xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 1bf4b486)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.41 2005/06/06 15:09:38 drhodus Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 
76 #include "rpcv2.h"
77 #include "nfsproto.h"
78 #include "nfs.h"
79 #include "nfsmount.h"
80 #include "nfsnode.h"
81 #include "xdr_subs.h"
82 #include "nfsm_subs.h"
83 #include "nqnfs.h"
84 
85 #include <net/if.h>
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 
89 #include <sys/thread2.h>
90 
91 /* Defs */
92 #define	TRUE	1
93 #define	FALSE	0
94 
95 /*
96  * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
97  * calls are not in getblk() and brelse() so that they would not be necessary
98  * here.
99  */
100 #ifndef B_VMIO
101 #define vfs_busy_pages(bp, f)
102 #endif
103 
104 static int	nfsspec_read (struct vop_read_args *);
105 static int	nfsspec_write (struct vop_write_args *);
106 static int	nfsfifo_read (struct vop_read_args *);
107 static int	nfsfifo_write (struct vop_write_args *);
108 static int	nfsspec_close (struct vop_close_args *);
109 static int	nfsfifo_close (struct vop_close_args *);
110 #define nfs_poll vop_nopoll
111 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
112 static	int	nfs_lookup (struct vop_lookup_args *);
113 static	int	nfs_create (struct vop_create_args *);
114 static	int	nfs_mknod (struct vop_mknod_args *);
115 static	int	nfs_open (struct vop_open_args *);
116 static	int	nfs_close (struct vop_close_args *);
117 static	int	nfs_access (struct vop_access_args *);
118 static	int	nfs_getattr (struct vop_getattr_args *);
119 static	int	nfs_setattr (struct vop_setattr_args *);
120 static	int	nfs_read (struct vop_read_args *);
121 static	int	nfs_mmap (struct vop_mmap_args *);
122 static	int	nfs_fsync (struct vop_fsync_args *);
123 static	int	nfs_remove (struct vop_remove_args *);
124 static	int	nfs_link (struct vop_link_args *);
125 static	int	nfs_rename (struct vop_rename_args *);
126 static	int	nfs_mkdir (struct vop_mkdir_args *);
127 static	int	nfs_rmdir (struct vop_rmdir_args *);
128 static	int	nfs_symlink (struct vop_symlink_args *);
129 static	int	nfs_readdir (struct vop_readdir_args *);
130 static	int	nfs_bmap (struct vop_bmap_args *);
131 static	int	nfs_strategy (struct vop_strategy_args *);
132 static	int	nfs_lookitup (struct vnode *, const char *, int,
133 			struct ucred *, struct thread *, struct nfsnode **);
134 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
135 static int	nfsspec_access (struct vop_access_args *);
136 static int	nfs_readlink (struct vop_readlink_args *);
137 static int	nfs_print (struct vop_print_args *);
138 static int	nfs_advlock (struct vop_advlock_args *);
139 static int	nfs_bwrite (struct vop_bwrite_args *);
140 
141 static	int	nfs_nresolve (struct vop_nresolve_args *);
142 /*
143  * Global vfs data structures for nfs
144  */
145 struct vnodeopv_entry_desc nfsv2_vnodeop_entries[] = {
146 	{ &vop_default_desc,		vop_defaultop },
147 	{ &vop_access_desc,		(vnodeopv_entry_t) nfs_access },
148 	{ &vop_advlock_desc,		(vnodeopv_entry_t) nfs_advlock },
149 	{ &vop_bmap_desc,		(vnodeopv_entry_t) nfs_bmap },
150 	{ &vop_bwrite_desc,		(vnodeopv_entry_t) nfs_bwrite },
151 	{ &vop_close_desc,		(vnodeopv_entry_t) nfs_close },
152 	{ &vop_create_desc,		(vnodeopv_entry_t) nfs_create },
153 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
154 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
155 	{ &vop_getpages_desc,		(vnodeopv_entry_t) nfs_getpages },
156 	{ &vop_putpages_desc,		(vnodeopv_entry_t) nfs_putpages },
157 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
158 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
159 	{ &vop_lease_desc,		vop_null },
160 	{ &vop_link_desc,		(vnodeopv_entry_t) nfs_link },
161 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
162 	{ &vop_lookup_desc,		(vnodeopv_entry_t) nfs_lookup },
163 	{ &vop_mkdir_desc,		(vnodeopv_entry_t) nfs_mkdir },
164 	{ &vop_mknod_desc,		(vnodeopv_entry_t) nfs_mknod },
165 	{ &vop_mmap_desc,		(vnodeopv_entry_t) nfs_mmap },
166 	{ &vop_open_desc,		(vnodeopv_entry_t) nfs_open },
167 	{ &vop_poll_desc,		(vnodeopv_entry_t) nfs_poll },
168 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
169 	{ &vop_read_desc,		(vnodeopv_entry_t) nfs_read },
170 	{ &vop_readdir_desc,		(vnodeopv_entry_t) nfs_readdir },
171 	{ &vop_readlink_desc,		(vnodeopv_entry_t) nfs_readlink },
172 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
173 	{ &vop_remove_desc,		(vnodeopv_entry_t) nfs_remove },
174 	{ &vop_rename_desc,		(vnodeopv_entry_t) nfs_rename },
175 	{ &vop_rmdir_desc,		(vnodeopv_entry_t) nfs_rmdir },
176 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
177 	{ &vop_strategy_desc,		(vnodeopv_entry_t) nfs_strategy },
178 	{ &vop_symlink_desc,		(vnodeopv_entry_t) nfs_symlink },
179 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
180 	{ &vop_write_desc,		(vnodeopv_entry_t) nfs_write },
181 
182 	{ &vop_nresolve_desc,		(vnodeopv_entry_t) nfs_nresolve },
183 	{ NULL, NULL }
184 };
185 
186 /*
187  * Special device vnode ops
188  */
189 struct vnodeopv_entry_desc nfsv2_specop_entries[] = {
190 	{ &vop_default_desc,		(vnodeopv_entry_t) spec_vnoperate },
191 	{ &vop_access_desc,		(vnodeopv_entry_t) nfsspec_access },
192 	{ &vop_close_desc,		(vnodeopv_entry_t) nfsspec_close },
193 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
194 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
195 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
196 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
197 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
198 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
199 	{ &vop_read_desc,		(vnodeopv_entry_t) nfsspec_read },
200 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
201 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
202 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
203 	{ &vop_write_desc,		(vnodeopv_entry_t) nfsspec_write },
204 	{ NULL, NULL }
205 };
206 
207 struct vnodeopv_entry_desc nfsv2_fifoop_entries[] = {
208 	{ &vop_default_desc,		(vnodeopv_entry_t) fifo_vnoperate },
209 	{ &vop_access_desc,		(vnodeopv_entry_t) nfsspec_access },
210 	{ &vop_close_desc,		(vnodeopv_entry_t) nfsfifo_close },
211 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
212 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
213 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
214 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
215 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
216 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
217 	{ &vop_read_desc,		(vnodeopv_entry_t) nfsfifo_read },
218 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
219 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
220 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
221 	{ &vop_write_desc,		(vnodeopv_entry_t) nfsfifo_write },
222 	{ NULL, NULL }
223 };
224 
225 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
226 				  struct componentname *cnp,
227 				  struct vattr *vap);
228 static int	nfs_removerpc (struct vnode *dvp, const char *name,
229 				   int namelen,
230 				   struct ucred *cred, struct thread *td);
231 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
232 				   int fnamelen, struct vnode *tdvp,
233 				   const char *tnameptr, int tnamelen,
234 				   struct ucred *cred, struct thread *td);
235 static int	nfs_renameit (struct vnode *sdvp,
236 				  struct componentname *scnp,
237 				  struct sillyrename *sp);
238 
239 /*
240  * Global variables
241  */
242 extern u_int32_t nfs_true, nfs_false;
243 extern u_int32_t nfs_xdrneg1;
244 extern struct nfsstats nfsstats;
245 extern nfstype nfsv3_type[9];
246 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
247 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
248 int nfs_numasync = 0;
249 #define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
250 
251 SYSCTL_DECL(_vfs_nfs);
252 
253 static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
254 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
255 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
256 
257 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
258 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
259 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE ACCESS cache timeout");
260 
261 static int	nfsv3_commit_on_close = 0;
262 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
263 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
264 #if 0
265 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
266 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
267 
268 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
269 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
270 #endif
271 
272 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
273 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
274 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
275 static int
276 nfs3_access_otw(struct vnode *vp, int wmode,
277 		struct thread *td, struct ucred *cred)
278 {
279 	const int v3 = 1;
280 	u_int32_t *tl;
281 	int error = 0, attrflag;
282 
283 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
284 	caddr_t bpos, dpos, cp2;
285 	int32_t t1, t2;
286 	caddr_t cp;
287 	u_int32_t rmode;
288 	struct nfsnode *np = VTONFS(vp);
289 
290 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
291 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
292 	nfsm_fhtom(vp, v3);
293 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
294 	*tl = txdr_unsigned(wmode);
295 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
296 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
297 	if (!error) {
298 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
299 		rmode = fxdr_unsigned(u_int32_t, *tl);
300 		np->n_mode = rmode;
301 		np->n_modeuid = cred->cr_uid;
302 		np->n_modestamp = mycpu->gd_time_seconds;
303 	}
304 	m_freem(mrep);
305 nfsmout:
306 	return error;
307 }
308 
309 /*
310  * nfs access vnode op.
311  * For nfs version 2, just return ok. File accesses may fail later.
312  * For nfs version 3, use the access rpc to check accessibility. If file modes
313  * are changed on the server, accesses might still fail later.
314  *
315  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
316  *	      struct thread *a_td)
317  */
318 static int
319 nfs_access(struct vop_access_args *ap)
320 {
321 	struct vnode *vp = ap->a_vp;
322 	int error = 0;
323 	u_int32_t mode, wmode;
324 	int v3 = NFS_ISV3(vp);
325 	struct nfsnode *np = VTONFS(vp);
326 
327 	/*
328 	 * Disallow write attempts on filesystems mounted read-only;
329 	 * unless the file is a socket, fifo, or a block or character
330 	 * device resident on the filesystem.
331 	 */
332 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
333 		switch (vp->v_type) {
334 		case VREG:
335 		case VDIR:
336 		case VLNK:
337 			return (EROFS);
338 		default:
339 			break;
340 		}
341 	}
342 	/*
343 	 * For nfs v3, check to see if we have done this recently, and if
344 	 * so return our cached result instead of making an ACCESS call.
345 	 * If not, do an access rpc, otherwise you are stuck emulating
346 	 * ufs_access() locally using the vattr. This may not be correct,
347 	 * since the server may apply other access criteria such as
348 	 * client uid-->server uid mapping that we do not know about.
349 	 */
350 	if (v3) {
351 		if (ap->a_mode & VREAD)
352 			mode = NFSV3ACCESS_READ;
353 		else
354 			mode = 0;
355 		if (vp->v_type != VDIR) {
356 			if (ap->a_mode & VWRITE)
357 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
358 			if (ap->a_mode & VEXEC)
359 				mode |= NFSV3ACCESS_EXECUTE;
360 		} else {
361 			if (ap->a_mode & VWRITE)
362 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
363 					 NFSV3ACCESS_DELETE);
364 			if (ap->a_mode & VEXEC)
365 				mode |= NFSV3ACCESS_LOOKUP;
366 		}
367 		/* XXX safety belt, only make blanket request if caching */
368 		if (nfsaccess_cache_timeout > 0) {
369 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
370 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
371 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
372 		} else {
373 			wmode = mode;
374 		}
375 
376 		/*
377 		 * Does our cached result allow us to give a definite yes to
378 		 * this request?
379 		 */
380 		if (np->n_modestamp &&
381 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
382 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
383 		   ((np->n_mode & mode) == mode)) {
384 			nfsstats.accesscache_hits++;
385 		} else {
386 			/*
387 			 * Either a no, or a don't know.  Go to the wire.
388 			 */
389 			nfsstats.accesscache_misses++;
390 		        error = nfs3_access_otw(vp, wmode, ap->a_td,ap->a_cred);
391 			if (!error) {
392 				if ((np->n_mode & mode) != mode) {
393 					error = EACCES;
394 				}
395 			}
396 		}
397 	} else {
398 		if ((error = nfsspec_access(ap)) != 0)
399 			return (error);
400 
401 		/*
402 		 * Attempt to prevent a mapped root from accessing a file
403 		 * which it shouldn't.  We try to read a byte from the file
404 		 * if the user is root and the file is not zero length.
405 		 * After calling nfsspec_access, we should have the correct
406 		 * file size cached.
407 		 */
408 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
409 		    && VTONFS(vp)->n_size > 0) {
410 			struct iovec aiov;
411 			struct uio auio;
412 			char buf[1];
413 
414 			aiov.iov_base = buf;
415 			aiov.iov_len = 1;
416 			auio.uio_iov = &aiov;
417 			auio.uio_iovcnt = 1;
418 			auio.uio_offset = 0;
419 			auio.uio_resid = 1;
420 			auio.uio_segflg = UIO_SYSSPACE;
421 			auio.uio_rw = UIO_READ;
422 			auio.uio_td = ap->a_td;
423 
424 			if (vp->v_type == VREG) {
425 				error = nfs_readrpc(vp, &auio);
426 			} else if (vp->v_type == VDIR) {
427 				char* bp;
428 				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
429 				aiov.iov_base = bp;
430 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
431 				error = nfs_readdirrpc(vp, &auio);
432 				free(bp, M_TEMP);
433 			} else if (vp->v_type == VLNK) {
434 				error = nfs_readlinkrpc(vp, &auio);
435 			} else {
436 				error = EACCES;
437 			}
438 		}
439 	}
440 	/*
441 	 * [re]record creds for reading and/or writing if access
442 	 * was granted.  Assume the NFS server will grant read access
443 	 * for execute requests.
444 	 */
445 	if (error == 0) {
446 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
447 			crhold(ap->a_cred);
448 			if (np->n_rucred)
449 				crfree(np->n_rucred);
450 			np->n_rucred = ap->a_cred;
451 		}
452 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
453 			crhold(ap->a_cred);
454 			if (np->n_wucred)
455 				crfree(np->n_wucred);
456 			np->n_wucred = ap->a_cred;
457 		}
458 	}
459 	return(error);
460 }
461 
462 /*
463  * nfs open vnode op
464  * Check to see if the type is ok
465  * and that deletion is not in progress.
466  * For paged in text files, you will need to flush the page cache
467  * if consistency is lost.
468  *
469  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
470  *	    struct thread *a_td)
471  */
472 /* ARGSUSED */
473 static int
474 nfs_open(struct vop_open_args *ap)
475 {
476 	struct vnode *vp = ap->a_vp;
477 	struct nfsnode *np = VTONFS(vp);
478 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
479 	struct vattr vattr;
480 	int error;
481 
482 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
483 #ifdef DIAGNOSTIC
484 		printf("open eacces vtyp=%d\n",vp->v_type);
485 #endif
486 		return (EOPNOTSUPP);
487 	}
488 
489 	/*
490 	 * Clear the attribute cache only if opening with write access.  It
491 	 * is unclear if we should do this at all here, but we certainly
492 	 * should not clear the cache unconditionally simply because a file
493 	 * is being opened.
494 	 */
495 	if (ap->a_mode & FWRITE)
496 		np->n_attrstamp = 0;
497 
498 	if (nmp->nm_flag & NFSMNT_NQNFS) {
499 		/*
500 		 * If NQNFS is active, get a valid lease
501 		 */
502 		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
503 		    do {
504 			error = nqnfs_getlease(vp, ND_READ, ap->a_td);
505 		    } while (error == NQNFS_EXPIRED);
506 		    if (error)
507 			return (error);
508 		    if (np->n_lrev != np->n_brev ||
509 			(np->n_flag & NQNFSNONCACHE)) {
510 			if ((error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1))
511 			    == EINTR) {
512 				return (error);
513 			}
514 			np->n_brev = np->n_lrev;
515 		    }
516 		}
517 	} else {
518 		/*
519 		 * For normal NFS, reconcile changes made locally verses
520 		 * changes made remotely.  Note that VOP_GETATTR only goes
521 		 * to the wire if the cached attribute has timed out or been
522 		 * cleared.
523 		 *
524 		 * If local modifications have been made clear the attribute
525 		 * cache to force an attribute and modified time check.  If
526 		 * GETATTR detects that the file has been changed by someone
527 		 * other then us it will set NRMODIFIED.
528 		 *
529 		 * If we are opening a directory and local changes have been
530 		 * made we have to invalidate the cache in order to ensure
531 		 * that we get the most up-to-date information from the
532 		 * server.  XXX
533 		 */
534 		if (np->n_flag & NLMODIFIED) {
535 			np->n_attrstamp = 0;
536 			if (vp->v_type == VDIR) {
537 				error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
538 				if (error == EINTR)
539 					return (error);
540 				nfs_invaldir(vp);
541 			}
542 		}
543 		error = VOP_GETATTR(vp, &vattr, ap->a_td);
544 		if (error)
545 			return (error);
546 		if (np->n_flag & NRMODIFIED) {
547 			if (vp->v_type == VDIR)
548 				nfs_invaldir(vp);
549 			error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
550 			if (error == EINTR)
551 				return (error);
552 			np->n_flag &= ~NRMODIFIED;
553 		}
554 	}
555 
556 	return (0);
557 }
558 
559 /*
560  * nfs close vnode op
561  * What an NFS client should do upon close after writing is a debatable issue.
562  * Most NFS clients push delayed writes to the server upon close, basically for
563  * two reasons:
564  * 1 - So that any write errors may be reported back to the client process
565  *     doing the close system call. By far the two most likely errors are
566  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
567  * 2 - To put a worst case upper bound on cache inconsistency between
568  *     multiple clients for the file.
569  * There is also a consistency problem for Version 2 of the protocol w.r.t.
570  * not being able to tell if other clients are writing a file concurrently,
571  * since there is no way of knowing if the changed modify time in the reply
572  * is only due to the write for this client.
573  * (NFS Version 3 provides weak cache consistency data in the reply that
574  *  should be sufficient to detect and handle this case.)
575  *
576  * The current code does the following:
577  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
578  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
579  *                     or commit them (this satisfies 1 and 2 except for the
580  *                     case where the server crashes after this close but
581  *                     before the commit RPC, which is felt to be "good
582  *                     enough". Changing the last argument to nfs_flush() to
583  *                     a 1 would force a commit operation, if it is felt a
584  *                     commit is necessary now.
585  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
586  *                     1 should be dealt with via an fsync() system call for
587  *                     cases where write errors are important.
588  *
589  * nfs_close(struct vnodeop_desc *a_desc, struct vnode *a_vp, int a_fflag,
590  *	     struct ucred *a_cred, struct thread *a_td)
591  */
592 /* ARGSUSED */
593 static int
594 nfs_close(struct vop_close_args *ap)
595 {
596 	struct vnode *vp = ap->a_vp;
597 	struct nfsnode *np = VTONFS(vp);
598 	int error = 0;
599 
600 	if (vp->v_type == VREG) {
601 	    if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQNFS) == 0 &&
602 		(np->n_flag & NLMODIFIED)) {
603 		if (NFS_ISV3(vp)) {
604 		    /*
605 		     * Under NFSv3 we have dirty buffers to dispose of.  We
606 		     * must flush them to the NFS server.  We have the option
607 		     * of waiting all the way through the commit rpc or just
608 		     * waiting for the initial write.  The default is to only
609 		     * wait through the initial write so the data is in the
610 		     * server's cache, which is roughly similar to the state
611 		     * a standard disk subsystem leaves the file in on close().
612 		     *
613 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
614 		     * potential races with other processes, and certainly
615 		     * cannot clear it if we don't commit.
616 		     */
617 		    int cm = nfsv3_commit_on_close ? 1 : 0;
618 		    error = nfs_flush(vp, MNT_WAIT, ap->a_td, cm);
619 		    /* np->n_flag &= ~NLMODIFIED; */
620 		} else {
621 		    error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
622 		}
623 		np->n_attrstamp = 0;
624 	    }
625 	    if (np->n_flag & NWRITEERR) {
626 		np->n_flag &= ~NWRITEERR;
627 		error = np->n_error;
628 	    }
629 	}
630 	return (error);
631 }
632 
633 /*
634  * nfs getattr call from vfs.
635  *
636  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
637  *		struct thread *a_td)
638  */
639 static int
640 nfs_getattr(struct vop_getattr_args *ap)
641 {
642 	struct vnode *vp = ap->a_vp;
643 	struct nfsnode *np = VTONFS(vp);
644 	caddr_t cp;
645 	u_int32_t *tl;
646 	int32_t t1, t2;
647 	caddr_t bpos, dpos;
648 	int error = 0;
649 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
650 	int v3 = NFS_ISV3(vp);
651 
652 	/*
653 	 * Update local times for special files.
654 	 */
655 	if (np->n_flag & (NACC | NUPD))
656 		np->n_flag |= NCHG;
657 	/*
658 	 * First look in the cache.
659 	 */
660 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
661 		return (0);
662 
663 	if (v3 && nfsaccess_cache_timeout > 0) {
664 		nfsstats.accesscache_misses++;
665 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, ap->a_td, nfs_vpcred(vp, ND_CHECK));
666 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
667 			return (0);
668 	}
669 
670 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
671 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
672 	nfsm_fhtom(vp, v3);
673 	nfsm_request(vp, NFSPROC_GETATTR, ap->a_td, nfs_vpcred(vp, ND_CHECK));
674 	if (!error) {
675 		nfsm_loadattr(vp, ap->a_vap);
676 	}
677 	m_freem(mrep);
678 nfsmout:
679 	return (error);
680 }
681 
682 /*
683  * nfs setattr call.
684  *
685  * nfs_setattr(struct vnodeop_desc *a_desc, struct vnode *a_vp,
686  *		struct vattr *a_vap, struct ucred *a_cred,
687  *		struct thread *a_td)
688  */
689 static int
690 nfs_setattr(struct vop_setattr_args *ap)
691 {
692 	struct vnode *vp = ap->a_vp;
693 	struct nfsnode *np = VTONFS(vp);
694 	struct vattr *vap = ap->a_vap;
695 	int error = 0;
696 	u_quad_t tsize;
697 
698 #ifndef nolint
699 	tsize = (u_quad_t)0;
700 #endif
701 
702 	/*
703 	 * Setting of flags is not supported.
704 	 */
705 	if (vap->va_flags != VNOVAL)
706 		return (EOPNOTSUPP);
707 
708 	/*
709 	 * Disallow write attempts if the filesystem is mounted read-only.
710 	 */
711   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
712 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
713 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
714 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
715 		return (EROFS);
716 	if (vap->va_size != VNOVAL) {
717  		switch (vp->v_type) {
718  		case VDIR:
719  			return (EISDIR);
720  		case VCHR:
721  		case VBLK:
722  		case VSOCK:
723  		case VFIFO:
724 			if (vap->va_mtime.tv_sec == VNOVAL &&
725 			    vap->va_atime.tv_sec == VNOVAL &&
726 			    vap->va_mode == (mode_t)VNOVAL &&
727 			    vap->va_uid == (uid_t)VNOVAL &&
728 			    vap->va_gid == (gid_t)VNOVAL)
729 				return (0);
730  			vap->va_size = VNOVAL;
731  			break;
732  		default:
733 			/*
734 			 * Disallow write attempts if the filesystem is
735 			 * mounted read-only.
736 			 */
737 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
738 				return (EROFS);
739 
740 			/*
741 			 * This is nasty.  The RPCs we send to flush pending
742 			 * data often return attribute information which is
743 			 * cached via a callback to nfs_loadattrcache(), which
744 			 * has the effect of changing our notion of the file
745 			 * size.  Due to flushed appends and other operations
746 			 * the file size can be set to virtually anything,
747 			 * including values that do not match either the old
748 			 * or intended file size.
749 			 *
750 			 * When this condition is detected we must loop to
751 			 * try the operation again.  Hopefully no more
752 			 * flushing is required on the loop so it works the
753 			 * second time around.  THIS CASE ALMOST ALWAYS
754 			 * HAPPENS!
755 			 */
756 			tsize = np->n_size;
757 again:
758 			error = nfs_meta_setsize(vp, ap->a_td, vap->va_size);
759 
760  			if (np->n_flag & NLMODIFIED) {
761  			    if (vap->va_size == 0)
762  				error = nfs_vinvalbuf(vp, 0, ap->a_td, 1);
763  			    else
764  				error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
765  			}
766 			/*
767 			 * note: this loop case almost always happens at
768 			 * least once per truncation.
769 			 */
770 			if (error == 0 && np->n_size != vap->va_size)
771 				goto again;
772 			np->n_vattr.va_size = vap->va_size;
773 			break;
774 		}
775   	} else if ((vap->va_mtime.tv_sec != VNOVAL ||
776 		vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NLMODIFIED) &&
777 		vp->v_type == VREG &&
778   		(error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1)) == EINTR
779 	) {
780 		return (error);
781 	}
782 	error = nfs_setattrrpc(vp, vap, ap->a_cred, ap->a_td);
783 
784 	/*
785 	 * Sanity check if a truncation was issued.  This should only occur
786 	 * if multiple processes are racing on the same file.
787 	 */
788 	if (error == 0 && vap->va_size != VNOVAL &&
789 	    np->n_size != vap->va_size) {
790 		printf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
791 		goto again;
792 	}
793 	if (error && vap->va_size != VNOVAL) {
794 		np->n_size = np->n_vattr.va_size = tsize;
795 		vnode_pager_setsize(vp, np->n_size);
796 	}
797 	return (error);
798 }
799 
800 /*
801  * Do an nfs setattr rpc.
802  */
803 static int
804 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
805 	       struct ucred *cred, struct thread *td)
806 {
807 	struct nfsv2_sattr *sp;
808 	struct nfsnode *np = VTONFS(vp);
809 	caddr_t cp;
810 	int32_t t1, t2;
811 	caddr_t bpos, dpos, cp2;
812 	u_int32_t *tl;
813 	int error = 0, wccflag = NFSV3_WCCRATTR;
814 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
815 	int v3 = NFS_ISV3(vp);
816 
817 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
818 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
819 	nfsm_fhtom(vp, v3);
820 	if (v3) {
821 		nfsm_v3attrbuild(vap, TRUE);
822 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
823 		*tl = nfs_false;
824 	} else {
825 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
826 		if (vap->va_mode == (mode_t)VNOVAL)
827 			sp->sa_mode = nfs_xdrneg1;
828 		else
829 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
830 		if (vap->va_uid == (uid_t)VNOVAL)
831 			sp->sa_uid = nfs_xdrneg1;
832 		else
833 			sp->sa_uid = txdr_unsigned(vap->va_uid);
834 		if (vap->va_gid == (gid_t)VNOVAL)
835 			sp->sa_gid = nfs_xdrneg1;
836 		else
837 			sp->sa_gid = txdr_unsigned(vap->va_gid);
838 		sp->sa_size = txdr_unsigned(vap->va_size);
839 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
840 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
841 	}
842 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
843 	if (v3) {
844 		np->n_modestamp = 0;
845 		nfsm_wcc_data(vp, wccflag);
846 	} else
847 		nfsm_loadattr(vp, (struct vattr *)0);
848 	m_freem(mrep);
849 nfsmout:
850 	return (error);
851 }
852 
853 /*
854  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
855  * nfs_lookup() until all remaining new api calls are implemented.
856  *
857  * Resolve a namecache entry.  This function is passed a locked ncp and
858  * must call cache_setvp() on it as appropriate to resolve the entry.
859  */
860 static int
861 nfs_nresolve(struct vop_nresolve_args *ap)
862 {
863 	struct thread *td = curthread;
864 	struct namecache *ncp;
865 	struct ucred *cred;
866 	struct nfsnode *np;
867 	struct vnode *dvp;
868 	struct vnode *nvp;
869 	nfsfh_t *fhp;
870 	int attrflag;
871 	int fhsize;
872 	int error;
873 	int len;
874 	int v3;
875 	/******NFSM MACROS********/
876 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
877 	caddr_t bpos, dpos, cp, cp2;
878 	u_int32_t *tl;
879 	int32_t t1, t2;
880 
881 	cred = ap->a_cred;
882 	ncp = ap->a_ncp;
883 
884 	KKASSERT(ncp->nc_parent && ncp->nc_parent->nc_vp);
885 	dvp = ncp->nc_parent->nc_vp;
886 	if ((error = vget(dvp, LK_SHARED, td)) != 0)
887 		return (error);
888 
889 	nvp = NULL;
890 	v3 = NFS_ISV3(dvp);
891 	nfsstats.lookupcache_misses++;
892 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
893 	len = ncp->nc_nlen;
894 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
895 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
896 	nfsm_fhtom(dvp, v3);
897 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
898 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
899 	if (error) {
900 		/*
901 		 * Cache negatve lookups to reduce NFS traffic, but use
902 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
903 		 * XXX we should add a namecache flag for no-caching
904 		 * to uncache the negative hit as soon as possible, but
905 		 * we cannot simply destroy the entry because it is used
906 		 * as a placeholder by the caller.
907 		 */
908 		if (error == ENOENT) {
909 			int nticks;
910 
911 			if (nfsneg_cache_timeout)
912 				nticks = nfsneg_cache_timeout * hz;
913 			else
914 				nticks = 1;
915 			cache_setvp(ncp, NULL);
916 			cache_settimeout(ncp, nticks);
917 		}
918 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
919 		m_freem(mrep);
920 		goto nfsmout;
921 	}
922 
923 	/*
924 	 * Success, get the file handle, do various checks, and load
925 	 * post-operation data from the reply packet.  Theoretically
926 	 * we should never be looking up "." so, theoretically, we
927 	 * should never get the same file handle as our directory.  But
928 	 * we check anyway. XXX
929 	 *
930 	 * Note that no timeout is set for the positive cache hit.  We
931 	 * assume, theoretically, that ESTALE returns will be dealt with
932 	 * properly to handle NFS races and in anycase we cannot depend
933 	 * on a timeout to deal with NFS open/create/excl issues so instead
934 	 * of a bad hack here the rest of the NFS client code needs to do
935 	 * the right thing.
936 	 */
937 	nfsm_getfh(fhp, fhsize, v3);
938 
939 	np = VTONFS(dvp);
940 	if (NFS_CMPFH(np, fhp, fhsize)) {
941 		vref(dvp);
942 		nvp = dvp;
943 	} else {
944 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
945 		if (error) {
946 			m_freem(mrep);
947 			vput(dvp);
948 			return (error);
949 		}
950 		nvp = NFSTOV(np);
951 	}
952 	if (v3) {
953 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
954 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
955 	} else {
956 		nfsm_loadattr(nvp, NULL);
957 	}
958 	cache_setvp(ncp, nvp);
959 	m_freem(mrep);
960 nfsmout:
961 	vput(dvp);
962 	if (nvp) {
963 		if (nvp == dvp)
964 			vrele(nvp);
965 		else
966 			vput(nvp);
967 	}
968 	return (error);
969 }
970 
971 /*
972  * 'cached' nfs directory lookup
973  *
974  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
975  *
976  * nfs_lookup(struct vnodeop_desc *a_desc, struct vnode *a_dvp,
977  *	      struct vnode **a_vpp, struct componentname *a_cnp)
978  */
979 static int
980 nfs_lookup(struct vop_lookup_args *ap)
981 {
982 	struct componentname *cnp = ap->a_cnp;
983 	struct vnode *dvp = ap->a_dvp;
984 	struct vnode **vpp = ap->a_vpp;
985 	int flags = cnp->cn_flags;
986 	struct vnode *newvp;
987 	u_int32_t *tl;
988 	caddr_t cp;
989 	int32_t t1, t2;
990 	struct nfsmount *nmp;
991 	caddr_t bpos, dpos, cp2;
992 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
993 	long len;
994 	nfsfh_t *fhp;
995 	struct nfsnode *np;
996 	int lockparent, wantparent, error = 0, attrflag, fhsize;
997 	int v3 = NFS_ISV3(dvp);
998 	struct thread *td = cnp->cn_td;
999 
1000 	/*
1001 	 * Read-only mount check and directory check.
1002 	 */
1003 	*vpp = NULLVP;
1004 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1005 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1006 		return (EROFS);
1007 
1008 	if (dvp->v_type != VDIR)
1009 		return (ENOTDIR);
1010 
1011 	/*
1012 	 * Look it up in the cache.  Note that ENOENT is only returned if we
1013 	 * previously entered a negative hit (see later on).  The additional
1014 	 * nfsneg_cache_timeout check causes previously cached results to
1015 	 * be instantly ignored if the negative caching is turned off.
1016 	 */
1017 	lockparent = flags & CNP_LOCKPARENT;
1018 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1019 	nmp = VFSTONFS(dvp->v_mount);
1020 	np = VTONFS(dvp);
1021 
1022 	/*
1023 	 * Go to the wire.
1024 	 */
1025 	error = 0;
1026 	newvp = NULLVP;
1027 	nfsstats.lookupcache_misses++;
1028 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1029 	len = cnp->cn_namelen;
1030 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
1031 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1032 	nfsm_fhtom(dvp, v3);
1033 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1034 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
1035 	if (error) {
1036 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1037 		m_freem(mrep);
1038 		goto nfsmout;
1039 	}
1040 	nfsm_getfh(fhp, fhsize, v3);
1041 
1042 	/*
1043 	 * Handle RENAME case...
1044 	 */
1045 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1046 		if (NFS_CMPFH(np, fhp, fhsize)) {
1047 			m_freem(mrep);
1048 			return (EISDIR);
1049 		}
1050 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1051 		if (error) {
1052 			m_freem(mrep);
1053 			return (error);
1054 		}
1055 		newvp = NFSTOV(np);
1056 		if (v3) {
1057 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1058 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1059 		} else
1060 			nfsm_loadattr(newvp, (struct vattr *)0);
1061 		*vpp = newvp;
1062 		m_freem(mrep);
1063 		if (!lockparent) {
1064 			VOP_UNLOCK(dvp, 0, td);
1065 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1066 		}
1067 		return (0);
1068 	}
1069 
1070 	if (flags & CNP_ISDOTDOT) {
1071 		VOP_UNLOCK(dvp, 0, td);
1072 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1073 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1074 		if (error) {
1075 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, td);
1076 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1077 			return (error); /* NOTE: return error from nget */
1078 		}
1079 		newvp = NFSTOV(np);
1080 		if (lockparent) {
1081 			error = vn_lock(dvp, LK_EXCLUSIVE, td);
1082 			if (error) {
1083 				vput(newvp);
1084 				return (error);
1085 			}
1086 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1087 		}
1088 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1089 		vref(dvp);
1090 		newvp = dvp;
1091 	} else {
1092 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1093 		if (error) {
1094 			m_freem(mrep);
1095 			return (error);
1096 		}
1097 		if (!lockparent) {
1098 			VOP_UNLOCK(dvp, 0, td);
1099 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1100 		}
1101 		newvp = NFSTOV(np);
1102 	}
1103 	if (v3) {
1104 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1105 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1106 	} else
1107 		nfsm_loadattr(newvp, (struct vattr *)0);
1108 #if 0
1109 	/* XXX MOVE TO nfs_nremove() */
1110 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1111 	    cnp->cn_nameiop != NAMEI_DELETE) {
1112 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1113 	}
1114 #endif
1115 	*vpp = newvp;
1116 	m_freem(mrep);
1117 nfsmout:
1118 	if (error) {
1119 		if (newvp != NULLVP) {
1120 			vrele(newvp);
1121 			*vpp = NULLVP;
1122 		}
1123 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1124 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1125 		    error == ENOENT) {
1126 			if (!lockparent) {
1127 				VOP_UNLOCK(dvp, 0, td);
1128 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1129 			}
1130 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1131 				error = EROFS;
1132 			else
1133 				error = EJUSTRETURN;
1134 		}
1135 	}
1136 	return (error);
1137 }
1138 
1139 /*
1140  * nfs read call.
1141  * Just call nfs_bioread() to do the work.
1142  *
1143  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1144  *	    struct ucred *a_cred)
1145  */
1146 static int
1147 nfs_read(struct vop_read_args *ap)
1148 {
1149 	struct vnode *vp = ap->a_vp;
1150 
1151 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1152 	switch (vp->v_type) {
1153 	case VREG:
1154 		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1155 	case VDIR:
1156 		return (EISDIR);
1157 	default:
1158 		return EOPNOTSUPP;
1159 	}
1160 }
1161 
1162 /*
1163  * nfs readlink call
1164  *
1165  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1166  */
1167 static int
1168 nfs_readlink(struct vop_readlink_args *ap)
1169 {
1170 	struct vnode *vp = ap->a_vp;
1171 
1172 	if (vp->v_type != VLNK)
1173 		return (EINVAL);
1174 	return (nfs_bioread(vp, ap->a_uio, 0));
1175 }
1176 
1177 /*
1178  * Do a readlink rpc.
1179  * Called by nfs_doio() from below the buffer cache.
1180  */
1181 int
1182 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1183 {
1184 	u_int32_t *tl;
1185 	caddr_t cp;
1186 	int32_t t1, t2;
1187 	caddr_t bpos, dpos, cp2;
1188 	int error = 0, len, attrflag;
1189 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1190 	int v3 = NFS_ISV3(vp);
1191 
1192 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1193 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1194 	nfsm_fhtom(vp, v3);
1195 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1196 	if (v3)
1197 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1198 	if (!error) {
1199 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1200 		if (len == NFS_MAXPATHLEN) {
1201 			struct nfsnode *np = VTONFS(vp);
1202 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1203 				len = np->n_size;
1204 		}
1205 		nfsm_mtouio(uiop, len);
1206 	}
1207 	m_freem(mrep);
1208 nfsmout:
1209 	return (error);
1210 }
1211 
1212 /*
1213  * nfs read rpc call
1214  * Ditto above
1215  */
1216 int
1217 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1218 {
1219 	u_int32_t *tl;
1220 	caddr_t cp;
1221 	int32_t t1, t2;
1222 	caddr_t bpos, dpos, cp2;
1223 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1224 	struct nfsmount *nmp;
1225 	int error = 0, len, retlen, tsiz, eof, attrflag;
1226 	int v3 = NFS_ISV3(vp);
1227 
1228 #ifndef nolint
1229 	eof = 0;
1230 #endif
1231 	nmp = VFSTONFS(vp->v_mount);
1232 	tsiz = uiop->uio_resid;
1233 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1234 		return (EFBIG);
1235 	while (tsiz > 0) {
1236 		nfsstats.rpccnt[NFSPROC_READ]++;
1237 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1238 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1239 		nfsm_fhtom(vp, v3);
1240 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1241 		if (v3) {
1242 			txdr_hyper(uiop->uio_offset, tl);
1243 			*(tl + 2) = txdr_unsigned(len);
1244 		} else {
1245 			*tl++ = txdr_unsigned(uiop->uio_offset);
1246 			*tl++ = txdr_unsigned(len);
1247 			*tl = 0;
1248 		}
1249 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1250 		if (v3) {
1251 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1252 			if (error) {
1253 				m_freem(mrep);
1254 				goto nfsmout;
1255 			}
1256 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1257 			eof = fxdr_unsigned(int, *(tl + 1));
1258 		} else
1259 			nfsm_loadattr(vp, (struct vattr *)0);
1260 		nfsm_strsiz(retlen, nmp->nm_rsize);
1261 		nfsm_mtouio(uiop, retlen);
1262 		m_freem(mrep);
1263 		tsiz -= retlen;
1264 		if (v3) {
1265 			if (eof || retlen == 0) {
1266 				tsiz = 0;
1267 			}
1268 		} else if (retlen < len) {
1269 			tsiz = 0;
1270 		}
1271 	}
1272 nfsmout:
1273 	return (error);
1274 }
1275 
1276 /*
1277  * nfs write call
1278  */
1279 int
1280 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1281 {
1282 	u_int32_t *tl;
1283 	caddr_t cp;
1284 	int32_t t1, t2, backup;
1285 	caddr_t bpos, dpos, cp2;
1286 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1287 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1288 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1289 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1290 
1291 #ifndef DIAGNOSTIC
1292 	if (uiop->uio_iovcnt != 1)
1293 		panic("nfs: writerpc iovcnt > 1");
1294 #endif
1295 	*must_commit = 0;
1296 	tsiz = uiop->uio_resid;
1297 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1298 		return (EFBIG);
1299 	while (tsiz > 0) {
1300 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1301 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1302 		nfsm_reqhead(vp, NFSPROC_WRITE,
1303 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1304 		nfsm_fhtom(vp, v3);
1305 		if (v3) {
1306 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1307 			txdr_hyper(uiop->uio_offset, tl);
1308 			tl += 2;
1309 			*tl++ = txdr_unsigned(len);
1310 			*tl++ = txdr_unsigned(*iomode);
1311 			*tl = txdr_unsigned(len);
1312 		} else {
1313 			u_int32_t x;
1314 
1315 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1316 			/* Set both "begin" and "current" to non-garbage. */
1317 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1318 			*tl++ = x;	/* "begin offset" */
1319 			*tl++ = x;	/* "current offset" */
1320 			x = txdr_unsigned(len);
1321 			*tl++ = x;	/* total to this offset */
1322 			*tl = x;	/* size of this write */
1323 		}
1324 		nfsm_uiotom(uiop, len);
1325 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1326 		if (v3) {
1327 			/*
1328 			 * The write RPC returns a before and after mtime.  The
1329 			 * nfsm_wcc_data() macro checks the before n_mtime
1330 			 * against the before time and stores the after time
1331 			 * in the nfsnode's cached vattr and n_mtime field.
1332 			 * The NRMODIFIED bit will be set if the before
1333 			 * time did not match the original mtime.
1334 			 */
1335 			wccflag = NFSV3_WCCCHK;
1336 			nfsm_wcc_data(vp, wccflag);
1337 			if (!error) {
1338 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1339 					+ NFSX_V3WRITEVERF);
1340 				rlen = fxdr_unsigned(int, *tl++);
1341 				if (rlen == 0) {
1342 					error = NFSERR_IO;
1343 					m_freem(mrep);
1344 					break;
1345 				} else if (rlen < len) {
1346 					backup = len - rlen;
1347 					uiop->uio_iov->iov_base -= backup;
1348 					uiop->uio_iov->iov_len += backup;
1349 					uiop->uio_offset -= backup;
1350 					uiop->uio_resid += backup;
1351 					len = rlen;
1352 				}
1353 				commit = fxdr_unsigned(int, *tl++);
1354 
1355 				/*
1356 				 * Return the lowest committment level
1357 				 * obtained by any of the RPCs.
1358 				 */
1359 				if (committed == NFSV3WRITE_FILESYNC)
1360 					committed = commit;
1361 				else if (committed == NFSV3WRITE_DATASYNC &&
1362 					commit == NFSV3WRITE_UNSTABLE)
1363 					committed = commit;
1364 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1365 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1366 					NFSX_V3WRITEVERF);
1367 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1368 				} else if (bcmp((caddr_t)tl,
1369 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1370 				    *must_commit = 1;
1371 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1372 					NFSX_V3WRITEVERF);
1373 				}
1374 			}
1375 		} else {
1376 			nfsm_loadattr(vp, (struct vattr *)0);
1377 		}
1378 		m_freem(mrep);
1379 		if (error)
1380 			break;
1381 		tsiz -= len;
1382 	}
1383 nfsmout:
1384 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1385 		committed = NFSV3WRITE_FILESYNC;
1386 	*iomode = committed;
1387 	if (error)
1388 		uiop->uio_resid = tsiz;
1389 	return (error);
1390 }
1391 
1392 /*
1393  * nfs mknod rpc
1394  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1395  * mode set to specify the file type and the size field for rdev.
1396  */
1397 static int
1398 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1399 	     struct vattr *vap)
1400 {
1401 	struct nfsv2_sattr *sp;
1402 	u_int32_t *tl;
1403 	caddr_t cp;
1404 	int32_t t1, t2;
1405 	struct vnode *newvp = (struct vnode *)0;
1406 	struct nfsnode *np = (struct nfsnode *)0;
1407 	struct vattr vattr;
1408 	char *cp2;
1409 	caddr_t bpos, dpos;
1410 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1411 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1412 	u_int32_t rdev;
1413 	int v3 = NFS_ISV3(dvp);
1414 
1415 	if (vap->va_type == VCHR || vap->va_type == VBLK)
1416 		rdev = txdr_unsigned(vap->va_rdev);
1417 	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1418 		rdev = nfs_xdrneg1;
1419 	else {
1420 		return (EOPNOTSUPP);
1421 	}
1422 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1423 		return (error);
1424 	}
1425 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1426 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1427 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1428 	nfsm_fhtom(dvp, v3);
1429 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1430 	if (v3) {
1431 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1432 		*tl++ = vtonfsv3_type(vap->va_type);
1433 		nfsm_v3attrbuild(vap, FALSE);
1434 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1435 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1436 			*tl++ = txdr_unsigned(umajor(vap->va_rdev));
1437 			*tl = txdr_unsigned(uminor(vap->va_rdev));
1438 		}
1439 	} else {
1440 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1441 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1442 		sp->sa_uid = nfs_xdrneg1;
1443 		sp->sa_gid = nfs_xdrneg1;
1444 		sp->sa_size = rdev;
1445 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1446 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1447 	}
1448 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1449 	if (!error) {
1450 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1451 		if (!gotvp) {
1452 			if (newvp) {
1453 				vput(newvp);
1454 				newvp = (struct vnode *)0;
1455 			}
1456 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1457 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1458 			if (!error)
1459 				newvp = NFSTOV(np);
1460 		}
1461 	}
1462 	if (v3)
1463 		nfsm_wcc_data(dvp, wccflag);
1464 	m_freem(mrep);
1465 nfsmout:
1466 	if (error) {
1467 		if (newvp)
1468 			vput(newvp);
1469 	} else {
1470 		*vpp = newvp;
1471 	}
1472 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1473 	if (!wccflag)
1474 		VTONFS(dvp)->n_attrstamp = 0;
1475 	return (error);
1476 }
1477 
1478 /*
1479  * nfs mknod vop
1480  * just call nfs_mknodrpc() to do the work.
1481  *
1482  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1483  *	     struct componentname *a_cnp, struct vattr *a_vap)
1484  */
1485 /* ARGSUSED */
1486 static int
1487 nfs_mknod(struct vop_mknod_args *ap)
1488 {
1489 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1490 }
1491 
1492 static u_long create_verf;
1493 /*
1494  * nfs file create call
1495  *
1496  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1497  *	      struct componentname *a_cnp, struct vattr *a_vap)
1498  */
1499 static int
1500 nfs_create(struct vop_create_args *ap)
1501 {
1502 	struct vnode *dvp = ap->a_dvp;
1503 	struct vattr *vap = ap->a_vap;
1504 	struct componentname *cnp = ap->a_cnp;
1505 	struct nfsv2_sattr *sp;
1506 	u_int32_t *tl;
1507 	caddr_t cp;
1508 	int32_t t1, t2;
1509 	struct nfsnode *np = (struct nfsnode *)0;
1510 	struct vnode *newvp = (struct vnode *)0;
1511 	caddr_t bpos, dpos, cp2;
1512 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1513 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1514 	struct vattr vattr;
1515 	int v3 = NFS_ISV3(dvp);
1516 
1517 	/*
1518 	 * Oops, not for me..
1519 	 */
1520 	if (vap->va_type == VSOCK)
1521 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1522 
1523 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1524 		return (error);
1525 	}
1526 	if (vap->va_vaflags & VA_EXCLUSIVE)
1527 		fmode |= O_EXCL;
1528 again:
1529 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1530 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1531 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1532 	nfsm_fhtom(dvp, v3);
1533 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1534 	if (v3) {
1535 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1536 		if (fmode & O_EXCL) {
1537 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1538 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1539 #ifdef INET
1540 			if (!TAILQ_EMPTY(&in_ifaddrhead))
1541 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr.s_addr;
1542 			else
1543 #endif
1544 				*tl++ = create_verf;
1545 			*tl = ++create_verf;
1546 		} else {
1547 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1548 			nfsm_v3attrbuild(vap, FALSE);
1549 		}
1550 	} else {
1551 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1552 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1553 		sp->sa_uid = nfs_xdrneg1;
1554 		sp->sa_gid = nfs_xdrneg1;
1555 		sp->sa_size = 0;
1556 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1557 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1558 	}
1559 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1560 	if (!error) {
1561 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1562 		if (!gotvp) {
1563 			if (newvp) {
1564 				vput(newvp);
1565 				newvp = (struct vnode *)0;
1566 			}
1567 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1568 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1569 			if (!error)
1570 				newvp = NFSTOV(np);
1571 		}
1572 	}
1573 	if (v3)
1574 		nfsm_wcc_data(dvp, wccflag);
1575 	m_freem(mrep);
1576 nfsmout:
1577 	if (error) {
1578 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1579 			fmode &= ~O_EXCL;
1580 			goto again;
1581 		}
1582 		if (newvp)
1583 			vput(newvp);
1584 	} else if (v3 && (fmode & O_EXCL)) {
1585 		/*
1586 		 * We are normally called with only a partially initialized
1587 		 * VAP.  Since the NFSv3 spec says that server may use the
1588 		 * file attributes to store the verifier, the spec requires
1589 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1590 		 * in atime, but we can't really assume that all servers will
1591 		 * so we ensure that our SETATTR sets both atime and mtime.
1592 		 */
1593 		if (vap->va_mtime.tv_sec == VNOVAL)
1594 			vfs_timestamp(&vap->va_mtime);
1595 		if (vap->va_atime.tv_sec == VNOVAL)
1596 			vap->va_atime = vap->va_mtime;
1597 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1598 	}
1599 	if (!error) {
1600 		/*
1601 		 * The new np may have enough info for access
1602 		 * checks, make sure rucred and wucred are
1603 		 * initialized for read and write rpc's.
1604 		 */
1605 		np = VTONFS(newvp);
1606 		if (np->n_rucred == NULL)
1607 			np->n_rucred = crhold(cnp->cn_cred);
1608 		if (np->n_wucred == NULL)
1609 			np->n_wucred = crhold(cnp->cn_cred);
1610 		*ap->a_vpp = newvp;
1611 	}
1612 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1613 	if (!wccflag)
1614 		VTONFS(dvp)->n_attrstamp = 0;
1615 	return (error);
1616 }
1617 
1618 /*
1619  * nfs file remove call
1620  * To try and make nfs semantics closer to ufs semantics, a file that has
1621  * other processes using the vnode is renamed instead of removed and then
1622  * removed later on the last close.
1623  * - If v_usecount > 1
1624  *	  If a rename is not already in the works
1625  *	     call nfs_sillyrename() to set it up
1626  *     else
1627  *	  do the remove rpc
1628  *
1629  * nfs_remove(struct vnodeop_desc *a_desc, struct vnode *a_dvp,
1630  *	      struct vnode *a_vp, struct componentname *a_cnp)
1631  */
1632 static int
1633 nfs_remove(struct vop_remove_args *ap)
1634 {
1635 	struct vnode *vp = ap->a_vp;
1636 	struct vnode *dvp = ap->a_dvp;
1637 	struct componentname *cnp = ap->a_cnp;
1638 	struct nfsnode *np = VTONFS(vp);
1639 	int error = 0;
1640 	struct vattr vattr;
1641 
1642 #ifndef DIAGNOSTIC
1643 	if (vp->v_usecount < 1)
1644 		panic("nfs_remove: bad v_usecount");
1645 #endif
1646 	if (vp->v_type == VDIR)
1647 		error = EPERM;
1648 	else if (vp->v_usecount == 1 || (np->n_sillyrename &&
1649 	    VOP_GETATTR(vp, &vattr, cnp->cn_td) == 0 &&
1650 	    vattr.va_nlink > 1)) {
1651 		/*
1652 		 * throw away biocache buffers, mainly to avoid
1653 		 * unnecessary delayed writes later.
1654 		 */
1655 		error = nfs_vinvalbuf(vp, 0, cnp->cn_td, 1);
1656 		/* Do the rpc */
1657 		if (error != EINTR)
1658 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1659 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1660 		/*
1661 		 * Kludge City: If the first reply to the remove rpc is lost..
1662 		 *   the reply to the retransmitted request will be ENOENT
1663 		 *   since the file was in fact removed
1664 		 *   Therefore, we cheat and return success.
1665 		 */
1666 		if (error == ENOENT)
1667 			error = 0;
1668 	} else if (!np->n_sillyrename) {
1669 		error = nfs_sillyrename(dvp, vp, cnp);
1670 	}
1671 	np->n_attrstamp = 0;
1672 	return (error);
1673 }
1674 
1675 /*
1676  * nfs file remove rpc called from nfs_inactive
1677  */
1678 int
1679 nfs_removeit(struct sillyrename *sp)
1680 {
1681 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1682 		sp->s_cred, NULL));
1683 }
1684 
1685 /*
1686  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1687  */
1688 static int
1689 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1690 	      struct ucred *cred, struct thread *td)
1691 {
1692 	u_int32_t *tl;
1693 	caddr_t cp;
1694 	int32_t t1, t2;
1695 	caddr_t bpos, dpos, cp2;
1696 	int error = 0, wccflag = NFSV3_WCCRATTR;
1697 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1698 	int v3 = NFS_ISV3(dvp);
1699 
1700 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1701 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1702 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1703 	nfsm_fhtom(dvp, v3);
1704 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1705 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1706 	if (v3)
1707 		nfsm_wcc_data(dvp, wccflag);
1708 	m_freem(mrep);
1709 nfsmout:
1710 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1711 	if (!wccflag)
1712 		VTONFS(dvp)->n_attrstamp = 0;
1713 	return (error);
1714 }
1715 
1716 /*
1717  * nfs file rename call
1718  *
1719  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1720  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1721  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1722  */
1723 static int
1724 nfs_rename(struct vop_rename_args *ap)
1725 {
1726 	struct vnode *fvp = ap->a_fvp;
1727 	struct vnode *tvp = ap->a_tvp;
1728 	struct vnode *fdvp = ap->a_fdvp;
1729 	struct vnode *tdvp = ap->a_tdvp;
1730 	struct componentname *tcnp = ap->a_tcnp;
1731 	struct componentname *fcnp = ap->a_fcnp;
1732 	int error;
1733 
1734 	/* Check for cross-device rename */
1735 	if ((fvp->v_mount != tdvp->v_mount) ||
1736 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1737 		error = EXDEV;
1738 		goto out;
1739 	}
1740 
1741 	/*
1742 	 * We have to flush B_DELWRI data prior to renaming
1743 	 * the file.  If we don't, the delayed-write buffers
1744 	 * can be flushed out later after the file has gone stale
1745 	 * under NFSV3.  NFSV2 does not have this problem because
1746 	 * ( as far as I can tell ) it flushes dirty buffers more
1747 	 * often.
1748 	 */
1749 
1750 	VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_td);
1751 	if (tvp)
1752 	    VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_td);
1753 
1754 	/*
1755 	 * If the tvp exists and is in use, sillyrename it before doing the
1756 	 * rename of the new file over it.
1757 	 *
1758 	 * XXX Can't sillyrename a directory.
1759 	 *
1760 	 * We do not attempt to do any namecache purges in this old API
1761 	 * routine.  The new API compat functions have access to the actual
1762 	 * namecache structures and will do it for us.
1763 	 */
1764 	if (tvp && tvp->v_usecount > 1 && !VTONFS(tvp)->n_sillyrename &&
1765 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1766 		vput(tvp);
1767 		tvp = NULL;
1768 	} else if (tvp) {
1769 		;
1770 	}
1771 
1772 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1773 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1774 		tcnp->cn_td);
1775 
1776 out:
1777 	if (tdvp == tvp)
1778 		vrele(tdvp);
1779 	else
1780 		vput(tdvp);
1781 	if (tvp)
1782 		vput(tvp);
1783 	vrele(fdvp);
1784 	vrele(fvp);
1785 	/*
1786 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1787 	 */
1788 	if (error == ENOENT)
1789 		error = 0;
1790 	return (error);
1791 }
1792 
1793 /*
1794  * nfs file rename rpc called from nfs_remove() above
1795  */
1796 static int
1797 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1798 	     struct sillyrename *sp)
1799 {
1800 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1801 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1802 }
1803 
1804 /*
1805  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1806  */
1807 static int
1808 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1809 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1810 	      struct ucred *cred, struct thread *td)
1811 {
1812 	u_int32_t *tl;
1813 	caddr_t cp;
1814 	int32_t t1, t2;
1815 	caddr_t bpos, dpos, cp2;
1816 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1817 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1818 	int v3 = NFS_ISV3(fdvp);
1819 
1820 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1821 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1822 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1823 		nfsm_rndup(tnamelen));
1824 	nfsm_fhtom(fdvp, v3);
1825 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1826 	nfsm_fhtom(tdvp, v3);
1827 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1828 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1829 	if (v3) {
1830 		nfsm_wcc_data(fdvp, fwccflag);
1831 		nfsm_wcc_data(tdvp, twccflag);
1832 	}
1833 	m_freem(mrep);
1834 nfsmout:
1835 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1836 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1837 	if (!fwccflag)
1838 		VTONFS(fdvp)->n_attrstamp = 0;
1839 	if (!twccflag)
1840 		VTONFS(tdvp)->n_attrstamp = 0;
1841 	return (error);
1842 }
1843 
1844 /*
1845  * nfs hard link create call
1846  *
1847  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1848  *	    struct componentname *a_cnp)
1849  */
1850 static int
1851 nfs_link(struct vop_link_args *ap)
1852 {
1853 	struct vnode *vp = ap->a_vp;
1854 	struct vnode *tdvp = ap->a_tdvp;
1855 	struct componentname *cnp = ap->a_cnp;
1856 	u_int32_t *tl;
1857 	caddr_t cp;
1858 	int32_t t1, t2;
1859 	caddr_t bpos, dpos, cp2;
1860 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1861 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1862 	int v3;
1863 
1864 	if (vp->v_mount != tdvp->v_mount) {
1865 		return (EXDEV);
1866 	}
1867 
1868 	/*
1869 	 * Push all writes to the server, so that the attribute cache
1870 	 * doesn't get "out of sync" with the server.
1871 	 * XXX There should be a better way!
1872 	 */
1873 	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_td);
1874 
1875 	v3 = NFS_ISV3(vp);
1876 	nfsstats.rpccnt[NFSPROC_LINK]++;
1877 	nfsm_reqhead(vp, NFSPROC_LINK,
1878 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1879 	nfsm_fhtom(vp, v3);
1880 	nfsm_fhtom(tdvp, v3);
1881 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1882 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1883 	if (v3) {
1884 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1885 		nfsm_wcc_data(tdvp, wccflag);
1886 	}
1887 	m_freem(mrep);
1888 nfsmout:
1889 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1890 	if (!attrflag)
1891 		VTONFS(vp)->n_attrstamp = 0;
1892 	if (!wccflag)
1893 		VTONFS(tdvp)->n_attrstamp = 0;
1894 	/*
1895 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1896 	 */
1897 	if (error == EEXIST)
1898 		error = 0;
1899 	return (error);
1900 }
1901 
1902 /*
1903  * nfs symbolic link create call
1904  *
1905  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1906  *		struct componentname *a_cnp, struct vattr *a_vap,
1907  *		char *a_target)
1908  */
1909 static int
1910 nfs_symlink(struct vop_symlink_args *ap)
1911 {
1912 	struct vnode *dvp = ap->a_dvp;
1913 	struct vattr *vap = ap->a_vap;
1914 	struct componentname *cnp = ap->a_cnp;
1915 	struct nfsv2_sattr *sp;
1916 	u_int32_t *tl;
1917 	caddr_t cp;
1918 	int32_t t1, t2;
1919 	caddr_t bpos, dpos, cp2;
1920 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1921 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1922 	struct vnode *newvp = (struct vnode *)0;
1923 	int v3 = NFS_ISV3(dvp);
1924 
1925 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1926 	slen = strlen(ap->a_target);
1927 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1928 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1929 	nfsm_fhtom(dvp, v3);
1930 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1931 	if (v3) {
1932 		nfsm_v3attrbuild(vap, FALSE);
1933 	}
1934 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1935 	if (!v3) {
1936 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1937 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1938 		sp->sa_uid = nfs_xdrneg1;
1939 		sp->sa_gid = nfs_xdrneg1;
1940 		sp->sa_size = nfs_xdrneg1;
1941 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1942 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1943 	}
1944 
1945 	/*
1946 	 * Issue the NFS request and get the rpc response.
1947 	 *
1948 	 * Only NFSv3 responses returning an error of 0 actually return
1949 	 * a file handle that can be converted into newvp without having
1950 	 * to do an extra lookup rpc.
1951 	 */
1952 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1953 	if (v3) {
1954 		if (error == 0)
1955 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1956 		nfsm_wcc_data(dvp, wccflag);
1957 	}
1958 
1959 	/*
1960 	 * out code jumps -> here, mrep is also freed.
1961 	 */
1962 
1963 	m_freem(mrep);
1964 nfsmout:
1965 
1966 	/*
1967 	 * If we get an EEXIST error, silently convert it to no-error
1968 	 * in case of an NFS retry.
1969 	 */
1970 	if (error == EEXIST)
1971 		error = 0;
1972 
1973 	/*
1974 	 * If we do not have (or no longer have) an error, and we could
1975 	 * not extract the newvp from the response due to the request being
1976 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1977 	 * to obtain a newvp to return.
1978 	 */
1979 	if (error == 0 && newvp == NULL) {
1980 		struct nfsnode *np = NULL;
1981 
1982 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1983 		    cnp->cn_cred, cnp->cn_td, &np);
1984 		if (!error)
1985 			newvp = NFSTOV(np);
1986 	}
1987 	if (error) {
1988 		if (newvp)
1989 			vput(newvp);
1990 	} else {
1991 		*ap->a_vpp = newvp;
1992 	}
1993 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1994 	if (!wccflag)
1995 		VTONFS(dvp)->n_attrstamp = 0;
1996 	return (error);
1997 }
1998 
1999 /*
2000  * nfs make dir call
2001  *
2002  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2003  *	     struct componentname *a_cnp, struct vattr *a_vap)
2004  */
2005 static int
2006 nfs_mkdir(struct vop_mkdir_args *ap)
2007 {
2008 	struct vnode *dvp = ap->a_dvp;
2009 	struct vattr *vap = ap->a_vap;
2010 	struct componentname *cnp = ap->a_cnp;
2011 	struct nfsv2_sattr *sp;
2012 	u_int32_t *tl;
2013 	caddr_t cp;
2014 	int32_t t1, t2;
2015 	int len;
2016 	struct nfsnode *np = (struct nfsnode *)0;
2017 	struct vnode *newvp = (struct vnode *)0;
2018 	caddr_t bpos, dpos, cp2;
2019 	int error = 0, wccflag = NFSV3_WCCRATTR;
2020 	int gotvp = 0;
2021 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2022 	struct vattr vattr;
2023 	int v3 = NFS_ISV3(dvp);
2024 
2025 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
2026 		return (error);
2027 	}
2028 	len = cnp->cn_namelen;
2029 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2030 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
2031 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
2032 	nfsm_fhtom(dvp, v3);
2033 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
2034 	if (v3) {
2035 		nfsm_v3attrbuild(vap, FALSE);
2036 	} else {
2037 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2038 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2039 		sp->sa_uid = nfs_xdrneg1;
2040 		sp->sa_gid = nfs_xdrneg1;
2041 		sp->sa_size = nfs_xdrneg1;
2042 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2043 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2044 	}
2045 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2046 	if (!error)
2047 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2048 	if (v3)
2049 		nfsm_wcc_data(dvp, wccflag);
2050 	m_freem(mrep);
2051 nfsmout:
2052 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2053 	if (!wccflag)
2054 		VTONFS(dvp)->n_attrstamp = 0;
2055 	/*
2056 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2057 	 * if we can succeed in looking up the directory.
2058 	 */
2059 	if (error == EEXIST || (!error && !gotvp)) {
2060 		if (newvp) {
2061 			vrele(newvp);
2062 			newvp = (struct vnode *)0;
2063 		}
2064 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2065 			cnp->cn_td, &np);
2066 		if (!error) {
2067 			newvp = NFSTOV(np);
2068 			if (newvp->v_type != VDIR)
2069 				error = EEXIST;
2070 		}
2071 	}
2072 	if (error) {
2073 		if (newvp)
2074 			vrele(newvp);
2075 	} else
2076 		*ap->a_vpp = newvp;
2077 	return (error);
2078 }
2079 
2080 /*
2081  * nfs remove directory call
2082  *
2083  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2084  *	     struct componentname *a_cnp)
2085  */
2086 static int
2087 nfs_rmdir(struct vop_rmdir_args *ap)
2088 {
2089 	struct vnode *vp = ap->a_vp;
2090 	struct vnode *dvp = ap->a_dvp;
2091 	struct componentname *cnp = ap->a_cnp;
2092 	u_int32_t *tl;
2093 	caddr_t cp;
2094 	int32_t t1, t2;
2095 	caddr_t bpos, dpos, cp2;
2096 	int error = 0, wccflag = NFSV3_WCCRATTR;
2097 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2098 	int v3 = NFS_ISV3(dvp);
2099 
2100 	if (dvp == vp)
2101 		return (EINVAL);
2102 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2103 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2104 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2105 	nfsm_fhtom(dvp, v3);
2106 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2107 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2108 	if (v3)
2109 		nfsm_wcc_data(dvp, wccflag);
2110 	m_freem(mrep);
2111 nfsmout:
2112 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2113 	if (!wccflag)
2114 		VTONFS(dvp)->n_attrstamp = 0;
2115 	/*
2116 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2117 	 */
2118 	if (error == ENOENT)
2119 		error = 0;
2120 	return (error);
2121 }
2122 
2123 /*
2124  * nfs readdir call
2125  *
2126  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2127  */
2128 static int
2129 nfs_readdir(struct vop_readdir_args *ap)
2130 {
2131 	struct vnode *vp = ap->a_vp;
2132 	struct nfsnode *np = VTONFS(vp);
2133 	struct uio *uio = ap->a_uio;
2134 	int tresid, error;
2135 	struct vattr vattr;
2136 
2137 	if (vp->v_type != VDIR)
2138 		return (EPERM);
2139 
2140 	/*
2141 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2142 	 * and then check that is still valid, or if this is an NQNFS mount
2143 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2144 	 * VOP_GETATTR() does not necessarily go to the wire.
2145 	 */
2146 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2147 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2148 		if (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQNFS) {
2149 			if (NQNFS_CKCACHABLE(vp, ND_READ)) {
2150 				nfsstats.direofcache_hits++;
2151 				return (0);
2152 			}
2153 		} else if (VOP_GETATTR(vp, &vattr, uio->uio_td) == 0 &&
2154 			(np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2155 		) {
2156 			nfsstats.direofcache_hits++;
2157 			return (0);
2158 		}
2159 	}
2160 
2161 	/*
2162 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2163 	 * own cache coherency checks so we do not have to.
2164 	 */
2165 	tresid = uio->uio_resid;
2166 	error = nfs_bioread(vp, uio, 0);
2167 
2168 	if (!error && uio->uio_resid == tresid)
2169 		nfsstats.direofcache_misses++;
2170 	return (error);
2171 }
2172 
2173 /*
2174  * Readdir rpc call.
2175  * Called from below the buffer cache by nfs_doio().
2176  */
2177 int
2178 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2179 {
2180 	int len, left;
2181 	struct dirent *dp = NULL;
2182 	u_int32_t *tl;
2183 	caddr_t cp;
2184 	int32_t t1, t2;
2185 	nfsuint64 *cookiep;
2186 	caddr_t bpos, dpos, cp2;
2187 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2188 	nfsuint64 cookie;
2189 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2190 	struct nfsnode *dnp = VTONFS(vp);
2191 	u_quad_t fileno;
2192 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2193 	int attrflag;
2194 	int v3 = NFS_ISV3(vp);
2195 
2196 #ifndef DIAGNOSTIC
2197 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2198 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2199 		panic("nfs readdirrpc bad uio");
2200 #endif
2201 
2202 	/*
2203 	 * If there is no cookie, assume directory was stale.
2204 	 */
2205 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2206 	if (cookiep)
2207 		cookie = *cookiep;
2208 	else
2209 		return (NFSERR_BAD_COOKIE);
2210 	/*
2211 	 * Loop around doing readdir rpc's of size nm_readdirsize
2212 	 * truncated to a multiple of DIRBLKSIZ.
2213 	 * The stopping criteria is EOF or buffer full.
2214 	 */
2215 	while (more_dirs && bigenough) {
2216 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2217 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2218 			NFSX_READDIR(v3));
2219 		nfsm_fhtom(vp, v3);
2220 		if (v3) {
2221 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2222 			*tl++ = cookie.nfsuquad[0];
2223 			*tl++ = cookie.nfsuquad[1];
2224 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2225 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2226 		} else {
2227 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2228 			*tl++ = cookie.nfsuquad[0];
2229 		}
2230 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2231 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2232 		if (v3) {
2233 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2234 			if (!error) {
2235 				nfsm_dissect(tl, u_int32_t *,
2236 				    2 * NFSX_UNSIGNED);
2237 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2238 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2239 			} else {
2240 				m_freem(mrep);
2241 				goto nfsmout;
2242 			}
2243 		}
2244 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2245 		more_dirs = fxdr_unsigned(int, *tl);
2246 
2247 		/* loop thru the dir entries, doctoring them to 4bsd form */
2248 		while (more_dirs && bigenough) {
2249 			if (v3) {
2250 				nfsm_dissect(tl, u_int32_t *,
2251 				    3 * NFSX_UNSIGNED);
2252 				fileno = fxdr_hyper(tl);
2253 				len = fxdr_unsigned(int, *(tl + 2));
2254 			} else {
2255 				nfsm_dissect(tl, u_int32_t *,
2256 				    2 * NFSX_UNSIGNED);
2257 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2258 				len = fxdr_unsigned(int, *tl);
2259 			}
2260 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2261 				error = EBADRPC;
2262 				m_freem(mrep);
2263 				goto nfsmout;
2264 			}
2265 			tlen = nfsm_rndup(len);
2266 			if (tlen == len)
2267 				tlen += 4;	/* To ensure null termination */
2268 			left = DIRBLKSIZ - blksiz;
2269 			if ((tlen + DIRHDSIZ) > left) {
2270 				dp->d_reclen += left;
2271 				uiop->uio_iov->iov_base += left;
2272 				uiop->uio_iov->iov_len -= left;
2273 				uiop->uio_offset += left;
2274 				uiop->uio_resid -= left;
2275 				blksiz = 0;
2276 			}
2277 			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2278 				bigenough = 0;
2279 			if (bigenough) {
2280 				dp = (struct dirent *)uiop->uio_iov->iov_base;
2281 				dp->d_fileno = (int)fileno;
2282 				dp->d_namlen = len;
2283 				dp->d_reclen = tlen + DIRHDSIZ;
2284 				dp->d_type = DT_UNKNOWN;
2285 				blksiz += dp->d_reclen;
2286 				if (blksiz == DIRBLKSIZ)
2287 					blksiz = 0;
2288 				uiop->uio_offset += DIRHDSIZ;
2289 				uiop->uio_resid -= DIRHDSIZ;
2290 				uiop->uio_iov->iov_base += DIRHDSIZ;
2291 				uiop->uio_iov->iov_len -= DIRHDSIZ;
2292 				nfsm_mtouio(uiop, len);
2293 				cp = uiop->uio_iov->iov_base;
2294 				tlen -= len;
2295 				*cp = '\0';	/* null terminate */
2296 				uiop->uio_iov->iov_base += tlen;
2297 				uiop->uio_iov->iov_len -= tlen;
2298 				uiop->uio_offset += tlen;
2299 				uiop->uio_resid -= tlen;
2300 			} else
2301 				nfsm_adv(nfsm_rndup(len));
2302 			if (v3) {
2303 				nfsm_dissect(tl, u_int32_t *,
2304 				    3 * NFSX_UNSIGNED);
2305 			} else {
2306 				nfsm_dissect(tl, u_int32_t *,
2307 				    2 * NFSX_UNSIGNED);
2308 			}
2309 			if (bigenough) {
2310 				cookie.nfsuquad[0] = *tl++;
2311 				if (v3)
2312 					cookie.nfsuquad[1] = *tl++;
2313 			} else if (v3)
2314 				tl += 2;
2315 			else
2316 				tl++;
2317 			more_dirs = fxdr_unsigned(int, *tl);
2318 		}
2319 		/*
2320 		 * If at end of rpc data, get the eof boolean
2321 		 */
2322 		if (!more_dirs) {
2323 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2324 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2325 		}
2326 		m_freem(mrep);
2327 	}
2328 	/*
2329 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2330 	 * by increasing d_reclen for the last record.
2331 	 */
2332 	if (blksiz > 0) {
2333 		left = DIRBLKSIZ - blksiz;
2334 		dp->d_reclen += left;
2335 		uiop->uio_iov->iov_base += left;
2336 		uiop->uio_iov->iov_len -= left;
2337 		uiop->uio_offset += left;
2338 		uiop->uio_resid -= left;
2339 	}
2340 
2341 	/*
2342 	 * We are now either at the end of the directory or have filled the
2343 	 * block.
2344 	 */
2345 	if (bigenough)
2346 		dnp->n_direofoffset = uiop->uio_offset;
2347 	else {
2348 		if (uiop->uio_resid > 0)
2349 			printf("EEK! readdirrpc resid > 0\n");
2350 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2351 		*cookiep = cookie;
2352 	}
2353 nfsmout:
2354 	return (error);
2355 }
2356 
2357 /*
2358  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2359  */
2360 int
2361 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2362 {
2363 	int len, left;
2364 	struct dirent *dp;
2365 	u_int32_t *tl;
2366 	caddr_t cp;
2367 	int32_t t1, t2;
2368 	struct vnode *newvp;
2369 	nfsuint64 *cookiep;
2370 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2371 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2372 	nfsuint64 cookie;
2373 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2374 	struct nfsnode *dnp = VTONFS(vp), *np;
2375 	nfsfh_t *fhp;
2376 	u_quad_t fileno;
2377 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2378 	int attrflag, fhsize;
2379 	struct namecache *ncp;
2380 	struct namecache *dncp;
2381 	struct nlcomponent nlc;
2382 
2383 #ifndef nolint
2384 	dp = (struct dirent *)0;
2385 #endif
2386 #ifndef DIAGNOSTIC
2387 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2388 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2389 		panic("nfs readdirplusrpc bad uio");
2390 #endif
2391 	/*
2392 	 * Obtain the namecache record for the directory so we have something
2393 	 * to use as a basis for creating the entries.  This function will
2394 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2395 	 * from the tree and cannot be used for upward traversals, and the
2396 	 * ncp may be unnamed.  Note that other unrelated operations may
2397 	 * cause the ncp to be named at any time.
2398 	 */
2399 	dncp = cache_fromdvp(vp, NULL, 0);
2400 	bzero(&nlc, sizeof(nlc));
2401 	newvp = NULLVP;
2402 
2403 	/*
2404 	 * If there is no cookie, assume directory was stale.
2405 	 */
2406 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2407 	if (cookiep)
2408 		cookie = *cookiep;
2409 	else
2410 		return (NFSERR_BAD_COOKIE);
2411 	/*
2412 	 * Loop around doing readdir rpc's of size nm_readdirsize
2413 	 * truncated to a multiple of DIRBLKSIZ.
2414 	 * The stopping criteria is EOF or buffer full.
2415 	 */
2416 	while (more_dirs && bigenough) {
2417 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2418 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2419 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2420 		nfsm_fhtom(vp, 1);
2421  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2422 		*tl++ = cookie.nfsuquad[0];
2423 		*tl++ = cookie.nfsuquad[1];
2424 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2425 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2426 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2427 		*tl = txdr_unsigned(nmp->nm_rsize);
2428 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2429 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2430 		if (error) {
2431 			m_freem(mrep);
2432 			goto nfsmout;
2433 		}
2434 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2435 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2436 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2437 		more_dirs = fxdr_unsigned(int, *tl);
2438 
2439 		/* loop thru the dir entries, doctoring them to 4bsd form */
2440 		while (more_dirs && bigenough) {
2441 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2442 			fileno = fxdr_hyper(tl);
2443 			len = fxdr_unsigned(int, *(tl + 2));
2444 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2445 				error = EBADRPC;
2446 				m_freem(mrep);
2447 				goto nfsmout;
2448 			}
2449 			tlen = nfsm_rndup(len);
2450 			if (tlen == len)
2451 				tlen += 4;	/* To ensure null termination*/
2452 			left = DIRBLKSIZ - blksiz;
2453 			if ((tlen + DIRHDSIZ) > left) {
2454 				dp->d_reclen += left;
2455 				uiop->uio_iov->iov_base += left;
2456 				uiop->uio_iov->iov_len -= left;
2457 				uiop->uio_offset += left;
2458 				uiop->uio_resid -= left;
2459 				blksiz = 0;
2460 			}
2461 			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2462 				bigenough = 0;
2463 			if (bigenough) {
2464 				dp = (struct dirent *)uiop->uio_iov->iov_base;
2465 				dp->d_fileno = (int)fileno;
2466 				dp->d_namlen = len;
2467 				dp->d_reclen = tlen + DIRHDSIZ;
2468 				dp->d_type = DT_UNKNOWN;
2469 				blksiz += dp->d_reclen;
2470 				if (blksiz == DIRBLKSIZ)
2471 					blksiz = 0;
2472 				uiop->uio_offset += DIRHDSIZ;
2473 				uiop->uio_resid -= DIRHDSIZ;
2474 				uiop->uio_iov->iov_base += DIRHDSIZ;
2475 				uiop->uio_iov->iov_len -= DIRHDSIZ;
2476 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2477 				nlc.nlc_namelen = len;
2478 				nfsm_mtouio(uiop, len);
2479 				cp = uiop->uio_iov->iov_base;
2480 				tlen -= len;
2481 				*cp = '\0';
2482 				uiop->uio_iov->iov_base += tlen;
2483 				uiop->uio_iov->iov_len -= tlen;
2484 				uiop->uio_offset += tlen;
2485 				uiop->uio_resid -= tlen;
2486 			} else
2487 				nfsm_adv(nfsm_rndup(len));
2488 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2489 			if (bigenough) {
2490 				cookie.nfsuquad[0] = *tl++;
2491 				cookie.nfsuquad[1] = *tl++;
2492 			} else
2493 				tl += 2;
2494 
2495 			/*
2496 			 * Since the attributes are before the file handle
2497 			 * (sigh), we must skip over the attributes and then
2498 			 * come back and get them.
2499 			 */
2500 			attrflag = fxdr_unsigned(int, *tl);
2501 			if (attrflag) {
2502 			    dpossav1 = dpos;
2503 			    mdsav1 = md;
2504 			    nfsm_adv(NFSX_V3FATTR);
2505 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2506 			    doit = fxdr_unsigned(int, *tl);
2507 			    if (doit) {
2508 				nfsm_getfh(fhp, fhsize, 1);
2509 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2510 				    vref(vp);
2511 				    newvp = vp;
2512 				    np = dnp;
2513 				} else {
2514 				    error = nfs_nget(vp->v_mount, fhp,
2515 					fhsize, &np);
2516 				    if (error)
2517 					doit = 0;
2518 				    else
2519 					newvp = NFSTOV(np);
2520 				}
2521 			    }
2522 			    if (doit && bigenough) {
2523 				dpossav2 = dpos;
2524 				dpos = dpossav1;
2525 				mdsav2 = md;
2526 				md = mdsav1;
2527 				nfsm_loadattr(newvp, (struct vattr *)0);
2528 				dpos = dpossav2;
2529 				md = mdsav2;
2530 				dp->d_type =
2531 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2532 				if (dncp) {
2533 				    printf("NFS/READDIRPLUS, ENTER %*.*s\n",
2534 					nlc.nlc_namelen, nlc.nlc_namelen,
2535 					nlc.nlc_nameptr);
2536 				    ncp = cache_nlookup(dncp, &nlc);
2537 				    cache_setunresolved(ncp);
2538 				    cache_setvp(ncp, newvp);
2539 				    cache_put(ncp);
2540 				} else {
2541 				    printf("NFS/READDIRPLUS, UNABLE TO ENTER"
2542 					" %*.*s\n",
2543 					nlc.nlc_namelen, nlc.nlc_namelen,
2544 					nlc.nlc_nameptr);
2545 				}
2546 			    }
2547 			} else {
2548 			    /* Just skip over the file handle */
2549 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2550 			    i = fxdr_unsigned(int, *tl);
2551 			    nfsm_adv(nfsm_rndup(i));
2552 			}
2553 			if (newvp != NULLVP) {
2554 			    if (newvp == vp)
2555 				vrele(newvp);
2556 			    else
2557 				vput(newvp);
2558 			    newvp = NULLVP;
2559 			}
2560 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2561 			more_dirs = fxdr_unsigned(int, *tl);
2562 		}
2563 		/*
2564 		 * If at end of rpc data, get the eof boolean
2565 		 */
2566 		if (!more_dirs) {
2567 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2568 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2569 		}
2570 		m_freem(mrep);
2571 	}
2572 	/*
2573 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2574 	 * by increasing d_reclen for the last record.
2575 	 */
2576 	if (blksiz > 0) {
2577 		left = DIRBLKSIZ - blksiz;
2578 		dp->d_reclen += left;
2579 		uiop->uio_iov->iov_base += left;
2580 		uiop->uio_iov->iov_len -= left;
2581 		uiop->uio_offset += left;
2582 		uiop->uio_resid -= left;
2583 	}
2584 
2585 	/*
2586 	 * We are now either at the end of the directory or have filled the
2587 	 * block.
2588 	 */
2589 	if (bigenough)
2590 		dnp->n_direofoffset = uiop->uio_offset;
2591 	else {
2592 		if (uiop->uio_resid > 0)
2593 			printf("EEK! readdirplusrpc resid > 0\n");
2594 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2595 		*cookiep = cookie;
2596 	}
2597 nfsmout:
2598 	if (newvp != NULLVP) {
2599 	        if (newvp == vp)
2600 			vrele(newvp);
2601 		else
2602 			vput(newvp);
2603 		newvp = NULLVP;
2604 	}
2605 	if (dncp)
2606 		cache_drop(dncp);
2607 	return (error);
2608 }
2609 
2610 /*
2611  * Silly rename. To make the NFS filesystem that is stateless look a little
2612  * more like the "ufs" a remove of an active vnode is translated to a rename
2613  * to a funny looking filename that is removed by nfs_inactive on the
2614  * nfsnode. There is the potential for another process on a different client
2615  * to create the same funny name between the nfs_lookitup() fails and the
2616  * nfs_rename() completes, but...
2617  */
2618 static int
2619 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2620 {
2621 	struct sillyrename *sp;
2622 	struct nfsnode *np;
2623 	int error;
2624 
2625 	/*
2626 	 * We previously purged dvp instead of vp.  I don't know why, it
2627 	 * completely destroys performance.  We can't do it anyway with the
2628 	 * new VFS API since we would be breaking the namecache topology.
2629 	 */
2630 	cache_purge(vp);	/* XXX */
2631 	np = VTONFS(vp);
2632 #ifndef DIAGNOSTIC
2633 	if (vp->v_type == VDIR)
2634 		panic("nfs: sillyrename dir");
2635 #endif
2636 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2637 		M_NFSREQ, M_WAITOK);
2638 	sp->s_cred = crdup(cnp->cn_cred);
2639 	sp->s_dvp = dvp;
2640 	vref(dvp);
2641 
2642 	/* Fudge together a funny name */
2643 	sp->s_namlen = sprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2644 
2645 	/* Try lookitups until we get one that isn't there */
2646 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2647 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2648 		sp->s_name[4]++;
2649 		if (sp->s_name[4] > 'z') {
2650 			error = EINVAL;
2651 			goto bad;
2652 		}
2653 	}
2654 	error = nfs_renameit(dvp, cnp, sp);
2655 	if (error)
2656 		goto bad;
2657 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2658 		cnp->cn_td, &np);
2659 	np->n_sillyrename = sp;
2660 	return (0);
2661 bad:
2662 	vrele(sp->s_dvp);
2663 	crfree(sp->s_cred);
2664 	free((caddr_t)sp, M_NFSREQ);
2665 	return (error);
2666 }
2667 
2668 /*
2669  * Look up a file name and optionally either update the file handle or
2670  * allocate an nfsnode, depending on the value of npp.
2671  * npp == NULL	--> just do the lookup
2672  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2673  *			handled too
2674  * *npp != NULL --> update the file handle in the vnode
2675  */
2676 static int
2677 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2678 	     struct thread *td, struct nfsnode **npp)
2679 {
2680 	u_int32_t *tl;
2681 	caddr_t cp;
2682 	int32_t t1, t2;
2683 	struct vnode *newvp = (struct vnode *)0;
2684 	struct nfsnode *np, *dnp = VTONFS(dvp);
2685 	caddr_t bpos, dpos, cp2;
2686 	int error = 0, fhlen, attrflag;
2687 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2688 	nfsfh_t *nfhp;
2689 	int v3 = NFS_ISV3(dvp);
2690 
2691 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2692 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2693 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2694 	nfsm_fhtom(dvp, v3);
2695 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2696 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2697 	if (npp && !error) {
2698 		nfsm_getfh(nfhp, fhlen, v3);
2699 		if (*npp) {
2700 		    np = *npp;
2701 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2702 			free((caddr_t)np->n_fhp, M_NFSBIGFH);
2703 			np->n_fhp = &np->n_fh;
2704 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2705 			np->n_fhp =(nfsfh_t *)malloc(fhlen,M_NFSBIGFH,M_WAITOK);
2706 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2707 		    np->n_fhsize = fhlen;
2708 		    newvp = NFSTOV(np);
2709 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2710 		    vref(dvp);
2711 		    newvp = dvp;
2712 		} else {
2713 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2714 		    if (error) {
2715 			m_freem(mrep);
2716 			return (error);
2717 		    }
2718 		    newvp = NFSTOV(np);
2719 		}
2720 		if (v3) {
2721 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2722 			if (!attrflag && *npp == NULL) {
2723 				m_freem(mrep);
2724 				if (newvp == dvp)
2725 					vrele(newvp);
2726 				else
2727 					vput(newvp);
2728 				return (ENOENT);
2729 			}
2730 		} else
2731 			nfsm_loadattr(newvp, (struct vattr *)0);
2732 	}
2733 	m_freem(mrep);
2734 nfsmout:
2735 	if (npp && *npp == NULL) {
2736 		if (error) {
2737 			if (newvp) {
2738 				if (newvp == dvp)
2739 					vrele(newvp);
2740 				else
2741 					vput(newvp);
2742 			}
2743 		} else
2744 			*npp = np;
2745 	}
2746 	return (error);
2747 }
2748 
2749 /*
2750  * Nfs Version 3 commit rpc
2751  */
2752 int
2753 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2754 {
2755 	caddr_t cp;
2756 	u_int32_t *tl;
2757 	int32_t t1, t2;
2758 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2759 	caddr_t bpos, dpos, cp2;
2760 	int error = 0, wccflag = NFSV3_WCCRATTR;
2761 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2762 
2763 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2764 		return (0);
2765 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2766 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2767 	nfsm_fhtom(vp, 1);
2768 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2769 	txdr_hyper(offset, tl);
2770 	tl += 2;
2771 	*tl = txdr_unsigned(cnt);
2772 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2773 	nfsm_wcc_data(vp, wccflag);
2774 	if (!error) {
2775 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2776 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2777 			NFSX_V3WRITEVERF)) {
2778 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2779 				NFSX_V3WRITEVERF);
2780 			error = NFSERR_STALEWRITEVERF;
2781 		}
2782 	}
2783 	m_freem(mrep);
2784 nfsmout:
2785 	return (error);
2786 }
2787 
2788 /*
2789  * Kludge City..
2790  * - make nfs_bmap() essentially a no-op that does no translation
2791  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2792  *   (Maybe I could use the process's page mapping, but I was concerned that
2793  *    Kernel Write might not be enabled and also figured copyout() would do
2794  *    a lot more work than bcopy() and also it currently happens in the
2795  *    context of the swapper process (2).
2796  *
2797  * nfs_bmap(struct vnode *a_vp, daddr_t a_bn, struct vnode **a_vpp,
2798  *	    daddr_t *a_bnp, int *a_runp, int *a_runb)
2799  */
2800 static int
2801 nfs_bmap(struct vop_bmap_args *ap)
2802 {
2803 	struct vnode *vp = ap->a_vp;
2804 
2805 	if (ap->a_vpp != NULL)
2806 		*ap->a_vpp = vp;
2807 	if (ap->a_bnp != NULL)
2808 		*ap->a_bnp = ap->a_bn * btodb(vp->v_mount->mnt_stat.f_iosize);
2809 	if (ap->a_runp != NULL)
2810 		*ap->a_runp = 0;
2811 	if (ap->a_runb != NULL)
2812 		*ap->a_runb = 0;
2813 	return (0);
2814 }
2815 
2816 /*
2817  * Strategy routine.
2818  * For async requests when nfsiod(s) are running, queue the request by
2819  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2820  * request.
2821  */
2822 static int
2823 nfs_strategy(struct vop_strategy_args *ap)
2824 {
2825 	struct buf *bp = ap->a_bp;
2826 	struct thread *td;
2827 	int error = 0;
2828 
2829 	KASSERT(!(bp->b_flags & B_DONE), ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2830 	KASSERT(BUF_REFCNT(bp) > 0, ("nfs_strategy: buffer %p not locked", bp));
2831 
2832 	if (bp->b_flags & B_PHYS)
2833 		panic("nfs physio");
2834 
2835 	if (bp->b_flags & B_ASYNC)
2836 		td = NULL;
2837 	else
2838 		td = curthread;	/* XXX */
2839 
2840 	/*
2841 	 * If the op is asynchronous and an i/o daemon is waiting
2842 	 * queue the request, wake it up and wait for completion
2843 	 * otherwise just do it ourselves.
2844 	 */
2845 	if ((bp->b_flags & B_ASYNC) == 0 ||
2846 		nfs_asyncio(bp, td))
2847 		error = nfs_doio(bp, td);
2848 	return (error);
2849 }
2850 
2851 /*
2852  * Mmap a file
2853  *
2854  * NB Currently unsupported.
2855  *
2856  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred,
2857  *	    struct thread *a_td)
2858  */
2859 /* ARGSUSED */
2860 static int
2861 nfs_mmap(struct vop_mmap_args *ap)
2862 {
2863 	return (EINVAL);
2864 }
2865 
2866 /*
2867  * fsync vnode op. Just call nfs_flush() with commit == 1.
2868  *
2869  * nfs_fsync(struct vnodeop_desc *a_desc, struct vnode *a_vp,
2870  *	     struct ucred * a_cred, int a_waitfor, struct thread *a_td)
2871  */
2872 /* ARGSUSED */
2873 static int
2874 nfs_fsync(struct vop_fsync_args *ap)
2875 {
2876 	return (nfs_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1));
2877 }
2878 
2879 /*
2880  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2881  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2882  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2883  * set the buffer contains data that has already been written to the server
2884  * and which now needs a commit RPC.
2885  *
2886  * If commit is 0 we only take one pass and only flush buffers containing new
2887  * dirty data.
2888  *
2889  * If commit is 1 we take two passes, issuing a commit RPC in the second
2890  * pass.
2891  *
2892  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2893  * to completely flush all pending data.
2894  *
2895  * Note that the RB_SCAN code properly handles the case where the
2896  * callback might block and directly or indirectly (another thread) cause
2897  * the RB tree to change.
2898  */
2899 
2900 #ifndef NFS_COMMITBVECSIZ
2901 #define NFS_COMMITBVECSIZ	16
2902 #endif
2903 
2904 struct nfs_flush_info {
2905 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2906 	struct thread *td;
2907 	struct vnode *vp;
2908 	int waitfor;
2909 	int slpflag;
2910 	int slptimeo;
2911 	int loops;
2912 	struct buf *bvary[NFS_COMMITBVECSIZ];
2913 	int bvsize;
2914 	off_t beg_off;
2915 	off_t end_off;
2916 };
2917 
2918 static int nfs_flush_bp(struct buf *bp, void *data);
2919 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2920 
2921 int
2922 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2923 {
2924 	struct nfsnode *np = VTONFS(vp);
2925 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2926 	struct nfs_flush_info info;
2927 	int error;
2928 
2929 	bzero(&info, sizeof(info));
2930 	info.td = td;
2931 	info.vp = vp;
2932 	info.waitfor = waitfor;
2933 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2934 	info.loops = 0;
2935 
2936 	do {
2937 		/*
2938 		 * Flush mode
2939 		 */
2940 		info.mode = NFI_FLUSHNEW;
2941 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2942 				nfs_flush_bp, &info);
2943 
2944 		/*
2945 		 * Take a second pass if committing and no error occured.
2946 		 * Clean up any left over collection (whether an error
2947 		 * occurs or not).
2948 		 */
2949 		if (commit && error == 0) {
2950 			info.mode = NFI_COMMIT;
2951 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2952 					nfs_flush_bp, &info);
2953 			if (info.bvsize)
2954 				error = nfs_flush_docommit(&info, error);
2955 		}
2956 
2957 		/*
2958 		 * Wait for pending I/O to complete before checking whether
2959 		 * any further dirty buffers exist.
2960 		 */
2961 		while (waitfor == MNT_WAIT && vp->v_numoutput) {
2962 			vp->v_flag |= VBWAIT;
2963 			error = tsleep((caddr_t)&vp->v_numoutput,
2964 				info.slpflag, "nfsfsync", info.slptimeo);
2965 			if (error) {
2966 				/*
2967 				 * We have to be able to break out if this
2968 				 * is an 'intr' mount.
2969 				 */
2970 				if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2971 					error = -EINTR;
2972 					break;
2973 				}
2974 
2975 				/*
2976 				 * Since we do not process pending signals,
2977 				 * once we get a PCATCH our tsleep() will no
2978 				 * longer sleep, switch to a fixed timeout
2979 				 * instead.
2980 				 */
2981 				if (info.slpflag == PCATCH) {
2982 					info.slpflag = 0;
2983 					info.slptimeo = 2 * hz;
2984 				}
2985 				error = 0;
2986 			}
2987 		}
2988 		++info.loops;
2989 		/*
2990 		 * Loop if we are flushing synchronous as well as committing,
2991 		 * and dirty buffers are still present.  Otherwise we might livelock.
2992 		 */
2993 	} while (waitfor == MNT_WAIT && commit &&
2994 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
2995 
2996 	/*
2997 	 * The callbacks have to return a negative error to terminate the
2998 	 * RB scan.
2999 	 */
3000 	if (error < 0)
3001 		error = -error;
3002 
3003 	/*
3004 	 * Deal with any error collection
3005 	 */
3006 	if (np->n_flag & NWRITEERR) {
3007 		error = np->n_error;
3008 		np->n_flag &= ~NWRITEERR;
3009 	}
3010 	return (error);
3011 }
3012 
3013 
3014 static
3015 int
3016 nfs_flush_bp(struct buf *bp, void *data)
3017 {
3018 	struct nfs_flush_info *info = data;
3019 	off_t toff;
3020 	int error;
3021 
3022 	error = 0;
3023 	switch(info->mode) {
3024 	case NFI_FLUSHNEW:
3025 		crit_enter();
3026 		if (info->loops && info->waitfor == MNT_WAIT) {
3027 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3028 			if (error) {
3029 				error = BUF_TIMELOCK(bp,
3030 						LK_EXCLUSIVE | LK_SLEEPFAIL,
3031 						"nfsfsync",
3032 						info->slpflag, info->slptimeo);
3033 			}
3034 		} else {
3035 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3036 		}
3037 		if (error == 0) {
3038 			if ((bp->b_flags & B_DELWRI) == 0)
3039 				panic("nfs_fsync: not dirty");
3040 			if (bp->b_flags & B_NEEDCOMMIT) {
3041 				BUF_UNLOCK(bp);
3042 				crit_exit();
3043 				break;
3044 			}
3045 			bremfree(bp);
3046 
3047 			bp->b_flags |= B_ASYNC;
3048 			crit_exit();
3049 			VOP_BWRITE(bp->b_vp, bp);
3050 		} else {
3051 			crit_exit();
3052 			error = 0;
3053 		}
3054 		break;
3055 	case NFI_COMMIT:
3056 		/*
3057 		 * Only process buffers in need of a commit which we can
3058 		 * immediately lock.  This may prevent a buffer from being
3059 		 * committed, but the normal flush loop will block on the
3060 		 * same buffer so we shouldn't get into an endless loop.
3061 		 */
3062 		crit_enter();
3063 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3064 		    (B_DELWRI | B_NEEDCOMMIT) ||
3065 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3066 			crit_exit();
3067 			break;
3068 		}
3069 
3070 		bremfree(bp);
3071 
3072 		/*
3073 		 * NOTE: we are not clearing B_DONE here, so we have
3074 		 * to do it later on in this routine if we intend to
3075 		 * initiate I/O on the bp.
3076 		 *
3077 		 * Note: to avoid loopback deadlocks, we do not
3078 		 * assign b_runningbufspace.
3079 		 */
3080 		vfs_busy_pages(bp, 1);
3081 
3082 		info->bvary[info->bvsize] = bp;
3083 		toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
3084 			bp->b_dirtyoff;
3085 		if (info->bvsize == 0 || toff < info->beg_off)
3086 			info->beg_off = toff;
3087 		toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
3088 		if (info->bvsize == 0 || toff > info->end_off)
3089 			info->end_off = toff;
3090 		++info->bvsize;
3091 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3092 			error = nfs_flush_docommit(info, 0);
3093 			KKASSERT(info->bvsize == 0);
3094 		}
3095 		crit_exit();
3096 	}
3097 	return (error);
3098 }
3099 
3100 static
3101 int
3102 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3103 {
3104 	struct vnode *vp;
3105 	struct buf *bp;
3106 	off_t bytes;
3107 	int retv;
3108 	int i;
3109 
3110 	vp = info->vp;
3111 
3112 	if (info->bvsize > 0) {
3113 		/*
3114 		 * Commit data on the server, as required.  Note that
3115 		 * nfs_commit will use the vnode's cred for the commit.
3116 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3117 		 */
3118 		bytes = info->end_off - info->beg_off;
3119 		if (bytes > 0x40000000)
3120 			bytes = 0x40000000;
3121 		if (error) {
3122 			retv = -error;
3123 		} else {
3124 			retv = nfs_commit(vp, info->beg_off,
3125 					    (int)bytes, info->td);
3126 			if (retv == NFSERR_STALEWRITEVERF)
3127 				nfs_clearcommit(vp->v_mount);
3128 		}
3129 
3130 		/*
3131 		 * Now, either mark the blocks I/O done or mark the
3132 		 * blocks dirty, depending on whether the commit
3133 		 * succeeded.
3134 		 */
3135 		for (i = 0; i < info->bvsize; ++i) {
3136 			bp = info->bvary[i];
3137 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3138 			if (retv) {
3139 				/*
3140 				 * Error, leave B_DELWRI intact
3141 				 */
3142 				vfs_unbusy_pages(bp);
3143 				brelse(bp);
3144 			} else {
3145 				/*
3146 				 * Success, remove B_DELWRI ( bundirty() ).
3147 				 *
3148 				 * b_dirtyoff/b_dirtyend seem to be NFS
3149 				 * specific.  We should probably move that
3150 				 * into bundirty(). XXX
3151 				 */
3152 				crit_enter();
3153 				vp->v_numoutput++;
3154 				bp->b_flags |= B_ASYNC;
3155 				bundirty(bp);
3156 				bp->b_flags &= ~(B_READ|B_DONE|B_ERROR);
3157 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3158 				crit_exit();
3159 				biodone(bp);
3160 			}
3161 		}
3162 		info->bvsize = 0;
3163 	}
3164 	return (error);
3165 }
3166 
3167 /*
3168  * NFS advisory byte-level locks.
3169  * Currently unsupported.
3170  *
3171  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3172  *		int a_flags)
3173  */
3174 static int
3175 nfs_advlock(struct vop_advlock_args *ap)
3176 {
3177 	struct nfsnode *np = VTONFS(ap->a_vp);
3178 
3179 	/*
3180 	 * The following kludge is to allow diskless support to work
3181 	 * until a real NFS lockd is implemented. Basically, just pretend
3182 	 * that this is a local lock.
3183 	 */
3184 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3185 }
3186 
3187 /*
3188  * Print out the contents of an nfsnode.
3189  *
3190  * nfs_print(struct vnode *a_vp)
3191  */
3192 static int
3193 nfs_print(struct vop_print_args *ap)
3194 {
3195 	struct vnode *vp = ap->a_vp;
3196 	struct nfsnode *np = VTONFS(vp);
3197 
3198 	printf("tag VT_NFS, fileid %ld fsid 0x%x",
3199 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3200 	if (vp->v_type == VFIFO)
3201 		fifo_printinfo(vp);
3202 	printf("\n");
3203 	return (0);
3204 }
3205 
3206 /*
3207  * Just call nfs_writebp() with the force argument set to 1.
3208  *
3209  * NOTE: B_DONE may or may not be set in a_bp on call.
3210  *
3211  * nfs_bwrite(struct vnode *a_bp)
3212  */
3213 static int
3214 nfs_bwrite(struct vop_bwrite_args *ap)
3215 {
3216 	return (nfs_writebp(ap->a_bp, 1, curthread));
3217 }
3218 
3219 /*
3220  * This is a clone of vn_bwrite(), except that it also handles the
3221  * B_NEEDCOMMIT flag.  We set B_CACHE if this is a VMIO buffer.
3222  */
3223 int
3224 nfs_writebp(struct buf *bp, int force, struct thread *td)
3225 {
3226 	int oldflags = bp->b_flags;
3227 #if 0
3228 	int retv = 1;
3229 	off_t off;
3230 #endif
3231 
3232 	if (BUF_REFCNT(bp) == 0)
3233 		panic("bwrite: buffer is not locked???");
3234 
3235 	if (bp->b_flags & B_INVAL) {
3236 		brelse(bp);
3237 		return(0);
3238 	}
3239 
3240 	bp->b_flags |= B_CACHE;
3241 
3242 	/*
3243 	 * Undirty the bp.  We will redirty it later if the I/O fails.
3244 	 */
3245 
3246 	crit_enter();
3247 	bundirty(bp);
3248 	bp->b_flags &= ~(B_READ|B_DONE|B_ERROR);
3249 
3250 	bp->b_vp->v_numoutput++;
3251 	crit_exit();
3252 
3253 	/*
3254 	 * Note: to avoid loopback deadlocks, we do not
3255 	 * assign b_runningbufspace.
3256 	 */
3257 	vfs_busy_pages(bp, 1);
3258 
3259 	BUF_KERNPROC(bp);
3260 	VOP_STRATEGY(bp->b_vp, bp);
3261 
3262 	if( (oldflags & B_ASYNC) == 0) {
3263 		int rtval = biowait(bp);
3264 
3265 		if (oldflags & B_DELWRI) {
3266 			crit_enter();
3267 			reassignbuf(bp, bp->b_vp);
3268 			crit_exit();
3269 		}
3270 
3271 		brelse(bp);
3272 		return (rtval);
3273 	}
3274 
3275 	return (0);
3276 }
3277 
3278 /*
3279  * nfs special file access vnode op.
3280  * Essentially just get vattr and then imitate iaccess() since the device is
3281  * local to the client.
3282  *
3283  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
3284  *		  struct thread *a_td)
3285  */
3286 static int
3287 nfsspec_access(struct vop_access_args *ap)
3288 {
3289 	struct vattr *vap;
3290 	gid_t *gp;
3291 	struct ucred *cred = ap->a_cred;
3292 	struct vnode *vp = ap->a_vp;
3293 	mode_t mode = ap->a_mode;
3294 	struct vattr vattr;
3295 	int i;
3296 	int error;
3297 
3298 	/*
3299 	 * Disallow write attempts on filesystems mounted read-only;
3300 	 * unless the file is a socket, fifo, or a block or character
3301 	 * device resident on the filesystem.
3302 	 */
3303 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3304 		switch (vp->v_type) {
3305 		case VREG:
3306 		case VDIR:
3307 		case VLNK:
3308 			return (EROFS);
3309 		default:
3310 			break;
3311 		}
3312 	}
3313 	/*
3314 	 * If you're the super-user,
3315 	 * you always get access.
3316 	 */
3317 	if (cred->cr_uid == 0)
3318 		return (0);
3319 	vap = &vattr;
3320 	error = VOP_GETATTR(vp, vap, ap->a_td);
3321 	if (error)
3322 		return (error);
3323 	/*
3324 	 * Access check is based on only one of owner, group, public.
3325 	 * If not owner, then check group. If not a member of the
3326 	 * group, then check public access.
3327 	 */
3328 	if (cred->cr_uid != vap->va_uid) {
3329 		mode >>= 3;
3330 		gp = cred->cr_groups;
3331 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3332 			if (vap->va_gid == *gp)
3333 				goto found;
3334 		mode >>= 3;
3335 found:
3336 		;
3337 	}
3338 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3339 	return (error);
3340 }
3341 
3342 /*
3343  * Read wrapper for special devices.
3344  *
3345  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3346  *		struct ucred *a_cred)
3347  */
3348 static int
3349 nfsspec_read(struct vop_read_args *ap)
3350 {
3351 	struct nfsnode *np = VTONFS(ap->a_vp);
3352 
3353 	/*
3354 	 * Set access flag.
3355 	 */
3356 	np->n_flag |= NACC;
3357 	getnanotime(&np->n_atim);
3358 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3359 }
3360 
3361 /*
3362  * Write wrapper for special devices.
3363  *
3364  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3365  *		 struct ucred *a_cred)
3366  */
3367 static int
3368 nfsspec_write(struct vop_write_args *ap)
3369 {
3370 	struct nfsnode *np = VTONFS(ap->a_vp);
3371 
3372 	/*
3373 	 * Set update flag.
3374 	 */
3375 	np->n_flag |= NUPD;
3376 	getnanotime(&np->n_mtim);
3377 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3378 }
3379 
3380 /*
3381  * Close wrapper for special devices.
3382  *
3383  * Update the times on the nfsnode then do device close.
3384  *
3385  * nfsspec_close(struct vnode *a_vp, int a_fflag, struct ucred *a_cred,
3386  *		 struct thread *a_td)
3387  */
3388 static int
3389 nfsspec_close(struct vop_close_args *ap)
3390 {
3391 	struct vnode *vp = ap->a_vp;
3392 	struct nfsnode *np = VTONFS(vp);
3393 	struct vattr vattr;
3394 
3395 	if (np->n_flag & (NACC | NUPD)) {
3396 		np->n_flag |= NCHG;
3397 		if (vp->v_usecount == 1 &&
3398 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3399 			VATTR_NULL(&vattr);
3400 			if (np->n_flag & NACC)
3401 				vattr.va_atime = np->n_atim;
3402 			if (np->n_flag & NUPD)
3403 				vattr.va_mtime = np->n_mtim;
3404 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE), ap->a_td);
3405 		}
3406 	}
3407 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3408 }
3409 
3410 /*
3411  * Read wrapper for fifos.
3412  *
3413  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3414  *		struct ucred *a_cred)
3415  */
3416 static int
3417 nfsfifo_read(struct vop_read_args *ap)
3418 {
3419 	struct nfsnode *np = VTONFS(ap->a_vp);
3420 
3421 	/*
3422 	 * Set access flag.
3423 	 */
3424 	np->n_flag |= NACC;
3425 	getnanotime(&np->n_atim);
3426 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3427 }
3428 
3429 /*
3430  * Write wrapper for fifos.
3431  *
3432  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3433  *		 struct ucred *a_cred)
3434  */
3435 static int
3436 nfsfifo_write(struct vop_write_args *ap)
3437 {
3438 	struct nfsnode *np = VTONFS(ap->a_vp);
3439 
3440 	/*
3441 	 * Set update flag.
3442 	 */
3443 	np->n_flag |= NUPD;
3444 	getnanotime(&np->n_mtim);
3445 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3446 }
3447 
3448 /*
3449  * Close wrapper for fifos.
3450  *
3451  * Update the times on the nfsnode then do fifo close.
3452  *
3453  * nfsfifo_close(struct vnode *a_vp, int a_fflag, struct thread *a_td)
3454  */
3455 static int
3456 nfsfifo_close(struct vop_close_args *ap)
3457 {
3458 	struct vnode *vp = ap->a_vp;
3459 	struct nfsnode *np = VTONFS(vp);
3460 	struct vattr vattr;
3461 	struct timespec ts;
3462 
3463 	if (np->n_flag & (NACC | NUPD)) {
3464 		getnanotime(&ts);
3465 		if (np->n_flag & NACC)
3466 			np->n_atim = ts;
3467 		if (np->n_flag & NUPD)
3468 			np->n_mtim = ts;
3469 		np->n_flag |= NCHG;
3470 		if (vp->v_usecount == 1 &&
3471 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3472 			VATTR_NULL(&vattr);
3473 			if (np->n_flag & NACC)
3474 				vattr.va_atime = np->n_atim;
3475 			if (np->n_flag & NUPD)
3476 				vattr.va_mtime = np->n_mtim;
3477 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE), ap->a_td);
3478 		}
3479 	}
3480 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3481 }
3482 
3483