xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 45914ee7)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
33  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
34  */
35 
36 
37 /*
38  * vnode op calls for Sun NFS version 2 and 3
39  */
40 
41 #include "opt_inet.h"
42 
43 #include <sys/param.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/resourcevar.h>
47 #include <sys/proc.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/namei.h>
53 #include <sys/nlookup.h>
54 #include <sys/socket.h>
55 #include <sys/vnode.h>
56 #include <sys/dirent.h>
57 #include <sys/fcntl.h>
58 #include <sys/lockf.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/conf.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65 
66 #include <sys/buf2.h>
67 
68 #include <vfs/fifofs/fifo.h>
69 #include <vfs/ufs/dir.h>
70 
71 #undef DIRBLKSIZ
72 
73 #include "rpcv2.h"
74 #include "nfsproto.h"
75 #include "nfs.h"
76 #include "nfsmount.h"
77 #include "nfsnode.h"
78 #include "xdr_subs.h"
79 #include "nfsm_subs.h"
80 
81 #include <net/if.h>
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 
85 #include <sys/thread2.h>
86 
87 /* Defs */
88 #define	TRUE	1
89 #define	FALSE	0
90 
91 static int	nfsfifo_read (struct vop_read_args *);
92 static int	nfsfifo_write (struct vop_write_args *);
93 static int	nfsfifo_close (struct vop_close_args *);
94 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
95 static	int	nfs_lookup (struct vop_old_lookup_args *);
96 static	int	nfs_create (struct vop_old_create_args *);
97 static	int	nfs_mknod (struct vop_old_mknod_args *);
98 static	int	nfs_open (struct vop_open_args *);
99 static	int	nfs_close (struct vop_close_args *);
100 static	int	nfs_access (struct vop_access_args *);
101 static	int	nfs_getattr (struct vop_getattr_args *);
102 static	int	nfs_setattr (struct vop_setattr_args *);
103 static	int	nfs_read (struct vop_read_args *);
104 static	int	nfs_mmap (struct vop_mmap_args *);
105 static	int	nfs_fsync (struct vop_fsync_args *);
106 static	int	nfs_remove (struct vop_old_remove_args *);
107 static	int	nfs_link (struct vop_old_link_args *);
108 static	int	nfs_rename (struct vop_old_rename_args *);
109 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
110 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
111 static	int	nfs_symlink (struct vop_old_symlink_args *);
112 static	int	nfs_readdir (struct vop_readdir_args *);
113 static	int	nfs_bmap (struct vop_bmap_args *);
114 static	int	nfs_strategy (struct vop_strategy_args *);
115 static	int	nfs_lookitup (struct vnode *, const char *, int,
116 			struct ucred *, struct thread *, struct nfsnode **);
117 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
118 static int	nfs_laccess (struct vop_access_args *);
119 static int	nfs_readlink (struct vop_readlink_args *);
120 static int	nfs_print (struct vop_print_args *);
121 static int	nfs_advlock (struct vop_advlock_args *);
122 static int	nfs_kqfilter (struct vop_kqfilter_args *ap);
123 
124 static	int	nfs_nresolve (struct vop_nresolve_args *);
125 /*
126  * Global vfs data structures for nfs
127  */
128 struct vop_ops nfsv2_vnode_vops = {
129 	.vop_default =		vop_defaultop,
130 	.vop_access =		nfs_access,
131 	.vop_advlock =		nfs_advlock,
132 	.vop_bmap =		nfs_bmap,
133 	.vop_close =		nfs_close,
134 	.vop_old_create =	nfs_create,
135 	.vop_fsync =		nfs_fsync,
136 	.vop_getattr =		nfs_getattr,
137 	.vop_getpages =		vop_stdgetpages,
138 	.vop_putpages =		vop_stdputpages,
139 	.vop_inactive =		nfs_inactive,
140 	.vop_old_link =		nfs_link,
141 	.vop_old_lookup =	nfs_lookup,
142 	.vop_old_mkdir =	nfs_mkdir,
143 	.vop_old_mknod =	nfs_mknod,
144 	.vop_mmap =		nfs_mmap,
145 	.vop_open =		nfs_open,
146 	.vop_print =		nfs_print,
147 	.vop_read =		nfs_read,
148 	.vop_readdir =		nfs_readdir,
149 	.vop_readlink =		nfs_readlink,
150 	.vop_reclaim =		nfs_reclaim,
151 	.vop_old_remove =	nfs_remove,
152 	.vop_old_rename =	nfs_rename,
153 	.vop_old_rmdir =	nfs_rmdir,
154 	.vop_setattr =		nfs_setattr,
155 	.vop_strategy =		nfs_strategy,
156 	.vop_old_symlink =	nfs_symlink,
157 	.vop_write =		nfs_write,
158 	.vop_nresolve =		nfs_nresolve,
159 	.vop_kqfilter =		nfs_kqfilter
160 };
161 
162 /*
163  * Special device vnode ops
164  */
165 struct vop_ops nfsv2_spec_vops = {
166 	.vop_default =		vop_defaultop,
167 	.vop_access =		nfs_laccess,
168 	.vop_close =		nfs_close,
169 	.vop_fsync =		nfs_fsync,
170 	.vop_getattr =		nfs_getattr,
171 	.vop_inactive =		nfs_inactive,
172 	.vop_print =		nfs_print,
173 	.vop_read =		vop_stdnoread,
174 	.vop_reclaim =		nfs_reclaim,
175 	.vop_setattr =		nfs_setattr,
176 	.vop_write =		vop_stdnowrite
177 };
178 
179 struct vop_ops nfsv2_fifo_vops = {
180 	.vop_default =		fifo_vnoperate,
181 	.vop_access =		nfs_laccess,
182 	.vop_close =		nfsfifo_close,
183 	.vop_fsync =		nfs_fsync,
184 	.vop_getattr =		nfs_getattr,
185 	.vop_inactive =		nfs_inactive,
186 	.vop_print =		nfs_print,
187 	.vop_read =		nfsfifo_read,
188 	.vop_reclaim =		nfs_reclaim,
189 	.vop_setattr =		nfs_setattr,
190 	.vop_write =		nfsfifo_write
191 };
192 
193 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
194 				  struct componentname *cnp,
195 				  struct vattr *vap);
196 static int	nfs_removerpc (struct vnode *dvp, const char *name,
197 				   int namelen,
198 				   struct ucred *cred, struct thread *td);
199 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
200 				   int fnamelen, struct vnode *tdvp,
201 				   const char *tnameptr, int tnamelen,
202 				   struct ucred *cred, struct thread *td);
203 static int	nfs_renameit (struct vnode *sdvp,
204 				  struct componentname *scnp,
205 				  struct sillyrename *sp);
206 
207 SYSCTL_DECL(_vfs_nfs);
208 
209 static int nfs_flush_on_rename = 1;
210 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
211 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
212 static int nfs_flush_on_hlink = 0;
213 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
214 	   &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
215 
216 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
217 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
218 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
219 
220 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
221 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
222 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
223 
224 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
225 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
226 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
227 
228 static int	nfsv3_commit_on_close = 0;
229 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
230 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
231 #if 0
232 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
233 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
234 
235 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
236 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
237 #endif
238 
239 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
240 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
241 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
242 
243 static __inline
244 void
245 nfs_knote(struct vnode *vp, int flags)
246 {
247 	if (flags)
248 		KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, flags);
249 }
250 
251 /*
252  * Returns whether a name component is a degenerate '.' or '..'.
253  */
254 static __inline
255 int
256 nlcdegenerate(struct nlcomponent *nlc)
257 {
258 	if (nlc->nlc_namelen == 1 && nlc->nlc_nameptr[0] == '.')
259 		return(1);
260 	if (nlc->nlc_namelen == 2 &&
261 	    nlc->nlc_nameptr[0] == '.' && nlc->nlc_nameptr[1] == '.')
262 		return(1);
263 	return(0);
264 }
265 
266 static int
267 nfs3_access_otw(struct vnode *vp, int wmode,
268 		struct thread *td, struct ucred *cred)
269 {
270 	struct nfsnode *np = VTONFS(vp);
271 	int attrflag;
272 	int error = 0;
273 	u_int32_t *tl;
274 	u_int32_t rmode;
275 	struct nfsm_info info;
276 
277 	info.mrep = NULL;
278 	info.v3 = 1;
279 
280 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
281 	nfsm_reqhead(&info, vp, NFSPROC_ACCESS,
282 		     NFSX_FH(info.v3) + NFSX_UNSIGNED);
283 	ERROROUT(nfsm_fhtom(&info, vp));
284 	tl = nfsm_build(&info, NFSX_UNSIGNED);
285 	*tl = txdr_unsigned(wmode);
286 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_ACCESS, td, cred, &error));
287 	ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK));
288 	if (error == 0) {
289 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
290 		rmode = fxdr_unsigned(u_int32_t, *tl);
291 		np->n_mode = rmode;
292 		np->n_modeuid = cred->cr_uid;
293 		np->n_modestamp = mycpu->gd_time_seconds;
294 	}
295 	m_freem(info.mrep);
296 	info.mrep = NULL;
297 nfsmout:
298 	return error;
299 }
300 
301 /*
302  * nfs access vnode op.
303  * For nfs version 2, just return ok. File accesses may fail later.
304  * For nfs version 3, use the access rpc to check accessibility. If file modes
305  * are changed on the server, accesses might still fail later.
306  *
307  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
308  */
309 static int
310 nfs_access(struct vop_access_args *ap)
311 {
312 	struct ucred *cred;
313 	struct vnode *vp = ap->a_vp;
314 	thread_t td = curthread;
315 	int error = 0;
316 	u_int32_t mode, wmode;
317 	struct nfsnode *np = VTONFS(vp);
318 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
319 	int v3 = NFS_ISV3(vp);
320 
321 	lwkt_gettoken(&nmp->nm_token);
322 
323 	/*
324 	 * Disallow write attempts on filesystems mounted read-only;
325 	 * unless the file is a socket, fifo, or a block or character
326 	 * device resident on the filesystem.
327 	 */
328 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
329 		switch (vp->v_type) {
330 		case VREG:
331 		case VDIR:
332 		case VLNK:
333 			lwkt_reltoken(&nmp->nm_token);
334 			return (EROFS);
335 		default:
336 			break;
337 		}
338 	}
339 
340 	/*
341 	 * The NFS protocol passes only the effective uid/gid over the wire but
342 	 * we need to check access against real ids if AT_EACCESS not set.
343 	 * Handle this case by cloning the credentials and setting the
344 	 * effective ids to the real ones.
345 	 *
346 	 * The crdup() here can cause a lot of ucred structures to build-up
347 	 * (up to maxvnodes), so do our best to avoid it.
348 	 */
349 	if (ap->a_flags & AT_EACCESS) {
350 		cred = crhold(ap->a_cred);
351 	} else {
352 		cred = ap->a_cred;
353 		if (cred->cr_uid == cred->cr_ruid &&
354 		    cred->cr_gid == cred->cr_rgid) {
355 			cred = crhold(ap->a_cred);
356 		} else {
357 			cred = crdup(ap->a_cred);
358 			cred->cr_uid = cred->cr_ruid;
359 			cred->cr_gid = cred->cr_rgid;
360 		}
361 	}
362 
363 	/*
364 	 * For nfs v3, check to see if we have done this recently, and if
365 	 * so return our cached result instead of making an ACCESS call.
366 	 * If not, do an access rpc, otherwise you are stuck emulating
367 	 * ufs_access() locally using the vattr. This may not be correct,
368 	 * since the server may apply other access criteria such as
369 	 * client uid-->server uid mapping that we do not know about.
370 	 */
371 	if (v3) {
372 		if (ap->a_mode & VREAD)
373 			mode = NFSV3ACCESS_READ;
374 		else
375 			mode = 0;
376 		if (vp->v_type != VDIR) {
377 			if (ap->a_mode & VWRITE)
378 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
379 			if (ap->a_mode & VEXEC)
380 				mode |= NFSV3ACCESS_EXECUTE;
381 		} else {
382 			if (ap->a_mode & VWRITE)
383 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
384 					 NFSV3ACCESS_DELETE);
385 			if (ap->a_mode & VEXEC)
386 				mode |= NFSV3ACCESS_LOOKUP;
387 		}
388 		/* XXX safety belt, only make blanket request if caching */
389 		if (nfsaccess_cache_timeout > 0) {
390 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
391 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
392 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
393 		} else {
394 			wmode = mode;
395 		}
396 
397 		/*
398 		 * Does our cached result allow us to give a definite yes to
399 		 * this request?
400 		 */
401 		if (np->n_modestamp &&
402 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
403 		   (cred->cr_uid == np->n_modeuid) &&
404 		   ((np->n_mode & mode) == mode)) {
405 			nfsstats.accesscache_hits++;
406 		} else {
407 			/*
408 			 * Either a no, or a don't know.  Go to the wire.
409 			 */
410 			nfsstats.accesscache_misses++;
411 		        error = nfs3_access_otw(vp, wmode, td, cred);
412 			if (!error) {
413 				if ((np->n_mode & mode) != mode) {
414 					error = EACCES;
415 				}
416 			}
417 		}
418 	} else {
419 		if ((error = nfs_laccess(ap)) != 0) {
420 			crfree(cred);
421 			lwkt_reltoken(&nmp->nm_token);
422 			return (error);
423 		}
424 
425 		/*
426 		 * Attempt to prevent a mapped root from accessing a file
427 		 * which it shouldn't.  We try to read a byte from the file
428 		 * if the user is root and the file is not zero length.
429 		 * After calling nfs_laccess, we should have the correct
430 		 * file size cached.
431 		 */
432 		if (cred->cr_uid == 0 && (ap->a_mode & VREAD)
433 		    && VTONFS(vp)->n_size > 0) {
434 			struct iovec aiov;
435 			struct uio auio;
436 			char buf[1];
437 
438 			aiov.iov_base = buf;
439 			aiov.iov_len = 1;
440 			auio.uio_iov = &aiov;
441 			auio.uio_iovcnt = 1;
442 			auio.uio_offset = 0;
443 			auio.uio_resid = 1;
444 			auio.uio_segflg = UIO_SYSSPACE;
445 			auio.uio_rw = UIO_READ;
446 			auio.uio_td = td;
447 
448 			if (vp->v_type == VREG) {
449 				error = nfs_readrpc_uio(vp, &auio);
450 			} else if (vp->v_type == VDIR) {
451 				char* bp;
452 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
453 				aiov.iov_base = bp;
454 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
455 				error = nfs_readdirrpc_uio(vp, &auio);
456 				kfree(bp, M_TEMP);
457 			} else if (vp->v_type == VLNK) {
458 				error = nfs_readlinkrpc_uio(vp, &auio);
459 			} else {
460 				error = EACCES;
461 			}
462 		}
463 	}
464 	/*
465 	 * [re]record creds for reading and/or writing if access
466 	 * was granted.  Assume the NFS server will grant read access
467 	 * for execute requests.
468 	 */
469 	if (error == 0) {
470 		if ((ap->a_mode & (VREAD|VEXEC)) && cred != np->n_rucred) {
471 			crhold(cred);
472 			if (np->n_rucred)
473 				crfree(np->n_rucred);
474 			np->n_rucred = cred;
475 		}
476 		if ((ap->a_mode & VWRITE) && cred != np->n_wucred) {
477 			crhold(cred);
478 			if (np->n_wucred)
479 				crfree(np->n_wucred);
480 			np->n_wucred = cred;
481 		}
482 	}
483 	lwkt_reltoken(&nmp->nm_token);
484 	crfree(cred);
485 
486 	return(error);
487 }
488 
489 /*
490  * nfs open vnode op
491  * Check to see if the type is ok
492  * and that deletion is not in progress.
493  * For paged in text files, you will need to flush the page cache
494  * if consistency is lost.
495  *
496  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
497  *	    struct file *a_fp)
498  */
499 /* ARGSUSED */
500 static int
501 nfs_open(struct vop_open_args *ap)
502 {
503 	struct vnode *vp = ap->a_vp;
504 	struct nfsnode *np = VTONFS(vp);
505 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
506 	struct vattr vattr;
507 	int error;
508 
509 	lwkt_gettoken(&nmp->nm_token);
510 
511 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
512 #ifdef DIAGNOSTIC
513 		kprintf("open eacces vtyp=%d\n",vp->v_type);
514 #endif
515 		lwkt_reltoken(&nmp->nm_token);
516 		return (EOPNOTSUPP);
517 	}
518 
519 	/*
520 	 * Save valid creds for reading and writing for later RPCs.
521 	 */
522 	if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) {
523 		crhold(ap->a_cred);
524 		if (np->n_rucred)
525 			crfree(np->n_rucred);
526 		np->n_rucred = ap->a_cred;
527 	}
528 	if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) {
529 		crhold(ap->a_cred);
530 		if (np->n_wucred)
531 			crfree(np->n_wucred);
532 		np->n_wucred = ap->a_cred;
533 	}
534 
535 	/*
536 	 * Clear the attribute cache only if opening with write access.  It
537 	 * is unclear if we should do this at all here, but we certainly
538 	 * should not clear the cache unconditionally simply because a file
539 	 * is being opened.
540 	 */
541 	if (ap->a_mode & FWRITE)
542 		np->n_attrstamp = 0;
543 
544 	/*
545 	 * For normal NFS, reconcile changes made locally verses
546 	 * changes made remotely.  Note that VOP_GETATTR only goes
547 	 * to the wire if the cached attribute has timed out or been
548 	 * cleared.
549 	 *
550 	 * If local modifications have been made clear the attribute
551 	 * cache to force an attribute and modified time check.  If
552 	 * GETATTR detects that the file has been changed by someone
553 	 * other then us it will set NRMODIFIED.
554 	 *
555 	 * If we are opening a directory and local changes have been
556 	 * made we have to invalidate the cache in order to ensure
557 	 * that we get the most up-to-date information from the
558 	 * server.  XXX
559 	 */
560 	if (np->n_flag & NLMODIFIED) {
561 		np->n_attrstamp = 0;
562 		if (vp->v_type == VDIR) {
563 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
564 			if (error == EINTR) {
565 				lwkt_reltoken(&nmp->nm_token);
566 				return (error);
567 			}
568 			nfs_invaldir(vp);
569 		}
570 	}
571 	error = VOP_GETATTR(vp, &vattr);
572 	if (error) {
573 		lwkt_reltoken(&nmp->nm_token);
574 		return (error);
575 	}
576 	if (np->n_flag & NRMODIFIED) {
577 		if (vp->v_type == VDIR)
578 			nfs_invaldir(vp);
579 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
580 		if (error == EINTR) {
581 			lwkt_reltoken(&nmp->nm_token);
582 			return (error);
583 		}
584 		np->n_flag &= ~NRMODIFIED;
585 	}
586 	error = vop_stdopen(ap);
587 	lwkt_reltoken(&nmp->nm_token);
588 
589 	return error;
590 }
591 
592 /*
593  * nfs close vnode op
594  * What an NFS client should do upon close after writing is a debatable issue.
595  * Most NFS clients push delayed writes to the server upon close, basically for
596  * two reasons:
597  * 1 - So that any write errors may be reported back to the client process
598  *     doing the close system call. By far the two most likely errors are
599  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
600  * 2 - To put a worst case upper bound on cache inconsistency between
601  *     multiple clients for the file.
602  * There is also a consistency problem for Version 2 of the protocol w.r.t.
603  * not being able to tell if other clients are writing a file concurrently,
604  * since there is no way of knowing if the changed modify time in the reply
605  * is only due to the write for this client.
606  * (NFS Version 3 provides weak cache consistency data in the reply that
607  *  should be sufficient to detect and handle this case.)
608  *
609  * The current code does the following:
610  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
611  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
612  *                     or commit them (this satisfies 1 and 2 except for the
613  *                     case where the server crashes after this close but
614  *                     before the commit RPC, which is felt to be "good
615  *                     enough". Changing the last argument to nfs_flush() to
616  *                     a 1 would force a commit operation, if it is felt a
617  *                     commit is necessary now.
618  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
619  *                     1 should be dealt with via an fsync() system call for
620  *                     cases where write errors are important.
621  *
622  * nfs_close(struct vnode *a_vp, int a_fflag)
623  */
624 /* ARGSUSED */
625 static int
626 nfs_close(struct vop_close_args *ap)
627 {
628 	struct vnode *vp = ap->a_vp;
629 	struct nfsnode *np = VTONFS(vp);
630 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
631 	int error = 0;
632 	thread_t td = curthread;
633 
634 	vn_lock(vp, LK_UPGRADE | LK_RETRY); /* XXX */
635 	lwkt_gettoken(&nmp->nm_token);
636 
637 	if (vp->v_type == VREG) {
638 	    if (np->n_flag & NLMODIFIED) {
639 		if (NFS_ISV3(vp)) {
640 		    /*
641 		     * Under NFSv3 we have dirty buffers to dispose of.  We
642 		     * must flush them to the NFS server.  We have the option
643 		     * of waiting all the way through the commit rpc or just
644 		     * waiting for the initial write.  The default is to only
645 		     * wait through the initial write so the data is in the
646 		     * server's cache, which is roughly similar to the state
647 		     * a standard disk subsystem leaves the file in on close().
648 		     *
649 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
650 		     * potential races with other processes, and certainly
651 		     * cannot clear it if we don't commit.
652 		     */
653 		    int cm = nfsv3_commit_on_close ? 1 : 0;
654 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
655 		    /* np->n_flag &= ~NLMODIFIED; */
656 		} else {
657 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
658 		}
659 		np->n_attrstamp = 0;
660 	    }
661 	    if (np->n_flag & NWRITEERR) {
662 		np->n_flag &= ~NWRITEERR;
663 		error = np->n_error;
664 	    }
665 	}
666 	vop_stdclose(ap);
667 	lwkt_reltoken(&nmp->nm_token);
668 
669 	return (error);
670 }
671 
672 /*
673  * nfs getattr call from vfs.
674  *
675  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
676  */
677 static int
678 nfs_getattr(struct vop_getattr_args *ap)
679 {
680 	struct vnode *vp = ap->a_vp;
681 	struct nfsnode *np = VTONFS(vp);
682 	struct nfsmount *nmp;
683 	int error = 0;
684 	thread_t td = curthread;
685 	struct nfsm_info info;
686 
687 	info.mrep = NULL;
688 	info.v3 = NFS_ISV3(vp);
689 	nmp = VFSTONFS(vp->v_mount);
690 
691 	lwkt_gettoken(&nmp->nm_token);
692 
693 	/*
694 	 * Update local times for special files.
695 	 */
696 	if (np->n_flag & (NACC | NUPD))
697 		np->n_flag |= NCHG;
698 	/*
699 	 * First look in the cache.
700 	 */
701 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
702 		goto done;
703 
704 	if (info.v3 && nfsaccess_cache_timeout > 0) {
705 		nfsstats.accesscache_misses++;
706 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
707 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
708 			goto done;
709 	}
710 
711 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
712 	nfsm_reqhead(&info, vp, NFSPROC_GETATTR, NFSX_FH(info.v3));
713 	ERROROUT(nfsm_fhtom(&info, vp));
714 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_GETATTR, td,
715 				nfs_vpcred(vp, ND_CHECK), &error));
716 	if (error == 0) {
717 		ERROROUT(nfsm_loadattr(&info, vp, ap->a_vap));
718 	}
719 	m_freem(info.mrep);
720 	info.mrep = NULL;
721 done:
722 	/*
723 	 * NFS doesn't support chflags flags.  If the nfs mount was
724 	 * made -o cache set the UF_CACHE bit for swapcache.
725 	 */
726 	if ((nmp->nm_flag & NFSMNT_CACHE) && (vp->v_flag & VROOT))
727 		ap->a_vap->va_flags |= UF_CACHE;
728 nfsmout:
729 	lwkt_reltoken(&nmp->nm_token);
730 	return (error);
731 }
732 
733 /*
734  * nfs setattr call.
735  *
736  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
737  */
738 static int
739 nfs_setattr(struct vop_setattr_args *ap)
740 {
741 	struct vnode *vp = ap->a_vp;
742 	struct nfsnode *np = VTONFS(vp);
743 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
744 	struct vattr *vap = ap->a_vap;
745 	int error = 0;
746 	int kflags = 0;
747 	off_t tsize;
748 	thread_t td = curthread;
749 
750 #ifndef nolint
751 	tsize = (off_t)0;
752 #endif
753 	/*
754 	 * Setting of flags is not supported.
755 	 */
756 	if (vap->va_flags != VNOVAL)
757 		return (EOPNOTSUPP);
758 
759 	/*
760 	 * Disallow write attempts if the filesystem is mounted read-only.
761 	 */
762   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
763 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
764 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
765 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
766 		return (EROFS);
767 
768 	lwkt_gettoken(&nmp->nm_token);
769 
770 	if (vap->va_size != VNOVAL) {
771 		/*
772 		 * truncation requested
773 		 */
774  		switch (vp->v_type) {
775  		case VDIR:
776 			lwkt_reltoken(&nmp->nm_token);
777  			return (EISDIR);
778  		case VCHR:
779  		case VBLK:
780  		case VSOCK:
781  		case VFIFO:
782 			if (vap->va_mtime.tv_sec == VNOVAL &&
783 			    vap->va_atime.tv_sec == VNOVAL &&
784 			    vap->va_mode == (mode_t)VNOVAL &&
785 			    vap->va_uid == (uid_t)VNOVAL &&
786 			    vap->va_gid == (gid_t)VNOVAL) {
787 				lwkt_reltoken(&nmp->nm_token);
788 				return (0);
789 			}
790  			vap->va_size = VNOVAL;
791  			break;
792  		default:
793 			/*
794 			 * Disallow write attempts if the filesystem is
795 			 * mounted read-only.
796 			 */
797 			if (vp->v_mount->mnt_flag & MNT_RDONLY) {
798 				lwkt_reltoken(&nmp->nm_token);
799 				return (EROFS);
800 			}
801 
802 			tsize = np->n_size;
803 again:
804 			error = nfs_meta_setsize(vp, td, vap->va_size, 0);
805 
806 #if 0
807  			if (np->n_flag & NLMODIFIED) {
808  			    if (vap->va_size == 0)
809  				error = nfs_vinvalbuf(vp, 0, 1);
810  			    else
811  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
812  			}
813 #endif
814 			/*
815 			 * note: this loop case almost always happens at
816 			 * least once per truncation.
817 			 */
818 			if (error == 0 && np->n_size != vap->va_size)
819 				goto again;
820 			np->n_vattr.va_size = vap->va_size;
821 			kflags |= NOTE_WRITE;
822 			if (tsize < vap->va_size)
823 				kflags |= NOTE_EXTEND;
824 			break;
825 		}
826 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
827 		/*
828 		 * What to do.  If we are modifying the mtime we lose
829 		 * mtime detection of changes made by the server or other
830 		 * clients.  But programs like rsync/rdist/cpdup are going
831 		 * to call utimes a lot.  We don't want to piecemeal sync.
832 		 *
833 		 * For now sync if any prior remote changes were detected,
834 		 * but allow us to lose track of remote changes made during
835 		 * the utimes operation.
836 		 */
837 		if (np->n_flag & NRMODIFIED)
838 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
839 		if (error == EINTR) {
840 			lwkt_reltoken(&nmp->nm_token);
841 			return (error);
842 		}
843 		if (error == 0) {
844 			if (vap->va_mtime.tv_sec != VNOVAL) {
845 				np->n_mtime = vap->va_mtime.tv_sec;
846 			}
847 		}
848 	}
849 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
850 	if (error == 0)
851 		kflags |= NOTE_EXTEND;
852 
853 	/*
854 	 * Sanity check if a truncation was issued.  This should only occur
855 	 * if multiple processes are racing on the same file.
856 	 */
857 	if (error == 0 && vap->va_size != VNOVAL &&
858 	    np->n_size != vap->va_size) {
859 		kprintf("NFS ftruncate: server disagrees on the file size: "
860 			"%jd/%jd/%jd\n",
861 			(intmax_t)tsize,
862 			(intmax_t)vap->va_size,
863 			(intmax_t)np->n_size);
864 		goto again;
865 	}
866 	if (error && vap->va_size != VNOVAL) {
867 		np->n_size = np->n_vattr.va_size = tsize;
868 		nfs_meta_setsize(vp, td, np->n_size, 0);
869 	}
870 	lwkt_reltoken(&nmp->nm_token);
871 	nfs_knote(vp, kflags);
872 
873 	return (error);
874 }
875 
876 /*
877  * Do an nfs setattr rpc.
878  */
879 static int
880 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
881 	       struct ucred *cred, struct thread *td)
882 {
883 	struct nfsv2_sattr *sp;
884 	struct nfsnode *np = VTONFS(vp);
885 	u_int32_t *tl;
886 	int error = 0, wccflag = NFSV3_WCCRATTR;
887 	struct nfsm_info info;
888 
889 	info.mrep = NULL;
890 	info.v3 = NFS_ISV3(vp);
891 
892 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
893 	nfsm_reqhead(&info, vp, NFSPROC_SETATTR,
894 		     NFSX_FH(info.v3) + NFSX_SATTR(info.v3));
895 	ERROROUT(nfsm_fhtom(&info, vp));
896 	if (info.v3) {
897 		nfsm_v3attrbuild(&info, vap, TRUE);
898 		tl = nfsm_build(&info, NFSX_UNSIGNED);
899 		*tl = nfs_false;
900 	} else {
901 		sp = nfsm_build(&info, NFSX_V2SATTR);
902 		if (vap->va_mode == (mode_t)VNOVAL)
903 			sp->sa_mode = nfs_xdrneg1;
904 		else
905 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
906 		if (vap->va_uid == (uid_t)VNOVAL)
907 			sp->sa_uid = nfs_xdrneg1;
908 		else
909 			sp->sa_uid = txdr_unsigned(vap->va_uid);
910 		if (vap->va_gid == (gid_t)VNOVAL)
911 			sp->sa_gid = nfs_xdrneg1;
912 		else
913 			sp->sa_gid = txdr_unsigned(vap->va_gid);
914 		sp->sa_size = txdr_unsigned(vap->va_size);
915 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
916 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
917 	}
918 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_SETATTR, td, cred, &error));
919 	if (info.v3) {
920 		np->n_modestamp = 0;
921 		ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
922 	} else {
923 		ERROROUT(nfsm_loadattr(&info, vp, NULL));
924 	}
925 	m_freem(info.mrep);
926 	info.mrep = NULL;
927 nfsmout:
928 	return (error);
929 }
930 
931 static
932 void
933 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
934 {
935 	if (nctimeout == 0)
936 		nctimeout = 1;
937 	else
938 		nctimeout *= hz;
939 	cache_setvp(nch, vp);
940 	cache_settimeout(nch, nctimeout);
941 }
942 
943 /*
944  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
945  * nfs_lookup() until all remaining new api calls are implemented.
946  *
947  * Resolve a namecache entry.  This function is passed a locked ncp and
948  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
949  */
950 static int
951 nfs_nresolve(struct vop_nresolve_args *ap)
952 {
953 	struct thread *td = curthread;
954 	struct namecache *ncp;
955 	struct nfsmount *nmp;
956 	struct nfsnode *np;
957 	struct vnode *dvp;
958 	struct vnode *nvp;
959 	nfsfh_t *fhp;
960 	int attrflag;
961 	int fhsize;
962 	int error;
963 	int tmp_error;
964 	int len;
965 	struct nfsm_info info;
966 
967 	dvp = ap->a_dvp;
968 	nmp = VFSTONFS(dvp->v_mount);
969 
970 	lwkt_gettoken(&nmp->nm_token);
971 
972 	if ((error = vget(dvp, LK_SHARED)) != 0) {
973 		lwkt_reltoken(&nmp->nm_token);
974 		return (error);
975 	}
976 
977 	info.mrep = NULL;
978 	info.v3 = NFS_ISV3(dvp);
979 
980 	nvp = NULL;
981 	nfsstats.lookupcache_misses++;
982 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
983 	ncp = ap->a_nch->ncp;
984 	len = ncp->nc_nlen;
985 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
986 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
987 	ERROROUT(nfsm_fhtom(&info, dvp));
988 	ERROROUT(nfsm_strtom(&info, ncp->nc_name, len, NFS_MAXNAMLEN));
989 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td,
990 				ap->a_cred, &error));
991 	if (error) {
992 		/*
993 		 * Cache negatve lookups to reduce NFS traffic, but use
994 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
995 		 * XXX we should add a namecache flag for no-caching
996 		 * to uncache the negative hit as soon as possible, but
997 		 * we cannot simply destroy the entry because it is used
998 		 * as a placeholder by the caller.
999 		 *
1000 		 * The refactored nfs code will overwrite a non-zero error
1001 		 * with 0 when we use ERROROUT(), so don't here.
1002 		 */
1003 		if (error == ENOENT)
1004 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
1005 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
1006 					     NFS_LATTR_NOSHRINK);
1007 		if (tmp_error) {
1008 			error = tmp_error;
1009 			goto nfsmout;
1010 		}
1011 		m_freem(info.mrep);
1012 		info.mrep = NULL;
1013 		goto nfsmout;
1014 	}
1015 
1016 	/*
1017 	 * Success, get the file handle, do various checks, and load
1018 	 * post-operation data from the reply packet.  Theoretically
1019 	 * we should never be looking up "." so, theoretically, we
1020 	 * should never get the same file handle as our directory.  But
1021 	 * we check anyway. XXX
1022 	 *
1023 	 * Note that no timeout is set for the positive cache hit.  We
1024 	 * assume, theoretically, that ESTALE returns will be dealt with
1025 	 * properly to handle NFS races and in anycase we cannot depend
1026 	 * on a timeout to deal with NFS open/create/excl issues so instead
1027 	 * of a bad hack here the rest of the NFS client code needs to do
1028 	 * the right thing.
1029 	 */
1030 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
1031 
1032 	np = VTONFS(dvp);
1033 	if (NFS_CMPFH(np, fhp, fhsize)) {
1034 		vref(dvp);
1035 		nvp = dvp;
1036 	} else {
1037 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, NULL);
1038 		if (error) {
1039 			m_freem(info.mrep);
1040 			info.mrep = NULL;
1041 			vput(dvp);
1042 			lwkt_reltoken(&nmp->nm_token);
1043 			return (error);
1044 		}
1045 		nvp = NFSTOV(np);
1046 	}
1047 	if (info.v3) {
1048 		ERROROUT(nfsm_postop_attr(&info, nvp, &attrflag,
1049 					  NFS_LATTR_NOSHRINK));
1050 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1051 					  NFS_LATTR_NOSHRINK));
1052 	} else {
1053 		ERROROUT(nfsm_loadattr(&info, nvp, NULL));
1054 	}
1055 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
1056 	m_freem(info.mrep);
1057 	info.mrep = NULL;
1058 nfsmout:
1059 	lwkt_reltoken(&nmp->nm_token);
1060 	vput(dvp);
1061 	if (nvp) {
1062 		if (nvp == dvp)
1063 			vrele(nvp);
1064 		else
1065 			vput(nvp);
1066 	}
1067 	return (error);
1068 }
1069 
1070 /*
1071  * 'cached' nfs directory lookup
1072  *
1073  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
1074  *
1075  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
1076  *	      struct componentname *a_cnp)
1077  */
1078 static int
1079 nfs_lookup(struct vop_old_lookup_args *ap)
1080 {
1081 	struct componentname *cnp = ap->a_cnp;
1082 	struct vnode *dvp = ap->a_dvp;
1083 	struct vnode **vpp = ap->a_vpp;
1084 	int flags = cnp->cn_flags;
1085 	struct vnode *newvp;
1086 	struct vnode *notvp;
1087 	struct nfsmount *nmp;
1088 	long len;
1089 	nfsfh_t *fhp;
1090 	struct nfsnode *np;
1091 	int lockparent, wantparent, attrflag, fhsize;
1092 	int error;
1093 	int tmp_error;
1094 	struct nfsm_info info;
1095 
1096 	info.mrep = NULL;
1097 	info.v3 = NFS_ISV3(dvp);
1098 	error = 0;
1099 
1100 	notvp = (cnp->cn_flags & CNP_NOTVP) ? cnp->cn_notvp : NULL;
1101 
1102 	/*
1103 	 * Read-only mount check and directory check.
1104 	 */
1105 	*vpp = NULLVP;
1106 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1107 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1108 		return (EROFS);
1109 
1110 	if (dvp->v_type != VDIR)
1111 		return (ENOTDIR);
1112 
1113 	/*
1114 	 * Look it up in the cache.  Note that ENOENT is only returned if we
1115 	 * previously entered a negative hit (see later on).  The additional
1116 	 * nfsneg_cache_timeout check causes previously cached results to
1117 	 * be instantly ignored if the negative caching is turned off.
1118 	 */
1119 	lockparent = flags & CNP_LOCKPARENT;
1120 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1121 	nmp = VFSTONFS(dvp->v_mount);
1122 	np = VTONFS(dvp);
1123 
1124 	lwkt_gettoken(&nmp->nm_token);
1125 
1126 	/*
1127 	 * Go to the wire.
1128 	 */
1129 	error = 0;
1130 	newvp = NULLVP;
1131 	nfsstats.lookupcache_misses++;
1132 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1133 	len = cnp->cn_namelen;
1134 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
1135 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1136 	ERROROUT(nfsm_fhtom(&info, dvp));
1137 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
1138 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, cnp->cn_td,
1139 				cnp->cn_cred, &error));
1140 	if (error) {
1141 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
1142 					     NFS_LATTR_NOSHRINK);
1143 		if (tmp_error) {
1144 			error = tmp_error;
1145 			goto nfsmout;
1146 		}
1147 
1148 		m_freem(info.mrep);
1149 		info.mrep = NULL;
1150 		goto nfsmout;
1151 	}
1152 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
1153 
1154 	/*
1155 	 * Handle RENAME case...
1156 	 */
1157 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1158 		if (NFS_CMPFH(np, fhp, fhsize)) {
1159 			m_freem(info.mrep);
1160 			info.mrep = NULL;
1161 			lwkt_reltoken(&nmp->nm_token);
1162 			return (EISDIR);
1163 		}
1164 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, notvp);
1165 		if (error) {
1166 			m_freem(info.mrep);
1167 			info.mrep = NULL;
1168 			lwkt_reltoken(&nmp->nm_token);
1169 			return (error);
1170 		}
1171 		newvp = NFSTOV(np);
1172 		if (info.v3) {
1173 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1174 						  NFS_LATTR_NOSHRINK));
1175 			ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1176 						  NFS_LATTR_NOSHRINK));
1177 		} else {
1178 			ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1179 		}
1180 		*vpp = newvp;
1181 		m_freem(info.mrep);
1182 		info.mrep = NULL;
1183 		if (!lockparent) {
1184 			vn_unlock(dvp);
1185 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1186 		}
1187 		lwkt_reltoken(&nmp->nm_token);
1188 		return (0);
1189 	}
1190 
1191 	if (flags & CNP_ISDOTDOT) {
1192 		vn_unlock(dvp);
1193 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1194 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, notvp);
1195 		if (error) {
1196 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1197 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1198 			lwkt_reltoken(&nmp->nm_token);
1199 			return (error); /* NOTE: return error from nget */
1200 		}
1201 		newvp = NFSTOV(np);
1202 		if (lockparent) {
1203 			error = vn_lock(dvp, LK_EXCLUSIVE | LK_FAILRECLAIM);
1204 			if (error) {
1205 				vput(newvp);
1206 				lwkt_reltoken(&nmp->nm_token);
1207 				return (error);
1208 			}
1209 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1210 		}
1211 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1212 		vref(dvp);
1213 		newvp = dvp;
1214 	} else {
1215 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, notvp);
1216 		if (error) {
1217 			m_freem(info.mrep);
1218 			info.mrep = NULL;
1219 			lwkt_reltoken(&nmp->nm_token);
1220 			return (error);
1221 		}
1222 		if (!lockparent) {
1223 			vn_unlock(dvp);
1224 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1225 		}
1226 		newvp = NFSTOV(np);
1227 	}
1228 	if (info.v3) {
1229 		ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1230 					  NFS_LATTR_NOSHRINK));
1231 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1232 					  NFS_LATTR_NOSHRINK));
1233 	} else {
1234 		ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1235 	}
1236 #if 0
1237 	/* XXX MOVE TO nfs_nremove() */
1238 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1239 	    cnp->cn_nameiop != NAMEI_DELETE) {
1240 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1241 	}
1242 #endif
1243 	*vpp = newvp;
1244 	m_freem(info.mrep);
1245 	info.mrep = NULL;
1246 nfsmout:
1247 	if (error) {
1248 		if (newvp != NULLVP) {
1249 			vrele(newvp);
1250 			*vpp = NULLVP;
1251 		}
1252 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1253 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1254 		    error == ENOENT) {
1255 			if (!lockparent) {
1256 				vn_unlock(dvp);
1257 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1258 			}
1259 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1260 				error = EROFS;
1261 			else
1262 				error = EJUSTRETURN;
1263 		}
1264 	}
1265 	lwkt_reltoken(&nmp->nm_token);
1266 	return (error);
1267 }
1268 
1269 /*
1270  * nfs read call.
1271  * Just call nfs_bioread() to do the work.
1272  *
1273  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1274  *	    struct ucred *a_cred)
1275  */
1276 static int
1277 nfs_read(struct vop_read_args *ap)
1278 {
1279 	struct vnode *vp = ap->a_vp;
1280 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1281 	int error;
1282 
1283 	lwkt_gettoken(&nmp->nm_token);
1284 	error = nfs_bioread(vp, ap->a_uio, ap->a_ioflag);
1285 	lwkt_reltoken(&nmp->nm_token);
1286 
1287 	return error;
1288 }
1289 
1290 /*
1291  * nfs readlink call
1292  *
1293  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1294  */
1295 static int
1296 nfs_readlink(struct vop_readlink_args *ap)
1297 {
1298 	struct vnode *vp = ap->a_vp;
1299 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1300 	int error;
1301 
1302 	if (vp->v_type != VLNK)
1303 		return (EINVAL);
1304 
1305 	lwkt_gettoken(&nmp->nm_token);
1306 	error = nfs_bioread(vp, ap->a_uio, 0);
1307 	lwkt_reltoken(&nmp->nm_token);
1308 
1309 	return error;
1310 }
1311 
1312 /*
1313  * Do a readlink rpc.
1314  * Called by nfs_doio() from below the buffer cache.
1315  */
1316 int
1317 nfs_readlinkrpc_uio(struct vnode *vp, struct uio *uiop)
1318 {
1319 	int error = 0, len, attrflag;
1320 	struct nfsm_info info;
1321 
1322 	info.mrep = NULL;
1323 	info.v3 = NFS_ISV3(vp);
1324 
1325 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1326 	nfsm_reqhead(&info, vp, NFSPROC_READLINK, NFSX_FH(info.v3));
1327 	ERROROUT(nfsm_fhtom(&info, vp));
1328 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READLINK, uiop->uio_td,
1329 				nfs_vpcred(vp, ND_CHECK), &error));
1330 	if (info.v3) {
1331 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1332 					  NFS_LATTR_NOSHRINK));
1333 	}
1334 	if (!error) {
1335 		NEGATIVEOUT(len = nfsm_strsiz(&info, NFS_MAXPATHLEN));
1336 		if (len == NFS_MAXPATHLEN) {
1337 			struct nfsnode *np = VTONFS(vp);
1338 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1339 				len = np->n_size;
1340 		}
1341 		ERROROUT(nfsm_mtouio(&info, uiop, len));
1342 	}
1343 	m_freem(info.mrep);
1344 	info.mrep = NULL;
1345 nfsmout:
1346 	return (error);
1347 }
1348 
1349 /*
1350  * nfs synchronous read rpc using UIO
1351  */
1352 int
1353 nfs_readrpc_uio(struct vnode *vp, struct uio *uiop)
1354 {
1355 	u_int32_t *tl;
1356 	struct nfsmount *nmp;
1357 	int error = 0, len, retlen, tsiz, eof, attrflag;
1358 	struct nfsm_info info;
1359 	off_t tmp_off;
1360 
1361 	info.mrep = NULL;
1362 	info.v3 = NFS_ISV3(vp);
1363 
1364 #ifndef nolint
1365 	eof = 0;
1366 #endif
1367 	nmp = VFSTONFS(vp->v_mount);
1368 
1369 	tsiz = uiop->uio_resid;
1370 	tmp_off = uiop->uio_offset + tsiz;
1371 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uiop->uio_offset)
1372 		return (EFBIG);
1373 	tmp_off = uiop->uio_offset;
1374 	while (tsiz > 0) {
1375 		nfsstats.rpccnt[NFSPROC_READ]++;
1376 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1377 		nfsm_reqhead(&info, vp, NFSPROC_READ,
1378 			     NFSX_FH(info.v3) + NFSX_UNSIGNED * 3);
1379 		ERROROUT(nfsm_fhtom(&info, vp));
1380 		tl = nfsm_build(&info, NFSX_UNSIGNED * 3);
1381 		if (info.v3) {
1382 			txdr_hyper(uiop->uio_offset, tl);
1383 			*(tl + 2) = txdr_unsigned(len);
1384 		} else {
1385 			*tl++ = txdr_unsigned(uiop->uio_offset);
1386 			*tl++ = txdr_unsigned(len);
1387 			*tl = 0;
1388 		}
1389 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READ, uiop->uio_td,
1390 					nfs_vpcred(vp, ND_READ), &error));
1391 		if (info.v3) {
1392 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1393 						 NFS_LATTR_NOSHRINK));
1394 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
1395 			eof = fxdr_unsigned(int, *(tl + 1));
1396 		} else {
1397 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1398 		}
1399 		NEGATIVEOUT(retlen = nfsm_strsiz(&info, len));
1400 		ERROROUT(nfsm_mtouio(&info, uiop, retlen));
1401 		m_freem(info.mrep);
1402 		info.mrep = NULL;
1403 
1404 		/*
1405 		 * Handle short-read from server (NFSv3).  If EOF is not
1406 		 * flagged (and no error occurred), but retlen is less
1407 		 * then the request size, we must zero-fill the remainder.
1408 		 */
1409 		if (retlen < len && info.v3 && eof == 0) {
1410 			ERROROUT(uiomovez(len - retlen, uiop));
1411 			retlen = len;
1412 		}
1413 		tsiz -= retlen;
1414 
1415 		/*
1416 		 * Terminate loop on EOF or zero-length read.
1417 		 *
1418 		 * For NFSv2 a short-read indicates EOF, not zero-fill,
1419 		 * and also terminates the loop.
1420 		 */
1421 		if (info.v3) {
1422 			if (eof || retlen == 0)
1423 				tsiz = 0;
1424 		} else if (retlen < len) {
1425 			tsiz = 0;
1426 		}
1427 	}
1428 nfsmout:
1429 	return (error);
1430 }
1431 
1432 /*
1433  * nfs write call
1434  */
1435 int
1436 nfs_writerpc_uio(struct vnode *vp, struct uio *uiop,
1437 		 int *iomode, int *must_commit)
1438 {
1439 	u_int32_t *tl;
1440 	int32_t backup;
1441 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1442 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1443 	int  committed = NFSV3WRITE_FILESYNC;
1444 	struct nfsm_info info;
1445 
1446 	info.mrep = NULL;
1447 	info.v3 = NFS_ISV3(vp);
1448 
1449 #ifndef DIAGNOSTIC
1450 	if (uiop->uio_iovcnt != 1)
1451 		panic("nfs: writerpc iovcnt > 1");
1452 #endif
1453 	*must_commit = 0;
1454 	tsiz = uiop->uio_resid;
1455 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1456 		return (EFBIG);
1457 	while (tsiz > 0) {
1458 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1459 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1460 		nfsm_reqhead(&info, vp, NFSPROC_WRITE,
1461 			     NFSX_FH(info.v3) + 5 * NFSX_UNSIGNED +
1462 			     nfsm_rndup(len));
1463 		ERROROUT(nfsm_fhtom(&info, vp));
1464 		if (info.v3) {
1465 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
1466 			txdr_hyper(uiop->uio_offset, tl);
1467 			tl += 2;
1468 			*tl++ = txdr_unsigned(len);
1469 			*tl++ = txdr_unsigned(*iomode);
1470 			*tl = txdr_unsigned(len);
1471 		} else {
1472 			u_int32_t x;
1473 
1474 			tl = nfsm_build(&info, 4 * NFSX_UNSIGNED);
1475 			/* Set both "begin" and "current" to non-garbage. */
1476 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1477 			*tl++ = x;	/* "begin offset" */
1478 			*tl++ = x;	/* "current offset" */
1479 			x = txdr_unsigned(len);
1480 			*tl++ = x;	/* total to this offset */
1481 			*tl = x;	/* size of this write */
1482 		}
1483 		ERROROUT(nfsm_uiotom(&info, uiop, len));
1484 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_WRITE, uiop->uio_td,
1485 					nfs_vpcred(vp, ND_WRITE), &error));
1486 		if (info.v3) {
1487 			/*
1488 			 * The write RPC returns a before and after mtime.  The
1489 			 * nfsm_wcc_data() macro checks the before n_mtime
1490 			 * against the before time and stores the after time
1491 			 * in the nfsnode's cached vattr and n_mtime field.
1492 			 * The NRMODIFIED bit will be set if the before
1493 			 * time did not match the original mtime.
1494 			 */
1495 			wccflag = NFSV3_WCCCHK;
1496 			ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
1497 			if (error == 0) {
1498 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1499 				rlen = fxdr_unsigned(int, *tl++);
1500 				if (rlen == 0) {
1501 					error = NFSERR_IO;
1502 					m_freem(info.mrep);
1503 					info.mrep = NULL;
1504 					break;
1505 				} else if (rlen < len) {
1506 					backup = len - rlen;
1507 					uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1508 					uiop->uio_iov->iov_len += backup;
1509 					uiop->uio_offset -= backup;
1510 					uiop->uio_resid += backup;
1511 					len = rlen;
1512 				}
1513 				commit = fxdr_unsigned(int, *tl++);
1514 
1515 				/*
1516 				 * Return the lowest committment level
1517 				 * obtained by any of the RPCs.
1518 				 */
1519 				if (committed == NFSV3WRITE_FILESYNC)
1520 					committed = commit;
1521 				else if (committed == NFSV3WRITE_DATASYNC &&
1522 					commit == NFSV3WRITE_UNSTABLE)
1523 					committed = commit;
1524 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1525 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1526 					NFSX_V3WRITEVERF);
1527 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1528 				} else if (bcmp((caddr_t)tl,
1529 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1530 				    *must_commit = 1;
1531 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1532 					NFSX_V3WRITEVERF);
1533 				}
1534 			}
1535 		} else {
1536 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1537 		}
1538 		m_freem(info.mrep);
1539 		info.mrep = NULL;
1540 		if (error)
1541 			break;
1542 		tsiz -= len;
1543 	}
1544 nfsmout:
1545 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1546 		committed = NFSV3WRITE_FILESYNC;
1547 	*iomode = committed;
1548 	if (error)
1549 		uiop->uio_resid = tsiz;
1550 	return (error);
1551 }
1552 
1553 /*
1554  * nfs mknod rpc
1555  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1556  * mode set to specify the file type and the size field for rdev.
1557  */
1558 static int
1559 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1560 	     struct vattr *vap)
1561 {
1562 	struct nfsv2_sattr *sp;
1563 	u_int32_t *tl;
1564 	struct vnode *newvp = NULL;
1565 	struct nfsnode *np = NULL;
1566 	struct vattr vattr;
1567 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1568 	int rmajor, rminor;
1569 	struct nfsm_info info;
1570 
1571 	info.mrep = NULL;
1572 	info.v3 = NFS_ISV3(dvp);
1573 
1574 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1575 		rmajor = txdr_unsigned(vap->va_rmajor);
1576 		rminor = txdr_unsigned(vap->va_rminor);
1577 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1578 		rmajor = nfs_xdrneg1;
1579 		rminor = nfs_xdrneg1;
1580 	} else {
1581 		return (EOPNOTSUPP);
1582 	}
1583 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1584 		return (error);
1585 	}
1586 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1587 	nfsm_reqhead(&info, dvp, NFSPROC_MKNOD,
1588 		     NFSX_FH(info.v3) + 4 * NFSX_UNSIGNED +
1589 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1590 	ERROROUT(nfsm_fhtom(&info, dvp));
1591 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1592 			     NFS_MAXNAMLEN));
1593 	if (info.v3) {
1594 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1595 		*tl++ = vtonfsv3_type(vap->va_type);
1596 		nfsm_v3attrbuild(&info, vap, FALSE);
1597 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1598 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1599 			*tl++ = txdr_unsigned(vap->va_rmajor);
1600 			*tl = txdr_unsigned(vap->va_rminor);
1601 		}
1602 	} else {
1603 		sp = nfsm_build(&info, NFSX_V2SATTR);
1604 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1605 		sp->sa_uid = nfs_xdrneg1;
1606 		sp->sa_gid = nfs_xdrneg1;
1607 		sp->sa_size = makeudev(rmajor, rminor);
1608 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1609 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1610 	}
1611 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKNOD, cnp->cn_td,
1612 				cnp->cn_cred, &error));
1613 	if (!error) {
1614 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1615 		if (!gotvp) {
1616 			if (newvp) {
1617 				vput(newvp);
1618 				newvp = NULL;
1619 			}
1620 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1621 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1622 			if (!error)
1623 				newvp = NFSTOV(np);
1624 		}
1625 	}
1626 	if (info.v3) {
1627 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1628 	}
1629 	m_freem(info.mrep);
1630 	info.mrep = NULL;
1631 nfsmout:
1632 	if (error) {
1633 		if (newvp)
1634 			vput(newvp);
1635 	} else {
1636 		*vpp = newvp;
1637 	}
1638 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1639 	if (!wccflag)
1640 		VTONFS(dvp)->n_attrstamp = 0;
1641 	return (error);
1642 }
1643 
1644 /*
1645  * nfs mknod vop
1646  * just call nfs_mknodrpc() to do the work.
1647  *
1648  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1649  *	     struct componentname *a_cnp, struct vattr *a_vap)
1650  */
1651 /* ARGSUSED */
1652 static int
1653 nfs_mknod(struct vop_old_mknod_args *ap)
1654 {
1655 	struct nfsmount *nmp = VFSTONFS(ap->a_dvp->v_mount);
1656 	int error;
1657 
1658 	lwkt_gettoken(&nmp->nm_token);
1659 	error = nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1660 	lwkt_reltoken(&nmp->nm_token);
1661 	if (error == 0)
1662 		nfs_knote(ap->a_dvp, NOTE_WRITE);
1663 
1664 	return error;
1665 }
1666 
1667 static u_long create_verf;
1668 /*
1669  * nfs file create call
1670  *
1671  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1672  *	      struct componentname *a_cnp, struct vattr *a_vap)
1673  */
1674 static int
1675 nfs_create(struct vop_old_create_args *ap)
1676 {
1677 	struct vnode *dvp = ap->a_dvp;
1678 	struct vattr *vap = ap->a_vap;
1679 	struct nfsmount *nmp = VFSTONFS(dvp->v_mount);
1680 	struct componentname *cnp = ap->a_cnp;
1681 	struct nfsv2_sattr *sp;
1682 	u_int32_t *tl;
1683 	struct nfsnode *np = NULL;
1684 	struct vnode *newvp = NULL;
1685 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1686 	struct vattr vattr;
1687 	struct nfsm_info info;
1688 
1689 	info.mrep = NULL;
1690 	info.v3 = NFS_ISV3(dvp);
1691 	lwkt_gettoken(&nmp->nm_token);
1692 
1693 	/*
1694 	 * Oops, not for me..
1695 	 */
1696 	if (vap->va_type == VSOCK) {
1697 		error = nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap);
1698 		lwkt_reltoken(&nmp->nm_token);
1699 		return error;
1700 	}
1701 
1702 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1703 		lwkt_reltoken(&nmp->nm_token);
1704 		return (error);
1705 	}
1706 	if (vap->va_vaflags & VA_EXCLUSIVE)
1707 		fmode |= O_EXCL;
1708 again:
1709 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1710 	nfsm_reqhead(&info, dvp, NFSPROC_CREATE,
1711 		     NFSX_FH(info.v3) + 2 * NFSX_UNSIGNED +
1712 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1713 	ERROROUT(nfsm_fhtom(&info, dvp));
1714 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1715 			     NFS_MAXNAMLEN));
1716 	if (info.v3) {
1717 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1718 		if (fmode & O_EXCL) {
1719 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1720 			tl = nfsm_build(&info, NFSX_V3CREATEVERF);
1721 #ifdef INET
1722 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1723 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1724 			else
1725 #endif
1726 				*tl++ = create_verf;
1727 			*tl = ++create_verf;
1728 		} else {
1729 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1730 			nfsm_v3attrbuild(&info, vap, FALSE);
1731 		}
1732 	} else {
1733 		sp = nfsm_build(&info, NFSX_V2SATTR);
1734 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1735 		sp->sa_uid = nfs_xdrneg1;
1736 		sp->sa_gid = nfs_xdrneg1;
1737 		sp->sa_size = 0;
1738 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1739 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1740 	}
1741 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_CREATE, cnp->cn_td,
1742 				cnp->cn_cred, &error));
1743 	if (error == 0) {
1744 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1745 		if (!gotvp) {
1746 			if (newvp) {
1747 				vput(newvp);
1748 				newvp = NULL;
1749 			}
1750 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1751 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1752 			if (!error)
1753 				newvp = NFSTOV(np);
1754 		}
1755 	}
1756 	if (info.v3) {
1757 		if (error == 0)
1758 			error = nfsm_wcc_data(&info, dvp, &wccflag);
1759 		else
1760 			(void)nfsm_wcc_data(&info, dvp, &wccflag);
1761 	}
1762 	m_freem(info.mrep);
1763 	info.mrep = NULL;
1764 nfsmout:
1765 	if (error) {
1766 		if (info.v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1767 			KKASSERT(newvp == NULL);
1768 			fmode &= ~O_EXCL;
1769 			goto again;
1770 		}
1771 	} else if (info.v3 && (fmode & O_EXCL)) {
1772 		/*
1773 		 * We are normally called with only a partially initialized
1774 		 * VAP.  Since the NFSv3 spec says that server may use the
1775 		 * file attributes to store the verifier, the spec requires
1776 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1777 		 * in atime, but we can't really assume that all servers will
1778 		 * so we ensure that our SETATTR sets both atime and mtime.
1779 		 */
1780 		if (vap->va_mtime.tv_sec == VNOVAL)
1781 			vfs_timestamp(&vap->va_mtime);
1782 		if (vap->va_atime.tv_sec == VNOVAL)
1783 			vap->va_atime = vap->va_mtime;
1784 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1785 	}
1786 	if (error == 0) {
1787 		/*
1788 		 * The new np may have enough info for access
1789 		 * checks, make sure rucred and wucred are
1790 		 * initialized for read and write rpc's.
1791 		 */
1792 		np = VTONFS(newvp);
1793 		if (np->n_rucred == NULL)
1794 			np->n_rucred = crhold(cnp->cn_cred);
1795 		if (np->n_wucred == NULL)
1796 			np->n_wucred = crhold(cnp->cn_cred);
1797 		*ap->a_vpp = newvp;
1798 		nfs_knote(dvp, NOTE_WRITE);
1799 	} else if (newvp) {
1800 		vput(newvp);
1801 	}
1802 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1803 	if (!wccflag)
1804 		VTONFS(dvp)->n_attrstamp = 0;
1805 	lwkt_reltoken(&nmp->nm_token);
1806 	return (error);
1807 }
1808 
1809 /*
1810  * nfs file remove call
1811  * To try and make nfs semantics closer to ufs semantics, a file that has
1812  * other processes using the vnode is renamed instead of removed and then
1813  * removed later on the last close.
1814  * - If v_refcnt > 1
1815  *	  If a rename is not already in the works
1816  *	     call nfs_sillyrename() to set it up
1817  *     else
1818  *	  do the remove rpc
1819  *
1820  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1821  *	      struct componentname *a_cnp)
1822  */
1823 static int
1824 nfs_remove(struct vop_old_remove_args *ap)
1825 {
1826 	struct vnode *vp = ap->a_vp;
1827 	struct vnode *dvp = ap->a_dvp;
1828 	struct nfsmount *nmp = VFSTONFS(dvp->v_mount);
1829 	struct componentname *cnp = ap->a_cnp;
1830 	struct nfsnode *np = VTONFS(vp);
1831 	int error = 0;
1832 	struct vattr vattr;
1833 
1834 	lwkt_gettoken(&nmp->nm_token);
1835 #ifndef DIAGNOSTIC
1836 	if (VREFCNT(vp) < 1)
1837 		panic("nfs_remove: bad v_refcnt");
1838 #endif
1839 	if (vp->v_type == VDIR) {
1840 		error = EPERM;
1841 	} else if (VREFCNT(vp) == 1 || (np->n_sillyrename &&
1842 		   VOP_GETATTR(vp, &vattr) == 0 && vattr.va_nlink > 1)) {
1843 		/*
1844 		 * Force finalization so the VOP_INACTIVE() call is not delayed.
1845 		 * This prevents cred structures from building up in nfsnodes
1846 		 * for deleted files.
1847 		 */
1848 		atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1849 		np->n_flag |= NREMOVED;
1850 
1851 		/*
1852 		 * Throw away biocache buffers, mainly to avoid
1853 		 * unnecessary delayed writes later.
1854 		 */
1855 		error = nfs_vinvalbuf(vp, 0, 1);
1856 		/* Do the rpc */
1857 		if (error != EINTR) {
1858 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1859 					      cnp->cn_namelen,
1860 					      cnp->cn_cred, cnp->cn_td);
1861 		}
1862 
1863 		/*
1864 		 * Kludge City: If the first reply to the remove rpc is lost..
1865 		 *   the reply to the retransmitted request will be ENOENT
1866 		 *   since the file was in fact removed
1867 		 *   Therefore, we cheat and return success.
1868 		 */
1869 		if (error == ENOENT)
1870 			error = 0;
1871 	} else if (!np->n_sillyrename) {
1872 		error = nfs_sillyrename(dvp, vp, cnp);
1873 	}
1874 	np->n_attrstamp = 0;
1875 	lwkt_reltoken(&nmp->nm_token);
1876 	if (error == 0) {
1877 		nfs_knote(vp, NOTE_DELETE);
1878 		nfs_knote(dvp, NOTE_WRITE);
1879 	}
1880 
1881 	return (error);
1882 }
1883 
1884 /*
1885  * nfs file remove rpc called from nfs_inactive
1886  *
1887  * NOTE: s_dvp can be VBAD during a forced unmount.
1888  */
1889 int
1890 nfs_removeit(struct sillyrename *sp)
1891 {
1892 	if (sp->s_dvp->v_type == VBAD)
1893 		return(0);
1894 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1895 		sp->s_cred, NULL));
1896 }
1897 
1898 /*
1899  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1900  */
1901 static int
1902 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1903 	      struct ucred *cred, struct thread *td)
1904 {
1905 	int error = 0, wccflag = NFSV3_WCCRATTR;
1906 	struct nfsm_info info;
1907 
1908 	info.mrep = NULL;
1909 	info.v3 = NFS_ISV3(dvp);
1910 
1911 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1912 	nfsm_reqhead(&info, dvp, NFSPROC_REMOVE,
1913 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1914 	ERROROUT(nfsm_fhtom(&info, dvp));
1915 	ERROROUT(nfsm_strtom(&info, name, namelen, NFS_MAXNAMLEN));
1916 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_REMOVE, td, cred, &error));
1917 	if (info.v3) {
1918 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1919 	}
1920 	m_freem(info.mrep);
1921 	info.mrep = NULL;
1922 nfsmout:
1923 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1924 	if (!wccflag)
1925 		VTONFS(dvp)->n_attrstamp = 0;
1926 	return (error);
1927 }
1928 
1929 /*
1930  * nfs file rename call
1931  *
1932  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1933  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1934  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1935  */
1936 static int
1937 nfs_rename(struct vop_old_rename_args *ap)
1938 {
1939 	struct vnode *fvp = ap->a_fvp;
1940 	struct vnode *tvp = ap->a_tvp;
1941 	struct vnode *fdvp = ap->a_fdvp;
1942 	struct vnode *tdvp = ap->a_tdvp;
1943 	struct componentname *tcnp = ap->a_tcnp;
1944 	struct componentname *fcnp = ap->a_fcnp;
1945 	struct nfsmount *nmp = VFSTONFS(fdvp->v_mount);
1946 	int error;
1947 
1948 	lwkt_gettoken(&nmp->nm_token);
1949 
1950 	/*
1951 	 * Force finalization so the VOP_INACTIVE() call is not delayed.
1952 	 * This prevents cred structures from building up in nfsnodes
1953 	 * for deleted files.
1954 	 */
1955 	if (tvp) {
1956 		atomic_set_int(&tvp->v_refcnt, VREF_FINALIZE);
1957 		if (VTONFS(tvp))
1958 			VTONFS(tvp)->n_flag |= NREMOVED;
1959 	}
1960 
1961 	/* Check for cross-device rename */
1962 	if ((fvp->v_mount != tdvp->v_mount) ||
1963 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1964 		error = EXDEV;
1965 		goto out;
1966 	}
1967 
1968 	/*
1969 	 * We shouldn't have to flush fvp on rename for most server-side
1970 	 * filesystems as the file handle should not change.  Unfortunately
1971 	 * the inode for some filesystems (msdosfs) might be tied to the
1972 	 * file name or directory position so to be completely safe
1973 	 * vfs.nfs.flush_on_rename is set by default.  Clear to improve
1974 	 * performance.
1975 	 *
1976 	 * We must flush tvp on rename because it might become stale on the
1977 	 * server after the rename.
1978 	 */
1979 	if (nfs_flush_on_rename)
1980 	    VOP_FSYNC(fvp, MNT_WAIT, 0);
1981 	if (tvp)
1982 	    VOP_FSYNC(tvp, MNT_WAIT, 0);
1983 
1984 	/*
1985 	 * If the tvp exists and is in use, sillyrename it before doing the
1986 	 * rename of the new file over it.
1987 	 *
1988 	 * XXX Can't sillyrename a directory.
1989 	 *
1990 	 * We do not attempt to do any namecache purges in this old API
1991 	 * routine.  The new API compat functions have access to the actual
1992 	 * namecache structures and will do it for us.
1993 	 */
1994 	if (tvp && VREFCNT(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1995 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1996 		nfs_knote(tvp, NOTE_DELETE);
1997 		vput(tvp);
1998 		tvp = NULL;
1999 	} else if (tvp) {
2000 		nfs_knote(tvp, NOTE_DELETE);
2001 	}
2002 
2003 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
2004 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
2005 		tcnp->cn_td);
2006 
2007 out:
2008 	if (error == 0) {
2009 		nfs_knote(fdvp, NOTE_WRITE);
2010 		nfs_knote(tdvp, NOTE_WRITE);
2011 		nfs_knote(fvp, NOTE_RENAME);
2012 	}
2013 	lwkt_reltoken(&nmp->nm_token);
2014 	if (tdvp == tvp)
2015 		vrele(tdvp);
2016 	else
2017 		vput(tdvp);
2018 	if (tvp)
2019 		vput(tvp);
2020 	vrele(fdvp);
2021 	vrele(fvp);
2022 	/*
2023 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
2024 	 */
2025 	if (error == ENOENT)
2026 		error = 0;
2027 	return (error);
2028 }
2029 
2030 /*
2031  * nfs file rename rpc called from nfs_remove() above
2032  */
2033 static int
2034 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
2035 	     struct sillyrename *sp)
2036 {
2037 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
2038 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
2039 }
2040 
2041 /*
2042  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
2043  */
2044 static int
2045 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
2046 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
2047 	      struct ucred *cred, struct thread *td)
2048 {
2049 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
2050 	struct nfsm_info info;
2051 
2052 	info.mrep = NULL;
2053 	info.v3 = NFS_ISV3(fdvp);
2054 
2055 	nfsstats.rpccnt[NFSPROC_RENAME]++;
2056 	nfsm_reqhead(&info, fdvp, NFSPROC_RENAME,
2057 		    (NFSX_FH(info.v3) + NFSX_UNSIGNED)*2 +
2058 		    nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen));
2059 	ERROROUT(nfsm_fhtom(&info, fdvp));
2060 	ERROROUT(nfsm_strtom(&info, fnameptr, fnamelen, NFS_MAXNAMLEN));
2061 	ERROROUT(nfsm_fhtom(&info, tdvp));
2062 	ERROROUT(nfsm_strtom(&info, tnameptr, tnamelen, NFS_MAXNAMLEN));
2063 	NEGKEEPOUT(nfsm_request(&info, fdvp, NFSPROC_RENAME, td, cred, &error));
2064 	if (info.v3) {
2065 		ERROROUT(nfsm_wcc_data(&info, fdvp, &fwccflag));
2066 		ERROROUT(nfsm_wcc_data(&info, tdvp, &twccflag));
2067 	}
2068 	m_freem(info.mrep);
2069 	info.mrep = NULL;
2070 nfsmout:
2071 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
2072 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
2073 	if (!fwccflag)
2074 		VTONFS(fdvp)->n_attrstamp = 0;
2075 	if (!twccflag)
2076 		VTONFS(tdvp)->n_attrstamp = 0;
2077 	return (error);
2078 }
2079 
2080 /*
2081  * nfs hard link create call
2082  *
2083  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
2084  *	    struct componentname *a_cnp)
2085  */
2086 static int
2087 nfs_link(struct vop_old_link_args *ap)
2088 {
2089 	struct vnode *vp = ap->a_vp;
2090 	struct vnode *tdvp = ap->a_tdvp;
2091 	struct nfsmount *nmp = VFSTONFS(tdvp->v_mount);
2092 	struct componentname *cnp = ap->a_cnp;
2093 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
2094 	struct nfsm_info info;
2095 
2096 	if (vp->v_mount != tdvp->v_mount) {
2097 		return (EXDEV);
2098 	}
2099 	lwkt_gettoken(&nmp->nm_token);
2100 
2101 	/*
2102 	 * The attribute cache may get out of sync with the server on link.
2103 	 * Pushing writes to the server before handle was inherited from
2104 	 * long long ago and it is unclear if we still need to do this.
2105 	 * Defaults to off.
2106 	 */
2107 	if (nfs_flush_on_hlink)
2108 		VOP_FSYNC(vp, MNT_WAIT, 0);
2109 
2110 	info.mrep = NULL;
2111 	info.v3 = NFS_ISV3(vp);
2112 
2113 	nfsstats.rpccnt[NFSPROC_LINK]++;
2114 	nfsm_reqhead(&info, vp, NFSPROC_LINK,
2115 		     NFSX_FH(info.v3) * 2 + NFSX_UNSIGNED +
2116 		     nfsm_rndup(cnp->cn_namelen));
2117 	ERROROUT(nfsm_fhtom(&info, vp));
2118 	ERROROUT(nfsm_fhtom(&info, tdvp));
2119 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2120 			     NFS_MAXNAMLEN));
2121 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_LINK, cnp->cn_td,
2122 				cnp->cn_cred, &error));
2123 	if (info.v3) {
2124 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2125 					 NFS_LATTR_NOSHRINK));
2126 		ERROROUT(nfsm_wcc_data(&info, tdvp, &wccflag));
2127 	}
2128 	m_freem(info.mrep);
2129 	info.mrep = NULL;
2130 nfsmout:
2131 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
2132 	if (!attrflag)
2133 		VTONFS(vp)->n_attrstamp = 0;
2134 	if (!wccflag)
2135 		VTONFS(tdvp)->n_attrstamp = 0;
2136 	/*
2137 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
2138 	 */
2139 	if (error == EEXIST)
2140 		error = 0;
2141 	lwkt_reltoken(&nmp->nm_token);
2142 	if (error == 0) {
2143 		nfs_knote(vp, NOTE_LINK);
2144 		nfs_knote(tdvp, NOTE_WRITE);
2145 	}
2146 
2147 	return (error);
2148 }
2149 
2150 /*
2151  * nfs symbolic link create call
2152  *
2153  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
2154  *		struct componentname *a_cnp, struct vattr *a_vap,
2155  *		char *a_target)
2156  */
2157 static int
2158 nfs_symlink(struct vop_old_symlink_args *ap)
2159 {
2160 	struct vnode *dvp = ap->a_dvp;
2161 	struct vattr *vap = ap->a_vap;
2162 	struct nfsmount *nmp = VFSTONFS(dvp->v_mount);
2163 	struct componentname *cnp = ap->a_cnp;
2164 	struct nfsv2_sattr *sp;
2165 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
2166 	struct vnode *newvp = NULL;
2167 	struct nfsm_info info;
2168 
2169 	info.mrep = NULL;
2170 	info.v3 = NFS_ISV3(dvp);
2171 	lwkt_gettoken(&nmp->nm_token);
2172 
2173 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
2174 	slen = strlen(ap->a_target);
2175 	nfsm_reqhead(&info, dvp, NFSPROC_SYMLINK,
2176 		     NFSX_FH(info.v3) + 2*NFSX_UNSIGNED +
2177 		     nfsm_rndup(cnp->cn_namelen) +
2178 		     nfsm_rndup(slen) + NFSX_SATTR(info.v3));
2179 	ERROROUT(nfsm_fhtom(&info, dvp));
2180 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2181 			     NFS_MAXNAMLEN));
2182 	if (info.v3) {
2183 		nfsm_v3attrbuild(&info, vap, FALSE);
2184 	}
2185 	ERROROUT(nfsm_strtom(&info, ap->a_target, slen, NFS_MAXPATHLEN));
2186 	if (info.v3 == 0) {
2187 		sp = nfsm_build(&info, NFSX_V2SATTR);
2188 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
2189 		sp->sa_uid = nfs_xdrneg1;
2190 		sp->sa_gid = nfs_xdrneg1;
2191 		sp->sa_size = nfs_xdrneg1;
2192 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2193 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2194 	}
2195 
2196 	/*
2197 	 * Issue the NFS request and get the rpc response.
2198 	 *
2199 	 * Only NFSv3 responses returning an error of 0 actually return
2200 	 * a file handle that can be converted into newvp without having
2201 	 * to do an extra lookup rpc.
2202 	 */
2203 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_SYMLINK, cnp->cn_td,
2204 				cnp->cn_cred, &error));
2205 	if (info.v3) {
2206 		if (error == 0) {
2207 		       ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2208 		}
2209 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2210 	}
2211 
2212 	/*
2213 	 * out code jumps -> here, mrep is also freed.
2214 	 */
2215 
2216 	m_freem(info.mrep);
2217 	info.mrep = NULL;
2218 nfsmout:
2219 
2220 	/*
2221 	 * If we get an EEXIST error, silently convert it to no-error
2222 	 * in case of an NFS retry.
2223 	 */
2224 	if (error == EEXIST)
2225 		error = 0;
2226 
2227 	/*
2228 	 * If we do not have (or no longer have) an error, and we could
2229 	 * not extract the newvp from the response due to the request being
2230 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
2231 	 * to obtain a newvp to return.
2232 	 */
2233 	if (error == 0 && newvp == NULL) {
2234 		struct nfsnode *np = NULL;
2235 
2236 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2237 				     cnp->cn_cred, cnp->cn_td, &np);
2238 		if (!error)
2239 			newvp = NFSTOV(np);
2240 	}
2241 	if (error) {
2242 		if (newvp)
2243 			vput(newvp);
2244 	} else {
2245 		*ap->a_vpp = newvp;
2246 	}
2247 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2248 	if (!wccflag)
2249 		VTONFS(dvp)->n_attrstamp = 0;
2250 	if (error == 0 && *ap->a_vpp)
2251 		nfs_knote(*ap->a_vpp, NOTE_WRITE);
2252 	lwkt_reltoken(&nmp->nm_token);
2253 
2254 	return (error);
2255 }
2256 
2257 /*
2258  * nfs make dir call
2259  *
2260  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2261  *	     struct componentname *a_cnp, struct vattr *a_vap)
2262  */
2263 static int
2264 nfs_mkdir(struct vop_old_mkdir_args *ap)
2265 {
2266 	struct vnode *dvp = ap->a_dvp;
2267 	struct vattr *vap = ap->a_vap;
2268 	struct nfsmount *nmp = VFSTONFS(dvp->v_mount);
2269 	struct componentname *cnp = ap->a_cnp;
2270 	struct nfsv2_sattr *sp;
2271 	struct nfsnode *np = NULL;
2272 	struct vnode *newvp = NULL;
2273 	struct vattr vattr;
2274 	int error = 0, wccflag = NFSV3_WCCRATTR;
2275 	int gotvp = 0;
2276 	int len;
2277 	struct nfsm_info info;
2278 
2279 	info.mrep = NULL;
2280 	info.v3 = NFS_ISV3(dvp);
2281 	lwkt_gettoken(&nmp->nm_token);
2282 
2283 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2284 		lwkt_reltoken(&nmp->nm_token);
2285 		return (error);
2286 	}
2287 	len = cnp->cn_namelen;
2288 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2289 	nfsm_reqhead(&info, dvp, NFSPROC_MKDIR,
2290 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2291 		     nfsm_rndup(len) + NFSX_SATTR(info.v3));
2292 	ERROROUT(nfsm_fhtom(&info, dvp));
2293 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
2294 	if (info.v3) {
2295 		nfsm_v3attrbuild(&info, vap, FALSE);
2296 	} else {
2297 		sp = nfsm_build(&info, NFSX_V2SATTR);
2298 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2299 		sp->sa_uid = nfs_xdrneg1;
2300 		sp->sa_gid = nfs_xdrneg1;
2301 		sp->sa_size = nfs_xdrneg1;
2302 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2303 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2304 	}
2305 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKDIR, cnp->cn_td,
2306 		    cnp->cn_cred, &error));
2307 	if (error == 0) {
2308 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2309 	}
2310 	if (info.v3) {
2311 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2312 	}
2313 	m_freem(info.mrep);
2314 	info.mrep = NULL;
2315 nfsmout:
2316 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2317 	if (!wccflag)
2318 		VTONFS(dvp)->n_attrstamp = 0;
2319 	/*
2320 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2321 	 * if we can succeed in looking up the directory.
2322 	 */
2323 	if (error == EEXIST || (!error && !gotvp)) {
2324 		if (newvp) {
2325 			vrele(newvp);
2326 			newvp = NULL;
2327 		}
2328 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2329 			cnp->cn_td, &np);
2330 		if (!error) {
2331 			newvp = NFSTOV(np);
2332 			if (newvp->v_type != VDIR)
2333 				error = EEXIST;
2334 		}
2335 	}
2336 	if (error) {
2337 		if (newvp)
2338 			vrele(newvp);
2339 	} else {
2340 		nfs_knote(dvp, NOTE_WRITE | NOTE_LINK);
2341 		*ap->a_vpp = newvp;
2342 	}
2343 	lwkt_reltoken(&nmp->nm_token);
2344 	return (error);
2345 }
2346 
2347 /*
2348  * nfs remove directory call
2349  *
2350  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2351  *	     struct componentname *a_cnp)
2352  */
2353 static int
2354 nfs_rmdir(struct vop_old_rmdir_args *ap)
2355 {
2356 	struct vnode *vp = ap->a_vp;
2357 	struct vnode *dvp = ap->a_dvp;
2358 	struct nfsmount *nmp = VFSTONFS(dvp->v_mount);
2359 	struct componentname *cnp = ap->a_cnp;
2360 	int error = 0, wccflag = NFSV3_WCCRATTR;
2361 	struct nfsm_info info;
2362 
2363 	info.mrep = NULL;
2364 	info.v3 = NFS_ISV3(dvp);
2365 
2366 	if (dvp == vp)
2367 		return (EINVAL);
2368 
2369 	lwkt_gettoken(&nmp->nm_token);
2370 
2371 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2372 	nfsm_reqhead(&info, dvp, NFSPROC_RMDIR,
2373 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2374 		     nfsm_rndup(cnp->cn_namelen));
2375 	ERROROUT(nfsm_fhtom(&info, dvp));
2376 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2377 		 NFS_MAXNAMLEN));
2378 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_RMDIR, cnp->cn_td,
2379 				cnp->cn_cred, &error));
2380 	if (info.v3) {
2381 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2382 	}
2383 	m_freem(info.mrep);
2384 	info.mrep = NULL;
2385 nfsmout:
2386 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2387 	if (!wccflag)
2388 		VTONFS(dvp)->n_attrstamp = 0;
2389 	/*
2390 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2391 	 */
2392 	if (error == ENOENT)
2393 		error = 0;
2394 	else
2395 		nfs_knote(dvp, NOTE_WRITE | NOTE_LINK);
2396 	lwkt_reltoken(&nmp->nm_token);
2397 
2398 	return (error);
2399 }
2400 
2401 /*
2402  * nfs readdir call
2403  *
2404  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2405  */
2406 static int
2407 nfs_readdir(struct vop_readdir_args *ap)
2408 {
2409 	struct vnode *vp = ap->a_vp;
2410 	struct nfsnode *np = VTONFS(vp);
2411 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2412 	struct uio *uio = ap->a_uio;
2413 	int tresid, error;
2414 	struct vattr vattr;
2415 
2416 	if (vp->v_type != VDIR)
2417 		return (EPERM);
2418 
2419 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_FAILRECLAIM);
2420 	if (error)
2421 		return (error);
2422 
2423 	lwkt_gettoken(&nmp->nm_token);
2424 
2425 	/*
2426 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2427 	 * and then check that is still valid, or if this is an NQNFS mount
2428 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2429 	 * VOP_GETATTR() does not necessarily go to the wire.
2430 	 */
2431 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2432 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2433 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2434 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2435 		) {
2436 			nfsstats.direofcache_hits++;
2437 			goto done;
2438 		}
2439 	}
2440 
2441 	/*
2442 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2443 	 * own cache coherency checks so we do not have to.
2444 	 */
2445 	tresid = uio->uio_resid;
2446 	error = nfs_bioread(vp, uio, 0);
2447 
2448 	if (!error && uio->uio_resid == tresid)
2449 		nfsstats.direofcache_misses++;
2450 done:
2451 	lwkt_reltoken(&nmp->nm_token);
2452 	vn_unlock(vp);
2453 
2454 	return (error);
2455 }
2456 
2457 /*
2458  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2459  *
2460  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2461  * offset/block and converts the nfs formatted directory entries for userland
2462  * consumption as well as deals with offsets into the middle of blocks.
2463  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2464  * be block-bounded.  It must convert to cookies for the actual RPC.
2465  */
2466 int
2467 nfs_readdirrpc_uio(struct vnode *vp, struct uio *uiop)
2468 {
2469 	int len, left;
2470 	struct nfs_dirent *dp = NULL;
2471 	u_int32_t *tl;
2472 	nfsuint64 *cookiep;
2473 	caddr_t cp;
2474 	nfsuint64 cookie;
2475 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2476 	struct nfsnode *dnp = VTONFS(vp);
2477 	u_quad_t fileno;
2478 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2479 	int attrflag;
2480 	struct nfsm_info info;
2481 
2482 	info.mrep = NULL;
2483 	info.v3 = NFS_ISV3(vp);
2484 
2485 #ifndef DIAGNOSTIC
2486 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2487 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2488 		panic("nfs readdirrpc bad uio");
2489 #endif
2490 
2491 	/*
2492 	 * If there is no cookie, assume directory was stale.
2493 	 */
2494 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2495 	if (cookiep)
2496 		cookie = *cookiep;
2497 	else
2498 		return (NFSERR_BAD_COOKIE);
2499 	/*
2500 	 * Loop around doing readdir rpc's of size nm_readdirsize
2501 	 * truncated to a multiple of DIRBLKSIZ.
2502 	 * The stopping criteria is EOF or buffer full.
2503 	 */
2504 	while (more_dirs && bigenough) {
2505 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2506 		nfsm_reqhead(&info, vp, NFSPROC_READDIR,
2507 			     NFSX_FH(info.v3) + NFSX_READDIR(info.v3));
2508 		ERROROUT(nfsm_fhtom(&info, vp));
2509 		if (info.v3) {
2510 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
2511 			*tl++ = cookie.nfsuquad[0];
2512 			*tl++ = cookie.nfsuquad[1];
2513 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2514 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2515 		} else {
2516 			/*
2517 			 * WARNING!  HAMMER DIRECTORIES WILL NOT WORK WELL
2518 			 * WITH NFSv2!!!  There's nothing I can really do
2519 			 * about it other than to hope the server supports
2520 			 * rdirplus w/NFSv2.
2521 			 */
2522 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
2523 			*tl++ = cookie.nfsuquad[0];
2524 		}
2525 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2526 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIR,
2527 					uiop->uio_td,
2528 					nfs_vpcred(vp, ND_READ), &error));
2529 		if (info.v3) {
2530 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2531 						  NFS_LATTR_NOSHRINK));
2532 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2533 			dnp->n_cookieverf.nfsuquad[0] = *tl++;
2534 			dnp->n_cookieverf.nfsuquad[1] = *tl;
2535 		}
2536 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2537 		more_dirs = fxdr_unsigned(int, *tl);
2538 
2539 		/* loop thru the dir entries, converting them to std form */
2540 		while (more_dirs && bigenough) {
2541 			if (info.v3) {
2542 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2543 				fileno = fxdr_hyper(tl);
2544 				len = fxdr_unsigned(int, *(tl + 2));
2545 			} else {
2546 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2547 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2548 				len = fxdr_unsigned(int, *tl);
2549 			}
2550 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2551 				error = EBADRPC;
2552 				m_freem(info.mrep);
2553 				info.mrep = NULL;
2554 				goto nfsmout;
2555 			}
2556 
2557 			/*
2558 			 * len is the number of bytes in the path element
2559 			 * name, not including the \0 termination.
2560 			 *
2561 			 * tlen is the number of bytes w have to reserve for
2562 			 * the path element name.
2563 			 */
2564 			tlen = nfsm_rndup(len);
2565 			if (tlen == len)
2566 				tlen += 4;	/* To ensure null termination */
2567 
2568 			/*
2569 			 * If the entry would cross a DIRBLKSIZ boundary,
2570 			 * extend the previous nfs_dirent to cover the
2571 			 * remaining space.
2572 			 */
2573 			left = DIRBLKSIZ - blksiz;
2574 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2575 				dp->nfs_reclen += left;
2576 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2577 				uiop->uio_iov->iov_len -= left;
2578 				uiop->uio_offset += left;
2579 				uiop->uio_resid -= left;
2580 				blksiz = 0;
2581 			}
2582 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2583 				bigenough = 0;
2584 			if (bigenough) {
2585 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2586 				dp->nfs_ino = fileno;
2587 				dp->nfs_namlen = len;
2588 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2589 				dp->nfs_type = DT_UNKNOWN;
2590 				blksiz += dp->nfs_reclen;
2591 				if (blksiz == DIRBLKSIZ)
2592 					blksiz = 0;
2593 				uiop->uio_offset += sizeof(struct nfs_dirent);
2594 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2595 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2596 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2597 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2598 
2599 				/*
2600 				 * The uiop has advanced by nfs_dirent + len
2601 				 * but really needs to advance by
2602 				 * nfs_dirent + tlen
2603 				 */
2604 				cp = uiop->uio_iov->iov_base;
2605 				tlen -= len;
2606 				*cp = '\0';	/* null terminate */
2607 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2608 				uiop->uio_iov->iov_len -= tlen;
2609 				uiop->uio_offset += tlen;
2610 				uiop->uio_resid -= tlen;
2611 			} else {
2612 				/*
2613 				 * NFS strings must be rounded up (nfsm_myouio
2614 				 * handled that in the bigenough case).
2615 				 */
2616 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2617 			}
2618 			if (info.v3) {
2619 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2620 			} else {
2621 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2622 			}
2623 
2624 			/*
2625 			 * If we were able to accomodate the last entry,
2626 			 * get the cookie for the next one.  Otherwise
2627 			 * hold-over the cookie for the one we were not
2628 			 * able to accomodate.
2629 			 */
2630 			if (bigenough) {
2631 				cookie.nfsuquad[0] = *tl++;
2632 				if (info.v3)
2633 					cookie.nfsuquad[1] = *tl++;
2634 			} else if (info.v3) {
2635 				tl += 2;
2636 			} else {
2637 				tl++;
2638 			}
2639 			more_dirs = fxdr_unsigned(int, *tl);
2640 		}
2641 		/*
2642 		 * If at end of rpc data, get the eof boolean
2643 		 */
2644 		if (!more_dirs) {
2645 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2646 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2647 		}
2648 		m_freem(info.mrep);
2649 		info.mrep = NULL;
2650 	}
2651 	/*
2652 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2653 	 * by increasing d_reclen for the last record.
2654 	 */
2655 	if (blksiz > 0) {
2656 		left = DIRBLKSIZ - blksiz;
2657 		dp->nfs_reclen += left;
2658 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2659 		uiop->uio_iov->iov_len -= left;
2660 		uiop->uio_offset += left;
2661 		uiop->uio_resid -= left;
2662 	}
2663 
2664 	if (bigenough) {
2665 		/*
2666 		 * We hit the end of the directory, update direofoffset.
2667 		 */
2668 		dnp->n_direofoffset = uiop->uio_offset;
2669 	} else {
2670 		/*
2671 		 * There is more to go, insert the link cookie so the
2672 		 * next block can be read.
2673 		 */
2674 		if (uiop->uio_resid > 0)
2675 			kprintf("EEK! readdirrpc resid > 0\n");
2676 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2677 		*cookiep = cookie;
2678 	}
2679 nfsmout:
2680 	return (error);
2681 }
2682 
2683 /*
2684  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2685  */
2686 int
2687 nfs_readdirplusrpc_uio(struct vnode *vp, struct uio *uiop)
2688 {
2689 	int len, left;
2690 	struct nfs_dirent *dp;
2691 	u_int32_t *tl;
2692 	struct vnode *newvp;
2693 	nfsuint64 *cookiep;
2694 	caddr_t dpossav1, dpossav2;
2695 	caddr_t cp;
2696 	struct mbuf *mdsav1, *mdsav2;
2697 	nfsuint64 cookie;
2698 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2699 	struct nfsnode *dnp = VTONFS(vp), *np;
2700 	nfsfh_t *fhp;
2701 	u_quad_t fileno;
2702 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2703 	int attrflag, fhsize;
2704 	struct nchandle nch;
2705 	struct nchandle dnch;
2706 	struct nlcomponent nlc;
2707 	struct nfsm_info info;
2708 
2709 	info.mrep = NULL;
2710 	info.v3 = 1;
2711 
2712 #ifndef nolint
2713 	dp = NULL;
2714 #endif
2715 #ifndef DIAGNOSTIC
2716 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2717 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2718 		panic("nfs readdirplusrpc bad uio");
2719 #endif
2720 	/*
2721 	 * Obtain the namecache record for the directory so we have something
2722 	 * to use as a basis for creating the entries.  This function will
2723 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2724 	 * from the tree and cannot be used for upward traversals, and the
2725 	 * ncp may be unnamed.  Note that other unrelated operations may
2726 	 * cause the ncp to be named at any time.
2727 	 *
2728 	 * We have to lock the ncp to prevent a lock order reversal when
2729 	 * rdirplus does nlookups of the children, because the vnode is
2730 	 * locked and has to stay that way.
2731 	 */
2732 	cache_fromdvp(vp, NULL, 0, &dnch);
2733 	bzero(&nlc, sizeof(nlc));
2734 	newvp = NULLVP;
2735 
2736 	/*
2737 	 * If there is no cookie, assume directory was stale.
2738 	 */
2739 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2740 	if (cookiep) {
2741 		cookie = *cookiep;
2742 	} else {
2743 		if (dnch.ncp)
2744 			cache_drop(&dnch);
2745 		return (NFSERR_BAD_COOKIE);
2746 	}
2747 
2748 	/*
2749 	 * Loop around doing readdir rpc's of size nm_readdirsize
2750 	 * truncated to a multiple of DIRBLKSIZ.
2751 	 * The stopping criteria is EOF or buffer full.
2752 	 */
2753 	while (more_dirs && bigenough) {
2754 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2755 		nfsm_reqhead(&info, vp, NFSPROC_READDIRPLUS,
2756 			     NFSX_FH(info.v3) + 6 * NFSX_UNSIGNED);
2757 		ERROROUT(nfsm_fhtom(&info, vp));
2758 		tl = nfsm_build(&info, 6 * NFSX_UNSIGNED);
2759 		*tl++ = cookie.nfsuquad[0];
2760 		*tl++ = cookie.nfsuquad[1];
2761 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2762 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2763 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2764 		*tl = txdr_unsigned(nmp->nm_rsize);
2765 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIRPLUS,
2766 					uiop->uio_td,
2767 					nfs_vpcred(vp, ND_READ), &error));
2768 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2769 					  NFS_LATTR_NOSHRINK));
2770 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2771 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2772 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2773 		more_dirs = fxdr_unsigned(int, *tl);
2774 
2775 		/* loop thru the dir entries, doctoring them to 4bsd form */
2776 		while (more_dirs && bigenough) {
2777 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2778 			fileno = fxdr_hyper(tl);
2779 			len = fxdr_unsigned(int, *(tl + 2));
2780 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2781 				error = EBADRPC;
2782 				m_freem(info.mrep);
2783 				info.mrep = NULL;
2784 				goto nfsmout;
2785 			}
2786 			tlen = nfsm_rndup(len);
2787 			if (tlen == len)
2788 				tlen += 4;	/* To ensure null termination*/
2789 			left = DIRBLKSIZ - blksiz;
2790 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2791 				dp->nfs_reclen += left;
2792 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2793 				uiop->uio_iov->iov_len -= left;
2794 				uiop->uio_offset += left;
2795 				uiop->uio_resid -= left;
2796 				blksiz = 0;
2797 			}
2798 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2799 				bigenough = 0;
2800 			if (bigenough) {
2801 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2802 				dp->nfs_ino = fileno;
2803 				dp->nfs_namlen = len;
2804 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2805 				dp->nfs_type = DT_UNKNOWN;
2806 				blksiz += dp->nfs_reclen;
2807 				if (blksiz == DIRBLKSIZ)
2808 					blksiz = 0;
2809 				uiop->uio_offset += sizeof(struct nfs_dirent);
2810 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2811 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2812 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2813 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2814 				nlc.nlc_namelen = len;
2815 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2816 				cp = uiop->uio_iov->iov_base;
2817 				tlen -= len;
2818 				*cp = '\0';
2819 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2820 				uiop->uio_iov->iov_len -= tlen;
2821 				uiop->uio_offset += tlen;
2822 				uiop->uio_resid -= tlen;
2823 			} else {
2824 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2825 			}
2826 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2827 			if (bigenough) {
2828 				cookie.nfsuquad[0] = *tl++;
2829 				cookie.nfsuquad[1] = *tl++;
2830 			} else {
2831 				tl += 2;
2832 			}
2833 
2834 			/*
2835 			 * Since the attributes are before the file handle
2836 			 * (sigh), we must skip over the attributes and then
2837 			 * come back and get them.
2838 			 */
2839 			attrflag = fxdr_unsigned(int, *tl);
2840 			if (attrflag) {
2841 			    dpossav1 = info.dpos;
2842 			    mdsav1 = info.md;
2843 			    ERROROUT(nfsm_adv(&info, NFSX_V3FATTR));
2844 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2845 			    doit = fxdr_unsigned(int, *tl);
2846 			    if (doit) {
2847 				NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
2848 			    }
2849 			    if (doit && bigenough && !nlcdegenerate(&nlc) &&
2850 				!NFS_CMPFH(dnp, fhp, fhsize)
2851 			    ) {
2852 				if (dnch.ncp) {
2853 #if 0
2854 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2855 					nlc.nlc_namelen, nlc.nlc_namelen,
2856 					nlc.nlc_nameptr);
2857 #endif
2858 				    /*
2859 				     * This is a bit hokey but there isn't
2860 				     * much we can do about it.  We can't
2861 				     * hold the directory vp locked while
2862 				     * doing lookups and gets.
2863 				     */
2864 				    nch = cache_nlookup_nonblock(&dnch, &nlc);
2865 				    if (nch.ncp == NULL)
2866 					goto rdfail;
2867 				    cache_setunresolved(&nch);
2868 				    error = nfs_nget_nonblock(vp->v_mount, fhp,
2869 							      fhsize, &np,
2870 							      NULL);
2871 				    if (error) {
2872 					cache_put(&nch);
2873 					goto rdfail;
2874 				    }
2875 				    newvp = NFSTOV(np);
2876 				    dpossav2 = info.dpos;
2877 				    info.dpos = dpossav1;
2878 				    mdsav2 = info.md;
2879 				    info.md = mdsav1;
2880 				    ERROROUT(nfsm_loadattr(&info, newvp, NULL));
2881 				    info.dpos = dpossav2;
2882 				    info.md = mdsav2;
2883 				    dp->nfs_type =
2884 					    IFTODT(VTTOIF(np->n_vattr.va_type));
2885 				    nfs_cache_setvp(&nch, newvp,
2886 						    nfspos_cache_timeout);
2887 				    vput(newvp);
2888 				    newvp = NULLVP;
2889 				    cache_put(&nch);
2890 				} else {
2891 rdfail:
2892 				    ;
2893 #if 0
2894 				    kprintf("Warning: NFS/rddirplus, "
2895 					    "UNABLE TO ENTER %*.*s\n",
2896 					nlc.nlc_namelen, nlc.nlc_namelen,
2897 					nlc.nlc_nameptr);
2898 #endif
2899 				}
2900 			    }
2901 			} else {
2902 			    /* Just skip over the file handle */
2903 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2904 			    i = fxdr_unsigned(int, *tl);
2905 			    ERROROUT(nfsm_adv(&info, nfsm_rndup(i)));
2906 			}
2907 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2908 			more_dirs = fxdr_unsigned(int, *tl);
2909 		}
2910 		/*
2911 		 * If at end of rpc data, get the eof boolean
2912 		 */
2913 		if (!more_dirs) {
2914 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2915 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2916 		}
2917 		m_freem(info.mrep);
2918 		info.mrep = NULL;
2919 	}
2920 	/*
2921 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2922 	 * by increasing d_reclen for the last record.
2923 	 */
2924 	if (blksiz > 0) {
2925 		left = DIRBLKSIZ - blksiz;
2926 		dp->nfs_reclen += left;
2927 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2928 		uiop->uio_iov->iov_len -= left;
2929 		uiop->uio_offset += left;
2930 		uiop->uio_resid -= left;
2931 	}
2932 
2933 	/*
2934 	 * We are now either at the end of the directory or have filled the
2935 	 * block.
2936 	 */
2937 	if (bigenough) {
2938 		dnp->n_direofoffset = uiop->uio_offset;
2939 	} else {
2940 		if (uiop->uio_resid > 0)
2941 			kprintf("EEK! readdirplusrpc resid > 0\n");
2942 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2943 		*cookiep = cookie;
2944 	}
2945 nfsmout:
2946 	if (newvp != NULLVP) {
2947 	        if (newvp == vp)
2948 			vrele(newvp);
2949 		else
2950 			vput(newvp);
2951 		newvp = NULLVP;
2952 	}
2953 	if (dnch.ncp)
2954 		cache_drop(&dnch);
2955 	return (error);
2956 }
2957 
2958 /*
2959  * Silly rename. To make the NFS filesystem that is stateless look a little
2960  * more like the "ufs" a remove of an active vnode is translated to a rename
2961  * to a funny looking filename that is removed by nfs_inactive on the
2962  * nfsnode. There is the potential for another process on a different client
2963  * to create the same funny name between the nfs_lookitup() fails and the
2964  * nfs_rename() completes, but...
2965  */
2966 static int
2967 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2968 {
2969 	struct sillyrename *sp;
2970 	struct nfsnode *np;
2971 	int error;
2972 
2973 	/*
2974 	 * Force finalization so the VOP_INACTIVE() call is not delayed.
2975 	 * This prevents cred structures from building up in nfsnodes
2976 	 * for deleted files.
2977 	 */
2978 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
2979 	np = VTONFS(vp);
2980 	np->n_flag |= NREMOVED;
2981 
2982 	/*
2983 	 * We previously purged dvp instead of vp.  I don't know why, it
2984 	 * completely destroys performance.  We can't do it anyway with the
2985 	 * new VFS API since we would be breaking the namecache topology.
2986 	 */
2987 	cache_purge(vp);	/* XXX */
2988 #ifndef DIAGNOSTIC
2989 	if (vp->v_type == VDIR)
2990 		panic("nfs: sillyrename dir");
2991 #endif
2992 	sp = kmalloc(sizeof(struct sillyrename), M_NFSREQ, M_WAITOK);
2993 	sp->s_cred = crdup(cnp->cn_cred);
2994 	sp->s_dvp = dvp;
2995 	vref(dvp);
2996 
2997 	/* Fudge together a funny name */
2998 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4",
2999 				(int)(intptr_t)cnp->cn_td);
3000 
3001 	/* Try lookitups until we get one that isn't there */
3002 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
3003 		cnp->cn_td, NULL) == 0) {
3004 		sp->s_name[4]++;
3005 		if (sp->s_name[4] > 'z') {
3006 			error = EINVAL;
3007 			goto bad;
3008 		}
3009 	}
3010 	error = nfs_renameit(dvp, cnp, sp);
3011 	if (error)
3012 		goto bad;
3013 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
3014 		cnp->cn_td, &np);
3015 	np->n_sillyrename = sp;
3016 	return (0);
3017 bad:
3018 	vrele(sp->s_dvp);
3019 	crfree(sp->s_cred);
3020 	kfree((caddr_t)sp, M_NFSREQ);
3021 
3022 	return (error);
3023 }
3024 
3025 /*
3026  * Look up a file name and optionally either update the file handle or
3027  * allocate an nfsnode, depending on the value of npp.
3028  * npp == NULL	--> just do the lookup
3029  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
3030  *			handled too
3031  * *npp != NULL --> update the file handle in the vnode
3032  */
3033 static int
3034 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
3035 	     struct thread *td, struct nfsnode **npp)
3036 {
3037 	struct vnode *newvp = NULL;
3038 	struct nfsnode *np, *dnp = VTONFS(dvp);
3039 	int error = 0, fhlen, attrflag;
3040 	nfsfh_t *nfhp;
3041 	struct nfsm_info info;
3042 
3043 	info.mrep = NULL;
3044 	info.v3 = NFS_ISV3(dvp);
3045 
3046 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
3047 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
3048 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
3049 	ERROROUT(nfsm_fhtom(&info, dvp));
3050 	ERROROUT(nfsm_strtom(&info, name, len, NFS_MAXNAMLEN));
3051 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, cred, &error));
3052 	if (npp && !error) {
3053 		NEGATIVEOUT(fhlen = nfsm_getfh(&info, &nfhp));
3054 		if (*npp) {
3055 		    np = *npp;
3056 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
3057 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
3058 			np->n_fhp = &np->n_fh;
3059 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
3060 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
3061 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
3062 		    np->n_fhsize = fhlen;
3063 		    newvp = NFSTOV(np);
3064 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
3065 		    vref(dvp);
3066 		    newvp = dvp;
3067 		} else {
3068 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np, NULL);
3069 		    if (error) {
3070 			m_freem(info.mrep);
3071 			info.mrep = NULL;
3072 			return (error);
3073 		    }
3074 		    newvp = NFSTOV(np);
3075 		}
3076 		if (info.v3) {
3077 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
3078 						  NFS_LATTR_NOSHRINK));
3079 			if (!attrflag && *npp == NULL) {
3080 				m_freem(info.mrep);
3081 				info.mrep = NULL;
3082 				if (newvp == dvp)
3083 					vrele(newvp);
3084 				else
3085 					vput(newvp);
3086 				return (ENOENT);
3087 			}
3088 		} else {
3089 			ERROROUT(nfsm_loadattr(&info, newvp, NULL));
3090 		}
3091 	}
3092 	m_freem(info.mrep);
3093 	info.mrep = NULL;
3094 nfsmout:
3095 	if (npp && *npp == NULL) {
3096 		if (error) {
3097 			if (newvp) {
3098 				if (newvp == dvp)
3099 					vrele(newvp);
3100 				else
3101 					vput(newvp);
3102 			}
3103 		} else
3104 			*npp = np;
3105 	}
3106 	return (error);
3107 }
3108 
3109 /*
3110  * Nfs Version 3 commit rpc
3111  *
3112  * We call it 'uio' to distinguish it from 'bio' but there is no real uio
3113  * involved.
3114  */
3115 int
3116 nfs_commitrpc_uio(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
3117 {
3118 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
3119 	int error = 0, wccflag = NFSV3_WCCRATTR;
3120 	struct nfsm_info info;
3121 	u_int32_t *tl;
3122 
3123 	info.mrep = NULL;
3124 	info.v3 = 1;
3125 
3126 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
3127 		return (0);
3128 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
3129 	nfsm_reqhead(&info, vp, NFSPROC_COMMIT, NFSX_FH(1));
3130 	ERROROUT(nfsm_fhtom(&info, vp));
3131 	tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
3132 	txdr_hyper(offset, tl);
3133 	tl += 2;
3134 	*tl = txdr_unsigned(cnt);
3135 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_COMMIT, td,
3136 				nfs_vpcred(vp, ND_WRITE), &error));
3137 	ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
3138 	if (!error) {
3139 		NULLOUT(tl = nfsm_dissect(&info, NFSX_V3WRITEVERF));
3140 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
3141 			NFSX_V3WRITEVERF)) {
3142 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
3143 				NFSX_V3WRITEVERF);
3144 			error = NFSERR_STALEWRITEVERF;
3145 		}
3146 	}
3147 	m_freem(info.mrep);
3148 	info.mrep = NULL;
3149 nfsmout:
3150 	return (error);
3151 }
3152 
3153 /*
3154  * Kludge City..
3155  * - make nfs_bmap() essentially a no-op that does no translation
3156  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
3157  *   (Maybe I could use the process's page mapping, but I was concerned that
3158  *    Kernel Write might not be enabled and also figured copyout() would do
3159  *    a lot more work than bcopy() and also it currently happens in the
3160  *    context of the swapper process (2).
3161  *
3162  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
3163  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
3164  */
3165 static int
3166 nfs_bmap(struct vop_bmap_args *ap)
3167 {
3168 	/* no token lock required */
3169 	if (ap->a_doffsetp != NULL)
3170 		*ap->a_doffsetp = ap->a_loffset;
3171 	if (ap->a_runp != NULL)
3172 		*ap->a_runp = 0;
3173 	if (ap->a_runb != NULL)
3174 		*ap->a_runb = 0;
3175 	return (0);
3176 }
3177 
3178 /*
3179  * Strategy routine.
3180  */
3181 static int
3182 nfs_strategy(struct vop_strategy_args *ap)
3183 {
3184 	struct bio *bio = ap->a_bio;
3185 	struct bio *nbio;
3186 	struct buf *bp __debugvar = bio->bio_buf;
3187 	struct nfsmount *nmp = VFSTONFS(ap->a_vp->v_mount);
3188 	struct thread *td;
3189 	int error;
3190 
3191 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3192 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
3193 	KASSERT(BUF_LOCKINUSE(bp),
3194 		("nfs_strategy: buffer %p not locked", bp));
3195 
3196 	if (bio->bio_flags & BIO_SYNC)
3197 		td = curthread;	/* XXX */
3198 	else
3199 		td = NULL;
3200 
3201 	lwkt_gettoken(&nmp->nm_token);
3202 
3203         /*
3204 	 * We probably don't need to push an nbio any more since no
3205 	 * block conversion is required due to the use of 64 bit byte
3206 	 * offsets, but do it anyway.
3207 	 *
3208 	 * NOTE: When NFS callers itself via this strategy routines and
3209 	 *	 sets up a synchronous I/O, it expects the I/O to run
3210 	 *	 synchronously (its bio_done routine just assumes it),
3211 	 *	 so for now we have to honor the bit.
3212          */
3213 	nbio = push_bio(bio);
3214 	nbio->bio_offset = bio->bio_offset;
3215 	nbio->bio_flags = bio->bio_flags & BIO_SYNC;
3216 
3217 	/*
3218 	 * If the op is asynchronous and an i/o daemon is waiting
3219 	 * queue the request, wake it up and wait for completion
3220 	 * otherwise just do it ourselves.
3221 	 */
3222 	if (bio->bio_flags & BIO_SYNC) {
3223 		error = nfs_doio(ap->a_vp, nbio, td);
3224 	} else {
3225 		nfs_asyncio(ap->a_vp, nbio);
3226 		error = 0;
3227 	}
3228 	lwkt_reltoken(&nmp->nm_token);
3229 
3230 	return (error);
3231 }
3232 
3233 /*
3234  * Mmap a file
3235  *
3236  * NB Currently unsupported.
3237  *
3238  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
3239  */
3240 /* ARGSUSED */
3241 static int
3242 nfs_mmap(struct vop_mmap_args *ap)
3243 {
3244 	/* no token lock required */
3245 	return (EINVAL);
3246 }
3247 
3248 /*
3249  * fsync vnode op. Just call nfs_flush() with commit == 1.
3250  *
3251  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
3252  */
3253 /* ARGSUSED */
3254 static int
3255 nfs_fsync(struct vop_fsync_args *ap)
3256 {
3257 	struct nfsmount *nmp = VFSTONFS(ap->a_vp->v_mount);
3258 	int error;
3259 
3260 	lwkt_gettoken(&nmp->nm_token);
3261 
3262 	/*
3263 	 * NOTE: Because attributes are set synchronously we currently
3264 	 *	 do not have to implement vsetisdirty()/vclrisdirty().
3265 	 */
3266 	error = nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1);
3267 
3268 	lwkt_reltoken(&nmp->nm_token);
3269 
3270 	return error;
3271 }
3272 
3273 /*
3274  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
3275  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
3276  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
3277  * set the buffer contains data that has already been written to the server
3278  * and which now needs a commit RPC.
3279  *
3280  * If commit is 0 we only take one pass and only flush buffers containing new
3281  * dirty data.
3282  *
3283  * If commit is 1 we take two passes, issuing a commit RPC in the second
3284  * pass.
3285  *
3286  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
3287  * to completely flush all pending data.
3288  *
3289  * Note that the RB_SCAN code properly handles the case where the
3290  * callback might block and directly or indirectly (another thread) cause
3291  * the RB tree to change.
3292  */
3293 
3294 #ifndef NFS_COMMITBVECSIZ
3295 #define NFS_COMMITBVECSIZ	16
3296 #endif
3297 
3298 struct nfs_flush_info {
3299 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
3300 	struct thread *td;
3301 	struct vnode *vp;
3302 	int waitfor;
3303 	int slpflag;
3304 	int slptimeo;
3305 	int loops;
3306 	struct buf *bvary[NFS_COMMITBVECSIZ];
3307 	int bvsize;
3308 	off_t beg_off;
3309 	off_t end_off;
3310 };
3311 
3312 static int nfs_flush_bp(struct buf *bp, void *data);
3313 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
3314 
3315 int
3316 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
3317 {
3318 	struct nfsnode *np = VTONFS(vp);
3319 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
3320 	struct nfs_flush_info info;
3321 	int error;
3322 
3323 	bzero(&info, sizeof(info));
3324 	info.td = td;
3325 	info.vp = vp;
3326 	info.waitfor = waitfor;
3327 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
3328 	info.loops = 0;
3329 	lwkt_gettoken(&vp->v_token);
3330 
3331 	do {
3332 		/*
3333 		 * Flush mode
3334 		 */
3335 		info.mode = NFI_FLUSHNEW;
3336 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3337 				nfs_flush_bp, &info);
3338 
3339 		/*
3340 		 * Take a second pass if committing and no error occured.
3341 		 * Clean up any left over collection (whether an error
3342 		 * occurs or not).
3343 		 */
3344 		if (commit && error == 0) {
3345 			info.mode = NFI_COMMIT;
3346 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3347 					nfs_flush_bp, &info);
3348 			if (info.bvsize)
3349 				error = nfs_flush_docommit(&info, error);
3350 		}
3351 
3352 		/*
3353 		 * Wait for pending I/O to complete before checking whether
3354 		 * any further dirty buffers exist.
3355 		 */
3356 		while (waitfor == MNT_WAIT &&
3357 		       bio_track_active(&vp->v_track_write)) {
3358 			error = bio_track_wait(&vp->v_track_write,
3359 					       info.slpflag, info.slptimeo);
3360 			if (error) {
3361 				/*
3362 				 * We have to be able to break out if this
3363 				 * is an 'intr' mount.
3364 				 */
3365 				if (nfs_sigintr(nmp, NULL, td)) {
3366 					error = -EINTR;
3367 					break;
3368 				}
3369 
3370 				/*
3371 				 * Since we do not process pending signals,
3372 				 * once we get a PCATCH our tsleep() will no
3373 				 * longer sleep, switch to a fixed timeout
3374 				 * instead.
3375 				 */
3376 				if (info.slpflag == PCATCH) {
3377 					info.slpflag = 0;
3378 					info.slptimeo = 2 * hz;
3379 				}
3380 				error = 0;
3381 			}
3382 		}
3383 		++info.loops;
3384 		/*
3385 		 * Loop if we are flushing synchronous as well as committing,
3386 		 * and dirty buffers are still present.  Otherwise we might livelock.
3387 		 */
3388 	} while (waitfor == MNT_WAIT && commit &&
3389 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3390 
3391 	/*
3392 	 * The callbacks have to return a negative error to terminate the
3393 	 * RB scan.
3394 	 */
3395 	if (error < 0)
3396 		error = -error;
3397 
3398 	/*
3399 	 * Deal with any error collection
3400 	 */
3401 	if (np->n_flag & NWRITEERR) {
3402 		error = np->n_error;
3403 		np->n_flag &= ~NWRITEERR;
3404 	}
3405 	lwkt_reltoken(&vp->v_token);
3406 	return (error);
3407 }
3408 
3409 static
3410 int
3411 nfs_flush_bp(struct buf *bp, void *data)
3412 {
3413 	struct nfs_flush_info *info = data;
3414 	int lkflags;
3415 	int error;
3416 	off_t toff;
3417 
3418 	error = 0;
3419 	switch(info->mode) {
3420 	case NFI_FLUSHNEW:
3421 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3422 		if (error && info->loops && info->waitfor == MNT_WAIT) {
3423 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3424 			if (error) {
3425 				lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3426 				if (info->slpflag & PCATCH)
3427 					lkflags |= LK_PCATCH;
3428 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3429 						     info->slptimeo);
3430 			}
3431 		}
3432 
3433 		/*
3434 		 * Ignore locking errors
3435 		 */
3436 		if (error) {
3437 			error = 0;
3438 			break;
3439 		}
3440 
3441 		/*
3442 		 * The buffer may have changed out from under us, even if
3443 		 * we did not block (MPSAFE).  Check again now that it is
3444 		 * locked.
3445 		 */
3446 		if (bp->b_vp == info->vp &&
3447 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == B_DELWRI) {
3448 			bremfree(bp);
3449 			bawrite(bp);
3450 		} else {
3451 			BUF_UNLOCK(bp);
3452 		}
3453 		break;
3454 	case NFI_COMMIT:
3455 		/*
3456 		 * Only process buffers in need of a commit which we can
3457 		 * immediately lock.  This may prevent a buffer from being
3458 		 * committed, but the normal flush loop will block on the
3459 		 * same buffer so we shouldn't get into an endless loop.
3460 		 */
3461 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3462 		    (B_DELWRI | B_NEEDCOMMIT)) {
3463 			break;
3464 		}
3465 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
3466 			break;
3467 
3468 		/*
3469 		 * We must recheck after successfully locking the buffer.
3470 		 */
3471 		if (bp->b_vp != info->vp ||
3472 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3473 		    (B_DELWRI | B_NEEDCOMMIT)) {
3474 			BUF_UNLOCK(bp);
3475 			break;
3476 		}
3477 
3478 		/*
3479 		 * NOTE: storing the bp in the bvary[] basically sets
3480 		 * it up for a commit operation.
3481 		 *
3482 		 * We must call vfs_busy_pages() now so the commit operation
3483 		 * is interlocked with user modifications to memory mapped
3484 		 * pages.  The b_dirtyoff/b_dirtyend range is not correct
3485 		 * until after the pages have been busied.
3486 		 *
3487 		 * Note: to avoid loopback deadlocks, we do not
3488 		 * assign b_runningbufspace.
3489 		 */
3490 		bremfree(bp);
3491 		bp->b_cmd = BUF_CMD_WRITE;
3492 		vfs_busy_pages(bp->b_vp, bp);
3493 		info->bvary[info->bvsize] = bp;
3494 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3495 		if (info->bvsize == 0 || toff < info->beg_off)
3496 			info->beg_off = toff;
3497 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3498 		if (info->bvsize == 0 || toff > info->end_off)
3499 			info->end_off = toff;
3500 		++info->bvsize;
3501 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3502 			error = nfs_flush_docommit(info, 0);
3503 			KKASSERT(info->bvsize == 0);
3504 		}
3505 	}
3506 	return (error);
3507 }
3508 
3509 static
3510 int
3511 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3512 {
3513 	struct vnode *vp;
3514 	struct buf *bp;
3515 	off_t bytes;
3516 	int retv;
3517 	int i;
3518 
3519 	vp = info->vp;
3520 
3521 	if (info->bvsize > 0) {
3522 		/*
3523 		 * Commit data on the server, as required.  Note that
3524 		 * nfs_commit will use the vnode's cred for the commit.
3525 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3526 		 */
3527 		bytes = info->end_off - info->beg_off;
3528 		if (bytes > 0x40000000)
3529 			bytes = 0x40000000;
3530 		if (error) {
3531 			retv = -error;
3532 		} else {
3533 			retv = nfs_commitrpc_uio(vp, info->beg_off,
3534 						 (int)bytes, info->td);
3535 			if (retv == NFSERR_STALEWRITEVERF)
3536 				nfs_clearcommit(vp->v_mount);
3537 		}
3538 
3539 		/*
3540 		 * Now, either mark the blocks I/O done or mark the
3541 		 * blocks dirty, depending on whether the commit
3542 		 * succeeded.
3543 		 */
3544 		for (i = 0; i < info->bvsize; ++i) {
3545 			bp = info->bvary[i];
3546 			if (retv || (bp->b_flags & B_NEEDCOMMIT) == 0) {
3547 				/*
3548 				 * Either an error or the original
3549 				 * vfs_busy_pages() cleared B_NEEDCOMMIT
3550 				 * due to finding new dirty VM pages in
3551 				 * the buffer.
3552 				 *
3553 				 * Leave B_DELWRI intact.
3554 				 */
3555 				bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3556 				vfs_unbusy_pages(bp);
3557 				bp->b_cmd = BUF_CMD_DONE;
3558 				bqrelse(bp);
3559 			} else {
3560 				/*
3561 				 * Success, remove B_DELWRI ( bundirty() ).
3562 				 *
3563 				 * b_dirtyoff/b_dirtyend seem to be NFS
3564 				 * specific.  We should probably move that
3565 				 * into bundirty(). XXX
3566 				 *
3567 				 * We are faking an I/O write, we have to
3568 				 * start the transaction in order to
3569 				 * immediately biodone() it.
3570 				 */
3571 				bundirty(bp);
3572 				bp->b_flags &= ~B_ERROR;
3573 				bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3574 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3575 				biodone(&bp->b_bio1);
3576 			}
3577 		}
3578 		info->bvsize = 0;
3579 	}
3580 	return (error);
3581 }
3582 
3583 /*
3584  * NFS advisory byte-level locks.
3585  * Currently unsupported.
3586  *
3587  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3588  *		int a_flags)
3589  */
3590 static int
3591 nfs_advlock(struct vop_advlock_args *ap)
3592 {
3593 	struct nfsnode *np = VTONFS(ap->a_vp);
3594 
3595 	/* no token lock currently required */
3596 	/*
3597 	 * The following kludge is to allow diskless support to work
3598 	 * until a real NFS lockd is implemented. Basically, just pretend
3599 	 * that this is a local lock.
3600 	 */
3601 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3602 }
3603 
3604 /*
3605  * Print out the contents of an nfsnode.
3606  *
3607  * nfs_print(struct vnode *a_vp)
3608  */
3609 static int
3610 nfs_print(struct vop_print_args *ap)
3611 {
3612 	struct vnode *vp = ap->a_vp;
3613 	struct nfsnode *np = VTONFS(vp);
3614 
3615 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3616 		(long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3617 	if (vp->v_type == VFIFO)
3618 		fifo_printinfo(vp);
3619 	kprintf("\n");
3620 	return (0);
3621 }
3622 
3623 /*
3624  * nfs special file access vnode op.
3625  *
3626  * nfs_laccess(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3627  */
3628 static int
3629 nfs_laccess(struct vop_access_args *ap)
3630 {
3631 	struct nfsmount *nmp = VFSTONFS(ap->a_vp->v_mount);
3632 	struct vattr vattr;
3633 	int error;
3634 
3635 	lwkt_gettoken(&nmp->nm_token);
3636 	error = VOP_GETATTR(ap->a_vp, &vattr);
3637 	if (error == 0) {
3638 		error = vop_helper_access(ap, vattr.va_uid, vattr.va_gid,
3639 					  vattr.va_mode, 0);
3640 	}
3641 	lwkt_reltoken(&nmp->nm_token);
3642 
3643 	return (error);
3644 }
3645 
3646 /*
3647  * Read wrapper for fifos.
3648  *
3649  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3650  *		struct ucred *a_cred)
3651  */
3652 static int
3653 nfsfifo_read(struct vop_read_args *ap)
3654 {
3655 	struct nfsnode *np = VTONFS(ap->a_vp);
3656 
3657 	/* no token access required */
3658 	/*
3659 	 * Set access flag.
3660 	 */
3661 	np->n_flag |= NACC;
3662 	getnanotime(&np->n_atim);
3663 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3664 }
3665 
3666 /*
3667  * Write wrapper for fifos.
3668  *
3669  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3670  *		 struct ucred *a_cred)
3671  */
3672 static int
3673 nfsfifo_write(struct vop_write_args *ap)
3674 {
3675 	struct nfsnode *np = VTONFS(ap->a_vp);
3676 
3677 	/* no token access required */
3678 	/*
3679 	 * Set update flag.
3680 	 */
3681 	np->n_flag |= NUPD;
3682 	getnanotime(&np->n_mtim);
3683 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3684 }
3685 
3686 /*
3687  * Close wrapper for fifos.
3688  *
3689  * Update the times on the nfsnode then do fifo close.
3690  *
3691  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3692  */
3693 static int
3694 nfsfifo_close(struct vop_close_args *ap)
3695 {
3696 	struct vnode *vp = ap->a_vp;
3697 	struct nfsnode *np = VTONFS(vp);
3698 	struct vattr vattr;
3699 	struct timespec ts;
3700 
3701 	/* no token access required */
3702 
3703 	vn_lock(vp, LK_UPGRADE | LK_RETRY); /* XXX */
3704 	if (np->n_flag & (NACC | NUPD)) {
3705 		getnanotime(&ts);
3706 		if (np->n_flag & NACC)
3707 			np->n_atim = ts;
3708 		if (np->n_flag & NUPD)
3709 			np->n_mtim = ts;
3710 		np->n_flag |= NCHG;
3711 		if (VREFCNT(vp) == 1 &&
3712 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3713 			VATTR_NULL(&vattr);
3714 			if (np->n_flag & NACC)
3715 				vattr.va_atime = np->n_atim;
3716 			if (np->n_flag & NUPD)
3717 				vattr.va_mtime = np->n_mtim;
3718 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3719 		}
3720 	}
3721 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3722 }
3723 
3724 /************************************************************************
3725  *                          KQFILTER OPS                                *
3726  ************************************************************************/
3727 
3728 static void filt_nfsdetach(struct knote *kn);
3729 static int filt_nfsread(struct knote *kn, long hint);
3730 static int filt_nfswrite(struct knote *kn, long hint);
3731 static int filt_nfsvnode(struct knote *kn, long hint);
3732 
3733 static struct filterops nfsread_filtops =
3734 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3735 	  NULL, filt_nfsdetach, filt_nfsread };
3736 static struct filterops nfswrite_filtops =
3737 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3738 	  NULL, filt_nfsdetach, filt_nfswrite };
3739 static struct filterops nfsvnode_filtops =
3740 	{ FILTEROP_ISFD | FILTEROP_MPSAFE,
3741 	  NULL, filt_nfsdetach, filt_nfsvnode };
3742 
3743 static int
3744 nfs_kqfilter (struct vop_kqfilter_args *ap)
3745 {
3746 	struct vnode *vp = ap->a_vp;
3747 	struct knote *kn = ap->a_kn;
3748 
3749 	switch (kn->kn_filter) {
3750 	case EVFILT_READ:
3751 		kn->kn_fop = &nfsread_filtops;
3752 		break;
3753 	case EVFILT_WRITE:
3754 		kn->kn_fop = &nfswrite_filtops;
3755 		break;
3756 	case EVFILT_VNODE:
3757 		kn->kn_fop = &nfsvnode_filtops;
3758 		break;
3759 	default:
3760 		return (EOPNOTSUPP);
3761 	}
3762 
3763 	kn->kn_hook = (caddr_t)vp;
3764 
3765 	knote_insert(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3766 
3767 	return(0);
3768 }
3769 
3770 static void
3771 filt_nfsdetach(struct knote *kn)
3772 {
3773 	struct vnode *vp = (void *)kn->kn_hook;
3774 
3775 	knote_remove(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn);
3776 }
3777 
3778 static int
3779 filt_nfsread(struct knote *kn, long hint)
3780 {
3781 	struct vnode *vp = (void *)kn->kn_hook;
3782 	struct nfsnode *node = VTONFS(vp);
3783 	off_t off;
3784 
3785 	if (hint == NOTE_REVOKE) {
3786 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3787 		return(1);
3788 	}
3789 
3790 	/*
3791 	 * Interlock against MP races when performing this function. XXX
3792 	 */
3793 	/* TMPFS_NODE_LOCK_SH(node); */
3794 	off = node->n_size - kn->kn_fp->f_offset;
3795 	kn->kn_data = (off < INTPTR_MAX) ? off : INTPTR_MAX;
3796 	if (kn->kn_sfflags & NOTE_OLDAPI) {
3797 		/* TMPFS_NODE_UNLOCK(node); */
3798 		return(1);
3799 	}
3800 	if (kn->kn_data == 0) {
3801 		kn->kn_data = (off < INTPTR_MAX) ? off : INTPTR_MAX;
3802 	}
3803 	/* TMPFS_NODE_UNLOCK(node); */
3804 	return (kn->kn_data != 0);
3805 }
3806 
3807 static int
3808 filt_nfswrite(struct knote *kn, long hint)
3809 {
3810 	if (hint == NOTE_REVOKE)
3811 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
3812 	kn->kn_data = 0;
3813 	return (1);
3814 }
3815 
3816 static int
3817 filt_nfsvnode(struct knote *kn, long hint)
3818 {
3819 	if (kn->kn_sfflags & hint)
3820 		kn->kn_fflags |= hint;
3821 	if (hint == NOTE_REVOKE) {
3822 		kn->kn_flags |= (EV_EOF | EV_NODATA);
3823 		return (1);
3824 	}
3825 	return (kn->kn_fflags != 0);
3826 }
3827