189 	{ &vop_default_desc,		(vop_t *) spec_vnoperate },
190 	{ &vop_access_desc,		(vop_t *) nfsspec_access },
191 	{ &vop_close_desc,		(vop_t *) nfsspec_close },
192 	{ &vop_fsync_desc,		(vop_t *) nfs_fsync },
193 	{ &vop_getattr_desc,		(vop_t *) nfs_getattr },
194 	{ &vop_inactive_desc,		(vop_t *) nfs_inactive },
195 	{ &vop_islocked_desc,		(vop_t *) vop_stdislocked },
196 	{ &vop_lock_desc,		(vop_t *) vop_sharedlock },
197 	{ &vop_print_desc,		(vop_t *) nfs_print },
198 	{ &vop_read_desc,		(vop_t *) nfsspec_read },
199 	{ &vop_reclaim_desc,		(vop_t *) nfs_reclaim },
200 	{ &vop_setattr_desc,		(vop_t *) nfs_setattr },
201 	{ &vop_unlock_desc,		(vop_t *) vop_stdunlock },
202 	{ &vop_write_desc,		(vop_t *) nfsspec_write },
203 	{ NULL, NULL }
204 };
205 static struct vnodeopv_desc spec_nfsv2nodeop_opv_desc =
206 	{ &spec_nfsv2nodeop_p, nfsv2_specop_entries };
207 VNODEOP_SET(spec_nfsv2nodeop_opv_desc);
208 
209 vop_t **fifo_nfsv2nodeop_p;
210 static struct vnodeopv_entry_desc nfsv2_fifoop_entries[] = {
211 	{ &vop_default_desc,		(vop_t *) fifo_vnoperate },
212 	{ &vop_access_desc,		(vop_t *) nfsspec_access },
213 	{ &vop_close_desc,		(vop_t *) nfsfifo_close },
214 	{ &vop_fsync_desc,		(vop_t *) nfs_fsync },
215 	{ &vop_getattr_desc,		(vop_t *) nfs_getattr },
216 	{ &vop_inactive_desc,		(vop_t *) nfs_inactive },
217 	{ &vop_islocked_desc,		(vop_t *) vop_stdislocked },
218 	{ &vop_lock_desc,		(vop_t *) vop_sharedlock },
219 	{ &vop_print_desc,		(vop_t *) nfs_print },
220 	{ &vop_read_desc,		(vop_t *) nfsfifo_read },
221 	{ &vop_reclaim_desc,		(vop_t *) nfs_reclaim },
222 	{ &vop_setattr_desc,		(vop_t *) nfs_setattr },
223 	{ &vop_unlock_desc,		(vop_t *) vop_stdunlock },
224 	{ &vop_write_desc,		(vop_t *) nfsfifo_write },
225 	{ NULL, NULL }
226 };
227 static struct vnodeopv_desc fifo_nfsv2nodeop_opv_desc =
228 	{ &fifo_nfsv2nodeop_p, nfsv2_fifoop_entries };
229 VNODEOP_SET(fifo_nfsv2nodeop_opv_desc);
230 
231 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
232 				  struct componentname *cnp,
233 				  struct vattr *vap);
234 static int	nfs_removerpc (struct vnode *dvp, const char *name,
235 				   int namelen,
236 				   struct ucred *cred, struct thread *td);
237 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
238 				   int fnamelen, struct vnode *tdvp,
239 				   const char *tnameptr, int tnamelen,
240 				   struct ucred *cred, struct thread *td);
241 static int	nfs_renameit (struct vnode *sdvp,
242 				  struct componentname *scnp,
243 				  struct sillyrename *sp);
244 
245 /*
246  * Global variables
247  */
248 extern u_int32_t nfs_true, nfs_false;
249 extern u_int32_t nfs_xdrneg1;
250 extern struct nfsstats nfsstats;
251 extern nfstype nfsv3_type[9];
252 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
253 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
254 int nfs_numasync = 0;
255 #define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
256 
257 SYSCTL_DECL(_vfs_nfs);
258 
259 static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
260 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
261 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
262 
263 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
264 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
265 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE ACCESS cache timeout");
266 
267 static int	nfsv3_commit_on_close = 0;
268 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
269 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
270 #if 0
271 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
272 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
273 
274 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
275 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
276 #endif
277 
278 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
279 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
280 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
281 static int
282 nfs3_access_otw(struct vnode *vp, int wmode,
283 		struct thread *td, struct ucred *cred)
284 {
285 	const int v3 = 1;
286 	u_int32_t *tl;
287 	int error = 0, attrflag;
288 
289 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
290 	caddr_t bpos, dpos, cp2;
291 	int32_t t1, t2;
292 	caddr_t cp;
293 	u_int32_t rmode;
294 	struct nfsnode *np = VTONFS(vp);
295 
296 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
297 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
298 	nfsm_fhtom(vp, v3);
299 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
300 	*tl = txdr_unsigned(wmode);
301 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
302 	nfsm_postop_attr(vp, attrflag);
303 	if (!error) {
304 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
305 		rmode = fxdr_unsigned(u_int32_t, *tl);
306 		np->n_mode = rmode;
307 		np->n_modeuid = cred->cr_uid;
308 		np->n_modestamp = mycpu->gd_time_seconds;
309 	}
310 	m_freem(mrep);
311 nfsmout:
312 	return error;
313 }
314 
315 /*
316  * nfs access vnode op.
317  * For nfs version 2, just return ok. File accesses may fail later.
318  * For nfs version 3, use the access rpc to check accessibility. If file modes
319  * are changed on the server, accesses might still fail later.
320  *
321  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
322  *	      struct thread *a_td)
323  */
324 static int
325 nfs_access(struct vop_access_args *ap)
326 {
327 	struct vnode *vp = ap->a_vp;
328 	int error = 0;
329 	u_int32_t mode, wmode;
330 	int v3 = NFS_ISV3(vp);
331 	struct nfsnode *np = VTONFS(vp);
332 
333 	/*
334 	 * Disallow write attempts on filesystems mounted read-only;
335 	 * unless the file is a socket, fifo, or a block or character
336 	 * device resident on the filesystem.
337 	 */
338 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
339 		switch (vp->v_type) {
340 		case VREG:
341 		case VDIR:
342 		case VLNK:
343 			return (EROFS);
344 		default:
345 			break;
346 		}
347 	}
348 	/*
349 	 * For nfs v3, check to see if we have done this recently, and if
350 	 * so return our cached result instead of making an ACCESS call.
351 	 * If not, do an access rpc, otherwise you are stuck emulating
352 	 * ufs_access() locally using the vattr. This may not be correct,
353 	 * since the server may apply other access criteria such as
354 	 * client uid-->server uid mapping that we do not know about.
355 	 */
356 	if (v3) {
357 		if (ap->a_mode & VREAD)
358 			mode = NFSV3ACCESS_READ;
359 		else
360 			mode = 0;
361 		if (vp->v_type != VDIR) {
362 			if (ap->a_mode & VWRITE)
363 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
364 			if (ap->a_mode & VEXEC)
365 				mode |= NFSV3ACCESS_EXECUTE;
366 		} else {
367 			if (ap->a_mode & VWRITE)
368 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
369 					 NFSV3ACCESS_DELETE);
370 			if (ap->a_mode & VEXEC)
371 				mode |= NFSV3ACCESS_LOOKUP;
372 		}
373 		/* XXX safety belt, only make blanket request if caching */
374 		if (nfsaccess_cache_timeout > 0) {
375 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
376 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
377 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
378 		} else {
379 			wmode = mode;
380 		}
381 
382 		/*
383 		 * Does our cached result allow us to give a definite yes to
384 		 * this request?
385 		 */
386 		if ((mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
387 		    (ap->a_cred->cr_uid == np->n_modeuid) &&
388 		    ((np->n_mode & mode) == mode)) {
389 			nfsstats.accesscache_hits++;
390 		} else {
391 			/*
392 			 * Either a no, or a don't know.  Go to the wire.
393 			 */
394 			nfsstats.accesscache_misses++;
395 		        error = nfs3_access_otw(vp, wmode, ap->a_td,ap->a_cred);
396 			if (!error) {
397 				if ((np->n_mode & mode) != mode) {
398 					error = EACCES;
399 				}
400 			}
401 		}
402 	} else {
403 		if ((error = nfsspec_access(ap)) != 0)
404 			return (error);
405 
406 		/*
407 		 * Attempt to prevent a mapped root from accessing a file
408 		 * which it shouldn't.  We try to read a byte from the file
409 		 * if the user is root and the file is not zero length.
410 		 * After calling nfsspec_access, we should have the correct
411 		 * file size cached.
412 		 */
413 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
414 		    && VTONFS(vp)->n_size > 0) {
415 			struct iovec aiov;
416 			struct uio auio;
417 			char buf[1];
418 
419 			aiov.iov_base = buf;
420 			aiov.iov_len = 1;
421 			auio.uio_iov = &aiov;
422 			auio.uio_iovcnt = 1;
423 			auio.uio_offset = 0;
424 			auio.uio_resid = 1;
425 			auio.uio_segflg = UIO_SYSSPACE;
426 			auio.uio_rw = UIO_READ;
427 			auio.uio_td = ap->a_td;
428 
429 			if (vp->v_type == VREG) {
430 				error = nfs_readrpc(vp, &auio);
431 			} else if (vp->v_type == VDIR) {
432 				char* bp;
433 				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
434 				aiov.iov_base = bp;
435 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
436 				error = nfs_readdirrpc(vp, &auio);
437 				free(bp, M_TEMP);
438 			} else if (vp->v_type == VLNK) {
439 				error = nfs_readlinkrpc(vp, &auio);
440 			} else {
441 				error = EACCES;
442 			}
443 		}
444 	}
445 	/*
446 	 * [re]record creds for reading and/or writing if access
447 	 * was granted.  Assume the NFS server will grant read access
448 	 * for execute requests.
449 	 */
450 	if (error == 0) {
451 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
452 			crhold(ap->a_cred);
453 			if (np->n_rucred)
454 				crfree(np->n_rucred);
455 			np->n_rucred = ap->a_cred;
456 		}
457 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
458 			crhold(ap->a_cred);
459 			if (np->n_wucred)
460 				crfree(np->n_wucred);
461 			np->n_wucred = ap->a_cred;
462 		}
463 	}
464 	return(error);
465 }
466 
467 /*
468  * nfs open vnode op
469  * Check to see if the type is ok
470  * and that deletion is not in progress.
471  * For paged in text files, you will need to flush the page cache
472  * if consistency is lost.
473  *
474  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
475  *	    struct thread *a_td)
476  */
477 /* ARGSUSED */
478 static int
479 nfs_open(struct vop_open_args *ap)
480 {
481 	struct vnode *vp = ap->a_vp;
482 	struct nfsnode *np = VTONFS(vp);
483 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
484 	struct vattr vattr;
485 	int error;
486 
487 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
488 #ifdef DIAGNOSTIC
489 		printf("open eacces vtyp=%d\n",vp->v_type);
490 #endif
491 		return (EOPNOTSUPP);
492 	}
493 	/*
494 	 * Get a valid lease. If cached data is stale, flush it.
495 	 */
496 	if (nmp->nm_flag & NFSMNT_NQNFS) {
497 		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
498 		    do {
499 			error = nqnfs_getlease(vp, ND_READ, ap->a_td);
500 		    } while (error == NQNFS_EXPIRED);
501 		    if (error)
502 			return (error);
503 		    if (np->n_lrev != np->n_brev ||
504 			(np->n_flag & NQNFSNONCACHE)) {
505 			if ((error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1))
506 			    == EINTR) {
507 				return (error);
508 			}
509 			np->n_brev = np->n_lrev;
510 		    }
511 		}
512 	} else {
513 		if (np->n_flag & NMODIFIED) {
514 			if ((error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1))
515 			    == EINTR) {
516 				return (error);
517 			}
518 			np->n_attrstamp = 0;
519 			if (vp->v_type == VDIR)
520 				np->n_direofoffset = 0;
521 			error = VOP_GETATTR(vp, &vattr, ap->a_td);
522 			if (error)
523 				return (error);
524 			np->n_mtime = vattr.va_mtime.tv_sec;
525 		} else {
526 			error = VOP_GETATTR(vp, &vattr, ap->a_td);
527 			if (error)
528 				return (error);
529 			if (np->n_mtime != vattr.va_mtime.tv_sec) {
530 				if (vp->v_type == VDIR)
531 					np->n_direofoffset = 0;
532 				if ((error = nfs_vinvalbuf(vp, V_SAVE,
533 				    ap->a_td, 1)) == EINTR) {
534 					return (error);
535 				}
536 				np->n_mtime = vattr.va_mtime.tv_sec;
537 			}
538 		}
539 	}
540 	if ((nmp->nm_flag & NFSMNT_NQNFS) == 0)
541 		np->n_attrstamp = 0; /* For Open/Close consistency */
542 	return (0);
543 }
544 
545 /*
546  * nfs close vnode op
547  * What an NFS client should do upon close after writing is a debatable issue.
548  * Most NFS clients push delayed writes to the server upon close, basically for
549  * two reasons:
550  * 1 - So that any write errors may be reported back to the client process
551  *     doing the close system call. By far the two most likely errors are
552  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
553  * 2 - To put a worst case upper bound on cache inconsistency between
554  *     multiple clients for the file.
555  * There is also a consistency problem for Version 2 of the protocol w.r.t.
556  * not being able to tell if other clients are writing a file concurrently,
557  * since there is no way of knowing if the changed modify time in the reply
558  * is only due to the write for this client.
559  * (NFS Version 3 provides weak cache consistency data in the reply that
560  *  should be sufficient to detect and handle this case.)
561  *
562  * The current code does the following:
563  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
564  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
565  *                     or commit them (this satisfies 1 and 2 except for the
566  *                     case where the server crashes after this close but
567  *                     before the commit RPC, which is felt to be "good
568  *                     enough". Changing the last argument to nfs_flush() to
569  *                     a 1 would force a commit operation, if it is felt a
570  *                     commit is necessary now.
571  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
572  *                     1 should be dealt with via an fsync() system call for
573  *                     cases where write errors are important.
574  *
575  * nfs_close(struct vnodeop_desc *a_desc, struct vnode *a_vp, int a_fflag,
576  *	     struct ucred *a_cred, struct thread *a_td)
577  */
578 /* ARGSUSED */
579 static int
580 nfs_close(struct vop_close_args *ap)
581 {
582 	struct vnode *vp = ap->a_vp;
583 	struct nfsnode *np = VTONFS(vp);
584 	int error = 0;
585 
586 	if (vp->v_type == VREG) {
587 	    if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQNFS) == 0 &&
588 		(np->n_flag & NMODIFIED)) {
589 		if (NFS_ISV3(vp)) {
590 		    /*
591 		     * Under NFSv3 we have dirty buffers to dispose of.  We
592 		     * must flush them to the NFS server.  We have the option
593 		     * of waiting all the way through the commit rpc or just
594 		     * waiting for the initial write.  The default is to only
595 		     * wait through the initial write so the data is in the
596 		     * server's cache, which is roughly similar to the state
597 		     * a standard disk subsystem leaves the file in on close().
598 		     *
599 		     * We cannot clear the NMODIFIED bit in np->n_flag due to
600 		     * potential races with other processes, and certainly
601 		     * cannot clear it if we don't commit.
602 		     */
603 		    int cm = nfsv3_commit_on_close ? 1 : 0;
604 		    error = nfs_flush(vp, MNT_WAIT, ap->a_td, cm);
605 		    /* np->n_flag &= ~NMODIFIED; */
606 		} else {
607 		    error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
608 		}
609 		np->n_attrstamp = 0;
610 	    }
611 	    if (np->n_flag & NWRITEERR) {
612 		np->n_flag &= ~NWRITEERR;
613 		error = np->n_error;
614 	    }
615 	}
616 	return (error);
617 }
618 
619 /*
620  * nfs getattr call from vfs.
621  *
622  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
623  *		struct thread *a_td)
624  */
625 static int
626 nfs_getattr(struct vop_getattr_args *ap)
627 {
628 	struct vnode *vp = ap->a_vp;
629 	struct nfsnode *np = VTONFS(vp);
630 	caddr_t cp;
631 	u_int32_t *tl;
632 	int32_t t1, t2;
633 	caddr_t bpos, dpos;
634 	int error = 0;
635 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
636 	int v3 = NFS_ISV3(vp);
637 
638 	/*
639 	 * Update local times for special files.
640 	 */
641 	if (np->n_flag & (NACC | NUPD))
642 		np->n_flag |= NCHG;
643 	/*
644 	 * First look in the cache.
645 	 */
646 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
647 		return (0);
648 
649 	if (v3 && nfsaccess_cache_timeout > 0) {
650 		nfsstats.accesscache_misses++;
651 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, ap->a_td, nfs_vpcred(vp, ND_CHECK));
652 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
653 			return (0);
654 	}
655 
656 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
657 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
658 	nfsm_fhtom(vp, v3);
659 	nfsm_request(vp, NFSPROC_GETATTR, ap->a_td, nfs_vpcred(vp, ND_CHECK));
660 	if (!error) {
661 		nfsm_loadattr(vp, ap->a_vap);
662 	}
663 	m_freem(mrep);
664 nfsmout:
665 	return (error);
666 }
667 
668 /*
669  * nfs setattr call.
670  *
671  * nfs_setattr(struct vnodeop_desc *a_desc, struct vnode *a_vp,
672  *		struct vattr *a_vap, struct ucred *a_cred,
673  *		struct thread *a_td)
674  */
675 static int
676 nfs_setattr(struct vop_setattr_args *ap)
677 {
678 	struct vnode *vp = ap->a_vp;
679 	struct nfsnode *np = VTONFS(vp);
680 	struct vattr *vap = ap->a_vap;
681 	int error = 0;
682 	u_quad_t tsize;
683 
684 #ifndef nolint
685 	tsize = (u_quad_t)0;
686 #endif
687 
688 	/*
689 	 * Setting of flags is not supported.
690 	 */
691 	if (vap->va_flags != VNOVAL)
692 		return (EOPNOTSUPP);
693 
694 	/*
695 	 * Disallow write attempts if the filesystem is mounted read-only.
696 	 */
697   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
698 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
699 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
700 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
701 		return (EROFS);
702 	if (vap->va_size != VNOVAL) {
703  		switch (vp->v_type) {
704  		case VDIR:
705  			return (EISDIR);
706  		case VCHR:
707  		case VBLK:
708  		case VSOCK:
709  		case VFIFO:
710 			if (vap->va_mtime.tv_sec == VNOVAL &&
711 			    vap->va_atime.tv_sec == VNOVAL &&
712 			    vap->va_mode == (mode_t)VNOVAL &&
713 			    vap->va_uid == (uid_t)VNOVAL &&
714 			    vap->va_gid == (gid_t)VNOVAL)
715 				return (0);
716  			vap->va_size = VNOVAL;
717  			break;
718  		default:
719 			/*
720 			 * Disallow write attempts if the filesystem is
721 			 * mounted read-only.
722 			 */
723 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
724 				return (EROFS);
725 
726 			/*
727 			 * We run vnode_pager_setsize() early (why?),
728 			 * we must set np->n_size now to avoid vinvalbuf
729 			 * V_SAVE races that might setsize a lower
730 			 * value.
731 			 */
732 
733 			tsize = np->n_size;
734 			error = nfs_meta_setsize(vp, ap->a_td, vap->va_size);
735 
736  			if (np->n_flag & NMODIFIED) {
737  			    if (vap->va_size == 0)
738  				error = nfs_vinvalbuf(vp, 0, ap->a_td, 1);
739  			    else
740  				error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
741  			    if (error) {
742 				np->n_size = tsize;
743 				vnode_pager_setsize(vp, np->n_size);
744  				return (error);
745 			    }
746  			}
747 			/*
748 			 * np->n_size has already been set to vap->va_size
749 			 * in nfs_meta_setsize(). We must set it again since
750 			 * nfs_loadattrcache() could be called through
751 			 * nfs_meta_setsize() and could modify np->n_size.
752 			 *
753 			 * (note that nfs_loadattrcache() will have called
754 			 * vnode_pager_setsize() for us in that case).
755 			 */
756 			np->n_vattr.va_size = np->n_size = vap->va_size;
757 		};
758   	} else if ((vap->va_mtime.tv_sec != VNOVAL ||
759 		vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NMODIFIED) &&
760 		vp->v_type == VREG &&
761   		(error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1)) == EINTR)
762 		return (error);
763 	error = nfs_setattrrpc(vp, vap, ap->a_cred, ap->a_td);
764 	if (error && vap->va_size != VNOVAL) {
765 		np->n_size = np->n_vattr.va_size = tsize;
766 		vnode_pager_setsize(vp, np->n_size);
767 	}
768 	return (error);
769 }
770 
771 /*
772  * Do an nfs setattr rpc.
773  */
774 static int
775 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
776 	       struct ucred *cred, struct thread *td)
777 {
778 	struct nfsv2_sattr *sp;
779 	caddr_t cp;
780 	int32_t t1, t2;
781 	caddr_t bpos, dpos, cp2;
782 	u_int32_t *tl;
783 	int error = 0, wccflag = NFSV3_WCCRATTR;
784 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
785 	int v3 = NFS_ISV3(vp);
786 
787 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
788 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
789 	nfsm_fhtom(vp, v3);
790 	if (v3) {
791 		nfsm_v3attrbuild(vap, TRUE);
792 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
793 		*tl = nfs_false;
794 	} else {
795 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
796 		if (vap->va_mode == (mode_t)VNOVAL)
797 			sp->sa_mode = nfs_xdrneg1;
798 		else
799 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
800 		if (vap->va_uid == (uid_t)VNOVAL)
801 			sp->sa_uid = nfs_xdrneg1;
802 		else
803 			sp->sa_uid = txdr_unsigned(vap->va_uid);
804 		if (vap->va_gid == (gid_t)VNOVAL)
805 			sp->sa_gid = nfs_xdrneg1;
806 		else
807 			sp->sa_gid = txdr_unsigned(vap->va_gid);
808 		sp->sa_size = txdr_unsigned(vap->va_size);
809 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
810 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
811 	}
812 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
813 	if (v3) {
814 		nfsm_wcc_data(vp, wccflag);
815 	} else
816 		nfsm_loadattr(vp, (struct vattr *)0);
817 	m_freem(mrep);
818 nfsmout:
819 	return (error);
820 }
821 
822 /*
823  * 'cached' nfs directory lookup
824  *
825  * nfs_lookup(struct vnodeop_desc *a_desc, struct vnode *a_dvp,
826  *	      struct vnode **a_vpp, struct componentname *a_cnp)
827  */
828 static int
829 nfs_lookup(struct vop_lookup_args *ap)
830 {
831 	struct componentname *cnp = ap->a_cnp;
832 	struct vnode *dvp = ap->a_dvp;
833 	struct vnode **vpp = ap->a_vpp;
834 	int flags = cnp->cn_flags;
835 	struct vnode *newvp;
836 	u_int32_t *tl;
837 	caddr_t cp;
838 	int32_t t1, t2;
839 	struct nfsmount *nmp;
840 	caddr_t bpos, dpos, cp2;
841 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
842 	long len;
843 	nfsfh_t *fhp;
844 	struct nfsnode *np;
845 	int lockparent, wantparent, error = 0, attrflag, fhsize;
846 	int v3 = NFS_ISV3(dvp);
847 	struct thread *td = cnp->cn_td;
848 
849 	/*
850 	 * Read-only mount check and directory check.
851 	 */
852 	*vpp = NULLVP;
853 	if ((flags & CNP_ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
854 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
855 		return (EROFS);
856 
857 	if (dvp->v_type != VDIR)
858 		return (ENOTDIR);
859 
860 	/*
861 	 * Look it up in the cache.  Note that ENOENT is only returned if we
862 	 * previously entered a negative hit (see later on).  The additional
863 	 * nfsneg_cache_timeout check causes previously cached results to
864 	 * be instantly ignored if the negative caching is turned off.
865 	 */
866 	lockparent = flags & CNP_LOCKPARENT;
867 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
868 	nmp = VFSTONFS(dvp->v_mount);
869 	np = VTONFS(dvp);
870 	error = cache_lookup(dvp, NCPNULL, vpp, NCPPNULL, cnp);
871 	if (error != 0) {
872 		struct vattr vattr;
873 		int vpid;
874 
875 		if (error == ENOENT && nfsneg_cache_timeout) {
876 			*vpp = NULLVP;
877 			return (error);
878 		}
879 		if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) {
880 			*vpp = NULLVP;
881 			return (error);
882 		}
883 
884 		newvp = *vpp;
885 		vpid = newvp->v_id;
886 		/*
887 		 * See the comment starting `Step through' in ufs/ufs_lookup.c
888 		 * for an explanation of the locking protocol
889 		 */
890 		if (dvp == newvp) {
891 			vref(newvp);
892 			error = 0;
893 		} else if (flags & CNP_ISDOTDOT) {
894 			VOP_UNLOCK(dvp, NULL, 0, td);
895 			error = vget(newvp, NULL, LK_EXCLUSIVE, td);
896 			if (!error && lockparent && (flags & CNP_ISLASTCN))
897 				error = vn_lock(dvp, NULL, LK_EXCLUSIVE, td);
898 		} else {
899 			error = vget(newvp, NULL, LK_EXCLUSIVE, td);
900 			if (!lockparent || error || !(flags & CNP_ISLASTCN))
901 				VOP_UNLOCK(dvp, NULL, 0, td);
902 		}
903 		if (!error) {
904 			if (vpid == newvp->v_id) {
905 			   if (!VOP_GETATTR(newvp, &vattr, td)
906 			    && vattr.va_ctime.tv_sec == VTONFS(newvp)->n_ctime) {
907 				nfsstats.lookupcache_hits++;
908 				if (cnp->cn_nameiop != NAMEI_LOOKUP &&
909 				    (flags & CNP_ISLASTCN))
910 					cnp->cn_flags |= CNP_SAVENAME;
911 				return (0);
912 			   }
913 			   cache_purge(newvp);
914 			}
915 			vput(newvp);
916 			if (lockparent && dvp != newvp && (flags & CNP_ISLASTCN))
917 				VOP_UNLOCK(dvp, NULL, 0, td);
918 		}
919 		error = vn_lock(dvp, NULL, LK_EXCLUSIVE, td);
920 		*vpp = NULLVP;
921 		if (error)
922 			return (error);
923 	}
924 
925 	/*
926 	 * Cache miss, go the wire.
927 	 */
928 	error = 0;
929 	newvp = NULLVP;
930 	nfsstats.lookupcache_misses++;
931 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
932 	len = cnp->cn_namelen;
933 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
934 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
935 	nfsm_fhtom(dvp, v3);
936 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
937 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
938 	if (error) {
939 		/*
940 		 * Cache negatve lookups to reduce NFS traffic, but use
941 		 * a fast timeout.
942 		 */
943 		if (error == ENOENT &&
944 		    (cnp->cn_flags & CNP_MAKEENTRY) &&
945 		    cnp->cn_nameiop == NAMEI_LOOKUP &&
946 		    nfsneg_cache_timeout) {
947 			int toval = nfsneg_cache_timeout * hz;
948 			if (cnp->cn_flags & CNP_CACHETIMEOUT) {
949 				if (cnp->cn_timeout > toval)
950 					cnp->cn_timeout = toval;
951 			} else {
952 				cnp->cn_flags |= CNP_CACHETIMEOUT;
953 				cnp->cn_timeout = toval;
954 			}
955 			cache_enter(dvp, NCPNULL, NULL, cnp);
956 		}
957 		nfsm_postop_attr(dvp, attrflag);
958 		m_freem(mrep);
959 		goto nfsmout;
960 	}
961 	nfsm_getfh(fhp, fhsize, v3);
962 
963 	/*
964 	 * Handle RENAME case...
965 	 */
966 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent && (flags & CNP_ISLASTCN)) {
967 		if (NFS_CMPFH(np, fhp, fhsize)) {
968 			m_freem(mrep);
969 			return (EISDIR);
970 		}
971 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
972 		if (error) {
973 			m_freem(mrep);
974 			return (error);
975 		}
976 		newvp = NFSTOV(np);
977 		if (v3) {
978 			nfsm_postop_attr(newvp, attrflag);
979 			nfsm_postop_attr(dvp, attrflag);
980 		} else
981 			nfsm_loadattr(newvp, (struct vattr *)0);
982 		*vpp = newvp;
983 		m_freem(mrep);
984 		cnp->cn_flags |= CNP_SAVENAME;
985 		if (!lockparent)
986 			VOP_UNLOCK(dvp, NULL, 0, td);
987 		return (0);
988 	}
989 
990 	if (flags & CNP_ISDOTDOT) {
991 		VOP_UNLOCK(dvp, NULL, 0, td);
992 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
993 		if (error) {
994 			vn_lock(dvp, NULL, LK_EXCLUSIVE | LK_RETRY, td);
995 			return (error);
996 		}
997 		newvp = NFSTOV(np);
998 		if (lockparent && (flags & CNP_ISLASTCN) &&
999 		    (error = vn_lock(dvp, NULL, LK_EXCLUSIVE, td))) {
1000 		    	vput(newvp);
1001 			return (error);
1002 		}
1003 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1004 		vref(dvp);
1005 		newvp = dvp;
1006 	} else {
1007 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1008 		if (error) {
1009 			m_freem(mrep);
1010 			return (error);
1011 		}
1012 		if (!lockparent || !(flags & CNP_ISLASTCN))
1013 			VOP_UNLOCK(dvp, NULL, 0, td);
1014 		newvp = NFSTOV(np);
1015 	}
1016 	if (v3) {
1017 		nfsm_postop_attr(newvp, attrflag);
1018 		nfsm_postop_attr(dvp, attrflag);
1019 	} else
1020 		nfsm_loadattr(newvp, (struct vattr *)0);
1021 	if (cnp->cn_nameiop != NAMEI_LOOKUP && (flags & CNP_ISLASTCN))
1022 		cnp->cn_flags |= CNP_SAVENAME;
1023 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1024 	    (cnp->cn_nameiop != NAMEI_DELETE || !(flags & CNP_ISLASTCN))) {
1025 		np->n_ctime = np->n_vattr.va_ctime.tv_sec;
1026 		cache_enter(dvp, NCPNULL, newvp, cnp);
1027 	}
1028 	*vpp = newvp;
1029 	m_freem(mrep);
1030 nfsmout:
1031 	if (error) {
1032 		if (newvp != NULLVP) {
1033 			vrele(newvp);
1034 			*vpp = NULLVP;
1035 		}
1036 		if ((cnp->cn_nameiop == NAMEI_CREATE || cnp->cn_nameiop == NAMEI_RENAME) &&
1037 		    (flags & CNP_ISLASTCN) && error == ENOENT) {
1038 			if (!lockparent)
1039 				VOP_UNLOCK(dvp, NULL, 0, td);
1040 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1041 				error = EROFS;
1042 			else
1043 				error = EJUSTRETURN;
1044 		}
1045 		if (cnp->cn_nameiop != NAMEI_LOOKUP && (flags & CNP_ISLASTCN))
1046 			cnp->cn_flags |= CNP_SAVENAME;
1047 	}
1048 	return (error);
1049 }
1050 
1051 /*
1052  * nfs read call.
1053  * Just call nfs_bioread() to do the work.
1054  *
1055  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1056  *	    struct ucred *a_cred)
1057  */
1058 static int
1059 nfs_read(struct vop_read_args *ap)
1060 {
1061 	struct vnode *vp = ap->a_vp;
1062 
1063 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1064 	switch (vp->v_type) {
1065 	case VREG:
1066 		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1067 	case VDIR:
1068 		return (EISDIR);
1069 	default:
1070 		return EOPNOTSUPP;
1071 	}
1072 }
1073 
1074 /*
1075  * nfs readlink call
1076  *
1077  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1078  */
1079 static int
1080 nfs_readlink(struct vop_readlink_args *ap)
1081 {
1082 	struct vnode *vp = ap->a_vp;
1083 
1084 	if (vp->v_type != VLNK)
1085 		return (EINVAL);
1086 	return (nfs_bioread(vp, ap->a_uio, 0));
1087 }
1088 
1089 /*
1090  * Do a readlink rpc.
1091  * Called by nfs_doio() from below the buffer cache.
1092  */
1093 int
1094 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1095 {
1096 	u_int32_t *tl;
1097 	caddr_t cp;
1098 	int32_t t1, t2;
1099 	caddr_t bpos, dpos, cp2;
1100 	int error = 0, len, attrflag;
1101 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1102 	int v3 = NFS_ISV3(vp);
1103 
1104 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1105 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1106 	nfsm_fhtom(vp, v3);
1107 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1108 	if (v3)
1109 		nfsm_postop_attr(vp, attrflag);
1110 	if (!error) {
1111 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1112 		if (len == NFS_MAXPATHLEN) {
1113 			struct nfsnode *np = VTONFS(vp);
1114 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1115 				len = np->n_size;
1116 		}
1117 		nfsm_mtouio(uiop, len);
1118 	}
1119 	m_freem(mrep);
1120 nfsmout:
1121 	return (error);
1122 }
1123 
1124 /*
1125  * nfs read rpc call
1126  * Ditto above
1127  */
1128 int
1129 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1130 {
1131 	u_int32_t *tl;
1132 	caddr_t cp;
1133 	int32_t t1, t2;
1134 	caddr_t bpos, dpos, cp2;
1135 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1136 	struct nfsmount *nmp;
1137 	int error = 0, len, retlen, tsiz, eof, attrflag;
1138 	int v3 = NFS_ISV3(vp);
1139 
1140 #ifndef nolint
1141 	eof = 0;
1142 #endif
1143 	nmp = VFSTONFS(vp->v_mount);
1144 	tsiz = uiop->uio_resid;
1145 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1146 		return (EFBIG);
1147 	while (tsiz > 0) {
1148 		nfsstats.rpccnt[NFSPROC_READ]++;
1149 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1150 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1151 		nfsm_fhtom(vp, v3);
1152 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1153 		if (v3) {
1154 			txdr_hyper(uiop->uio_offset, tl);
1155 			*(tl + 2) = txdr_unsigned(len);
1156 		} else {
1157 			*tl++ = txdr_unsigned(uiop->uio_offset);
1158 			*tl++ = txdr_unsigned(len);
1159 			*tl = 0;
1160 		}
1161 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1162 		if (v3) {
1163 			nfsm_postop_attr(vp, attrflag);
1164 			if (error) {
1165 				m_freem(mrep);
1166 				goto nfsmout;
1167 			}
1168 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1169 			eof = fxdr_unsigned(int, *(tl + 1));
1170 		} else
1171 			nfsm_loadattr(vp, (struct vattr *)0);
1172 		nfsm_strsiz(retlen, nmp->nm_rsize);
1173 		nfsm_mtouio(uiop, retlen);
1174 		m_freem(mrep);
1175 		tsiz -= retlen;
1176 		if (v3) {
1177 			if (eof || retlen == 0) {
1178 				tsiz = 0;
1179 			}
1180 		} else if (retlen < len) {
1181 			tsiz = 0;
1182 		}
1183 	}
1184 nfsmout:
1185 	return (error);
1186 }
1187 
1188 /*
1189  * nfs write call
1190  */
1191 int
1192 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1193 {
1194 	u_int32_t *tl;
1195 	caddr_t cp;
1196 	int32_t t1, t2, backup;
1197 	caddr_t bpos, dpos, cp2;
1198 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1199 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1200 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1201 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1202 
1203 #ifndef DIAGNOSTIC
1204 	if (uiop->uio_iovcnt != 1)
1205 		panic("nfs: writerpc iovcnt > 1");
1206 #endif
1207 	*must_commit = 0;
1208 	tsiz = uiop->uio_resid;
1209 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1210 		return (EFBIG);
1211 	while (tsiz > 0) {
1212 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1213 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1214 		nfsm_reqhead(vp, NFSPROC_WRITE,
1215 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1216 		nfsm_fhtom(vp, v3);
1217 		if (v3) {
1218 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1219 			txdr_hyper(uiop->uio_offset, tl);
1220 			tl += 2;
1221 			*tl++ = txdr_unsigned(len);
1222 			*tl++ = txdr_unsigned(*iomode);
1223 			*tl = txdr_unsigned(len);
1224 		} else {
1225 			u_int32_t x;
1226 
1227 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1228 			/* Set both "begin" and "current" to non-garbage. */
1229 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1230 			*tl++ = x;	/* "begin offset" */
1231 			*tl++ = x;	/* "current offset" */
1232 			x = txdr_unsigned(len);
1233 			*tl++ = x;	/* total to this offset */
1234 			*tl = x;	/* size of this write */
1235 		}
1236 		nfsm_uiotom(uiop, len);
1237 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1238 		if (v3) {
1239 			wccflag = NFSV3_WCCCHK;
1240 			nfsm_wcc_data(vp, wccflag);
1241 			if (!error) {
1242 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1243 					+ NFSX_V3WRITEVERF);
1244 				rlen = fxdr_unsigned(int, *tl++);
1245 				if (rlen == 0) {
1246 					error = NFSERR_IO;
1247 					m_freem(mrep);
1248 					break;
1249 				} else if (rlen < len) {
1250 					backup = len - rlen;
1251 					uiop->uio_iov->iov_base -= backup;
1252 					uiop->uio_iov->iov_len += backup;
1253 					uiop->uio_offset -= backup;
1254 					uiop->uio_resid += backup;
1255 					len = rlen;
1256 				}
1257 				commit = fxdr_unsigned(int, *tl++);
1258 
1259 				/*
1260 				 * Return the lowest committment level
1261 				 * obtained by any of the RPCs.
1262 				 */
1263 				if (committed == NFSV3WRITE_FILESYNC)
1264 					committed = commit;
1265 				else if (committed == NFSV3WRITE_DATASYNC &&
1266 					commit == NFSV3WRITE_UNSTABLE)
1267 					committed = commit;
1268 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1269 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1270 					NFSX_V3WRITEVERF);
1271 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1272 				} else if (bcmp((caddr_t)tl,
1273 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1274 				    *must_commit = 1;
1275 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1276 					NFSX_V3WRITEVERF);
1277 				}
1278 			}
1279 		} else
1280 		    nfsm_loadattr(vp, (struct vattr *)0);
1281 		if (wccflag)
1282 		    VTONFS(vp)->n_mtime = VTONFS(vp)->n_vattr.va_mtime.tv_sec;
1283 		m_freem(mrep);
1284 		if (error)
1285 			break;
1286 		tsiz -= len;
1287 	}
1288 nfsmout:
1289 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1290 		committed = NFSV3WRITE_FILESYNC;
1291 	*iomode = committed;
1292 	if (error)
1293 		uiop->uio_resid = tsiz;
1294 	return (error);
1295 }
1296 
1297 /*
1298  * nfs mknod rpc
1299  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1300  * mode set to specify the file type and the size field for rdev.
1301  */
1302 static int
1303 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1304 	     struct vattr *vap)
1305 {
1306 	struct nfsv2_sattr *sp;
1307 	u_int32_t *tl;
1308 	caddr_t cp;
1309 	int32_t t1, t2;
1310 	struct vnode *newvp = (struct vnode *)0;
1311 	struct nfsnode *np = (struct nfsnode *)0;
1312 	struct vattr vattr;
1313 	char *cp2;
1314 	caddr_t bpos, dpos;
1315 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1316 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1317 	u_int32_t rdev;
1318 	int v3 = NFS_ISV3(dvp);
1319 
1320 	if (vap->va_type == VCHR || vap->va_type == VBLK)
1321 		rdev = txdr_unsigned(vap->va_rdev);
1322 	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1323 		rdev = nfs_xdrneg1;
1324 	else {
1325 		return (EOPNOTSUPP);
1326 	}
1327 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1328 		return (error);
1329 	}
1330 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1331 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1332 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1333 	nfsm_fhtom(dvp, v3);
1334 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1335 	if (v3) {
1336 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1337 		*tl++ = vtonfsv3_type(vap->va_type);
1338 		nfsm_v3attrbuild(vap, FALSE);
1339 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1340 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1341 			*tl++ = txdr_unsigned(umajor(vap->va_rdev));
1342 			*tl = txdr_unsigned(uminor(vap->va_rdev));
1343 		}
1344 	} else {
1345 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1346 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1347 		sp->sa_uid = nfs_xdrneg1;
1348 		sp->sa_gid = nfs_xdrneg1;
1349 		sp->sa_size = rdev;
1350 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1351 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1352 	}
1353 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1354 	if (!error) {
1355 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1356 		if (!gotvp) {
1357 			if (newvp) {
1358 				vput(newvp);
1359 				newvp = (struct vnode *)0;
1360 			}
1361 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1362 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1363 			if (!error)
1364 				newvp = NFSTOV(np);
1365 		}
1366 	}
1367 	if (v3)
1368 		nfsm_wcc_data(dvp, wccflag);
1369 	m_freem(mrep);
1370 nfsmout:
1371 	if (error) {
1372 		if (newvp)
1373 			vput(newvp);
1374 	} else {
1375 		if (cnp->cn_flags & CNP_MAKEENTRY)
1376 			cache_enter(dvp, NCPNULL, newvp, cnp);
1377 		*vpp = newvp;
1378 	}
1379 	VTONFS(dvp)->n_flag |= NMODIFIED;
1380 	if (!wccflag)
1381 		VTONFS(dvp)->n_attrstamp = 0;
1382 	return (error);
1383 }
1384 
1385 /*
1386  * nfs mknod vop
1387  * just call nfs_mknodrpc() to do the work.
1388  *
1389  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1390  *	     struct componentname *a_cnp, struct vattr *a_vap)
1391  */
1392 /* ARGSUSED */
1393 static int
1394 nfs_mknod(struct vop_mknod_args *ap)
1395 {
1396 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1397 }
1398 
1399 static u_long create_verf;
1400 /*
1401  * nfs file create call
1402  *
1403  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1404  *	      struct componentname *a_cnp, struct vattr *a_vap)
1405  */
1406 static int
1407 nfs_create(struct vop_create_args *ap)
1408 {
1409 	struct vnode *dvp = ap->a_dvp;
1410 	struct vattr *vap = ap->a_vap;
1411 	struct componentname *cnp = ap->a_cnp;
1412 	struct nfsv2_sattr *sp;
1413 	u_int32_t *tl;
1414 	caddr_t cp;
1415 	int32_t t1, t2;
1416 	struct nfsnode *np = (struct nfsnode *)0;
1417 	struct vnode *newvp = (struct vnode *)0;
1418 	caddr_t bpos, dpos, cp2;
1419 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1420 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1421 	struct vattr vattr;
1422 	int v3 = NFS_ISV3(dvp);
1423 
1424 	/*
1425 	 * Oops, not for me..
1426 	 */
1427 	if (vap->va_type == VSOCK)
1428 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1429 
1430 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1431 		return (error);
1432 	}
1433 	if (vap->va_vaflags & VA_EXCLUSIVE)
1434 		fmode |= O_EXCL;
1435 again:
1436 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1437 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1438 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1439 	nfsm_fhtom(dvp, v3);
1440 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1441 	if (v3) {
1442 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1443 		if (fmode & O_EXCL) {
1444 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1445 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1446 #ifdef INET
1447 			if (!TAILQ_EMPTY(&in_ifaddrhead))
1448 				*tl++ = IA_SIN(in_ifaddrhead.tqh_first)->sin_addr.s_addr;
1449 			else
1450 #endif
1451 				*tl++ = create_verf;
1452 			*tl = ++create_verf;
1453 		} else {
1454 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1455 			nfsm_v3attrbuild(vap, FALSE);
1456 		}
1457 	} else {
1458 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1459 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1460 		sp->sa_uid = nfs_xdrneg1;
1461 		sp->sa_gid = nfs_xdrneg1;
1462 		sp->sa_size = 0;
1463 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1464 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1465 	}
1466 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1467 	if (!error) {
1468 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1469 		if (!gotvp) {
1470 			if (newvp) {
1471 				vput(newvp);
1472 				newvp = (struct vnode *)0;
1473 			}
1474 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1475 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1476 			if (!error)
1477 				newvp = NFSTOV(np);
1478 		}
1479 	}
1480 	if (v3)
1481 		nfsm_wcc_data(dvp, wccflag);
1482 	m_freem(mrep);
1483 nfsmout:
1484 	if (error) {
1485 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1486 			fmode &= ~O_EXCL;
1487 			goto again;
1488 		}
1489 		if (newvp)
1490 			vput(newvp);
1491 	} else if (v3 && (fmode & O_EXCL)) {
1492 		/*
1493 		 * We are normally called with only a partially initialized
1494 		 * VAP.  Since the NFSv3 spec says that server may use the
1495 		 * file attributes to store the verifier, the spec requires
1496 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1497 		 * in atime, but we can't really assume that all servers will
1498 		 * so we ensure that our SETATTR sets both atime and mtime.
1499 		 */
1500 		if (vap->va_mtime.tv_sec == VNOVAL)
1501 			vfs_timestamp(&vap->va_mtime);
1502 		if (vap->va_atime.tv_sec == VNOVAL)
1503 			vap->va_atime = vap->va_mtime;
1504 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1505 	}
1506 	if (!error) {
1507 		if (cnp->cn_flags & CNP_MAKEENTRY)
1508 			cache_enter(dvp, NCPNULL, newvp, cnp);
1509 		/*
1510 		 * The new np may have enough info for access
1511 		 * checks, make sure rucred and wucred are
1512 		 * initialized for read and write rpc's.
1513 		 */
1514 		np = VTONFS(newvp);
1515 		if (np->n_rucred == NULL)
1516 			np->n_rucred = crhold(cnp->cn_cred);
1517 		if (np->n_wucred == NULL)
1518 			np->n_wucred = crhold(cnp->cn_cred);
1519 		*ap->a_vpp = newvp;
1520 	}
1521 	VTONFS(dvp)->n_flag |= NMODIFIED;
1522 	if (!wccflag)
1523 		VTONFS(dvp)->n_attrstamp = 0;
1524 	return (error);
1525 }
1526 
1527 /*
1528  * nfs file remove call
1529  * To try and make nfs semantics closer to ufs semantics, a file that has
1530  * other processes using the vnode is renamed instead of removed and then
1531  * removed later on the last close.
1532  * - If v_usecount > 1
1533  *	  If a rename is not already in the works
1534  *	     call nfs_sillyrename() to set it up
1535  *     else
1536  *	  do the remove rpc
1537  *
1538  * nfs_remove(struct vnodeop_desc *a_desc, struct vnode *a_dvp,
1539  *	      struct vnode *a_vp, struct componentname *a_cnp)
1540  */
1541 static int
1542 nfs_remove(struct vop_remove_args *ap)
1543 {
1544 	struct vnode *vp = ap->a_vp;
1545 	struct vnode *dvp = ap->a_dvp;
1546 	struct componentname *cnp = ap->a_cnp;
1547 	struct nfsnode *np = VTONFS(vp);
1548 	int error = 0;
1549 	struct vattr vattr;
1550 
1551 #ifndef DIAGNOSTIC
1552 	if ((cnp->cn_flags & CNP_HASBUF) == 0)
1553 		panic("nfs_remove: no name");
1554 	if (vp->v_usecount < 1)
1555 		panic("nfs_remove: bad v_usecount");
1556 #endif
1557 	if (vp->v_type == VDIR)
1558 		error = EPERM;
1559 	else if (vp->v_usecount == 1 || (np->n_sillyrename &&
1560 	    VOP_GETATTR(vp, &vattr, cnp->cn_td) == 0 &&
1561 	    vattr.va_nlink > 1)) {
1562 		/*
1563 		 * Purge the name cache so that the chance of a lookup for
1564 		 * the name succeeding while the remove is in progress is
1565 		 * minimized. Without node locking it can still happen, such
1566 		 * that an I/O op returns ESTALE, but since you get this if
1567 		 * another host removes the file..
1568 		 */
1569 		cache_purge(vp);
1570 		/*
1571 		 * throw away biocache buffers, mainly to avoid
1572 		 * unnecessary delayed writes later.
1573 		 */
1574 		error = nfs_vinvalbuf(vp, 0, cnp->cn_td, 1);
1575 		/* Do the rpc */
1576 		if (error != EINTR)
1577 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1578 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1579 		/*
1580 		 * Kludge City: If the first reply to the remove rpc is lost..
1581 		 *   the reply to the retransmitted request will be ENOENT
1582 		 *   since the file was in fact removed
1583 		 *   Therefore, we cheat and return success.
1584 		 */
1585 		if (error == ENOENT)
1586 			error = 0;
1587 	} else if (!np->n_sillyrename)
1588 		error = nfs_sillyrename(dvp, vp, cnp);
1589 	np->n_attrstamp = 0;
1590 	return (error);
1591 }
1592 
1593 /*
1594  * nfs file remove rpc called from nfs_inactive
1595  */
1596 int
1597 nfs_removeit(struct sillyrename *sp)
1598 {
1599 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1600 		sp->s_cred, NULL));
1601 }
1602 
1603 /*
1604  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1605  */
1606 static int
1607 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1608 	      struct ucred *cred, struct thread *td)
1609 {
1610 	u_int32_t *tl;
1611 	caddr_t cp;
1612 	int32_t t1, t2;
1613 	caddr_t bpos, dpos, cp2;
1614 	int error = 0, wccflag = NFSV3_WCCRATTR;
1615 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1616 	int v3 = NFS_ISV3(dvp);
1617 
1618 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1619 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1620 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1621 	nfsm_fhtom(dvp, v3);
1622 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1623 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1624 	if (v3)
1625 		nfsm_wcc_data(dvp, wccflag);
1626 	m_freem(mrep);
1627 nfsmout:
1628 	VTONFS(dvp)->n_flag |= NMODIFIED;
1629 	if (!wccflag)
1630 		VTONFS(dvp)->n_attrstamp = 0;
1631 	return (error);
1632 }
1633 
1634 /*
1635  * nfs file rename call
1636  *
1637  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1638  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1639  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1640  */
1641 static int
1642 nfs_rename(struct vop_rename_args *ap)
1643 {
1644 	struct vnode *fvp = ap->a_fvp;
1645 	struct vnode *tvp = ap->a_tvp;
1646 	struct vnode *fdvp = ap->a_fdvp;
1647 	struct vnode *tdvp = ap->a_tdvp;
1648 	struct componentname *tcnp = ap->a_tcnp;
1649 	struct componentname *fcnp = ap->a_fcnp;
1650 	int error;
1651 
1652 #ifndef DIAGNOSTIC
1653 	if ((tcnp->cn_flags & CNP_HASBUF) == 0 ||
1654 	    (fcnp->cn_flags & CNP_HASBUF) == 0)
1655 		panic("nfs_rename: no name");
1656 #endif
1657 	/* Check for cross-device rename */
1658 	if ((fvp->v_mount != tdvp->v_mount) ||
1659 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1660 		error = EXDEV;
1661 		goto out;
1662 	}
1663 
1664 	/*
1665 	 * We have to flush B_DELWRI data prior to renaming
1666 	 * the file.  If we don't, the delayed-write buffers
1667 	 * can be flushed out later after the file has gone stale
1668 	 * under NFSV3.  NFSV2 does not have this problem because
1669 	 * ( as far as I can tell ) it flushes dirty buffers more
1670 	 * often.
1671 	 */
1672 
1673 	VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_td);
1674 	if (tvp)
1675 	    VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_td);
1676 
1677 	/*
1678 	 * If the tvp exists and is in use, sillyrename it before doing the
1679 	 * rename of the new file over it.
1680 	 * XXX Can't sillyrename a directory.
1681 	 */
1682 	if (tvp && tvp->v_usecount > 1 && !VTONFS(tvp)->n_sillyrename &&
1683 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1684 		vput(tvp);
1685 		tvp = NULL;
1686 	}
1687 
1688 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1689 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1690 		tcnp->cn_td);
1691 
1692 	if (fvp->v_type == VDIR) {
1693 		if (tvp != NULL && tvp->v_type == VDIR)
1694 			cache_purge(tdvp);
1695 		cache_purge(fdvp);
1696 	}
1697 
1698 out:
1699 	if (tdvp == tvp)
1700 		vrele(tdvp);
1701 	else
1702 		vput(tdvp);
1703 	if (tvp)
1704 		vput(tvp);
1705 	vrele(fdvp);
1706 	vrele(fvp);
1707 	/*
1708 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1709 	 */
1710 	if (error == ENOENT)
1711 		error = 0;
1712 	return (error);
1713 }
1714 
1715 /*
1716  * nfs file rename rpc called from nfs_remove() above
1717  */
1718 static int
1719 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1720 	     struct sillyrename *sp)
1721 {
1722 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1723 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1724 }
1725 
1726 /*
1727  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1728  */
1729 static int
1730 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1731 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1732 	      struct ucred *cred, struct thread *td)
1733 {
1734 	u_int32_t *tl;
1735 	caddr_t cp;
1736 	int32_t t1, t2;
1737 	caddr_t bpos, dpos, cp2;
1738 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1739 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1740 	int v3 = NFS_ISV3(fdvp);
1741 
1742 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1743 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1744 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1745 		nfsm_rndup(tnamelen));
1746 	nfsm_fhtom(fdvp, v3);
1747 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1748 	nfsm_fhtom(tdvp, v3);
1749 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1750 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1751 	if (v3) {
1752 		nfsm_wcc_data(fdvp, fwccflag);
1753 		nfsm_wcc_data(tdvp, twccflag);
1754 	}
1755 	m_freem(mrep);
1756 nfsmout:
1757 	VTONFS(fdvp)->n_flag |= NMODIFIED;
1758 	VTONFS(tdvp)->n_flag |= NMODIFIED;
1759 	if (!fwccflag)
1760 		VTONFS(fdvp)->n_attrstamp = 0;
1761 	if (!twccflag)
1762 		VTONFS(tdvp)->n_attrstamp = 0;
1763 	return (error);
1764 }
1765 
1766 /*
1767  * nfs hard link create call
1768  *
1769  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1770  *	    struct componentname *a_cnp)
1771  */
1772 static int
1773 nfs_link(struct vop_link_args *ap)
1774 {
1775 	struct vnode *vp = ap->a_vp;
1776 	struct vnode *tdvp = ap->a_tdvp;
1777 	struct componentname *cnp = ap->a_cnp;
1778 	u_int32_t *tl;
1779 	caddr_t cp;
1780 	int32_t t1, t2;
1781 	caddr_t bpos, dpos, cp2;
1782 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1783 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1784 	int v3;
1785 
1786 	if (vp->v_mount != tdvp->v_mount) {
1787 		return (EXDEV);
1788 	}
1789 
1790 	/*
1791 	 * Push all writes to the server, so that the attribute cache
1792 	 * doesn't get "out of sync" with the server.
1793 	 * XXX There should be a better way!
1794 	 */
1795 	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_td);
1796 
1797 	v3 = NFS_ISV3(vp);
1798 	nfsstats.rpccnt[NFSPROC_LINK]++;
1799 	nfsm_reqhead(vp, NFSPROC_LINK,
1800 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1801 	nfsm_fhtom(vp, v3);
1802 	nfsm_fhtom(tdvp, v3);
1803 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1804 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1805 	if (v3) {
1806 		nfsm_postop_attr(vp, attrflag);
1807 		nfsm_wcc_data(tdvp, wccflag);
1808 	}
1809 	m_freem(mrep);
1810 nfsmout:
1811 	VTONFS(tdvp)->n_flag |= NMODIFIED;
1812 	if (!attrflag)
1813 		VTONFS(vp)->n_attrstamp = 0;
1814 	if (!wccflag)
1815 		VTONFS(tdvp)->n_attrstamp = 0;
1816 	/*
1817 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1818 	 */
1819 	if (error == EEXIST)
1820 		error = 0;
1821 	return (error);
1822 }
1823 
1824 /*
1825  * nfs symbolic link create call
1826  *
1827  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1828  *		struct componentname *a_cnp, struct vattr *a_vap,
1829  *		char *a_target)
1830  */
1831 static int
1832 nfs_symlink(struct vop_symlink_args *ap)
1833 {
1834 	struct vnode *dvp = ap->a_dvp;
1835 	struct vattr *vap = ap->a_vap;
1836 	struct componentname *cnp = ap->a_cnp;
1837 	struct nfsv2_sattr *sp;
1838 	u_int32_t *tl;
1839 	caddr_t cp;
1840 	int32_t t1, t2;
1841 	caddr_t bpos, dpos, cp2;
1842 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1843 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1844 	struct vnode *newvp = (struct vnode *)0;
1845 	int v3 = NFS_ISV3(dvp);
1846 
1847 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1848 	slen = strlen(ap->a_target);
1849 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1850 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1851 	nfsm_fhtom(dvp, v3);
1852 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1853 	if (v3) {
1854 		nfsm_v3attrbuild(vap, FALSE);
1855 	}
1856 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1857 	if (!v3) {
1858 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1859 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1860 		sp->sa_uid = nfs_xdrneg1;
1861 		sp->sa_gid = nfs_xdrneg1;
1862 		sp->sa_size = nfs_xdrneg1;
1863 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1864 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1865 	}
1866 
1867 	/*
1868 	 * Issue the NFS request and get the rpc response.
1869 	 *
1870 	 * Only NFSv3 responses returning an error of 0 actually return
1871 	 * a file handle that can be converted into newvp without having
1872 	 * to do an extra lookup rpc.
1873 	 */
1874 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1875 	if (v3) {
1876 		if (error == 0)
1877 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1878 		nfsm_wcc_data(dvp, wccflag);
1879 	}
1880 
1881 	/*
1882 	 * out code jumps -> here, mrep is also freed.
1883 	 */
1884 
1885 	m_freem(mrep);
1886 nfsmout:
1887 
1888 	/*
1889 	 * If we get an EEXIST error, silently convert it to no-error
1890 	 * in case of an NFS retry.
1891 	 */
1892 	if (error == EEXIST)
1893 		error = 0;
1894 
1895 	/*
1896 	 * If we do not have (or no longer have) an error, and we could
1897 	 * not extract the newvp from the response due to the request being
1898 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1899 	 * to obtain a newvp to return.
1900 	 */
1901 	if (error == 0 && newvp == NULL) {
1902 		struct nfsnode *np = NULL;
1903 
1904 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1905 		    cnp->cn_cred, cnp->cn_td, &np);
1906 		if (!error)
1907 			newvp = NFSTOV(np);
1908 	}
1909 	if (error) {
1910 		if (newvp)
1911 			vput(newvp);
1912 	} else {
1913 		*ap->a_vpp = newvp;
1914 	}
1915 	VTONFS(dvp)->n_flag |= NMODIFIED;
1916 	if (!wccflag)
1917 		VTONFS(dvp)->n_attrstamp = 0;
1918 	return (error);
1919 }
1920 
1921 /*
1922  * nfs make dir call
1923  *
1924  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1925  *	     struct componentname *a_cnp, struct vattr *a_vap)
1926  */
1927 static int
1928 nfs_mkdir(struct vop_mkdir_args *ap)
1929 {
1930 	struct vnode *dvp = ap->a_dvp;
1931 	struct vattr *vap = ap->a_vap;
1932 	struct componentname *cnp = ap->a_cnp;
1933 	struct nfsv2_sattr *sp;
1934 	u_int32_t *tl;
1935 	caddr_t cp;
1936 	int32_t t1, t2;
1937 	int len;
1938 	struct nfsnode *np = (struct nfsnode *)0;
1939 	struct vnode *newvp = (struct vnode *)0;
1940 	caddr_t bpos, dpos, cp2;
1941 	int error = 0, wccflag = NFSV3_WCCRATTR;
1942 	int gotvp = 0;
1943 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1944 	struct vattr vattr;
1945 	int v3 = NFS_ISV3(dvp);
1946 
1947 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1948 		return (error);
1949 	}
1950 	len = cnp->cn_namelen;
1951 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
1952 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
1953 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
1954 	nfsm_fhtom(dvp, v3);
1955 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1956 	if (v3) {
1957 		nfsm_v3attrbuild(vap, FALSE);
1958 	} else {
1959 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1960 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
1961 		sp->sa_uid = nfs_xdrneg1;
1962 		sp->sa_gid = nfs_xdrneg1;
1963 		sp->sa_size = nfs_xdrneg1;
1964 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1965 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1966 	}
1967 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
1968 	if (!error)
1969 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1970 	if (v3)
1971 		nfsm_wcc_data(dvp, wccflag);
1972 	m_freem(mrep);
1973 nfsmout:
1974 	VTONFS(dvp)->n_flag |= NMODIFIED;
1975 	if (!wccflag)
1976 		VTONFS(dvp)->n_attrstamp = 0;
1977 	/*
1978 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
1979 	 * if we can succeed in looking up the directory.
1980 	 */
1981 	if (error == EEXIST || (!error && !gotvp)) {
1982 		if (newvp) {
1983 			vrele(newvp);
1984 			newvp = (struct vnode *)0;
1985 		}
1986 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
1987 			cnp->cn_td, &np);
1988 		if (!error) {
1989 			newvp = NFSTOV(np);
1990 			if (newvp->v_type != VDIR)
1991 				error = EEXIST;
1992 		}
1993 	}
1994 	if (error) {
1995 		if (newvp)
1996 			vrele(newvp);
1997 	} else
1998 		*ap->a_vpp = newvp;
1999 	return (error);
2000 }
2001 
2002 /*
2003  * nfs remove directory call
2004  *
2005  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2006  *	     struct componentname *a_cnp)
2007  */
2008 static int
2009 nfs_rmdir(struct vop_rmdir_args *ap)
2010 {
2011 	struct vnode *vp = ap->a_vp;
2012 	struct vnode *dvp = ap->a_dvp;
2013 	struct componentname *cnp = ap->a_cnp;
2014 	u_int32_t *tl;
2015 	caddr_t cp;
2016 	int32_t t1, t2;
2017 	caddr_t bpos, dpos, cp2;
2018 	int error = 0, wccflag = NFSV3_WCCRATTR;
2019 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2020 	int v3 = NFS_ISV3(dvp);
2021 
2022 	if (dvp == vp)
2023 		return (EINVAL);
2024 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2025 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2026 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2027 	nfsm_fhtom(dvp, v3);
2028 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2029 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2030 	if (v3)
2031 		nfsm_wcc_data(dvp, wccflag);
2032 	m_freem(mrep);
2033 nfsmout:
2034 	VTONFS(dvp)->n_flag |= NMODIFIED;
2035 	if (!wccflag)
2036 		VTONFS(dvp)->n_attrstamp = 0;
2037 	cache_purge(dvp);
2038 	cache_purge(vp);
2039 	/*
2040 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2041 	 */
2042 	if (error == ENOENT)
2043 		error = 0;
2044 	return (error);
2045 }
2046 
2047 /*
2048  * nfs readdir call
2049  *
2050  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2051  */
2052 static int
2053 nfs_readdir(struct vop_readdir_args *ap)
2054 {
2055 	struct vnode *vp = ap->a_vp;
2056 	struct nfsnode *np = VTONFS(vp);
2057 	struct uio *uio = ap->a_uio;
2058 	int tresid, error;
2059 	struct vattr vattr;
2060 
2061 	if (vp->v_type != VDIR)
2062 		return (EPERM);
2063 	/*
2064 	 * First, check for hit on the EOF offset cache
2065 	 */
2066 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2067 	    (np->n_flag & NMODIFIED) == 0) {
2068 		if (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQNFS) {
2069 			if (NQNFS_CKCACHABLE(vp, ND_READ)) {
2070 				nfsstats.direofcache_hits++;
2071 				return (0);
2072 			}
2073 		} else if (VOP_GETATTR(vp, &vattr, uio->uio_td) == 0 &&
2074 			np->n_mtime == vattr.va_mtime.tv_sec) {
2075 			nfsstats.direofcache_hits++;
2076 			return (0);
2077 		}
2078 	}
2079 
2080 	/*
2081 	 * Call nfs_bioread() to do the real work.
2082 	 */
2083 	tresid = uio->uio_resid;
2084 	error = nfs_bioread(vp, uio, 0);
2085 
2086 	if (!error && uio->uio_resid == tresid)
2087 		nfsstats.direofcache_misses++;
2088 	return (error);
2089 }
2090 
2091 /*
2092  * Readdir rpc call.
2093  * Called from below the buffer cache by nfs_doio().
2094  */
2095 int
2096 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2097 {
2098 	int len, left;
2099 	struct dirent *dp = NULL;
2100 	u_int32_t *tl;
2101 	caddr_t cp;
2102 	int32_t t1, t2;
2103 	nfsuint64 *cookiep;
2104 	caddr_t bpos, dpos, cp2;
2105 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2106 	nfsuint64 cookie;
2107 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2108 	struct nfsnode *dnp = VTONFS(vp);
2109 	u_quad_t fileno;
2110 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2111 	int attrflag;
2112 	int v3 = NFS_ISV3(vp);
2113 
2114 #ifndef DIAGNOSTIC
2115 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2116 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2117 		panic("nfs readdirrpc bad uio");
2118 #endif
2119 
2120 	/*
2121 	 * If there is no cookie, assume directory was stale.
2122 	 */
2123 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2124 	if (cookiep)
2125 		cookie = *cookiep;
2126 	else
2127 		return (NFSERR_BAD_COOKIE);
2128 	/*
2129 	 * Loop around doing readdir rpc's of size nm_readdirsize
2130 	 * truncated to a multiple of DIRBLKSIZ.
2131 	 * The stopping criteria is EOF or buffer full.
2132 	 */
2133 	while (more_dirs && bigenough) {
2134 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2135 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2136 			NFSX_READDIR(v3));
2137 		nfsm_fhtom(vp, v3);
2138 		if (v3) {
2139 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2140 			*tl++ = cookie.nfsuquad[0];
2141 			*tl++ = cookie.nfsuquad[1];
2142 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2143 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2144 		} else {
2145 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2146 			*tl++ = cookie.nfsuquad[0];
2147 		}
2148 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2149 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2150 		if (v3) {
2151 			nfsm_postop_attr(vp, attrflag);
2152 			if (!error) {
2153 				nfsm_dissect(tl, u_int32_t *,
2154 				    2 * NFSX_UNSIGNED);
2155 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2156 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2157 			} else {
2158 				m_freem(mrep);
2159 				goto nfsmout;
2160 			}
2161 		}
2162 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2163 		more_dirs = fxdr_unsigned(int, *tl);
2164 
2165 		/* loop thru the dir entries, doctoring them to 4bsd form */
2166 		while (more_dirs && bigenough) {
2167 			if (v3) {
2168 				nfsm_dissect(tl, u_int32_t *,
2169 				    3 * NFSX_UNSIGNED);
2170 				fileno = fxdr_hyper(tl);
2171 				len = fxdr_unsigned(int, *(tl + 2));
2172 			} else {
2173 				nfsm_dissect(tl, u_int32_t *,
2174 				    2 * NFSX_UNSIGNED);
2175 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2176 				len = fxdr_unsigned(int, *tl);
2177 			}
2178 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2179 				error = EBADRPC;
2180 				m_freem(mrep);
2181 				goto nfsmout;
2182 			}
2183 			tlen = nfsm_rndup(len);
2184 			if (tlen == len)
2185 				tlen += 4;	/* To ensure null termination */
2186 			left = DIRBLKSIZ - blksiz;
2187 			if ((tlen + DIRHDSIZ) > left) {
2188 				dp->d_reclen += left;
2189 				uiop->uio_iov->iov_base += left;
2190 				uiop->uio_iov->iov_len -= left;
2191 				uiop->uio_offset += left;
2192 				uiop->uio_resid -= left;
2193 				blksiz = 0;
2194 			}
2195 			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2196 				bigenough = 0;
2197 			if (bigenough) {
2198 				dp = (struct dirent *)uiop->uio_iov->iov_base;
2199 				dp->d_fileno = (int)fileno;
2200 				dp->d_namlen = len;
2201 				dp->d_reclen = tlen + DIRHDSIZ;
2202 				dp->d_type = DT_UNKNOWN;
2203 				blksiz += dp->d_reclen;
2204 				if (blksiz == DIRBLKSIZ)
2205 					blksiz = 0;
2206 				uiop->uio_offset += DIRHDSIZ;
2207 				uiop->uio_resid -= DIRHDSIZ;
2208 				uiop->uio_iov->iov_base += DIRHDSIZ;
2209 				uiop->uio_iov->iov_len -= DIRHDSIZ;
2210 				nfsm_mtouio(uiop, len);
2211 				cp = uiop->uio_iov->iov_base;
2212 				tlen -= len;
2213 				*cp = '\0';	/* null terminate */
2214 				uiop->uio_iov->iov_base += tlen;
2215 				uiop->uio_iov->iov_len -= tlen;
2216 				uiop->uio_offset += tlen;
2217 				uiop->uio_resid -= tlen;
2218 			} else
2219 				nfsm_adv(nfsm_rndup(len));
2220 			if (v3) {
2221 				nfsm_dissect(tl, u_int32_t *,
2222 				    3 * NFSX_UNSIGNED);
2223 			} else {
2224 				nfsm_dissect(tl, u_int32_t *,
2225 				    2 * NFSX_UNSIGNED);
2226 			}
2227 			if (bigenough) {
2228 				cookie.nfsuquad[0] = *tl++;
2229 				if (v3)
2230 					cookie.nfsuquad[1] = *tl++;
2231 			} else if (v3)
2232 				tl += 2;
2233 			else
2234 				tl++;
2235 			more_dirs = fxdr_unsigned(int, *tl);
2236 		}
2237 		/*
2238 		 * If at end of rpc data, get the eof boolean
2239 		 */
2240 		if (!more_dirs) {
2241 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2242 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2243 		}
2244 		m_freem(mrep);
2245 	}
2246 	/*
2247 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2248 	 * by increasing d_reclen for the last record.
2249 	 */
2250 	if (blksiz > 0) {
2251 		left = DIRBLKSIZ - blksiz;
2252 		dp->d_reclen += left;
2253 		uiop->uio_iov->iov_base += left;
2254 		uiop->uio_iov->iov_len -= left;
2255 		uiop->uio_offset += left;
2256 		uiop->uio_resid -= left;
2257 	}
2258 
2259 	/*
2260 	 * We are now either at the end of the directory or have filled the
2261 	 * block.
2262 	 */
2263 	if (bigenough)
2264 		dnp->n_direofoffset = uiop->uio_offset;
2265 	else {
2266 		if (uiop->uio_resid > 0)
2267 			printf("EEK! readdirrpc resid > 0\n");
2268 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2269 		*cookiep = cookie;
2270 	}
2271 nfsmout:
2272 	return (error);
2273 }
2274 
2275 /*
2276  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2277  */
2278 int
2279 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2280 {
2281 	int len, left;
2282 	struct dirent *dp;
2283 	u_int32_t *tl;
2284 	caddr_t cp;
2285 	int32_t t1, t2;
2286 	struct vnode *newvp;
2287 	nfsuint64 *cookiep;
2288 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2289 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2290 	struct nameidata nami, *ndp = &nami;
2291 	struct componentname *cnp = &ndp->ni_cnd;
2292 	nfsuint64 cookie;
2293 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2294 	struct nfsnode *dnp = VTONFS(vp), *np;
2295 	nfsfh_t *fhp;
2296 	u_quad_t fileno;
2297 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2298 	int attrflag, fhsize;
2299 
2300 #ifndef nolint
2301 	dp = (struct dirent *)0;
2302 #endif
2303 #ifndef DIAGNOSTIC
2304 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2305 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2306 		panic("nfs readdirplusrpc bad uio");
2307 #endif
2308 	ndp->ni_dvp = vp;
2309 	newvp = NULLVP;
2310 
2311 	/*
2312 	 * If there is no cookie, assume directory was stale.
2313 	 */
2314 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2315 	if (cookiep)
2316 		cookie = *cookiep;
2317 	else
2318 		return (NFSERR_BAD_COOKIE);
2319 	/*
2320 	 * Loop around doing readdir rpc's of size nm_readdirsize
2321 	 * truncated to a multiple of DIRBLKSIZ.
2322 	 * The stopping criteria is EOF or buffer full.
2323 	 */
2324 	while (more_dirs && bigenough) {
2325 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2326 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2327 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2328 		nfsm_fhtom(vp, 1);
2329  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2330 		*tl++ = cookie.nfsuquad[0];
2331 		*tl++ = cookie.nfsuquad[1];
2332 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2333 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2334 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2335 		*tl = txdr_unsigned(nmp->nm_rsize);
2336 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2337 		nfsm_postop_attr(vp, attrflag);
2338 		if (error) {
2339 			m_freem(mrep);
2340 			goto nfsmout;
2341 		}
2342 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2343 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2344 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2345 		more_dirs = fxdr_unsigned(int, *tl);
2346 
2347 		/* loop thru the dir entries, doctoring them to 4bsd form */
2348 		while (more_dirs && bigenough) {
2349 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2350 			fileno = fxdr_hyper(tl);
2351 			len = fxdr_unsigned(int, *(tl + 2));
2352 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2353 				error = EBADRPC;
2354 				m_freem(mrep);
2355 				goto nfsmout;
2356 			}
2357 			tlen = nfsm_rndup(len);
2358 			if (tlen == len)
2359 				tlen += 4;	/* To ensure null termination*/
2360 			left = DIRBLKSIZ - blksiz;
2361 			if ((tlen + DIRHDSIZ) > left) {
2362 				dp->d_reclen += left;
2363 				uiop->uio_iov->iov_base += left;
2364 				uiop->uio_iov->iov_len -= left;
2365 				uiop->uio_offset += left;
2366 				uiop->uio_resid -= left;
2367 				blksiz = 0;
2368 			}
2369 			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2370 				bigenough = 0;
2371 			if (bigenough) {
2372 				dp = (struct dirent *)uiop->uio_iov->iov_base;
2373 				dp->d_fileno = (int)fileno;
2374 				dp->d_namlen = len;
2375 				dp->d_reclen = tlen + DIRHDSIZ;
2376 				dp->d_type = DT_UNKNOWN;
2377 				blksiz += dp->d_reclen;
2378 				if (blksiz == DIRBLKSIZ)
2379 					blksiz = 0;
2380 				uiop->uio_offset += DIRHDSIZ;
2381 				uiop->uio_resid -= DIRHDSIZ;
2382 				uiop->uio_iov->iov_base += DIRHDSIZ;
2383 				uiop->uio_iov->iov_len -= DIRHDSIZ;
2384 				cnp->cn_nameptr = uiop->uio_iov->iov_base;
2385 				cnp->cn_namelen = len;
2386 				nfsm_mtouio(uiop, len);
2387 				cp = uiop->uio_iov->iov_base;
2388 				tlen -= len;
2389 				*cp = '\0';
2390 				uiop->uio_iov->iov_base += tlen;
2391 				uiop->uio_iov->iov_len -= tlen;
2392 				uiop->uio_offset += tlen;
2393 				uiop->uio_resid -= tlen;
2394 			} else
2395 				nfsm_adv(nfsm_rndup(len));
2396 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2397 			if (bigenough) {
2398 				cookie.nfsuquad[0] = *tl++;
2399 				cookie.nfsuquad[1] = *tl++;
2400 			} else
2401 				tl += 2;
2402 
2403 			/*
2404 			 * Since the attributes are before the file handle
2405 			 * (sigh), we must skip over the attributes and then
2406 			 * come back and get them.
2407 			 */
2408 			attrflag = fxdr_unsigned(int, *tl);
2409 			if (attrflag) {
2410 			    dpossav1 = dpos;
2411 			    mdsav1 = md;
2412 			    nfsm_adv(NFSX_V3FATTR);
2413 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2414 			    doit = fxdr_unsigned(int, *tl);
2415 			    if (doit) {
2416 				nfsm_getfh(fhp, fhsize, 1);
2417 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2418 				    vref(vp);
2419 				    newvp = vp;
2420 				    np = dnp;
2421 				} else {
2422 				    error = nfs_nget(vp->v_mount, fhp,
2423 					fhsize, &np);
2424 				    if (error)
2425 					doit = 0;
2426 				    else
2427 					newvp = NFSTOV(np);
2428 				}
2429 			    }
2430 			    if (doit && bigenough) {
2431 				dpossav2 = dpos;
2432 				dpos = dpossav1;
2433 				mdsav2 = md;
2434 				md = mdsav1;
2435 				nfsm_loadattr(newvp, (struct vattr *)0);
2436 				dpos = dpossav2;
2437 				md = mdsav2;
2438 				dp->d_type =
2439 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2440 				ndp->ni_vp = newvp;
2441 			        cache_enter(ndp->ni_dvp, NCPNULL, ndp->ni_vp, cnp);
2442 			    }
2443 			} else {
2444 			    /* Just skip over the file handle */
2445 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2446 			    i = fxdr_unsigned(int, *tl);
2447 			    nfsm_adv(nfsm_rndup(i));
2448 			}
2449 			if (newvp != NULLVP) {
2450 			    if (newvp == vp)
2451 				vrele(newvp);
2452 			    else
2453 				vput(newvp);
2454 			    newvp = NULLVP;
2455 			}
2456 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2457 			more_dirs = fxdr_unsigned(int, *tl);
2458 		}
2459 		/*
2460 		 * If at end of rpc data, get the eof boolean
2461 		 */
2462 		if (!more_dirs) {
2463 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2464 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2465 		}
2466 		m_freem(mrep);
2467 	}
2468 	/*
2469 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2470 	 * by increasing d_reclen for the last record.
2471 	 */
2472 	if (blksiz > 0) {
2473 		left = DIRBLKSIZ - blksiz;
2474 		dp->d_reclen += left;
2475 		uiop->uio_iov->iov_base += left;
2476 		uiop->uio_iov->iov_len -= left;
2477 		uiop->uio_offset += left;
2478 		uiop->uio_resid -= left;
2479 	}
2480 
2481 	/*
2482 	 * We are now either at the end of the directory or have filled the
2483 	 * block.
2484 	 */
2485 	if (bigenough)
2486 		dnp->n_direofoffset = uiop->uio_offset;
2487 	else {
2488 		if (uiop->uio_resid > 0)
2489 			printf("EEK! readdirplusrpc resid > 0\n");
2490 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2491 		*cookiep = cookie;
2492 	}
2493 nfsmout:
2494 	if (newvp != NULLVP) {
2495 	        if (newvp == vp)
2496 			vrele(newvp);
2497 		else
2498 			vput(newvp);
2499 		newvp = NULLVP;
2500 	}
2501 	return (error);
2502 }
2503 
2504 /*
2505  * Silly rename. To make the NFS filesystem that is stateless look a little
2506  * more like the "ufs" a remove of an active vnode is translated to a rename
2507  * to a funny looking filename that is removed by nfs_inactive on the
2508  * nfsnode. There is the potential for another process on a different client
2509  * to create the same funny name between the nfs_lookitup() fails and the
2510  * nfs_rename() completes, but...
2511  */
2512 static int
2513 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2514 {
2515 	struct sillyrename *sp;
2516 	struct nfsnode *np;
2517 	int error;
2518 
2519 	cache_purge(dvp);
2520 	np = VTONFS(vp);
2521 #ifndef DIAGNOSTIC
2522 	if (vp->v_type == VDIR)
2523 		panic("nfs: sillyrename dir");
2524 #endif
2525 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2526 		M_NFSREQ, M_WAITOK);
2527 	sp->s_cred = crdup(cnp->cn_cred);
2528 	sp->s_dvp = dvp;
2529 	vref(dvp);
2530 
2531 	/* Fudge together a funny name */
2532 	sp->s_namlen = sprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2533 
2534 	/* Try lookitups until we get one that isn't there */
2535 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2536 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2537 		sp->s_name[4]++;
2538 		if (sp->s_name[4] > 'z') {
2539 			error = EINVAL;
2540 			goto bad;
2541 		}
2542 	}
2543 	error = nfs_renameit(dvp, cnp, sp);
2544 	if (error)
2545 		goto bad;
2546 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2547 		cnp->cn_td, &np);
2548 	np->n_sillyrename = sp;
2549 	return (0);
2550 bad:
2551 	vrele(sp->s_dvp);
2552 	crfree(sp->s_cred);
2553 	free((caddr_t)sp, M_NFSREQ);
2554 	return (error);
2555 }
2556 
2557 /*
2558  * Look up a file name and optionally either update the file handle or
2559  * allocate an nfsnode, depending on the value of npp.
2560  * npp == NULL	--> just do the lookup
2561  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2562  *			handled too
2563  * *npp != NULL --> update the file handle in the vnode
2564  */
2565 static int
2566 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2567 	     struct thread *td, struct nfsnode **npp)
2568 {
2569 	u_int32_t *tl;
2570 	caddr_t cp;
2571 	int32_t t1, t2;
2572 	struct vnode *newvp = (struct vnode *)0;
2573 	struct nfsnode *np, *dnp = VTONFS(dvp);
2574 	caddr_t bpos, dpos, cp2;
2575 	int error = 0, fhlen, attrflag;
2576 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2577 	nfsfh_t *nfhp;
2578 	int v3 = NFS_ISV3(dvp);
2579 
2580 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2581 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2582 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2583 	nfsm_fhtom(dvp, v3);
2584 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2585 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2586 	if (npp && !error) {
2587 		nfsm_getfh(nfhp, fhlen, v3);
2588 		if (*npp) {
2589 		    np = *npp;
2590 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2591 			free((caddr_t)np->n_fhp, M_NFSBIGFH);
2592 			np->n_fhp = &np->n_fh;
2593 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2594 			np->n_fhp =(nfsfh_t *)malloc(fhlen,M_NFSBIGFH,M_WAITOK);
2595 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2596 		    np->n_fhsize = fhlen;
2597 		    newvp = NFSTOV(np);
2598 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2599 		    vref(dvp);
2600 		    newvp = dvp;
2601 		} else {
2602 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2603 		    if (error) {
2604 			m_freem(mrep);
2605 			return (error);
2606 		    }
2607 		    newvp = NFSTOV(np);
2608 		}
2609 		if (v3) {
2610 			nfsm_postop_attr(newvp, attrflag);
2611 			if (!attrflag && *npp == NULL) {
2612 				m_freem(mrep);
2613 				if (newvp == dvp)
2614 					vrele(newvp);
2615 				else
2616 					vput(newvp);
2617 				return (ENOENT);
2618 			}
2619 		} else
2620 			nfsm_loadattr(newvp, (struct vattr *)0);
2621 	}
2622 	m_freem(mrep);
2623 nfsmout:
2624 	if (npp && *npp == NULL) {
2625 		if (error) {
2626 			if (newvp) {
2627 				if (newvp == dvp)
2628 					vrele(newvp);
2629 				else
2630 					vput(newvp);
2631 			}
2632 		} else
2633 			*npp = np;
2634 	}
2635 	return (error);
2636 }
2637 
2638 /*
2639  * Nfs Version 3 commit rpc
2640  */
2641 int
2642 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2643 {
2644 	caddr_t cp;
2645 	u_int32_t *tl;
2646 	int32_t t1, t2;
2647 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2648 	caddr_t bpos, dpos, cp2;
2649 	int error = 0, wccflag = NFSV3_WCCRATTR;
2650 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2651 
2652 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2653 		return (0);
2654 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2655 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2656 	nfsm_fhtom(vp, 1);
2657 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2658 	txdr_hyper(offset, tl);
2659 	tl += 2;
2660 	*tl = txdr_unsigned(cnt);
2661 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2662 	nfsm_wcc_data(vp, wccflag);
2663 	if (!error) {
2664 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2665 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2666 			NFSX_V3WRITEVERF)) {
2667 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2668 				NFSX_V3WRITEVERF);
2669 			error = NFSERR_STALEWRITEVERF;
2670 		}
2671 	}
2672 	m_freem(mrep);
2673 nfsmout:
2674 	return (error);
2675 }
2676 
2677 /*
2678  * Kludge City..
2679  * - make nfs_bmap() essentially a no-op that does no translation
2680  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2681  *   (Maybe I could use the process's page mapping, but I was concerned that
2682  *    Kernel Write might not be enabled and also figured copyout() would do
2683  *    a lot more work than bcopy() and also it currently happens in the
2684  *    context of the swapper process (2).
2685  *
2686  * nfs_bmap(struct vnode *a_vp, daddr_t a_bn, struct vnode **a_vpp,
2687  *	    daddr_t *a_bnp, int *a_runp, int *a_runb)
2688  */
2689 static int
2690 nfs_bmap(struct vop_bmap_args *ap)
2691 {
2692 	struct vnode *vp = ap->a_vp;
2693 
2694 	if (ap->a_vpp != NULL)
2695 		*ap->a_vpp = vp;
2696 	if (ap->a_bnp != NULL)
2697 		*ap->a_bnp = ap->a_bn * btodb(vp->v_mount->mnt_stat.f_iosize);
2698 	if (ap->a_runp != NULL)
2699 		*ap->a_runp = 0;
2700 	if (ap->a_runb != NULL)
2701 		*ap->a_runb = 0;
2702 	return (0);
2703 }
2704 
2705 /*
2706  * Strategy routine.
2707  * For async requests when nfsiod(s) are running, queue the request by
2708  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2709  * request.
2710  */
2711 static int
2712 nfs_strategy(struct vop_strategy_args *ap)
2713 {
2714 	struct buf *bp = ap->a_bp;
2715 	struct thread *td;
2716 	int error = 0;
2717 
2718 	KASSERT(!(bp->b_flags & B_DONE), ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2719 	KASSERT(BUF_REFCNT(bp) > 0, ("nfs_strategy: buffer %p not locked", bp));
2720 
2721 	if (bp->b_flags & B_PHYS)
2722 		panic("nfs physio");
2723 
2724 	if (bp->b_flags & B_ASYNC)
2725 		td = NULL;
2726 	else
2727 		td = curthread;	/* XXX */
2728 
2729 	/*
2730 	 * If the op is asynchronous and an i/o daemon is waiting
2731 	 * queue the request, wake it up and wait for completion
2732 	 * otherwise just do it ourselves.
2733 	 */
2734 	if ((bp->b_flags & B_ASYNC) == 0 ||
2735 		nfs_asyncio(bp, td))
2736 		error = nfs_doio(bp, td);
2737 	return (error);
2738 }
2739 
2740 /*
2741  * Mmap a file
2742  *
2743  * NB Currently unsupported.
2744  *
2745  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred,
2746  *	    struct thread *a_td)
2747  */
2748 /* ARGSUSED */
2749 static int
2750 nfs_mmap(struct vop_mmap_args *ap)
2751 {
2752 	return (EINVAL);
2753 }
2754 
2755 /*
2756  * fsync vnode op. Just call nfs_flush() with commit == 1.
2757  *
2758  * nfs_fsync(struct vnodeop_desc *a_desc, struct vnode *a_vp,
2759  *	     struct ucred * a_cred, int a_waitfor, struct thread *a_td)
2760  */
2761 /* ARGSUSED */
2762 static int
2763 nfs_fsync(struct vop_fsync_args *ap)
2764 {
2765 	return (nfs_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1));
2766 }
2767 
2768 /*
2769  * Flush all the blocks associated with a vnode.
2770  * 	Walk through the buffer pool and push any dirty pages
2771  *	associated with the vnode.
2772  */
2773 static int
2774 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2775 {
2776 	struct nfsnode *np = VTONFS(vp);
2777 	struct buf *bp;
2778 	int i;
2779 	struct buf *nbp;
2780 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2781 	int s, error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2782 	int passone = 1;
2783 	u_quad_t off, endoff, toff;
2784 	struct buf **bvec = NULL;
2785 #ifndef NFS_COMMITBVECSIZ
2786 #define NFS_COMMITBVECSIZ	20
2787 #endif
2788 	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2789 	int bvecsize = 0, bveccount;
2790 
2791 	if (nmp->nm_flag & NFSMNT_INT)
2792 		slpflag = PCATCH;
2793 	if (!commit)
2794 		passone = 0;
2795 	/*
2796 	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2797 	 * server, but nas not been committed to stable storage on the server
2798 	 * yet. On the first pass, the byte range is worked out and the commit
2799 	 * rpc is done. On the second pass, nfs_writebp() is called to do the
2800 	 * job.
2801 	 */
2802 again:
2803 	off = (u_quad_t)-1;
2804 	endoff = 0;
2805 	bvecpos = 0;
2806 	if (NFS_ISV3(vp) && commit) {
2807 		s = splbio();
2808 		/*
2809 		 * Count up how many buffers waiting for a commit.
2810 		 */
2811 		bveccount = 0;
2812 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
2813 			nbp = TAILQ_NEXT(bp, b_vnbufs);
2814 			if (BUF_REFCNT(bp) == 0 &&
2815 			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2816 				== (B_DELWRI | B_NEEDCOMMIT))
2817 				bveccount++;
2818 		}
2819 		/*
2820 		 * Allocate space to remember the list of bufs to commit.  It is
2821 		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2822 		 * If we can't get memory (for whatever reason), we will end up
2823 		 * committing the buffers one-by-one in the loop below.
2824 		 */
2825 		if (bvec != NULL && bvec != bvec_on_stack)
2826 			free(bvec, M_TEMP);
2827 		if (bveccount > NFS_COMMITBVECSIZ) {
2828 			bvec = (struct buf **)
2829 				malloc(bveccount * sizeof(struct buf *),
2830 				       M_TEMP, M_NOWAIT);
2831 			if (bvec == NULL) {
2832 				bvec = bvec_on_stack;
2833 				bvecsize = NFS_COMMITBVECSIZ;
2834 			} else
2835 				bvecsize = bveccount;
2836 		} else {
2837 			bvec = bvec_on_stack;
2838 			bvecsize = NFS_COMMITBVECSIZ;
2839 		}
2840 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
2841 			nbp = TAILQ_NEXT(bp, b_vnbufs);
2842 			if (bvecpos >= bvecsize)
2843 				break;
2844 			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2845 			    (B_DELWRI | B_NEEDCOMMIT) ||
2846 			    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2847 				continue;
2848 			bremfree(bp);
2849 			/*
2850 			 * NOTE: we are not clearing B_DONE here, so we have
2851 			 * to do it later on in this routine if we intend to
2852 			 * initiate I/O on the bp.
2853 			 *
2854 			 * Note: to avoid loopback deadlocks, we do not
2855 			 * assign b_runningbufspace.
2856 			 */
2857 			bp->b_flags |= B_WRITEINPROG;
2858 			vfs_busy_pages(bp, 1);
2859 
2860 			/*
2861 			 * bp is protected by being locked, but nbp is not
2862 			 * and vfs_busy_pages() may sleep.  We have to
2863 			 * recalculate nbp.
2864 			 */
2865 			nbp = TAILQ_NEXT(bp, b_vnbufs);
2866 
2867 			/*
2868 			 * A list of these buffers is kept so that the
2869 			 * second loop knows which buffers have actually
2870 			 * been committed. This is necessary, since there
2871 			 * may be a race between the commit rpc and new
2872 			 * uncommitted writes on the file.
2873 			 */
2874 			bvec[bvecpos++] = bp;
2875 			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2876 				bp->b_dirtyoff;
2877 			if (toff < off)
2878 				off = toff;
2879 			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2880 			if (toff > endoff)
2881 				endoff = toff;
2882 		}
2883 		splx(s);
2884 	}
2885 	if (bvecpos > 0) {
2886 		/*
2887 		 * Commit data on the server, as required.  Note that
2888 		 * nfs_commit will use the vnode's cred for the commit.
2889 		 */
2890 		retv = nfs_commit(vp, off, (int)(endoff - off), td);
2891 
2892 		if (retv == NFSERR_STALEWRITEVERF)
2893 			nfs_clearcommit(vp->v_mount);
2894 
2895 		/*
2896 		 * Now, either mark the blocks I/O done or mark the
2897 		 * blocks dirty, depending on whether the commit
2898 		 * succeeded.
2899 		 */
2900 		for (i = 0; i < bvecpos; i++) {
2901 			bp = bvec[i];
2902 			bp->b_flags &= ~(B_NEEDCOMMIT | B_WRITEINPROG | B_CLUSTEROK);
2903 			if (retv) {
2904 				/*
2905 				 * Error, leave B_DELWRI intact
2906 				 */
2907 				vfs_unbusy_pages(bp);
2908 				brelse(bp);
2909 			} else {
2910 				/*
2911 				 * Success, remove B_DELWRI ( bundirty() ).
2912 				 *
2913 				 * b_dirtyoff/b_dirtyend seem to be NFS
2914 				 * specific.  We should probably move that
2915 				 * into bundirty(). XXX
2916 				 */
2917 				s = splbio();
2918 				vp->v_numoutput++;
2919 				bp->b_flags |= B_ASYNC;
2920 				bundirty(bp);
2921 				bp->b_flags &= ~(B_READ|B_DONE|B_ERROR);
2922 				bp->b_dirtyoff = bp->b_dirtyend = 0;
2923 				splx(s);
2924 				biodone(bp);
2925 			}
2926 		}
2927 	}
2928 
2929 	/*
2930 	 * Start/do any write(s) that are required.
2931 	 */
2932 loop:
2933 	s = splbio();
2934 	for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
2935 		nbp = TAILQ_NEXT(bp, b_vnbufs);
2936 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2937 			if (waitfor != MNT_WAIT || passone)
2938 				continue;
2939 			error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2940 			    "nfsfsync", slpflag, slptimeo);
2941 			splx(s);
2942 			if (error == 0)
2943 				panic("nfs_fsync: inconsistent lock");
2944 			if (error == ENOLCK)
2945 				goto loop;
2946 			if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2947 				error = EINTR;
2948 				goto done;
2949 			}
2950 			if (slpflag == PCATCH) {
2951 				slpflag = 0;
2952 				slptimeo = 2 * hz;
2953 			}
2954 			goto loop;
2955 		}
2956 		if ((bp->b_flags & B_DELWRI) == 0)
2957 			panic("nfs_fsync: not dirty");
2958 		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2959 			BUF_UNLOCK(bp);
2960 			continue;
2961 		}
2962 		bremfree(bp);
2963 		if (passone || !commit)
2964 		    bp->b_flags |= B_ASYNC;
2965 		else
2966 		    bp->b_flags |= B_ASYNC | B_WRITEINPROG;
2967 		splx(s);
2968 		VOP_BWRITE(bp->b_vp, bp);
2969 		goto loop;
2970 	}
2971 	splx(s);
2972 	if (passone) {
2973 		passone = 0;
2974 		goto again;
2975 	}
2976 	if (waitfor == MNT_WAIT) {
2977 		while (vp->v_numoutput) {
2978 			vp->v_flag |= VBWAIT;
2979 			error = tsleep((caddr_t)&vp->v_numoutput,
2980 				slpflag, "nfsfsync", slptimeo);
2981 			if (error) {
2982 			    if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2983 				error = EINTR;
2984 				goto done;
2985 			    }
2986 			    if (slpflag == PCATCH) {
2987 				slpflag = 0;
2988 				slptimeo = 2 * hz;
2989 			    }
2990 			}
2991 		}
2992 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) && commit) {
2993 			goto loop;
2994 		}
2995 	}
2996 	if (np->n_flag & NWRITEERR) {
2997 		error = np->n_error;
2998 		np->n_flag &= ~NWRITEERR;
2999 	}
3000 done:
3001 	if (bvec != NULL && bvec != bvec_on_stack)
3002 		free(bvec, M_TEMP);
3003 	return (error);
3004 }
3005 
3006 /*
3007  * NFS advisory byte-level locks.
3008  * Currently unsupported.
3009  *
3010  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3011  *		int a_flags)
3012  */
3013 static int
3014 nfs_advlock(struct vop_advlock_args *ap)
3015 {
3016 	struct nfsnode *np = VTONFS(ap->a_vp);
3017 
3018 	/*
3019 	 * The following kludge is to allow diskless support to work
3020 	 * until a real NFS lockd is implemented. Basically, just pretend
3021 	 * that this is a local lock.
3022 	 */
3023 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3024 }
3025 
3026 /*
3027  * Print out the contents of an nfsnode.
3028  *
3029  * nfs_print(struct vnode *a_vp)
3030  */
3031 static int
3032 nfs_print(struct vop_print_args *ap)
3033 {
3034 	struct vnode *vp = ap->a_vp;
3035 	struct nfsnode *np = VTONFS(vp);
3036 
3037 	printf("tag VT_NFS, fileid %ld fsid 0x%x",
3038 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3039 	if (vp->v_type == VFIFO)
3040 		fifo_printinfo(vp);
3041 	printf("\n");
3042 	return (0);
3043 }
3044 
3045 /*
3046  * Just call nfs_writebp() with the force argument set to 1.
3047  *
3048  * NOTE: B_DONE may or may not be set in a_bp on call.
3049  *
3050  * nfs_bwrite(struct vnode *a_bp)
3051  */
3052 static int
3053 nfs_bwrite(struct vop_bwrite_args *ap)
3054 {
3055 	return (nfs_writebp(ap->a_bp, 1, curthread));
3056 }
3057 
3058 /*
3059  * This is a clone of vn_bwrite(), except that B_WRITEINPROG isn't set unless
3060  * the force flag is one and it also handles the B_NEEDCOMMIT flag.  We set
3061  * B_CACHE if this is a VMIO buffer.
3062  */
3063 int
3064 nfs_writebp(struct buf *bp, int force, struct thread *td)
3065 {
3066 	int s;
3067 	int oldflags = bp->b_flags;
3068 #if 0
3069 	int retv = 1;
3070 	off_t off;
3071 #endif
3072 
3073 	if (BUF_REFCNT(bp) == 0)
3074 		panic("bwrite: buffer is not locked???");
3075 
3076 	if (bp->b_flags & B_INVAL) {
3077 		brelse(bp);
3078 		return(0);
3079 	}
3080 
3081 	bp->b_flags |= B_CACHE;
3082 
3083 	/*
3084 	 * Undirty the bp.  We will redirty it later if the I/O fails.
3085 	 */
3086 
3087 	s = splbio();
3088 	bundirty(bp);
3089 	bp->b_flags &= ~(B_READ|B_DONE|B_ERROR);
3090 
3091 	bp->b_vp->v_numoutput++;
3092 	splx(s);
3093 
3094 	/*
3095 	 * Note: to avoid loopback deadlocks, we do not
3096 	 * assign b_runningbufspace.
3097 	 */
3098 	vfs_busy_pages(bp, 1);
3099 
3100 	if (force)
3101 		bp->b_flags |= B_WRITEINPROG;
3102 	BUF_KERNPROC(bp);
3103 	VOP_STRATEGY(bp->b_vp, bp);
3104 
3105 	if( (oldflags & B_ASYNC) == 0) {
3106 		int rtval = biowait(bp);
3107 
3108 		if (oldflags & B_DELWRI) {
3109 			s = splbio();
3110 			reassignbuf(bp, bp->b_vp);
3111 			splx(s);
3112 		}
3113 
3114 		brelse(bp);
3115 		return (rtval);
3116 	}
3117 
3118 	return (0);
3119 }
3120 
3121 /*
3122  * nfs special file access vnode op.
3123  * Essentially just get vattr and then imitate iaccess() since the device is
3124  * local to the client.
3125  *
3126  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
3127  *		  struct thread *a_td)
3128  */
3129 static int
3130 nfsspec_access(struct vop_access_args *ap)
3131 {
3132 	struct vattr *vap;
3133 	gid_t *gp;
3134 	struct ucred *cred = ap->a_cred;
3135 	struct vnode *vp = ap->a_vp;
3136 	mode_t mode = ap->a_mode;
3137 	struct vattr vattr;
3138 	int i;
3139 	int error;
3140 
3141 	/*
3142 	 * Disallow write attempts on filesystems mounted read-only;
3143 	 * unless the file is a socket, fifo, or a block or character
3144 	 * device resident on the filesystem.
3145 	 */
3146 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3147 		switch (vp->v_type) {
3148 		case VREG:
3149 		case VDIR:
3150 		case VLNK:
3151 			return (EROFS);
3152 		default:
3153 			break;
3154 		}
3155 	}
3156 	/*
3157 	 * If you're the super-user,
3158 	 * you always get access.
3159 	 */
3160 	if (cred->cr_uid == 0)
3161 		return (0);
3162 	vap = &vattr;
3163 	error = VOP_GETATTR(vp, vap, ap->a_td);
3164 	if (error)
3165 		return (error);
3166 	/*
3167 	 * Access check is based on only one of owner, group, public.
3168 	 * If not owner, then check group. If not a member of the
3169 	 * group, then check public access.
3170 	 */
3171 	if (cred->cr_uid != vap->va_uid) {
3172 		mode >>= 3;
3173 		gp = cred->cr_groups;
3174 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3175 			if (vap->va_gid == *gp)
3176 				goto found;
3177 		mode >>= 3;
3178 found:
3179 		;
3180 	}
3181 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3182 	return (error);
3183 }
3184 
3185 /*
3186  * Read wrapper for special devices.
3187  *
3188  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3189  *		struct ucred *a_cred)
3190  */
3191 static int
3192 nfsspec_read(struct vop_read_args *ap)
3193 {
3194 	struct nfsnode *np = VTONFS(ap->a_vp);
3195 
3196 	/*
3197 	 * Set access flag.
3198 	 */
3199 	np->n_flag |= NACC;
3200 	getnanotime(&np->n_atim);
3201 	return (VOCALL(spec_vnodeop_p, VOFFSET(vop_read), ap));
3202 }
3203 
3204 /*
3205  * Write wrapper for special devices.
3206  *
3207  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3208  *		 struct ucred *a_cred)
3209  */
3210 static int
3211 nfsspec_write(struct vop_write_args *ap)
3212 {
3213 	struct nfsnode *np = VTONFS(ap->a_vp);
3214 
3215 	/*
3216 	 * Set update flag.
3217 	 */
3218 	np->n_flag |= NUPD;
3219 	getnanotime(&np->n_mtim);
3220 	return (VOCALL(spec_vnodeop_p, VOFFSET(vop_write), ap));
3221 }
3222 
3223 /*
3224  * Close wrapper for special devices.
3225  *
3226  * Update the times on the nfsnode then do device close.
3227  *
3228  * nfsspec_close(struct vnode *a_vp, int a_fflag, struct ucred *a_cred,
3229  *		 struct thread *a_td)
3230  */
3231 static int
3232 nfsspec_close(struct vop_close_args *ap)
3233 {
3234 	struct vnode *vp = ap->a_vp;
3235 	struct nfsnode *np = VTONFS(vp);
3236 	struct vattr vattr;
3237 
3238 	if (np->n_flag & (NACC | NUPD)) {
3239 		np->n_flag |= NCHG;
3240 		if (vp->v_usecount == 1 &&
3241 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3242 			VATTR_NULL(&vattr);
3243 			if (np->n_flag & NACC)
3244 				vattr.va_atime = np->n_atim;
3245 			if (np->n_flag & NUPD)
3246 				vattr.va_mtime = np->n_mtim;
3247 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE), ap->a_td);
3248 		}
3249 	}
3250 	return (VOCALL(spec_vnodeop_p, VOFFSET(vop_close), ap));
3251 }
3252 
3253 /*
3254  * Read wrapper for fifos.
3255  *
3256  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3257  *		struct ucred *a_cred)
3258  */
3259 static int
3260 nfsfifo_read(struct vop_read_args *ap)
3261 {
3262 	struct nfsnode *np = VTONFS(ap->a_vp);
3263 
3264 	/*
3265 	 * Set access flag.
3266 	 */
3267 	np->n_flag |= NACC;
3268 	getnanotime(&np->n_atim);
3269 	return (VOCALL(fifo_vnodeop_p, VOFFSET(vop_read), ap));
3270 }
3271 
3272 /*
3273  * Write wrapper for fifos.
3274  *
3275  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3276  *		 struct ucred *a_cred)
3277  */
3278 static int
3279 nfsfifo_write(struct vop_write_args *ap)
3280 {
3281 	struct nfsnode *np = VTONFS(ap->a_vp);
3282 
3283 	/*
3284 	 * Set update flag.
3285 	 */
3286 	np->n_flag |= NUPD;
3287 	getnanotime(&np->n_mtim);
3288 	return (VOCALL(fifo_vnodeop_p, VOFFSET(vop_write), ap));
3289 }
3290 
3291 /*
3292  * Close wrapper for fifos.
3293  *
3294  * Update the times on the nfsnode then do fifo close.
3295  *
3296  * nfsfifo_close(struct vnode *a_vp, int a_fflag, struct thread *a_td)
3297  */
3298 static int
3299 nfsfifo_close(struct vop_close_args *ap)
3300 {
3301 	struct vnode *vp = ap->a_vp;
3302 	struct nfsnode *np = VTONFS(vp);
3303 	struct vattr vattr;
3304 	struct timespec ts;
3305 
3306 	if (np->n_flag & (NACC | NUPD)) {
3307 		getnanotime(&ts);
3308 		if (np->n_flag & NACC)
3309 			np->n_atim = ts;
3310 		if (np->n_flag & NUPD)
3311 			np->n_mtim = ts;
3312 		np->n_flag |= NCHG;
3313 		if (vp->v_usecount == 1 &&
3314 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3315 			VATTR_NULL(&vattr);
3316 			if (np->n_flag & NACC)
3317 				vattr.va_atime = np->n_atim;
3318 			if (np->n_flag & NUPD)
3319 				vattr.va_mtime = np->n_mtim;
3320 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE), ap->a_td);
3321 		}
3322 	}
3323 	return (VOCALL(fifo_vnodeop_p, VOFFSET(vop_close), ap));
3324 }
3325 
3326