xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 277350a0)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
33  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
34  */
35 
36 
37 /*
38  * vnode op calls for Sun NFS version 2 and 3
39  */
40 
41 #include "opt_inet.h"
42 
43 #include <sys/param.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/resourcevar.h>
47 #include <sys/proc.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/namei.h>
53 #include <sys/nlookup.h>
54 #include <sys/socket.h>
55 #include <sys/vnode.h>
56 #include <sys/dirent.h>
57 #include <sys/fcntl.h>
58 #include <sys/lockf.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/conf.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65 
66 #include <sys/buf2.h>
67 
68 #include <vfs/fifofs/fifo.h>
69 #include <vfs/ufs/dir.h>
70 
71 #undef DIRBLKSIZ
72 
73 #include "rpcv2.h"
74 #include "nfsproto.h"
75 #include "nfs.h"
76 #include "nfsmount.h"
77 #include "nfsnode.h"
78 #include "xdr_subs.h"
79 #include "nfsm_subs.h"
80 
81 #include <net/if.h>
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 
85 #include <sys/thread2.h>
86 
87 /* Defs */
88 #define	TRUE	1
89 #define	FALSE	0
90 
91 static int	nfsfifo_read (struct vop_read_args *);
92 static int	nfsfifo_write (struct vop_write_args *);
93 static int	nfsfifo_close (struct vop_close_args *);
94 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
95 static	int	nfs_lookup (struct vop_old_lookup_args *);
96 static	int	nfs_create (struct vop_old_create_args *);
97 static	int	nfs_mknod (struct vop_old_mknod_args *);
98 static	int	nfs_open (struct vop_open_args *);
99 static	int	nfs_close (struct vop_close_args *);
100 static	int	nfs_access (struct vop_access_args *);
101 static	int	nfs_getattr (struct vop_getattr_args *);
102 static	int	nfs_setattr (struct vop_setattr_args *);
103 static	int	nfs_read (struct vop_read_args *);
104 static	int	nfs_mmap (struct vop_mmap_args *);
105 static	int	nfs_fsync (struct vop_fsync_args *);
106 static	int	nfs_remove (struct vop_old_remove_args *);
107 static	int	nfs_link (struct vop_old_link_args *);
108 static	int	nfs_rename (struct vop_old_rename_args *);
109 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
110 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
111 static	int	nfs_symlink (struct vop_old_symlink_args *);
112 static	int	nfs_readdir (struct vop_readdir_args *);
113 static	int	nfs_bmap (struct vop_bmap_args *);
114 static	int	nfs_strategy (struct vop_strategy_args *);
115 static	int	nfs_lookitup (struct vnode *, const char *, int,
116 			struct ucred *, struct thread *, struct nfsnode **);
117 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
118 static int	nfs_laccess (struct vop_access_args *);
119 static int	nfs_readlink (struct vop_readlink_args *);
120 static int	nfs_print (struct vop_print_args *);
121 static int	nfs_advlock (struct vop_advlock_args *);
122 static int	nfs_kqfilter (struct vop_kqfilter_args *ap);
123 
124 static	int	nfs_nresolve (struct vop_nresolve_args *);
125 /*
126  * Global vfs data structures for nfs
127  */
128 struct vop_ops nfsv2_vnode_vops = {
129 	.vop_default =		vop_defaultop,
130 	.vop_access =		nfs_access,
131 	.vop_advlock =		nfs_advlock,
132 	.vop_bmap =		nfs_bmap,
133 	.vop_close =		nfs_close,
134 	.vop_old_create =	nfs_create,
135 	.vop_fsync =		nfs_fsync,
136 	.vop_getattr =		nfs_getattr,
137 	.vop_getpages =		vop_stdgetpages,
138 	.vop_putpages =		vop_stdputpages,
139 	.vop_inactive =		nfs_inactive,
140 	.vop_old_link =		nfs_link,
141 	.vop_old_lookup =	nfs_lookup,
142 	.vop_old_mkdir =	nfs_mkdir,
143 	.vop_old_mknod =	nfs_mknod,
144 	.vop_mmap =		nfs_mmap,
145 	.vop_open =		nfs_open,
146 	.vop_print =		nfs_print,
147 	.vop_read =		nfs_read,
148 	.vop_readdir =		nfs_readdir,
149 	.vop_readlink =		nfs_readlink,
150 	.vop_reclaim =		nfs_reclaim,
151 	.vop_old_remove =	nfs_remove,
152 	.vop_old_rename =	nfs_rename,
153 	.vop_old_rmdir =	nfs_rmdir,
154 	.vop_setattr =		nfs_setattr,
155 	.vop_strategy =		nfs_strategy,
156 	.vop_old_symlink =	nfs_symlink,
157 	.vop_write =		nfs_write,
158 	.vop_nresolve =		nfs_nresolve,
159 	.vop_kqfilter =		nfs_kqfilter
160 };
161 
162 /*
163  * Special device vnode ops
164  */
165 struct vop_ops nfsv2_spec_vops = {
166 	.vop_default =		vop_defaultop,
167 	.vop_access =		nfs_laccess,
168 	.vop_close =		nfs_close,
169 	.vop_fsync =		nfs_fsync,
170 	.vop_getattr =		nfs_getattr,
171 	.vop_inactive =		nfs_inactive,
172 	.vop_print =		nfs_print,
173 	.vop_read =		vop_stdnoread,
174 	.vop_reclaim =		nfs_reclaim,
175 	.vop_setattr =		nfs_setattr,
176 	.vop_write =		vop_stdnowrite
177 };
178 
179 struct vop_ops nfsv2_fifo_vops = {
180 	.vop_default =		fifo_vnoperate,
181 	.vop_access =		nfs_laccess,
182 	.vop_close =		nfsfifo_close,
183 	.vop_fsync =		nfs_fsync,
184 	.vop_getattr =		nfs_getattr,
185 	.vop_inactive =		nfs_inactive,
186 	.vop_print =		nfs_print,
187 	.vop_read =		nfsfifo_read,
188 	.vop_reclaim =		nfs_reclaim,
189 	.vop_setattr =		nfs_setattr,
190 	.vop_write =		nfsfifo_write
191 };
192 
193 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
194 				  struct componentname *cnp,
195 				  struct vattr *vap);
196 static int	nfs_removerpc (struct vnode *dvp, const char *name,
197 				   int namelen,
198 				   struct ucred *cred, struct thread *td);
199 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
200 				   int fnamelen, struct vnode *tdvp,
201 				   const char *tnameptr, int tnamelen,
202 				   struct ucred *cred, struct thread *td);
203 static int	nfs_renameit (struct vnode *sdvp,
204 				  struct componentname *scnp,
205 				  struct sillyrename *sp);
206 
207 SYSCTL_DECL(_vfs_nfs);
208 
209 static int nfs_flush_on_rename = 1;
210 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
211 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
212 static int nfs_flush_on_hlink = 0;
213 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
214 	   &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
215 
216 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
217 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
218 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
219 
220 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
221 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
222 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
223 
224 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
225 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
226 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
227 
228 static int	nfsv3_commit_on_close = 0;
229 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
230 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
231 #if 0
232 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
233 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
234 
235 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
236 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
237 #endif
238 
239 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
240 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
241 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
242 
243 static __inline
244 void
245 nfs_knote(struct vnode *vp, int flags)
246 {
247 	if (flags)
248 		KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, flags);
249 }
250 
251 /*
252  * Returns whether a name component is a degenerate '.' or '..'.
253  */
254 static __inline
255 int
256 nlcdegenerate(struct nlcomponent *nlc)
257 {
258 	if (nlc->nlc_namelen == 1 && nlc->nlc_nameptr[0] == '.')
259 		return(1);
260 	if (nlc->nlc_namelen == 2 &&
261 	    nlc->nlc_nameptr[0] == '.' && nlc->nlc_nameptr[1] == '.')
262 		return(1);
263 	return(0);
264 }
265 
266 static int
267 nfs3_access_otw(struct vnode *vp, int wmode,
268 		struct thread *td, struct ucred *cred)
269 {
270 	struct nfsnode *np = VTONFS(vp);
271 	int attrflag;
272 	int error = 0;
273 	u_int32_t *tl;
274 	u_int32_t rmode;
275 	struct nfsm_info info;
276 
277 	info.mrep = NULL;
278 	info.v3 = 1;
279 
280 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
281 	nfsm_reqhead(&info, vp, NFSPROC_ACCESS,
282 		     NFSX_FH(info.v3) + NFSX_UNSIGNED);
283 	ERROROUT(nfsm_fhtom(&info, vp));
284 	tl = nfsm_build(&info, NFSX_UNSIGNED);
285 	*tl = txdr_unsigned(wmode);
286 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_ACCESS, td, cred, &error));
287 	ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK));
288 	if (error == 0) {
289 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
290 		rmode = fxdr_unsigned(u_int32_t, *tl);
291 		np->n_mode = rmode;
292 		np->n_modeuid = cred->cr_uid;
293 		np->n_modestamp = mycpu->gd_time_seconds;
294 	}
295 	m_freem(info.mrep);
296 	info.mrep = NULL;
297 nfsmout:
298 	return error;
299 }
300 
301 /*
302  * nfs access vnode op.
303  * For nfs version 2, just return ok. File accesses may fail later.
304  * For nfs version 3, use the access rpc to check accessibility. If file modes
305  * are changed on the server, accesses might still fail later.
306  *
307  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
308  */
309 static int
310 nfs_access(struct vop_access_args *ap)
311 {
312 	struct ucred *cred;
313 	struct vnode *vp = ap->a_vp;
314 	thread_t td = curthread;
315 	int error = 0;
316 	u_int32_t mode, wmode;
317 	struct nfsnode *np = VTONFS(vp);
318 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
319 	int v3 = NFS_ISV3(vp);
320 
321 	lwkt_gettoken(&nmp->nm_token);
322 
323 	/*
324 	 * Disallow write attempts on filesystems mounted read-only;
325 	 * unless the file is a socket, fifo, or a block or character
326 	 * device resident on the filesystem.
327 	 */
328 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
329 		switch (vp->v_type) {
330 		case VREG:
331 		case VDIR:
332 		case VLNK:
333 			lwkt_reltoken(&nmp->nm_token);
334 			return (EROFS);
335 		default:
336 			break;
337 		}
338 	}
339 
340 	/*
341 	 * The NFS protocol passes only the effective uid/gid over the wire but
342 	 * we need to check access against real ids if AT_EACCESS not set.
343 	 * Handle this case by cloning the credentials and setting the
344 	 * effective ids to the real ones.
345 	 */
346 	if (ap->a_flags & AT_EACCESS) {
347 		cred = crhold(ap->a_cred);
348 	} else {
349 		cred = crdup(ap->a_cred);
350 		cred->cr_uid = cred->cr_ruid;
351 		cred->cr_gid = cred->cr_rgid;
352 	}
353 
354 	/*
355 	 * For nfs v3, check to see if we have done this recently, and if
356 	 * so return our cached result instead of making an ACCESS call.
357 	 * If not, do an access rpc, otherwise you are stuck emulating
358 	 * ufs_access() locally using the vattr. This may not be correct,
359 	 * since the server may apply other access criteria such as
360 	 * client uid-->server uid mapping that we do not know about.
361 	 */
362 	if (v3) {
363 		if (ap->a_mode & VREAD)
364 			mode = NFSV3ACCESS_READ;
365 		else
366 			mode = 0;
367 		if (vp->v_type != VDIR) {
368 			if (ap->a_mode & VWRITE)
369 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
370 			if (ap->a_mode & VEXEC)
371 				mode |= NFSV3ACCESS_EXECUTE;
372 		} else {
373 			if (ap->a_mode & VWRITE)
374 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
375 					 NFSV3ACCESS_DELETE);
376 			if (ap->a_mode & VEXEC)
377 				mode |= NFSV3ACCESS_LOOKUP;
378 		}
379 		/* XXX safety belt, only make blanket request if caching */
380 		if (nfsaccess_cache_timeout > 0) {
381 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
382 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
383 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
384 		} else {
385 			wmode = mode;
386 		}
387 
388 		/*
389 		 * Does our cached result allow us to give a definite yes to
390 		 * this request?
391 		 */
392 		if (np->n_modestamp &&
393 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
394 		   (cred->cr_uid == np->n_modeuid) &&
395 		   ((np->n_mode & mode) == mode)) {
396 			nfsstats.accesscache_hits++;
397 		} else {
398 			/*
399 			 * Either a no, or a don't know.  Go to the wire.
400 			 */
401 			nfsstats.accesscache_misses++;
402 		        error = nfs3_access_otw(vp, wmode, td, cred);
403 			if (!error) {
404 				if ((np->n_mode & mode) != mode) {
405 					error = EACCES;
406 				}
407 			}
408 		}
409 	} else {
410 		if ((error = nfs_laccess(ap)) != 0) {
411 			crfree(cred);
412 			lwkt_reltoken(&nmp->nm_token);
413 			return (error);
414 		}
415 
416 		/*
417 		 * Attempt to prevent a mapped root from accessing a file
418 		 * which it shouldn't.  We try to read a byte from the file
419 		 * if the user is root and the file is not zero length.
420 		 * After calling nfs_laccess, we should have the correct
421 		 * file size cached.
422 		 */
423 		if (cred->cr_uid == 0 && (ap->a_mode & VREAD)
424 		    && VTONFS(vp)->n_size > 0) {
425 			struct iovec aiov;
426 			struct uio auio;
427 			char buf[1];
428 
429 			aiov.iov_base = buf;
430 			aiov.iov_len = 1;
431 			auio.uio_iov = &aiov;
432 			auio.uio_iovcnt = 1;
433 			auio.uio_offset = 0;
434 			auio.uio_resid = 1;
435 			auio.uio_segflg = UIO_SYSSPACE;
436 			auio.uio_rw = UIO_READ;
437 			auio.uio_td = td;
438 
439 			if (vp->v_type == VREG) {
440 				error = nfs_readrpc_uio(vp, &auio);
441 			} else if (vp->v_type == VDIR) {
442 				char* bp;
443 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
444 				aiov.iov_base = bp;
445 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
446 				error = nfs_readdirrpc_uio(vp, &auio);
447 				kfree(bp, M_TEMP);
448 			} else if (vp->v_type == VLNK) {
449 				error = nfs_readlinkrpc_uio(vp, &auio);
450 			} else {
451 				error = EACCES;
452 			}
453 		}
454 	}
455 	/*
456 	 * [re]record creds for reading and/or writing if access
457 	 * was granted.  Assume the NFS server will grant read access
458 	 * for execute requests.
459 	 */
460 	if (error == 0) {
461 		if ((ap->a_mode & (VREAD|VEXEC)) && cred != np->n_rucred) {
462 			crhold(cred);
463 			if (np->n_rucred)
464 				crfree(np->n_rucred);
465 			np->n_rucred = cred;
466 		}
467 		if ((ap->a_mode & VWRITE) && cred != np->n_wucred) {
468 			crhold(cred);
469 			if (np->n_wucred)
470 				crfree(np->n_wucred);
471 			np->n_wucred = cred;
472 		}
473 	}
474 	lwkt_reltoken(&nmp->nm_token);
475 	crfree(cred);
476 	return(error);
477 }
478 
479 /*
480  * nfs open vnode op
481  * Check to see if the type is ok
482  * and that deletion is not in progress.
483  * For paged in text files, you will need to flush the page cache
484  * if consistency is lost.
485  *
486  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
487  *	    struct file *a_fp)
488  */
489 /* ARGSUSED */
490 static int
491 nfs_open(struct vop_open_args *ap)
492 {
493 	struct vnode *vp = ap->a_vp;
494 	struct nfsnode *np = VTONFS(vp);
495 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
496 	struct vattr vattr;
497 	int error;
498 
499 	lwkt_gettoken(&nmp->nm_token);
500 
501 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
502 #ifdef DIAGNOSTIC
503 		kprintf("open eacces vtyp=%d\n",vp->v_type);
504 #endif
505 		lwkt_reltoken(&nmp->nm_token);
506 		return (EOPNOTSUPP);
507 	}
508 
509 	/*
510 	 * Save valid creds for reading and writing for later RPCs.
511 	 */
512 	if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) {
513 		crhold(ap->a_cred);
514 		if (np->n_rucred)
515 			crfree(np->n_rucred);
516 		np->n_rucred = ap->a_cred;
517 	}
518 	if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) {
519 		crhold(ap->a_cred);
520 		if (np->n_wucred)
521 			crfree(np->n_wucred);
522 		np->n_wucred = ap->a_cred;
523 	}
524 
525 	/*
526 	 * Clear the attribute cache only if opening with write access.  It
527 	 * is unclear if we should do this at all here, but we certainly
528 	 * should not clear the cache unconditionally simply because a file
529 	 * is being opened.
530 	 */
531 	if (ap->a_mode & FWRITE)
532 		np->n_attrstamp = 0;
533 
534 	/*
535 	 * For normal NFS, reconcile changes made locally verses
536 	 * changes made remotely.  Note that VOP_GETATTR only goes
537 	 * to the wire if the cached attribute has timed out or been
538 	 * cleared.
539 	 *
540 	 * If local modifications have been made clear the attribute
541 	 * cache to force an attribute and modified time check.  If
542 	 * GETATTR detects that the file has been changed by someone
543 	 * other then us it will set NRMODIFIED.
544 	 *
545 	 * If we are opening a directory and local changes have been
546 	 * made we have to invalidate the cache in order to ensure
547 	 * that we get the most up-to-date information from the
548 	 * server.  XXX
549 	 */
550 	if (np->n_flag & NLMODIFIED) {
551 		np->n_attrstamp = 0;
552 		if (vp->v_type == VDIR) {
553 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
554 			if (error == EINTR) {
555 				lwkt_reltoken(&nmp->nm_token);
556 				return (error);
557 			}
558 			nfs_invaldir(vp);
559 		}
560 	}
561 	error = VOP_GETATTR(vp, &vattr);
562 	if (error) {
563 		lwkt_reltoken(&nmp->nm_token);
564 		return (error);
565 	}
566 	if (np->n_flag & NRMODIFIED) {
567 		if (vp->v_type == VDIR)
568 			nfs_invaldir(vp);
569 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
570 		if (error == EINTR) {
571 			lwkt_reltoken(&nmp->nm_token);
572 			return (error);
573 		}
574 		np->n_flag &= ~NRMODIFIED;
575 	}
576 	error = vop_stdopen(ap);
577 	lwkt_reltoken(&nmp->nm_token);
578 
579 	return error;
580 }
581 
582 /*
583  * nfs close vnode op
584  * What an NFS client should do upon close after writing is a debatable issue.
585  * Most NFS clients push delayed writes to the server upon close, basically for
586  * two reasons:
587  * 1 - So that any write errors may be reported back to the client process
588  *     doing the close system call. By far the two most likely errors are
589  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
590  * 2 - To put a worst case upper bound on cache inconsistency between
591  *     multiple clients for the file.
592  * There is also a consistency problem for Version 2 of the protocol w.r.t.
593  * not being able to tell if other clients are writing a file concurrently,
594  * since there is no way of knowing if the changed modify time in the reply
595  * is only due to the write for this client.
596  * (NFS Version 3 provides weak cache consistency data in the reply that
597  *  should be sufficient to detect and handle this case.)
598  *
599  * The current code does the following:
600  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
601  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
602  *                     or commit them (this satisfies 1 and 2 except for the
603  *                     case where the server crashes after this close but
604  *                     before the commit RPC, which is felt to be "good
605  *                     enough". Changing the last argument to nfs_flush() to
606  *                     a 1 would force a commit operation, if it is felt a
607  *                     commit is necessary now.
608  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
609  *                     1 should be dealt with via an fsync() system call for
610  *                     cases where write errors are important.
611  *
612  * nfs_close(struct vnode *a_vp, int a_fflag)
613  */
614 /* ARGSUSED */
615 static int
616 nfs_close(struct vop_close_args *ap)
617 {
618 	struct vnode *vp = ap->a_vp;
619 	struct nfsnode *np = VTONFS(vp);
620 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
621 	int error = 0;
622 	thread_t td = curthread;
623 
624 	vn_lock(vp, LK_UPGRADE | LK_RETRY); /* XXX */
625 	lwkt_gettoken(&nmp->nm_token);
626 
627 	if (vp->v_type == VREG) {
628 	    if (np->n_flag & NLMODIFIED) {
629 		if (NFS_ISV3(vp)) {
630 		    /*
631 		     * Under NFSv3 we have dirty buffers to dispose of.  We
632 		     * must flush them to the NFS server.  We have the option
633 		     * of waiting all the way through the commit rpc or just
634 		     * waiting for the initial write.  The default is to only
635 		     * wait through the initial write so the data is in the
636 		     * server's cache, which is roughly similar to the state
637 		     * a standard disk subsystem leaves the file in on close().
638 		     *
639 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
640 		     * potential races with other processes, and certainly
641 		     * cannot clear it if we don't commit.
642 		     */
643 		    int cm = nfsv3_commit_on_close ? 1 : 0;
644 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
645 		    /* np->n_flag &= ~NLMODIFIED; */
646 		} else {
647 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
648 		}
649 		np->n_attrstamp = 0;
650 	    }
651 	    if (np->n_flag & NWRITEERR) {
652 		np->n_flag &= ~NWRITEERR;
653 		error = np->n_error;
654 	    }
655 	}
656 	vop_stdclose(ap);
657 	lwkt_reltoken(&nmp->nm_token);
658 
659 	return (error);
660 }
661 
662 /*
663  * nfs getattr call from vfs.
664  *
665  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
666  */
667 static int
668 nfs_getattr(struct vop_getattr_args *ap)
669 {
670 	struct vnode *vp = ap->a_vp;
671 	struct nfsnode *np = VTONFS(vp);
672 	struct nfsmount *nmp;
673 	int error = 0;
674 	thread_t td = curthread;
675 	struct nfsm_info info;
676 
677 	info.mrep = NULL;
678 	info.v3 = NFS_ISV3(vp);
679 	nmp = VFSTONFS(vp->v_mount);
680 
681 	lwkt_gettoken(&nmp->nm_token);
682 
683 	/*
684 	 * Update local times for special files.
685 	 */
686 	if (np->n_flag & (NACC | NUPD))
687 		np->n_flag |= NCHG;
688 	/*
689 	 * First look in the cache.
690 	 */
691 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
692 		goto done;
693 
694 	if (info.v3 && nfsaccess_cache_timeout > 0) {
695 		nfsstats.accesscache_misses++;
696 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
697 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
698 			goto done;
699 	}
700 
701 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
702 	nfsm_reqhead(&info, vp, NFSPROC_GETATTR, NFSX_FH(info.v3));
703 	ERROROUT(nfsm_fhtom(&info, vp));
704 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_GETATTR, td,
705 				nfs_vpcred(vp, ND_CHECK), &error));
706 	if (error == 0) {
707 		ERROROUT(nfsm_loadattr(&info, vp, ap->a_vap));
708 	}
709 	m_freem(info.mrep);
710 	info.mrep = NULL;
711 done:
712 	/*
713 	 * NFS doesn't support chflags flags.  If the nfs mount was
714 	 * made -o cache set the UF_CACHE bit for swapcache.
715 	 */
716 	if ((nmp->nm_flag & NFSMNT_CACHE) && (vp->v_flag & VROOT))
717 		ap->a_vap->va_flags |= UF_CACHE;
718 nfsmout:
719 	lwkt_reltoken(&nmp->nm_token);
720 	return (error);
721 }
722 
723 /*
724  * nfs setattr call.
725  *
726  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
727  */
728 static int
729 nfs_setattr(struct vop_setattr_args *ap)
730 {
731 	struct vnode *vp = ap->a_vp;
732 	struct nfsnode *np = VTONFS(vp);
733 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
734 	struct vattr *vap = ap->a_vap;
735 	int error = 0;
736 	int kflags = 0;
737 	off_t tsize;
738 	thread_t td = curthread;
739 
740 #ifndef nolint
741 	tsize = (off_t)0;
742 #endif
743 	/*
744 	 * Setting of flags is not supported.
745 	 */
746 	if (vap->va_flags != VNOVAL)
747 		return (EOPNOTSUPP);
748 
749 	/*
750 	 * Disallow write attempts if the filesystem is mounted read-only.
751 	 */
752   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
753 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
754 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
755 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
756 		return (EROFS);
757 
758 	lwkt_gettoken(&nmp->nm_token);
759 
760 	if (vap->va_size != VNOVAL) {
761 		/*
762 		 * truncation requested
763 		 */
764  		switch (vp->v_type) {
765  		case VDIR:
766 			lwkt_reltoken(&nmp->nm_token);
767  			return (EISDIR);
768  		case VCHR:
769  		case VBLK:
770  		case VSOCK:
771  		case VFIFO:
772 			if (vap->va_mtime.tv_sec == VNOVAL &&
773 			    vap->va_atime.tv_sec == VNOVAL &&
774 			    vap->va_mode == (mode_t)VNOVAL &&
775 			    vap->va_uid == (uid_t)VNOVAL &&
776 			    vap->va_gid == (gid_t)VNOVAL) {
777 				lwkt_reltoken(&nmp->nm_token);
778 				return (0);
779 			}
780  			vap->va_size = VNOVAL;
781  			break;
782  		default:
783 			/*
784 			 * Disallow write attempts if the filesystem is
785 			 * mounted read-only.
786 			 */
787 			if (vp->v_mount->mnt_flag & MNT_RDONLY) {
788 				lwkt_reltoken(&nmp->nm_token);
789 				return (EROFS);
790 			}
791 
792 			tsize = np->n_size;
793 again:
794 			error = nfs_meta_setsize(vp, td, vap->va_size, 0);
795 
796 #if 0
797  			if (np->n_flag & NLMODIFIED) {
798  			    if (vap->va_size == 0)
799  				error = nfs_vinvalbuf(vp, 0, 1);
800  			    else
801  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
802  			}
803 #endif
804 			/*
805 			 * note: this loop case almost always happens at
806 			 * least once per truncation.
807 			 */
808 			if (error == 0 && np->n_size != vap->va_size)
809 				goto again;
810 			np->n_vattr.va_size = vap->va_size;
811 			kflags |= NOTE_WRITE;
812 			if (tsize < vap->va_size)
813 				kflags |= NOTE_EXTEND;
814 			break;
815 		}
816 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
817 		/*
818 		 * What to do.  If we are modifying the mtime we lose
819 		 * mtime detection of changes made by the server or other
820 		 * clients.  But programs like rsync/rdist/cpdup are going
821 		 * to call utimes a lot.  We don't want to piecemeal sync.
822 		 *
823 		 * For now sync if any prior remote changes were detected,
824 		 * but allow us to lose track of remote changes made during
825 		 * the utimes operation.
826 		 */
827 		if (np->n_flag & NRMODIFIED)
828 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
829 		if (error == EINTR) {
830 			lwkt_reltoken(&nmp->nm_token);
831 			return (error);
832 		}
833 		if (error == 0) {
834 			if (vap->va_mtime.tv_sec != VNOVAL) {
835 				np->n_mtime = vap->va_mtime.tv_sec;
836 			}
837 		}
838 	}
839 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
840 	if (error == 0)
841 		kflags |= NOTE_EXTEND;
842 
843 	/*
844 	 * Sanity check if a truncation was issued.  This should only occur
845 	 * if multiple processes are racing on the same file.
846 	 */
847 	if (error == 0 && vap->va_size != VNOVAL &&
848 	    np->n_size != vap->va_size) {
849 		kprintf("NFS ftruncate: server disagrees on the file size: "
850 			"%jd/%jd/%jd\n",
851 			(intmax_t)tsize,
852 			(intmax_t)vap->va_size,
853 			(intmax_t)np->n_size);
854 		goto again;
855 	}
856 	if (error && vap->va_size != VNOVAL) {
857 		np->n_size = np->n_vattr.va_size = tsize;
858 		nfs_meta_setsize(vp, td, np->n_size, 0);
859 	}
860 	lwkt_reltoken(&nmp->nm_token);
861 	nfs_knote(vp, kflags);
862 
863 	return (error);
864 }
865 
866 /*
867  * Do an nfs setattr rpc.
868  */
869 static int
870 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
871 	       struct ucred *cred, struct thread *td)
872 {
873 	struct nfsv2_sattr *sp;
874 	struct nfsnode *np = VTONFS(vp);
875 	u_int32_t *tl;
876 	int error = 0, wccflag = NFSV3_WCCRATTR;
877 	struct nfsm_info info;
878 
879 	info.mrep = NULL;
880 	info.v3 = NFS_ISV3(vp);
881 
882 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
883 	nfsm_reqhead(&info, vp, NFSPROC_SETATTR,
884 		     NFSX_FH(info.v3) + NFSX_SATTR(info.v3));
885 	ERROROUT(nfsm_fhtom(&info, vp));
886 	if (info.v3) {
887 		nfsm_v3attrbuild(&info, vap, TRUE);
888 		tl = nfsm_build(&info, NFSX_UNSIGNED);
889 		*tl = nfs_false;
890 	} else {
891 		sp = nfsm_build(&info, NFSX_V2SATTR);
892 		if (vap->va_mode == (mode_t)VNOVAL)
893 			sp->sa_mode = nfs_xdrneg1;
894 		else
895 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
896 		if (vap->va_uid == (uid_t)VNOVAL)
897 			sp->sa_uid = nfs_xdrneg1;
898 		else
899 			sp->sa_uid = txdr_unsigned(vap->va_uid);
900 		if (vap->va_gid == (gid_t)VNOVAL)
901 			sp->sa_gid = nfs_xdrneg1;
902 		else
903 			sp->sa_gid = txdr_unsigned(vap->va_gid);
904 		sp->sa_size = txdr_unsigned(vap->va_size);
905 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
906 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
907 	}
908 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_SETATTR, td, cred, &error));
909 	if (info.v3) {
910 		np->n_modestamp = 0;
911 		ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
912 	} else {
913 		ERROROUT(nfsm_loadattr(&info, vp, NULL));
914 	}
915 	m_freem(info.mrep);
916 	info.mrep = NULL;
917 nfsmout:
918 	return (error);
919 }
920 
921 static
922 void
923 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
924 {
925 	if (nctimeout == 0)
926 		nctimeout = 1;
927 	else
928 		nctimeout *= hz;
929 	cache_setvp(nch, vp);
930 	cache_settimeout(nch, nctimeout);
931 }
932 
933 /*
934  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
935  * nfs_lookup() until all remaining new api calls are implemented.
936  *
937  * Resolve a namecache entry.  This function is passed a locked ncp and
938  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
939  */
940 static int
941 nfs_nresolve(struct vop_nresolve_args *ap)
942 {
943 	struct thread *td = curthread;
944 	struct namecache *ncp;
945 	struct nfsmount *nmp;
946 	struct nfsnode *np;
947 	struct vnode *dvp;
948 	struct vnode *nvp;
949 	nfsfh_t *fhp;
950 	int attrflag;
951 	int fhsize;
952 	int error;
953 	int tmp_error;
954 	int len;
955 	struct nfsm_info info;
956 
957 	dvp = ap->a_dvp;
958 	nmp = VFSTONFS(dvp->v_mount);
959 
960 	lwkt_gettoken(&nmp->nm_token);
961 
962 	if ((error = vget(dvp, LK_SHARED)) != 0) {
963 		lwkt_reltoken(&nmp->nm_token);
964 		return (error);
965 	}
966 
967 	info.mrep = NULL;
968 	info.v3 = NFS_ISV3(dvp);
969 
970 	nvp = NULL;
971 	nfsstats.lookupcache_misses++;
972 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
973 	ncp = ap->a_nch->ncp;
974 	len = ncp->nc_nlen;
975 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
976 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
977 	ERROROUT(nfsm_fhtom(&info, dvp));
978 	ERROROUT(nfsm_strtom(&info, ncp->nc_name, len, NFS_MAXNAMLEN));
979 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td,
980 				ap->a_cred, &error));
981 	if (error) {
982 		/*
983 		 * Cache negatve lookups to reduce NFS traffic, but use
984 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
985 		 * XXX we should add a namecache flag for no-caching
986 		 * to uncache the negative hit as soon as possible, but
987 		 * we cannot simply destroy the entry because it is used
988 		 * as a placeholder by the caller.
989 		 *
990 		 * The refactored nfs code will overwrite a non-zero error
991 		 * with 0 when we use ERROROUT(), so don't here.
992 		 */
993 		if (error == ENOENT)
994 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
995 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
996 					     NFS_LATTR_NOSHRINK);
997 		if (tmp_error) {
998 			error = tmp_error;
999 			goto nfsmout;
1000 		}
1001 		m_freem(info.mrep);
1002 		info.mrep = NULL;
1003 		goto nfsmout;
1004 	}
1005 
1006 	/*
1007 	 * Success, get the file handle, do various checks, and load
1008 	 * post-operation data from the reply packet.  Theoretically
1009 	 * we should never be looking up "." so, theoretically, we
1010 	 * should never get the same file handle as our directory.  But
1011 	 * we check anyway. XXX
1012 	 *
1013 	 * Note that no timeout is set for the positive cache hit.  We
1014 	 * assume, theoretically, that ESTALE returns will be dealt with
1015 	 * properly to handle NFS races and in anycase we cannot depend
1016 	 * on a timeout to deal with NFS open/create/excl issues so instead
1017 	 * of a bad hack here the rest of the NFS client code needs to do
1018 	 * the right thing.
1019 	 */
1020 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
1021 
1022 	np = VTONFS(dvp);
1023 	if (NFS_CMPFH(np, fhp, fhsize)) {
1024 		vref(dvp);
1025 		nvp = dvp;
1026 	} else {
1027 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, NULL);
1028 		if (error) {
1029 			m_freem(info.mrep);
1030 			info.mrep = NULL;
1031 			vput(dvp);
1032 			lwkt_reltoken(&nmp->nm_token);
1033 			return (error);
1034 		}
1035 		nvp = NFSTOV(np);
1036 	}
1037 	if (info.v3) {
1038 		ERROROUT(nfsm_postop_attr(&info, nvp, &attrflag,
1039 					  NFS_LATTR_NOSHRINK));
1040 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1041 					  NFS_LATTR_NOSHRINK));
1042 	} else {
1043 		ERROROUT(nfsm_loadattr(&info, nvp, NULL));
1044 	}
1045 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
1046 	m_freem(info.mrep);
1047 	info.mrep = NULL;
1048 nfsmout:
1049 	lwkt_reltoken(&nmp->nm_token);
1050 	vput(dvp);
1051 	if (nvp) {
1052 		if (nvp == dvp)
1053 			vrele(nvp);
1054 		else
1055 			vput(nvp);
1056 	}
1057 	return (error);
1058 }
1059 
1060 /*
1061  * 'cached' nfs directory lookup
1062  *
1063  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
1064  *
1065  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
1066  *	      struct componentname *a_cnp)
1067  */
1068 static int
1069 nfs_lookup(struct vop_old_lookup_args *ap)
1070 {
1071 	struct componentname *cnp = ap->a_cnp;
1072 	struct vnode *dvp = ap->a_dvp;
1073 	struct vnode **vpp = ap->a_vpp;
1074 	int flags = cnp->cn_flags;
1075 	struct vnode *newvp;
1076 	struct vnode *notvp;
1077 	struct nfsmount *nmp;
1078 	long len;
1079 	nfsfh_t *fhp;
1080 	struct nfsnode *np;
1081 	int lockparent, wantparent, attrflag, fhsize;
1082 	int error;
1083 	int tmp_error;
1084 	struct nfsm_info info;
1085 
1086 	info.mrep = NULL;
1087 	info.v3 = NFS_ISV3(dvp);
1088 	error = 0;
1089 
1090 	notvp = (cnp->cn_flags & CNP_NOTVP) ? cnp->cn_notvp : NULL;
1091 
1092 	/*
1093 	 * Read-only mount check and directory check.
1094 	 */
1095 	*vpp = NULLVP;
1096 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1097 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1098 		return (EROFS);
1099 
1100 	if (dvp->v_type != VDIR)
1101 		return (ENOTDIR);
1102 
1103 	/*
1104 	 * Look it up in the cache.  Note that ENOENT is only returned if we
1105 	 * previously entered a negative hit (see later on).  The additional
1106 	 * nfsneg_cache_timeout check causes previously cached results to
1107 	 * be instantly ignored if the negative caching is turned off.
1108 	 */
1109 	lockparent = flags & CNP_LOCKPARENT;
1110 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1111 	nmp = VFSTONFS(dvp->v_mount);
1112 	np = VTONFS(dvp);
1113 
1114 	lwkt_gettoken(&nmp->nm_token);
1115 
1116 	/*
1117 	 * Go to the wire.
1118 	 */
1119 	error = 0;
1120 	newvp = NULLVP;
1121 	nfsstats.lookupcache_misses++;
1122 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1123 	len = cnp->cn_namelen;
1124 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
1125 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1126 	ERROROUT(nfsm_fhtom(&info, dvp));
1127 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
1128 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, cnp->cn_td,
1129 				cnp->cn_cred, &error));
1130 	if (error) {
1131 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
1132 					     NFS_LATTR_NOSHRINK);
1133 		if (tmp_error) {
1134 			error = tmp_error;
1135 			goto nfsmout;
1136 		}
1137 
1138 		m_freem(info.mrep);
1139 		info.mrep = NULL;
1140 		goto nfsmout;
1141 	}
1142 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
1143 
1144 	/*
1145 	 * Handle RENAME case...
1146 	 */
1147 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1148 		if (NFS_CMPFH(np, fhp, fhsize)) {
1149 			m_freem(info.mrep);
1150 			info.mrep = NULL;
1151 			lwkt_reltoken(&nmp->nm_token);
1152 			return (EISDIR);
1153 		}
1154 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, notvp);
1155 		if (error) {
1156 			m_freem(info.mrep);
1157 			info.mrep = NULL;
1158 			lwkt_reltoken(&nmp->nm_token);
1159 			return (error);
1160 		}
1161 		newvp = NFSTOV(np);
1162 		if (info.v3) {
1163 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1164 						  NFS_LATTR_NOSHRINK));
1165 			ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1166 						  NFS_LATTR_NOSHRINK));
1167 		} else {
1168 			ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1169 		}
1170 		*vpp = newvp;
1171 		m_freem(info.mrep);
1172 		info.mrep = NULL;
1173 		if (!lockparent) {
1174 			vn_unlock(dvp);
1175 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1176 		}
1177 		lwkt_reltoken(&nmp->nm_token);
1178 		return (0);
1179 	}
1180 
1181 	if (flags & CNP_ISDOTDOT) {
1182 		vn_unlock(dvp);
1183 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1184 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, notvp);
1185 		if (error) {
1186 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1187 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1188 			lwkt_reltoken(&nmp->nm_token);
1189 			return (error); /* NOTE: return error from nget */
1190 		}
1191 		newvp = NFSTOV(np);
1192 		if (lockparent) {
1193 			error = vn_lock(dvp, LK_EXCLUSIVE | LK_FAILRECLAIM);
1194 			if (error) {
1195 				vput(newvp);
1196 				lwkt_reltoken(&nmp->nm_token);
1197 				return (error);
1198 			}
1199 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1200 		}
1201 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1202 		vref(dvp);
1203 		newvp = dvp;
1204 	} else {
1205 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, notvp);
1206 		if (error) {
1207 			m_freem(info.mrep);
1208 			info.mrep = NULL;
1209 			lwkt_reltoken(&nmp->nm_token);
1210 			return (error);
1211 		}
1212 		if (!lockparent) {
1213 			vn_unlock(dvp);
1214 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1215 		}
1216 		newvp = NFSTOV(np);
1217 	}
1218 	if (info.v3) {
1219 		ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1220 					  NFS_LATTR_NOSHRINK));
1221 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1222 					  NFS_LATTR_NOSHRINK));
1223 	} else {
1224 		ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1225 	}
1226 #if 0
1227 	/* XXX MOVE TO nfs_nremove() */
1228 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1229 	    cnp->cn_nameiop != NAMEI_DELETE) {
1230 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1231 	}
1232 #endif
1233 	*vpp = newvp;
1234 	m_freem(info.mrep);
1235 	info.mrep = NULL;
1236 nfsmout:
1237 	if (error) {
1238 		if (newvp != NULLVP) {
1239 			vrele(newvp);
1240 			*vpp = NULLVP;
1241 		}
1242 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1243 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1244 		    error == ENOENT) {
1245 			if (!lockparent) {
1246 				vn_unlock(dvp);
1247 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1248 			}
1249 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1250 				error = EROFS;
1251 			else
1252 				error = EJUSTRETURN;
1253 		}
1254 	}
1255 	lwkt_reltoken(&nmp->nm_token);
1256 	return (error);
1257 }
1258 
1259 /*
1260  * nfs read call.
1261  * Just call nfs_bioread() to do the work.
1262  *
1263  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1264  *	    struct ucred *a_cred)
1265  */
1266 static int
1267 nfs_read(struct vop_read_args *ap)
1268 {
1269 	struct vnode *vp = ap->a_vp;
1270 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1271 	int error;
1272 
1273 	lwkt_gettoken(&nmp->nm_token);
1274 	error = nfs_bioread(vp, ap->a_uio, ap->a_ioflag);
1275 	lwkt_reltoken(&nmp->nm_token);
1276 
1277 	return error;
1278 }
1279 
1280 /*
1281  * nfs readlink call
1282  *
1283  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1284  */
1285 static int
1286 nfs_readlink(struct vop_readlink_args *ap)
1287 {
1288 	struct vnode *vp = ap->a_vp;
1289 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1290 	int error;
1291 
1292 	if (vp->v_type != VLNK)
1293 		return (EINVAL);
1294 
1295 	lwkt_gettoken(&nmp->nm_token);
1296 	error = nfs_bioread(vp, ap->a_uio, 0);
1297 	lwkt_reltoken(&nmp->nm_token);
1298 
1299 	return error;
1300 }
1301 
1302 /*
1303  * Do a readlink rpc.
1304  * Called by nfs_doio() from below the buffer cache.
1305  */
1306 int
1307 nfs_readlinkrpc_uio(struct vnode *vp, struct uio *uiop)
1308 {
1309 	int error = 0, len, attrflag;
1310 	struct nfsm_info info;
1311 
1312 	info.mrep = NULL;
1313 	info.v3 = NFS_ISV3(vp);
1314 
1315 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1316 	nfsm_reqhead(&info, vp, NFSPROC_READLINK, NFSX_FH(info.v3));
1317 	ERROROUT(nfsm_fhtom(&info, vp));
1318 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READLINK, uiop->uio_td,
1319 				nfs_vpcred(vp, ND_CHECK), &error));
1320 	if (info.v3) {
1321 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1322 					  NFS_LATTR_NOSHRINK));
1323 	}
1324 	if (!error) {
1325 		NEGATIVEOUT(len = nfsm_strsiz(&info, NFS_MAXPATHLEN));
1326 		if (len == NFS_MAXPATHLEN) {
1327 			struct nfsnode *np = VTONFS(vp);
1328 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1329 				len = np->n_size;
1330 		}
1331 		ERROROUT(nfsm_mtouio(&info, uiop, len));
1332 	}
1333 	m_freem(info.mrep);
1334 	info.mrep = NULL;
1335 nfsmout:
1336 	return (error);
1337 }
1338 
1339 /*
1340  * nfs synchronous read rpc using UIO
1341  */
1342 int
1343 nfs_readrpc_uio(struct vnode *vp, struct uio *uiop)
1344 {
1345 	u_int32_t *tl;
1346 	struct nfsmount *nmp;
1347 	int error = 0, len, retlen, tsiz, eof, attrflag;
1348 	struct nfsm_info info;
1349 	off_t tmp_off;
1350 
1351 	info.mrep = NULL;
1352 	info.v3 = NFS_ISV3(vp);
1353 
1354 #ifndef nolint
1355 	eof = 0;
1356 #endif
1357 	nmp = VFSTONFS(vp->v_mount);
1358 
1359 	tsiz = uiop->uio_resid;
1360 	tmp_off = uiop->uio_offset + tsiz;
1361 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uiop->uio_offset)
1362 		return (EFBIG);
1363 	tmp_off = uiop->uio_offset;
1364 	while (tsiz > 0) {
1365 		nfsstats.rpccnt[NFSPROC_READ]++;
1366 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1367 		nfsm_reqhead(&info, vp, NFSPROC_READ,
1368 			     NFSX_FH(info.v3) + NFSX_UNSIGNED * 3);
1369 		ERROROUT(nfsm_fhtom(&info, vp));
1370 		tl = nfsm_build(&info, NFSX_UNSIGNED * 3);
1371 		if (info.v3) {
1372 			txdr_hyper(uiop->uio_offset, tl);
1373 			*(tl + 2) = txdr_unsigned(len);
1374 		} else {
1375 			*tl++ = txdr_unsigned(uiop->uio_offset);
1376 			*tl++ = txdr_unsigned(len);
1377 			*tl = 0;
1378 		}
1379 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READ, uiop->uio_td,
1380 					nfs_vpcred(vp, ND_READ), &error));
1381 		if (info.v3) {
1382 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1383 						 NFS_LATTR_NOSHRINK));
1384 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
1385 			eof = fxdr_unsigned(int, *(tl + 1));
1386 		} else {
1387 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1388 		}
1389 		NEGATIVEOUT(retlen = nfsm_strsiz(&info, len));
1390 		ERROROUT(nfsm_mtouio(&info, uiop, retlen));
1391 		m_freem(info.mrep);
1392 		info.mrep = NULL;
1393 
1394 		/*
1395 		 * Handle short-read from server (NFSv3).  If EOF is not
1396 		 * flagged (and no error occurred), but retlen is less
1397 		 * then the request size, we must zero-fill the remainder.
1398 		 */
1399 		if (retlen < len && info.v3 && eof == 0) {
1400 			ERROROUT(uiomovez(len - retlen, uiop));
1401 			retlen = len;
1402 		}
1403 		tsiz -= retlen;
1404 
1405 		/*
1406 		 * Terminate loop on EOF or zero-length read.
1407 		 *
1408 		 * For NFSv2 a short-read indicates EOF, not zero-fill,
1409 		 * and also terminates the loop.
1410 		 */
1411 		if (info.v3) {
1412 			if (eof || retlen == 0)
1413 				tsiz = 0;
1414 		} else if (retlen < len) {
1415 			tsiz = 0;
1416 		}
1417 	}
1418 nfsmout:
1419 	return (error);
1420 }
1421 
1422 /*
1423  * nfs write call
1424  */
1425 int
1426 nfs_writerpc_uio(struct vnode *vp, struct uio *uiop,
1427 		 int *iomode, int *must_commit)
1428 {
1429 	u_int32_t *tl;
1430 	int32_t backup;
1431 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1432 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1433 	int  committed = NFSV3WRITE_FILESYNC;
1434 	struct nfsm_info info;
1435 
1436 	info.mrep = NULL;
1437 	info.v3 = NFS_ISV3(vp);
1438 
1439 #ifndef DIAGNOSTIC
1440 	if (uiop->uio_iovcnt != 1)
1441 		panic("nfs: writerpc iovcnt > 1");
1442 #endif
1443 	*must_commit = 0;
1444 	tsiz = uiop->uio_resid;
1445 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1446 		return (EFBIG);
1447 	while (tsiz > 0) {
1448 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1449 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1450 		nfsm_reqhead(&info, vp, NFSPROC_WRITE,
1451 			     NFSX_FH(info.v3) + 5 * NFSX_UNSIGNED +
1452 			     nfsm_rndup(len));
1453 		ERROROUT(nfsm_fhtom(&info, vp));
1454 		if (info.v3) {
1455 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
1456 			txdr_hyper(uiop->uio_offset, tl);
1457 			tl += 2;
1458 			*tl++ = txdr_unsigned(len);
1459 			*tl++ = txdr_unsigned(*iomode);
1460 			*tl = txdr_unsigned(len);
1461 		} else {
1462 			u_int32_t x;
1463 
1464 			tl = nfsm_build(&info, 4 * NFSX_UNSIGNED);
1465 			/* Set both "begin" and "current" to non-garbage. */
1466 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1467 			*tl++ = x;	/* "begin offset" */
1468 			*tl++ = x;	/* "current offset" */
1469 			x = txdr_unsigned(len);
1470 			*tl++ = x;	/* total to this offset */
1471 			*tl = x;	/* size of this write */
1472 		}
1473 		ERROROUT(nfsm_uiotom(&info, uiop, len));
1474 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_WRITE, uiop->uio_td,
1475 					nfs_vpcred(vp, ND_WRITE), &error));
1476 		if (info.v3) {
1477 			/*
1478 			 * The write RPC returns a before and after mtime.  The
1479 			 * nfsm_wcc_data() macro checks the before n_mtime
1480 			 * against the before time and stores the after time
1481 			 * in the nfsnode's cached vattr and n_mtime field.
1482 			 * The NRMODIFIED bit will be set if the before
1483 			 * time did not match the original mtime.
1484 			 */
1485 			wccflag = NFSV3_WCCCHK;
1486 			ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
1487 			if (error == 0) {
1488 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1489 				rlen = fxdr_unsigned(int, *tl++);
1490 				if (rlen == 0) {
1491 					error = NFSERR_IO;
1492 					m_freem(info.mrep);
1493 					info.mrep = NULL;
1494 					break;
1495 				} else if (rlen < len) {
1496 					backup = len - rlen;
1497 					uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1498 					uiop->uio_iov->iov_len += backup;
1499 					uiop->uio_offset -= backup;
1500 					uiop->uio_resid += backup;
1501 					len = rlen;
1502 				}
1503 				commit = fxdr_unsigned(int, *tl++);
1504 
1505 				/*
1506 				 * Return the lowest committment level
1507 				 * obtained by any of the RPCs.
1508 				 */
1509 				if (committed == NFSV3WRITE_FILESYNC)
1510 					committed = commit;
1511 				else if (committed == NFSV3WRITE_DATASYNC &&
1512 					commit == NFSV3WRITE_UNSTABLE)
1513 					committed = commit;
1514 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1515 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1516 					NFSX_V3WRITEVERF);
1517 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1518 				} else if (bcmp((caddr_t)tl,
1519 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1520 				    *must_commit = 1;
1521 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1522 					NFSX_V3WRITEVERF);
1523 				}
1524 			}
1525 		} else {
1526 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1527 		}
1528 		m_freem(info.mrep);
1529 		info.mrep = NULL;
1530 		if (error)
1531 			break;
1532 		tsiz -= len;
1533 	}
1534 nfsmout:
1535 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1536 		committed = NFSV3WRITE_FILESYNC;
1537 	*iomode = committed;
1538 	if (error)
1539 		uiop->uio_resid = tsiz;
1540 	return (error);
1541 }
1542 
1543 /*
1544  * nfs mknod rpc
1545  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1546  * mode set to specify the file type and the size field for rdev.
1547  */
1548 static int
1549 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1550 	     struct vattr *vap)
1551 {
1552 	struct nfsv2_sattr *sp;
1553 	u_int32_t *tl;
1554 	struct vnode *newvp = NULL;
1555 	struct nfsnode *np = NULL;
1556 	struct vattr vattr;
1557 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1558 	int rmajor, rminor;
1559 	struct nfsm_info info;
1560 
1561 	info.mrep = NULL;
1562 	info.v3 = NFS_ISV3(dvp);
1563 
1564 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1565 		rmajor = txdr_unsigned(vap->va_rmajor);
1566 		rminor = txdr_unsigned(vap->va_rminor);
1567 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1568 		rmajor = nfs_xdrneg1;
1569 		rminor = nfs_xdrneg1;
1570 	} else {
1571 		return (EOPNOTSUPP);
1572 	}
1573 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1574 		return (error);
1575 	}
1576 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1577 	nfsm_reqhead(&info, dvp, NFSPROC_MKNOD,
1578 		     NFSX_FH(info.v3) + 4 * NFSX_UNSIGNED +
1579 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1580 	ERROROUT(nfsm_fhtom(&info, dvp));
1581 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1582 			     NFS_MAXNAMLEN));
1583 	if (info.v3) {
1584 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1585 		*tl++ = vtonfsv3_type(vap->va_type);
1586 		nfsm_v3attrbuild(&info, vap, FALSE);
1587 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1588 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1589 			*tl++ = txdr_unsigned(vap->va_rmajor);
1590 			*tl = txdr_unsigned(vap->va_rminor);
1591 		}
1592 	} else {
1593 		sp = nfsm_build(&info, NFSX_V2SATTR);
1594 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1595 		sp->sa_uid = nfs_xdrneg1;
1596 		sp->sa_gid = nfs_xdrneg1;
1597 		sp->sa_size = makeudev(rmajor, rminor);
1598 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1599 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1600 	}
1601 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKNOD, cnp->cn_td,
1602 				cnp->cn_cred, &error));
1603 	if (!error) {
1604 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1605 		if (!gotvp) {
1606 			if (newvp) {
1607 				vput(newvp);
1608 				newvp = NULL;
1609 			}
1610 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1611 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1612 			if (!error)
1613 				newvp = NFSTOV(np);
1614 		}
1615 	}
1616 	if (info.v3) {
1617 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1618 	}
1619 	m_freem(info.mrep);
1620 	info.mrep = NULL;
1621 nfsmout:
1622 	if (error) {
1623 		if (newvp)
1624 			vput(newvp);
1625 	} else {
1626 		*vpp = newvp;
1627 	}
1628 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1629 	if (!wccflag)
1630 		VTONFS(dvp)->n_attrstamp = 0;
1631 	return (error);
1632 }
1633 
1634 /*
1635  * nfs mknod vop
1636  * just call nfs_mknodrpc() to do the work.
1637  *
1638  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1639  *	     struct componentname *a_cnp, struct vattr *a_vap)
1640  */
1641 /* ARGSUSED */
1642 static int
1643 nfs_mknod(struct vop_old_mknod_args *ap)
1644 {
1645 	struct nfsmount *nmp = VFSTONFS(ap->a_dvp->v_mount);
1646 	int error;
1647 
1648 	lwkt_gettoken(&nmp->nm_token);
1649 	error = nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1650 	lwkt_reltoken(&nmp->nm_token);
1651 	if (error == 0)
1652 		nfs_knote(ap->a_dvp, NOTE_WRITE);
1653 
1654 	return error;
1655 }
1656 
1657 static u_long create_verf;
1658 /*
1659  * nfs file create call
1660  *
1661  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1662  *	      struct componentname *a_cnp, struct vattr *a_vap)
1663  */
1664 static int
1665 nfs_create(struct vop_old_create_args *ap)
1666 {
1667 	struct vnode *dvp = ap->a_dvp;
1668 	struct vattr *vap = ap->a_vap;
1669 	struct nfsmount *nmp = VFSTONFS(dvp->v_mount);
1670 	struct componentname *cnp = ap->a_cnp;
1671 	struct nfsv2_sattr *sp;
1672 	u_int32_t *tl;
1673 	struct nfsnode *np = NULL;
1674 	struct vnode *newvp = NULL;
1675 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1676 	struct vattr vattr;
1677 	struct nfsm_info info;
1678 
1679 	info.mrep = NULL;
1680 	info.v3 = NFS_ISV3(dvp);
1681 	lwkt_gettoken(&nmp->nm_token);
1682 
1683 	/*
1684 	 * Oops, not for me..
1685 	 */
1686 	if (vap->va_type == VSOCK) {
1687 		error = nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap);
1688 		lwkt_reltoken(&nmp->nm_token);
1689 		return error;
1690 	}
1691 
1692 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1693 		lwkt_reltoken(&nmp->nm_token);
1694 		return (error);
1695 	}
1696 	if (vap->va_vaflags & VA_EXCLUSIVE)
1697 		fmode |= O_EXCL;
1698 again:
1699 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1700 	nfsm_reqhead(&info, dvp, NFSPROC_CREATE,
1701 		     NFSX_FH(info.v3) + 2 * NFSX_UNSIGNED +
1702 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1703 	ERROROUT(nfsm_fhtom(&info, dvp));
1704 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1705 			     NFS_MAXNAMLEN));
1706 	if (info.v3) {
1707 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1708 		if (fmode & O_EXCL) {
1709 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1710 			tl = nfsm_build(&info, NFSX_V3CREATEVERF);
1711 #ifdef INET
1712 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1713 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1714 			else
1715 #endif
1716 				*tl++ = create_verf;
1717 			*tl = ++create_verf;
1718 		} else {
1719 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1720 			nfsm_v3attrbuild(&info, vap, FALSE);
1721 		}
1722 	} else {
1723 		sp = nfsm_build(&info, NFSX_V2SATTR);
1724 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1725 		sp->sa_uid = nfs_xdrneg1;
1726 		sp->sa_gid = nfs_xdrneg1;
1727 		sp->sa_size = 0;
1728 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1729 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1730 	}
1731 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_CREATE, cnp->cn_td,
1732 				cnp->cn_cred, &error));
1733 	if (error == 0) {
1734 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1735 		if (!gotvp) {
1736 			if (newvp) {
1737 				vput(newvp);
1738 				newvp = NULL;
1739 			}
1740 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1741 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1742 			if (!error)
1743 				newvp = NFSTOV(np);
1744 		}
1745 	}
1746 	if (info.v3) {
1747 		if (error == 0)
1748 			error = nfsm_wcc_data(&info, dvp, &wccflag);
1749 		else
1750 			(void)nfsm_wcc_data(&info, dvp, &wccflag);
1751 	}
1752 	m_freem(info.mrep);
1753 	info.mrep = NULL;
1754 nfsmout:
1755 	if (error) {
1756 		if (info.v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1757 			KKASSERT(newvp == NULL);
1758 			fmode &= ~O_EXCL;
1759 			goto again;
1760 		}
1761 	} else if (info.v3 && (fmode & O_EXCL)) {
1762 		/*
1763 		 * We are normally called with only a partially initialized
1764 		 * VAP.  Since the NFSv3 spec says that server may use the
1765 		 * file attributes to store the verifier, the spec requires
1766 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1767 		 * in atime, but we can't really assume that all servers will
1768 		 * so we ensure that our SETATTR sets both atime and mtime.
1769 		 */
1770 		if (vap->va_mtime.tv_sec == VNOVAL)
1771 			vfs_timestamp(&vap->va_mtime);
1772 		if (vap->va_atime.tv_sec == VNOVAL)
1773 			vap->va_atime = vap->va_mtime;
1774 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1775 	}
1776 	if (error == 0) {
1777 		/*
1778 		 * The new np may have enough info for access
1779 		 * checks, make sure rucred and wucred are
1780 		 * initialized for read and write rpc's.
1781 		 */
1782 		np = VTONFS(newvp);
1783 		if (np->n_rucred == NULL)
1784 			np->n_rucred = crhold(cnp->cn_cred);
1785 		if (np->n_wucred == NULL)
1786 			np->n_wucred = crhold(cnp->cn_cred);
1787 		*ap->a_vpp = newvp;
1788 		nfs_knote(dvp, NOTE_WRITE);
1789 	} else if (newvp) {
1790 		vput(newvp);
1791 	}
1792 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1793 	if (!wccflag)
1794 		VTONFS(dvp)->n_attrstamp = 0;
1795 	lwkt_reltoken(&nmp->nm_token);
1796 	return (error);
1797 }
1798 
1799 /*
1800  * nfs file remove call
1801  * To try and make nfs semantics closer to ufs semantics, a file that has
1802  * other processes using the vnode is renamed instead of removed and then
1803  * removed later on the last close.
1804  * - If v_refcnt > 1
1805  *	  If a rename is not already in the works
1806  *	     call nfs_sillyrename() to set it up
1807  *     else
1808  *	  do the remove rpc
1809  *
1810  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1811  *	      struct componentname *a_cnp)
1812  */
1813 static int
1814 nfs_remove(struct vop_old_remove_args *ap)
1815 {
1816 	struct vnode *vp = ap->a_vp;
1817 	struct vnode *dvp = ap->a_dvp;
1818 	struct nfsmount *nmp = VFSTONFS(dvp->v_mount);
1819 	struct componentname *cnp = ap->a_cnp;
1820 	struct nfsnode *np = VTONFS(vp);
1821 	int error = 0;
1822 	struct vattr vattr;
1823 
1824 	lwkt_gettoken(&nmp->nm_token);
1825 #ifndef DIAGNOSTIC
1826 	if (VREFCNT(vp) < 1)
1827 		panic("nfs_remove: bad v_refcnt");
1828 #endif
1829 	if (vp->v_type == VDIR) {
1830 		error = EPERM;
1831 	} else if (VREFCNT(vp) == 1 || (np->n_sillyrename &&
1832 		   VOP_GETATTR(vp, &vattr) == 0 && vattr.va_nlink > 1)) {
1833 		/*
1834 		 * throw away biocache buffers, mainly to avoid
1835 		 * unnecessary delayed writes later.
1836 		 */
1837 		error = nfs_vinvalbuf(vp, 0, 1);
1838 		/* Do the rpc */
1839 		if (error != EINTR)
1840 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1841 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1842 		/*
1843 		 * Kludge City: If the first reply to the remove rpc is lost..
1844 		 *   the reply to the retransmitted request will be ENOENT
1845 		 *   since the file was in fact removed
1846 		 *   Therefore, we cheat and return success.
1847 		 */
1848 		if (error == ENOENT)
1849 			error = 0;
1850 	} else if (!np->n_sillyrename) {
1851 		error = nfs_sillyrename(dvp, vp, cnp);
1852 	}
1853 	np->n_attrstamp = 0;
1854 	lwkt_reltoken(&nmp->nm_token);
1855 	if (error == 0) {
1856 		nfs_knote(vp, NOTE_DELETE);
1857 		nfs_knote(dvp, NOTE_WRITE);
1858 	}
1859 
1860 	return (error);
1861 }
1862 
1863 /*
1864  * nfs file remove rpc called from nfs_inactive
1865  *
1866  * NOTE: s_dvp can be VBAD during a forced unmount.
1867  */
1868 int
1869 nfs_removeit(struct sillyrename *sp)
1870 {
1871 	if (sp->s_dvp->v_type == VBAD)
1872 		return(0);
1873 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1874 		sp->s_cred, NULL));
1875 }
1876 
1877 /*
1878  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1879  */
1880 static int
1881 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1882 	      struct ucred *cred, struct thread *td)
1883 {
1884 	int error = 0, wccflag = NFSV3_WCCRATTR;
1885 	struct nfsm_info info;
1886 
1887 	info.mrep = NULL;
1888 	info.v3 = NFS_ISV3(dvp);
1889 
1890 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1891 	nfsm_reqhead(&info, dvp, NFSPROC_REMOVE,
1892 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1893 	ERROROUT(nfsm_fhtom(&info, dvp));
1894 	ERROROUT(nfsm_strtom(&info, name, namelen, NFS_MAXNAMLEN));
1895 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_REMOVE, td, cred, &error));
1896 	if (info.v3) {
1897 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1898 	}
1899 	m_freem(info.mrep);
1900 	info.mrep = NULL;
1901 nfsmout:
1902 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1903 	if (!wccflag)
1904 		VTONFS(dvp)->n_attrstamp = 0;
1905 	return (error);
1906 }
1907 
1908 /*
1909  * nfs file rename call
1910  *
1911  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1912  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1913  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1914  */
1915 static int
1916 nfs_rename(struct vop_old_rename_args *ap)
1917 {
1918 	struct vnode *fvp = ap->a_fvp;
1919 	struct vnode *tvp = ap->a_tvp;
1920 	struct vnode *fdvp = ap->a_fdvp;
1921 	struct vnode *tdvp = ap->a_tdvp;
1922 	struct componentname *tcnp = ap->a_tcnp;
1923 	struct componentname *fcnp = ap->a_fcnp;
1924 	struct nfsmount *nmp = VFSTONFS(fdvp->v_mount);
1925 	int error;
1926 
1927 	lwkt_gettoken(&nmp->nm_token);
1928 
1929 	/* Check for cross-device rename */
1930 	if ((fvp->v_mount != tdvp->v_mount) ||
1931 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1932 		error = EXDEV;
1933 		goto out;
1934 	}
1935 
1936 	/*
1937 	 * We shouldn't have to flush fvp on rename for most server-side
1938 	 * filesystems as the file handle should not change.  Unfortunately
1939 	 * the inode for some filesystems (msdosfs) might be tied to the
1940 	 * file name or directory position so to be completely safe
1941 	 * vfs.nfs.flush_on_rename is set by default.  Clear to improve
1942 	 * performance.
1943 	 *
1944 	 * We must flush tvp on rename because it might become stale on the
1945 	 * server after the rename.
1946 	 */
1947 	if (nfs_flush_on_rename)
1948 	    VOP_FSYNC(fvp, MNT_WAIT, 0);
1949 	if (tvp)
1950 	    VOP_FSYNC(tvp, MNT_WAIT, 0);
1951 
1952 	/*
1953 	 * If the tvp exists and is in use, sillyrename it before doing the
1954 	 * rename of the new file over it.
1955 	 *
1956 	 * XXX Can't sillyrename a directory.
1957 	 *
1958 	 * We do not attempt to do any namecache purges in this old API
1959 	 * routine.  The new API compat functions have access to the actual
1960 	 * namecache structures and will do it for us.
1961 	 */
1962 	if (tvp && VREFCNT(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1963 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1964 		nfs_knote(tvp, NOTE_DELETE);
1965 		vput(tvp);
1966 		tvp = NULL;
1967 	} else if (tvp) {
1968 		nfs_knote(tvp, NOTE_DELETE);
1969 	}
1970 
1971 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1972 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1973 		tcnp->cn_td);
1974 
1975 out:
1976 	if (error == 0) {
1977 		nfs_knote(fdvp, NOTE_WRITE);
1978 		nfs_knote(tdvp, NOTE_WRITE);
1979 		nfs_knote(fvp, NOTE_RENAME);
1980 	}
1981 	lwkt_reltoken(&nmp->nm_token);
1982 	if (tdvp == tvp)
1983 		vrele(tdvp);
1984 	else
1985 		vput(tdvp);
1986 	if (tvp)
1987 		vput(tvp);
1988 	vrele(fdvp);
1989 	vrele(fvp);
1990 	/*
1991 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1992 	 */
1993 	if (error == ENOENT)
1994 		error = 0;
1995 	return (error);
1996 }
1997 
1998 /*
1999  * nfs file rename rpc called from nfs_remove() above
2000  */
2001 static int
2002 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
2003 	     struct sillyrename *sp)
2004 {
2005 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
2006 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
2007 }
2008 
2009 /*
2010  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
2011  */
2012 static int
2013 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
2014 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
2015 	      struct ucred *cred, struct thread *td)
2016 {
2017 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
2018 	struct nfsm_info info;
2019 
2020 	info.mrep = NULL;
2021 	info.v3 = NFS_ISV3(fdvp);
2022 
2023 	nfsstats.rpccnt[NFSPROC_RENAME]++;
2024 	nfsm_reqhead(&info, fdvp, NFSPROC_RENAME,
2025 		    (NFSX_FH(info.v3) + NFSX_UNSIGNED)*2 +
2026 		    nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen));
2027 	ERROROUT(nfsm_fhtom(&info, fdvp));
2028 	ERROROUT(nfsm_strtom(&info, fnameptr, fnamelen, NFS_MAXNAMLEN));
2029 	ERROROUT(nfsm_fhtom(&info, tdvp));
2030 	ERROROUT(nfsm_strtom(&info, tnameptr, tnamelen, NFS_MAXNAMLEN));
2031 	NEGKEEPOUT(nfsm_request(&info, fdvp, NFSPROC_RENAME, td, cred, &error));
2032 	if (info.v3) {
2033 		ERROROUT(nfsm_wcc_data(&info, fdvp, &fwccflag));
2034 		ERROROUT(nfsm_wcc_data(&info, tdvp, &twccflag));
2035 	}
2036 	m_freem(info.mrep);
2037 	info.mrep = NULL;
2038 nfsmout:
2039 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
2040 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
2041 	if (!fwccflag)
2042 		VTONFS(fdvp)->n_attrstamp = 0;
2043 	if (!twccflag)
2044 		VTONFS(tdvp)->n_attrstamp = 0;
2045 	return (error);
2046 }
2047 
2048 /*
2049  * nfs hard link create call
2050  *
2051  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
2052  *	    struct componentname *a_cnp)
2053  */
2054 static int
2055 nfs_link(struct vop_old_link_args *ap)
2056 {
2057 	struct vnode *vp = ap->a_vp;
2058 	struct vnode *tdvp = ap->a_tdvp;
2059 	struct nfsmount *nmp = VFSTONFS(tdvp->v_mount);
2060 	struct componentname *cnp = ap->a_cnp;
2061 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
2062 	struct nfsm_info info;
2063 
2064 	if (vp->v_mount != tdvp->v_mount) {
2065 		return (EXDEV);
2066 	}
2067 	lwkt_gettoken(&nmp->nm_token);
2068 
2069 	/*
2070 	 * The attribute cache may get out of sync with the server on link.
2071 	 * Pushing writes to the server before handle was inherited from
2072 	 * long long ago and it is unclear if we still need to do this.
2073 	 * Defaults to off.
2074 	 */
2075 	if (nfs_flush_on_hlink)
2076 		VOP_FSYNC(vp, MNT_WAIT, 0);
2077 
2078 	info.mrep = NULL;
2079 	info.v3 = NFS_ISV3(vp);
2080 
2081 	nfsstats.rpccnt[NFSPROC_LINK]++;
2082 	nfsm_reqhead(&info, vp, NFSPROC_LINK,
2083 		     NFSX_FH(info.v3) * 2 + NFSX_UNSIGNED +
2084 		     nfsm_rndup(cnp->cn_namelen));
2085 	ERROROUT(nfsm_fhtom(&info, vp));
2086 	ERROROUT(nfsm_fhtom(&info, tdvp));
2087 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2088 			     NFS_MAXNAMLEN));
2089 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_LINK, cnp->cn_td,
2090 				cnp->cn_cred, &error));
2091 	if (info.v3) {
2092 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2093 					 NFS_LATTR_NOSHRINK));
2094 		ERROROUT(nfsm_wcc_data(&info, tdvp, &wccflag));
2095 	}
2096 	m_freem(info.mrep);
2097 	info.mrep = NULL;
2098 nfsmout:
2099 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
2100 	if (!attrflag)
2101 		VTONFS(vp)->n_attrstamp = 0;
2102 	if (!wccflag)
2103 		VTONFS(tdvp)->n_attrstamp = 0;
2104 	/*
2105 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
2106 	 */
2107 	if (error == EEXIST)
2108 		error = 0;
2109 	lwkt_reltoken(&nmp->nm_token);
2110 	if (error == 0) {
2111 		nfs_knote(vp, NOTE_LINK);
2112 		nfs_knote(tdvp, NOTE_WRITE);
2113 	}
2114 
2115 	return (error);
2116 }
2117 
2118 /*
2119  * nfs symbolic link create call
2120  *
2121  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
2122  *		struct componentname *a_cnp, struct vattr *a_vap,
2123  *		char *a_target)
2124  */
2125 static int
2126 nfs_symlink(struct vop_old_symlink_args *ap)
2127 {
2128 	struct vnode *dvp = ap->a_dvp;
2129 	struct vattr *vap = ap->a_vap;
2130 	struct nfsmount *nmp = VFSTONFS(dvp->v_mount);
2131 	struct componentname *cnp = ap->a_cnp;
2132 	struct nfsv2_sattr *sp;
2133 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
2134 	struct vnode *newvp = NULL;
2135 	struct nfsm_info info;
2136 
2137 	info.mrep = NULL;
2138 	info.v3 = NFS_ISV3(dvp);
2139 	lwkt_gettoken(&nmp->nm_token);
2140 
2141 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
2142 	slen = strlen(ap->a_target);
2143 	nfsm_reqhead(&info, dvp, NFSPROC_SYMLINK,
2144 		     NFSX_FH(info.v3) + 2*NFSX_UNSIGNED +
2145 		     nfsm_rndup(cnp->cn_namelen) +
2146 		     nfsm_rndup(slen) + NFSX_SATTR(info.v3));
2147 	ERROROUT(nfsm_fhtom(&info, dvp));
2148 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2149 			     NFS_MAXNAMLEN));
2150 	if (info.v3) {
2151 		nfsm_v3attrbuild(&info, vap, FALSE);
2152 	}
2153 	ERROROUT(nfsm_strtom(&info, ap->a_target, slen, NFS_MAXPATHLEN));
2154 	if (info.v3 == 0) {
2155 		sp = nfsm_build(&info, NFSX_V2SATTR);
2156 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
2157 		sp->sa_uid = nfs_xdrneg1;
2158 		sp->sa_gid = nfs_xdrneg1;
2159 		sp->sa_size = nfs_xdrneg1;
2160 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2161 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2162 	}
2163 
2164 	/*
2165 	 * Issue the NFS request and get the rpc response.
2166 	 *
2167 	 * Only NFSv3 responses returning an error of 0 actually return
2168 	 * a file handle that can be converted into newvp without having
2169 	 * to do an extra lookup rpc.
2170 	 */
2171 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_SYMLINK, cnp->cn_td,
2172 				cnp->cn_cred, &error));
2173 	if (info.v3) {
2174 		if (error == 0) {
2175 		       ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2176 		}
2177 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2178 	}
2179 
2180 	/*
2181 	 * out code jumps -> here, mrep is also freed.
2182 	 */
2183 
2184 	m_freem(info.mrep);
2185 	info.mrep = NULL;
2186 nfsmout:
2187 
2188 	/*
2189 	 * If we get an EEXIST error, silently convert it to no-error
2190 	 * in case of an NFS retry.
2191 	 */
2192 	if (error == EEXIST)
2193 		error = 0;
2194 
2195 	/*
2196 	 * If we do not have (or no longer have) an error, and we could
2197 	 * not extract the newvp from the response due to the request being
2198 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
2199 	 * to obtain a newvp to return.
2200 	 */
2201 	if (error == 0 && newvp == NULL) {
2202 		struct nfsnode *np = NULL;
2203 
2204 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2205 				     cnp->cn_cred, cnp->cn_td, &np);
2206 		if (!error)
2207 			newvp = NFSTOV(np);
2208 	}
2209 	if (error) {
2210 		if (newvp)
2211 			vput(newvp);
2212 	} else {
2213 		*ap->a_vpp = newvp;
2214 	}
2215 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2216 	if (!wccflag)
2217 		VTONFS(dvp)->n_attrstamp = 0;
2218 	if (error == 0 && *ap->a_vpp)
2219 		nfs_knote(*ap->a_vpp, NOTE_WRITE);
2220 	lwkt_reltoken(&nmp->nm_token);
2221 
2222 	return (error);
2223 }
2224 
2225 /*
2226  * nfs make dir call
2227  *
2228  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2229  *	     struct componentname *a_cnp, struct vattr *a_vap)
2230  */
2231 static int
2232 nfs_mkdir(struct vop_old_mkdir_args *ap)
2233 {
2234 	struct vnode *dvp = ap->a_dvp;
2235 	struct vattr *vap = ap->a_vap;
2236 	struct nfsmount *nmp = VFSTONFS(dvp->v_mount);
2237 	struct componentname *cnp = ap->a_cnp;
2238 	struct nfsv2_sattr *sp;
2239 	struct nfsnode *np = NULL;
2240 	struct vnode *newvp = NULL;
2241 	struct vattr vattr;
2242 	int error = 0, wccflag = NFSV3_WCCRATTR;
2243 	int gotvp = 0;
2244 	int len;
2245 	struct nfsm_info info;
2246 
2247 	info.mrep = NULL;
2248 	info.v3 = NFS_ISV3(dvp);
2249 	lwkt_gettoken(&nmp->nm_token);
2250 
2251 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2252 		lwkt_reltoken(&nmp->nm_token);
2253 		return (error);
2254 	}
2255 	len = cnp->cn_namelen;
2256 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2257 	nfsm_reqhead(&info, dvp, NFSPROC_MKDIR,
2258 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2259 		     nfsm_rndup(len) + NFSX_SATTR(info.v3));
2260 	ERROROUT(nfsm_fhtom(&info, dvp));
2261 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
2262 	if (info.v3) {
2263 		nfsm_v3attrbuild(&info, vap, FALSE);
2264 	} else {
2265 		sp = nfsm_build(&info, NFSX_V2SATTR);
2266 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2267 		sp->sa_uid = nfs_xdrneg1;
2268 		sp->sa_gid = nfs_xdrneg1;
2269 		sp->sa_size = nfs_xdrneg1;
2270 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2271 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2272 	}
2273 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKDIR, cnp->cn_td,
2274 		    cnp->cn_cred, &error));
2275 	if (error == 0) {
2276 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2277 	}
2278 	if (info.v3) {
2279 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2280 	}
2281 	m_freem(info.mrep);
2282 	info.mrep = NULL;
2283 nfsmout:
2284 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2285 	if (!wccflag)
2286 		VTONFS(dvp)->n_attrstamp = 0;
2287 	/*
2288 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2289 	 * if we can succeed in looking up the directory.
2290 	 */
2291 	if (error == EEXIST || (!error && !gotvp)) {
2292 		if (newvp) {
2293 			vrele(newvp);
2294 			newvp = NULL;
2295 		}
2296 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2297 			cnp->cn_td, &np);
2298 		if (!error) {
2299 			newvp = NFSTOV(np);
2300 			if (newvp->v_type != VDIR)
2301 				error = EEXIST;
2302 		}
2303 	}
2304 	if (error) {
2305 		if (newvp)
2306 			vrele(newvp);
2307 	} else {
2308 		nfs_knote(dvp, NOTE_WRITE | NOTE_LINK);
2309 		*ap->a_vpp = newvp;
2310 	}
2311 	lwkt_reltoken(&nmp->nm_token);
2312 	return (error);
2313 }
2314 
2315 /*
2316  * nfs remove directory call
2317  *
2318  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2319  *	     struct componentname *a_cnp)
2320  */
2321 static int
2322 nfs_rmdir(struct vop_old_rmdir_args *ap)
2323 {
2324 	struct vnode *vp = ap->a_vp;
2325 	struct vnode *dvp = ap->a_dvp;
2326 	struct nfsmount *nmp = VFSTONFS(dvp->v_mount);
2327 	struct componentname *cnp = ap->a_cnp;
2328 	int error = 0, wccflag = NFSV3_WCCRATTR;
2329 	struct nfsm_info info;
2330 
2331 	info.mrep = NULL;
2332 	info.v3 = NFS_ISV3(dvp);
2333 
2334 	if (dvp == vp)
2335 		return (EINVAL);
2336 
2337 	lwkt_gettoken(&nmp->nm_token);
2338 
2339 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2340 	nfsm_reqhead(&info, dvp, NFSPROC_RMDIR,
2341 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2342 		     nfsm_rndup(cnp->cn_namelen));
2343 	ERROROUT(nfsm_fhtom(&info, dvp));
2344 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2345 		 NFS_MAXNAMLEN));
2346 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_RMDIR, cnp->cn_td,
2347 				cnp->cn_cred, &error));
2348 	if (info.v3) {
2349 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2350 	}
2351 	m_freem(info.mrep);
2352 	info.mrep = NULL;
2353 nfsmout:
2354 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2355 	if (!wccflag)
2356 		VTONFS(dvp)->n_attrstamp = 0;
2357 	/*
2358 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2359 	 */
2360 	if (error == ENOENT)
2361 		error = 0;
2362 	else
2363 		nfs_knote(dvp, NOTE_WRITE | NOTE_LINK);
2364 	lwkt_reltoken(&nmp->nm_token);
2365 
2366 	return (error);
2367 }
2368 
2369 /*
2370  * nfs readdir call
2371  *
2372  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2373  */
2374 static int
2375 nfs_readdir(struct vop_readdir_args *ap)
2376 {
2377 	struct vnode *vp = ap->a_vp;
2378 	struct nfsnode *np = VTONFS(vp);
2379 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2380 	struct uio *uio = ap->a_uio;
2381 	int tresid, error;
2382 	struct vattr vattr;
2383 
2384 	if (vp->v_type != VDIR)
2385 		return (EPERM);
2386 
2387 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_FAILRECLAIM);
2388 	if (error)
2389 		return (error);
2390 
2391 	lwkt_gettoken(&nmp->nm_token);
2392 
2393 	/*
2394 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2395 	 * and then check that is still valid, or if this is an NQNFS mount
2396 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2397 	 * VOP_GETATTR() does not necessarily go to the wire.
2398 	 */
2399 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2400 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2401 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2402 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2403 		) {
2404 			nfsstats.direofcache_hits++;
2405 			goto done;
2406 		}
2407 	}
2408 
2409 	/*
2410 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2411 	 * own cache coherency checks so we do not have to.
2412 	 */
2413 	tresid = uio->uio_resid;
2414 	error = nfs_bioread(vp, uio, 0);
2415 
2416 	if (!error && uio->uio_resid == tresid)
2417 		nfsstats.direofcache_misses++;
2418 done:
2419 	lwkt_reltoken(&nmp->nm_token);
2420 	vn_unlock(vp);
2421 
2422 	return (error);
2423 }
2424 
2425 /*
2426  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2427  *
2428  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2429  * offset/block and converts the nfs formatted directory entries for userland
2430  * consumption as well as deals with offsets into the middle of blocks.
2431  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2432  * be block-bounded.  It must convert to cookies for the actual RPC.
2433  */
2434 int
2435 nfs_readdirrpc_uio(struct vnode *vp, struct uio *uiop)
2436 {
2437 	int len, left;
2438 	struct nfs_dirent *dp = NULL;
2439 	u_int32_t *tl;
2440 	nfsuint64 *cookiep;
2441 	caddr_t cp;
2442 	nfsuint64 cookie;
2443 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2444 	struct nfsnode *dnp = VTONFS(vp);
2445 	u_quad_t fileno;
2446 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2447 	int attrflag;
2448 	struct nfsm_info info;
2449 
2450 	info.mrep = NULL;
2451 	info.v3 = NFS_ISV3(vp);
2452 
2453 #ifndef DIAGNOSTIC
2454 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2455 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2456 		panic("nfs readdirrpc bad uio");
2457 #endif
2458 
2459 	/*
2460 	 * If there is no cookie, assume directory was stale.
2461 	 */
2462 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2463 	if (cookiep)
2464 		cookie = *cookiep;
2465 	else
2466 		return (NFSERR_BAD_COOKIE);
2467 	/*
2468 	 * Loop around doing readdir rpc's of size nm_readdirsize
2469 	 * truncated to a multiple of DIRBLKSIZ.
2470 	 * The stopping criteria is EOF or buffer full.
2471 	 */
2472 	while (more_dirs && bigenough) {
2473 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2474 		nfsm_reqhead(&info, vp, NFSPROC_READDIR,
2475 			     NFSX_FH(info.v3) + NFSX_READDIR(info.v3));
2476 		ERROROUT(nfsm_fhtom(&info, vp));
2477 		if (info.v3) {
2478 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
2479 			*tl++ = cookie.nfsuquad[0];
2480 			*tl++ = cookie.nfsuquad[1];
2481 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2482 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2483 		} else {
2484 			/*
2485 			 * WARNING!  HAMMER DIRECTORIES WILL NOT WORK WELL
2486 			 * WITH NFSv2!!!  There's nothing I can really do
2487 			 * about it other than to hope the server supports
2488 			 * rdirplus w/NFSv2.
2489 			 */
2490 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
2491 			*tl++ = cookie.nfsuquad[0];
2492 		}
2493 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2494 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIR,
2495 					uiop->uio_td,
2496 					nfs_vpcred(vp, ND_READ), &error));
2497 		if (info.v3) {
2498 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2499 						  NFS_LATTR_NOSHRINK));
2500 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2501 			dnp->n_cookieverf.nfsuquad[0] = *tl++;
2502 			dnp->n_cookieverf.nfsuquad[1] = *tl;
2503 		}
2504 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2505 		more_dirs = fxdr_unsigned(int, *tl);
2506 
2507 		/* loop thru the dir entries, converting them to std form */
2508 		while (more_dirs && bigenough) {
2509 			if (info.v3) {
2510 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2511 				fileno = fxdr_hyper(tl);
2512 				len = fxdr_unsigned(int, *(tl + 2));
2513 			} else {
2514 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2515 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2516 				len = fxdr_unsigned(int, *tl);
2517 			}
2518 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2519 				error = EBADRPC;
2520 				m_freem(info.mrep);
2521 				info.mrep = NULL;
2522 				goto nfsmout;
2523 			}
2524 
2525 			/*
2526 			 * len is the number of bytes in the path element
2527 			 * name, not including the \0 termination.
2528 			 *
2529 			 * tlen is the number of bytes w have to reserve for
2530 			 * the path element name.
2531 			 */
2532 			tlen = nfsm_rndup(len);
2533 			if (tlen == len)
2534 				tlen += 4;	/* To ensure null termination */
2535 
2536 			/*
2537 			 * If the entry would cross a DIRBLKSIZ boundary,
2538 			 * extend the previous nfs_dirent to cover the
2539 			 * remaining space.
2540 			 */
2541 			left = DIRBLKSIZ - blksiz;
2542 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2543 				dp->nfs_reclen += left;
2544 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2545 				uiop->uio_iov->iov_len -= left;
2546 				uiop->uio_offset += left;
2547 				uiop->uio_resid -= left;
2548 				blksiz = 0;
2549 			}
2550 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2551 				bigenough = 0;
2552 			if (bigenough) {
2553 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2554 				dp->nfs_ino = fileno;
2555 				dp->nfs_namlen = len;
2556 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2557 				dp->nfs_type = DT_UNKNOWN;
2558 				blksiz += dp->nfs_reclen;
2559 				if (blksiz == DIRBLKSIZ)
2560 					blksiz = 0;
2561 				uiop->uio_offset += sizeof(struct nfs_dirent);
2562 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2563 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2564 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2565 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2566 
2567 				/*
2568 				 * The uiop has advanced by nfs_dirent + len
2569 				 * but really needs to advance by
2570 				 * nfs_dirent + tlen
2571 				 */
2572 				cp = uiop->uio_iov->iov_base;
2573 				tlen -= len;
2574 				*cp = '\0';	/* null terminate */
2575 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2576 				uiop->uio_iov->iov_len -= tlen;
2577 				uiop->uio_offset += tlen;
2578 				uiop->uio_resid -= tlen;
2579 			} else {
2580 				/*
2581 				 * NFS strings must be rounded up (nfsm_myouio
2582 				 * handled that in the bigenough case).
2583 				 */
2584 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2585 			}
2586 			if (info.v3) {
2587 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2588 			} else {
2589 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2590 			}
2591 
2592 			/*
2593 			 * If we were able to accomodate the last entry,
2594 			 * get the cookie for the next one.  Otherwise
2595 			 * hold-over the cookie for the one we were not
2596 			 * able to accomodate.
2597 			 */
2598 			if (bigenough) {
2599 				cookie.nfsuquad[0] = *tl++;
2600 				if (info.v3)
2601 					cookie.nfsuquad[1] = *tl++;
2602 			} else if (info.v3) {
2603 				tl += 2;
2604 			} else {
2605 				tl++;
2606 			}
2607 			more_dirs = fxdr_unsigned(int, *tl);
2608 		}
2609 		/*
2610 		 * If at end of rpc data, get the eof boolean
2611 		 */
2612 		if (!more_dirs) {
2613 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2614 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2615 		}
2616 		m_freem(info.mrep);
2617 		info.mrep = NULL;
2618 	}
2619 	/*
2620 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2621 	 * by increasing d_reclen for the last record.
2622 	 */
2623 	if (blksiz > 0) {
2624 		left = DIRBLKSIZ - blksiz;
2625 		dp->nfs_reclen += left;
2626 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2627 		uiop->uio_iov->iov_len -= left;
2628 		uiop->uio_offset += left;
2629 		uiop->uio_resid -= left;
2630 	}
2631 
2632 	if (bigenough) {
2633 		/*
2634 		 * We hit the end of the directory, update direofoffset.
2635 		 */
2636 		dnp->n_direofoffset = uiop->uio_offset;
2637 	} else {
2638 		/*
2639 		 * There is more to go, insert the link cookie so the
2640 		 * next block can be read.
2641 		 */
2642 		if (uiop->uio_resid > 0)
2643 			kprintf("EEK! readdirrpc resid > 0\n");
2644 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2645 		*cookiep = cookie;
2646 	}
2647 nfsmout:
2648 	return (error);
2649 }
2650 
2651 /*
2652  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2653  */
2654 int
2655 nfs_readdirplusrpc_uio(struct vnode *vp, struct uio *uiop)
2656 {
2657 	int len, left;
2658 	struct nfs_dirent *dp;
2659 	u_int32_t *tl;
2660 	struct vnode *newvp;
2661 	nfsuint64 *cookiep;
2662 	caddr_t dpossav1, dpossav2;
2663 	caddr_t cp;
2664 	struct mbuf *mdsav1, *mdsav2;
2665 	nfsuint64 cookie;
2666 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2667 	struct nfsnode *dnp = VTONFS(vp), *np;
2668 	nfsfh_t *fhp;
2669 	u_quad_t fileno;
2670 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2671 	int attrflag, fhsize;
2672 	struct nchandle nch;
2673 	struct nchandle dnch;
2674 	struct nlcomponent nlc;
2675 	struct nfsm_info info;
2676 
2677 	info.mrep = NULL;
2678 	info.v3 = 1;
2679 
2680 #ifndef nolint
2681 	dp = NULL;
2682 #endif
2683 #ifndef DIAGNOSTIC
2684 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2685 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2686 		panic("nfs readdirplusrpc bad uio");
2687 #endif
2688 	/*
2689 	 * Obtain the namecache record for the directory so we have something
2690 	 * to use as a basis for creating the entries.  This function will
2691 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2692 	 * from the tree and cannot be used for upward traversals, and the
2693 	 * ncp may be unnamed.  Note that other unrelated operations may
2694 	 * cause the ncp to be named at any time.
2695 	 *
2696 	 * We have to lock the ncp to prevent a lock order reversal when
2697 	 * rdirplus does nlookups of the children, because the vnode is
2698 	 * locked and has to stay that way.
2699 	 */
2700 	cache_fromdvp(vp, NULL, 0, &dnch);
2701 	bzero(&nlc, sizeof(nlc));
2702 	newvp = NULLVP;
2703 
2704 	/*
2705 	 * If there is no cookie, assume directory was stale.
2706 	 */
2707 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2708 	if (cookiep) {
2709 		cookie = *cookiep;
2710 	} else {
2711 		if (dnch.ncp)
2712 			cache_drop(&dnch);
2713 		return (NFSERR_BAD_COOKIE);
2714 	}
2715 
2716 	/*
2717 	 * Loop around doing readdir rpc's of size nm_readdirsize
2718 	 * truncated to a multiple of DIRBLKSIZ.
2719 	 * The stopping criteria is EOF or buffer full.
2720 	 */
2721 	while (more_dirs && bigenough) {
2722 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2723 		nfsm_reqhead(&info, vp, NFSPROC_READDIRPLUS,
2724 			     NFSX_FH(info.v3) + 6 * NFSX_UNSIGNED);
2725 		ERROROUT(nfsm_fhtom(&info, vp));
2726 		tl = nfsm_build(&info, 6 * NFSX_UNSIGNED);
2727 		*tl++ = cookie.nfsuquad[0];
2728 		*tl++ = cookie.nfsuquad[1];
2729 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2730 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2731 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2732 		*tl = txdr_unsigned(nmp->nm_rsize);
2733 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIRPLUS,
2734 					uiop->uio_td,
2735 					nfs_vpcred(vp, ND_READ), &error));
2736 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2737 					  NFS_LATTR_NOSHRINK));
2738 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2739 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2740 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2741 		more_dirs = fxdr_unsigned(int, *tl);
2742 
2743 		/* loop thru the dir entries, doctoring them to 4bsd form */
2744 		while (more_dirs && bigenough) {
2745 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2746 			fileno = fxdr_hyper(tl);
2747 			len = fxdr_unsigned(int, *(tl + 2));
2748 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2749 				error = EBADRPC;
2750 				m_freem(info.mrep);
2751 				info.mrep = NULL;
2752 				goto nfsmout;
2753 			}
2754 			tlen = nfsm_rndup(len);
2755 			if (tlen == len)
2756 				tlen += 4;	/* To ensure null termination*/
2757 			left = DIRBLKSIZ - blksiz;
2758 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2759 				dp->nfs_reclen += left;
2760 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2761 				uiop->uio_iov->iov_len -= left;
2762 				uiop->uio_offset += left;
2763 				uiop->uio_resid -= left;
2764 				blksiz = 0;
2765 			}
2766 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2767 				bigenough = 0;
2768 			if (bigenough) {
2769 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2770 				dp->nfs_ino = fileno;
2771 				dp->nfs_namlen = len;
2772 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2773 				dp->nfs_type = DT_UNKNOWN;
2774 				blksiz += dp->nfs_reclen;
2775 				if (blksiz == DIRBLKSIZ)
2776 					blksiz = 0;
2777 				uiop->uio_offset += sizeof(struct nfs_dirent);
2778 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2779 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2780 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2781 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2782 				nlc.nlc_namelen = len;
2783 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2784 				cp = uiop->uio_iov->iov_base;
2785 				tlen -= len;
2786 				*cp = '\0';
2787 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2788 				uiop->uio_iov->iov_len -= tlen;
2789 				uiop->uio_offset += tlen;
2790 				uiop->uio_resid -= tlen;
2791 			} else {
2792 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2793 			}
2794 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2795 			if (bigenough) {
2796 				cookie.nfsuquad[0] = *tl++;
2797 				cookie.nfsuquad[1] = *tl++;
2798 			} else {
2799 				tl += 2;
2800 			}
2801 
2802 			/*
2803 			 * Since the attributes are before the file handle
2804 			 * (sigh), we must skip over the attributes and then
2805 			 * come back and get them.
2806 			 */
2807 			attrflag = fxdr_unsigned(int, *tl);
2808 			if (attrflag) {
2809 			    dpossav1 = info.dpos;
2810 			    mdsav1 = info.md;
2811 			    ERROROUT(nfsm_adv(&info, NFSX_V3FATTR));
2812 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2813 			    doit = fxdr_unsigned(int, *tl);
2814 			    if (doit) {
2815 				NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
2816 			    }
2817 			    if (doit && bigenough && !nlcdegenerate(&nlc) &&
2818 				!NFS_CMPFH(dnp, fhp, fhsize)
2819 			    ) {
2820 				if (dnch.ncp) {
2821 #if 0
2822 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2823 					nlc.nlc_namelen, nlc.nlc_namelen,
2824 					nlc.nlc_nameptr);
2825 #endif
2826 				    /*
2827 				     * This is a bit hokey but there isn't
2828 				     * much we can do about it.  We can't
2829 				     * hold the directory vp locked while
2830 				     * doing lookups and gets.
2831 				     */
2832 				    nch = cache_nlookup_nonblock(&dnch, &nlc);
2833 				    if (nch.ncp == NULL)
2834 					goto rdfail;
2835 				    cache_setunresolved(&nch);
2836 				    error = nfs_nget_nonblock(vp->v_mount, fhp,
2837 							      fhsize, &np,
2838 							      NULL);
2839 				    if (error) {
2840 					cache_put(&nch);
2841 					goto rdfail;
2842 				    }
2843 				    newvp = NFSTOV(np);
2844 				    dpossav2 = info.dpos;
2845 				    info.dpos = dpossav1;
2846 				    mdsav2 = info.md;
2847 				    info.md = mdsav1;
2848 				    ERROROUT(nfsm_loadattr(&info, newvp, NULL));
2849 				    info.dpos = dpossav2;
2850 				    info.md = mdsav2;
2851 				    dp->nfs_type =
2852 					    IFTODT(VTTOIF(np->n_vattr.va_type));
2853 				    nfs_cache_setvp(&nch, newvp,
2854 						    nfspos_cache_timeout);
2855 				    vput(newvp);
2856 				    newvp = NULLVP;
2857 				    cache_put(&nch);
2858 				} else {
2859 rdfail:
2860 				    ;
2861 #if 0
2862 				    kprintf("Warning: NFS/rddirplus, "
2863 					    "UNABLE TO ENTER %*.*s\n",
2864 					nlc.nlc_namelen, nlc.nlc_namelen,
2865 					nlc.nlc_nameptr);
2866 #endif
2867 				}
2868 			    }
2869 			} else {
2870 			    /* Just skip over the file handle */
2871 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2872 			    i = fxdr_unsigned(int, *tl);
2873 			    ERROROUT(nfsm_adv(&info, nfsm_rndup(i)));
2874 			}
2875 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2876 			more_dirs = fxdr_unsigned(int, *tl);
2877 		}
2878 		/*
2879 		 * If at end of rpc data, get the eof boolean
2880 		 */
2881 		if (!more_dirs) {
2882 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2883 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2884 		}
2885 		m_freem(info.mrep);
2886 		info.mrep = NULL;
2887 	}
2888 	/*
2889 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2890 	 * by increasing d_reclen for the last record.
2891 	 */
2892 	if (blksiz > 0) {
2893 		left = DIRBLKSIZ - blksiz;
2894 		dp->nfs_reclen += left;
2895 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2896 		uiop->uio_iov->iov_len -= left;
2897 		uiop->uio_offset += left;
2898 		uiop->uio_resid -= left;
2899 	}
2900 
2901 	/*
2902 	 * We are now either at the end of the directory or have filled the
2903 	 * block.
2904 	 */
2905 	if (bigenough) {
2906 		dnp->n_direofoffset = uiop->uio_offset;
2907 	} else {
2908 		if (uiop->uio_resid > 0)
2909 			kprintf("EEK! readdirplusrpc resid > 0\n");
2910 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2911 		*cookiep = cookie;
2912 	}
2913 nfsmout:
2914 	if (newvp != NULLVP) {
2915 	        if (newvp == vp)
2916 			vrele(newvp);
2917 		else
2918 			vput(newvp);
2919 		newvp = NULLVP;
2920 	}
2921 	if (dnch.ncp)
2922 		cache_drop(&dnch);
2923 	return (error);
2924 }
2925 
2926 /*
2927  * Silly rename. To make the NFS filesystem that is stateless look a little
2928  * more like the "ufs" a remove of an active vnode is translated to a rename
2929  * to a funny looking filename that is removed by nfs_inactive on the
2930  * nfsnode. There is the potential for another process on a different client
2931  * to create the same funny name between the nfs_lookitup() fails and the
2932  * nfs_rename() completes, but...
2933  */
2934 static int
2935 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2936 {
2937 	struct sillyrename *sp;
2938 	struct nfsnode *np;
2939 	int error;
2940 
2941 	/*
2942 	 * We previously purged dvp instead of vp.  I don't know why, it
2943 	 * completely destroys performance.  We can't do it anyway with the
2944 	 * new VFS API since we would be breaking the namecache topology.
2945 	 */
2946 	cache_purge(vp);	/* XXX */
2947 	np = VTONFS(vp);
2948 #ifndef DIAGNOSTIC
2949 	if (vp->v_type == VDIR)
2950 		panic("nfs: sillyrename dir");
2951 #endif
2952 	sp = kmalloc(sizeof(struct sillyrename), M_NFSREQ, M_WAITOK);
2953 	sp->s_cred = crdup(cnp->cn_cred);
2954 	sp->s_dvp = dvp;
2955 	vref(dvp);
2956 
2957 	/* Fudge together a funny name */
2958 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4",
2959 				(int)(intptr_t)cnp->cn_td);
2960 
2961 	/* Try lookitups until we get one that isn't there */
2962 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2963 		cnp->cn_td, NULL) == 0) {
2964 		sp->s_name[4]++;
2965 		if (sp->s_name[4] > 'z') {
2966 			error = EINVAL;
2967 			goto bad;
2968 		}
2969 	}
2970 	error = nfs_renameit(dvp, cnp, sp);
2971 	if (error)
2972 		goto bad;
2973 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2974 		cnp->cn_td, &np);
2975 	np->n_sillyrename = sp;
2976 	return (0);
2977 bad:
2978 	vrele(sp->s_dvp);
2979 	crfree(sp->s_cred);
2980 	kfree((caddr_t)sp, M_NFSREQ);
2981 	return (error);
2982 }
2983 
2984 /*
2985  * Look up a file name and optionally either update the file handle or
2986  * allocate an nfsnode, depending on the value of npp.
2987  * npp == NULL	--> just do the lookup
2988  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2989  *			handled too
2990  * *npp != NULL --> update the file handle in the vnode
2991  */
2992 static int
2993 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2994 	     struct thread *td, struct nfsnode **npp)
2995 {
2996 	struct vnode *newvp = NULL;
2997 	struct nfsnode *np, *dnp = VTONFS(dvp);
2998 	int error = 0, fhlen, attrflag;
2999 	nfsfh_t *nfhp;
3000 	struct nfsm_info info;
3001 
3002 	info.mrep = NULL;
3003 	info.v3 = NFS_ISV3(dvp);
3004 
3005 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
3006 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
3007 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
3008 	ERROROUT(nfsm_fhtom(&info, dvp));
3009 	ERROROUT(nfsm_strtom(&info, name, len, NFS_MAXNAMLEN));
3010 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, cred, &error));
3011 	if (npp && !error) {
3012 		NEGATIVEOUT(fhlen = nfsm_getfh(&info, &nfhp));
3013 		if (*npp) {
3014 		    np = *npp;
3015 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
3016 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
3017 			np->n_fhp = &np->n_fh;
3018 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
3019 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
3020 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
3021 		    np->n_fhsize = fhlen;
3022 		    newvp = NFSTOV(np);
3023 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
3024 		    vref(dvp);
3025 		    newvp = dvp;
3026 		} else {
3027 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np, NULL);
3028 		    if (error) {
3029 			m_freem(info.mrep);
3030 			info.mrep = NULL;
3031 			return (error);
3032 		    }
3033 		    newvp = NFSTOV(np);
3034 		}
3035 		if (info.v3) {
3036 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
3037 						  NFS_LATTR_NOSHRINK));
3038 			if (!attrflag && *npp == NULL) {
3039 				m_freem(info.mrep);
3040 				info.mrep = NULL;
3041 				if (newvp == dvp)
3042 					vrele(newvp);
3043 				else
3044 					vput(newvp);
3045 				return (ENOENT);
3046 			}
3047 		} else {
3048 			ERROROUT(nfsm_loadattr(&info, newvp, NULL));
3049 		}
3050 	}
3051 	m_freem(info.mrep);
3052 	info.mrep = NULL;
3053 nfsmout:
3054 	if (npp && *npp == NULL) {
3055 		if (error) {
3056 			if (newvp) {
3057 				if (newvp == dvp)
3058 					vrele(newvp);
3059 				else
3060 					vput(newvp);
3061 			}
3062 		} else
3063 			*npp = np;
3064 	}
3065 	return (error);
3066 }
3067 
3068 /*
3069  * Nfs Version 3 commit rpc
3070  *
3071  * We call it 'uio' to distinguish it from 'bio' but there is no real uio
3072  * involved.
3073  */
3074 int
3075 nfs_commitrpc_uio(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
3076 {
3077 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
3078 	int error = 0, wccflag = NFSV3_WCCRATTR;
3079 	struct nfsm_info info;
3080 	u_int32_t *tl;
3081 
3082 	info.mrep = NULL;
3083 	info.v3 = 1;
3084 
3085 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
3086 		return (0);
3087 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
3088 	nfsm_reqhead(&info, vp, NFSPROC_COMMIT, NFSX_FH(1));
3089 	ERROROUT(nfsm_fhtom(&info, vp));
3090 	tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
3091 	txdr_hyper(offset, tl);
3092 	tl += 2;
3093 	*tl = txdr_unsigned(cnt);
3094 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_COMMIT, td,
3095 				nfs_vpcred(vp, ND_WRITE), &error));
3096 	ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
3097 	if (!error) {
3098 		NULLOUT(tl = nfsm_dissect(&info, NFSX_V3WRITEVERF));
3099 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
3100 			NFSX_V3WRITEVERF)) {
3101 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
3102 				NFSX_V3WRITEVERF);
3103 			error = NFSERR_STALEWRITEVERF;
3104 		}
3105 	}
3106 	m_freem(info.mrep);
3107 	info.mrep = NULL;
3108 nfsmout:
3109 	return (error);
3110 }
3111 
3112 /*
3113  * Kludge City..
3114  * - make nfs_bmap() essentially a no-op that does no translation
3115  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
3116  *   (Maybe I could use the process's page mapping, but I was concerned that
3117  *    Kernel Write might not be enabled and also figured copyout() would do
3118  *    a lot more work than bcopy() and also it currently happens in the
3119  *    context of the swapper process (2).
3120  *
3121  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
3122  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
3123  */
3124 static int
3125 nfs_bmap(struct vop_bmap_args *ap)
3126 {
3127 	/* no token lock required */
3128 	if (ap->a_doffsetp != NULL)
3129 		*ap->a_doffsetp = ap->a_loffset;
3130 	if (ap->a_runp != NULL)
3131 		*ap->a_runp = 0;
3132 	if (ap->a_runb != NULL)
3133 		*ap->a_runb = 0;
3134 	return (0);
3135 }
3136 
3137 /*
3138  * Strategy routine.
3139  */
3140 static int
3141 nfs_strategy(struct vop_strategy_args *ap)
3142 {
3143 	struct bio *bio = ap->a_bio;
3144 	struct bio *nbio;
3145 	struct buf *bp __debugvar = bio->bio_buf;
3146 	struct nfsmount *nmp = VFSTONFS(ap->a_vp->v_mount);
3147 	struct thread *td;
3148 	int error;
3149 
3150 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3151 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
3152 	KASSERT(BUF_REFCNT(bp) > 0,
3153 		("nfs_strategy: buffer %p not locked", bp));
3154 
3155 	if (bio->bio_flags & BIO_SYNC)
3156 		td = curthread;	/* XXX */
3157 	else
3158 		td = NULL;
3159 
3160 	lwkt_gettoken(&nmp->nm_token);
3161 
3162         /*
3163 	 * We probably don't need to push an nbio any more since no
3164 	 * block conversion is required due to the use of 64 bit byte
3165 	 * offsets, but do it anyway.
3166 	 *
3167 	 * NOTE: When NFS callers itself via this strategy routines and
3168 	 *	 sets up a synchronous I/O, it expects the I/O to run
3169 	 *	 synchronously (its bio_done routine just assumes it),
3170 	 *	 so for now we have to honor the bit.
3171          */
3172 	nbio = push_bio(bio);
3173 	nbio->bio_offset = bio->bio_offset;
3174 	nbio->bio_flags = bio->bio_flags & BIO_SYNC;
3175 
3176 	/*
3177 	 * If the op is asynchronous and an i/o daemon is waiting
3178 	 * queue the request, wake it up and wait for completion
3179 	 * otherwise just do it ourselves.
3180 	 */
3181 	if (bio->bio_flags & BIO_SYNC) {
3182 		error = nfs_doio(ap->a_vp, nbio, td);
3183 	} else {
3184 		nfs_asyncio(ap->a_vp, nbio);
3185 		error = 0;
3186 	}
3187 	lwkt_reltoken(&nmp->nm_token);
3188 
3189 	return (error);
3190 }
3191 
3192 /*
3193  * Mmap a file
3194  *
3195  * NB Currently unsupported.
3196  *
3197  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
3198  */
3199 /* ARGSUSED */
3200 static int
3201 nfs_mmap(struct vop_mmap_args *ap)
3202 {
3203 	/* no token lock required */
3204 	return (EINVAL);
3205 }
3206 
3207 /*
3208  * fsync vnode op. Just call nfs_flush() with commit == 1.
3209  *
3210  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
3211  */
3212 /* ARGSUSED */
3213 static int
3214 nfs_fsync(struct vop_fsync_args *ap)
3215 {
3216 	struct nfsmount *nmp = VFSTONFS(ap->a_vp->v_mount);
3217 	int error;
3218 
3219 	lwkt_gettoken(&nmp->nm_token);
3220 
3221 	/*
3222 	 * NOTE: Because attributes are set synchronously we currently
3223 	 *	 do not have to implement vsetisdirty()/vclrisdirty().
3224 	 */
3225 	error = nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1);
3226 
3227 	lwkt_reltoken(&nmp->nm_token);
3228 
3229 	return error;
3230 }
3231 
3232 /*
3233  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
3234  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
3235  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
3236  * set the buffer contains data that has already been written to the server
3237  * and which now needs a commit RPC.
3238  *
3239  * If commit is 0 we only take one pass and only flush buffers containing new
3240  * dirty data.
3241  *
3242  * If commit is 1 we take two passes, issuing a commit RPC in the second
3243  * pass.
3244  *
3245  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
3246  * to completely flush all pending data.
3247  *
3248  * Note that the RB_SCAN code properly handles the case where the
3249  * callback might block and directly or indirectly (another thread) cause
3250  * the RB tree to change.
3251  */
3252 
3253 #ifndef NFS_COMMITBVECSIZ
3254 #define NFS_COMMITBVECSIZ	16
3255 #endif
3256 
3257 struct nfs_flush_info {
3258 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
3259 	struct thread *td;
3260 	struct vnode *vp;
3261 	int waitfor;
3262 	int slpflag;
3263 	int slptimeo;
3264 	int loops;
3265 	struct buf *bvary[NFS_COMMITBVECSIZ];
3266 	int bvsize;
3267 	off_t beg_off;
3268 	off_t end_off;
3269 };
3270 
3271 static int nfs_flush_bp(struct buf *bp, void *data);
3272 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
3273 
3274 int
3275 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
3276 {
3277 	struct nfsnode *np = VTONFS(vp);
3278 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
3279 	struct nfs_flush_info info;
3280 	int error;
3281 
3282 	bzero(&info, sizeof(info));
3283 	info.td = td;
3284 	info.vp = vp;
3285 	info.waitfor = waitfor;
3286 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
3287 	info.loops = 0;
3288 	lwkt_gettoken(&vp->v_token);
3289 
3290 	do {
3291 		/*
3292 		 * Flush mode
3293 		 */
3294 		info.mode = NFI_FLUSHNEW;
3295 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3296 				nfs_flush_bp, &info);
3297 
3298 		/*
3299 		 * Take a second pass if committing and no error occured.
3300 		 * Clean up any left over collection (whether an error
3301 		 * occurs or not).
3302 		 */
3303 		if (commit && error == 0) {
3304 			info.mode = NFI_COMMIT;
3305 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3306 					nfs_flush_bp, &info);
3307 			if (info.bvsize)
3308 				error = nfs_flush_docommit(&info, error);
3309 		}
3310 
3311 		/*
3312 		 * Wait for pending I/O to complete before checking whether
3313 		 * any further dirty buffers exist.
3314 		 */
3315 		while (waitfor == MNT_WAIT &&
3316 		       bio_track_active(&vp->v_track_write)) {
3317 			error = bio_track_wait(&vp->v_track_write,
3318 					       info.slpflag, info.slptimeo);
3319 			if (error) {
3320 				/*
3321 				 * We have to be able to break out if this
3322 				 * is an 'intr' mount.
3323 				 */
3324 				if (nfs_sigintr(nmp, NULL, td)) {
3325 					error = -EINTR;
3326 					break;
3327 				}
3328 
3329 				/*
3330 				 * Since we do not process pending signals,
3331 				 * once we get a PCATCH our tsleep() will no
3332 				 * longer sleep, switch to a fixed timeout
3333 				 * instead.
3334 				 */
3335 				if (info.slpflag == PCATCH) {
3336 					info.slpflag = 0;
3337 					info.slptimeo = 2 * hz;
3338 				}
3339 				error = 0;
3340 			}
3341 		}
3342 		++info.loops;
3343 		/*
3344 		 * Loop if we are flushing synchronous as well as committing,
3345 		 * and dirty buffers are still present.  Otherwise we might livelock.
3346 		 */
3347 	} while (waitfor == MNT_WAIT && commit &&
3348 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3349 
3350 	/*
3351 	 * The callbacks have to return a negative error to terminate the
3352 	 * RB scan.
3353 	 */
3354 	if (error < 0)
3355 		error = -error;
3356 
3357 	/*
3358 	 * Deal with any error collection
3359 	 */
3360 	if (np->n_flag & NWRITEERR) {
3361 		error = np->n_error;
3362 		np->n_flag &= ~NWRITEERR;
3363 	}
3364 	lwkt_reltoken(&vp->v_token);
3365 	return (error);
3366 }
3367 
3368 static
3369 int
3370 nfs_flush_bp(struct buf *bp, void *data)
3371 {
3372 	struct nfs_flush_info *info = data;
3373 	int lkflags;
3374 	int error;
3375 	off_t toff;
3376 
3377 	error = 0;
3378 	switch(info->mode) {
3379 	case NFI_FLUSHNEW:
3380 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3381 		if (error && info->loops && info->waitfor == MNT_WAIT) {
3382 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3383 			if (error) {
3384 				lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3385 				if (info->slpflag & PCATCH)
3386 					lkflags |= LK_PCATCH;
3387 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3388 						     info->slptimeo);
3389 			}
3390 		}
3391 
3392 		/*
3393 		 * Ignore locking errors
3394 		 */
3395 		if (error) {
3396 			error = 0;
3397 			break;
3398 		}
3399 
3400 		/*
3401 		 * The buffer may have changed out from under us, even if
3402 		 * we did not block (MPSAFE).  Check again now that it is
3403 		 * locked.
3404 		 */
3405 		if (bp->b_vp == info->vp &&
3406 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == B_DELWRI) {
3407 			bremfree(bp);
3408 			bawrite(bp);
3409 		} else {
3410 			BUF_UNLOCK(bp);
3411 		}
3412 		break;
3413 	case NFI_COMMIT:
3414 		/*
3415 		 * Only process buffers in need of a commit which we can
3416 		 * immediately lock.  This may prevent a buffer from being
3417 		 * committed, but the normal flush loop will block on the
3418 		 * same buffer so we shouldn't get into an endless loop.
3419 		 */
3420 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3421 		    (B_DELWRI | B_NEEDCOMMIT)) {
3422 			break;
3423 		}
3424 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
3425 			break;
3426 
3427 		/*
3428 		 * We must recheck after successfully locking the buffer.
3429 		 */
3430 		if (bp->b_vp != info->vp ||
3431 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3432 		    (B_DELWRI | B_NEEDCOMMIT)) {
3433 			BUF_UNLOCK(bp);
3434 			break;
3435 		}
3436 
3437 		/*
3438 		 * NOTE: storing the bp in the bvary[] basically sets
3439 		 * it up for a commit operation.
3440 		 *
3441 		 * We must call vfs_busy_pages() now so the commit operation
3442 		 * is interlocked with user modifications to memory mapped
3443 		 * pages.  The b_dirtyoff/b_dirtyend range is not correct
3444 		 * until after the pages have been busied.
3445 		 *
3446 		 * Note: to avoid loopback deadlocks, we do not
3447 		 * assign b_runningbufspace.
3448 		 */
3449 		bremfree(bp);
3450 		bp->b_cmd = BUF_CMD_WRITE;
3451 		vfs_busy_pages(bp->b_vp, bp);
3452 		info->bvary[info->bvsize] = bp;
3453 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3454 		if (info->bvsize == 0 || toff < info->beg_off)
3455 			info->beg_off = toff;
3456 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3457 		if (info->bvsize == 0 || toff > info->end_off)
3458 			info->end_off = toff;
3459 		++info->bvsize;
3460 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3461 			error = nfs_flush_docommit(info, 0);
3462 			KKASSERT(info->bvsize == 0);
3463 		}
3464 	}
3465 	return (error);
3466 }
3467 
3468 static
3469 int
3470 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3471 {
3472 	struct vnode *vp;
3473 	struct buf *bp;
3474 	off_t bytes;
3475 	int retv;
3476 	int i;
3477 
3478 	vp = info->vp;
3479 
3480 	if (info->bvsize > 0) {
3481 		/*
3482 		 * Commit data on the server, as required.  Note that
3483 		 * nfs_commit will use the vnode's cred for the commit.
3484 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3485 		 */
3486 		bytes = info->end_off - info->beg_off;
3487 		if (bytes > 0x40000000)
3488 			bytes = 0x40000000;
3489 		if (error) {
3490 			retv = -error;
3491 		} else {
3492 			retv = nfs_commitrpc_uio(vp, info->beg_off,
3493 						 (int)bytes, info->td);
3494 			if (retv == NFSERR_STALEWRITEVERF)
3495 				nfs_clearcommit(vp->v_mount);
3496 		}
3497 
3498 		/*
3499 		 * Now, either mark the blocks I/O done or mark the
3500 		 * blocks dirty, depending on whether the commit
3501 		 * succeeded.
3502 		 */
3503 		for (i = 0; i < info->bvsize; ++i) {
3504 			bp = info->bvary[i];
3505 			if (retv || (bp->b_flags & B_NEEDCOMMIT) == 0) {
3506 				/*
3507 				 * Either an error or the original
3508 				 * vfs_busy_pages() cleared B_NEEDCOMMIT
3509 				 * due to finding new dirty VM pages in
3510 				 * the buffer.
3511 				 *
3512 				 * Leave B_DELWRI intact.
3513 				 */
3514 				bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3515 				vfs_unbusy_pages(bp);
3516 				bp->b_cmd = BUF_CMD_DONE;
3517 				bqrelse(bp);
3518 			} else {
3519 				/*
3520 				 * Success, remove B_DELWRI ( bundirty() ).
3521 				 *
3522 				 * b_dirtyoff/b_dirtyend seem to be NFS
3523 				 * specific.  We should probably move that
3524 				 * into bundirty(). XXX
3525 				 *
3526 				 * We are faking an I/O write, we have to
3527 				 * start the transaction in order to
3528 				 * immediately biodone() it.
3529 				 */
3530 				bundirty(bp);
3531 				bp->b_flags &= ~B_ERROR;
3532 				bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3533 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3534 				biodone(&bp->b_bio1);
3535 			}
3536 		}
3537 		info->bvsize = 0;
3538 	}
3539 	return (error);
3540 }
3541 
3542 /*
3543  * NFS advisory byte-level locks.
3544  * Currently unsupported.
3545  *
3546  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3547  *		int a_flags)
3548  */
3549 static int
3550 nfs_advlock(struct vop_advlock_args *ap)
3551 {
3552 	struct nfsnode *np = VTONFS(ap->a_vp);
3553 
3554 	/* no token lock currently required */
3555 	/*
3556 	 * The following kludge is to allow diskless support to work
3557 	 * until a real NFS lockd is implemented. Basically, just pretend
3558 	 * that this is a local lock.
3559 	 */
3560 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3561 }
3562 
3563 /*
3564  * Print out the contents of an nfsnode.
3565  *
3566  * nfs_print(struct vnode *a_vp)
3567  */
3568 static int
3569 nfs_print(struct vop_print_args *ap)
3570 {
3571 	struct vnode *vp = ap->a_vp;
3572 	struct nfsnode *np = VTONFS(vp);
3573 
3574 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3575 		(long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3576 	if (vp->v_type == VFIFO)
3577 		fifo_printinfo(vp);
3578 	kprintf("\n");
3579 	return (0);
3580 }
3581 
3582 /*
3583  * nfs special file access vnode op.
3584  *
3585  * nfs_laccess(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3586  */
3587 static int
3588 nfs_laccess(struct vop_access_args *ap)
3589 {
3590 	struct nfsmount *nmp = VFSTONFS(ap->a_vp->v_mount);
3591 	struct vattr vattr;
3592 	int error;
3593 
3594 	lwkt_gettoken(&nmp->nm_token);
3595 	error = VOP_GETATTR(ap->a_vp, &vattr);
3596 	if (error == 0) {
3597 		error = vop_helper_access(ap, vattr.va_uid, vattr.va_gid,
3598 					  vattr.va_mode, 0);
3599 	}
3600 	lwkt_reltoken(&nmp->nm_token);
3601 
3602 	return (error);
3603 }
3604 
3605 /*
3606  * Read wrapper for fifos.
3607  *
3608  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3609  *		struct ucred *a_cred)
3610  */
3611 static int
3612 nfsfifo_read(struct vop_read_args *ap)
3613 {
3614 	struct nfsnode *np = VTONFS(ap->a_vp);
3615 
3616 	/* no token access required */
3617 	/*
3618 	 * Set access flag.
3619 	 */
3620 	np->n_flag |= NACC;
3621 	getnanotime(&np->n_atim);
3622 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3623 }
3624 
3625 /*
3626  * Write wrapper for fifos.
3627  *
3628  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3629  *		 struct ucred *a_cred)
3630  */
3631 static int
3632 nfsfifo_write(struct vop_write_args *ap)
3633 {
3634 	struct nfsnode *np = VTONFS(ap->a_vp);
3635 
3636 	/* no token access required */
3637 	/*
3638 	 * Set update flag.
3639 	 */
3640 	np->n_flag |= NUPD;
3641 	getnanotime(&np->n_mtim);
3642 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3643 }
3644 
3645 /*
3646  * Close wrapper for fifos.
3647  *
3648  * Update the times on the nfsnode then do fifo close.
3649  *
3650  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3651  */
3652 static int
3653 nfsfifo_close(struct vop_close_args *ap)
3654 {
3655 	struct vnode *vp = ap->a_vp;
3656 	struct nfsnode *np = VTONFS(vp);
3657 	struct vattr vattr;
3658 	struct timespec ts;
3659 
3660 	/* no token access required */
3661 
3662 	vn_lock(vp, LK_UPGRADE | LK_RETRY); /* XXX */
3663 	if (np->n_flag & (NACC | NUPD)) {
3664 		getnanotime(&ts);
3665 		if (np->n_flag & NACC)
3666 			np->n_atim = ts;
3667 		if (np->n_flag & NUPD)
3668 			np->n_mtim = ts;
3669 		np->n_flag |= NCHG;
3670 		if (VREFCNT(vp) == 1 &&
3671 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3672 			VATTR_NULL(&vattr);
3673 			if (np->n_flag & NACC)
3674 				vattr.va_atime = np->n_atim;
3675 			if (np->n_flag & NUPD)
3676 				vattr.va_mtime = np->n_mtim;
3677 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3678 		}
3679 	}
3680 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3681 }
3682 
3683 /************************************************************************
3684  *                          KQFILTER OPS                                *
3685  ************************************************************************/
3686 
3687 static void filt_nfsdetach(struct knote *kn);
3688 static int filt_nfsread(struct knote *kn, long hint);
3689 static int filt_nfswrite(struct knote *kn, long hint);
3690 static int filt_nfsvnode(struct knote *kn, long hint);
3691 
3692 static struct filterops nfsread_filtops =
3693 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3694 	  NULL, filt_nfsdetach, filt_nfsread };
3695 static struct filterops nfswrite_filtops =
3696 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3697 	  NULL, filt_nfsdetach, filt_nfswrite };
3698 static struct filterops nfsvnode_filtops =
3699 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3700 	  NULL, filt_nfsdetach, filt_nfsvnode };
3701 
3702 static int
3703 nfs_kqfilter (struct vop_kqfilter_args *ap)
3704 {
3705 	struct vnode *vp = ap->a_vp;
3706 	struct knote *kn = ap->a_kn;
3707 
3708 	switch (kn->kn_filter) {
3709 	case EVFILT_READ:
3710 		kn->kn_fop = &nfsread_filtops;
3711 		break;
3712 	case EVFILT_WRITE:
3713 		kn->kn_fop = &nfswrite_filtops;
3714 		break;
3715 	case EVFILT_VNODE:
3716 		kn->kn_fop = &nfsvnode_filtops;
3717 		break;
3718 	default:
3719 		return (EOPNOTSUPP);
3720 	}
3721 
3722 	kn->kn_hook = (caddr_t)vp;
3723 
3724 	knote_insert(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3725 
3726 	return(0);
3727 }
3728 
3729 static void
3730 filt_nfsdetach(struct knote *kn)
3731 {
3732 	struct vnode *vp = (void *)kn->kn_hook;
3733 
3734 	knote_remove(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3735 }
3736 
3737 static int
3738 filt_nfsread(struct knote *kn, long hint)
3739 {
3740 	struct vnode *vp = (void *)kn->kn_hook;
3741 	struct nfsnode *node = VTONFS(vp);
3742 	off_t off;
3743 
3744 	if (hint == NOTE_REVOKE) {
3745 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3746 		return(1);
3747 	}
3748 
3749 	/*
3750 	 * Interlock against MP races when performing this function. XXX
3751 	 */
3752 	/* TMPFS_NODE_LOCK_SH(node); */
3753 	off = node->n_size - kn->kn_fp->f_offset;
3754 	kn->kn_data = (off < INTPTR_MAX) ? off : INTPTR_MAX;
3755 	if (kn->kn_sfflags & NOTE_OLDAPI) {
3756 		/* TMPFS_NODE_UNLOCK(node); */
3757 		return(1);
3758 	}
3759 	if (kn->kn_data == 0) {
3760 		kn->kn_data = (off < INTPTR_MAX) ? off : INTPTR_MAX;
3761 	}
3762 	/* TMPFS_NODE_UNLOCK(node); */
3763 	return (kn->kn_data != 0);
3764 }
3765 
3766 static int
3767 filt_nfswrite(struct knote *kn, long hint)
3768 {
3769 	if (hint == NOTE_REVOKE)
3770 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3771 	kn->kn_data = 0;
3772 	return (1);
3773 }
3774 
3775 static int
3776 filt_nfsvnode(struct knote *kn, long hint)
3777 {
3778 	if (kn->kn_sfflags & hint)
3779 		kn->kn_fflags |= hint;
3780 	if (hint == NOTE_REVOKE) {
3781 		kn->kn_flags |= (EV_EOF | EV_NODATA);
3782 		return (1);
3783 	}
3784 	return (kn->kn_fflags != 0);
3785 }
3786