xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 3f5e28f4)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.71 2007/05/09 00:53:35 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsspec_read (struct vop_read_args *);
98 static int	nfsspec_write (struct vop_write_args *);
99 static int	nfsfifo_read (struct vop_read_args *);
100 static int	nfsfifo_write (struct vop_write_args *);
101 static int	nfsspec_close (struct vop_close_args *);
102 static int	nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static	int	nfs_lookup (struct vop_old_lookup_args *);
106 static	int	nfs_create (struct vop_old_create_args *);
107 static	int	nfs_mknod (struct vop_old_mknod_args *);
108 static	int	nfs_open (struct vop_open_args *);
109 static	int	nfs_close (struct vop_close_args *);
110 static	int	nfs_access (struct vop_access_args *);
111 static	int	nfs_getattr (struct vop_getattr_args *);
112 static	int	nfs_setattr (struct vop_setattr_args *);
113 static	int	nfs_read (struct vop_read_args *);
114 static	int	nfs_mmap (struct vop_mmap_args *);
115 static	int	nfs_fsync (struct vop_fsync_args *);
116 static	int	nfs_remove (struct vop_old_remove_args *);
117 static	int	nfs_link (struct vop_old_link_args *);
118 static	int	nfs_rename (struct vop_old_rename_args *);
119 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
120 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
121 static	int	nfs_symlink (struct vop_old_symlink_args *);
122 static	int	nfs_readdir (struct vop_readdir_args *);
123 static	int	nfs_bmap (struct vop_bmap_args *);
124 static	int	nfs_strategy (struct vop_strategy_args *);
125 static	int	nfs_lookitup (struct vnode *, const char *, int,
126 			struct ucred *, struct thread *, struct nfsnode **);
127 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int	nfsspec_access (struct vop_access_args *);
129 static int	nfs_readlink (struct vop_readlink_args *);
130 static int	nfs_print (struct vop_print_args *);
131 static int	nfs_advlock (struct vop_advlock_args *);
132 
133 static	int	nfs_nresolve (struct vop_nresolve_args *);
134 /*
135  * Global vfs data structures for nfs
136  */
137 struct vop_ops nfsv2_vnode_vops = {
138 	.vop_default =		vop_defaultop,
139 	.vop_access =		nfs_access,
140 	.vop_advlock =		nfs_advlock,
141 	.vop_bmap =		nfs_bmap,
142 	.vop_close =		nfs_close,
143 	.vop_old_create =	nfs_create,
144 	.vop_fsync =		nfs_fsync,
145 	.vop_getattr =		nfs_getattr,
146 	.vop_getpages =		nfs_getpages,
147 	.vop_putpages =		nfs_putpages,
148 	.vop_inactive =		nfs_inactive,
149 	.vop_old_link =		nfs_link,
150 	.vop_old_lookup =	nfs_lookup,
151 	.vop_old_mkdir =	nfs_mkdir,
152 	.vop_old_mknod =	nfs_mknod,
153 	.vop_mmap =		nfs_mmap,
154 	.vop_open =		nfs_open,
155 	.vop_poll =		nfs_poll,
156 	.vop_print =		nfs_print,
157 	.vop_read =		nfs_read,
158 	.vop_readdir =		nfs_readdir,
159 	.vop_readlink =		nfs_readlink,
160 	.vop_reclaim =		nfs_reclaim,
161 	.vop_old_remove =	nfs_remove,
162 	.vop_old_rename =	nfs_rename,
163 	.vop_old_rmdir =	nfs_rmdir,
164 	.vop_setattr =		nfs_setattr,
165 	.vop_strategy =		nfs_strategy,
166 	.vop_old_symlink =	nfs_symlink,
167 	.vop_write =		nfs_write,
168 	.vop_nresolve =		nfs_nresolve
169 };
170 
171 /*
172  * Special device vnode ops
173  */
174 struct vop_ops nfsv2_spec_vops = {
175 	.vop_default =		spec_vnoperate,
176 	.vop_access =		nfsspec_access,
177 	.vop_close =		nfsspec_close,
178 	.vop_fsync =		nfs_fsync,
179 	.vop_getattr =		nfs_getattr,
180 	.vop_inactive =		nfs_inactive,
181 	.vop_print =		nfs_print,
182 	.vop_read =		nfsspec_read,
183 	.vop_reclaim =		nfs_reclaim,
184 	.vop_setattr =		nfs_setattr,
185 	.vop_write =		nfsspec_write
186 };
187 
188 struct vop_ops nfsv2_fifo_vops = {
189 	.vop_default =		fifo_vnoperate,
190 	.vop_access =		nfsspec_access,
191 	.vop_close =		nfsfifo_close,
192 	.vop_fsync =		nfs_fsync,
193 	.vop_getattr =		nfs_getattr,
194 	.vop_inactive =		nfs_inactive,
195 	.vop_print =		nfs_print,
196 	.vop_read =		nfsfifo_read,
197 	.vop_reclaim =		nfs_reclaim,
198 	.vop_setattr =		nfs_setattr,
199 	.vop_write =		nfsfifo_write
200 };
201 
202 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
203 				  struct componentname *cnp,
204 				  struct vattr *vap);
205 static int	nfs_removerpc (struct vnode *dvp, const char *name,
206 				   int namelen,
207 				   struct ucred *cred, struct thread *td);
208 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
209 				   int fnamelen, struct vnode *tdvp,
210 				   const char *tnameptr, int tnamelen,
211 				   struct ucred *cred, struct thread *td);
212 static int	nfs_renameit (struct vnode *sdvp,
213 				  struct componentname *scnp,
214 				  struct sillyrename *sp);
215 
216 /*
217  * Global variables
218  */
219 extern u_int32_t nfs_true, nfs_false;
220 extern u_int32_t nfs_xdrneg1;
221 extern struct nfsstats nfsstats;
222 extern nfstype nfsv3_type[9];
223 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
224 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
225 int nfs_numasync = 0;
226 
227 SYSCTL_DECL(_vfs_nfs);
228 
229 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
230 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
231 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
232 
233 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
234 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
235 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE ACCESS cache timeout");
236 
237 static int	nfsv3_commit_on_close = 0;
238 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
239 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
240 #if 0
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
242 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
243 
244 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
245 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
246 #endif
247 
248 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
249 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
250 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
251 static int
252 nfs3_access_otw(struct vnode *vp, int wmode,
253 		struct thread *td, struct ucred *cred)
254 {
255 	const int v3 = 1;
256 	u_int32_t *tl;
257 	int error = 0, attrflag;
258 
259 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
260 	caddr_t bpos, dpos, cp2;
261 	int32_t t1, t2;
262 	caddr_t cp;
263 	u_int32_t rmode;
264 	struct nfsnode *np = VTONFS(vp);
265 
266 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
267 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
268 	nfsm_fhtom(vp, v3);
269 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
270 	*tl = txdr_unsigned(wmode);
271 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
272 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
273 	if (!error) {
274 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
275 		rmode = fxdr_unsigned(u_int32_t, *tl);
276 		np->n_mode = rmode;
277 		np->n_modeuid = cred->cr_uid;
278 		np->n_modestamp = mycpu->gd_time_seconds;
279 	}
280 	m_freem(mrep);
281 nfsmout:
282 	return error;
283 }
284 
285 /*
286  * nfs access vnode op.
287  * For nfs version 2, just return ok. File accesses may fail later.
288  * For nfs version 3, use the access rpc to check accessibility. If file modes
289  * are changed on the server, accesses might still fail later.
290  *
291  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
292  *	      struct thread *a_td)
293  */
294 static int
295 nfs_access(struct vop_access_args *ap)
296 {
297 	struct vnode *vp = ap->a_vp;
298 	thread_t td = curthread;
299 	int error = 0;
300 	u_int32_t mode, wmode;
301 	int v3 = NFS_ISV3(vp);
302 	struct nfsnode *np = VTONFS(vp);
303 
304 	/*
305 	 * Disallow write attempts on filesystems mounted read-only;
306 	 * unless the file is a socket, fifo, or a block or character
307 	 * device resident on the filesystem.
308 	 */
309 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
310 		switch (vp->v_type) {
311 		case VREG:
312 		case VDIR:
313 		case VLNK:
314 			return (EROFS);
315 		default:
316 			break;
317 		}
318 	}
319 	/*
320 	 * For nfs v3, check to see if we have done this recently, and if
321 	 * so return our cached result instead of making an ACCESS call.
322 	 * If not, do an access rpc, otherwise you are stuck emulating
323 	 * ufs_access() locally using the vattr. This may not be correct,
324 	 * since the server may apply other access criteria such as
325 	 * client uid-->server uid mapping that we do not know about.
326 	 */
327 	if (v3) {
328 		if (ap->a_mode & VREAD)
329 			mode = NFSV3ACCESS_READ;
330 		else
331 			mode = 0;
332 		if (vp->v_type != VDIR) {
333 			if (ap->a_mode & VWRITE)
334 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
335 			if (ap->a_mode & VEXEC)
336 				mode |= NFSV3ACCESS_EXECUTE;
337 		} else {
338 			if (ap->a_mode & VWRITE)
339 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
340 					 NFSV3ACCESS_DELETE);
341 			if (ap->a_mode & VEXEC)
342 				mode |= NFSV3ACCESS_LOOKUP;
343 		}
344 		/* XXX safety belt, only make blanket request if caching */
345 		if (nfsaccess_cache_timeout > 0) {
346 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
347 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
348 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
349 		} else {
350 			wmode = mode;
351 		}
352 
353 		/*
354 		 * Does our cached result allow us to give a definite yes to
355 		 * this request?
356 		 */
357 		if (np->n_modestamp &&
358 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
359 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
360 		   ((np->n_mode & mode) == mode)) {
361 			nfsstats.accesscache_hits++;
362 		} else {
363 			/*
364 			 * Either a no, or a don't know.  Go to the wire.
365 			 */
366 			nfsstats.accesscache_misses++;
367 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
368 			if (!error) {
369 				if ((np->n_mode & mode) != mode) {
370 					error = EACCES;
371 				}
372 			}
373 		}
374 	} else {
375 		if ((error = nfsspec_access(ap)) != 0)
376 			return (error);
377 
378 		/*
379 		 * Attempt to prevent a mapped root from accessing a file
380 		 * which it shouldn't.  We try to read a byte from the file
381 		 * if the user is root and the file is not zero length.
382 		 * After calling nfsspec_access, we should have the correct
383 		 * file size cached.
384 		 */
385 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
386 		    && VTONFS(vp)->n_size > 0) {
387 			struct iovec aiov;
388 			struct uio auio;
389 			char buf[1];
390 
391 			aiov.iov_base = buf;
392 			aiov.iov_len = 1;
393 			auio.uio_iov = &aiov;
394 			auio.uio_iovcnt = 1;
395 			auio.uio_offset = 0;
396 			auio.uio_resid = 1;
397 			auio.uio_segflg = UIO_SYSSPACE;
398 			auio.uio_rw = UIO_READ;
399 			auio.uio_td = td;
400 
401 			if (vp->v_type == VREG) {
402 				error = nfs_readrpc(vp, &auio);
403 			} else if (vp->v_type == VDIR) {
404 				char* bp;
405 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
406 				aiov.iov_base = bp;
407 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
408 				error = nfs_readdirrpc(vp, &auio);
409 				kfree(bp, M_TEMP);
410 			} else if (vp->v_type == VLNK) {
411 				error = nfs_readlinkrpc(vp, &auio);
412 			} else {
413 				error = EACCES;
414 			}
415 		}
416 	}
417 	/*
418 	 * [re]record creds for reading and/or writing if access
419 	 * was granted.  Assume the NFS server will grant read access
420 	 * for execute requests.
421 	 */
422 	if (error == 0) {
423 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
424 			crhold(ap->a_cred);
425 			if (np->n_rucred)
426 				crfree(np->n_rucred);
427 			np->n_rucred = ap->a_cred;
428 		}
429 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
430 			crhold(ap->a_cred);
431 			if (np->n_wucred)
432 				crfree(np->n_wucred);
433 			np->n_wucred = ap->a_cred;
434 		}
435 	}
436 	return(error);
437 }
438 
439 /*
440  * nfs open vnode op
441  * Check to see if the type is ok
442  * and that deletion is not in progress.
443  * For paged in text files, you will need to flush the page cache
444  * if consistency is lost.
445  *
446  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
447  */
448 /* ARGSUSED */
449 static int
450 nfs_open(struct vop_open_args *ap)
451 {
452 	struct vnode *vp = ap->a_vp;
453 	struct nfsnode *np = VTONFS(vp);
454 	struct vattr vattr;
455 	int error;
456 
457 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
458 #ifdef DIAGNOSTIC
459 		kprintf("open eacces vtyp=%d\n",vp->v_type);
460 #endif
461 		return (EOPNOTSUPP);
462 	}
463 
464 	/*
465 	 * Clear the attribute cache only if opening with write access.  It
466 	 * is unclear if we should do this at all here, but we certainly
467 	 * should not clear the cache unconditionally simply because a file
468 	 * is being opened.
469 	 */
470 	if (ap->a_mode & FWRITE)
471 		np->n_attrstamp = 0;
472 
473 	/*
474 	 * For normal NFS, reconcile changes made locally verses
475 	 * changes made remotely.  Note that VOP_GETATTR only goes
476 	 * to the wire if the cached attribute has timed out or been
477 	 * cleared.
478 	 *
479 	 * If local modifications have been made clear the attribute
480 	 * cache to force an attribute and modified time check.  If
481 	 * GETATTR detects that the file has been changed by someone
482 	 * other then us it will set NRMODIFIED.
483 	 *
484 	 * If we are opening a directory and local changes have been
485 	 * made we have to invalidate the cache in order to ensure
486 	 * that we get the most up-to-date information from the
487 	 * server.  XXX
488 	 */
489 	if (np->n_flag & NLMODIFIED) {
490 		np->n_attrstamp = 0;
491 		if (vp->v_type == VDIR) {
492 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
493 			if (error == EINTR)
494 				return (error);
495 			nfs_invaldir(vp);
496 		}
497 	}
498 	error = VOP_GETATTR(vp, &vattr);
499 	if (error)
500 		return (error);
501 	if (np->n_flag & NRMODIFIED) {
502 		if (vp->v_type == VDIR)
503 			nfs_invaldir(vp);
504 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
505 		if (error == EINTR)
506 			return (error);
507 		np->n_flag &= ~NRMODIFIED;
508 	}
509 
510 	return (vop_stdopen(ap));
511 }
512 
513 /*
514  * nfs close vnode op
515  * What an NFS client should do upon close after writing is a debatable issue.
516  * Most NFS clients push delayed writes to the server upon close, basically for
517  * two reasons:
518  * 1 - So that any write errors may be reported back to the client process
519  *     doing the close system call. By far the two most likely errors are
520  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
521  * 2 - To put a worst case upper bound on cache inconsistency between
522  *     multiple clients for the file.
523  * There is also a consistency problem for Version 2 of the protocol w.r.t.
524  * not being able to tell if other clients are writing a file concurrently,
525  * since there is no way of knowing if the changed modify time in the reply
526  * is only due to the write for this client.
527  * (NFS Version 3 provides weak cache consistency data in the reply that
528  *  should be sufficient to detect and handle this case.)
529  *
530  * The current code does the following:
531  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
532  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
533  *                     or commit them (this satisfies 1 and 2 except for the
534  *                     case where the server crashes after this close but
535  *                     before the commit RPC, which is felt to be "good
536  *                     enough". Changing the last argument to nfs_flush() to
537  *                     a 1 would force a commit operation, if it is felt a
538  *                     commit is necessary now.
539  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
540  *                     1 should be dealt with via an fsync() system call for
541  *                     cases where write errors are important.
542  *
543  * nfs_close(struct vnode *a_vp, int a_fflag,
544  *	     struct ucred *a_cred, struct thread *a_td)
545  */
546 /* ARGSUSED */
547 static int
548 nfs_close(struct vop_close_args *ap)
549 {
550 	struct vnode *vp = ap->a_vp;
551 	struct nfsnode *np = VTONFS(vp);
552 	int error = 0;
553 	thread_t td = curthread;
554 
555 	if (vp->v_type == VREG) {
556 	    if (np->n_flag & NLMODIFIED) {
557 		if (NFS_ISV3(vp)) {
558 		    /*
559 		     * Under NFSv3 we have dirty buffers to dispose of.  We
560 		     * must flush them to the NFS server.  We have the option
561 		     * of waiting all the way through the commit rpc or just
562 		     * waiting for the initial write.  The default is to only
563 		     * wait through the initial write so the data is in the
564 		     * server's cache, which is roughly similar to the state
565 		     * a standard disk subsystem leaves the file in on close().
566 		     *
567 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
568 		     * potential races with other processes, and certainly
569 		     * cannot clear it if we don't commit.
570 		     */
571 		    int cm = nfsv3_commit_on_close ? 1 : 0;
572 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
573 		    /* np->n_flag &= ~NLMODIFIED; */
574 		} else {
575 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
576 		}
577 		np->n_attrstamp = 0;
578 	    }
579 	    if (np->n_flag & NWRITEERR) {
580 		np->n_flag &= ~NWRITEERR;
581 		error = np->n_error;
582 	    }
583 	}
584 	vop_stdclose(ap);
585 	return (error);
586 }
587 
588 /*
589  * nfs getattr call from vfs.
590  *
591  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
592  *		struct thread *a_td)
593  */
594 static int
595 nfs_getattr(struct vop_getattr_args *ap)
596 {
597 	struct vnode *vp = ap->a_vp;
598 	struct nfsnode *np = VTONFS(vp);
599 	caddr_t cp;
600 	u_int32_t *tl;
601 	int32_t t1, t2;
602 	caddr_t bpos, dpos;
603 	int error = 0;
604 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
605 	int v3 = NFS_ISV3(vp);
606 	thread_t td = curthread;
607 
608 	/*
609 	 * Update local times for special files.
610 	 */
611 	if (np->n_flag & (NACC | NUPD))
612 		np->n_flag |= NCHG;
613 	/*
614 	 * First look in the cache.
615 	 */
616 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
617 		return (0);
618 
619 	if (v3 && nfsaccess_cache_timeout > 0) {
620 		nfsstats.accesscache_misses++;
621 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
622 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
623 			return (0);
624 	}
625 
626 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
627 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
628 	nfsm_fhtom(vp, v3);
629 	nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
630 	if (!error) {
631 		nfsm_loadattr(vp, ap->a_vap);
632 	}
633 	m_freem(mrep);
634 nfsmout:
635 	return (error);
636 }
637 
638 /*
639  * nfs setattr call.
640  *
641  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
642  */
643 static int
644 nfs_setattr(struct vop_setattr_args *ap)
645 {
646 	struct vnode *vp = ap->a_vp;
647 	struct nfsnode *np = VTONFS(vp);
648 	struct vattr *vap = ap->a_vap;
649 	int error = 0;
650 	u_quad_t tsize;
651 	thread_t td = curthread;
652 
653 #ifndef nolint
654 	tsize = (u_quad_t)0;
655 #endif
656 
657 	/*
658 	 * Setting of flags is not supported.
659 	 */
660 	if (vap->va_flags != VNOVAL)
661 		return (EOPNOTSUPP);
662 
663 	/*
664 	 * Disallow write attempts if the filesystem is mounted read-only.
665 	 */
666   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
667 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
668 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
669 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
670 		return (EROFS);
671 	if (vap->va_size != VNOVAL) {
672  		switch (vp->v_type) {
673  		case VDIR:
674  			return (EISDIR);
675  		case VCHR:
676  		case VBLK:
677  		case VSOCK:
678  		case VFIFO:
679 			if (vap->va_mtime.tv_sec == VNOVAL &&
680 			    vap->va_atime.tv_sec == VNOVAL &&
681 			    vap->va_mode == (mode_t)VNOVAL &&
682 			    vap->va_uid == (uid_t)VNOVAL &&
683 			    vap->va_gid == (gid_t)VNOVAL)
684 				return (0);
685  			vap->va_size = VNOVAL;
686  			break;
687  		default:
688 			/*
689 			 * Disallow write attempts if the filesystem is
690 			 * mounted read-only.
691 			 */
692 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
693 				return (EROFS);
694 
695 			/*
696 			 * This is nasty.  The RPCs we send to flush pending
697 			 * data often return attribute information which is
698 			 * cached via a callback to nfs_loadattrcache(), which
699 			 * has the effect of changing our notion of the file
700 			 * size.  Due to flushed appends and other operations
701 			 * the file size can be set to virtually anything,
702 			 * including values that do not match either the old
703 			 * or intended file size.
704 			 *
705 			 * When this condition is detected we must loop to
706 			 * try the operation again.  Hopefully no more
707 			 * flushing is required on the loop so it works the
708 			 * second time around.  THIS CASE ALMOST ALWAYS
709 			 * HAPPENS!
710 			 */
711 			tsize = np->n_size;
712 again:
713 			error = nfs_meta_setsize(vp, td, vap->va_size);
714 
715  			if (np->n_flag & NLMODIFIED) {
716  			    if (vap->va_size == 0)
717  				error = nfs_vinvalbuf(vp, 0, 1);
718  			    else
719  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
720  			}
721 			/*
722 			 * note: this loop case almost always happens at
723 			 * least once per truncation.
724 			 */
725 			if (error == 0 && np->n_size != vap->va_size)
726 				goto again;
727 			np->n_vattr.va_size = vap->va_size;
728 			break;
729 		}
730   	} else if ((vap->va_mtime.tv_sec != VNOVAL ||
731 		vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NLMODIFIED) &&
732 		vp->v_type == VREG &&
733   		(error = nfs_vinvalbuf(vp, V_SAVE, 1)) == EINTR
734 	) {
735 		return (error);
736 	}
737 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
738 
739 	/*
740 	 * Sanity check if a truncation was issued.  This should only occur
741 	 * if multiple processes are racing on the same file.
742 	 */
743 	if (error == 0 && vap->va_size != VNOVAL &&
744 	    np->n_size != vap->va_size) {
745 		kprintf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
746 		goto again;
747 	}
748 	if (error && vap->va_size != VNOVAL) {
749 		np->n_size = np->n_vattr.va_size = tsize;
750 		vnode_pager_setsize(vp, np->n_size);
751 	}
752 	return (error);
753 }
754 
755 /*
756  * Do an nfs setattr rpc.
757  */
758 static int
759 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
760 	       struct ucred *cred, struct thread *td)
761 {
762 	struct nfsv2_sattr *sp;
763 	struct nfsnode *np = VTONFS(vp);
764 	caddr_t cp;
765 	int32_t t1, t2;
766 	caddr_t bpos, dpos, cp2;
767 	u_int32_t *tl;
768 	int error = 0, wccflag = NFSV3_WCCRATTR;
769 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
770 	int v3 = NFS_ISV3(vp);
771 
772 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
773 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
774 	nfsm_fhtom(vp, v3);
775 	if (v3) {
776 		nfsm_v3attrbuild(vap, TRUE);
777 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
778 		*tl = nfs_false;
779 	} else {
780 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
781 		if (vap->va_mode == (mode_t)VNOVAL)
782 			sp->sa_mode = nfs_xdrneg1;
783 		else
784 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
785 		if (vap->va_uid == (uid_t)VNOVAL)
786 			sp->sa_uid = nfs_xdrneg1;
787 		else
788 			sp->sa_uid = txdr_unsigned(vap->va_uid);
789 		if (vap->va_gid == (gid_t)VNOVAL)
790 			sp->sa_gid = nfs_xdrneg1;
791 		else
792 			sp->sa_gid = txdr_unsigned(vap->va_gid);
793 		sp->sa_size = txdr_unsigned(vap->va_size);
794 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
795 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
796 	}
797 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
798 	if (v3) {
799 		np->n_modestamp = 0;
800 		nfsm_wcc_data(vp, wccflag);
801 	} else
802 		nfsm_loadattr(vp, (struct vattr *)0);
803 	m_freem(mrep);
804 nfsmout:
805 	return (error);
806 }
807 
808 /*
809  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
810  * nfs_lookup() until all remaining new api calls are implemented.
811  *
812  * Resolve a namecache entry.  This function is passed a locked ncp and
813  * must call cache_setvp() on it as appropriate to resolve the entry.
814  */
815 static int
816 nfs_nresolve(struct vop_nresolve_args *ap)
817 {
818 	struct thread *td = curthread;
819 	struct namecache *ncp;
820 	struct ucred *cred;
821 	struct nfsnode *np;
822 	struct vnode *dvp;
823 	struct vnode *nvp;
824 	nfsfh_t *fhp;
825 	int attrflag;
826 	int fhsize;
827 	int error;
828 	int len;
829 	int v3;
830 	/******NFSM MACROS********/
831 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
832 	caddr_t bpos, dpos, cp, cp2;
833 	u_int32_t *tl;
834 	int32_t t1, t2;
835 
836 	cred = ap->a_cred;
837 	ncp = ap->a_nch->ncp;
838 
839 	KKASSERT(ncp->nc_parent && ncp->nc_parent->nc_vp);
840 	dvp = ncp->nc_parent->nc_vp;
841 	if ((error = vget(dvp, LK_SHARED)) != 0)
842 		return (error);
843 
844 	nvp = NULL;
845 	v3 = NFS_ISV3(dvp);
846 	nfsstats.lookupcache_misses++;
847 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
848 	len = ncp->nc_nlen;
849 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
850 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
851 	nfsm_fhtom(dvp, v3);
852 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
853 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
854 	if (error) {
855 		/*
856 		 * Cache negatve lookups to reduce NFS traffic, but use
857 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
858 		 * XXX we should add a namecache flag for no-caching
859 		 * to uncache the negative hit as soon as possible, but
860 		 * we cannot simply destroy the entry because it is used
861 		 * as a placeholder by the caller.
862 		 */
863 		if (error == ENOENT) {
864 			int nticks;
865 
866 			if (nfsneg_cache_timeout)
867 				nticks = nfsneg_cache_timeout * hz;
868 			else
869 				nticks = 1;
870 			cache_setvp(ap->a_nch, NULL);
871 			cache_settimeout(ap->a_nch, nticks);
872 		}
873 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
874 		m_freem(mrep);
875 		goto nfsmout;
876 	}
877 
878 	/*
879 	 * Success, get the file handle, do various checks, and load
880 	 * post-operation data from the reply packet.  Theoretically
881 	 * we should never be looking up "." so, theoretically, we
882 	 * should never get the same file handle as our directory.  But
883 	 * we check anyway. XXX
884 	 *
885 	 * Note that no timeout is set for the positive cache hit.  We
886 	 * assume, theoretically, that ESTALE returns will be dealt with
887 	 * properly to handle NFS races and in anycase we cannot depend
888 	 * on a timeout to deal with NFS open/create/excl issues so instead
889 	 * of a bad hack here the rest of the NFS client code needs to do
890 	 * the right thing.
891 	 */
892 	nfsm_getfh(fhp, fhsize, v3);
893 
894 	np = VTONFS(dvp);
895 	if (NFS_CMPFH(np, fhp, fhsize)) {
896 		vref(dvp);
897 		nvp = dvp;
898 	} else {
899 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
900 		if (error) {
901 			m_freem(mrep);
902 			vput(dvp);
903 			return (error);
904 		}
905 		nvp = NFSTOV(np);
906 	}
907 	if (v3) {
908 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
909 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
910 	} else {
911 		nfsm_loadattr(nvp, NULL);
912 	}
913 	cache_setvp(ap->a_nch, nvp);
914 	m_freem(mrep);
915 nfsmout:
916 	vput(dvp);
917 	if (nvp) {
918 		if (nvp == dvp)
919 			vrele(nvp);
920 		else
921 			vput(nvp);
922 	}
923 	return (error);
924 }
925 
926 /*
927  * 'cached' nfs directory lookup
928  *
929  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
930  *
931  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
932  *	      struct componentname *a_cnp)
933  */
934 static int
935 nfs_lookup(struct vop_old_lookup_args *ap)
936 {
937 	struct componentname *cnp = ap->a_cnp;
938 	struct vnode *dvp = ap->a_dvp;
939 	struct vnode **vpp = ap->a_vpp;
940 	int flags = cnp->cn_flags;
941 	struct vnode *newvp;
942 	u_int32_t *tl;
943 	caddr_t cp;
944 	int32_t t1, t2;
945 	struct nfsmount *nmp;
946 	caddr_t bpos, dpos, cp2;
947 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
948 	long len;
949 	nfsfh_t *fhp;
950 	struct nfsnode *np;
951 	int lockparent, wantparent, error = 0, attrflag, fhsize;
952 	int v3 = NFS_ISV3(dvp);
953 
954 	/*
955 	 * Read-only mount check and directory check.
956 	 */
957 	*vpp = NULLVP;
958 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
959 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
960 		return (EROFS);
961 
962 	if (dvp->v_type != VDIR)
963 		return (ENOTDIR);
964 
965 	/*
966 	 * Look it up in the cache.  Note that ENOENT is only returned if we
967 	 * previously entered a negative hit (see later on).  The additional
968 	 * nfsneg_cache_timeout check causes previously cached results to
969 	 * be instantly ignored if the negative caching is turned off.
970 	 */
971 	lockparent = flags & CNP_LOCKPARENT;
972 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
973 	nmp = VFSTONFS(dvp->v_mount);
974 	np = VTONFS(dvp);
975 
976 	/*
977 	 * Go to the wire.
978 	 */
979 	error = 0;
980 	newvp = NULLVP;
981 	nfsstats.lookupcache_misses++;
982 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
983 	len = cnp->cn_namelen;
984 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
985 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
986 	nfsm_fhtom(dvp, v3);
987 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
988 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
989 	if (error) {
990 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
991 		m_freem(mrep);
992 		goto nfsmout;
993 	}
994 	nfsm_getfh(fhp, fhsize, v3);
995 
996 	/*
997 	 * Handle RENAME case...
998 	 */
999 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1000 		if (NFS_CMPFH(np, fhp, fhsize)) {
1001 			m_freem(mrep);
1002 			return (EISDIR);
1003 		}
1004 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1005 		if (error) {
1006 			m_freem(mrep);
1007 			return (error);
1008 		}
1009 		newvp = NFSTOV(np);
1010 		if (v3) {
1011 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1012 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1013 		} else
1014 			nfsm_loadattr(newvp, (struct vattr *)0);
1015 		*vpp = newvp;
1016 		m_freem(mrep);
1017 		if (!lockparent) {
1018 			vn_unlock(dvp);
1019 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1020 		}
1021 		return (0);
1022 	}
1023 
1024 	if (flags & CNP_ISDOTDOT) {
1025 		vn_unlock(dvp);
1026 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1027 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1028 		if (error) {
1029 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1030 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1031 			return (error); /* NOTE: return error from nget */
1032 		}
1033 		newvp = NFSTOV(np);
1034 		if (lockparent) {
1035 			error = vn_lock(dvp, LK_EXCLUSIVE);
1036 			if (error) {
1037 				vput(newvp);
1038 				return (error);
1039 			}
1040 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1041 		}
1042 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1043 		vref(dvp);
1044 		newvp = dvp;
1045 	} else {
1046 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1047 		if (error) {
1048 			m_freem(mrep);
1049 			return (error);
1050 		}
1051 		if (!lockparent) {
1052 			vn_unlock(dvp);
1053 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1054 		}
1055 		newvp = NFSTOV(np);
1056 	}
1057 	if (v3) {
1058 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1059 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1060 	} else
1061 		nfsm_loadattr(newvp, (struct vattr *)0);
1062 #if 0
1063 	/* XXX MOVE TO nfs_nremove() */
1064 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1065 	    cnp->cn_nameiop != NAMEI_DELETE) {
1066 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1067 	}
1068 #endif
1069 	*vpp = newvp;
1070 	m_freem(mrep);
1071 nfsmout:
1072 	if (error) {
1073 		if (newvp != NULLVP) {
1074 			vrele(newvp);
1075 			*vpp = NULLVP;
1076 		}
1077 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1078 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1079 		    error == ENOENT) {
1080 			if (!lockparent) {
1081 				vn_unlock(dvp);
1082 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1083 			}
1084 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1085 				error = EROFS;
1086 			else
1087 				error = EJUSTRETURN;
1088 		}
1089 	}
1090 	return (error);
1091 }
1092 
1093 /*
1094  * nfs read call.
1095  * Just call nfs_bioread() to do the work.
1096  *
1097  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1098  *	    struct ucred *a_cred)
1099  */
1100 static int
1101 nfs_read(struct vop_read_args *ap)
1102 {
1103 	struct vnode *vp = ap->a_vp;
1104 
1105 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1106 	switch (vp->v_type) {
1107 	case VREG:
1108 		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1109 	case VDIR:
1110 		return (EISDIR);
1111 	default:
1112 		return EOPNOTSUPP;
1113 	}
1114 }
1115 
1116 /*
1117  * nfs readlink call
1118  *
1119  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1120  */
1121 static int
1122 nfs_readlink(struct vop_readlink_args *ap)
1123 {
1124 	struct vnode *vp = ap->a_vp;
1125 
1126 	if (vp->v_type != VLNK)
1127 		return (EINVAL);
1128 	return (nfs_bioread(vp, ap->a_uio, 0));
1129 }
1130 
1131 /*
1132  * Do a readlink rpc.
1133  * Called by nfs_doio() from below the buffer cache.
1134  */
1135 int
1136 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1137 {
1138 	u_int32_t *tl;
1139 	caddr_t cp;
1140 	int32_t t1, t2;
1141 	caddr_t bpos, dpos, cp2;
1142 	int error = 0, len, attrflag;
1143 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1144 	int v3 = NFS_ISV3(vp);
1145 
1146 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1147 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1148 	nfsm_fhtom(vp, v3);
1149 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1150 	if (v3)
1151 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1152 	if (!error) {
1153 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1154 		if (len == NFS_MAXPATHLEN) {
1155 			struct nfsnode *np = VTONFS(vp);
1156 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1157 				len = np->n_size;
1158 		}
1159 		nfsm_mtouio(uiop, len);
1160 	}
1161 	m_freem(mrep);
1162 nfsmout:
1163 	return (error);
1164 }
1165 
1166 /*
1167  * nfs read rpc call
1168  * Ditto above
1169  */
1170 int
1171 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1172 {
1173 	u_int32_t *tl;
1174 	caddr_t cp;
1175 	int32_t t1, t2;
1176 	caddr_t bpos, dpos, cp2;
1177 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1178 	struct nfsmount *nmp;
1179 	int error = 0, len, retlen, tsiz, eof, attrflag;
1180 	int v3 = NFS_ISV3(vp);
1181 
1182 #ifndef nolint
1183 	eof = 0;
1184 #endif
1185 	nmp = VFSTONFS(vp->v_mount);
1186 	tsiz = uiop->uio_resid;
1187 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1188 		return (EFBIG);
1189 	while (tsiz > 0) {
1190 		nfsstats.rpccnt[NFSPROC_READ]++;
1191 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1192 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1193 		nfsm_fhtom(vp, v3);
1194 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1195 		if (v3) {
1196 			txdr_hyper(uiop->uio_offset, tl);
1197 			*(tl + 2) = txdr_unsigned(len);
1198 		} else {
1199 			*tl++ = txdr_unsigned(uiop->uio_offset);
1200 			*tl++ = txdr_unsigned(len);
1201 			*tl = 0;
1202 		}
1203 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1204 		if (v3) {
1205 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1206 			if (error) {
1207 				m_freem(mrep);
1208 				goto nfsmout;
1209 			}
1210 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1211 			eof = fxdr_unsigned(int, *(tl + 1));
1212 		} else
1213 			nfsm_loadattr(vp, (struct vattr *)0);
1214 		nfsm_strsiz(retlen, nmp->nm_rsize);
1215 		nfsm_mtouio(uiop, retlen);
1216 		m_freem(mrep);
1217 		tsiz -= retlen;
1218 		if (v3) {
1219 			if (eof || retlen == 0) {
1220 				tsiz = 0;
1221 			}
1222 		} else if (retlen < len) {
1223 			tsiz = 0;
1224 		}
1225 	}
1226 nfsmout:
1227 	return (error);
1228 }
1229 
1230 /*
1231  * nfs write call
1232  */
1233 int
1234 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1235 {
1236 	u_int32_t *tl;
1237 	caddr_t cp;
1238 	int32_t t1, t2, backup;
1239 	caddr_t bpos, dpos, cp2;
1240 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1241 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1242 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1243 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1244 
1245 #ifndef DIAGNOSTIC
1246 	if (uiop->uio_iovcnt != 1)
1247 		panic("nfs: writerpc iovcnt > 1");
1248 #endif
1249 	*must_commit = 0;
1250 	tsiz = uiop->uio_resid;
1251 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1252 		return (EFBIG);
1253 	while (tsiz > 0) {
1254 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1255 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1256 		nfsm_reqhead(vp, NFSPROC_WRITE,
1257 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1258 		nfsm_fhtom(vp, v3);
1259 		if (v3) {
1260 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1261 			txdr_hyper(uiop->uio_offset, tl);
1262 			tl += 2;
1263 			*tl++ = txdr_unsigned(len);
1264 			*tl++ = txdr_unsigned(*iomode);
1265 			*tl = txdr_unsigned(len);
1266 		} else {
1267 			u_int32_t x;
1268 
1269 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1270 			/* Set both "begin" and "current" to non-garbage. */
1271 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1272 			*tl++ = x;	/* "begin offset" */
1273 			*tl++ = x;	/* "current offset" */
1274 			x = txdr_unsigned(len);
1275 			*tl++ = x;	/* total to this offset */
1276 			*tl = x;	/* size of this write */
1277 		}
1278 		nfsm_uiotom(uiop, len);
1279 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1280 		if (v3) {
1281 			/*
1282 			 * The write RPC returns a before and after mtime.  The
1283 			 * nfsm_wcc_data() macro checks the before n_mtime
1284 			 * against the before time and stores the after time
1285 			 * in the nfsnode's cached vattr and n_mtime field.
1286 			 * The NRMODIFIED bit will be set if the before
1287 			 * time did not match the original mtime.
1288 			 */
1289 			wccflag = NFSV3_WCCCHK;
1290 			nfsm_wcc_data(vp, wccflag);
1291 			if (!error) {
1292 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1293 					+ NFSX_V3WRITEVERF);
1294 				rlen = fxdr_unsigned(int, *tl++);
1295 				if (rlen == 0) {
1296 					error = NFSERR_IO;
1297 					m_freem(mrep);
1298 					break;
1299 				} else if (rlen < len) {
1300 					backup = len - rlen;
1301 					uiop->uio_iov->iov_base -= backup;
1302 					uiop->uio_iov->iov_len += backup;
1303 					uiop->uio_offset -= backup;
1304 					uiop->uio_resid += backup;
1305 					len = rlen;
1306 				}
1307 				commit = fxdr_unsigned(int, *tl++);
1308 
1309 				/*
1310 				 * Return the lowest committment level
1311 				 * obtained by any of the RPCs.
1312 				 */
1313 				if (committed == NFSV3WRITE_FILESYNC)
1314 					committed = commit;
1315 				else if (committed == NFSV3WRITE_DATASYNC &&
1316 					commit == NFSV3WRITE_UNSTABLE)
1317 					committed = commit;
1318 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1319 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1320 					NFSX_V3WRITEVERF);
1321 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1322 				} else if (bcmp((caddr_t)tl,
1323 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1324 				    *must_commit = 1;
1325 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1326 					NFSX_V3WRITEVERF);
1327 				}
1328 			}
1329 		} else {
1330 			nfsm_loadattr(vp, (struct vattr *)0);
1331 		}
1332 		m_freem(mrep);
1333 		if (error)
1334 			break;
1335 		tsiz -= len;
1336 	}
1337 nfsmout:
1338 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1339 		committed = NFSV3WRITE_FILESYNC;
1340 	*iomode = committed;
1341 	if (error)
1342 		uiop->uio_resid = tsiz;
1343 	return (error);
1344 }
1345 
1346 /*
1347  * nfs mknod rpc
1348  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1349  * mode set to specify the file type and the size field for rdev.
1350  */
1351 static int
1352 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1353 	     struct vattr *vap)
1354 {
1355 	struct nfsv2_sattr *sp;
1356 	u_int32_t *tl;
1357 	caddr_t cp;
1358 	int32_t t1, t2;
1359 	struct vnode *newvp = (struct vnode *)0;
1360 	struct nfsnode *np = (struct nfsnode *)0;
1361 	struct vattr vattr;
1362 	char *cp2;
1363 	caddr_t bpos, dpos;
1364 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1365 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1366 	int rmajor, rminor;
1367 	int v3 = NFS_ISV3(dvp);
1368 
1369 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1370 		rmajor = txdr_unsigned(vap->va_rmajor);
1371 		rminor = txdr_unsigned(vap->va_rminor);
1372 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1373 		rmajor = nfs_xdrneg1;
1374 		rminor = nfs_xdrneg1;
1375 	} else {
1376 		return (EOPNOTSUPP);
1377 	}
1378 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1379 		return (error);
1380 	}
1381 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1382 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1383 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1384 	nfsm_fhtom(dvp, v3);
1385 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1386 	if (v3) {
1387 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1388 		*tl++ = vtonfsv3_type(vap->va_type);
1389 		nfsm_v3attrbuild(vap, FALSE);
1390 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1391 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1392 			*tl++ = txdr_unsigned(vap->va_rmajor);
1393 			*tl = txdr_unsigned(vap->va_rminor);
1394 		}
1395 	} else {
1396 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1397 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1398 		sp->sa_uid = nfs_xdrneg1;
1399 		sp->sa_gid = nfs_xdrneg1;
1400 		sp->sa_size = makeudev(rmajor, rminor);
1401 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1402 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1403 	}
1404 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1405 	if (!error) {
1406 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1407 		if (!gotvp) {
1408 			if (newvp) {
1409 				vput(newvp);
1410 				newvp = (struct vnode *)0;
1411 			}
1412 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1413 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1414 			if (!error)
1415 				newvp = NFSTOV(np);
1416 		}
1417 	}
1418 	if (v3)
1419 		nfsm_wcc_data(dvp, wccflag);
1420 	m_freem(mrep);
1421 nfsmout:
1422 	if (error) {
1423 		if (newvp)
1424 			vput(newvp);
1425 	} else {
1426 		*vpp = newvp;
1427 	}
1428 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1429 	if (!wccflag)
1430 		VTONFS(dvp)->n_attrstamp = 0;
1431 	return (error);
1432 }
1433 
1434 /*
1435  * nfs mknod vop
1436  * just call nfs_mknodrpc() to do the work.
1437  *
1438  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1439  *	     struct componentname *a_cnp, struct vattr *a_vap)
1440  */
1441 /* ARGSUSED */
1442 static int
1443 nfs_mknod(struct vop_old_mknod_args *ap)
1444 {
1445 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1446 }
1447 
1448 static u_long create_verf;
1449 /*
1450  * nfs file create call
1451  *
1452  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1453  *	      struct componentname *a_cnp, struct vattr *a_vap)
1454  */
1455 static int
1456 nfs_create(struct vop_old_create_args *ap)
1457 {
1458 	struct vnode *dvp = ap->a_dvp;
1459 	struct vattr *vap = ap->a_vap;
1460 	struct componentname *cnp = ap->a_cnp;
1461 	struct nfsv2_sattr *sp;
1462 	u_int32_t *tl;
1463 	caddr_t cp;
1464 	int32_t t1, t2;
1465 	struct nfsnode *np = (struct nfsnode *)0;
1466 	struct vnode *newvp = (struct vnode *)0;
1467 	caddr_t bpos, dpos, cp2;
1468 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1469 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1470 	struct vattr vattr;
1471 	int v3 = NFS_ISV3(dvp);
1472 
1473 	/*
1474 	 * Oops, not for me..
1475 	 */
1476 	if (vap->va_type == VSOCK)
1477 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1478 
1479 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1480 		return (error);
1481 	}
1482 	if (vap->va_vaflags & VA_EXCLUSIVE)
1483 		fmode |= O_EXCL;
1484 again:
1485 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1486 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1487 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1488 	nfsm_fhtom(dvp, v3);
1489 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1490 	if (v3) {
1491 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1492 		if (fmode & O_EXCL) {
1493 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1494 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1495 #ifdef INET
1496 			if (!TAILQ_EMPTY(&in_ifaddrhead))
1497 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr.s_addr;
1498 			else
1499 #endif
1500 				*tl++ = create_verf;
1501 			*tl = ++create_verf;
1502 		} else {
1503 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1504 			nfsm_v3attrbuild(vap, FALSE);
1505 		}
1506 	} else {
1507 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1508 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1509 		sp->sa_uid = nfs_xdrneg1;
1510 		sp->sa_gid = nfs_xdrneg1;
1511 		sp->sa_size = 0;
1512 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1513 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1514 	}
1515 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1516 	if (!error) {
1517 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1518 		if (!gotvp) {
1519 			if (newvp) {
1520 				vput(newvp);
1521 				newvp = (struct vnode *)0;
1522 			}
1523 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1524 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1525 			if (!error)
1526 				newvp = NFSTOV(np);
1527 		}
1528 	}
1529 	if (v3)
1530 		nfsm_wcc_data(dvp, wccflag);
1531 	m_freem(mrep);
1532 nfsmout:
1533 	if (error) {
1534 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1535 			fmode &= ~O_EXCL;
1536 			goto again;
1537 		}
1538 		if (newvp)
1539 			vput(newvp);
1540 	} else if (v3 && (fmode & O_EXCL)) {
1541 		/*
1542 		 * We are normally called with only a partially initialized
1543 		 * VAP.  Since the NFSv3 spec says that server may use the
1544 		 * file attributes to store the verifier, the spec requires
1545 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1546 		 * in atime, but we can't really assume that all servers will
1547 		 * so we ensure that our SETATTR sets both atime and mtime.
1548 		 */
1549 		if (vap->va_mtime.tv_sec == VNOVAL)
1550 			vfs_timestamp(&vap->va_mtime);
1551 		if (vap->va_atime.tv_sec == VNOVAL)
1552 			vap->va_atime = vap->va_mtime;
1553 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1554 	}
1555 	if (!error) {
1556 		/*
1557 		 * The new np may have enough info for access
1558 		 * checks, make sure rucred and wucred are
1559 		 * initialized for read and write rpc's.
1560 		 */
1561 		np = VTONFS(newvp);
1562 		if (np->n_rucred == NULL)
1563 			np->n_rucred = crhold(cnp->cn_cred);
1564 		if (np->n_wucred == NULL)
1565 			np->n_wucred = crhold(cnp->cn_cred);
1566 		*ap->a_vpp = newvp;
1567 	}
1568 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1569 	if (!wccflag)
1570 		VTONFS(dvp)->n_attrstamp = 0;
1571 	return (error);
1572 }
1573 
1574 /*
1575  * nfs file remove call
1576  * To try and make nfs semantics closer to ufs semantics, a file that has
1577  * other processes using the vnode is renamed instead of removed and then
1578  * removed later on the last close.
1579  * - If v_sysref.refcnt > 1
1580  *	  If a rename is not already in the works
1581  *	     call nfs_sillyrename() to set it up
1582  *     else
1583  *	  do the remove rpc
1584  *
1585  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1586  *	      struct componentname *a_cnp)
1587  */
1588 static int
1589 nfs_remove(struct vop_old_remove_args *ap)
1590 {
1591 	struct vnode *vp = ap->a_vp;
1592 	struct vnode *dvp = ap->a_dvp;
1593 	struct componentname *cnp = ap->a_cnp;
1594 	struct nfsnode *np = VTONFS(vp);
1595 	int error = 0;
1596 	struct vattr vattr;
1597 
1598 #ifndef DIAGNOSTIC
1599 	if (vp->v_sysref.refcnt < 1)
1600 		panic("nfs_remove: bad v_sysref.refcnt");
1601 #endif
1602 	if (vp->v_type == VDIR)
1603 		error = EPERM;
1604 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1605 	    VOP_GETATTR(vp, &vattr) == 0 &&
1606 	    vattr.va_nlink > 1)) {
1607 		/*
1608 		 * throw away biocache buffers, mainly to avoid
1609 		 * unnecessary delayed writes later.
1610 		 */
1611 		error = nfs_vinvalbuf(vp, 0, 1);
1612 		/* Do the rpc */
1613 		if (error != EINTR)
1614 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1615 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1616 		/*
1617 		 * Kludge City: If the first reply to the remove rpc is lost..
1618 		 *   the reply to the retransmitted request will be ENOENT
1619 		 *   since the file was in fact removed
1620 		 *   Therefore, we cheat and return success.
1621 		 */
1622 		if (error == ENOENT)
1623 			error = 0;
1624 	} else if (!np->n_sillyrename) {
1625 		error = nfs_sillyrename(dvp, vp, cnp);
1626 	}
1627 	np->n_attrstamp = 0;
1628 	return (error);
1629 }
1630 
1631 /*
1632  * nfs file remove rpc called from nfs_inactive
1633  */
1634 int
1635 nfs_removeit(struct sillyrename *sp)
1636 {
1637 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1638 		sp->s_cred, NULL));
1639 }
1640 
1641 /*
1642  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1643  */
1644 static int
1645 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1646 	      struct ucred *cred, struct thread *td)
1647 {
1648 	u_int32_t *tl;
1649 	caddr_t cp;
1650 	int32_t t1, t2;
1651 	caddr_t bpos, dpos, cp2;
1652 	int error = 0, wccflag = NFSV3_WCCRATTR;
1653 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1654 	int v3 = NFS_ISV3(dvp);
1655 
1656 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1657 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1658 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1659 	nfsm_fhtom(dvp, v3);
1660 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1661 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1662 	if (v3)
1663 		nfsm_wcc_data(dvp, wccflag);
1664 	m_freem(mrep);
1665 nfsmout:
1666 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1667 	if (!wccflag)
1668 		VTONFS(dvp)->n_attrstamp = 0;
1669 	return (error);
1670 }
1671 
1672 /*
1673  * nfs file rename call
1674  *
1675  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1676  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1677  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1678  */
1679 static int
1680 nfs_rename(struct vop_old_rename_args *ap)
1681 {
1682 	struct vnode *fvp = ap->a_fvp;
1683 	struct vnode *tvp = ap->a_tvp;
1684 	struct vnode *fdvp = ap->a_fdvp;
1685 	struct vnode *tdvp = ap->a_tdvp;
1686 	struct componentname *tcnp = ap->a_tcnp;
1687 	struct componentname *fcnp = ap->a_fcnp;
1688 	int error;
1689 
1690 	/* Check for cross-device rename */
1691 	if ((fvp->v_mount != tdvp->v_mount) ||
1692 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1693 		error = EXDEV;
1694 		goto out;
1695 	}
1696 
1697 	/*
1698 	 * We have to flush B_DELWRI data prior to renaming
1699 	 * the file.  If we don't, the delayed-write buffers
1700 	 * can be flushed out later after the file has gone stale
1701 	 * under NFSV3.  NFSV2 does not have this problem because
1702 	 * ( as far as I can tell ) it flushes dirty buffers more
1703 	 * often.
1704 	 */
1705 
1706 	VOP_FSYNC(fvp, MNT_WAIT);
1707 	if (tvp)
1708 	    VOP_FSYNC(tvp, MNT_WAIT);
1709 
1710 	/*
1711 	 * If the tvp exists and is in use, sillyrename it before doing the
1712 	 * rename of the new file over it.
1713 	 *
1714 	 * XXX Can't sillyrename a directory.
1715 	 *
1716 	 * We do not attempt to do any namecache purges in this old API
1717 	 * routine.  The new API compat functions have access to the actual
1718 	 * namecache structures and will do it for us.
1719 	 */
1720 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1721 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1722 		vput(tvp);
1723 		tvp = NULL;
1724 	} else if (tvp) {
1725 		;
1726 	}
1727 
1728 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1729 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1730 		tcnp->cn_td);
1731 
1732 out:
1733 	if (tdvp == tvp)
1734 		vrele(tdvp);
1735 	else
1736 		vput(tdvp);
1737 	if (tvp)
1738 		vput(tvp);
1739 	vrele(fdvp);
1740 	vrele(fvp);
1741 	/*
1742 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1743 	 */
1744 	if (error == ENOENT)
1745 		error = 0;
1746 	return (error);
1747 }
1748 
1749 /*
1750  * nfs file rename rpc called from nfs_remove() above
1751  */
1752 static int
1753 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1754 	     struct sillyrename *sp)
1755 {
1756 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1757 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1758 }
1759 
1760 /*
1761  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1762  */
1763 static int
1764 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1765 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1766 	      struct ucred *cred, struct thread *td)
1767 {
1768 	u_int32_t *tl;
1769 	caddr_t cp;
1770 	int32_t t1, t2;
1771 	caddr_t bpos, dpos, cp2;
1772 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1773 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1774 	int v3 = NFS_ISV3(fdvp);
1775 
1776 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1777 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1778 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1779 		nfsm_rndup(tnamelen));
1780 	nfsm_fhtom(fdvp, v3);
1781 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1782 	nfsm_fhtom(tdvp, v3);
1783 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1784 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1785 	if (v3) {
1786 		nfsm_wcc_data(fdvp, fwccflag);
1787 		nfsm_wcc_data(tdvp, twccflag);
1788 	}
1789 	m_freem(mrep);
1790 nfsmout:
1791 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1792 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1793 	if (!fwccflag)
1794 		VTONFS(fdvp)->n_attrstamp = 0;
1795 	if (!twccflag)
1796 		VTONFS(tdvp)->n_attrstamp = 0;
1797 	return (error);
1798 }
1799 
1800 /*
1801  * nfs hard link create call
1802  *
1803  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1804  *	    struct componentname *a_cnp)
1805  */
1806 static int
1807 nfs_link(struct vop_old_link_args *ap)
1808 {
1809 	struct vnode *vp = ap->a_vp;
1810 	struct vnode *tdvp = ap->a_tdvp;
1811 	struct componentname *cnp = ap->a_cnp;
1812 	u_int32_t *tl;
1813 	caddr_t cp;
1814 	int32_t t1, t2;
1815 	caddr_t bpos, dpos, cp2;
1816 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1817 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1818 	int v3;
1819 
1820 	if (vp->v_mount != tdvp->v_mount) {
1821 		return (EXDEV);
1822 	}
1823 
1824 	/*
1825 	 * Push all writes to the server, so that the attribute cache
1826 	 * doesn't get "out of sync" with the server.
1827 	 * XXX There should be a better way!
1828 	 */
1829 	VOP_FSYNC(vp, MNT_WAIT);
1830 
1831 	v3 = NFS_ISV3(vp);
1832 	nfsstats.rpccnt[NFSPROC_LINK]++;
1833 	nfsm_reqhead(vp, NFSPROC_LINK,
1834 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1835 	nfsm_fhtom(vp, v3);
1836 	nfsm_fhtom(tdvp, v3);
1837 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1838 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1839 	if (v3) {
1840 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1841 		nfsm_wcc_data(tdvp, wccflag);
1842 	}
1843 	m_freem(mrep);
1844 nfsmout:
1845 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1846 	if (!attrflag)
1847 		VTONFS(vp)->n_attrstamp = 0;
1848 	if (!wccflag)
1849 		VTONFS(tdvp)->n_attrstamp = 0;
1850 	/*
1851 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1852 	 */
1853 	if (error == EEXIST)
1854 		error = 0;
1855 	return (error);
1856 }
1857 
1858 /*
1859  * nfs symbolic link create call
1860  *
1861  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1862  *		struct componentname *a_cnp, struct vattr *a_vap,
1863  *		char *a_target)
1864  */
1865 static int
1866 nfs_symlink(struct vop_old_symlink_args *ap)
1867 {
1868 	struct vnode *dvp = ap->a_dvp;
1869 	struct vattr *vap = ap->a_vap;
1870 	struct componentname *cnp = ap->a_cnp;
1871 	struct nfsv2_sattr *sp;
1872 	u_int32_t *tl;
1873 	caddr_t cp;
1874 	int32_t t1, t2;
1875 	caddr_t bpos, dpos, cp2;
1876 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1877 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1878 	struct vnode *newvp = (struct vnode *)0;
1879 	int v3 = NFS_ISV3(dvp);
1880 
1881 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1882 	slen = strlen(ap->a_target);
1883 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1884 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1885 	nfsm_fhtom(dvp, v3);
1886 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1887 	if (v3) {
1888 		nfsm_v3attrbuild(vap, FALSE);
1889 	}
1890 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1891 	if (!v3) {
1892 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1893 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1894 		sp->sa_uid = nfs_xdrneg1;
1895 		sp->sa_gid = nfs_xdrneg1;
1896 		sp->sa_size = nfs_xdrneg1;
1897 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1898 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1899 	}
1900 
1901 	/*
1902 	 * Issue the NFS request and get the rpc response.
1903 	 *
1904 	 * Only NFSv3 responses returning an error of 0 actually return
1905 	 * a file handle that can be converted into newvp without having
1906 	 * to do an extra lookup rpc.
1907 	 */
1908 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1909 	if (v3) {
1910 		if (error == 0)
1911 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1912 		nfsm_wcc_data(dvp, wccflag);
1913 	}
1914 
1915 	/*
1916 	 * out code jumps -> here, mrep is also freed.
1917 	 */
1918 
1919 	m_freem(mrep);
1920 nfsmout:
1921 
1922 	/*
1923 	 * If we get an EEXIST error, silently convert it to no-error
1924 	 * in case of an NFS retry.
1925 	 */
1926 	if (error == EEXIST)
1927 		error = 0;
1928 
1929 	/*
1930 	 * If we do not have (or no longer have) an error, and we could
1931 	 * not extract the newvp from the response due to the request being
1932 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1933 	 * to obtain a newvp to return.
1934 	 */
1935 	if (error == 0 && newvp == NULL) {
1936 		struct nfsnode *np = NULL;
1937 
1938 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1939 		    cnp->cn_cred, cnp->cn_td, &np);
1940 		if (!error)
1941 			newvp = NFSTOV(np);
1942 	}
1943 	if (error) {
1944 		if (newvp)
1945 			vput(newvp);
1946 	} else {
1947 		*ap->a_vpp = newvp;
1948 	}
1949 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1950 	if (!wccflag)
1951 		VTONFS(dvp)->n_attrstamp = 0;
1952 	return (error);
1953 }
1954 
1955 /*
1956  * nfs make dir call
1957  *
1958  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1959  *	     struct componentname *a_cnp, struct vattr *a_vap)
1960  */
1961 static int
1962 nfs_mkdir(struct vop_old_mkdir_args *ap)
1963 {
1964 	struct vnode *dvp = ap->a_dvp;
1965 	struct vattr *vap = ap->a_vap;
1966 	struct componentname *cnp = ap->a_cnp;
1967 	struct nfsv2_sattr *sp;
1968 	u_int32_t *tl;
1969 	caddr_t cp;
1970 	int32_t t1, t2;
1971 	int len;
1972 	struct nfsnode *np = (struct nfsnode *)0;
1973 	struct vnode *newvp = (struct vnode *)0;
1974 	caddr_t bpos, dpos, cp2;
1975 	int error = 0, wccflag = NFSV3_WCCRATTR;
1976 	int gotvp = 0;
1977 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1978 	struct vattr vattr;
1979 	int v3 = NFS_ISV3(dvp);
1980 
1981 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1982 		return (error);
1983 	}
1984 	len = cnp->cn_namelen;
1985 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
1986 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
1987 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
1988 	nfsm_fhtom(dvp, v3);
1989 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1990 	if (v3) {
1991 		nfsm_v3attrbuild(vap, FALSE);
1992 	} else {
1993 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1994 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
1995 		sp->sa_uid = nfs_xdrneg1;
1996 		sp->sa_gid = nfs_xdrneg1;
1997 		sp->sa_size = nfs_xdrneg1;
1998 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1999 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2000 	}
2001 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2002 	if (!error)
2003 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2004 	if (v3)
2005 		nfsm_wcc_data(dvp, wccflag);
2006 	m_freem(mrep);
2007 nfsmout:
2008 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2009 	if (!wccflag)
2010 		VTONFS(dvp)->n_attrstamp = 0;
2011 	/*
2012 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2013 	 * if we can succeed in looking up the directory.
2014 	 */
2015 	if (error == EEXIST || (!error && !gotvp)) {
2016 		if (newvp) {
2017 			vrele(newvp);
2018 			newvp = (struct vnode *)0;
2019 		}
2020 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2021 			cnp->cn_td, &np);
2022 		if (!error) {
2023 			newvp = NFSTOV(np);
2024 			if (newvp->v_type != VDIR)
2025 				error = EEXIST;
2026 		}
2027 	}
2028 	if (error) {
2029 		if (newvp)
2030 			vrele(newvp);
2031 	} else
2032 		*ap->a_vpp = newvp;
2033 	return (error);
2034 }
2035 
2036 /*
2037  * nfs remove directory call
2038  *
2039  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2040  *	     struct componentname *a_cnp)
2041  */
2042 static int
2043 nfs_rmdir(struct vop_old_rmdir_args *ap)
2044 {
2045 	struct vnode *vp = ap->a_vp;
2046 	struct vnode *dvp = ap->a_dvp;
2047 	struct componentname *cnp = ap->a_cnp;
2048 	u_int32_t *tl;
2049 	caddr_t cp;
2050 	int32_t t1, t2;
2051 	caddr_t bpos, dpos, cp2;
2052 	int error = 0, wccflag = NFSV3_WCCRATTR;
2053 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2054 	int v3 = NFS_ISV3(dvp);
2055 
2056 	if (dvp == vp)
2057 		return (EINVAL);
2058 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2059 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2060 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2061 	nfsm_fhtom(dvp, v3);
2062 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2063 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2064 	if (v3)
2065 		nfsm_wcc_data(dvp, wccflag);
2066 	m_freem(mrep);
2067 nfsmout:
2068 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2069 	if (!wccflag)
2070 		VTONFS(dvp)->n_attrstamp = 0;
2071 	/*
2072 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2073 	 */
2074 	if (error == ENOENT)
2075 		error = 0;
2076 	return (error);
2077 }
2078 
2079 /*
2080  * nfs readdir call
2081  *
2082  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2083  */
2084 static int
2085 nfs_readdir(struct vop_readdir_args *ap)
2086 {
2087 	struct vnode *vp = ap->a_vp;
2088 	struct nfsnode *np = VTONFS(vp);
2089 	struct uio *uio = ap->a_uio;
2090 	int tresid, error;
2091 	struct vattr vattr;
2092 
2093 	if (vp->v_type != VDIR)
2094 		return (EPERM);
2095 
2096 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2097 		return (error);
2098 
2099 	/*
2100 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2101 	 * and then check that is still valid, or if this is an NQNFS mount
2102 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2103 	 * VOP_GETATTR() does not necessarily go to the wire.
2104 	 */
2105 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2106 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2107 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2108 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2109 		) {
2110 			nfsstats.direofcache_hits++;
2111 			goto done;
2112 		}
2113 	}
2114 
2115 	/*
2116 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2117 	 * own cache coherency checks so we do not have to.
2118 	 */
2119 	tresid = uio->uio_resid;
2120 	error = nfs_bioread(vp, uio, 0);
2121 
2122 	if (!error && uio->uio_resid == tresid)
2123 		nfsstats.direofcache_misses++;
2124 done:
2125 	vn_unlock(vp);
2126 	return (error);
2127 }
2128 
2129 /*
2130  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2131  *
2132  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2133  * offset/block and converts the nfs formatted directory entries for userland
2134  * consumption as well as deals with offsets into the middle of blocks.
2135  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2136  * be block-bounded.  It must convert to cookies for the actual RPC.
2137  */
2138 int
2139 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2140 {
2141 	int len, left;
2142 	struct nfs_dirent *dp = NULL;
2143 	u_int32_t *tl;
2144 	caddr_t cp;
2145 	int32_t t1, t2;
2146 	nfsuint64 *cookiep;
2147 	caddr_t bpos, dpos, cp2;
2148 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2149 	nfsuint64 cookie;
2150 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2151 	struct nfsnode *dnp = VTONFS(vp);
2152 	u_quad_t fileno;
2153 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2154 	int attrflag;
2155 	int v3 = NFS_ISV3(vp);
2156 
2157 #ifndef DIAGNOSTIC
2158 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2159 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2160 		panic("nfs readdirrpc bad uio");
2161 #endif
2162 
2163 	/*
2164 	 * If there is no cookie, assume directory was stale.
2165 	 */
2166 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2167 	if (cookiep)
2168 		cookie = *cookiep;
2169 	else
2170 		return (NFSERR_BAD_COOKIE);
2171 	/*
2172 	 * Loop around doing readdir rpc's of size nm_readdirsize
2173 	 * truncated to a multiple of DIRBLKSIZ.
2174 	 * The stopping criteria is EOF or buffer full.
2175 	 */
2176 	while (more_dirs && bigenough) {
2177 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2178 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2179 			NFSX_READDIR(v3));
2180 		nfsm_fhtom(vp, v3);
2181 		if (v3) {
2182 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2183 			*tl++ = cookie.nfsuquad[0];
2184 			*tl++ = cookie.nfsuquad[1];
2185 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2186 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2187 		} else {
2188 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2189 			*tl++ = cookie.nfsuquad[0];
2190 		}
2191 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2192 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2193 		if (v3) {
2194 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2195 			if (!error) {
2196 				nfsm_dissect(tl, u_int32_t *,
2197 				    2 * NFSX_UNSIGNED);
2198 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2199 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2200 			} else {
2201 				m_freem(mrep);
2202 				goto nfsmout;
2203 			}
2204 		}
2205 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2206 		more_dirs = fxdr_unsigned(int, *tl);
2207 
2208 		/* loop thru the dir entries, converting them to std form */
2209 		while (more_dirs && bigenough) {
2210 			if (v3) {
2211 				nfsm_dissect(tl, u_int32_t *,
2212 				    3 * NFSX_UNSIGNED);
2213 				fileno = fxdr_hyper(tl);
2214 				len = fxdr_unsigned(int, *(tl + 2));
2215 			} else {
2216 				nfsm_dissect(tl, u_int32_t *,
2217 				    2 * NFSX_UNSIGNED);
2218 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2219 				len = fxdr_unsigned(int, *tl);
2220 			}
2221 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2222 				error = EBADRPC;
2223 				m_freem(mrep);
2224 				goto nfsmout;
2225 			}
2226 
2227 			/*
2228 			 * len is the number of bytes in the path element
2229 			 * name, not including the \0 termination.
2230 			 *
2231 			 * tlen is the number of bytes w have to reserve for
2232 			 * the path element name.
2233 			 */
2234 			tlen = nfsm_rndup(len);
2235 			if (tlen == len)
2236 				tlen += 4;	/* To ensure null termination */
2237 
2238 			/*
2239 			 * If the entry would cross a DIRBLKSIZ boundary,
2240 			 * extend the previous nfs_dirent to cover the
2241 			 * remaining space.
2242 			 */
2243 			left = DIRBLKSIZ - blksiz;
2244 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2245 				dp->nfs_reclen += left;
2246 				uiop->uio_iov->iov_base += left;
2247 				uiop->uio_iov->iov_len -= left;
2248 				uiop->uio_offset += left;
2249 				uiop->uio_resid -= left;
2250 				blksiz = 0;
2251 			}
2252 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2253 				bigenough = 0;
2254 			if (bigenough) {
2255 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2256 				dp->nfs_ino = fileno;
2257 				dp->nfs_namlen = len;
2258 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2259 				dp->nfs_type = DT_UNKNOWN;
2260 				blksiz += dp->nfs_reclen;
2261 				if (blksiz == DIRBLKSIZ)
2262 					blksiz = 0;
2263 				uiop->uio_offset += sizeof(struct nfs_dirent);
2264 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2265 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2266 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2267 				nfsm_mtouio(uiop, len);
2268 
2269 				/*
2270 				 * The uiop has advanced by nfs_dirent + len
2271 				 * but really needs to advance by
2272 				 * nfs_dirent + tlen
2273 				 */
2274 				cp = uiop->uio_iov->iov_base;
2275 				tlen -= len;
2276 				*cp = '\0';	/* null terminate */
2277 				uiop->uio_iov->iov_base += tlen;
2278 				uiop->uio_iov->iov_len -= tlen;
2279 				uiop->uio_offset += tlen;
2280 				uiop->uio_resid -= tlen;
2281 			} else {
2282 				/*
2283 				 * NFS strings must be rounded up (nfsm_myouio
2284 				 * handled that in the bigenough case).
2285 				 */
2286 				nfsm_adv(nfsm_rndup(len));
2287 			}
2288 			if (v3) {
2289 				nfsm_dissect(tl, u_int32_t *,
2290 				    3 * NFSX_UNSIGNED);
2291 			} else {
2292 				nfsm_dissect(tl, u_int32_t *,
2293 				    2 * NFSX_UNSIGNED);
2294 			}
2295 
2296 			/*
2297 			 * If we were able to accomodate the last entry,
2298 			 * get the cookie for the next one.  Otherwise
2299 			 * hold-over the cookie for the one we were not
2300 			 * able to accomodate.
2301 			 */
2302 			if (bigenough) {
2303 				cookie.nfsuquad[0] = *tl++;
2304 				if (v3)
2305 					cookie.nfsuquad[1] = *tl++;
2306 			} else if (v3) {
2307 				tl += 2;
2308 			} else {
2309 				tl++;
2310 			}
2311 			more_dirs = fxdr_unsigned(int, *tl);
2312 		}
2313 		/*
2314 		 * If at end of rpc data, get the eof boolean
2315 		 */
2316 		if (!more_dirs) {
2317 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2318 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2319 		}
2320 		m_freem(mrep);
2321 	}
2322 	/*
2323 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2324 	 * by increasing d_reclen for the last record.
2325 	 */
2326 	if (blksiz > 0) {
2327 		left = DIRBLKSIZ - blksiz;
2328 		dp->nfs_reclen += left;
2329 		uiop->uio_iov->iov_base += left;
2330 		uiop->uio_iov->iov_len -= left;
2331 		uiop->uio_offset += left;
2332 		uiop->uio_resid -= left;
2333 	}
2334 
2335 	if (bigenough) {
2336 		/*
2337 		 * We hit the end of the directory, update direofoffset.
2338 		 */
2339 		dnp->n_direofoffset = uiop->uio_offset;
2340 	} else {
2341 		/*
2342 		 * There is more to go, insert the link cookie so the
2343 		 * next block can be read.
2344 		 */
2345 		if (uiop->uio_resid > 0)
2346 			kprintf("EEK! readdirrpc resid > 0\n");
2347 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2348 		*cookiep = cookie;
2349 	}
2350 nfsmout:
2351 	return (error);
2352 }
2353 
2354 /*
2355  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2356  */
2357 int
2358 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2359 {
2360 	int len, left;
2361 	struct nfs_dirent *dp;
2362 	u_int32_t *tl;
2363 	caddr_t cp;
2364 	int32_t t1, t2;
2365 	struct vnode *newvp;
2366 	nfsuint64 *cookiep;
2367 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2368 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2369 	nfsuint64 cookie;
2370 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2371 	struct nfsnode *dnp = VTONFS(vp), *np;
2372 	nfsfh_t *fhp;
2373 	u_quad_t fileno;
2374 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2375 	int attrflag, fhsize;
2376 	struct nchandle nch;
2377 	struct nchandle dnch;
2378 	struct nlcomponent nlc;
2379 
2380 #ifndef nolint
2381 	dp = NULL;
2382 #endif
2383 #ifndef DIAGNOSTIC
2384 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2385 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2386 		panic("nfs readdirplusrpc bad uio");
2387 #endif
2388 	/*
2389 	 * Obtain the namecache record for the directory so we have something
2390 	 * to use as a basis for creating the entries.  This function will
2391 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2392 	 * from the tree and cannot be used for upward traversals, and the
2393 	 * ncp may be unnamed.  Note that other unrelated operations may
2394 	 * cause the ncp to be named at any time.
2395 	 */
2396 	cache_fromdvp(vp, NULL, 0, &dnch);
2397 	bzero(&nlc, sizeof(nlc));
2398 	newvp = NULLVP;
2399 
2400 	/*
2401 	 * If there is no cookie, assume directory was stale.
2402 	 */
2403 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2404 	if (cookiep)
2405 		cookie = *cookiep;
2406 	else
2407 		return (NFSERR_BAD_COOKIE);
2408 	/*
2409 	 * Loop around doing readdir rpc's of size nm_readdirsize
2410 	 * truncated to a multiple of DIRBLKSIZ.
2411 	 * The stopping criteria is EOF or buffer full.
2412 	 */
2413 	while (more_dirs && bigenough) {
2414 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2415 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2416 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2417 		nfsm_fhtom(vp, 1);
2418  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2419 		*tl++ = cookie.nfsuquad[0];
2420 		*tl++ = cookie.nfsuquad[1];
2421 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2422 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2423 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2424 		*tl = txdr_unsigned(nmp->nm_rsize);
2425 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2426 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2427 		if (error) {
2428 			m_freem(mrep);
2429 			goto nfsmout;
2430 		}
2431 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2432 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2433 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2434 		more_dirs = fxdr_unsigned(int, *tl);
2435 
2436 		/* loop thru the dir entries, doctoring them to 4bsd form */
2437 		while (more_dirs && bigenough) {
2438 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2439 			fileno = fxdr_hyper(tl);
2440 			len = fxdr_unsigned(int, *(tl + 2));
2441 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2442 				error = EBADRPC;
2443 				m_freem(mrep);
2444 				goto nfsmout;
2445 			}
2446 			tlen = nfsm_rndup(len);
2447 			if (tlen == len)
2448 				tlen += 4;	/* To ensure null termination*/
2449 			left = DIRBLKSIZ - blksiz;
2450 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2451 				dp->nfs_reclen += left;
2452 				uiop->uio_iov->iov_base += left;
2453 				uiop->uio_iov->iov_len -= left;
2454 				uiop->uio_offset += left;
2455 				uiop->uio_resid -= left;
2456 				blksiz = 0;
2457 			}
2458 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2459 				bigenough = 0;
2460 			if (bigenough) {
2461 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2462 				dp->nfs_ino = fileno;
2463 				dp->nfs_namlen = len;
2464 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2465 				dp->nfs_type = DT_UNKNOWN;
2466 				blksiz += dp->nfs_reclen;
2467 				if (blksiz == DIRBLKSIZ)
2468 					blksiz = 0;
2469 				uiop->uio_offset += sizeof(struct nfs_dirent);
2470 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2471 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2472 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2473 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2474 				nlc.nlc_namelen = len;
2475 				nfsm_mtouio(uiop, len);
2476 				cp = uiop->uio_iov->iov_base;
2477 				tlen -= len;
2478 				*cp = '\0';
2479 				uiop->uio_iov->iov_base += tlen;
2480 				uiop->uio_iov->iov_len -= tlen;
2481 				uiop->uio_offset += tlen;
2482 				uiop->uio_resid -= tlen;
2483 			} else
2484 				nfsm_adv(nfsm_rndup(len));
2485 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2486 			if (bigenough) {
2487 				cookie.nfsuquad[0] = *tl++;
2488 				cookie.nfsuquad[1] = *tl++;
2489 			} else
2490 				tl += 2;
2491 
2492 			/*
2493 			 * Since the attributes are before the file handle
2494 			 * (sigh), we must skip over the attributes and then
2495 			 * come back and get them.
2496 			 */
2497 			attrflag = fxdr_unsigned(int, *tl);
2498 			if (attrflag) {
2499 			    dpossav1 = dpos;
2500 			    mdsav1 = md;
2501 			    nfsm_adv(NFSX_V3FATTR);
2502 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2503 			    doit = fxdr_unsigned(int, *tl);
2504 			    if (doit) {
2505 				nfsm_getfh(fhp, fhsize, 1);
2506 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2507 				    vref(vp);
2508 				    newvp = vp;
2509 				    np = dnp;
2510 				} else {
2511 				    error = nfs_nget(vp->v_mount, fhp,
2512 					fhsize, &np);
2513 				    if (error)
2514 					doit = 0;
2515 				    else
2516 					newvp = NFSTOV(np);
2517 				}
2518 			    }
2519 			    if (doit && bigenough) {
2520 				dpossav2 = dpos;
2521 				dpos = dpossav1;
2522 				mdsav2 = md;
2523 				md = mdsav1;
2524 				nfsm_loadattr(newvp, (struct vattr *)0);
2525 				dpos = dpossav2;
2526 				md = mdsav2;
2527 				dp->nfs_type =
2528 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2529 				if (dnch.ncp) {
2530 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2531 					nlc.nlc_namelen, nlc.nlc_namelen,
2532 					nlc.nlc_nameptr);
2533 				    nch = cache_nlookup(&dnch, &nlc);
2534 				    cache_setunresolved(&nch);
2535 				    cache_setvp(&nch, newvp);
2536 				    cache_put(&nch);
2537 				} else {
2538 				    kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2539 					" %*.*s\n",
2540 					nlc.nlc_namelen, nlc.nlc_namelen,
2541 					nlc.nlc_nameptr);
2542 				}
2543 			    }
2544 			} else {
2545 			    /* Just skip over the file handle */
2546 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2547 			    i = fxdr_unsigned(int, *tl);
2548 			    nfsm_adv(nfsm_rndup(i));
2549 			}
2550 			if (newvp != NULLVP) {
2551 			    if (newvp == vp)
2552 				vrele(newvp);
2553 			    else
2554 				vput(newvp);
2555 			    newvp = NULLVP;
2556 			}
2557 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2558 			more_dirs = fxdr_unsigned(int, *tl);
2559 		}
2560 		/*
2561 		 * If at end of rpc data, get the eof boolean
2562 		 */
2563 		if (!more_dirs) {
2564 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2565 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2566 		}
2567 		m_freem(mrep);
2568 	}
2569 	/*
2570 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2571 	 * by increasing d_reclen for the last record.
2572 	 */
2573 	if (blksiz > 0) {
2574 		left = DIRBLKSIZ - blksiz;
2575 		dp->nfs_reclen += left;
2576 		uiop->uio_iov->iov_base += left;
2577 		uiop->uio_iov->iov_len -= left;
2578 		uiop->uio_offset += left;
2579 		uiop->uio_resid -= left;
2580 	}
2581 
2582 	/*
2583 	 * We are now either at the end of the directory or have filled the
2584 	 * block.
2585 	 */
2586 	if (bigenough)
2587 		dnp->n_direofoffset = uiop->uio_offset;
2588 	else {
2589 		if (uiop->uio_resid > 0)
2590 			kprintf("EEK! readdirplusrpc resid > 0\n");
2591 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2592 		*cookiep = cookie;
2593 	}
2594 nfsmout:
2595 	if (newvp != NULLVP) {
2596 	        if (newvp == vp)
2597 			vrele(newvp);
2598 		else
2599 			vput(newvp);
2600 		newvp = NULLVP;
2601 	}
2602 	if (dnch.ncp)
2603 		cache_drop(&dnch);
2604 	return (error);
2605 }
2606 
2607 /*
2608  * Silly rename. To make the NFS filesystem that is stateless look a little
2609  * more like the "ufs" a remove of an active vnode is translated to a rename
2610  * to a funny looking filename that is removed by nfs_inactive on the
2611  * nfsnode. There is the potential for another process on a different client
2612  * to create the same funny name between the nfs_lookitup() fails and the
2613  * nfs_rename() completes, but...
2614  */
2615 static int
2616 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2617 {
2618 	struct sillyrename *sp;
2619 	struct nfsnode *np;
2620 	int error;
2621 
2622 	/*
2623 	 * We previously purged dvp instead of vp.  I don't know why, it
2624 	 * completely destroys performance.  We can't do it anyway with the
2625 	 * new VFS API since we would be breaking the namecache topology.
2626 	 */
2627 	cache_purge(vp);	/* XXX */
2628 	np = VTONFS(vp);
2629 #ifndef DIAGNOSTIC
2630 	if (vp->v_type == VDIR)
2631 		panic("nfs: sillyrename dir");
2632 #endif
2633 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2634 		M_NFSREQ, M_WAITOK);
2635 	sp->s_cred = crdup(cnp->cn_cred);
2636 	sp->s_dvp = dvp;
2637 	vref(dvp);
2638 
2639 	/* Fudge together a funny name */
2640 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2641 
2642 	/* Try lookitups until we get one that isn't there */
2643 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2644 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2645 		sp->s_name[4]++;
2646 		if (sp->s_name[4] > 'z') {
2647 			error = EINVAL;
2648 			goto bad;
2649 		}
2650 	}
2651 	error = nfs_renameit(dvp, cnp, sp);
2652 	if (error)
2653 		goto bad;
2654 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2655 		cnp->cn_td, &np);
2656 	np->n_sillyrename = sp;
2657 	return (0);
2658 bad:
2659 	vrele(sp->s_dvp);
2660 	crfree(sp->s_cred);
2661 	kfree((caddr_t)sp, M_NFSREQ);
2662 	return (error);
2663 }
2664 
2665 /*
2666  * Look up a file name and optionally either update the file handle or
2667  * allocate an nfsnode, depending on the value of npp.
2668  * npp == NULL	--> just do the lookup
2669  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2670  *			handled too
2671  * *npp != NULL --> update the file handle in the vnode
2672  */
2673 static int
2674 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2675 	     struct thread *td, struct nfsnode **npp)
2676 {
2677 	u_int32_t *tl;
2678 	caddr_t cp;
2679 	int32_t t1, t2;
2680 	struct vnode *newvp = (struct vnode *)0;
2681 	struct nfsnode *np, *dnp = VTONFS(dvp);
2682 	caddr_t bpos, dpos, cp2;
2683 	int error = 0, fhlen, attrflag;
2684 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2685 	nfsfh_t *nfhp;
2686 	int v3 = NFS_ISV3(dvp);
2687 
2688 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2689 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2690 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2691 	nfsm_fhtom(dvp, v3);
2692 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2693 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2694 	if (npp && !error) {
2695 		nfsm_getfh(nfhp, fhlen, v3);
2696 		if (*npp) {
2697 		    np = *npp;
2698 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2699 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2700 			np->n_fhp = &np->n_fh;
2701 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2702 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2703 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2704 		    np->n_fhsize = fhlen;
2705 		    newvp = NFSTOV(np);
2706 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2707 		    vref(dvp);
2708 		    newvp = dvp;
2709 		} else {
2710 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2711 		    if (error) {
2712 			m_freem(mrep);
2713 			return (error);
2714 		    }
2715 		    newvp = NFSTOV(np);
2716 		}
2717 		if (v3) {
2718 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2719 			if (!attrflag && *npp == NULL) {
2720 				m_freem(mrep);
2721 				if (newvp == dvp)
2722 					vrele(newvp);
2723 				else
2724 					vput(newvp);
2725 				return (ENOENT);
2726 			}
2727 		} else
2728 			nfsm_loadattr(newvp, (struct vattr *)0);
2729 	}
2730 	m_freem(mrep);
2731 nfsmout:
2732 	if (npp && *npp == NULL) {
2733 		if (error) {
2734 			if (newvp) {
2735 				if (newvp == dvp)
2736 					vrele(newvp);
2737 				else
2738 					vput(newvp);
2739 			}
2740 		} else
2741 			*npp = np;
2742 	}
2743 	return (error);
2744 }
2745 
2746 /*
2747  * Nfs Version 3 commit rpc
2748  */
2749 int
2750 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2751 {
2752 	caddr_t cp;
2753 	u_int32_t *tl;
2754 	int32_t t1, t2;
2755 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2756 	caddr_t bpos, dpos, cp2;
2757 	int error = 0, wccflag = NFSV3_WCCRATTR;
2758 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2759 
2760 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2761 		return (0);
2762 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2763 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2764 	nfsm_fhtom(vp, 1);
2765 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2766 	txdr_hyper(offset, tl);
2767 	tl += 2;
2768 	*tl = txdr_unsigned(cnt);
2769 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2770 	nfsm_wcc_data(vp, wccflag);
2771 	if (!error) {
2772 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2773 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2774 			NFSX_V3WRITEVERF)) {
2775 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2776 				NFSX_V3WRITEVERF);
2777 			error = NFSERR_STALEWRITEVERF;
2778 		}
2779 	}
2780 	m_freem(mrep);
2781 nfsmout:
2782 	return (error);
2783 }
2784 
2785 /*
2786  * Kludge City..
2787  * - make nfs_bmap() essentially a no-op that does no translation
2788  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2789  *   (Maybe I could use the process's page mapping, but I was concerned that
2790  *    Kernel Write might not be enabled and also figured copyout() would do
2791  *    a lot more work than bcopy() and also it currently happens in the
2792  *    context of the swapper process (2).
2793  *
2794  * nfs_bmap(struct vnode *a_vp, off_t a_loffset, struct vnode **a_vpp,
2795  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2796  */
2797 static int
2798 nfs_bmap(struct vop_bmap_args *ap)
2799 {
2800 	struct vnode *vp = ap->a_vp;
2801 
2802 	if (ap->a_vpp != NULL)
2803 		*ap->a_vpp = vp;
2804 	if (ap->a_doffsetp != NULL)
2805 		*ap->a_doffsetp = ap->a_loffset;
2806 	if (ap->a_runp != NULL)
2807 		*ap->a_runp = 0;
2808 	if (ap->a_runb != NULL)
2809 		*ap->a_runb = 0;
2810 	return (0);
2811 }
2812 
2813 /*
2814  * Strategy routine.
2815  *
2816  * For async requests when nfsiod(s) are running, queue the request by
2817  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2818  * request.
2819  */
2820 static int
2821 nfs_strategy(struct vop_strategy_args *ap)
2822 {
2823 	struct bio *bio = ap->a_bio;
2824 	struct bio *nbio;
2825 	struct buf *bp = bio->bio_buf;
2826 	struct thread *td;
2827 	int error = 0;
2828 
2829 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2830 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2831 	KASSERT(BUF_REFCNT(bp) > 0,
2832 		("nfs_strategy: buffer %p not locked", bp));
2833 
2834 	if (bp->b_flags & B_ASYNC)
2835 		td = NULL;
2836 	else
2837 		td = curthread;	/* XXX */
2838 
2839         /*
2840 	 * We probably don't need to push an nbio any more since no
2841 	 * block conversion is required due to the use of 64 bit byte
2842 	 * offsets, but do it anyway.
2843          */
2844 	nbio = push_bio(bio);
2845 	nbio->bio_offset = bio->bio_offset;
2846 
2847 	/*
2848 	 * If the op is asynchronous and an i/o daemon is waiting
2849 	 * queue the request, wake it up and wait for completion
2850 	 * otherwise just do it ourselves.
2851 	 */
2852 	if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2853 		error = nfs_doio(ap->a_vp, nbio, td);
2854 	return (error);
2855 }
2856 
2857 /*
2858  * Mmap a file
2859  *
2860  * NB Currently unsupported.
2861  *
2862  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred,
2863  *	    struct thread *a_td)
2864  */
2865 /* ARGSUSED */
2866 static int
2867 nfs_mmap(struct vop_mmap_args *ap)
2868 {
2869 	return (EINVAL);
2870 }
2871 
2872 /*
2873  * fsync vnode op. Just call nfs_flush() with commit == 1.
2874  *
2875  * nfs_fsync(struct vnode *a_vp, struct ucred * a_cred, int a_waitfor,
2876  *	     struct thread *a_td)
2877  */
2878 /* ARGSUSED */
2879 static int
2880 nfs_fsync(struct vop_fsync_args *ap)
2881 {
2882 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2883 }
2884 
2885 /*
2886  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2887  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2888  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2889  * set the buffer contains data that has already been written to the server
2890  * and which now needs a commit RPC.
2891  *
2892  * If commit is 0 we only take one pass and only flush buffers containing new
2893  * dirty data.
2894  *
2895  * If commit is 1 we take two passes, issuing a commit RPC in the second
2896  * pass.
2897  *
2898  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2899  * to completely flush all pending data.
2900  *
2901  * Note that the RB_SCAN code properly handles the case where the
2902  * callback might block and directly or indirectly (another thread) cause
2903  * the RB tree to change.
2904  */
2905 
2906 #ifndef NFS_COMMITBVECSIZ
2907 #define NFS_COMMITBVECSIZ	16
2908 #endif
2909 
2910 struct nfs_flush_info {
2911 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2912 	struct thread *td;
2913 	struct vnode *vp;
2914 	int waitfor;
2915 	int slpflag;
2916 	int slptimeo;
2917 	int loops;
2918 	struct buf *bvary[NFS_COMMITBVECSIZ];
2919 	int bvsize;
2920 	off_t beg_off;
2921 	off_t end_off;
2922 };
2923 
2924 static int nfs_flush_bp(struct buf *bp, void *data);
2925 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2926 
2927 int
2928 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2929 {
2930 	struct nfsnode *np = VTONFS(vp);
2931 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2932 	struct nfs_flush_info info;
2933 	int error;
2934 
2935 	bzero(&info, sizeof(info));
2936 	info.td = td;
2937 	info.vp = vp;
2938 	info.waitfor = waitfor;
2939 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2940 	info.loops = 0;
2941 
2942 	do {
2943 		/*
2944 		 * Flush mode
2945 		 */
2946 		info.mode = NFI_FLUSHNEW;
2947 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2948 				nfs_flush_bp, &info);
2949 
2950 		/*
2951 		 * Take a second pass if committing and no error occured.
2952 		 * Clean up any left over collection (whether an error
2953 		 * occurs or not).
2954 		 */
2955 		if (commit && error == 0) {
2956 			info.mode = NFI_COMMIT;
2957 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2958 					nfs_flush_bp, &info);
2959 			if (info.bvsize)
2960 				error = nfs_flush_docommit(&info, error);
2961 		}
2962 
2963 		/*
2964 		 * Wait for pending I/O to complete before checking whether
2965 		 * any further dirty buffers exist.
2966 		 */
2967 		while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
2968 			vp->v_track_write.bk_waitflag = 1;
2969 			error = tsleep(&vp->v_track_write,
2970 				info.slpflag, "nfsfsync", info.slptimeo);
2971 			if (error) {
2972 				/*
2973 				 * We have to be able to break out if this
2974 				 * is an 'intr' mount.
2975 				 */
2976 				if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2977 					error = -EINTR;
2978 					break;
2979 				}
2980 
2981 				/*
2982 				 * Since we do not process pending signals,
2983 				 * once we get a PCATCH our tsleep() will no
2984 				 * longer sleep, switch to a fixed timeout
2985 				 * instead.
2986 				 */
2987 				if (info.slpflag == PCATCH) {
2988 					info.slpflag = 0;
2989 					info.slptimeo = 2 * hz;
2990 				}
2991 				error = 0;
2992 			}
2993 		}
2994 		++info.loops;
2995 		/*
2996 		 * Loop if we are flushing synchronous as well as committing,
2997 		 * and dirty buffers are still present.  Otherwise we might livelock.
2998 		 */
2999 	} while (waitfor == MNT_WAIT && commit &&
3000 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3001 
3002 	/*
3003 	 * The callbacks have to return a negative error to terminate the
3004 	 * RB scan.
3005 	 */
3006 	if (error < 0)
3007 		error = -error;
3008 
3009 	/*
3010 	 * Deal with any error collection
3011 	 */
3012 	if (np->n_flag & NWRITEERR) {
3013 		error = np->n_error;
3014 		np->n_flag &= ~NWRITEERR;
3015 	}
3016 	return (error);
3017 }
3018 
3019 
3020 static
3021 int
3022 nfs_flush_bp(struct buf *bp, void *data)
3023 {
3024 	struct nfs_flush_info *info = data;
3025 	off_t toff;
3026 	int error;
3027 
3028 	error = 0;
3029 	switch(info->mode) {
3030 	case NFI_FLUSHNEW:
3031 		crit_enter();
3032 		if (info->loops && info->waitfor == MNT_WAIT) {
3033 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3034 			if (error) {
3035 				int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3036 				if (info->slpflag & PCATCH)
3037 					lkflags |= LK_PCATCH;
3038 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3039 						     info->slptimeo);
3040 			}
3041 		} else {
3042 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3043 		}
3044 		if (error == 0) {
3045 			KKASSERT(bp->b_vp == info->vp);
3046 
3047 			if ((bp->b_flags & B_DELWRI) == 0)
3048 				panic("nfs_fsync: not dirty");
3049 			if (bp->b_flags & B_NEEDCOMMIT) {
3050 				BUF_UNLOCK(bp);
3051 				crit_exit();
3052 				break;
3053 			}
3054 			bremfree(bp);
3055 
3056 			bp->b_flags |= B_ASYNC;
3057 			crit_exit();
3058 			bwrite(bp);
3059 		} else {
3060 			crit_exit();
3061 			error = 0;
3062 		}
3063 		break;
3064 	case NFI_COMMIT:
3065 		/*
3066 		 * Only process buffers in need of a commit which we can
3067 		 * immediately lock.  This may prevent a buffer from being
3068 		 * committed, but the normal flush loop will block on the
3069 		 * same buffer so we shouldn't get into an endless loop.
3070 		 */
3071 		crit_enter();
3072 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3073 		    (B_DELWRI | B_NEEDCOMMIT) ||
3074 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3075 			crit_exit();
3076 			break;
3077 		}
3078 
3079 		KKASSERT(bp->b_vp == info->vp);
3080 		bremfree(bp);
3081 
3082 		/*
3083 		 * NOTE: storing the bp in the bvary[] basically sets
3084 		 * it up for a commit operation.
3085 		 *
3086 		 * We must call vfs_busy_pages() now so the commit operation
3087 		 * is interlocked with user modifications to memory mapped
3088 		 * pages.
3089 		 *
3090 		 * Note: to avoid loopback deadlocks, we do not
3091 		 * assign b_runningbufspace.
3092 		 */
3093 		bp->b_cmd = BUF_CMD_WRITE;
3094 		vfs_busy_pages(bp->b_vp, bp);
3095 		info->bvary[info->bvsize] = bp;
3096 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3097 		if (info->bvsize == 0 || toff < info->beg_off)
3098 			info->beg_off = toff;
3099 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3100 		if (info->bvsize == 0 || toff > info->end_off)
3101 			info->end_off = toff;
3102 		++info->bvsize;
3103 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3104 			error = nfs_flush_docommit(info, 0);
3105 			KKASSERT(info->bvsize == 0);
3106 		}
3107 		crit_exit();
3108 	}
3109 	return (error);
3110 }
3111 
3112 static
3113 int
3114 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3115 {
3116 	struct vnode *vp;
3117 	struct buf *bp;
3118 	off_t bytes;
3119 	int retv;
3120 	int i;
3121 
3122 	vp = info->vp;
3123 
3124 	if (info->bvsize > 0) {
3125 		/*
3126 		 * Commit data on the server, as required.  Note that
3127 		 * nfs_commit will use the vnode's cred for the commit.
3128 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3129 		 */
3130 		bytes = info->end_off - info->beg_off;
3131 		if (bytes > 0x40000000)
3132 			bytes = 0x40000000;
3133 		if (error) {
3134 			retv = -error;
3135 		} else {
3136 			retv = nfs_commit(vp, info->beg_off,
3137 					    (int)bytes, info->td);
3138 			if (retv == NFSERR_STALEWRITEVERF)
3139 				nfs_clearcommit(vp->v_mount);
3140 		}
3141 
3142 		/*
3143 		 * Now, either mark the blocks I/O done or mark the
3144 		 * blocks dirty, depending on whether the commit
3145 		 * succeeded.
3146 		 */
3147 		for (i = 0; i < info->bvsize; ++i) {
3148 			bp = info->bvary[i];
3149 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3150 			if (retv) {
3151 				/*
3152 				 * Error, leave B_DELWRI intact
3153 				 */
3154 				vfs_unbusy_pages(bp);
3155 				bp->b_cmd = BUF_CMD_DONE;
3156 				brelse(bp);
3157 			} else {
3158 				/*
3159 				 * Success, remove B_DELWRI ( bundirty() ).
3160 				 *
3161 				 * b_dirtyoff/b_dirtyend seem to be NFS
3162 				 * specific.  We should probably move that
3163 				 * into bundirty(). XXX
3164 				 *
3165 				 * We are faking an I/O write, we have to
3166 				 * start the transaction in order to
3167 				 * immediately biodone() it.
3168 				 */
3169 				crit_enter();
3170 				bp->b_flags |= B_ASYNC;
3171 				bundirty(bp);
3172 				bp->b_flags &= ~B_ERROR;
3173 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3174 				crit_exit();
3175 				biodone(&bp->b_bio1);
3176 			}
3177 		}
3178 		info->bvsize = 0;
3179 	}
3180 	return (error);
3181 }
3182 
3183 /*
3184  * NFS advisory byte-level locks.
3185  * Currently unsupported.
3186  *
3187  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3188  *		int a_flags)
3189  */
3190 static int
3191 nfs_advlock(struct vop_advlock_args *ap)
3192 {
3193 	struct nfsnode *np = VTONFS(ap->a_vp);
3194 
3195 	/*
3196 	 * The following kludge is to allow diskless support to work
3197 	 * until a real NFS lockd is implemented. Basically, just pretend
3198 	 * that this is a local lock.
3199 	 */
3200 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3201 }
3202 
3203 /*
3204  * Print out the contents of an nfsnode.
3205  *
3206  * nfs_print(struct vnode *a_vp)
3207  */
3208 static int
3209 nfs_print(struct vop_print_args *ap)
3210 {
3211 	struct vnode *vp = ap->a_vp;
3212 	struct nfsnode *np = VTONFS(vp);
3213 
3214 	kprintf("tag VT_NFS, fileid %ld fsid 0x%x",
3215 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3216 	if (vp->v_type == VFIFO)
3217 		fifo_printinfo(vp);
3218 	kprintf("\n");
3219 	return (0);
3220 }
3221 
3222 /*
3223  * nfs special file access vnode op.
3224  * Essentially just get vattr and then imitate iaccess() since the device is
3225  * local to the client.
3226  *
3227  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
3228  *		  struct thread *a_td)
3229  */
3230 static int
3231 nfsspec_access(struct vop_access_args *ap)
3232 {
3233 	struct vattr *vap;
3234 	gid_t *gp;
3235 	struct ucred *cred = ap->a_cred;
3236 	struct vnode *vp = ap->a_vp;
3237 	mode_t mode = ap->a_mode;
3238 	struct vattr vattr;
3239 	int i;
3240 	int error;
3241 
3242 	/*
3243 	 * Disallow write attempts on filesystems mounted read-only;
3244 	 * unless the file is a socket, fifo, or a block or character
3245 	 * device resident on the filesystem.
3246 	 */
3247 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3248 		switch (vp->v_type) {
3249 		case VREG:
3250 		case VDIR:
3251 		case VLNK:
3252 			return (EROFS);
3253 		default:
3254 			break;
3255 		}
3256 	}
3257 	/*
3258 	 * If you're the super-user,
3259 	 * you always get access.
3260 	 */
3261 	if (cred->cr_uid == 0)
3262 		return (0);
3263 	vap = &vattr;
3264 	error = VOP_GETATTR(vp, vap);
3265 	if (error)
3266 		return (error);
3267 	/*
3268 	 * Access check is based on only one of owner, group, public.
3269 	 * If not owner, then check group. If not a member of the
3270 	 * group, then check public access.
3271 	 */
3272 	if (cred->cr_uid != vap->va_uid) {
3273 		mode >>= 3;
3274 		gp = cred->cr_groups;
3275 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3276 			if (vap->va_gid == *gp)
3277 				goto found;
3278 		mode >>= 3;
3279 found:
3280 		;
3281 	}
3282 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3283 	return (error);
3284 }
3285 
3286 /*
3287  * Read wrapper for special devices.
3288  *
3289  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3290  *		struct ucred *a_cred)
3291  */
3292 static int
3293 nfsspec_read(struct vop_read_args *ap)
3294 {
3295 	struct nfsnode *np = VTONFS(ap->a_vp);
3296 
3297 	/*
3298 	 * Set access flag.
3299 	 */
3300 	np->n_flag |= NACC;
3301 	getnanotime(&np->n_atim);
3302 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3303 }
3304 
3305 /*
3306  * Write wrapper for special devices.
3307  *
3308  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3309  *		 struct ucred *a_cred)
3310  */
3311 static int
3312 nfsspec_write(struct vop_write_args *ap)
3313 {
3314 	struct nfsnode *np = VTONFS(ap->a_vp);
3315 
3316 	/*
3317 	 * Set update flag.
3318 	 */
3319 	np->n_flag |= NUPD;
3320 	getnanotime(&np->n_mtim);
3321 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3322 }
3323 
3324 /*
3325  * Close wrapper for special devices.
3326  *
3327  * Update the times on the nfsnode then do device close.
3328  *
3329  * nfsspec_close(struct vnode *a_vp, int a_fflag, struct ucred *a_cred,
3330  *		 struct thread *a_td)
3331  */
3332 static int
3333 nfsspec_close(struct vop_close_args *ap)
3334 {
3335 	struct vnode *vp = ap->a_vp;
3336 	struct nfsnode *np = VTONFS(vp);
3337 	struct vattr vattr;
3338 
3339 	if (np->n_flag & (NACC | NUPD)) {
3340 		np->n_flag |= NCHG;
3341 		if (vp->v_sysref.refcnt == 1 &&
3342 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3343 			VATTR_NULL(&vattr);
3344 			if (np->n_flag & NACC)
3345 				vattr.va_atime = np->n_atim;
3346 			if (np->n_flag & NUPD)
3347 				vattr.va_mtime = np->n_mtim;
3348 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3349 		}
3350 	}
3351 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3352 }
3353 
3354 /*
3355  * Read wrapper for fifos.
3356  *
3357  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3358  *		struct ucred *a_cred)
3359  */
3360 static int
3361 nfsfifo_read(struct vop_read_args *ap)
3362 {
3363 	struct nfsnode *np = VTONFS(ap->a_vp);
3364 
3365 	/*
3366 	 * Set access flag.
3367 	 */
3368 	np->n_flag |= NACC;
3369 	getnanotime(&np->n_atim);
3370 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3371 }
3372 
3373 /*
3374  * Write wrapper for fifos.
3375  *
3376  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3377  *		 struct ucred *a_cred)
3378  */
3379 static int
3380 nfsfifo_write(struct vop_write_args *ap)
3381 {
3382 	struct nfsnode *np = VTONFS(ap->a_vp);
3383 
3384 	/*
3385 	 * Set update flag.
3386 	 */
3387 	np->n_flag |= NUPD;
3388 	getnanotime(&np->n_mtim);
3389 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3390 }
3391 
3392 /*
3393  * Close wrapper for fifos.
3394  *
3395  * Update the times on the nfsnode then do fifo close.
3396  *
3397  * nfsfifo_close(struct vnode *a_vp, int a_fflag, struct thread *a_td)
3398  */
3399 static int
3400 nfsfifo_close(struct vop_close_args *ap)
3401 {
3402 	struct vnode *vp = ap->a_vp;
3403 	struct nfsnode *np = VTONFS(vp);
3404 	struct vattr vattr;
3405 	struct timespec ts;
3406 
3407 	if (np->n_flag & (NACC | NUPD)) {
3408 		getnanotime(&ts);
3409 		if (np->n_flag & NACC)
3410 			np->n_atim = ts;
3411 		if (np->n_flag & NUPD)
3412 			np->n_mtim = ts;
3413 		np->n_flag |= NCHG;
3414 		if (vp->v_sysref.refcnt == 1 &&
3415 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3416 			VATTR_NULL(&vattr);
3417 			if (np->n_flag & NACC)
3418 				vattr.va_atime = np->n_atim;
3419 			if (np->n_flag & NUPD)
3420 				vattr.va_mtime = np->n_mtim;
3421 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3422 		}
3423 	}
3424 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3425 }
3426 
3427