xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 685c703c)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.63 2006/07/19 06:08:13 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsspec_read (struct vop_read_args *);
98 static int	nfsspec_write (struct vop_write_args *);
99 static int	nfsfifo_read (struct vop_read_args *);
100 static int	nfsfifo_write (struct vop_write_args *);
101 static int	nfsspec_close (struct vop_close_args *);
102 static int	nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static	int	nfs_lookup (struct vop_old_lookup_args *);
106 static	int	nfs_create (struct vop_old_create_args *);
107 static	int	nfs_mknod (struct vop_old_mknod_args *);
108 static	int	nfs_open (struct vop_open_args *);
109 static	int	nfs_close (struct vop_close_args *);
110 static	int	nfs_access (struct vop_access_args *);
111 static	int	nfs_getattr (struct vop_getattr_args *);
112 static	int	nfs_setattr (struct vop_setattr_args *);
113 static	int	nfs_read (struct vop_read_args *);
114 static	int	nfs_mmap (struct vop_mmap_args *);
115 static	int	nfs_fsync (struct vop_fsync_args *);
116 static	int	nfs_remove (struct vop_old_remove_args *);
117 static	int	nfs_link (struct vop_old_link_args *);
118 static	int	nfs_rename (struct vop_old_rename_args *);
119 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
120 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
121 static	int	nfs_symlink (struct vop_old_symlink_args *);
122 static	int	nfs_readdir (struct vop_readdir_args *);
123 static	int	nfs_bmap (struct vop_bmap_args *);
124 static	int	nfs_strategy (struct vop_strategy_args *);
125 static	int	nfs_lookitup (struct vnode *, const char *, int,
126 			struct ucred *, struct thread *, struct nfsnode **);
127 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int	nfsspec_access (struct vop_access_args *);
129 static int	nfs_readlink (struct vop_readlink_args *);
130 static int	nfs_print (struct vop_print_args *);
131 static int	nfs_advlock (struct vop_advlock_args *);
132 
133 static	int	nfs_nresolve (struct vop_nresolve_args *);
134 /*
135  * Global vfs data structures for nfs
136  */
137 struct vop_ops nfsv2_vnode_vops = {
138 	.vop_default =		vop_defaultop,
139 	.vop_access =		nfs_access,
140 	.vop_advlock =		nfs_advlock,
141 	.vop_bmap =		nfs_bmap,
142 	.vop_close =		nfs_close,
143 	.vop_old_create =	nfs_create,
144 	.vop_fsync =		nfs_fsync,
145 	.vop_getattr =		nfs_getattr,
146 	.vop_getpages =		nfs_getpages,
147 	.vop_putpages =		nfs_putpages,
148 	.vop_inactive =		nfs_inactive,
149 	.vop_islocked =		vop_stdislocked,
150 	.vop_old_link =		nfs_link,
151 	.vop_lock =		vop_stdlock,
152 	.vop_old_lookup =	nfs_lookup,
153 	.vop_old_mkdir =	nfs_mkdir,
154 	.vop_old_mknod =	nfs_mknod,
155 	.vop_mmap =		nfs_mmap,
156 	.vop_open =		nfs_open,
157 	.vop_poll =		nfs_poll,
158 	.vop_print =		nfs_print,
159 	.vop_read =		nfs_read,
160 	.vop_readdir =		nfs_readdir,
161 	.vop_readlink =		nfs_readlink,
162 	.vop_reclaim =		nfs_reclaim,
163 	.vop_old_remove =	nfs_remove,
164 	.vop_old_rename =	nfs_rename,
165 	.vop_old_rmdir =	nfs_rmdir,
166 	.vop_setattr =		nfs_setattr,
167 	.vop_strategy =		nfs_strategy,
168 	.vop_old_symlink =	nfs_symlink,
169 	.vop_unlock =		vop_stdunlock,
170 	.vop_write =		nfs_write,
171 	.vop_nresolve =		nfs_nresolve
172 };
173 
174 /*
175  * Special device vnode ops
176  */
177 struct vop_ops nfsv2_spec_vops = {
178 	.vop_default =		spec_vnoperate,
179 	.vop_access =		nfsspec_access,
180 	.vop_close =		nfsspec_close,
181 	.vop_fsync =		nfs_fsync,
182 	.vop_getattr =		nfs_getattr,
183 	.vop_inactive =		nfs_inactive,
184 	.vop_islocked =		vop_stdislocked,
185 	.vop_lock =		vop_stdlock,
186 	.vop_print =		nfs_print,
187 	.vop_read =		nfsspec_read,
188 	.vop_reclaim =		nfs_reclaim,
189 	.vop_setattr =		nfs_setattr,
190 	.vop_unlock =		vop_stdunlock,
191 	.vop_write =		nfsspec_write
192 };
193 
194 struct vop_ops nfsv2_fifo_vops = {
195 	.vop_default =		fifo_vnoperate,
196 	.vop_access =		nfsspec_access,
197 	.vop_close =		nfsfifo_close,
198 	.vop_fsync =		nfs_fsync,
199 	.vop_getattr =		nfs_getattr,
200 	.vop_inactive =		nfs_inactive,
201 	.vop_islocked =		vop_stdislocked,
202 	.vop_lock =		vop_stdlock,
203 	.vop_print =		nfs_print,
204 	.vop_read =		nfsfifo_read,
205 	.vop_reclaim =		nfs_reclaim,
206 	.vop_setattr =		nfs_setattr,
207 	.vop_unlock =		vop_stdunlock,
208 	.vop_write =		nfsfifo_write
209 };
210 
211 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
212 				  struct componentname *cnp,
213 				  struct vattr *vap);
214 static int	nfs_removerpc (struct vnode *dvp, const char *name,
215 				   int namelen,
216 				   struct ucred *cred, struct thread *td);
217 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
218 				   int fnamelen, struct vnode *tdvp,
219 				   const char *tnameptr, int tnamelen,
220 				   struct ucred *cred, struct thread *td);
221 static int	nfs_renameit (struct vnode *sdvp,
222 				  struct componentname *scnp,
223 				  struct sillyrename *sp);
224 
225 /*
226  * Global variables
227  */
228 extern u_int32_t nfs_true, nfs_false;
229 extern u_int32_t nfs_xdrneg1;
230 extern struct nfsstats nfsstats;
231 extern nfstype nfsv3_type[9];
232 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
233 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
234 int nfs_numasync = 0;
235 
236 SYSCTL_DECL(_vfs_nfs);
237 
238 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
239 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
240 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
241 
242 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
243 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
244 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE ACCESS cache timeout");
245 
246 static int	nfsv3_commit_on_close = 0;
247 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
248 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
249 #if 0
250 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
251 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
252 
253 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
254 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
255 #endif
256 
257 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
258 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
259 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
260 static int
261 nfs3_access_otw(struct vnode *vp, int wmode,
262 		struct thread *td, struct ucred *cred)
263 {
264 	const int v3 = 1;
265 	u_int32_t *tl;
266 	int error = 0, attrflag;
267 
268 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
269 	caddr_t bpos, dpos, cp2;
270 	int32_t t1, t2;
271 	caddr_t cp;
272 	u_int32_t rmode;
273 	struct nfsnode *np = VTONFS(vp);
274 
275 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
276 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
277 	nfsm_fhtom(vp, v3);
278 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
279 	*tl = txdr_unsigned(wmode);
280 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
281 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
282 	if (!error) {
283 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
284 		rmode = fxdr_unsigned(u_int32_t, *tl);
285 		np->n_mode = rmode;
286 		np->n_modeuid = cred->cr_uid;
287 		np->n_modestamp = mycpu->gd_time_seconds;
288 	}
289 	m_freem(mrep);
290 nfsmout:
291 	return error;
292 }
293 
294 /*
295  * nfs access vnode op.
296  * For nfs version 2, just return ok. File accesses may fail later.
297  * For nfs version 3, use the access rpc to check accessibility. If file modes
298  * are changed on the server, accesses might still fail later.
299  *
300  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
301  *	      struct thread *a_td)
302  */
303 static int
304 nfs_access(struct vop_access_args *ap)
305 {
306 	struct vnode *vp = ap->a_vp;
307 	thread_t td = curthread;
308 	int error = 0;
309 	u_int32_t mode, wmode;
310 	int v3 = NFS_ISV3(vp);
311 	struct nfsnode *np = VTONFS(vp);
312 
313 	/*
314 	 * Disallow write attempts on filesystems mounted read-only;
315 	 * unless the file is a socket, fifo, or a block or character
316 	 * device resident on the filesystem.
317 	 */
318 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
319 		switch (vp->v_type) {
320 		case VREG:
321 		case VDIR:
322 		case VLNK:
323 			return (EROFS);
324 		default:
325 			break;
326 		}
327 	}
328 	/*
329 	 * For nfs v3, check to see if we have done this recently, and if
330 	 * so return our cached result instead of making an ACCESS call.
331 	 * If not, do an access rpc, otherwise you are stuck emulating
332 	 * ufs_access() locally using the vattr. This may not be correct,
333 	 * since the server may apply other access criteria such as
334 	 * client uid-->server uid mapping that we do not know about.
335 	 */
336 	if (v3) {
337 		if (ap->a_mode & VREAD)
338 			mode = NFSV3ACCESS_READ;
339 		else
340 			mode = 0;
341 		if (vp->v_type != VDIR) {
342 			if (ap->a_mode & VWRITE)
343 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
344 			if (ap->a_mode & VEXEC)
345 				mode |= NFSV3ACCESS_EXECUTE;
346 		} else {
347 			if (ap->a_mode & VWRITE)
348 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
349 					 NFSV3ACCESS_DELETE);
350 			if (ap->a_mode & VEXEC)
351 				mode |= NFSV3ACCESS_LOOKUP;
352 		}
353 		/* XXX safety belt, only make blanket request if caching */
354 		if (nfsaccess_cache_timeout > 0) {
355 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
356 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
357 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
358 		} else {
359 			wmode = mode;
360 		}
361 
362 		/*
363 		 * Does our cached result allow us to give a definite yes to
364 		 * this request?
365 		 */
366 		if (np->n_modestamp &&
367 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
368 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
369 		   ((np->n_mode & mode) == mode)) {
370 			nfsstats.accesscache_hits++;
371 		} else {
372 			/*
373 			 * Either a no, or a don't know.  Go to the wire.
374 			 */
375 			nfsstats.accesscache_misses++;
376 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
377 			if (!error) {
378 				if ((np->n_mode & mode) != mode) {
379 					error = EACCES;
380 				}
381 			}
382 		}
383 	} else {
384 		if ((error = nfsspec_access(ap)) != 0)
385 			return (error);
386 
387 		/*
388 		 * Attempt to prevent a mapped root from accessing a file
389 		 * which it shouldn't.  We try to read a byte from the file
390 		 * if the user is root and the file is not zero length.
391 		 * After calling nfsspec_access, we should have the correct
392 		 * file size cached.
393 		 */
394 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
395 		    && VTONFS(vp)->n_size > 0) {
396 			struct iovec aiov;
397 			struct uio auio;
398 			char buf[1];
399 
400 			aiov.iov_base = buf;
401 			aiov.iov_len = 1;
402 			auio.uio_iov = &aiov;
403 			auio.uio_iovcnt = 1;
404 			auio.uio_offset = 0;
405 			auio.uio_resid = 1;
406 			auio.uio_segflg = UIO_SYSSPACE;
407 			auio.uio_rw = UIO_READ;
408 			auio.uio_td = td;
409 
410 			if (vp->v_type == VREG) {
411 				error = nfs_readrpc(vp, &auio);
412 			} else if (vp->v_type == VDIR) {
413 				char* bp;
414 				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
415 				aiov.iov_base = bp;
416 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
417 				error = nfs_readdirrpc(vp, &auio);
418 				free(bp, M_TEMP);
419 			} else if (vp->v_type == VLNK) {
420 				error = nfs_readlinkrpc(vp, &auio);
421 			} else {
422 				error = EACCES;
423 			}
424 		}
425 	}
426 	/*
427 	 * [re]record creds for reading and/or writing if access
428 	 * was granted.  Assume the NFS server will grant read access
429 	 * for execute requests.
430 	 */
431 	if (error == 0) {
432 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
433 			crhold(ap->a_cred);
434 			if (np->n_rucred)
435 				crfree(np->n_rucred);
436 			np->n_rucred = ap->a_cred;
437 		}
438 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
439 			crhold(ap->a_cred);
440 			if (np->n_wucred)
441 				crfree(np->n_wucred);
442 			np->n_wucred = ap->a_cred;
443 		}
444 	}
445 	return(error);
446 }
447 
448 /*
449  * nfs open vnode op
450  * Check to see if the type is ok
451  * and that deletion is not in progress.
452  * For paged in text files, you will need to flush the page cache
453  * if consistency is lost.
454  *
455  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
456  */
457 /* ARGSUSED */
458 static int
459 nfs_open(struct vop_open_args *ap)
460 {
461 	struct vnode *vp = ap->a_vp;
462 	struct nfsnode *np = VTONFS(vp);
463 	struct vattr vattr;
464 	int error;
465 
466 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
467 #ifdef DIAGNOSTIC
468 		printf("open eacces vtyp=%d\n",vp->v_type);
469 #endif
470 		return (EOPNOTSUPP);
471 	}
472 
473 	/*
474 	 * Clear the attribute cache only if opening with write access.  It
475 	 * is unclear if we should do this at all here, but we certainly
476 	 * should not clear the cache unconditionally simply because a file
477 	 * is being opened.
478 	 */
479 	if (ap->a_mode & FWRITE)
480 		np->n_attrstamp = 0;
481 
482 	/*
483 	 * For normal NFS, reconcile changes made locally verses
484 	 * changes made remotely.  Note that VOP_GETATTR only goes
485 	 * to the wire if the cached attribute has timed out or been
486 	 * cleared.
487 	 *
488 	 * If local modifications have been made clear the attribute
489 	 * cache to force an attribute and modified time check.  If
490 	 * GETATTR detects that the file has been changed by someone
491 	 * other then us it will set NRMODIFIED.
492 	 *
493 	 * If we are opening a directory and local changes have been
494 	 * made we have to invalidate the cache in order to ensure
495 	 * that we get the most up-to-date information from the
496 	 * server.  XXX
497 	 */
498 	if (np->n_flag & NLMODIFIED) {
499 		np->n_attrstamp = 0;
500 		if (vp->v_type == VDIR) {
501 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
502 			if (error == EINTR)
503 				return (error);
504 			nfs_invaldir(vp);
505 		}
506 	}
507 	error = VOP_GETATTR(vp, &vattr);
508 	if (error)
509 		return (error);
510 	if (np->n_flag & NRMODIFIED) {
511 		if (vp->v_type == VDIR)
512 			nfs_invaldir(vp);
513 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
514 		if (error == EINTR)
515 			return (error);
516 		np->n_flag &= ~NRMODIFIED;
517 	}
518 
519 	return (vop_stdopen(ap));
520 }
521 
522 /*
523  * nfs close vnode op
524  * What an NFS client should do upon close after writing is a debatable issue.
525  * Most NFS clients push delayed writes to the server upon close, basically for
526  * two reasons:
527  * 1 - So that any write errors may be reported back to the client process
528  *     doing the close system call. By far the two most likely errors are
529  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
530  * 2 - To put a worst case upper bound on cache inconsistency between
531  *     multiple clients for the file.
532  * There is also a consistency problem for Version 2 of the protocol w.r.t.
533  * not being able to tell if other clients are writing a file concurrently,
534  * since there is no way of knowing if the changed modify time in the reply
535  * is only due to the write for this client.
536  * (NFS Version 3 provides weak cache consistency data in the reply that
537  *  should be sufficient to detect and handle this case.)
538  *
539  * The current code does the following:
540  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
541  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
542  *                     or commit them (this satisfies 1 and 2 except for the
543  *                     case where the server crashes after this close but
544  *                     before the commit RPC, which is felt to be "good
545  *                     enough". Changing the last argument to nfs_flush() to
546  *                     a 1 would force a commit operation, if it is felt a
547  *                     commit is necessary now.
548  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
549  *                     1 should be dealt with via an fsync() system call for
550  *                     cases where write errors are important.
551  *
552  * nfs_close(struct vnode *a_vp, int a_fflag,
553  *	     struct ucred *a_cred, struct thread *a_td)
554  */
555 /* ARGSUSED */
556 static int
557 nfs_close(struct vop_close_args *ap)
558 {
559 	struct vnode *vp = ap->a_vp;
560 	struct nfsnode *np = VTONFS(vp);
561 	int error = 0;
562 	thread_t td = curthread;
563 
564 	if (vp->v_type == VREG) {
565 	    if (np->n_flag & NLMODIFIED) {
566 		if (NFS_ISV3(vp)) {
567 		    /*
568 		     * Under NFSv3 we have dirty buffers to dispose of.  We
569 		     * must flush them to the NFS server.  We have the option
570 		     * of waiting all the way through the commit rpc or just
571 		     * waiting for the initial write.  The default is to only
572 		     * wait through the initial write so the data is in the
573 		     * server's cache, which is roughly similar to the state
574 		     * a standard disk subsystem leaves the file in on close().
575 		     *
576 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
577 		     * potential races with other processes, and certainly
578 		     * cannot clear it if we don't commit.
579 		     */
580 		    int cm = nfsv3_commit_on_close ? 1 : 0;
581 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
582 		    /* np->n_flag &= ~NLMODIFIED; */
583 		} else {
584 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
585 		}
586 		np->n_attrstamp = 0;
587 	    }
588 	    if (np->n_flag & NWRITEERR) {
589 		np->n_flag &= ~NWRITEERR;
590 		error = np->n_error;
591 	    }
592 	}
593 	vop_stdclose(ap);
594 	return (error);
595 }
596 
597 /*
598  * nfs getattr call from vfs.
599  *
600  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
601  *		struct thread *a_td)
602  */
603 static int
604 nfs_getattr(struct vop_getattr_args *ap)
605 {
606 	struct vnode *vp = ap->a_vp;
607 	struct nfsnode *np = VTONFS(vp);
608 	caddr_t cp;
609 	u_int32_t *tl;
610 	int32_t t1, t2;
611 	caddr_t bpos, dpos;
612 	int error = 0;
613 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
614 	int v3 = NFS_ISV3(vp);
615 	thread_t td = curthread;
616 
617 	/*
618 	 * Update local times for special files.
619 	 */
620 	if (np->n_flag & (NACC | NUPD))
621 		np->n_flag |= NCHG;
622 	/*
623 	 * First look in the cache.
624 	 */
625 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
626 		return (0);
627 
628 	if (v3 && nfsaccess_cache_timeout > 0) {
629 		nfsstats.accesscache_misses++;
630 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
631 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
632 			return (0);
633 	}
634 
635 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
636 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
637 	nfsm_fhtom(vp, v3);
638 	nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
639 	if (!error) {
640 		nfsm_loadattr(vp, ap->a_vap);
641 	}
642 	m_freem(mrep);
643 nfsmout:
644 	return (error);
645 }
646 
647 /*
648  * nfs setattr call.
649  *
650  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
651  */
652 static int
653 nfs_setattr(struct vop_setattr_args *ap)
654 {
655 	struct vnode *vp = ap->a_vp;
656 	struct nfsnode *np = VTONFS(vp);
657 	struct vattr *vap = ap->a_vap;
658 	int error = 0;
659 	u_quad_t tsize;
660 	thread_t td = curthread;
661 
662 #ifndef nolint
663 	tsize = (u_quad_t)0;
664 #endif
665 
666 	/*
667 	 * Setting of flags is not supported.
668 	 */
669 	if (vap->va_flags != VNOVAL)
670 		return (EOPNOTSUPP);
671 
672 	/*
673 	 * Disallow write attempts if the filesystem is mounted read-only.
674 	 */
675   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
676 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
677 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
678 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
679 		return (EROFS);
680 	if (vap->va_size != VNOVAL) {
681  		switch (vp->v_type) {
682  		case VDIR:
683  			return (EISDIR);
684  		case VCHR:
685  		case VBLK:
686  		case VSOCK:
687  		case VFIFO:
688 			if (vap->va_mtime.tv_sec == VNOVAL &&
689 			    vap->va_atime.tv_sec == VNOVAL &&
690 			    vap->va_mode == (mode_t)VNOVAL &&
691 			    vap->va_uid == (uid_t)VNOVAL &&
692 			    vap->va_gid == (gid_t)VNOVAL)
693 				return (0);
694  			vap->va_size = VNOVAL;
695  			break;
696  		default:
697 			/*
698 			 * Disallow write attempts if the filesystem is
699 			 * mounted read-only.
700 			 */
701 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
702 				return (EROFS);
703 
704 			/*
705 			 * This is nasty.  The RPCs we send to flush pending
706 			 * data often return attribute information which is
707 			 * cached via a callback to nfs_loadattrcache(), which
708 			 * has the effect of changing our notion of the file
709 			 * size.  Due to flushed appends and other operations
710 			 * the file size can be set to virtually anything,
711 			 * including values that do not match either the old
712 			 * or intended file size.
713 			 *
714 			 * When this condition is detected we must loop to
715 			 * try the operation again.  Hopefully no more
716 			 * flushing is required on the loop so it works the
717 			 * second time around.  THIS CASE ALMOST ALWAYS
718 			 * HAPPENS!
719 			 */
720 			tsize = np->n_size;
721 again:
722 			error = nfs_meta_setsize(vp, td, vap->va_size);
723 
724  			if (np->n_flag & NLMODIFIED) {
725  			    if (vap->va_size == 0)
726  				error = nfs_vinvalbuf(vp, 0, 1);
727  			    else
728  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
729  			}
730 			/*
731 			 * note: this loop case almost always happens at
732 			 * least once per truncation.
733 			 */
734 			if (error == 0 && np->n_size != vap->va_size)
735 				goto again;
736 			np->n_vattr.va_size = vap->va_size;
737 			break;
738 		}
739   	} else if ((vap->va_mtime.tv_sec != VNOVAL ||
740 		vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NLMODIFIED) &&
741 		vp->v_type == VREG &&
742   		(error = nfs_vinvalbuf(vp, V_SAVE, 1)) == EINTR
743 	) {
744 		return (error);
745 	}
746 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
747 
748 	/*
749 	 * Sanity check if a truncation was issued.  This should only occur
750 	 * if multiple processes are racing on the same file.
751 	 */
752 	if (error == 0 && vap->va_size != VNOVAL &&
753 	    np->n_size != vap->va_size) {
754 		printf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
755 		goto again;
756 	}
757 	if (error && vap->va_size != VNOVAL) {
758 		np->n_size = np->n_vattr.va_size = tsize;
759 		vnode_pager_setsize(vp, np->n_size);
760 	}
761 	return (error);
762 }
763 
764 /*
765  * Do an nfs setattr rpc.
766  */
767 static int
768 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
769 	       struct ucred *cred, struct thread *td)
770 {
771 	struct nfsv2_sattr *sp;
772 	struct nfsnode *np = VTONFS(vp);
773 	caddr_t cp;
774 	int32_t t1, t2;
775 	caddr_t bpos, dpos, cp2;
776 	u_int32_t *tl;
777 	int error = 0, wccflag = NFSV3_WCCRATTR;
778 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
779 	int v3 = NFS_ISV3(vp);
780 
781 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
782 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
783 	nfsm_fhtom(vp, v3);
784 	if (v3) {
785 		nfsm_v3attrbuild(vap, TRUE);
786 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
787 		*tl = nfs_false;
788 	} else {
789 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
790 		if (vap->va_mode == (mode_t)VNOVAL)
791 			sp->sa_mode = nfs_xdrneg1;
792 		else
793 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
794 		if (vap->va_uid == (uid_t)VNOVAL)
795 			sp->sa_uid = nfs_xdrneg1;
796 		else
797 			sp->sa_uid = txdr_unsigned(vap->va_uid);
798 		if (vap->va_gid == (gid_t)VNOVAL)
799 			sp->sa_gid = nfs_xdrneg1;
800 		else
801 			sp->sa_gid = txdr_unsigned(vap->va_gid);
802 		sp->sa_size = txdr_unsigned(vap->va_size);
803 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
804 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
805 	}
806 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
807 	if (v3) {
808 		np->n_modestamp = 0;
809 		nfsm_wcc_data(vp, wccflag);
810 	} else
811 		nfsm_loadattr(vp, (struct vattr *)0);
812 	m_freem(mrep);
813 nfsmout:
814 	return (error);
815 }
816 
817 /*
818  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
819  * nfs_lookup() until all remaining new api calls are implemented.
820  *
821  * Resolve a namecache entry.  This function is passed a locked ncp and
822  * must call cache_setvp() on it as appropriate to resolve the entry.
823  */
824 static int
825 nfs_nresolve(struct vop_nresolve_args *ap)
826 {
827 	struct thread *td = curthread;
828 	struct namecache *ncp;
829 	struct ucred *cred;
830 	struct nfsnode *np;
831 	struct vnode *dvp;
832 	struct vnode *nvp;
833 	nfsfh_t *fhp;
834 	int attrflag;
835 	int fhsize;
836 	int error;
837 	int len;
838 	int v3;
839 	/******NFSM MACROS********/
840 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
841 	caddr_t bpos, dpos, cp, cp2;
842 	u_int32_t *tl;
843 	int32_t t1, t2;
844 
845 	cred = ap->a_cred;
846 	ncp = ap->a_ncp;
847 
848 	KKASSERT(ncp->nc_parent && ncp->nc_parent->nc_vp);
849 	dvp = ncp->nc_parent->nc_vp;
850 	if ((error = vget(dvp, LK_SHARED)) != 0)
851 		return (error);
852 
853 	nvp = NULL;
854 	v3 = NFS_ISV3(dvp);
855 	nfsstats.lookupcache_misses++;
856 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
857 	len = ncp->nc_nlen;
858 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
859 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
860 	nfsm_fhtom(dvp, v3);
861 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
862 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
863 	if (error) {
864 		/*
865 		 * Cache negatve lookups to reduce NFS traffic, but use
866 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
867 		 * XXX we should add a namecache flag for no-caching
868 		 * to uncache the negative hit as soon as possible, but
869 		 * we cannot simply destroy the entry because it is used
870 		 * as a placeholder by the caller.
871 		 */
872 		if (error == ENOENT) {
873 			int nticks;
874 
875 			if (nfsneg_cache_timeout)
876 				nticks = nfsneg_cache_timeout * hz;
877 			else
878 				nticks = 1;
879 			cache_setvp(ncp, NULL);
880 			cache_settimeout(ncp, nticks);
881 		}
882 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
883 		m_freem(mrep);
884 		goto nfsmout;
885 	}
886 
887 	/*
888 	 * Success, get the file handle, do various checks, and load
889 	 * post-operation data from the reply packet.  Theoretically
890 	 * we should never be looking up "." so, theoretically, we
891 	 * should never get the same file handle as our directory.  But
892 	 * we check anyway. XXX
893 	 *
894 	 * Note that no timeout is set for the positive cache hit.  We
895 	 * assume, theoretically, that ESTALE returns will be dealt with
896 	 * properly to handle NFS races and in anycase we cannot depend
897 	 * on a timeout to deal with NFS open/create/excl issues so instead
898 	 * of a bad hack here the rest of the NFS client code needs to do
899 	 * the right thing.
900 	 */
901 	nfsm_getfh(fhp, fhsize, v3);
902 
903 	np = VTONFS(dvp);
904 	if (NFS_CMPFH(np, fhp, fhsize)) {
905 		vref(dvp);
906 		nvp = dvp;
907 	} else {
908 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
909 		if (error) {
910 			m_freem(mrep);
911 			vput(dvp);
912 			return (error);
913 		}
914 		nvp = NFSTOV(np);
915 	}
916 	if (v3) {
917 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
918 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
919 	} else {
920 		nfsm_loadattr(nvp, NULL);
921 	}
922 	cache_setvp(ncp, nvp);
923 	m_freem(mrep);
924 nfsmout:
925 	vput(dvp);
926 	if (nvp) {
927 		if (nvp == dvp)
928 			vrele(nvp);
929 		else
930 			vput(nvp);
931 	}
932 	return (error);
933 }
934 
935 /*
936  * 'cached' nfs directory lookup
937  *
938  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
939  *
940  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
941  *	      struct componentname *a_cnp)
942  */
943 static int
944 nfs_lookup(struct vop_old_lookup_args *ap)
945 {
946 	struct componentname *cnp = ap->a_cnp;
947 	struct vnode *dvp = ap->a_dvp;
948 	struct vnode **vpp = ap->a_vpp;
949 	int flags = cnp->cn_flags;
950 	struct vnode *newvp;
951 	u_int32_t *tl;
952 	caddr_t cp;
953 	int32_t t1, t2;
954 	struct nfsmount *nmp;
955 	caddr_t bpos, dpos, cp2;
956 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
957 	long len;
958 	nfsfh_t *fhp;
959 	struct nfsnode *np;
960 	int lockparent, wantparent, error = 0, attrflag, fhsize;
961 	int v3 = NFS_ISV3(dvp);
962 
963 	/*
964 	 * Read-only mount check and directory check.
965 	 */
966 	*vpp = NULLVP;
967 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
968 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
969 		return (EROFS);
970 
971 	if (dvp->v_type != VDIR)
972 		return (ENOTDIR);
973 
974 	/*
975 	 * Look it up in the cache.  Note that ENOENT is only returned if we
976 	 * previously entered a negative hit (see later on).  The additional
977 	 * nfsneg_cache_timeout check causes previously cached results to
978 	 * be instantly ignored if the negative caching is turned off.
979 	 */
980 	lockparent = flags & CNP_LOCKPARENT;
981 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
982 	nmp = VFSTONFS(dvp->v_mount);
983 	np = VTONFS(dvp);
984 
985 	/*
986 	 * Go to the wire.
987 	 */
988 	error = 0;
989 	newvp = NULLVP;
990 	nfsstats.lookupcache_misses++;
991 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
992 	len = cnp->cn_namelen;
993 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
994 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
995 	nfsm_fhtom(dvp, v3);
996 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
997 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
998 	if (error) {
999 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1000 		m_freem(mrep);
1001 		goto nfsmout;
1002 	}
1003 	nfsm_getfh(fhp, fhsize, v3);
1004 
1005 	/*
1006 	 * Handle RENAME case...
1007 	 */
1008 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1009 		if (NFS_CMPFH(np, fhp, fhsize)) {
1010 			m_freem(mrep);
1011 			return (EISDIR);
1012 		}
1013 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1014 		if (error) {
1015 			m_freem(mrep);
1016 			return (error);
1017 		}
1018 		newvp = NFSTOV(np);
1019 		if (v3) {
1020 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1021 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1022 		} else
1023 			nfsm_loadattr(newvp, (struct vattr *)0);
1024 		*vpp = newvp;
1025 		m_freem(mrep);
1026 		if (!lockparent) {
1027 			VOP_UNLOCK(dvp, 0);
1028 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1029 		}
1030 		return (0);
1031 	}
1032 
1033 	if (flags & CNP_ISDOTDOT) {
1034 		VOP_UNLOCK(dvp, 0);
1035 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1036 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1037 		if (error) {
1038 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1039 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1040 			return (error); /* NOTE: return error from nget */
1041 		}
1042 		newvp = NFSTOV(np);
1043 		if (lockparent) {
1044 			error = vn_lock(dvp, LK_EXCLUSIVE);
1045 			if (error) {
1046 				vput(newvp);
1047 				return (error);
1048 			}
1049 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1050 		}
1051 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1052 		vref(dvp);
1053 		newvp = dvp;
1054 	} else {
1055 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1056 		if (error) {
1057 			m_freem(mrep);
1058 			return (error);
1059 		}
1060 		if (!lockparent) {
1061 			VOP_UNLOCK(dvp, 0);
1062 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1063 		}
1064 		newvp = NFSTOV(np);
1065 	}
1066 	if (v3) {
1067 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1068 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1069 	} else
1070 		nfsm_loadattr(newvp, (struct vattr *)0);
1071 #if 0
1072 	/* XXX MOVE TO nfs_nremove() */
1073 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1074 	    cnp->cn_nameiop != NAMEI_DELETE) {
1075 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1076 	}
1077 #endif
1078 	*vpp = newvp;
1079 	m_freem(mrep);
1080 nfsmout:
1081 	if (error) {
1082 		if (newvp != NULLVP) {
1083 			vrele(newvp);
1084 			*vpp = NULLVP;
1085 		}
1086 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1087 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1088 		    error == ENOENT) {
1089 			if (!lockparent) {
1090 				VOP_UNLOCK(dvp, 0);
1091 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1092 			}
1093 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1094 				error = EROFS;
1095 			else
1096 				error = EJUSTRETURN;
1097 		}
1098 	}
1099 	return (error);
1100 }
1101 
1102 /*
1103  * nfs read call.
1104  * Just call nfs_bioread() to do the work.
1105  *
1106  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1107  *	    struct ucred *a_cred)
1108  */
1109 static int
1110 nfs_read(struct vop_read_args *ap)
1111 {
1112 	struct vnode *vp = ap->a_vp;
1113 
1114 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1115 	switch (vp->v_type) {
1116 	case VREG:
1117 		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1118 	case VDIR:
1119 		return (EISDIR);
1120 	default:
1121 		return EOPNOTSUPP;
1122 	}
1123 }
1124 
1125 /*
1126  * nfs readlink call
1127  *
1128  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1129  */
1130 static int
1131 nfs_readlink(struct vop_readlink_args *ap)
1132 {
1133 	struct vnode *vp = ap->a_vp;
1134 
1135 	if (vp->v_type != VLNK)
1136 		return (EINVAL);
1137 	return (nfs_bioread(vp, ap->a_uio, 0));
1138 }
1139 
1140 /*
1141  * Do a readlink rpc.
1142  * Called by nfs_doio() from below the buffer cache.
1143  */
1144 int
1145 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1146 {
1147 	u_int32_t *tl;
1148 	caddr_t cp;
1149 	int32_t t1, t2;
1150 	caddr_t bpos, dpos, cp2;
1151 	int error = 0, len, attrflag;
1152 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1153 	int v3 = NFS_ISV3(vp);
1154 
1155 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1156 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1157 	nfsm_fhtom(vp, v3);
1158 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1159 	if (v3)
1160 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1161 	if (!error) {
1162 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1163 		if (len == NFS_MAXPATHLEN) {
1164 			struct nfsnode *np = VTONFS(vp);
1165 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1166 				len = np->n_size;
1167 		}
1168 		nfsm_mtouio(uiop, len);
1169 	}
1170 	m_freem(mrep);
1171 nfsmout:
1172 	return (error);
1173 }
1174 
1175 /*
1176  * nfs read rpc call
1177  * Ditto above
1178  */
1179 int
1180 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1181 {
1182 	u_int32_t *tl;
1183 	caddr_t cp;
1184 	int32_t t1, t2;
1185 	caddr_t bpos, dpos, cp2;
1186 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1187 	struct nfsmount *nmp;
1188 	int error = 0, len, retlen, tsiz, eof, attrflag;
1189 	int v3 = NFS_ISV3(vp);
1190 
1191 #ifndef nolint
1192 	eof = 0;
1193 #endif
1194 	nmp = VFSTONFS(vp->v_mount);
1195 	tsiz = uiop->uio_resid;
1196 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1197 		return (EFBIG);
1198 	while (tsiz > 0) {
1199 		nfsstats.rpccnt[NFSPROC_READ]++;
1200 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1201 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1202 		nfsm_fhtom(vp, v3);
1203 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1204 		if (v3) {
1205 			txdr_hyper(uiop->uio_offset, tl);
1206 			*(tl + 2) = txdr_unsigned(len);
1207 		} else {
1208 			*tl++ = txdr_unsigned(uiop->uio_offset);
1209 			*tl++ = txdr_unsigned(len);
1210 			*tl = 0;
1211 		}
1212 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1213 		if (v3) {
1214 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1215 			if (error) {
1216 				m_freem(mrep);
1217 				goto nfsmout;
1218 			}
1219 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1220 			eof = fxdr_unsigned(int, *(tl + 1));
1221 		} else
1222 			nfsm_loadattr(vp, (struct vattr *)0);
1223 		nfsm_strsiz(retlen, nmp->nm_rsize);
1224 		nfsm_mtouio(uiop, retlen);
1225 		m_freem(mrep);
1226 		tsiz -= retlen;
1227 		if (v3) {
1228 			if (eof || retlen == 0) {
1229 				tsiz = 0;
1230 			}
1231 		} else if (retlen < len) {
1232 			tsiz = 0;
1233 		}
1234 	}
1235 nfsmout:
1236 	return (error);
1237 }
1238 
1239 /*
1240  * nfs write call
1241  */
1242 int
1243 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1244 {
1245 	u_int32_t *tl;
1246 	caddr_t cp;
1247 	int32_t t1, t2, backup;
1248 	caddr_t bpos, dpos, cp2;
1249 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1250 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1251 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1252 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1253 
1254 #ifndef DIAGNOSTIC
1255 	if (uiop->uio_iovcnt != 1)
1256 		panic("nfs: writerpc iovcnt > 1");
1257 #endif
1258 	*must_commit = 0;
1259 	tsiz = uiop->uio_resid;
1260 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1261 		return (EFBIG);
1262 	while (tsiz > 0) {
1263 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1264 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1265 		nfsm_reqhead(vp, NFSPROC_WRITE,
1266 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1267 		nfsm_fhtom(vp, v3);
1268 		if (v3) {
1269 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1270 			txdr_hyper(uiop->uio_offset, tl);
1271 			tl += 2;
1272 			*tl++ = txdr_unsigned(len);
1273 			*tl++ = txdr_unsigned(*iomode);
1274 			*tl = txdr_unsigned(len);
1275 		} else {
1276 			u_int32_t x;
1277 
1278 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1279 			/* Set both "begin" and "current" to non-garbage. */
1280 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1281 			*tl++ = x;	/* "begin offset" */
1282 			*tl++ = x;	/* "current offset" */
1283 			x = txdr_unsigned(len);
1284 			*tl++ = x;	/* total to this offset */
1285 			*tl = x;	/* size of this write */
1286 		}
1287 		nfsm_uiotom(uiop, len);
1288 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1289 		if (v3) {
1290 			/*
1291 			 * The write RPC returns a before and after mtime.  The
1292 			 * nfsm_wcc_data() macro checks the before n_mtime
1293 			 * against the before time and stores the after time
1294 			 * in the nfsnode's cached vattr and n_mtime field.
1295 			 * The NRMODIFIED bit will be set if the before
1296 			 * time did not match the original mtime.
1297 			 */
1298 			wccflag = NFSV3_WCCCHK;
1299 			nfsm_wcc_data(vp, wccflag);
1300 			if (!error) {
1301 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1302 					+ NFSX_V3WRITEVERF);
1303 				rlen = fxdr_unsigned(int, *tl++);
1304 				if (rlen == 0) {
1305 					error = NFSERR_IO;
1306 					m_freem(mrep);
1307 					break;
1308 				} else if (rlen < len) {
1309 					backup = len - rlen;
1310 					uiop->uio_iov->iov_base -= backup;
1311 					uiop->uio_iov->iov_len += backup;
1312 					uiop->uio_offset -= backup;
1313 					uiop->uio_resid += backup;
1314 					len = rlen;
1315 				}
1316 				commit = fxdr_unsigned(int, *tl++);
1317 
1318 				/*
1319 				 * Return the lowest committment level
1320 				 * obtained by any of the RPCs.
1321 				 */
1322 				if (committed == NFSV3WRITE_FILESYNC)
1323 					committed = commit;
1324 				else if (committed == NFSV3WRITE_DATASYNC &&
1325 					commit == NFSV3WRITE_UNSTABLE)
1326 					committed = commit;
1327 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1328 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1329 					NFSX_V3WRITEVERF);
1330 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1331 				} else if (bcmp((caddr_t)tl,
1332 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1333 				    *must_commit = 1;
1334 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1335 					NFSX_V3WRITEVERF);
1336 				}
1337 			}
1338 		} else {
1339 			nfsm_loadattr(vp, (struct vattr *)0);
1340 		}
1341 		m_freem(mrep);
1342 		if (error)
1343 			break;
1344 		tsiz -= len;
1345 	}
1346 nfsmout:
1347 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1348 		committed = NFSV3WRITE_FILESYNC;
1349 	*iomode = committed;
1350 	if (error)
1351 		uiop->uio_resid = tsiz;
1352 	return (error);
1353 }
1354 
1355 /*
1356  * nfs mknod rpc
1357  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1358  * mode set to specify the file type and the size field for rdev.
1359  */
1360 static int
1361 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1362 	     struct vattr *vap)
1363 {
1364 	struct nfsv2_sattr *sp;
1365 	u_int32_t *tl;
1366 	caddr_t cp;
1367 	int32_t t1, t2;
1368 	struct vnode *newvp = (struct vnode *)0;
1369 	struct nfsnode *np = (struct nfsnode *)0;
1370 	struct vattr vattr;
1371 	char *cp2;
1372 	caddr_t bpos, dpos;
1373 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1374 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1375 	u_int32_t rdev;
1376 	int v3 = NFS_ISV3(dvp);
1377 
1378 	if (vap->va_type == VCHR || vap->va_type == VBLK)
1379 		rdev = txdr_unsigned(vap->va_rdev);
1380 	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1381 		rdev = nfs_xdrneg1;
1382 	else {
1383 		return (EOPNOTSUPP);
1384 	}
1385 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1386 		return (error);
1387 	}
1388 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1389 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1390 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1391 	nfsm_fhtom(dvp, v3);
1392 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1393 	if (v3) {
1394 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1395 		*tl++ = vtonfsv3_type(vap->va_type);
1396 		nfsm_v3attrbuild(vap, FALSE);
1397 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1398 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1399 			*tl++ = txdr_unsigned(umajor(vap->va_rdev));
1400 			*tl = txdr_unsigned(uminor(vap->va_rdev));
1401 		}
1402 	} else {
1403 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1404 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1405 		sp->sa_uid = nfs_xdrneg1;
1406 		sp->sa_gid = nfs_xdrneg1;
1407 		sp->sa_size = rdev;
1408 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1409 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1410 	}
1411 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1412 	if (!error) {
1413 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1414 		if (!gotvp) {
1415 			if (newvp) {
1416 				vput(newvp);
1417 				newvp = (struct vnode *)0;
1418 			}
1419 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1420 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1421 			if (!error)
1422 				newvp = NFSTOV(np);
1423 		}
1424 	}
1425 	if (v3)
1426 		nfsm_wcc_data(dvp, wccflag);
1427 	m_freem(mrep);
1428 nfsmout:
1429 	if (error) {
1430 		if (newvp)
1431 			vput(newvp);
1432 	} else {
1433 		*vpp = newvp;
1434 	}
1435 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1436 	if (!wccflag)
1437 		VTONFS(dvp)->n_attrstamp = 0;
1438 	return (error);
1439 }
1440 
1441 /*
1442  * nfs mknod vop
1443  * just call nfs_mknodrpc() to do the work.
1444  *
1445  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1446  *	     struct componentname *a_cnp, struct vattr *a_vap)
1447  */
1448 /* ARGSUSED */
1449 static int
1450 nfs_mknod(struct vop_old_mknod_args *ap)
1451 {
1452 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1453 }
1454 
1455 static u_long create_verf;
1456 /*
1457  * nfs file create call
1458  *
1459  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1460  *	      struct componentname *a_cnp, struct vattr *a_vap)
1461  */
1462 static int
1463 nfs_create(struct vop_old_create_args *ap)
1464 {
1465 	struct vnode *dvp = ap->a_dvp;
1466 	struct vattr *vap = ap->a_vap;
1467 	struct componentname *cnp = ap->a_cnp;
1468 	struct nfsv2_sattr *sp;
1469 	u_int32_t *tl;
1470 	caddr_t cp;
1471 	int32_t t1, t2;
1472 	struct nfsnode *np = (struct nfsnode *)0;
1473 	struct vnode *newvp = (struct vnode *)0;
1474 	caddr_t bpos, dpos, cp2;
1475 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1476 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1477 	struct vattr vattr;
1478 	int v3 = NFS_ISV3(dvp);
1479 
1480 	/*
1481 	 * Oops, not for me..
1482 	 */
1483 	if (vap->va_type == VSOCK)
1484 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1485 
1486 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1487 		return (error);
1488 	}
1489 	if (vap->va_vaflags & VA_EXCLUSIVE)
1490 		fmode |= O_EXCL;
1491 again:
1492 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1493 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1494 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1495 	nfsm_fhtom(dvp, v3);
1496 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1497 	if (v3) {
1498 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1499 		if (fmode & O_EXCL) {
1500 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1501 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1502 #ifdef INET
1503 			if (!TAILQ_EMPTY(&in_ifaddrhead))
1504 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr.s_addr;
1505 			else
1506 #endif
1507 				*tl++ = create_verf;
1508 			*tl = ++create_verf;
1509 		} else {
1510 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1511 			nfsm_v3attrbuild(vap, FALSE);
1512 		}
1513 	} else {
1514 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1515 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1516 		sp->sa_uid = nfs_xdrneg1;
1517 		sp->sa_gid = nfs_xdrneg1;
1518 		sp->sa_size = 0;
1519 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1520 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1521 	}
1522 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1523 	if (!error) {
1524 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1525 		if (!gotvp) {
1526 			if (newvp) {
1527 				vput(newvp);
1528 				newvp = (struct vnode *)0;
1529 			}
1530 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1531 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1532 			if (!error)
1533 				newvp = NFSTOV(np);
1534 		}
1535 	}
1536 	if (v3)
1537 		nfsm_wcc_data(dvp, wccflag);
1538 	m_freem(mrep);
1539 nfsmout:
1540 	if (error) {
1541 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1542 			fmode &= ~O_EXCL;
1543 			goto again;
1544 		}
1545 		if (newvp)
1546 			vput(newvp);
1547 	} else if (v3 && (fmode & O_EXCL)) {
1548 		/*
1549 		 * We are normally called with only a partially initialized
1550 		 * VAP.  Since the NFSv3 spec says that server may use the
1551 		 * file attributes to store the verifier, the spec requires
1552 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1553 		 * in atime, but we can't really assume that all servers will
1554 		 * so we ensure that our SETATTR sets both atime and mtime.
1555 		 */
1556 		if (vap->va_mtime.tv_sec == VNOVAL)
1557 			vfs_timestamp(&vap->va_mtime);
1558 		if (vap->va_atime.tv_sec == VNOVAL)
1559 			vap->va_atime = vap->va_mtime;
1560 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1561 	}
1562 	if (!error) {
1563 		/*
1564 		 * The new np may have enough info for access
1565 		 * checks, make sure rucred and wucred are
1566 		 * initialized for read and write rpc's.
1567 		 */
1568 		np = VTONFS(newvp);
1569 		if (np->n_rucred == NULL)
1570 			np->n_rucred = crhold(cnp->cn_cred);
1571 		if (np->n_wucred == NULL)
1572 			np->n_wucred = crhold(cnp->cn_cred);
1573 		*ap->a_vpp = newvp;
1574 	}
1575 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1576 	if (!wccflag)
1577 		VTONFS(dvp)->n_attrstamp = 0;
1578 	return (error);
1579 }
1580 
1581 /*
1582  * nfs file remove call
1583  * To try and make nfs semantics closer to ufs semantics, a file that has
1584  * other processes using the vnode is renamed instead of removed and then
1585  * removed later on the last close.
1586  * - If v_usecount > 1
1587  *	  If a rename is not already in the works
1588  *	     call nfs_sillyrename() to set it up
1589  *     else
1590  *	  do the remove rpc
1591  *
1592  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1593  *	      struct componentname *a_cnp)
1594  */
1595 static int
1596 nfs_remove(struct vop_old_remove_args *ap)
1597 {
1598 	struct vnode *vp = ap->a_vp;
1599 	struct vnode *dvp = ap->a_dvp;
1600 	struct componentname *cnp = ap->a_cnp;
1601 	struct nfsnode *np = VTONFS(vp);
1602 	int error = 0;
1603 	struct vattr vattr;
1604 
1605 #ifndef DIAGNOSTIC
1606 	if (vp->v_usecount < 1)
1607 		panic("nfs_remove: bad v_usecount");
1608 #endif
1609 	if (vp->v_type == VDIR)
1610 		error = EPERM;
1611 	else if (vp->v_usecount == 1 || (np->n_sillyrename &&
1612 	    VOP_GETATTR(vp, &vattr) == 0 &&
1613 	    vattr.va_nlink > 1)) {
1614 		/*
1615 		 * throw away biocache buffers, mainly to avoid
1616 		 * unnecessary delayed writes later.
1617 		 */
1618 		error = nfs_vinvalbuf(vp, 0, 1);
1619 		/* Do the rpc */
1620 		if (error != EINTR)
1621 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1622 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1623 		/*
1624 		 * Kludge City: If the first reply to the remove rpc is lost..
1625 		 *   the reply to the retransmitted request will be ENOENT
1626 		 *   since the file was in fact removed
1627 		 *   Therefore, we cheat and return success.
1628 		 */
1629 		if (error == ENOENT)
1630 			error = 0;
1631 	} else if (!np->n_sillyrename) {
1632 		error = nfs_sillyrename(dvp, vp, cnp);
1633 	}
1634 	np->n_attrstamp = 0;
1635 	return (error);
1636 }
1637 
1638 /*
1639  * nfs file remove rpc called from nfs_inactive
1640  */
1641 int
1642 nfs_removeit(struct sillyrename *sp)
1643 {
1644 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1645 		sp->s_cred, NULL));
1646 }
1647 
1648 /*
1649  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1650  */
1651 static int
1652 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1653 	      struct ucred *cred, struct thread *td)
1654 {
1655 	u_int32_t *tl;
1656 	caddr_t cp;
1657 	int32_t t1, t2;
1658 	caddr_t bpos, dpos, cp2;
1659 	int error = 0, wccflag = NFSV3_WCCRATTR;
1660 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1661 	int v3 = NFS_ISV3(dvp);
1662 
1663 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1664 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1665 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1666 	nfsm_fhtom(dvp, v3);
1667 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1668 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1669 	if (v3)
1670 		nfsm_wcc_data(dvp, wccflag);
1671 	m_freem(mrep);
1672 nfsmout:
1673 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1674 	if (!wccflag)
1675 		VTONFS(dvp)->n_attrstamp = 0;
1676 	return (error);
1677 }
1678 
1679 /*
1680  * nfs file rename call
1681  *
1682  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1683  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1684  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1685  */
1686 static int
1687 nfs_rename(struct vop_old_rename_args *ap)
1688 {
1689 	struct vnode *fvp = ap->a_fvp;
1690 	struct vnode *tvp = ap->a_tvp;
1691 	struct vnode *fdvp = ap->a_fdvp;
1692 	struct vnode *tdvp = ap->a_tdvp;
1693 	struct componentname *tcnp = ap->a_tcnp;
1694 	struct componentname *fcnp = ap->a_fcnp;
1695 	int error;
1696 
1697 	/* Check for cross-device rename */
1698 	if ((fvp->v_mount != tdvp->v_mount) ||
1699 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1700 		error = EXDEV;
1701 		goto out;
1702 	}
1703 
1704 	/*
1705 	 * We have to flush B_DELWRI data prior to renaming
1706 	 * the file.  If we don't, the delayed-write buffers
1707 	 * can be flushed out later after the file has gone stale
1708 	 * under NFSV3.  NFSV2 does not have this problem because
1709 	 * ( as far as I can tell ) it flushes dirty buffers more
1710 	 * often.
1711 	 */
1712 
1713 	VOP_FSYNC(fvp, MNT_WAIT);
1714 	if (tvp)
1715 	    VOP_FSYNC(tvp, MNT_WAIT);
1716 
1717 	/*
1718 	 * If the tvp exists and is in use, sillyrename it before doing the
1719 	 * rename of the new file over it.
1720 	 *
1721 	 * XXX Can't sillyrename a directory.
1722 	 *
1723 	 * We do not attempt to do any namecache purges in this old API
1724 	 * routine.  The new API compat functions have access to the actual
1725 	 * namecache structures and will do it for us.
1726 	 */
1727 	if (tvp && tvp->v_usecount > 1 && !VTONFS(tvp)->n_sillyrename &&
1728 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1729 		vput(tvp);
1730 		tvp = NULL;
1731 	} else if (tvp) {
1732 		;
1733 	}
1734 
1735 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1736 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1737 		tcnp->cn_td);
1738 
1739 out:
1740 	if (tdvp == tvp)
1741 		vrele(tdvp);
1742 	else
1743 		vput(tdvp);
1744 	if (tvp)
1745 		vput(tvp);
1746 	vrele(fdvp);
1747 	vrele(fvp);
1748 	/*
1749 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1750 	 */
1751 	if (error == ENOENT)
1752 		error = 0;
1753 	return (error);
1754 }
1755 
1756 /*
1757  * nfs file rename rpc called from nfs_remove() above
1758  */
1759 static int
1760 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1761 	     struct sillyrename *sp)
1762 {
1763 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1764 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1765 }
1766 
1767 /*
1768  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1769  */
1770 static int
1771 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1772 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1773 	      struct ucred *cred, struct thread *td)
1774 {
1775 	u_int32_t *tl;
1776 	caddr_t cp;
1777 	int32_t t1, t2;
1778 	caddr_t bpos, dpos, cp2;
1779 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1780 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1781 	int v3 = NFS_ISV3(fdvp);
1782 
1783 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1784 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1785 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1786 		nfsm_rndup(tnamelen));
1787 	nfsm_fhtom(fdvp, v3);
1788 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1789 	nfsm_fhtom(tdvp, v3);
1790 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1791 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1792 	if (v3) {
1793 		nfsm_wcc_data(fdvp, fwccflag);
1794 		nfsm_wcc_data(tdvp, twccflag);
1795 	}
1796 	m_freem(mrep);
1797 nfsmout:
1798 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1799 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1800 	if (!fwccflag)
1801 		VTONFS(fdvp)->n_attrstamp = 0;
1802 	if (!twccflag)
1803 		VTONFS(tdvp)->n_attrstamp = 0;
1804 	return (error);
1805 }
1806 
1807 /*
1808  * nfs hard link create call
1809  *
1810  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1811  *	    struct componentname *a_cnp)
1812  */
1813 static int
1814 nfs_link(struct vop_old_link_args *ap)
1815 {
1816 	struct vnode *vp = ap->a_vp;
1817 	struct vnode *tdvp = ap->a_tdvp;
1818 	struct componentname *cnp = ap->a_cnp;
1819 	u_int32_t *tl;
1820 	caddr_t cp;
1821 	int32_t t1, t2;
1822 	caddr_t bpos, dpos, cp2;
1823 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1824 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1825 	int v3;
1826 
1827 	if (vp->v_mount != tdvp->v_mount) {
1828 		return (EXDEV);
1829 	}
1830 
1831 	/*
1832 	 * Push all writes to the server, so that the attribute cache
1833 	 * doesn't get "out of sync" with the server.
1834 	 * XXX There should be a better way!
1835 	 */
1836 	VOP_FSYNC(vp, MNT_WAIT);
1837 
1838 	v3 = NFS_ISV3(vp);
1839 	nfsstats.rpccnt[NFSPROC_LINK]++;
1840 	nfsm_reqhead(vp, NFSPROC_LINK,
1841 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1842 	nfsm_fhtom(vp, v3);
1843 	nfsm_fhtom(tdvp, v3);
1844 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1845 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1846 	if (v3) {
1847 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1848 		nfsm_wcc_data(tdvp, wccflag);
1849 	}
1850 	m_freem(mrep);
1851 nfsmout:
1852 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1853 	if (!attrflag)
1854 		VTONFS(vp)->n_attrstamp = 0;
1855 	if (!wccflag)
1856 		VTONFS(tdvp)->n_attrstamp = 0;
1857 	/*
1858 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1859 	 */
1860 	if (error == EEXIST)
1861 		error = 0;
1862 	return (error);
1863 }
1864 
1865 /*
1866  * nfs symbolic link create call
1867  *
1868  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1869  *		struct componentname *a_cnp, struct vattr *a_vap,
1870  *		char *a_target)
1871  */
1872 static int
1873 nfs_symlink(struct vop_old_symlink_args *ap)
1874 {
1875 	struct vnode *dvp = ap->a_dvp;
1876 	struct vattr *vap = ap->a_vap;
1877 	struct componentname *cnp = ap->a_cnp;
1878 	struct nfsv2_sattr *sp;
1879 	u_int32_t *tl;
1880 	caddr_t cp;
1881 	int32_t t1, t2;
1882 	caddr_t bpos, dpos, cp2;
1883 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1884 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1885 	struct vnode *newvp = (struct vnode *)0;
1886 	int v3 = NFS_ISV3(dvp);
1887 
1888 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1889 	slen = strlen(ap->a_target);
1890 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1891 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1892 	nfsm_fhtom(dvp, v3);
1893 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1894 	if (v3) {
1895 		nfsm_v3attrbuild(vap, FALSE);
1896 	}
1897 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1898 	if (!v3) {
1899 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1900 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1901 		sp->sa_uid = nfs_xdrneg1;
1902 		sp->sa_gid = nfs_xdrneg1;
1903 		sp->sa_size = nfs_xdrneg1;
1904 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1905 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1906 	}
1907 
1908 	/*
1909 	 * Issue the NFS request and get the rpc response.
1910 	 *
1911 	 * Only NFSv3 responses returning an error of 0 actually return
1912 	 * a file handle that can be converted into newvp without having
1913 	 * to do an extra lookup rpc.
1914 	 */
1915 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1916 	if (v3) {
1917 		if (error == 0)
1918 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1919 		nfsm_wcc_data(dvp, wccflag);
1920 	}
1921 
1922 	/*
1923 	 * out code jumps -> here, mrep is also freed.
1924 	 */
1925 
1926 	m_freem(mrep);
1927 nfsmout:
1928 
1929 	/*
1930 	 * If we get an EEXIST error, silently convert it to no-error
1931 	 * in case of an NFS retry.
1932 	 */
1933 	if (error == EEXIST)
1934 		error = 0;
1935 
1936 	/*
1937 	 * If we do not have (or no longer have) an error, and we could
1938 	 * not extract the newvp from the response due to the request being
1939 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1940 	 * to obtain a newvp to return.
1941 	 */
1942 	if (error == 0 && newvp == NULL) {
1943 		struct nfsnode *np = NULL;
1944 
1945 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1946 		    cnp->cn_cred, cnp->cn_td, &np);
1947 		if (!error)
1948 			newvp = NFSTOV(np);
1949 	}
1950 	if (error) {
1951 		if (newvp)
1952 			vput(newvp);
1953 	} else {
1954 		*ap->a_vpp = newvp;
1955 	}
1956 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1957 	if (!wccflag)
1958 		VTONFS(dvp)->n_attrstamp = 0;
1959 	return (error);
1960 }
1961 
1962 /*
1963  * nfs make dir call
1964  *
1965  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1966  *	     struct componentname *a_cnp, struct vattr *a_vap)
1967  */
1968 static int
1969 nfs_mkdir(struct vop_old_mkdir_args *ap)
1970 {
1971 	struct vnode *dvp = ap->a_dvp;
1972 	struct vattr *vap = ap->a_vap;
1973 	struct componentname *cnp = ap->a_cnp;
1974 	struct nfsv2_sattr *sp;
1975 	u_int32_t *tl;
1976 	caddr_t cp;
1977 	int32_t t1, t2;
1978 	int len;
1979 	struct nfsnode *np = (struct nfsnode *)0;
1980 	struct vnode *newvp = (struct vnode *)0;
1981 	caddr_t bpos, dpos, cp2;
1982 	int error = 0, wccflag = NFSV3_WCCRATTR;
1983 	int gotvp = 0;
1984 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1985 	struct vattr vattr;
1986 	int v3 = NFS_ISV3(dvp);
1987 
1988 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1989 		return (error);
1990 	}
1991 	len = cnp->cn_namelen;
1992 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
1993 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
1994 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
1995 	nfsm_fhtom(dvp, v3);
1996 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1997 	if (v3) {
1998 		nfsm_v3attrbuild(vap, FALSE);
1999 	} else {
2000 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2001 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2002 		sp->sa_uid = nfs_xdrneg1;
2003 		sp->sa_gid = nfs_xdrneg1;
2004 		sp->sa_size = nfs_xdrneg1;
2005 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2006 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2007 	}
2008 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2009 	if (!error)
2010 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2011 	if (v3)
2012 		nfsm_wcc_data(dvp, wccflag);
2013 	m_freem(mrep);
2014 nfsmout:
2015 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2016 	if (!wccflag)
2017 		VTONFS(dvp)->n_attrstamp = 0;
2018 	/*
2019 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2020 	 * if we can succeed in looking up the directory.
2021 	 */
2022 	if (error == EEXIST || (!error && !gotvp)) {
2023 		if (newvp) {
2024 			vrele(newvp);
2025 			newvp = (struct vnode *)0;
2026 		}
2027 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2028 			cnp->cn_td, &np);
2029 		if (!error) {
2030 			newvp = NFSTOV(np);
2031 			if (newvp->v_type != VDIR)
2032 				error = EEXIST;
2033 		}
2034 	}
2035 	if (error) {
2036 		if (newvp)
2037 			vrele(newvp);
2038 	} else
2039 		*ap->a_vpp = newvp;
2040 	return (error);
2041 }
2042 
2043 /*
2044  * nfs remove directory call
2045  *
2046  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2047  *	     struct componentname *a_cnp)
2048  */
2049 static int
2050 nfs_rmdir(struct vop_old_rmdir_args *ap)
2051 {
2052 	struct vnode *vp = ap->a_vp;
2053 	struct vnode *dvp = ap->a_dvp;
2054 	struct componentname *cnp = ap->a_cnp;
2055 	u_int32_t *tl;
2056 	caddr_t cp;
2057 	int32_t t1, t2;
2058 	caddr_t bpos, dpos, cp2;
2059 	int error = 0, wccflag = NFSV3_WCCRATTR;
2060 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2061 	int v3 = NFS_ISV3(dvp);
2062 
2063 	if (dvp == vp)
2064 		return (EINVAL);
2065 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2066 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2067 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2068 	nfsm_fhtom(dvp, v3);
2069 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2070 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2071 	if (v3)
2072 		nfsm_wcc_data(dvp, wccflag);
2073 	m_freem(mrep);
2074 nfsmout:
2075 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2076 	if (!wccflag)
2077 		VTONFS(dvp)->n_attrstamp = 0;
2078 	/*
2079 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2080 	 */
2081 	if (error == ENOENT)
2082 		error = 0;
2083 	return (error);
2084 }
2085 
2086 /*
2087  * nfs readdir call
2088  *
2089  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2090  */
2091 static int
2092 nfs_readdir(struct vop_readdir_args *ap)
2093 {
2094 	struct vnode *vp = ap->a_vp;
2095 	struct nfsnode *np = VTONFS(vp);
2096 	struct uio *uio = ap->a_uio;
2097 	int tresid, error;
2098 	struct vattr vattr;
2099 
2100 	if (vp->v_type != VDIR)
2101 		return (EPERM);
2102 
2103 	/*
2104 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2105 	 * and then check that is still valid, or if this is an NQNFS mount
2106 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2107 	 * VOP_GETATTR() does not necessarily go to the wire.
2108 	 */
2109 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2110 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2111 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2112 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2113 		) {
2114 			nfsstats.direofcache_hits++;
2115 			return (0);
2116 		}
2117 	}
2118 
2119 	/*
2120 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2121 	 * own cache coherency checks so we do not have to.
2122 	 */
2123 	tresid = uio->uio_resid;
2124 	error = nfs_bioread(vp, uio, 0);
2125 
2126 	if (!error && uio->uio_resid == tresid)
2127 		nfsstats.direofcache_misses++;
2128 	return (error);
2129 }
2130 
2131 /*
2132  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2133  *
2134  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2135  * offset/block and converts the nfs formatted directory entries for userland
2136  * consumption as well as deals with offsets into the middle of blocks.
2137  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2138  * be block-bounded.  It must convert to cookies for the actual RPC.
2139  */
2140 int
2141 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2142 {
2143 	int len, left;
2144 	struct nfs_dirent *dp = NULL;
2145 	u_int32_t *tl;
2146 	caddr_t cp;
2147 	int32_t t1, t2;
2148 	nfsuint64 *cookiep;
2149 	caddr_t bpos, dpos, cp2;
2150 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2151 	nfsuint64 cookie;
2152 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2153 	struct nfsnode *dnp = VTONFS(vp);
2154 	u_quad_t fileno;
2155 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2156 	int attrflag;
2157 	int v3 = NFS_ISV3(vp);
2158 
2159 #ifndef DIAGNOSTIC
2160 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2161 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2162 		panic("nfs readdirrpc bad uio");
2163 #endif
2164 
2165 	/*
2166 	 * If there is no cookie, assume directory was stale.
2167 	 */
2168 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2169 	if (cookiep)
2170 		cookie = *cookiep;
2171 	else
2172 		return (NFSERR_BAD_COOKIE);
2173 	/*
2174 	 * Loop around doing readdir rpc's of size nm_readdirsize
2175 	 * truncated to a multiple of DIRBLKSIZ.
2176 	 * The stopping criteria is EOF or buffer full.
2177 	 */
2178 	while (more_dirs && bigenough) {
2179 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2180 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2181 			NFSX_READDIR(v3));
2182 		nfsm_fhtom(vp, v3);
2183 		if (v3) {
2184 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2185 			*tl++ = cookie.nfsuquad[0];
2186 			*tl++ = cookie.nfsuquad[1];
2187 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2188 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2189 		} else {
2190 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2191 			*tl++ = cookie.nfsuquad[0];
2192 		}
2193 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2194 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2195 		if (v3) {
2196 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2197 			if (!error) {
2198 				nfsm_dissect(tl, u_int32_t *,
2199 				    2 * NFSX_UNSIGNED);
2200 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2201 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2202 			} else {
2203 				m_freem(mrep);
2204 				goto nfsmout;
2205 			}
2206 		}
2207 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2208 		more_dirs = fxdr_unsigned(int, *tl);
2209 
2210 		/* loop thru the dir entries, converting them to std form */
2211 		while (more_dirs && bigenough) {
2212 			if (v3) {
2213 				nfsm_dissect(tl, u_int32_t *,
2214 				    3 * NFSX_UNSIGNED);
2215 				fileno = fxdr_hyper(tl);
2216 				len = fxdr_unsigned(int, *(tl + 2));
2217 			} else {
2218 				nfsm_dissect(tl, u_int32_t *,
2219 				    2 * NFSX_UNSIGNED);
2220 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2221 				len = fxdr_unsigned(int, *tl);
2222 			}
2223 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2224 				error = EBADRPC;
2225 				m_freem(mrep);
2226 				goto nfsmout;
2227 			}
2228 
2229 			/*
2230 			 * len is the number of bytes in the path element
2231 			 * name, not including the \0 termination.
2232 			 *
2233 			 * tlen is the number of bytes w have to reserve for
2234 			 * the path element name.
2235 			 */
2236 			tlen = nfsm_rndup(len);
2237 			if (tlen == len)
2238 				tlen += 4;	/* To ensure null termination */
2239 
2240 			/*
2241 			 * If the entry would cross a DIRBLKSIZ boundary,
2242 			 * extend the previous nfs_dirent to cover the
2243 			 * remaining space.
2244 			 */
2245 			left = DIRBLKSIZ - blksiz;
2246 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2247 				dp->nfs_reclen += left;
2248 				uiop->uio_iov->iov_base += left;
2249 				uiop->uio_iov->iov_len -= left;
2250 				uiop->uio_offset += left;
2251 				uiop->uio_resid -= left;
2252 				blksiz = 0;
2253 			}
2254 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2255 				bigenough = 0;
2256 			if (bigenough) {
2257 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2258 				dp->nfs_ino = fileno;
2259 				dp->nfs_namlen = len;
2260 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2261 				dp->nfs_type = DT_UNKNOWN;
2262 				blksiz += dp->nfs_reclen;
2263 				if (blksiz == DIRBLKSIZ)
2264 					blksiz = 0;
2265 				uiop->uio_offset += sizeof(struct nfs_dirent);
2266 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2267 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2268 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2269 				nfsm_mtouio(uiop, len);
2270 
2271 				/*
2272 				 * The uiop has advanced by nfs_dirent + len
2273 				 * but really needs to advance by
2274 				 * nfs_dirent + tlen
2275 				 */
2276 				cp = uiop->uio_iov->iov_base;
2277 				tlen -= len;
2278 				*cp = '\0';	/* null terminate */
2279 				uiop->uio_iov->iov_base += tlen;
2280 				uiop->uio_iov->iov_len -= tlen;
2281 				uiop->uio_offset += tlen;
2282 				uiop->uio_resid -= tlen;
2283 			} else {
2284 				/*
2285 				 * NFS strings must be rounded up (nfsm_myouio
2286 				 * handled that in the bigenough case).
2287 				 */
2288 				nfsm_adv(nfsm_rndup(len));
2289 			}
2290 			if (v3) {
2291 				nfsm_dissect(tl, u_int32_t *,
2292 				    3 * NFSX_UNSIGNED);
2293 			} else {
2294 				nfsm_dissect(tl, u_int32_t *,
2295 				    2 * NFSX_UNSIGNED);
2296 			}
2297 
2298 			/*
2299 			 * If we were able to accomodate the last entry,
2300 			 * get the cookie for the next one.  Otherwise
2301 			 * hold-over the cookie for the one we were not
2302 			 * able to accomodate.
2303 			 */
2304 			if (bigenough) {
2305 				cookie.nfsuquad[0] = *tl++;
2306 				if (v3)
2307 					cookie.nfsuquad[1] = *tl++;
2308 			} else if (v3) {
2309 				tl += 2;
2310 			} else {
2311 				tl++;
2312 			}
2313 			more_dirs = fxdr_unsigned(int, *tl);
2314 		}
2315 		/*
2316 		 * If at end of rpc data, get the eof boolean
2317 		 */
2318 		if (!more_dirs) {
2319 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2320 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2321 		}
2322 		m_freem(mrep);
2323 	}
2324 	/*
2325 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2326 	 * by increasing d_reclen for the last record.
2327 	 */
2328 	if (blksiz > 0) {
2329 		left = DIRBLKSIZ - blksiz;
2330 		dp->nfs_reclen += left;
2331 		uiop->uio_iov->iov_base += left;
2332 		uiop->uio_iov->iov_len -= left;
2333 		uiop->uio_offset += left;
2334 		uiop->uio_resid -= left;
2335 	}
2336 
2337 	if (bigenough) {
2338 		/*
2339 		 * We hit the end of the directory, update direofoffset.
2340 		 */
2341 		dnp->n_direofoffset = uiop->uio_offset;
2342 	} else {
2343 		/*
2344 		 * There is more to go, insert the link cookie so the
2345 		 * next block can be read.
2346 		 */
2347 		if (uiop->uio_resid > 0)
2348 			printf("EEK! readdirrpc resid > 0\n");
2349 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2350 		*cookiep = cookie;
2351 	}
2352 nfsmout:
2353 	return (error);
2354 }
2355 
2356 /*
2357  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2358  */
2359 int
2360 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2361 {
2362 	int len, left;
2363 	struct nfs_dirent *dp;
2364 	u_int32_t *tl;
2365 	caddr_t cp;
2366 	int32_t t1, t2;
2367 	struct vnode *newvp;
2368 	nfsuint64 *cookiep;
2369 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2370 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2371 	nfsuint64 cookie;
2372 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2373 	struct nfsnode *dnp = VTONFS(vp), *np;
2374 	nfsfh_t *fhp;
2375 	u_quad_t fileno;
2376 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2377 	int attrflag, fhsize;
2378 	struct namecache *ncp;
2379 	struct namecache *dncp;
2380 	struct nlcomponent nlc;
2381 
2382 #ifndef nolint
2383 	dp = NULL;
2384 #endif
2385 #ifndef DIAGNOSTIC
2386 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2387 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2388 		panic("nfs readdirplusrpc bad uio");
2389 #endif
2390 	/*
2391 	 * Obtain the namecache record for the directory so we have something
2392 	 * to use as a basis for creating the entries.  This function will
2393 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2394 	 * from the tree and cannot be used for upward traversals, and the
2395 	 * ncp may be unnamed.  Note that other unrelated operations may
2396 	 * cause the ncp to be named at any time.
2397 	 */
2398 	dncp = cache_fromdvp(vp, NULL, 0);
2399 	bzero(&nlc, sizeof(nlc));
2400 	newvp = NULLVP;
2401 
2402 	/*
2403 	 * If there is no cookie, assume directory was stale.
2404 	 */
2405 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2406 	if (cookiep)
2407 		cookie = *cookiep;
2408 	else
2409 		return (NFSERR_BAD_COOKIE);
2410 	/*
2411 	 * Loop around doing readdir rpc's of size nm_readdirsize
2412 	 * truncated to a multiple of DIRBLKSIZ.
2413 	 * The stopping criteria is EOF or buffer full.
2414 	 */
2415 	while (more_dirs && bigenough) {
2416 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2417 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2418 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2419 		nfsm_fhtom(vp, 1);
2420  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2421 		*tl++ = cookie.nfsuquad[0];
2422 		*tl++ = cookie.nfsuquad[1];
2423 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2424 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2425 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2426 		*tl = txdr_unsigned(nmp->nm_rsize);
2427 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2428 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2429 		if (error) {
2430 			m_freem(mrep);
2431 			goto nfsmout;
2432 		}
2433 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2434 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2435 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2436 		more_dirs = fxdr_unsigned(int, *tl);
2437 
2438 		/* loop thru the dir entries, doctoring them to 4bsd form */
2439 		while (more_dirs && bigenough) {
2440 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2441 			fileno = fxdr_hyper(tl);
2442 			len = fxdr_unsigned(int, *(tl + 2));
2443 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2444 				error = EBADRPC;
2445 				m_freem(mrep);
2446 				goto nfsmout;
2447 			}
2448 			tlen = nfsm_rndup(len);
2449 			if (tlen == len)
2450 				tlen += 4;	/* To ensure null termination*/
2451 			left = DIRBLKSIZ - blksiz;
2452 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2453 				dp->nfs_reclen += left;
2454 				uiop->uio_iov->iov_base += left;
2455 				uiop->uio_iov->iov_len -= left;
2456 				uiop->uio_offset += left;
2457 				uiop->uio_resid -= left;
2458 				blksiz = 0;
2459 			}
2460 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2461 				bigenough = 0;
2462 			if (bigenough) {
2463 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2464 				dp->nfs_ino = fileno;
2465 				dp->nfs_namlen = len;
2466 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2467 				dp->nfs_type = DT_UNKNOWN;
2468 				blksiz += dp->nfs_reclen;
2469 				if (blksiz == DIRBLKSIZ)
2470 					blksiz = 0;
2471 				uiop->uio_offset += sizeof(struct nfs_dirent);
2472 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2473 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2474 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2475 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2476 				nlc.nlc_namelen = len;
2477 				nfsm_mtouio(uiop, len);
2478 				cp = uiop->uio_iov->iov_base;
2479 				tlen -= len;
2480 				*cp = '\0';
2481 				uiop->uio_iov->iov_base += tlen;
2482 				uiop->uio_iov->iov_len -= tlen;
2483 				uiop->uio_offset += tlen;
2484 				uiop->uio_resid -= tlen;
2485 			} else
2486 				nfsm_adv(nfsm_rndup(len));
2487 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2488 			if (bigenough) {
2489 				cookie.nfsuquad[0] = *tl++;
2490 				cookie.nfsuquad[1] = *tl++;
2491 			} else
2492 				tl += 2;
2493 
2494 			/*
2495 			 * Since the attributes are before the file handle
2496 			 * (sigh), we must skip over the attributes and then
2497 			 * come back and get them.
2498 			 */
2499 			attrflag = fxdr_unsigned(int, *tl);
2500 			if (attrflag) {
2501 			    dpossav1 = dpos;
2502 			    mdsav1 = md;
2503 			    nfsm_adv(NFSX_V3FATTR);
2504 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2505 			    doit = fxdr_unsigned(int, *tl);
2506 			    if (doit) {
2507 				nfsm_getfh(fhp, fhsize, 1);
2508 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2509 				    vref(vp);
2510 				    newvp = vp;
2511 				    np = dnp;
2512 				} else {
2513 				    error = nfs_nget(vp->v_mount, fhp,
2514 					fhsize, &np);
2515 				    if (error)
2516 					doit = 0;
2517 				    else
2518 					newvp = NFSTOV(np);
2519 				}
2520 			    }
2521 			    if (doit && bigenough) {
2522 				dpossav2 = dpos;
2523 				dpos = dpossav1;
2524 				mdsav2 = md;
2525 				md = mdsav1;
2526 				nfsm_loadattr(newvp, (struct vattr *)0);
2527 				dpos = dpossav2;
2528 				md = mdsav2;
2529 				dp->nfs_type =
2530 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2531 				if (dncp) {
2532 				    printf("NFS/READDIRPLUS, ENTER %*.*s\n",
2533 					nlc.nlc_namelen, nlc.nlc_namelen,
2534 					nlc.nlc_nameptr);
2535 				    ncp = cache_nlookup(dncp, &nlc);
2536 				    cache_setunresolved(ncp);
2537 				    cache_setvp(ncp, newvp);
2538 				    cache_put(ncp);
2539 				} else {
2540 				    printf("NFS/READDIRPLUS, UNABLE TO ENTER"
2541 					" %*.*s\n",
2542 					nlc.nlc_namelen, nlc.nlc_namelen,
2543 					nlc.nlc_nameptr);
2544 				}
2545 			    }
2546 			} else {
2547 			    /* Just skip over the file handle */
2548 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2549 			    i = fxdr_unsigned(int, *tl);
2550 			    nfsm_adv(nfsm_rndup(i));
2551 			}
2552 			if (newvp != NULLVP) {
2553 			    if (newvp == vp)
2554 				vrele(newvp);
2555 			    else
2556 				vput(newvp);
2557 			    newvp = NULLVP;
2558 			}
2559 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2560 			more_dirs = fxdr_unsigned(int, *tl);
2561 		}
2562 		/*
2563 		 * If at end of rpc data, get the eof boolean
2564 		 */
2565 		if (!more_dirs) {
2566 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2567 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2568 		}
2569 		m_freem(mrep);
2570 	}
2571 	/*
2572 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2573 	 * by increasing d_reclen for the last record.
2574 	 */
2575 	if (blksiz > 0) {
2576 		left = DIRBLKSIZ - blksiz;
2577 		dp->nfs_reclen += left;
2578 		uiop->uio_iov->iov_base += left;
2579 		uiop->uio_iov->iov_len -= left;
2580 		uiop->uio_offset += left;
2581 		uiop->uio_resid -= left;
2582 	}
2583 
2584 	/*
2585 	 * We are now either at the end of the directory or have filled the
2586 	 * block.
2587 	 */
2588 	if (bigenough)
2589 		dnp->n_direofoffset = uiop->uio_offset;
2590 	else {
2591 		if (uiop->uio_resid > 0)
2592 			printf("EEK! readdirplusrpc resid > 0\n");
2593 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2594 		*cookiep = cookie;
2595 	}
2596 nfsmout:
2597 	if (newvp != NULLVP) {
2598 	        if (newvp == vp)
2599 			vrele(newvp);
2600 		else
2601 			vput(newvp);
2602 		newvp = NULLVP;
2603 	}
2604 	if (dncp)
2605 		cache_drop(dncp);
2606 	return (error);
2607 }
2608 
2609 /*
2610  * Silly rename. To make the NFS filesystem that is stateless look a little
2611  * more like the "ufs" a remove of an active vnode is translated to a rename
2612  * to a funny looking filename that is removed by nfs_inactive on the
2613  * nfsnode. There is the potential for another process on a different client
2614  * to create the same funny name between the nfs_lookitup() fails and the
2615  * nfs_rename() completes, but...
2616  */
2617 static int
2618 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2619 {
2620 	struct sillyrename *sp;
2621 	struct nfsnode *np;
2622 	int error;
2623 
2624 	/*
2625 	 * We previously purged dvp instead of vp.  I don't know why, it
2626 	 * completely destroys performance.  We can't do it anyway with the
2627 	 * new VFS API since we would be breaking the namecache topology.
2628 	 */
2629 	cache_purge(vp);	/* XXX */
2630 	np = VTONFS(vp);
2631 #ifndef DIAGNOSTIC
2632 	if (vp->v_type == VDIR)
2633 		panic("nfs: sillyrename dir");
2634 #endif
2635 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2636 		M_NFSREQ, M_WAITOK);
2637 	sp->s_cred = crdup(cnp->cn_cred);
2638 	sp->s_dvp = dvp;
2639 	vref(dvp);
2640 
2641 	/* Fudge together a funny name */
2642 	sp->s_namlen = sprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2643 
2644 	/* Try lookitups until we get one that isn't there */
2645 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2646 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2647 		sp->s_name[4]++;
2648 		if (sp->s_name[4] > 'z') {
2649 			error = EINVAL;
2650 			goto bad;
2651 		}
2652 	}
2653 	error = nfs_renameit(dvp, cnp, sp);
2654 	if (error)
2655 		goto bad;
2656 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2657 		cnp->cn_td, &np);
2658 	np->n_sillyrename = sp;
2659 	return (0);
2660 bad:
2661 	vrele(sp->s_dvp);
2662 	crfree(sp->s_cred);
2663 	free((caddr_t)sp, M_NFSREQ);
2664 	return (error);
2665 }
2666 
2667 /*
2668  * Look up a file name and optionally either update the file handle or
2669  * allocate an nfsnode, depending on the value of npp.
2670  * npp == NULL	--> just do the lookup
2671  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2672  *			handled too
2673  * *npp != NULL --> update the file handle in the vnode
2674  */
2675 static int
2676 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2677 	     struct thread *td, struct nfsnode **npp)
2678 {
2679 	u_int32_t *tl;
2680 	caddr_t cp;
2681 	int32_t t1, t2;
2682 	struct vnode *newvp = (struct vnode *)0;
2683 	struct nfsnode *np, *dnp = VTONFS(dvp);
2684 	caddr_t bpos, dpos, cp2;
2685 	int error = 0, fhlen, attrflag;
2686 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2687 	nfsfh_t *nfhp;
2688 	int v3 = NFS_ISV3(dvp);
2689 
2690 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2691 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2692 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2693 	nfsm_fhtom(dvp, v3);
2694 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2695 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2696 	if (npp && !error) {
2697 		nfsm_getfh(nfhp, fhlen, v3);
2698 		if (*npp) {
2699 		    np = *npp;
2700 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2701 			free((caddr_t)np->n_fhp, M_NFSBIGFH);
2702 			np->n_fhp = &np->n_fh;
2703 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2704 			np->n_fhp =(nfsfh_t *)malloc(fhlen,M_NFSBIGFH,M_WAITOK);
2705 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2706 		    np->n_fhsize = fhlen;
2707 		    newvp = NFSTOV(np);
2708 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2709 		    vref(dvp);
2710 		    newvp = dvp;
2711 		} else {
2712 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2713 		    if (error) {
2714 			m_freem(mrep);
2715 			return (error);
2716 		    }
2717 		    newvp = NFSTOV(np);
2718 		}
2719 		if (v3) {
2720 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2721 			if (!attrflag && *npp == NULL) {
2722 				m_freem(mrep);
2723 				if (newvp == dvp)
2724 					vrele(newvp);
2725 				else
2726 					vput(newvp);
2727 				return (ENOENT);
2728 			}
2729 		} else
2730 			nfsm_loadattr(newvp, (struct vattr *)0);
2731 	}
2732 	m_freem(mrep);
2733 nfsmout:
2734 	if (npp && *npp == NULL) {
2735 		if (error) {
2736 			if (newvp) {
2737 				if (newvp == dvp)
2738 					vrele(newvp);
2739 				else
2740 					vput(newvp);
2741 			}
2742 		} else
2743 			*npp = np;
2744 	}
2745 	return (error);
2746 }
2747 
2748 /*
2749  * Nfs Version 3 commit rpc
2750  */
2751 int
2752 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2753 {
2754 	caddr_t cp;
2755 	u_int32_t *tl;
2756 	int32_t t1, t2;
2757 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2758 	caddr_t bpos, dpos, cp2;
2759 	int error = 0, wccflag = NFSV3_WCCRATTR;
2760 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2761 
2762 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2763 		return (0);
2764 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2765 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2766 	nfsm_fhtom(vp, 1);
2767 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2768 	txdr_hyper(offset, tl);
2769 	tl += 2;
2770 	*tl = txdr_unsigned(cnt);
2771 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2772 	nfsm_wcc_data(vp, wccflag);
2773 	if (!error) {
2774 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2775 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2776 			NFSX_V3WRITEVERF)) {
2777 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2778 				NFSX_V3WRITEVERF);
2779 			error = NFSERR_STALEWRITEVERF;
2780 		}
2781 	}
2782 	m_freem(mrep);
2783 nfsmout:
2784 	return (error);
2785 }
2786 
2787 /*
2788  * Kludge City..
2789  * - make nfs_bmap() essentially a no-op that does no translation
2790  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2791  *   (Maybe I could use the process's page mapping, but I was concerned that
2792  *    Kernel Write might not be enabled and also figured copyout() would do
2793  *    a lot more work than bcopy() and also it currently happens in the
2794  *    context of the swapper process (2).
2795  *
2796  * nfs_bmap(struct vnode *a_vp, off_t a_loffset, struct vnode **a_vpp,
2797  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2798  */
2799 static int
2800 nfs_bmap(struct vop_bmap_args *ap)
2801 {
2802 	struct vnode *vp = ap->a_vp;
2803 
2804 	if (ap->a_vpp != NULL)
2805 		*ap->a_vpp = vp;
2806 	if (ap->a_doffsetp != NULL)
2807 		*ap->a_doffsetp = ap->a_loffset;
2808 	if (ap->a_runp != NULL)
2809 		*ap->a_runp = 0;
2810 	if (ap->a_runb != NULL)
2811 		*ap->a_runb = 0;
2812 	return (0);
2813 }
2814 
2815 /*
2816  * Strategy routine.
2817  *
2818  * For async requests when nfsiod(s) are running, queue the request by
2819  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2820  * request.
2821  */
2822 static int
2823 nfs_strategy(struct vop_strategy_args *ap)
2824 {
2825 	struct bio *bio = ap->a_bio;
2826 	struct bio *nbio;
2827 	struct buf *bp = bio->bio_buf;
2828 	struct thread *td;
2829 	int error = 0;
2830 
2831 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2832 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2833 	KASSERT(BUF_REFCNT(bp) > 0,
2834 		("nfs_strategy: buffer %p not locked", bp));
2835 
2836 	if (bp->b_flags & B_ASYNC)
2837 		td = NULL;
2838 	else
2839 		td = curthread;	/* XXX */
2840 
2841         /*
2842 	 * We probably don't need to push an nbio any more since no
2843 	 * block conversion is required due to the use of 64 bit byte
2844 	 * offsets, but do it anyway.
2845          */
2846 	nbio = push_bio(bio);
2847 	nbio->bio_offset = bio->bio_offset;
2848 
2849 	/*
2850 	 * If the op is asynchronous and an i/o daemon is waiting
2851 	 * queue the request, wake it up and wait for completion
2852 	 * otherwise just do it ourselves.
2853 	 */
2854 	if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2855 		error = nfs_doio(ap->a_vp, nbio, td);
2856 	return (error);
2857 }
2858 
2859 /*
2860  * Mmap a file
2861  *
2862  * NB Currently unsupported.
2863  *
2864  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred,
2865  *	    struct thread *a_td)
2866  */
2867 /* ARGSUSED */
2868 static int
2869 nfs_mmap(struct vop_mmap_args *ap)
2870 {
2871 	return (EINVAL);
2872 }
2873 
2874 /*
2875  * fsync vnode op. Just call nfs_flush() with commit == 1.
2876  *
2877  * nfs_fsync(struct vnode *a_vp, struct ucred * a_cred, int a_waitfor,
2878  *	     struct thread *a_td)
2879  */
2880 /* ARGSUSED */
2881 static int
2882 nfs_fsync(struct vop_fsync_args *ap)
2883 {
2884 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2885 }
2886 
2887 /*
2888  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2889  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2890  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2891  * set the buffer contains data that has already been written to the server
2892  * and which now needs a commit RPC.
2893  *
2894  * If commit is 0 we only take one pass and only flush buffers containing new
2895  * dirty data.
2896  *
2897  * If commit is 1 we take two passes, issuing a commit RPC in the second
2898  * pass.
2899  *
2900  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2901  * to completely flush all pending data.
2902  *
2903  * Note that the RB_SCAN code properly handles the case where the
2904  * callback might block and directly or indirectly (another thread) cause
2905  * the RB tree to change.
2906  */
2907 
2908 #ifndef NFS_COMMITBVECSIZ
2909 #define NFS_COMMITBVECSIZ	16
2910 #endif
2911 
2912 struct nfs_flush_info {
2913 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2914 	struct thread *td;
2915 	struct vnode *vp;
2916 	int waitfor;
2917 	int slpflag;
2918 	int slptimeo;
2919 	int loops;
2920 	struct buf *bvary[NFS_COMMITBVECSIZ];
2921 	int bvsize;
2922 	off_t beg_off;
2923 	off_t end_off;
2924 };
2925 
2926 static int nfs_flush_bp(struct buf *bp, void *data);
2927 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2928 
2929 int
2930 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2931 {
2932 	struct nfsnode *np = VTONFS(vp);
2933 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2934 	struct nfs_flush_info info;
2935 	int error;
2936 
2937 	bzero(&info, sizeof(info));
2938 	info.td = td;
2939 	info.vp = vp;
2940 	info.waitfor = waitfor;
2941 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2942 	info.loops = 0;
2943 
2944 	do {
2945 		/*
2946 		 * Flush mode
2947 		 */
2948 		info.mode = NFI_FLUSHNEW;
2949 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2950 				nfs_flush_bp, &info);
2951 
2952 		/*
2953 		 * Take a second pass if committing and no error occured.
2954 		 * Clean up any left over collection (whether an error
2955 		 * occurs or not).
2956 		 */
2957 		if (commit && error == 0) {
2958 			info.mode = NFI_COMMIT;
2959 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2960 					nfs_flush_bp, &info);
2961 			if (info.bvsize)
2962 				error = nfs_flush_docommit(&info, error);
2963 		}
2964 
2965 		/*
2966 		 * Wait for pending I/O to complete before checking whether
2967 		 * any further dirty buffers exist.
2968 		 */
2969 		while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
2970 			vp->v_track_write.bk_waitflag = 1;
2971 			error = tsleep(&vp->v_track_write,
2972 				info.slpflag, "nfsfsync", info.slptimeo);
2973 			if (error) {
2974 				/*
2975 				 * We have to be able to break out if this
2976 				 * is an 'intr' mount.
2977 				 */
2978 				if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2979 					error = -EINTR;
2980 					break;
2981 				}
2982 
2983 				/*
2984 				 * Since we do not process pending signals,
2985 				 * once we get a PCATCH our tsleep() will no
2986 				 * longer sleep, switch to a fixed timeout
2987 				 * instead.
2988 				 */
2989 				if (info.slpflag == PCATCH) {
2990 					info.slpflag = 0;
2991 					info.slptimeo = 2 * hz;
2992 				}
2993 				error = 0;
2994 			}
2995 		}
2996 		++info.loops;
2997 		/*
2998 		 * Loop if we are flushing synchronous as well as committing,
2999 		 * and dirty buffers are still present.  Otherwise we might livelock.
3000 		 */
3001 	} while (waitfor == MNT_WAIT && commit &&
3002 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3003 
3004 	/*
3005 	 * The callbacks have to return a negative error to terminate the
3006 	 * RB scan.
3007 	 */
3008 	if (error < 0)
3009 		error = -error;
3010 
3011 	/*
3012 	 * Deal with any error collection
3013 	 */
3014 	if (np->n_flag & NWRITEERR) {
3015 		error = np->n_error;
3016 		np->n_flag &= ~NWRITEERR;
3017 	}
3018 	return (error);
3019 }
3020 
3021 
3022 static
3023 int
3024 nfs_flush_bp(struct buf *bp, void *data)
3025 {
3026 	struct nfs_flush_info *info = data;
3027 	off_t toff;
3028 	int error;
3029 
3030 	error = 0;
3031 	switch(info->mode) {
3032 	case NFI_FLUSHNEW:
3033 		crit_enter();
3034 		if (info->loops && info->waitfor == MNT_WAIT) {
3035 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3036 			if (error) {
3037 				int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3038 				if (info->slpflag & PCATCH)
3039 					lkflags |= LK_PCATCH;
3040 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3041 						     info->slptimeo);
3042 			}
3043 		} else {
3044 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3045 		}
3046 		if (error == 0) {
3047 			KKASSERT(bp->b_vp == info->vp);
3048 
3049 			if ((bp->b_flags & B_DELWRI) == 0)
3050 				panic("nfs_fsync: not dirty");
3051 			if (bp->b_flags & B_NEEDCOMMIT) {
3052 				BUF_UNLOCK(bp);
3053 				crit_exit();
3054 				break;
3055 			}
3056 			bremfree(bp);
3057 
3058 			bp->b_flags |= B_ASYNC;
3059 			crit_exit();
3060 			bwrite(bp);
3061 		} else {
3062 			crit_exit();
3063 			error = 0;
3064 		}
3065 		break;
3066 	case NFI_COMMIT:
3067 		/*
3068 		 * Only process buffers in need of a commit which we can
3069 		 * immediately lock.  This may prevent a buffer from being
3070 		 * committed, but the normal flush loop will block on the
3071 		 * same buffer so we shouldn't get into an endless loop.
3072 		 */
3073 		crit_enter();
3074 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3075 		    (B_DELWRI | B_NEEDCOMMIT) ||
3076 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3077 			crit_exit();
3078 			break;
3079 		}
3080 
3081 		KKASSERT(bp->b_vp == info->vp);
3082 		bremfree(bp);
3083 
3084 		/*
3085 		 * NOTE: storing the bp in the bvary[] basically sets
3086 		 * it up for a commit operation.
3087 		 *
3088 		 * We must call vfs_busy_pages() now so the commit operation
3089 		 * is interlocked with user modifications to memory mapped
3090 		 * pages.
3091 		 *
3092 		 * Note: to avoid loopback deadlocks, we do not
3093 		 * assign b_runningbufspace.
3094 		 */
3095 		bp->b_cmd = BUF_CMD_WRITE;
3096 		vfs_busy_pages(bp->b_vp, bp);
3097 		info->bvary[info->bvsize] = bp;
3098 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3099 		if (info->bvsize == 0 || toff < info->beg_off)
3100 			info->beg_off = toff;
3101 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3102 		if (info->bvsize == 0 || toff > info->end_off)
3103 			info->end_off = toff;
3104 		++info->bvsize;
3105 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3106 			error = nfs_flush_docommit(info, 0);
3107 			KKASSERT(info->bvsize == 0);
3108 		}
3109 		crit_exit();
3110 	}
3111 	return (error);
3112 }
3113 
3114 static
3115 int
3116 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3117 {
3118 	struct vnode *vp;
3119 	struct buf *bp;
3120 	off_t bytes;
3121 	int retv;
3122 	int i;
3123 
3124 	vp = info->vp;
3125 
3126 	if (info->bvsize > 0) {
3127 		/*
3128 		 * Commit data on the server, as required.  Note that
3129 		 * nfs_commit will use the vnode's cred for the commit.
3130 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3131 		 */
3132 		bytes = info->end_off - info->beg_off;
3133 		if (bytes > 0x40000000)
3134 			bytes = 0x40000000;
3135 		if (error) {
3136 			retv = -error;
3137 		} else {
3138 			retv = nfs_commit(vp, info->beg_off,
3139 					    (int)bytes, info->td);
3140 			if (retv == NFSERR_STALEWRITEVERF)
3141 				nfs_clearcommit(vp->v_mount);
3142 		}
3143 
3144 		/*
3145 		 * Now, either mark the blocks I/O done or mark the
3146 		 * blocks dirty, depending on whether the commit
3147 		 * succeeded.
3148 		 */
3149 		for (i = 0; i < info->bvsize; ++i) {
3150 			bp = info->bvary[i];
3151 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3152 			if (retv) {
3153 				/*
3154 				 * Error, leave B_DELWRI intact
3155 				 */
3156 				vfs_unbusy_pages(bp);
3157 				bp->b_cmd = BUF_CMD_DONE;
3158 				brelse(bp);
3159 			} else {
3160 				/*
3161 				 * Success, remove B_DELWRI ( bundirty() ).
3162 				 *
3163 				 * b_dirtyoff/b_dirtyend seem to be NFS
3164 				 * specific.  We should probably move that
3165 				 * into bundirty(). XXX
3166 				 *
3167 				 * We are faking an I/O write, we have to
3168 				 * start the transaction in order to
3169 				 * immediately biodone() it.
3170 				 */
3171 				crit_enter();
3172 				bp->b_flags |= B_ASYNC;
3173 				bundirty(bp);
3174 				bp->b_flags &= ~B_ERROR;
3175 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3176 				crit_exit();
3177 				biodone(&bp->b_bio1);
3178 			}
3179 		}
3180 		info->bvsize = 0;
3181 	}
3182 	return (error);
3183 }
3184 
3185 /*
3186  * NFS advisory byte-level locks.
3187  * Currently unsupported.
3188  *
3189  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3190  *		int a_flags)
3191  */
3192 static int
3193 nfs_advlock(struct vop_advlock_args *ap)
3194 {
3195 	struct nfsnode *np = VTONFS(ap->a_vp);
3196 
3197 	/*
3198 	 * The following kludge is to allow diskless support to work
3199 	 * until a real NFS lockd is implemented. Basically, just pretend
3200 	 * that this is a local lock.
3201 	 */
3202 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3203 }
3204 
3205 /*
3206  * Print out the contents of an nfsnode.
3207  *
3208  * nfs_print(struct vnode *a_vp)
3209  */
3210 static int
3211 nfs_print(struct vop_print_args *ap)
3212 {
3213 	struct vnode *vp = ap->a_vp;
3214 	struct nfsnode *np = VTONFS(vp);
3215 
3216 	printf("tag VT_NFS, fileid %ld fsid 0x%x",
3217 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3218 	if (vp->v_type == VFIFO)
3219 		fifo_printinfo(vp);
3220 	printf("\n");
3221 	return (0);
3222 }
3223 
3224 /*
3225  * nfs special file access vnode op.
3226  * Essentially just get vattr and then imitate iaccess() since the device is
3227  * local to the client.
3228  *
3229  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
3230  *		  struct thread *a_td)
3231  */
3232 static int
3233 nfsspec_access(struct vop_access_args *ap)
3234 {
3235 	struct vattr *vap;
3236 	gid_t *gp;
3237 	struct ucred *cred = ap->a_cred;
3238 	struct vnode *vp = ap->a_vp;
3239 	mode_t mode = ap->a_mode;
3240 	struct vattr vattr;
3241 	int i;
3242 	int error;
3243 
3244 	/*
3245 	 * Disallow write attempts on filesystems mounted read-only;
3246 	 * unless the file is a socket, fifo, or a block or character
3247 	 * device resident on the filesystem.
3248 	 */
3249 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3250 		switch (vp->v_type) {
3251 		case VREG:
3252 		case VDIR:
3253 		case VLNK:
3254 			return (EROFS);
3255 		default:
3256 			break;
3257 		}
3258 	}
3259 	/*
3260 	 * If you're the super-user,
3261 	 * you always get access.
3262 	 */
3263 	if (cred->cr_uid == 0)
3264 		return (0);
3265 	vap = &vattr;
3266 	error = VOP_GETATTR(vp, vap);
3267 	if (error)
3268 		return (error);
3269 	/*
3270 	 * Access check is based on only one of owner, group, public.
3271 	 * If not owner, then check group. If not a member of the
3272 	 * group, then check public access.
3273 	 */
3274 	if (cred->cr_uid != vap->va_uid) {
3275 		mode >>= 3;
3276 		gp = cred->cr_groups;
3277 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3278 			if (vap->va_gid == *gp)
3279 				goto found;
3280 		mode >>= 3;
3281 found:
3282 		;
3283 	}
3284 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3285 	return (error);
3286 }
3287 
3288 /*
3289  * Read wrapper for special devices.
3290  *
3291  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3292  *		struct ucred *a_cred)
3293  */
3294 static int
3295 nfsspec_read(struct vop_read_args *ap)
3296 {
3297 	struct nfsnode *np = VTONFS(ap->a_vp);
3298 
3299 	/*
3300 	 * Set access flag.
3301 	 */
3302 	np->n_flag |= NACC;
3303 	getnanotime(&np->n_atim);
3304 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3305 }
3306 
3307 /*
3308  * Write wrapper for special devices.
3309  *
3310  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3311  *		 struct ucred *a_cred)
3312  */
3313 static int
3314 nfsspec_write(struct vop_write_args *ap)
3315 {
3316 	struct nfsnode *np = VTONFS(ap->a_vp);
3317 
3318 	/*
3319 	 * Set update flag.
3320 	 */
3321 	np->n_flag |= NUPD;
3322 	getnanotime(&np->n_mtim);
3323 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3324 }
3325 
3326 /*
3327  * Close wrapper for special devices.
3328  *
3329  * Update the times on the nfsnode then do device close.
3330  *
3331  * nfsspec_close(struct vnode *a_vp, int a_fflag, struct ucred *a_cred,
3332  *		 struct thread *a_td)
3333  */
3334 static int
3335 nfsspec_close(struct vop_close_args *ap)
3336 {
3337 	struct vnode *vp = ap->a_vp;
3338 	struct nfsnode *np = VTONFS(vp);
3339 	struct vattr vattr;
3340 
3341 	if (np->n_flag & (NACC | NUPD)) {
3342 		np->n_flag |= NCHG;
3343 		if (vp->v_usecount == 1 &&
3344 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3345 			VATTR_NULL(&vattr);
3346 			if (np->n_flag & NACC)
3347 				vattr.va_atime = np->n_atim;
3348 			if (np->n_flag & NUPD)
3349 				vattr.va_mtime = np->n_mtim;
3350 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3351 		}
3352 	}
3353 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3354 }
3355 
3356 /*
3357  * Read wrapper for fifos.
3358  *
3359  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3360  *		struct ucred *a_cred)
3361  */
3362 static int
3363 nfsfifo_read(struct vop_read_args *ap)
3364 {
3365 	struct nfsnode *np = VTONFS(ap->a_vp);
3366 
3367 	/*
3368 	 * Set access flag.
3369 	 */
3370 	np->n_flag |= NACC;
3371 	getnanotime(&np->n_atim);
3372 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3373 }
3374 
3375 /*
3376  * Write wrapper for fifos.
3377  *
3378  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3379  *		 struct ucred *a_cred)
3380  */
3381 static int
3382 nfsfifo_write(struct vop_write_args *ap)
3383 {
3384 	struct nfsnode *np = VTONFS(ap->a_vp);
3385 
3386 	/*
3387 	 * Set update flag.
3388 	 */
3389 	np->n_flag |= NUPD;
3390 	getnanotime(&np->n_mtim);
3391 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3392 }
3393 
3394 /*
3395  * Close wrapper for fifos.
3396  *
3397  * Update the times on the nfsnode then do fifo close.
3398  *
3399  * nfsfifo_close(struct vnode *a_vp, int a_fflag, struct thread *a_td)
3400  */
3401 static int
3402 nfsfifo_close(struct vop_close_args *ap)
3403 {
3404 	struct vnode *vp = ap->a_vp;
3405 	struct nfsnode *np = VTONFS(vp);
3406 	struct vattr vattr;
3407 	struct timespec ts;
3408 
3409 	if (np->n_flag & (NACC | NUPD)) {
3410 		getnanotime(&ts);
3411 		if (np->n_flag & NACC)
3412 			np->n_atim = ts;
3413 		if (np->n_flag & NUPD)
3414 			np->n_mtim = ts;
3415 		np->n_flag |= NCHG;
3416 		if (vp->v_usecount == 1 &&
3417 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3418 			VATTR_NULL(&vattr);
3419 			if (np->n_flag & NACC)
3420 				vattr.va_atime = np->n_atim;
3421 			if (np->n_flag & NUPD)
3422 				vattr.va_mtime = np->n_mtim;
3423 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3424 		}
3425 	}
3426 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3427 }
3428 
3429