xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 8164c1fe)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.38 2005/03/17 17:28:46 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 
76 #include "rpcv2.h"
77 #include "nfsproto.h"
78 #include "nfs.h"
79 #include "nfsmount.h"
80 #include "nfsnode.h"
81 #include "xdr_subs.h"
82 #include "nfsm_subs.h"
83 #include "nqnfs.h"
84 
85 #include <net/if.h>
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 
89 /* Defs */
90 #define	TRUE	1
91 #define	FALSE	0
92 
93 /*
94  * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
95  * calls are not in getblk() and brelse() so that they would not be necessary
96  * here.
97  */
98 #ifndef B_VMIO
99 #define vfs_busy_pages(bp, f)
100 #endif
101 
102 static int	nfsspec_read (struct vop_read_args *);
103 static int	nfsspec_write (struct vop_write_args *);
104 static int	nfsfifo_read (struct vop_read_args *);
105 static int	nfsfifo_write (struct vop_write_args *);
106 static int	nfsspec_close (struct vop_close_args *);
107 static int	nfsfifo_close (struct vop_close_args *);
108 #define nfs_poll vop_nopoll
109 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
110 static	int	nfs_lookup (struct vop_lookup_args *);
111 static	int	nfs_create (struct vop_create_args *);
112 static	int	nfs_mknod (struct vop_mknod_args *);
113 static	int	nfs_open (struct vop_open_args *);
114 static	int	nfs_close (struct vop_close_args *);
115 static	int	nfs_access (struct vop_access_args *);
116 static	int	nfs_getattr (struct vop_getattr_args *);
117 static	int	nfs_setattr (struct vop_setattr_args *);
118 static	int	nfs_read (struct vop_read_args *);
119 static	int	nfs_mmap (struct vop_mmap_args *);
120 static	int	nfs_fsync (struct vop_fsync_args *);
121 static	int	nfs_remove (struct vop_remove_args *);
122 static	int	nfs_link (struct vop_link_args *);
123 static	int	nfs_rename (struct vop_rename_args *);
124 static	int	nfs_mkdir (struct vop_mkdir_args *);
125 static	int	nfs_rmdir (struct vop_rmdir_args *);
126 static	int	nfs_symlink (struct vop_symlink_args *);
127 static	int	nfs_readdir (struct vop_readdir_args *);
128 static	int	nfs_bmap (struct vop_bmap_args *);
129 static	int	nfs_strategy (struct vop_strategy_args *);
130 static	int	nfs_lookitup (struct vnode *, const char *, int,
131 			struct ucred *, struct thread *, struct nfsnode **);
132 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
133 static int	nfsspec_access (struct vop_access_args *);
134 static int	nfs_readlink (struct vop_readlink_args *);
135 static int	nfs_print (struct vop_print_args *);
136 static int	nfs_advlock (struct vop_advlock_args *);
137 static int	nfs_bwrite (struct vop_bwrite_args *);
138 
139 static	int	nfs_nresolve (struct vop_nresolve_args *);
140 /*
141  * Global vfs data structures for nfs
142  */
143 struct vnodeopv_entry_desc nfsv2_vnodeop_entries[] = {
144 	{ &vop_default_desc,		vop_defaultop },
145 	{ &vop_access_desc,		(vnodeopv_entry_t) nfs_access },
146 	{ &vop_advlock_desc,		(vnodeopv_entry_t) nfs_advlock },
147 	{ &vop_bmap_desc,		(vnodeopv_entry_t) nfs_bmap },
148 	{ &vop_bwrite_desc,		(vnodeopv_entry_t) nfs_bwrite },
149 	{ &vop_close_desc,		(vnodeopv_entry_t) nfs_close },
150 	{ &vop_create_desc,		(vnodeopv_entry_t) nfs_create },
151 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
152 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
153 	{ &vop_getpages_desc,		(vnodeopv_entry_t) nfs_getpages },
154 	{ &vop_putpages_desc,		(vnodeopv_entry_t) nfs_putpages },
155 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
156 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
157 	{ &vop_lease_desc,		vop_null },
158 	{ &vop_link_desc,		(vnodeopv_entry_t) nfs_link },
159 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
160 	{ &vop_lookup_desc,		(vnodeopv_entry_t) nfs_lookup },
161 	{ &vop_mkdir_desc,		(vnodeopv_entry_t) nfs_mkdir },
162 	{ &vop_mknod_desc,		(vnodeopv_entry_t) nfs_mknod },
163 	{ &vop_mmap_desc,		(vnodeopv_entry_t) nfs_mmap },
164 	{ &vop_open_desc,		(vnodeopv_entry_t) nfs_open },
165 	{ &vop_poll_desc,		(vnodeopv_entry_t) nfs_poll },
166 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
167 	{ &vop_read_desc,		(vnodeopv_entry_t) nfs_read },
168 	{ &vop_readdir_desc,		(vnodeopv_entry_t) nfs_readdir },
169 	{ &vop_readlink_desc,		(vnodeopv_entry_t) nfs_readlink },
170 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
171 	{ &vop_remove_desc,		(vnodeopv_entry_t) nfs_remove },
172 	{ &vop_rename_desc,		(vnodeopv_entry_t) nfs_rename },
173 	{ &vop_rmdir_desc,		(vnodeopv_entry_t) nfs_rmdir },
174 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
175 	{ &vop_strategy_desc,		(vnodeopv_entry_t) nfs_strategy },
176 	{ &vop_symlink_desc,		(vnodeopv_entry_t) nfs_symlink },
177 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
178 	{ &vop_write_desc,		(vnodeopv_entry_t) nfs_write },
179 
180 	{ &vop_nresolve_desc,		(vnodeopv_entry_t) nfs_nresolve },
181 	{ NULL, NULL }
182 };
183 
184 /*
185  * Special device vnode ops
186  */
187 struct vnodeopv_entry_desc nfsv2_specop_entries[] = {
188 	{ &vop_default_desc,		(vnodeopv_entry_t) spec_vnoperate },
189 	{ &vop_access_desc,		(vnodeopv_entry_t) nfsspec_access },
190 	{ &vop_close_desc,		(vnodeopv_entry_t) nfsspec_close },
191 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
192 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
193 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
194 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
195 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
196 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
197 	{ &vop_read_desc,		(vnodeopv_entry_t) nfsspec_read },
198 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
199 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
200 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
201 	{ &vop_write_desc,		(vnodeopv_entry_t) nfsspec_write },
202 	{ NULL, NULL }
203 };
204 
205 struct vnodeopv_entry_desc nfsv2_fifoop_entries[] = {
206 	{ &vop_default_desc,		(vnodeopv_entry_t) fifo_vnoperate },
207 	{ &vop_access_desc,		(vnodeopv_entry_t) nfsspec_access },
208 	{ &vop_close_desc,		(vnodeopv_entry_t) nfsfifo_close },
209 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
210 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
211 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
212 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
213 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
214 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
215 	{ &vop_read_desc,		(vnodeopv_entry_t) nfsfifo_read },
216 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
217 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
218 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
219 	{ &vop_write_desc,		(vnodeopv_entry_t) nfsfifo_write },
220 	{ NULL, NULL }
221 };
222 
223 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
224 				  struct componentname *cnp,
225 				  struct vattr *vap);
226 static int	nfs_removerpc (struct vnode *dvp, const char *name,
227 				   int namelen,
228 				   struct ucred *cred, struct thread *td);
229 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
230 				   int fnamelen, struct vnode *tdvp,
231 				   const char *tnameptr, int tnamelen,
232 				   struct ucred *cred, struct thread *td);
233 static int	nfs_renameit (struct vnode *sdvp,
234 				  struct componentname *scnp,
235 				  struct sillyrename *sp);
236 
237 /*
238  * Global variables
239  */
240 extern u_int32_t nfs_true, nfs_false;
241 extern u_int32_t nfs_xdrneg1;
242 extern struct nfsstats nfsstats;
243 extern nfstype nfsv3_type[9];
244 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
245 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
246 int nfs_numasync = 0;
247 #define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
248 
249 SYSCTL_DECL(_vfs_nfs);
250 
251 static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
252 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
253 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
254 
255 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
256 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
257 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE ACCESS cache timeout");
258 
259 static int	nfsv3_commit_on_close = 0;
260 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
261 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
262 #if 0
263 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
264 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
265 
266 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
267 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
268 #endif
269 
270 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
271 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
272 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
273 static int
274 nfs3_access_otw(struct vnode *vp, int wmode,
275 		struct thread *td, struct ucred *cred)
276 {
277 	const int v3 = 1;
278 	u_int32_t *tl;
279 	int error = 0, attrflag;
280 
281 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
282 	caddr_t bpos, dpos, cp2;
283 	int32_t t1, t2;
284 	caddr_t cp;
285 	u_int32_t rmode;
286 	struct nfsnode *np = VTONFS(vp);
287 
288 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
289 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
290 	nfsm_fhtom(vp, v3);
291 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
292 	*tl = txdr_unsigned(wmode);
293 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
294 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
295 	if (!error) {
296 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
297 		rmode = fxdr_unsigned(u_int32_t, *tl);
298 		np->n_mode = rmode;
299 		np->n_modeuid = cred->cr_uid;
300 		np->n_modestamp = mycpu->gd_time_seconds;
301 	}
302 	m_freem(mrep);
303 nfsmout:
304 	return error;
305 }
306 
307 /*
308  * nfs access vnode op.
309  * For nfs version 2, just return ok. File accesses may fail later.
310  * For nfs version 3, use the access rpc to check accessibility. If file modes
311  * are changed on the server, accesses might still fail later.
312  *
313  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
314  *	      struct thread *a_td)
315  */
316 static int
317 nfs_access(struct vop_access_args *ap)
318 {
319 	struct vnode *vp = ap->a_vp;
320 	int error = 0;
321 	u_int32_t mode, wmode;
322 	int v3 = NFS_ISV3(vp);
323 	struct nfsnode *np = VTONFS(vp);
324 
325 	/*
326 	 * Disallow write attempts on filesystems mounted read-only;
327 	 * unless the file is a socket, fifo, or a block or character
328 	 * device resident on the filesystem.
329 	 */
330 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
331 		switch (vp->v_type) {
332 		case VREG:
333 		case VDIR:
334 		case VLNK:
335 			return (EROFS);
336 		default:
337 			break;
338 		}
339 	}
340 	/*
341 	 * For nfs v3, check to see if we have done this recently, and if
342 	 * so return our cached result instead of making an ACCESS call.
343 	 * If not, do an access rpc, otherwise you are stuck emulating
344 	 * ufs_access() locally using the vattr. This may not be correct,
345 	 * since the server may apply other access criteria such as
346 	 * client uid-->server uid mapping that we do not know about.
347 	 */
348 	if (v3) {
349 		if (ap->a_mode & VREAD)
350 			mode = NFSV3ACCESS_READ;
351 		else
352 			mode = 0;
353 		if (vp->v_type != VDIR) {
354 			if (ap->a_mode & VWRITE)
355 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
356 			if (ap->a_mode & VEXEC)
357 				mode |= NFSV3ACCESS_EXECUTE;
358 		} else {
359 			if (ap->a_mode & VWRITE)
360 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
361 					 NFSV3ACCESS_DELETE);
362 			if (ap->a_mode & VEXEC)
363 				mode |= NFSV3ACCESS_LOOKUP;
364 		}
365 		/* XXX safety belt, only make blanket request if caching */
366 		if (nfsaccess_cache_timeout > 0) {
367 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
368 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
369 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
370 		} else {
371 			wmode = mode;
372 		}
373 
374 		/*
375 		 * Does our cached result allow us to give a definite yes to
376 		 * this request?
377 		 */
378 		if (np->n_modestamp &&
379 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
380 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
381 		   ((np->n_mode & mode) == mode)) {
382 			nfsstats.accesscache_hits++;
383 		} else {
384 			/*
385 			 * Either a no, or a don't know.  Go to the wire.
386 			 */
387 			nfsstats.accesscache_misses++;
388 		        error = nfs3_access_otw(vp, wmode, ap->a_td,ap->a_cred);
389 			if (!error) {
390 				if ((np->n_mode & mode) != mode) {
391 					error = EACCES;
392 				}
393 			}
394 		}
395 	} else {
396 		if ((error = nfsspec_access(ap)) != 0)
397 			return (error);
398 
399 		/*
400 		 * Attempt to prevent a mapped root from accessing a file
401 		 * which it shouldn't.  We try to read a byte from the file
402 		 * if the user is root and the file is not zero length.
403 		 * After calling nfsspec_access, we should have the correct
404 		 * file size cached.
405 		 */
406 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
407 		    && VTONFS(vp)->n_size > 0) {
408 			struct iovec aiov;
409 			struct uio auio;
410 			char buf[1];
411 
412 			aiov.iov_base = buf;
413 			aiov.iov_len = 1;
414 			auio.uio_iov = &aiov;
415 			auio.uio_iovcnt = 1;
416 			auio.uio_offset = 0;
417 			auio.uio_resid = 1;
418 			auio.uio_segflg = UIO_SYSSPACE;
419 			auio.uio_rw = UIO_READ;
420 			auio.uio_td = ap->a_td;
421 
422 			if (vp->v_type == VREG) {
423 				error = nfs_readrpc(vp, &auio);
424 			} else if (vp->v_type == VDIR) {
425 				char* bp;
426 				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
427 				aiov.iov_base = bp;
428 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
429 				error = nfs_readdirrpc(vp, &auio);
430 				free(bp, M_TEMP);
431 			} else if (vp->v_type == VLNK) {
432 				error = nfs_readlinkrpc(vp, &auio);
433 			} else {
434 				error = EACCES;
435 			}
436 		}
437 	}
438 	/*
439 	 * [re]record creds for reading and/or writing if access
440 	 * was granted.  Assume the NFS server will grant read access
441 	 * for execute requests.
442 	 */
443 	if (error == 0) {
444 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
445 			crhold(ap->a_cred);
446 			if (np->n_rucred)
447 				crfree(np->n_rucred);
448 			np->n_rucred = ap->a_cred;
449 		}
450 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
451 			crhold(ap->a_cred);
452 			if (np->n_wucred)
453 				crfree(np->n_wucred);
454 			np->n_wucred = ap->a_cred;
455 		}
456 	}
457 	return(error);
458 }
459 
460 /*
461  * nfs open vnode op
462  * Check to see if the type is ok
463  * and that deletion is not in progress.
464  * For paged in text files, you will need to flush the page cache
465  * if consistency is lost.
466  *
467  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
468  *	    struct thread *a_td)
469  */
470 /* ARGSUSED */
471 static int
472 nfs_open(struct vop_open_args *ap)
473 {
474 	struct vnode *vp = ap->a_vp;
475 	struct nfsnode *np = VTONFS(vp);
476 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
477 	struct vattr vattr;
478 	int error;
479 
480 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
481 #ifdef DIAGNOSTIC
482 		printf("open eacces vtyp=%d\n",vp->v_type);
483 #endif
484 		return (EOPNOTSUPP);
485 	}
486 
487 	/*
488 	 * Clear the attribute cache only if opening with write access.  It
489 	 * is unclear if we should do this at all here, but we certainly
490 	 * should not clear the cache unconditionally simply because a file
491 	 * is being opened.
492 	 */
493 	if (ap->a_mode & FWRITE)
494 		np->n_attrstamp = 0;
495 
496 	if (nmp->nm_flag & NFSMNT_NQNFS) {
497 		/*
498 		 * If NQNFS is active, get a valid lease
499 		 */
500 		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
501 		    do {
502 			error = nqnfs_getlease(vp, ND_READ, ap->a_td);
503 		    } while (error == NQNFS_EXPIRED);
504 		    if (error)
505 			return (error);
506 		    if (np->n_lrev != np->n_brev ||
507 			(np->n_flag & NQNFSNONCACHE)) {
508 			if ((error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1))
509 			    == EINTR) {
510 				return (error);
511 			}
512 			np->n_brev = np->n_lrev;
513 		    }
514 		}
515 	} else {
516 		/*
517 		 * For normal NFS, reconcile changes made locally verses
518 		 * changes made remotely.  Note that VOP_GETATTR only goes
519 		 * to the wire if the cached attribute has timed out or been
520 		 * cleared.
521 		 *
522 		 * If local modifications have been made clear the attribute
523 		 * cache to force an attribute and modified time check.  If
524 		 * GETATTR detects that the file has been changed by someone
525 		 * other then us it will set NRMODIFIED.
526 		 *
527 		 * If we are opening a directory and local changes have been
528 		 * made we have to invalidate the cache in order to ensure
529 		 * that we get the most up-to-date information from the
530 		 * server.  XXX
531 		 */
532 		if (np->n_flag & NLMODIFIED) {
533 			np->n_attrstamp = 0;
534 			if (vp->v_type == VDIR) {
535 				error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
536 				if (error == EINTR)
537 					return (error);
538 				nfs_invaldir(vp);
539 			}
540 		}
541 		error = VOP_GETATTR(vp, &vattr, ap->a_td);
542 		if (error)
543 			return (error);
544 		if (np->n_flag & NRMODIFIED) {
545 			if (vp->v_type == VDIR)
546 				nfs_invaldir(vp);
547 			error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
548 			if (error == EINTR)
549 				return (error);
550 			np->n_flag &= ~NRMODIFIED;
551 		}
552 	}
553 
554 	return (0);
555 }
556 
557 /*
558  * nfs close vnode op
559  * What an NFS client should do upon close after writing is a debatable issue.
560  * Most NFS clients push delayed writes to the server upon close, basically for
561  * two reasons:
562  * 1 - So that any write errors may be reported back to the client process
563  *     doing the close system call. By far the two most likely errors are
564  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
565  * 2 - To put a worst case upper bound on cache inconsistency between
566  *     multiple clients for the file.
567  * There is also a consistency problem for Version 2 of the protocol w.r.t.
568  * not being able to tell if other clients are writing a file concurrently,
569  * since there is no way of knowing if the changed modify time in the reply
570  * is only due to the write for this client.
571  * (NFS Version 3 provides weak cache consistency data in the reply that
572  *  should be sufficient to detect and handle this case.)
573  *
574  * The current code does the following:
575  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
576  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
577  *                     or commit them (this satisfies 1 and 2 except for the
578  *                     case where the server crashes after this close but
579  *                     before the commit RPC, which is felt to be "good
580  *                     enough". Changing the last argument to nfs_flush() to
581  *                     a 1 would force a commit operation, if it is felt a
582  *                     commit is necessary now.
583  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
584  *                     1 should be dealt with via an fsync() system call for
585  *                     cases where write errors are important.
586  *
587  * nfs_close(struct vnodeop_desc *a_desc, struct vnode *a_vp, int a_fflag,
588  *	     struct ucred *a_cred, struct thread *a_td)
589  */
590 /* ARGSUSED */
591 static int
592 nfs_close(struct vop_close_args *ap)
593 {
594 	struct vnode *vp = ap->a_vp;
595 	struct nfsnode *np = VTONFS(vp);
596 	int error = 0;
597 
598 	if (vp->v_type == VREG) {
599 	    if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQNFS) == 0 &&
600 		(np->n_flag & NLMODIFIED)) {
601 		if (NFS_ISV3(vp)) {
602 		    /*
603 		     * Under NFSv3 we have dirty buffers to dispose of.  We
604 		     * must flush them to the NFS server.  We have the option
605 		     * of waiting all the way through the commit rpc or just
606 		     * waiting for the initial write.  The default is to only
607 		     * wait through the initial write so the data is in the
608 		     * server's cache, which is roughly similar to the state
609 		     * a standard disk subsystem leaves the file in on close().
610 		     *
611 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
612 		     * potential races with other processes, and certainly
613 		     * cannot clear it if we don't commit.
614 		     */
615 		    int cm = nfsv3_commit_on_close ? 1 : 0;
616 		    error = nfs_flush(vp, MNT_WAIT, ap->a_td, cm);
617 		    /* np->n_flag &= ~NLMODIFIED; */
618 		} else {
619 		    error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
620 		}
621 		np->n_attrstamp = 0;
622 	    }
623 	    if (np->n_flag & NWRITEERR) {
624 		np->n_flag &= ~NWRITEERR;
625 		error = np->n_error;
626 	    }
627 	}
628 	return (error);
629 }
630 
631 /*
632  * nfs getattr call from vfs.
633  *
634  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
635  *		struct thread *a_td)
636  */
637 static int
638 nfs_getattr(struct vop_getattr_args *ap)
639 {
640 	struct vnode *vp = ap->a_vp;
641 	struct nfsnode *np = VTONFS(vp);
642 	caddr_t cp;
643 	u_int32_t *tl;
644 	int32_t t1, t2;
645 	caddr_t bpos, dpos;
646 	int error = 0;
647 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
648 	int v3 = NFS_ISV3(vp);
649 
650 	/*
651 	 * Update local times for special files.
652 	 */
653 	if (np->n_flag & (NACC | NUPD))
654 		np->n_flag |= NCHG;
655 	/*
656 	 * First look in the cache.
657 	 */
658 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
659 		return (0);
660 
661 	if (v3 && nfsaccess_cache_timeout > 0) {
662 		nfsstats.accesscache_misses++;
663 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, ap->a_td, nfs_vpcred(vp, ND_CHECK));
664 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
665 			return (0);
666 	}
667 
668 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
669 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
670 	nfsm_fhtom(vp, v3);
671 	nfsm_request(vp, NFSPROC_GETATTR, ap->a_td, nfs_vpcred(vp, ND_CHECK));
672 	if (!error) {
673 		nfsm_loadattr(vp, ap->a_vap);
674 	}
675 	m_freem(mrep);
676 nfsmout:
677 	return (error);
678 }
679 
680 /*
681  * nfs setattr call.
682  *
683  * nfs_setattr(struct vnodeop_desc *a_desc, struct vnode *a_vp,
684  *		struct vattr *a_vap, struct ucred *a_cred,
685  *		struct thread *a_td)
686  */
687 static int
688 nfs_setattr(struct vop_setattr_args *ap)
689 {
690 	struct vnode *vp = ap->a_vp;
691 	struct nfsnode *np = VTONFS(vp);
692 	struct vattr *vap = ap->a_vap;
693 	int error = 0;
694 	u_quad_t tsize;
695 
696 #ifndef nolint
697 	tsize = (u_quad_t)0;
698 #endif
699 
700 	/*
701 	 * Setting of flags is not supported.
702 	 */
703 	if (vap->va_flags != VNOVAL)
704 		return (EOPNOTSUPP);
705 
706 	/*
707 	 * Disallow write attempts if the filesystem is mounted read-only.
708 	 */
709   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
710 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
711 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
712 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
713 		return (EROFS);
714 	if (vap->va_size != VNOVAL) {
715  		switch (vp->v_type) {
716  		case VDIR:
717  			return (EISDIR);
718  		case VCHR:
719  		case VBLK:
720  		case VSOCK:
721  		case VFIFO:
722 			if (vap->va_mtime.tv_sec == VNOVAL &&
723 			    vap->va_atime.tv_sec == VNOVAL &&
724 			    vap->va_mode == (mode_t)VNOVAL &&
725 			    vap->va_uid == (uid_t)VNOVAL &&
726 			    vap->va_gid == (gid_t)VNOVAL)
727 				return (0);
728  			vap->va_size = VNOVAL;
729  			break;
730  		default:
731 			/*
732 			 * Disallow write attempts if the filesystem is
733 			 * mounted read-only.
734 			 */
735 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
736 				return (EROFS);
737 
738 			/*
739 			 * We run vnode_pager_setsize() early (why?),
740 			 * we must set np->n_size now to avoid vinvalbuf
741 			 * V_SAVE races that might setsize a lower
742 			 * value.
743 			 */
744 
745 			tsize = np->n_size;
746 			error = nfs_meta_setsize(vp, ap->a_td, vap->va_size);
747 
748  			if (np->n_flag & NLMODIFIED) {
749  			    if (vap->va_size == 0)
750  				error = nfs_vinvalbuf(vp, 0, ap->a_td, 1);
751  			    else
752  				error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
753  			    if (error) {
754 				np->n_size = tsize;
755 				vnode_pager_setsize(vp, np->n_size);
756  				return (error);
757 			    }
758  			}
759 			/*
760 			 * np->n_size has already been set to vap->va_size
761 			 * in nfs_meta_setsize(). We must set it again since
762 			 * nfs_loadattrcache() could be called through
763 			 * nfs_meta_setsize() and could modify np->n_size.
764 			 *
765 			 * (note that nfs_loadattrcache() will have called
766 			 * vnode_pager_setsize() for us in that case).
767 			 */
768 			np->n_vattr.va_size = np->n_size = vap->va_size;
769 			break;
770 		}
771   	} else if ((vap->va_mtime.tv_sec != VNOVAL ||
772 		vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NLMODIFIED) &&
773 		vp->v_type == VREG &&
774   		(error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1)) == EINTR)
775 		return (error);
776 	error = nfs_setattrrpc(vp, vap, ap->a_cred, ap->a_td);
777 	if (error && vap->va_size != VNOVAL) {
778 		np->n_size = np->n_vattr.va_size = tsize;
779 		vnode_pager_setsize(vp, np->n_size);
780 	}
781 	return (error);
782 }
783 
784 /*
785  * Do an nfs setattr rpc.
786  */
787 static int
788 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
789 	       struct ucred *cred, struct thread *td)
790 {
791 	struct nfsv2_sattr *sp;
792 	struct nfsnode *np = VTONFS(vp);
793 	caddr_t cp;
794 	int32_t t1, t2;
795 	caddr_t bpos, dpos, cp2;
796 	u_int32_t *tl;
797 	int error = 0, wccflag = NFSV3_WCCRATTR;
798 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
799 	int v3 = NFS_ISV3(vp);
800 
801 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
802 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
803 	nfsm_fhtom(vp, v3);
804 	if (v3) {
805 		nfsm_v3attrbuild(vap, TRUE);
806 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
807 		*tl = nfs_false;
808 	} else {
809 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
810 		if (vap->va_mode == (mode_t)VNOVAL)
811 			sp->sa_mode = nfs_xdrneg1;
812 		else
813 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
814 		if (vap->va_uid == (uid_t)VNOVAL)
815 			sp->sa_uid = nfs_xdrneg1;
816 		else
817 			sp->sa_uid = txdr_unsigned(vap->va_uid);
818 		if (vap->va_gid == (gid_t)VNOVAL)
819 			sp->sa_gid = nfs_xdrneg1;
820 		else
821 			sp->sa_gid = txdr_unsigned(vap->va_gid);
822 		sp->sa_size = txdr_unsigned(vap->va_size);
823 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
824 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
825 	}
826 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
827 	if (v3) {
828 		np->n_modestamp = 0;
829 		nfsm_wcc_data(vp, wccflag);
830 	} else
831 		nfsm_loadattr(vp, (struct vattr *)0);
832 	m_freem(mrep);
833 nfsmout:
834 	return (error);
835 }
836 
837 /*
838  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
839  * nfs_lookup() until all remaining new api calls are implemented.
840  *
841  * Resolve a namecache entry.  This function is passed a locked ncp and
842  * must call cache_setvp() on it as appropriate to resolve the entry.
843  */
844 static int
845 nfs_nresolve(struct vop_nresolve_args *ap)
846 {
847 	struct thread *td = curthread;
848 	struct namecache *ncp;
849 	struct ucred *cred;
850 	struct nfsnode *np;
851 	struct vnode *dvp;
852 	struct vnode *nvp;
853 	nfsfh_t *fhp;
854 	int attrflag;
855 	int fhsize;
856 	int error;
857 	int len;
858 	int v3;
859 	/******NFSM MACROS********/
860 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
861 	caddr_t bpos, dpos, cp, cp2;
862 	u_int32_t *tl;
863 	int32_t t1, t2;
864 
865 	cred = ap->a_cred;
866 	ncp = ap->a_ncp;
867 
868 	KKASSERT(ncp->nc_parent && ncp->nc_parent->nc_vp);
869 	dvp = ncp->nc_parent->nc_vp;
870 	if ((error = vget(dvp, LK_SHARED, td)) != 0)
871 		return (error);
872 
873 	nvp = NULL;
874 	v3 = NFS_ISV3(dvp);
875 	nfsstats.lookupcache_misses++;
876 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
877 	len = ncp->nc_nlen;
878 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
879 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
880 	nfsm_fhtom(dvp, v3);
881 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
882 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
883 	if (error) {
884 		/*
885 		 * Cache negatve lookups to reduce NFS traffic, but use
886 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
887 		 * XXX we should add a namecache flag for no-caching
888 		 * to uncache the negative hit as soon as possible, but
889 		 * we cannot simply destroy the entry because it is used
890 		 * as a placeholder by the caller.
891 		 */
892 		if (error == ENOENT) {
893 			int nticks;
894 
895 			if (nfsneg_cache_timeout)
896 				nticks = nfsneg_cache_timeout * hz;
897 			else
898 				nticks = 1;
899 			cache_setvp(ncp, NULL);
900 			cache_settimeout(ncp, nticks);
901 		}
902 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
903 		m_freem(mrep);
904 		goto nfsmout;
905 	}
906 
907 	/*
908 	 * Success, get the file handle, do various checks, and load
909 	 * post-operation data from the reply packet.  Theoretically
910 	 * we should never be looking up "." so, theoretically, we
911 	 * should never get the same file handle as our directory.  But
912 	 * we check anyway. XXX
913 	 *
914 	 * Note that no timeout is set for the positive cache hit.  We
915 	 * assume, theoretically, that ESTALE returns will be dealt with
916 	 * properly to handle NFS races and in anycase we cannot depend
917 	 * on a timeout to deal with NFS open/create/excl issues so instead
918 	 * of a bad hack here the rest of the NFS client code needs to do
919 	 * the right thing.
920 	 */
921 	nfsm_getfh(fhp, fhsize, v3);
922 
923 	np = VTONFS(dvp);
924 	if (NFS_CMPFH(np, fhp, fhsize)) {
925 		vref(dvp);
926 		nvp = dvp;
927 	} else {
928 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
929 		if (error) {
930 			m_freem(mrep);
931 			vput(dvp);
932 			return (error);
933 		}
934 		nvp = NFSTOV(np);
935 	}
936 	if (v3) {
937 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
938 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
939 	} else {
940 		nfsm_loadattr(nvp, NULL);
941 	}
942 	cache_setvp(ncp, nvp);
943 	m_freem(mrep);
944 nfsmout:
945 	vput(dvp);
946 	if (nvp) {
947 		if (nvp == dvp)
948 			vrele(nvp);
949 		else
950 			vput(nvp);
951 	}
952 	return (error);
953 }
954 
955 /*
956  * 'cached' nfs directory lookup
957  *
958  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
959  *
960  * nfs_lookup(struct vnodeop_desc *a_desc, struct vnode *a_dvp,
961  *	      struct vnode **a_vpp, struct componentname *a_cnp)
962  */
963 static int
964 nfs_lookup(struct vop_lookup_args *ap)
965 {
966 	struct componentname *cnp = ap->a_cnp;
967 	struct vnode *dvp = ap->a_dvp;
968 	struct vnode **vpp = ap->a_vpp;
969 	int flags = cnp->cn_flags;
970 	struct vnode *newvp;
971 	u_int32_t *tl;
972 	caddr_t cp;
973 	int32_t t1, t2;
974 	struct nfsmount *nmp;
975 	caddr_t bpos, dpos, cp2;
976 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
977 	long len;
978 	nfsfh_t *fhp;
979 	struct nfsnode *np;
980 	int lockparent, wantparent, error = 0, attrflag, fhsize;
981 	int v3 = NFS_ISV3(dvp);
982 	struct thread *td = cnp->cn_td;
983 
984 	/*
985 	 * Read-only mount check and directory check.
986 	 */
987 	*vpp = NULLVP;
988 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
989 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
990 		return (EROFS);
991 
992 	if (dvp->v_type != VDIR)
993 		return (ENOTDIR);
994 
995 	/*
996 	 * Look it up in the cache.  Note that ENOENT is only returned if we
997 	 * previously entered a negative hit (see later on).  The additional
998 	 * nfsneg_cache_timeout check causes previously cached results to
999 	 * be instantly ignored if the negative caching is turned off.
1000 	 */
1001 	lockparent = flags & CNP_LOCKPARENT;
1002 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1003 	nmp = VFSTONFS(dvp->v_mount);
1004 	np = VTONFS(dvp);
1005 
1006 	/*
1007 	 * Go to the wire.
1008 	 */
1009 	error = 0;
1010 	newvp = NULLVP;
1011 	nfsstats.lookupcache_misses++;
1012 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1013 	len = cnp->cn_namelen;
1014 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
1015 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1016 	nfsm_fhtom(dvp, v3);
1017 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1018 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
1019 	if (error) {
1020 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1021 		m_freem(mrep);
1022 		goto nfsmout;
1023 	}
1024 	nfsm_getfh(fhp, fhsize, v3);
1025 
1026 	/*
1027 	 * Handle RENAME case...
1028 	 */
1029 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1030 		if (NFS_CMPFH(np, fhp, fhsize)) {
1031 			m_freem(mrep);
1032 			return (EISDIR);
1033 		}
1034 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1035 		if (error) {
1036 			m_freem(mrep);
1037 			return (error);
1038 		}
1039 		newvp = NFSTOV(np);
1040 		if (v3) {
1041 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1042 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1043 		} else
1044 			nfsm_loadattr(newvp, (struct vattr *)0);
1045 		*vpp = newvp;
1046 		m_freem(mrep);
1047 		if (!lockparent) {
1048 			VOP_UNLOCK(dvp, 0, td);
1049 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1050 		}
1051 		return (0);
1052 	}
1053 
1054 	if (flags & CNP_ISDOTDOT) {
1055 		VOP_UNLOCK(dvp, 0, td);
1056 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1057 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1058 		if (error) {
1059 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, td);
1060 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1061 			return (error); /* NOTE: return error from nget */
1062 		}
1063 		newvp = NFSTOV(np);
1064 		if (lockparent) {
1065 			error = vn_lock(dvp, LK_EXCLUSIVE, td);
1066 			if (error) {
1067 				vput(newvp);
1068 				return (error);
1069 			}
1070 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1071 		}
1072 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1073 		vref(dvp);
1074 		newvp = dvp;
1075 	} else {
1076 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1077 		if (error) {
1078 			m_freem(mrep);
1079 			return (error);
1080 		}
1081 		if (!lockparent) {
1082 			VOP_UNLOCK(dvp, 0, td);
1083 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1084 		}
1085 		newvp = NFSTOV(np);
1086 	}
1087 	if (v3) {
1088 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1089 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1090 	} else
1091 		nfsm_loadattr(newvp, (struct vattr *)0);
1092 #if 0
1093 	/* XXX MOVE TO nfs_nremove() */
1094 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1095 	    cnp->cn_nameiop != NAMEI_DELETE) {
1096 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1097 	}
1098 #endif
1099 	*vpp = newvp;
1100 	m_freem(mrep);
1101 nfsmout:
1102 	if (error) {
1103 		if (newvp != NULLVP) {
1104 			vrele(newvp);
1105 			*vpp = NULLVP;
1106 		}
1107 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1108 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1109 		    error == ENOENT) {
1110 			if (!lockparent) {
1111 				VOP_UNLOCK(dvp, 0, td);
1112 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1113 			}
1114 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1115 				error = EROFS;
1116 			else
1117 				error = EJUSTRETURN;
1118 		}
1119 	}
1120 	return (error);
1121 }
1122 
1123 /*
1124  * nfs read call.
1125  * Just call nfs_bioread() to do the work.
1126  *
1127  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1128  *	    struct ucred *a_cred)
1129  */
1130 static int
1131 nfs_read(struct vop_read_args *ap)
1132 {
1133 	struct vnode *vp = ap->a_vp;
1134 
1135 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1136 	switch (vp->v_type) {
1137 	case VREG:
1138 		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1139 	case VDIR:
1140 		return (EISDIR);
1141 	default:
1142 		return EOPNOTSUPP;
1143 	}
1144 }
1145 
1146 /*
1147  * nfs readlink call
1148  *
1149  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1150  */
1151 static int
1152 nfs_readlink(struct vop_readlink_args *ap)
1153 {
1154 	struct vnode *vp = ap->a_vp;
1155 
1156 	if (vp->v_type != VLNK)
1157 		return (EINVAL);
1158 	return (nfs_bioread(vp, ap->a_uio, 0));
1159 }
1160 
1161 /*
1162  * Do a readlink rpc.
1163  * Called by nfs_doio() from below the buffer cache.
1164  */
1165 int
1166 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1167 {
1168 	u_int32_t *tl;
1169 	caddr_t cp;
1170 	int32_t t1, t2;
1171 	caddr_t bpos, dpos, cp2;
1172 	int error = 0, len, attrflag;
1173 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1174 	int v3 = NFS_ISV3(vp);
1175 
1176 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1177 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1178 	nfsm_fhtom(vp, v3);
1179 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1180 	if (v3)
1181 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1182 	if (!error) {
1183 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1184 		if (len == NFS_MAXPATHLEN) {
1185 			struct nfsnode *np = VTONFS(vp);
1186 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1187 				len = np->n_size;
1188 		}
1189 		nfsm_mtouio(uiop, len);
1190 	}
1191 	m_freem(mrep);
1192 nfsmout:
1193 	return (error);
1194 }
1195 
1196 /*
1197  * nfs read rpc call
1198  * Ditto above
1199  */
1200 int
1201 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1202 {
1203 	u_int32_t *tl;
1204 	caddr_t cp;
1205 	int32_t t1, t2;
1206 	caddr_t bpos, dpos, cp2;
1207 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1208 	struct nfsmount *nmp;
1209 	int error = 0, len, retlen, tsiz, eof, attrflag;
1210 	int v3 = NFS_ISV3(vp);
1211 
1212 #ifndef nolint
1213 	eof = 0;
1214 #endif
1215 	nmp = VFSTONFS(vp->v_mount);
1216 	tsiz = uiop->uio_resid;
1217 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1218 		return (EFBIG);
1219 	while (tsiz > 0) {
1220 		nfsstats.rpccnt[NFSPROC_READ]++;
1221 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1222 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1223 		nfsm_fhtom(vp, v3);
1224 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1225 		if (v3) {
1226 			txdr_hyper(uiop->uio_offset, tl);
1227 			*(tl + 2) = txdr_unsigned(len);
1228 		} else {
1229 			*tl++ = txdr_unsigned(uiop->uio_offset);
1230 			*tl++ = txdr_unsigned(len);
1231 			*tl = 0;
1232 		}
1233 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1234 		if (v3) {
1235 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1236 			if (error) {
1237 				m_freem(mrep);
1238 				goto nfsmout;
1239 			}
1240 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1241 			eof = fxdr_unsigned(int, *(tl + 1));
1242 		} else
1243 			nfsm_loadattr(vp, (struct vattr *)0);
1244 		nfsm_strsiz(retlen, nmp->nm_rsize);
1245 		nfsm_mtouio(uiop, retlen);
1246 		m_freem(mrep);
1247 		tsiz -= retlen;
1248 		if (v3) {
1249 			if (eof || retlen == 0) {
1250 				tsiz = 0;
1251 			}
1252 		} else if (retlen < len) {
1253 			tsiz = 0;
1254 		}
1255 	}
1256 nfsmout:
1257 	return (error);
1258 }
1259 
1260 /*
1261  * nfs write call
1262  */
1263 int
1264 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1265 {
1266 	u_int32_t *tl;
1267 	caddr_t cp;
1268 	int32_t t1, t2, backup;
1269 	caddr_t bpos, dpos, cp2;
1270 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1271 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1272 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1273 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1274 
1275 #ifndef DIAGNOSTIC
1276 	if (uiop->uio_iovcnt != 1)
1277 		panic("nfs: writerpc iovcnt > 1");
1278 #endif
1279 	*must_commit = 0;
1280 	tsiz = uiop->uio_resid;
1281 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1282 		return (EFBIG);
1283 	while (tsiz > 0) {
1284 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1285 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1286 		nfsm_reqhead(vp, NFSPROC_WRITE,
1287 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1288 		nfsm_fhtom(vp, v3);
1289 		if (v3) {
1290 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1291 			txdr_hyper(uiop->uio_offset, tl);
1292 			tl += 2;
1293 			*tl++ = txdr_unsigned(len);
1294 			*tl++ = txdr_unsigned(*iomode);
1295 			*tl = txdr_unsigned(len);
1296 		} else {
1297 			u_int32_t x;
1298 
1299 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1300 			/* Set both "begin" and "current" to non-garbage. */
1301 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1302 			*tl++ = x;	/* "begin offset" */
1303 			*tl++ = x;	/* "current offset" */
1304 			x = txdr_unsigned(len);
1305 			*tl++ = x;	/* total to this offset */
1306 			*tl = x;	/* size of this write */
1307 		}
1308 		nfsm_uiotom(uiop, len);
1309 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1310 		if (v3) {
1311 			/*
1312 			 * The write RPC returns a before and after mtime.  The
1313 			 * nfsm_wcc_data() macro checks the before n_mtime
1314 			 * against the before time and stores the after time
1315 			 * in the nfsnode's cached vattr and n_mtime field.
1316 			 * The NRMODIFIED bit will be set if the before
1317 			 * time did not match the original mtime.
1318 			 */
1319 			wccflag = NFSV3_WCCCHK;
1320 			nfsm_wcc_data(vp, wccflag);
1321 			if (!error) {
1322 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1323 					+ NFSX_V3WRITEVERF);
1324 				rlen = fxdr_unsigned(int, *tl++);
1325 				if (rlen == 0) {
1326 					error = NFSERR_IO;
1327 					m_freem(mrep);
1328 					break;
1329 				} else if (rlen < len) {
1330 					backup = len - rlen;
1331 					uiop->uio_iov->iov_base -= backup;
1332 					uiop->uio_iov->iov_len += backup;
1333 					uiop->uio_offset -= backup;
1334 					uiop->uio_resid += backup;
1335 					len = rlen;
1336 				}
1337 				commit = fxdr_unsigned(int, *tl++);
1338 
1339 				/*
1340 				 * Return the lowest committment level
1341 				 * obtained by any of the RPCs.
1342 				 */
1343 				if (committed == NFSV3WRITE_FILESYNC)
1344 					committed = commit;
1345 				else if (committed == NFSV3WRITE_DATASYNC &&
1346 					commit == NFSV3WRITE_UNSTABLE)
1347 					committed = commit;
1348 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1349 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1350 					NFSX_V3WRITEVERF);
1351 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1352 				} else if (bcmp((caddr_t)tl,
1353 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1354 				    *must_commit = 1;
1355 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1356 					NFSX_V3WRITEVERF);
1357 				}
1358 			}
1359 		} else {
1360 			nfsm_loadattr(vp, (struct vattr *)0);
1361 		}
1362 		m_freem(mrep);
1363 		if (error)
1364 			break;
1365 		tsiz -= len;
1366 	}
1367 nfsmout:
1368 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1369 		committed = NFSV3WRITE_FILESYNC;
1370 	*iomode = committed;
1371 	if (error)
1372 		uiop->uio_resid = tsiz;
1373 	return (error);
1374 }
1375 
1376 /*
1377  * nfs mknod rpc
1378  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1379  * mode set to specify the file type and the size field for rdev.
1380  */
1381 static int
1382 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1383 	     struct vattr *vap)
1384 {
1385 	struct nfsv2_sattr *sp;
1386 	u_int32_t *tl;
1387 	caddr_t cp;
1388 	int32_t t1, t2;
1389 	struct vnode *newvp = (struct vnode *)0;
1390 	struct nfsnode *np = (struct nfsnode *)0;
1391 	struct vattr vattr;
1392 	char *cp2;
1393 	caddr_t bpos, dpos;
1394 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1395 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1396 	u_int32_t rdev;
1397 	int v3 = NFS_ISV3(dvp);
1398 
1399 	if (vap->va_type == VCHR || vap->va_type == VBLK)
1400 		rdev = txdr_unsigned(vap->va_rdev);
1401 	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1402 		rdev = nfs_xdrneg1;
1403 	else {
1404 		return (EOPNOTSUPP);
1405 	}
1406 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1407 		return (error);
1408 	}
1409 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1410 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1411 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1412 	nfsm_fhtom(dvp, v3);
1413 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1414 	if (v3) {
1415 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1416 		*tl++ = vtonfsv3_type(vap->va_type);
1417 		nfsm_v3attrbuild(vap, FALSE);
1418 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1419 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1420 			*tl++ = txdr_unsigned(umajor(vap->va_rdev));
1421 			*tl = txdr_unsigned(uminor(vap->va_rdev));
1422 		}
1423 	} else {
1424 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1425 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1426 		sp->sa_uid = nfs_xdrneg1;
1427 		sp->sa_gid = nfs_xdrneg1;
1428 		sp->sa_size = rdev;
1429 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1430 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1431 	}
1432 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1433 	if (!error) {
1434 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1435 		if (!gotvp) {
1436 			if (newvp) {
1437 				vput(newvp);
1438 				newvp = (struct vnode *)0;
1439 			}
1440 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1441 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1442 			if (!error)
1443 				newvp = NFSTOV(np);
1444 		}
1445 	}
1446 	if (v3)
1447 		nfsm_wcc_data(dvp, wccflag);
1448 	m_freem(mrep);
1449 nfsmout:
1450 	if (error) {
1451 		if (newvp)
1452 			vput(newvp);
1453 	} else {
1454 		*vpp = newvp;
1455 	}
1456 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1457 	if (!wccflag)
1458 		VTONFS(dvp)->n_attrstamp = 0;
1459 	return (error);
1460 }
1461 
1462 /*
1463  * nfs mknod vop
1464  * just call nfs_mknodrpc() to do the work.
1465  *
1466  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1467  *	     struct componentname *a_cnp, struct vattr *a_vap)
1468  */
1469 /* ARGSUSED */
1470 static int
1471 nfs_mknod(struct vop_mknod_args *ap)
1472 {
1473 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1474 }
1475 
1476 static u_long create_verf;
1477 /*
1478  * nfs file create call
1479  *
1480  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1481  *	      struct componentname *a_cnp, struct vattr *a_vap)
1482  */
1483 static int
1484 nfs_create(struct vop_create_args *ap)
1485 {
1486 	struct vnode *dvp = ap->a_dvp;
1487 	struct vattr *vap = ap->a_vap;
1488 	struct componentname *cnp = ap->a_cnp;
1489 	struct nfsv2_sattr *sp;
1490 	u_int32_t *tl;
1491 	caddr_t cp;
1492 	int32_t t1, t2;
1493 	struct nfsnode *np = (struct nfsnode *)0;
1494 	struct vnode *newvp = (struct vnode *)0;
1495 	caddr_t bpos, dpos, cp2;
1496 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1497 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1498 	struct vattr vattr;
1499 	int v3 = NFS_ISV3(dvp);
1500 
1501 	/*
1502 	 * Oops, not for me..
1503 	 */
1504 	if (vap->va_type == VSOCK)
1505 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1506 
1507 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1508 		return (error);
1509 	}
1510 	if (vap->va_vaflags & VA_EXCLUSIVE)
1511 		fmode |= O_EXCL;
1512 again:
1513 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1514 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1515 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1516 	nfsm_fhtom(dvp, v3);
1517 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1518 	if (v3) {
1519 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1520 		if (fmode & O_EXCL) {
1521 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1522 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1523 #ifdef INET
1524 			if (!TAILQ_EMPTY(&in_ifaddrhead))
1525 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr.s_addr;
1526 			else
1527 #endif
1528 				*tl++ = create_verf;
1529 			*tl = ++create_verf;
1530 		} else {
1531 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1532 			nfsm_v3attrbuild(vap, FALSE);
1533 		}
1534 	} else {
1535 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1536 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1537 		sp->sa_uid = nfs_xdrneg1;
1538 		sp->sa_gid = nfs_xdrneg1;
1539 		sp->sa_size = 0;
1540 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1541 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1542 	}
1543 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1544 	if (!error) {
1545 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1546 		if (!gotvp) {
1547 			if (newvp) {
1548 				vput(newvp);
1549 				newvp = (struct vnode *)0;
1550 			}
1551 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1552 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1553 			if (!error)
1554 				newvp = NFSTOV(np);
1555 		}
1556 	}
1557 	if (v3)
1558 		nfsm_wcc_data(dvp, wccflag);
1559 	m_freem(mrep);
1560 nfsmout:
1561 	if (error) {
1562 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1563 			fmode &= ~O_EXCL;
1564 			goto again;
1565 		}
1566 		if (newvp)
1567 			vput(newvp);
1568 	} else if (v3 && (fmode & O_EXCL)) {
1569 		/*
1570 		 * We are normally called with only a partially initialized
1571 		 * VAP.  Since the NFSv3 spec says that server may use the
1572 		 * file attributes to store the verifier, the spec requires
1573 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1574 		 * in atime, but we can't really assume that all servers will
1575 		 * so we ensure that our SETATTR sets both atime and mtime.
1576 		 */
1577 		if (vap->va_mtime.tv_sec == VNOVAL)
1578 			vfs_timestamp(&vap->va_mtime);
1579 		if (vap->va_atime.tv_sec == VNOVAL)
1580 			vap->va_atime = vap->va_mtime;
1581 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1582 	}
1583 	if (!error) {
1584 		/*
1585 		 * The new np may have enough info for access
1586 		 * checks, make sure rucred and wucred are
1587 		 * initialized for read and write rpc's.
1588 		 */
1589 		np = VTONFS(newvp);
1590 		if (np->n_rucred == NULL)
1591 			np->n_rucred = crhold(cnp->cn_cred);
1592 		if (np->n_wucred == NULL)
1593 			np->n_wucred = crhold(cnp->cn_cred);
1594 		*ap->a_vpp = newvp;
1595 	}
1596 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1597 	if (!wccflag)
1598 		VTONFS(dvp)->n_attrstamp = 0;
1599 	return (error);
1600 }
1601 
1602 /*
1603  * nfs file remove call
1604  * To try and make nfs semantics closer to ufs semantics, a file that has
1605  * other processes using the vnode is renamed instead of removed and then
1606  * removed later on the last close.
1607  * - If v_usecount > 1
1608  *	  If a rename is not already in the works
1609  *	     call nfs_sillyrename() to set it up
1610  *     else
1611  *	  do the remove rpc
1612  *
1613  * nfs_remove(struct vnodeop_desc *a_desc, struct vnode *a_dvp,
1614  *	      struct vnode *a_vp, struct componentname *a_cnp)
1615  */
1616 static int
1617 nfs_remove(struct vop_remove_args *ap)
1618 {
1619 	struct vnode *vp = ap->a_vp;
1620 	struct vnode *dvp = ap->a_dvp;
1621 	struct componentname *cnp = ap->a_cnp;
1622 	struct nfsnode *np = VTONFS(vp);
1623 	int error = 0;
1624 	struct vattr vattr;
1625 
1626 #ifndef DIAGNOSTIC
1627 	if (vp->v_usecount < 1)
1628 		panic("nfs_remove: bad v_usecount");
1629 #endif
1630 	if (vp->v_type == VDIR)
1631 		error = EPERM;
1632 	else if (vp->v_usecount == 1 || (np->n_sillyrename &&
1633 	    VOP_GETATTR(vp, &vattr, cnp->cn_td) == 0 &&
1634 	    vattr.va_nlink > 1)) {
1635 		/*
1636 		 * throw away biocache buffers, mainly to avoid
1637 		 * unnecessary delayed writes later.
1638 		 */
1639 		error = nfs_vinvalbuf(vp, 0, cnp->cn_td, 1);
1640 		/* Do the rpc */
1641 		if (error != EINTR)
1642 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1643 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1644 		/*
1645 		 * Kludge City: If the first reply to the remove rpc is lost..
1646 		 *   the reply to the retransmitted request will be ENOENT
1647 		 *   since the file was in fact removed
1648 		 *   Therefore, we cheat and return success.
1649 		 */
1650 		if (error == ENOENT)
1651 			error = 0;
1652 	} else if (!np->n_sillyrename) {
1653 		error = nfs_sillyrename(dvp, vp, cnp);
1654 	}
1655 	np->n_attrstamp = 0;
1656 	return (error);
1657 }
1658 
1659 /*
1660  * nfs file remove rpc called from nfs_inactive
1661  */
1662 int
1663 nfs_removeit(struct sillyrename *sp)
1664 {
1665 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1666 		sp->s_cred, NULL));
1667 }
1668 
1669 /*
1670  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1671  */
1672 static int
1673 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1674 	      struct ucred *cred, struct thread *td)
1675 {
1676 	u_int32_t *tl;
1677 	caddr_t cp;
1678 	int32_t t1, t2;
1679 	caddr_t bpos, dpos, cp2;
1680 	int error = 0, wccflag = NFSV3_WCCRATTR;
1681 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1682 	int v3 = NFS_ISV3(dvp);
1683 
1684 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1685 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1686 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1687 	nfsm_fhtom(dvp, v3);
1688 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1689 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1690 	if (v3)
1691 		nfsm_wcc_data(dvp, wccflag);
1692 	m_freem(mrep);
1693 nfsmout:
1694 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1695 	if (!wccflag)
1696 		VTONFS(dvp)->n_attrstamp = 0;
1697 	return (error);
1698 }
1699 
1700 /*
1701  * nfs file rename call
1702  *
1703  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1704  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1705  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1706  */
1707 static int
1708 nfs_rename(struct vop_rename_args *ap)
1709 {
1710 	struct vnode *fvp = ap->a_fvp;
1711 	struct vnode *tvp = ap->a_tvp;
1712 	struct vnode *fdvp = ap->a_fdvp;
1713 	struct vnode *tdvp = ap->a_tdvp;
1714 	struct componentname *tcnp = ap->a_tcnp;
1715 	struct componentname *fcnp = ap->a_fcnp;
1716 	int error;
1717 
1718 	/* Check for cross-device rename */
1719 	if ((fvp->v_mount != tdvp->v_mount) ||
1720 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1721 		error = EXDEV;
1722 		goto out;
1723 	}
1724 
1725 	/*
1726 	 * We have to flush B_DELWRI data prior to renaming
1727 	 * the file.  If we don't, the delayed-write buffers
1728 	 * can be flushed out later after the file has gone stale
1729 	 * under NFSV3.  NFSV2 does not have this problem because
1730 	 * ( as far as I can tell ) it flushes dirty buffers more
1731 	 * often.
1732 	 */
1733 
1734 	VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_td);
1735 	if (tvp)
1736 	    VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_td);
1737 
1738 	/*
1739 	 * If the tvp exists and is in use, sillyrename it before doing the
1740 	 * rename of the new file over it.
1741 	 *
1742 	 * XXX Can't sillyrename a directory.
1743 	 *
1744 	 * We do not attempt to do any namecache purges in this old API
1745 	 * routine.  The new API compat functions have access to the actual
1746 	 * namecache structures and will do it for us.
1747 	 */
1748 	if (tvp && tvp->v_usecount > 1 && !VTONFS(tvp)->n_sillyrename &&
1749 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1750 		vput(tvp);
1751 		tvp = NULL;
1752 	} else if (tvp) {
1753 		;
1754 	}
1755 
1756 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1757 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1758 		tcnp->cn_td);
1759 
1760 out:
1761 	if (tdvp == tvp)
1762 		vrele(tdvp);
1763 	else
1764 		vput(tdvp);
1765 	if (tvp)
1766 		vput(tvp);
1767 	vrele(fdvp);
1768 	vrele(fvp);
1769 	/*
1770 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1771 	 */
1772 	if (error == ENOENT)
1773 		error = 0;
1774 	return (error);
1775 }
1776 
1777 /*
1778  * nfs file rename rpc called from nfs_remove() above
1779  */
1780 static int
1781 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1782 	     struct sillyrename *sp)
1783 {
1784 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1785 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1786 }
1787 
1788 /*
1789  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1790  */
1791 static int
1792 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1793 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1794 	      struct ucred *cred, struct thread *td)
1795 {
1796 	u_int32_t *tl;
1797 	caddr_t cp;
1798 	int32_t t1, t2;
1799 	caddr_t bpos, dpos, cp2;
1800 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1801 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1802 	int v3 = NFS_ISV3(fdvp);
1803 
1804 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1805 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1806 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1807 		nfsm_rndup(tnamelen));
1808 	nfsm_fhtom(fdvp, v3);
1809 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1810 	nfsm_fhtom(tdvp, v3);
1811 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1812 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1813 	if (v3) {
1814 		nfsm_wcc_data(fdvp, fwccflag);
1815 		nfsm_wcc_data(tdvp, twccflag);
1816 	}
1817 	m_freem(mrep);
1818 nfsmout:
1819 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1820 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1821 	if (!fwccflag)
1822 		VTONFS(fdvp)->n_attrstamp = 0;
1823 	if (!twccflag)
1824 		VTONFS(tdvp)->n_attrstamp = 0;
1825 	return (error);
1826 }
1827 
1828 /*
1829  * nfs hard link create call
1830  *
1831  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1832  *	    struct componentname *a_cnp)
1833  */
1834 static int
1835 nfs_link(struct vop_link_args *ap)
1836 {
1837 	struct vnode *vp = ap->a_vp;
1838 	struct vnode *tdvp = ap->a_tdvp;
1839 	struct componentname *cnp = ap->a_cnp;
1840 	u_int32_t *tl;
1841 	caddr_t cp;
1842 	int32_t t1, t2;
1843 	caddr_t bpos, dpos, cp2;
1844 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1845 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1846 	int v3;
1847 
1848 	if (vp->v_mount != tdvp->v_mount) {
1849 		return (EXDEV);
1850 	}
1851 
1852 	/*
1853 	 * Push all writes to the server, so that the attribute cache
1854 	 * doesn't get "out of sync" with the server.
1855 	 * XXX There should be a better way!
1856 	 */
1857 	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_td);
1858 
1859 	v3 = NFS_ISV3(vp);
1860 	nfsstats.rpccnt[NFSPROC_LINK]++;
1861 	nfsm_reqhead(vp, NFSPROC_LINK,
1862 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1863 	nfsm_fhtom(vp, v3);
1864 	nfsm_fhtom(tdvp, v3);
1865 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1866 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1867 	if (v3) {
1868 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1869 		nfsm_wcc_data(tdvp, wccflag);
1870 	}
1871 	m_freem(mrep);
1872 nfsmout:
1873 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1874 	if (!attrflag)
1875 		VTONFS(vp)->n_attrstamp = 0;
1876 	if (!wccflag)
1877 		VTONFS(tdvp)->n_attrstamp = 0;
1878 	/*
1879 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1880 	 */
1881 	if (error == EEXIST)
1882 		error = 0;
1883 	return (error);
1884 }
1885 
1886 /*
1887  * nfs symbolic link create call
1888  *
1889  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1890  *		struct componentname *a_cnp, struct vattr *a_vap,
1891  *		char *a_target)
1892  */
1893 static int
1894 nfs_symlink(struct vop_symlink_args *ap)
1895 {
1896 	struct vnode *dvp = ap->a_dvp;
1897 	struct vattr *vap = ap->a_vap;
1898 	struct componentname *cnp = ap->a_cnp;
1899 	struct nfsv2_sattr *sp;
1900 	u_int32_t *tl;
1901 	caddr_t cp;
1902 	int32_t t1, t2;
1903 	caddr_t bpos, dpos, cp2;
1904 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1905 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1906 	struct vnode *newvp = (struct vnode *)0;
1907 	int v3 = NFS_ISV3(dvp);
1908 
1909 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1910 	slen = strlen(ap->a_target);
1911 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1912 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1913 	nfsm_fhtom(dvp, v3);
1914 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1915 	if (v3) {
1916 		nfsm_v3attrbuild(vap, FALSE);
1917 	}
1918 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1919 	if (!v3) {
1920 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1921 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1922 		sp->sa_uid = nfs_xdrneg1;
1923 		sp->sa_gid = nfs_xdrneg1;
1924 		sp->sa_size = nfs_xdrneg1;
1925 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1926 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1927 	}
1928 
1929 	/*
1930 	 * Issue the NFS request and get the rpc response.
1931 	 *
1932 	 * Only NFSv3 responses returning an error of 0 actually return
1933 	 * a file handle that can be converted into newvp without having
1934 	 * to do an extra lookup rpc.
1935 	 */
1936 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1937 	if (v3) {
1938 		if (error == 0)
1939 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1940 		nfsm_wcc_data(dvp, wccflag);
1941 	}
1942 
1943 	/*
1944 	 * out code jumps -> here, mrep is also freed.
1945 	 */
1946 
1947 	m_freem(mrep);
1948 nfsmout:
1949 
1950 	/*
1951 	 * If we get an EEXIST error, silently convert it to no-error
1952 	 * in case of an NFS retry.
1953 	 */
1954 	if (error == EEXIST)
1955 		error = 0;
1956 
1957 	/*
1958 	 * If we do not have (or no longer have) an error, and we could
1959 	 * not extract the newvp from the response due to the request being
1960 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1961 	 * to obtain a newvp to return.
1962 	 */
1963 	if (error == 0 && newvp == NULL) {
1964 		struct nfsnode *np = NULL;
1965 
1966 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1967 		    cnp->cn_cred, cnp->cn_td, &np);
1968 		if (!error)
1969 			newvp = NFSTOV(np);
1970 	}
1971 	if (error) {
1972 		if (newvp)
1973 			vput(newvp);
1974 	} else {
1975 		*ap->a_vpp = newvp;
1976 	}
1977 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1978 	if (!wccflag)
1979 		VTONFS(dvp)->n_attrstamp = 0;
1980 	return (error);
1981 }
1982 
1983 /*
1984  * nfs make dir call
1985  *
1986  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1987  *	     struct componentname *a_cnp, struct vattr *a_vap)
1988  */
1989 static int
1990 nfs_mkdir(struct vop_mkdir_args *ap)
1991 {
1992 	struct vnode *dvp = ap->a_dvp;
1993 	struct vattr *vap = ap->a_vap;
1994 	struct componentname *cnp = ap->a_cnp;
1995 	struct nfsv2_sattr *sp;
1996 	u_int32_t *tl;
1997 	caddr_t cp;
1998 	int32_t t1, t2;
1999 	int len;
2000 	struct nfsnode *np = (struct nfsnode *)0;
2001 	struct vnode *newvp = (struct vnode *)0;
2002 	caddr_t bpos, dpos, cp2;
2003 	int error = 0, wccflag = NFSV3_WCCRATTR;
2004 	int gotvp = 0;
2005 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2006 	struct vattr vattr;
2007 	int v3 = NFS_ISV3(dvp);
2008 
2009 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
2010 		return (error);
2011 	}
2012 	len = cnp->cn_namelen;
2013 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2014 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
2015 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
2016 	nfsm_fhtom(dvp, v3);
2017 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
2018 	if (v3) {
2019 		nfsm_v3attrbuild(vap, FALSE);
2020 	} else {
2021 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2022 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2023 		sp->sa_uid = nfs_xdrneg1;
2024 		sp->sa_gid = nfs_xdrneg1;
2025 		sp->sa_size = nfs_xdrneg1;
2026 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2027 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2028 	}
2029 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2030 	if (!error)
2031 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2032 	if (v3)
2033 		nfsm_wcc_data(dvp, wccflag);
2034 	m_freem(mrep);
2035 nfsmout:
2036 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2037 	if (!wccflag)
2038 		VTONFS(dvp)->n_attrstamp = 0;
2039 	/*
2040 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2041 	 * if we can succeed in looking up the directory.
2042 	 */
2043 	if (error == EEXIST || (!error && !gotvp)) {
2044 		if (newvp) {
2045 			vrele(newvp);
2046 			newvp = (struct vnode *)0;
2047 		}
2048 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2049 			cnp->cn_td, &np);
2050 		if (!error) {
2051 			newvp = NFSTOV(np);
2052 			if (newvp->v_type != VDIR)
2053 				error = EEXIST;
2054 		}
2055 	}
2056 	if (error) {
2057 		if (newvp)
2058 			vrele(newvp);
2059 	} else
2060 		*ap->a_vpp = newvp;
2061 	return (error);
2062 }
2063 
2064 /*
2065  * nfs remove directory call
2066  *
2067  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2068  *	     struct componentname *a_cnp)
2069  */
2070 static int
2071 nfs_rmdir(struct vop_rmdir_args *ap)
2072 {
2073 	struct vnode *vp = ap->a_vp;
2074 	struct vnode *dvp = ap->a_dvp;
2075 	struct componentname *cnp = ap->a_cnp;
2076 	u_int32_t *tl;
2077 	caddr_t cp;
2078 	int32_t t1, t2;
2079 	caddr_t bpos, dpos, cp2;
2080 	int error = 0, wccflag = NFSV3_WCCRATTR;
2081 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2082 	int v3 = NFS_ISV3(dvp);
2083 
2084 	if (dvp == vp)
2085 		return (EINVAL);
2086 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2087 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2088 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2089 	nfsm_fhtom(dvp, v3);
2090 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2091 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2092 	if (v3)
2093 		nfsm_wcc_data(dvp, wccflag);
2094 	m_freem(mrep);
2095 nfsmout:
2096 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2097 	if (!wccflag)
2098 		VTONFS(dvp)->n_attrstamp = 0;
2099 	/*
2100 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2101 	 */
2102 	if (error == ENOENT)
2103 		error = 0;
2104 	return (error);
2105 }
2106 
2107 /*
2108  * nfs readdir call
2109  *
2110  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2111  */
2112 static int
2113 nfs_readdir(struct vop_readdir_args *ap)
2114 {
2115 	struct vnode *vp = ap->a_vp;
2116 	struct nfsnode *np = VTONFS(vp);
2117 	struct uio *uio = ap->a_uio;
2118 	int tresid, error;
2119 	struct vattr vattr;
2120 
2121 	if (vp->v_type != VDIR)
2122 		return (EPERM);
2123 
2124 	/*
2125 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2126 	 * and then check that is still valid, or if this is an NQNFS mount
2127 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2128 	 * VOP_GETATTR() does not necessarily go to the wire.
2129 	 */
2130 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2131 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2132 		if (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQNFS) {
2133 			if (NQNFS_CKCACHABLE(vp, ND_READ)) {
2134 				nfsstats.direofcache_hits++;
2135 				return (0);
2136 			}
2137 		} else if (VOP_GETATTR(vp, &vattr, uio->uio_td) == 0 &&
2138 			(np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2139 		) {
2140 			nfsstats.direofcache_hits++;
2141 			return (0);
2142 		}
2143 	}
2144 
2145 	/*
2146 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2147 	 * own cache coherency checks so we do not have to.
2148 	 */
2149 	tresid = uio->uio_resid;
2150 	error = nfs_bioread(vp, uio, 0);
2151 
2152 	if (!error && uio->uio_resid == tresid)
2153 		nfsstats.direofcache_misses++;
2154 	return (error);
2155 }
2156 
2157 /*
2158  * Readdir rpc call.
2159  * Called from below the buffer cache by nfs_doio().
2160  */
2161 int
2162 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2163 {
2164 	int len, left;
2165 	struct dirent *dp = NULL;
2166 	u_int32_t *tl;
2167 	caddr_t cp;
2168 	int32_t t1, t2;
2169 	nfsuint64 *cookiep;
2170 	caddr_t bpos, dpos, cp2;
2171 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2172 	nfsuint64 cookie;
2173 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2174 	struct nfsnode *dnp = VTONFS(vp);
2175 	u_quad_t fileno;
2176 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2177 	int attrflag;
2178 	int v3 = NFS_ISV3(vp);
2179 
2180 #ifndef DIAGNOSTIC
2181 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2182 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2183 		panic("nfs readdirrpc bad uio");
2184 #endif
2185 
2186 	/*
2187 	 * If there is no cookie, assume directory was stale.
2188 	 */
2189 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2190 	if (cookiep)
2191 		cookie = *cookiep;
2192 	else
2193 		return (NFSERR_BAD_COOKIE);
2194 	/*
2195 	 * Loop around doing readdir rpc's of size nm_readdirsize
2196 	 * truncated to a multiple of DIRBLKSIZ.
2197 	 * The stopping criteria is EOF or buffer full.
2198 	 */
2199 	while (more_dirs && bigenough) {
2200 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2201 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2202 			NFSX_READDIR(v3));
2203 		nfsm_fhtom(vp, v3);
2204 		if (v3) {
2205 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2206 			*tl++ = cookie.nfsuquad[0];
2207 			*tl++ = cookie.nfsuquad[1];
2208 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2209 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2210 		} else {
2211 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2212 			*tl++ = cookie.nfsuquad[0];
2213 		}
2214 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2215 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2216 		if (v3) {
2217 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2218 			if (!error) {
2219 				nfsm_dissect(tl, u_int32_t *,
2220 				    2 * NFSX_UNSIGNED);
2221 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2222 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2223 			} else {
2224 				m_freem(mrep);
2225 				goto nfsmout;
2226 			}
2227 		}
2228 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2229 		more_dirs = fxdr_unsigned(int, *tl);
2230 
2231 		/* loop thru the dir entries, doctoring them to 4bsd form */
2232 		while (more_dirs && bigenough) {
2233 			if (v3) {
2234 				nfsm_dissect(tl, u_int32_t *,
2235 				    3 * NFSX_UNSIGNED);
2236 				fileno = fxdr_hyper(tl);
2237 				len = fxdr_unsigned(int, *(tl + 2));
2238 			} else {
2239 				nfsm_dissect(tl, u_int32_t *,
2240 				    2 * NFSX_UNSIGNED);
2241 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2242 				len = fxdr_unsigned(int, *tl);
2243 			}
2244 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2245 				error = EBADRPC;
2246 				m_freem(mrep);
2247 				goto nfsmout;
2248 			}
2249 			tlen = nfsm_rndup(len);
2250 			if (tlen == len)
2251 				tlen += 4;	/* To ensure null termination */
2252 			left = DIRBLKSIZ - blksiz;
2253 			if ((tlen + DIRHDSIZ) > left) {
2254 				dp->d_reclen += left;
2255 				uiop->uio_iov->iov_base += left;
2256 				uiop->uio_iov->iov_len -= left;
2257 				uiop->uio_offset += left;
2258 				uiop->uio_resid -= left;
2259 				blksiz = 0;
2260 			}
2261 			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2262 				bigenough = 0;
2263 			if (bigenough) {
2264 				dp = (struct dirent *)uiop->uio_iov->iov_base;
2265 				dp->d_fileno = (int)fileno;
2266 				dp->d_namlen = len;
2267 				dp->d_reclen = tlen + DIRHDSIZ;
2268 				dp->d_type = DT_UNKNOWN;
2269 				blksiz += dp->d_reclen;
2270 				if (blksiz == DIRBLKSIZ)
2271 					blksiz = 0;
2272 				uiop->uio_offset += DIRHDSIZ;
2273 				uiop->uio_resid -= DIRHDSIZ;
2274 				uiop->uio_iov->iov_base += DIRHDSIZ;
2275 				uiop->uio_iov->iov_len -= DIRHDSIZ;
2276 				nfsm_mtouio(uiop, len);
2277 				cp = uiop->uio_iov->iov_base;
2278 				tlen -= len;
2279 				*cp = '\0';	/* null terminate */
2280 				uiop->uio_iov->iov_base += tlen;
2281 				uiop->uio_iov->iov_len -= tlen;
2282 				uiop->uio_offset += tlen;
2283 				uiop->uio_resid -= tlen;
2284 			} else
2285 				nfsm_adv(nfsm_rndup(len));
2286 			if (v3) {
2287 				nfsm_dissect(tl, u_int32_t *,
2288 				    3 * NFSX_UNSIGNED);
2289 			} else {
2290 				nfsm_dissect(tl, u_int32_t *,
2291 				    2 * NFSX_UNSIGNED);
2292 			}
2293 			if (bigenough) {
2294 				cookie.nfsuquad[0] = *tl++;
2295 				if (v3)
2296 					cookie.nfsuquad[1] = *tl++;
2297 			} else if (v3)
2298 				tl += 2;
2299 			else
2300 				tl++;
2301 			more_dirs = fxdr_unsigned(int, *tl);
2302 		}
2303 		/*
2304 		 * If at end of rpc data, get the eof boolean
2305 		 */
2306 		if (!more_dirs) {
2307 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2308 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2309 		}
2310 		m_freem(mrep);
2311 	}
2312 	/*
2313 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2314 	 * by increasing d_reclen for the last record.
2315 	 */
2316 	if (blksiz > 0) {
2317 		left = DIRBLKSIZ - blksiz;
2318 		dp->d_reclen += left;
2319 		uiop->uio_iov->iov_base += left;
2320 		uiop->uio_iov->iov_len -= left;
2321 		uiop->uio_offset += left;
2322 		uiop->uio_resid -= left;
2323 	}
2324 
2325 	/*
2326 	 * We are now either at the end of the directory or have filled the
2327 	 * block.
2328 	 */
2329 	if (bigenough)
2330 		dnp->n_direofoffset = uiop->uio_offset;
2331 	else {
2332 		if (uiop->uio_resid > 0)
2333 			printf("EEK! readdirrpc resid > 0\n");
2334 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2335 		*cookiep = cookie;
2336 	}
2337 nfsmout:
2338 	return (error);
2339 }
2340 
2341 /*
2342  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2343  */
2344 int
2345 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2346 {
2347 	int len, left;
2348 	struct dirent *dp;
2349 	u_int32_t *tl;
2350 	caddr_t cp;
2351 	int32_t t1, t2;
2352 	struct vnode *newvp;
2353 	nfsuint64 *cookiep;
2354 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2355 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2356 	nfsuint64 cookie;
2357 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2358 	struct nfsnode *dnp = VTONFS(vp), *np;
2359 	nfsfh_t *fhp;
2360 	u_quad_t fileno;
2361 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2362 	int attrflag, fhsize;
2363 	struct namecache *ncp;
2364 	struct namecache *dncp;
2365 	struct nlcomponent nlc;
2366 
2367 #ifndef nolint
2368 	dp = (struct dirent *)0;
2369 #endif
2370 #ifndef DIAGNOSTIC
2371 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2372 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2373 		panic("nfs readdirplusrpc bad uio");
2374 #endif
2375 	/*
2376 	 * Obtain the namecache record for the directory so we have something
2377 	 * to use as a basis for creating the entries.  This function will
2378 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2379 	 * from the tree and cannot be used for upward traversals, and the
2380 	 * ncp may be unnamed.  Note that other unrelated operations may
2381 	 * cause the ncp to be named at any time.
2382 	 */
2383 	dncp = cache_fromdvp(vp, NULL, 0);
2384 	bzero(&nlc, sizeof(nlc));
2385 	newvp = NULLVP;
2386 
2387 	/*
2388 	 * If there is no cookie, assume directory was stale.
2389 	 */
2390 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2391 	if (cookiep)
2392 		cookie = *cookiep;
2393 	else
2394 		return (NFSERR_BAD_COOKIE);
2395 	/*
2396 	 * Loop around doing readdir rpc's of size nm_readdirsize
2397 	 * truncated to a multiple of DIRBLKSIZ.
2398 	 * The stopping criteria is EOF or buffer full.
2399 	 */
2400 	while (more_dirs && bigenough) {
2401 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2402 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2403 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2404 		nfsm_fhtom(vp, 1);
2405  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2406 		*tl++ = cookie.nfsuquad[0];
2407 		*tl++ = cookie.nfsuquad[1];
2408 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2409 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2410 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2411 		*tl = txdr_unsigned(nmp->nm_rsize);
2412 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2413 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2414 		if (error) {
2415 			m_freem(mrep);
2416 			goto nfsmout;
2417 		}
2418 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2419 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2420 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2421 		more_dirs = fxdr_unsigned(int, *tl);
2422 
2423 		/* loop thru the dir entries, doctoring them to 4bsd form */
2424 		while (more_dirs && bigenough) {
2425 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2426 			fileno = fxdr_hyper(tl);
2427 			len = fxdr_unsigned(int, *(tl + 2));
2428 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2429 				error = EBADRPC;
2430 				m_freem(mrep);
2431 				goto nfsmout;
2432 			}
2433 			tlen = nfsm_rndup(len);
2434 			if (tlen == len)
2435 				tlen += 4;	/* To ensure null termination*/
2436 			left = DIRBLKSIZ - blksiz;
2437 			if ((tlen + DIRHDSIZ) > left) {
2438 				dp->d_reclen += left;
2439 				uiop->uio_iov->iov_base += left;
2440 				uiop->uio_iov->iov_len -= left;
2441 				uiop->uio_offset += left;
2442 				uiop->uio_resid -= left;
2443 				blksiz = 0;
2444 			}
2445 			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2446 				bigenough = 0;
2447 			if (bigenough) {
2448 				dp = (struct dirent *)uiop->uio_iov->iov_base;
2449 				dp->d_fileno = (int)fileno;
2450 				dp->d_namlen = len;
2451 				dp->d_reclen = tlen + DIRHDSIZ;
2452 				dp->d_type = DT_UNKNOWN;
2453 				blksiz += dp->d_reclen;
2454 				if (blksiz == DIRBLKSIZ)
2455 					blksiz = 0;
2456 				uiop->uio_offset += DIRHDSIZ;
2457 				uiop->uio_resid -= DIRHDSIZ;
2458 				uiop->uio_iov->iov_base += DIRHDSIZ;
2459 				uiop->uio_iov->iov_len -= DIRHDSIZ;
2460 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2461 				nlc.nlc_namelen = len;
2462 				nfsm_mtouio(uiop, len);
2463 				cp = uiop->uio_iov->iov_base;
2464 				tlen -= len;
2465 				*cp = '\0';
2466 				uiop->uio_iov->iov_base += tlen;
2467 				uiop->uio_iov->iov_len -= tlen;
2468 				uiop->uio_offset += tlen;
2469 				uiop->uio_resid -= tlen;
2470 			} else
2471 				nfsm_adv(nfsm_rndup(len));
2472 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2473 			if (bigenough) {
2474 				cookie.nfsuquad[0] = *tl++;
2475 				cookie.nfsuquad[1] = *tl++;
2476 			} else
2477 				tl += 2;
2478 
2479 			/*
2480 			 * Since the attributes are before the file handle
2481 			 * (sigh), we must skip over the attributes and then
2482 			 * come back and get them.
2483 			 */
2484 			attrflag = fxdr_unsigned(int, *tl);
2485 			if (attrflag) {
2486 			    dpossav1 = dpos;
2487 			    mdsav1 = md;
2488 			    nfsm_adv(NFSX_V3FATTR);
2489 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2490 			    doit = fxdr_unsigned(int, *tl);
2491 			    if (doit) {
2492 				nfsm_getfh(fhp, fhsize, 1);
2493 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2494 				    vref(vp);
2495 				    newvp = vp;
2496 				    np = dnp;
2497 				} else {
2498 				    error = nfs_nget(vp->v_mount, fhp,
2499 					fhsize, &np);
2500 				    if (error)
2501 					doit = 0;
2502 				    else
2503 					newvp = NFSTOV(np);
2504 				}
2505 			    }
2506 			    if (doit && bigenough) {
2507 				dpossav2 = dpos;
2508 				dpos = dpossav1;
2509 				mdsav2 = md;
2510 				md = mdsav1;
2511 				nfsm_loadattr(newvp, (struct vattr *)0);
2512 				dpos = dpossav2;
2513 				md = mdsav2;
2514 				dp->d_type =
2515 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2516 				if (dncp) {
2517 				    printf("NFS/READDIRPLUS, ENTER %*.*s\n",
2518 					nlc.nlc_namelen, nlc.nlc_namelen,
2519 					nlc.nlc_nameptr);
2520 				    ncp = cache_nlookup(dncp, &nlc);
2521 				    cache_setunresolved(ncp);
2522 				    cache_setvp(ncp, newvp);
2523 				    cache_put(ncp);
2524 				} else {
2525 				    printf("NFS/READDIRPLUS, UNABLE TO ENTER"
2526 					" %*.*s\n",
2527 					nlc.nlc_namelen, nlc.nlc_namelen,
2528 					nlc.nlc_nameptr);
2529 				}
2530 			    }
2531 			} else {
2532 			    /* Just skip over the file handle */
2533 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2534 			    i = fxdr_unsigned(int, *tl);
2535 			    nfsm_adv(nfsm_rndup(i));
2536 			}
2537 			if (newvp != NULLVP) {
2538 			    if (newvp == vp)
2539 				vrele(newvp);
2540 			    else
2541 				vput(newvp);
2542 			    newvp = NULLVP;
2543 			}
2544 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2545 			more_dirs = fxdr_unsigned(int, *tl);
2546 		}
2547 		/*
2548 		 * If at end of rpc data, get the eof boolean
2549 		 */
2550 		if (!more_dirs) {
2551 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2552 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2553 		}
2554 		m_freem(mrep);
2555 	}
2556 	/*
2557 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2558 	 * by increasing d_reclen for the last record.
2559 	 */
2560 	if (blksiz > 0) {
2561 		left = DIRBLKSIZ - blksiz;
2562 		dp->d_reclen += left;
2563 		uiop->uio_iov->iov_base += left;
2564 		uiop->uio_iov->iov_len -= left;
2565 		uiop->uio_offset += left;
2566 		uiop->uio_resid -= left;
2567 	}
2568 
2569 	/*
2570 	 * We are now either at the end of the directory or have filled the
2571 	 * block.
2572 	 */
2573 	if (bigenough)
2574 		dnp->n_direofoffset = uiop->uio_offset;
2575 	else {
2576 		if (uiop->uio_resid > 0)
2577 			printf("EEK! readdirplusrpc resid > 0\n");
2578 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2579 		*cookiep = cookie;
2580 	}
2581 nfsmout:
2582 	if (newvp != NULLVP) {
2583 	        if (newvp == vp)
2584 			vrele(newvp);
2585 		else
2586 			vput(newvp);
2587 		newvp = NULLVP;
2588 	}
2589 	if (dncp)
2590 		cache_drop(dncp);
2591 	return (error);
2592 }
2593 
2594 /*
2595  * Silly rename. To make the NFS filesystem that is stateless look a little
2596  * more like the "ufs" a remove of an active vnode is translated to a rename
2597  * to a funny looking filename that is removed by nfs_inactive on the
2598  * nfsnode. There is the potential for another process on a different client
2599  * to create the same funny name between the nfs_lookitup() fails and the
2600  * nfs_rename() completes, but...
2601  */
2602 static int
2603 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2604 {
2605 	struct sillyrename *sp;
2606 	struct nfsnode *np;
2607 	int error;
2608 
2609 	/*
2610 	 * We previously purged dvp instead of vp.  I don't know why, it
2611 	 * completely destroys performance.  We can't do it anyway with the
2612 	 * new VFS API since we would be breaking the namecache topology.
2613 	 */
2614 	cache_purge(vp);	/* XXX */
2615 	np = VTONFS(vp);
2616 #ifndef DIAGNOSTIC
2617 	if (vp->v_type == VDIR)
2618 		panic("nfs: sillyrename dir");
2619 #endif
2620 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2621 		M_NFSREQ, M_WAITOK);
2622 	sp->s_cred = crdup(cnp->cn_cred);
2623 	sp->s_dvp = dvp;
2624 	vref(dvp);
2625 
2626 	/* Fudge together a funny name */
2627 	sp->s_namlen = sprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2628 
2629 	/* Try lookitups until we get one that isn't there */
2630 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2631 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2632 		sp->s_name[4]++;
2633 		if (sp->s_name[4] > 'z') {
2634 			error = EINVAL;
2635 			goto bad;
2636 		}
2637 	}
2638 	error = nfs_renameit(dvp, cnp, sp);
2639 	if (error)
2640 		goto bad;
2641 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2642 		cnp->cn_td, &np);
2643 	np->n_sillyrename = sp;
2644 	return (0);
2645 bad:
2646 	vrele(sp->s_dvp);
2647 	crfree(sp->s_cred);
2648 	free((caddr_t)sp, M_NFSREQ);
2649 	return (error);
2650 }
2651 
2652 /*
2653  * Look up a file name and optionally either update the file handle or
2654  * allocate an nfsnode, depending on the value of npp.
2655  * npp == NULL	--> just do the lookup
2656  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2657  *			handled too
2658  * *npp != NULL --> update the file handle in the vnode
2659  */
2660 static int
2661 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2662 	     struct thread *td, struct nfsnode **npp)
2663 {
2664 	u_int32_t *tl;
2665 	caddr_t cp;
2666 	int32_t t1, t2;
2667 	struct vnode *newvp = (struct vnode *)0;
2668 	struct nfsnode *np, *dnp = VTONFS(dvp);
2669 	caddr_t bpos, dpos, cp2;
2670 	int error = 0, fhlen, attrflag;
2671 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2672 	nfsfh_t *nfhp;
2673 	int v3 = NFS_ISV3(dvp);
2674 
2675 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2676 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2677 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2678 	nfsm_fhtom(dvp, v3);
2679 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2680 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2681 	if (npp && !error) {
2682 		nfsm_getfh(nfhp, fhlen, v3);
2683 		if (*npp) {
2684 		    np = *npp;
2685 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2686 			free((caddr_t)np->n_fhp, M_NFSBIGFH);
2687 			np->n_fhp = &np->n_fh;
2688 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2689 			np->n_fhp =(nfsfh_t *)malloc(fhlen,M_NFSBIGFH,M_WAITOK);
2690 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2691 		    np->n_fhsize = fhlen;
2692 		    newvp = NFSTOV(np);
2693 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2694 		    vref(dvp);
2695 		    newvp = dvp;
2696 		} else {
2697 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2698 		    if (error) {
2699 			m_freem(mrep);
2700 			return (error);
2701 		    }
2702 		    newvp = NFSTOV(np);
2703 		}
2704 		if (v3) {
2705 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2706 			if (!attrflag && *npp == NULL) {
2707 				m_freem(mrep);
2708 				if (newvp == dvp)
2709 					vrele(newvp);
2710 				else
2711 					vput(newvp);
2712 				return (ENOENT);
2713 			}
2714 		} else
2715 			nfsm_loadattr(newvp, (struct vattr *)0);
2716 	}
2717 	m_freem(mrep);
2718 nfsmout:
2719 	if (npp && *npp == NULL) {
2720 		if (error) {
2721 			if (newvp) {
2722 				if (newvp == dvp)
2723 					vrele(newvp);
2724 				else
2725 					vput(newvp);
2726 			}
2727 		} else
2728 			*npp = np;
2729 	}
2730 	return (error);
2731 }
2732 
2733 /*
2734  * Nfs Version 3 commit rpc
2735  */
2736 int
2737 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2738 {
2739 	caddr_t cp;
2740 	u_int32_t *tl;
2741 	int32_t t1, t2;
2742 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2743 	caddr_t bpos, dpos, cp2;
2744 	int error = 0, wccflag = NFSV3_WCCRATTR;
2745 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2746 
2747 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2748 		return (0);
2749 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2750 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2751 	nfsm_fhtom(vp, 1);
2752 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2753 	txdr_hyper(offset, tl);
2754 	tl += 2;
2755 	*tl = txdr_unsigned(cnt);
2756 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2757 	nfsm_wcc_data(vp, wccflag);
2758 	if (!error) {
2759 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2760 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2761 			NFSX_V3WRITEVERF)) {
2762 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2763 				NFSX_V3WRITEVERF);
2764 			error = NFSERR_STALEWRITEVERF;
2765 		}
2766 	}
2767 	m_freem(mrep);
2768 nfsmout:
2769 	return (error);
2770 }
2771 
2772 /*
2773  * Kludge City..
2774  * - make nfs_bmap() essentially a no-op that does no translation
2775  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2776  *   (Maybe I could use the process's page mapping, but I was concerned that
2777  *    Kernel Write might not be enabled and also figured copyout() would do
2778  *    a lot more work than bcopy() and also it currently happens in the
2779  *    context of the swapper process (2).
2780  *
2781  * nfs_bmap(struct vnode *a_vp, daddr_t a_bn, struct vnode **a_vpp,
2782  *	    daddr_t *a_bnp, int *a_runp, int *a_runb)
2783  */
2784 static int
2785 nfs_bmap(struct vop_bmap_args *ap)
2786 {
2787 	struct vnode *vp = ap->a_vp;
2788 
2789 	if (ap->a_vpp != NULL)
2790 		*ap->a_vpp = vp;
2791 	if (ap->a_bnp != NULL)
2792 		*ap->a_bnp = ap->a_bn * btodb(vp->v_mount->mnt_stat.f_iosize);
2793 	if (ap->a_runp != NULL)
2794 		*ap->a_runp = 0;
2795 	if (ap->a_runb != NULL)
2796 		*ap->a_runb = 0;
2797 	return (0);
2798 }
2799 
2800 /*
2801  * Strategy routine.
2802  * For async requests when nfsiod(s) are running, queue the request by
2803  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2804  * request.
2805  */
2806 static int
2807 nfs_strategy(struct vop_strategy_args *ap)
2808 {
2809 	struct buf *bp = ap->a_bp;
2810 	struct thread *td;
2811 	int error = 0;
2812 
2813 	KASSERT(!(bp->b_flags & B_DONE), ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2814 	KASSERT(BUF_REFCNT(bp) > 0, ("nfs_strategy: buffer %p not locked", bp));
2815 
2816 	if (bp->b_flags & B_PHYS)
2817 		panic("nfs physio");
2818 
2819 	if (bp->b_flags & B_ASYNC)
2820 		td = NULL;
2821 	else
2822 		td = curthread;	/* XXX */
2823 
2824 	/*
2825 	 * If the op is asynchronous and an i/o daemon is waiting
2826 	 * queue the request, wake it up and wait for completion
2827 	 * otherwise just do it ourselves.
2828 	 */
2829 	if ((bp->b_flags & B_ASYNC) == 0 ||
2830 		nfs_asyncio(bp, td))
2831 		error = nfs_doio(bp, td);
2832 	return (error);
2833 }
2834 
2835 /*
2836  * Mmap a file
2837  *
2838  * NB Currently unsupported.
2839  *
2840  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred,
2841  *	    struct thread *a_td)
2842  */
2843 /* ARGSUSED */
2844 static int
2845 nfs_mmap(struct vop_mmap_args *ap)
2846 {
2847 	return (EINVAL);
2848 }
2849 
2850 /*
2851  * fsync vnode op. Just call nfs_flush() with commit == 1.
2852  *
2853  * nfs_fsync(struct vnodeop_desc *a_desc, struct vnode *a_vp,
2854  *	     struct ucred * a_cred, int a_waitfor, struct thread *a_td)
2855  */
2856 /* ARGSUSED */
2857 static int
2858 nfs_fsync(struct vop_fsync_args *ap)
2859 {
2860 	return (nfs_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1));
2861 }
2862 
2863 /*
2864  * Flush all the blocks associated with a vnode.
2865  * 	Walk through the buffer pool and push any dirty pages
2866  *	associated with the vnode.
2867  */
2868 int
2869 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2870 {
2871 	struct nfsnode *np = VTONFS(vp);
2872 	struct buf *bp;
2873 	int i;
2874 	struct buf *nbp;
2875 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2876 	int s, error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2877 	int passone = 1;
2878 	u_quad_t off, endoff, toff;
2879 	struct buf **bvec = NULL;
2880 #ifndef NFS_COMMITBVECSIZ
2881 #define NFS_COMMITBVECSIZ	20
2882 #endif
2883 	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2884 	int bvecsize = 0, bveccount;
2885 
2886 	if (nmp->nm_flag & NFSMNT_INT)
2887 		slpflag = PCATCH;
2888 	if (!commit)
2889 		passone = 0;
2890 	/*
2891 	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2892 	 * server, but nas not been committed to stable storage on the server
2893 	 * yet. On the first pass, the byte range is worked out and the commit
2894 	 * rpc is done. On the second pass, nfs_writebp() is called to do the
2895 	 * job.
2896 	 */
2897 again:
2898 	off = (u_quad_t)-1;
2899 	endoff = 0;
2900 	bvecpos = 0;
2901 	if (NFS_ISV3(vp) && commit) {
2902 		s = splbio();
2903 		/*
2904 		 * Count up how many buffers waiting for a commit.
2905 		 */
2906 		bveccount = 0;
2907 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
2908 			nbp = TAILQ_NEXT(bp, b_vnbufs);
2909 			if (BUF_REFCNT(bp) == 0 &&
2910 			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2911 				== (B_DELWRI | B_NEEDCOMMIT))
2912 				bveccount++;
2913 		}
2914 		/*
2915 		 * Allocate space to remember the list of bufs to commit.  It is
2916 		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2917 		 * If we can't get memory (for whatever reason), we will end up
2918 		 * committing the buffers one-by-one in the loop below.
2919 		 */
2920 		if (bvec != NULL && bvec != bvec_on_stack)
2921 			free(bvec, M_TEMP);
2922 		if (bveccount > NFS_COMMITBVECSIZ) {
2923 			bvec = (struct buf **)
2924 				malloc(bveccount * sizeof(struct buf *),
2925 				       M_TEMP, M_NOWAIT);
2926 			if (bvec == NULL) {
2927 				bvec = bvec_on_stack;
2928 				bvecsize = NFS_COMMITBVECSIZ;
2929 			} else
2930 				bvecsize = bveccount;
2931 		} else {
2932 			bvec = bvec_on_stack;
2933 			bvecsize = NFS_COMMITBVECSIZ;
2934 		}
2935 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
2936 			nbp = TAILQ_NEXT(bp, b_vnbufs);
2937 			if (bvecpos >= bvecsize)
2938 				break;
2939 			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2940 			    (B_DELWRI | B_NEEDCOMMIT) ||
2941 			    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2942 				continue;
2943 			bremfree(bp);
2944 			/*
2945 			 * NOTE: we are not clearing B_DONE here, so we have
2946 			 * to do it later on in this routine if we intend to
2947 			 * initiate I/O on the bp.
2948 			 *
2949 			 * Note: to avoid loopback deadlocks, we do not
2950 			 * assign b_runningbufspace.
2951 			 */
2952 			bp->b_flags |= B_WRITEINPROG;
2953 			vfs_busy_pages(bp, 1);
2954 
2955 			/*
2956 			 * bp is protected by being locked, but nbp is not
2957 			 * and vfs_busy_pages() may sleep.  We have to
2958 			 * recalculate nbp.
2959 			 */
2960 			nbp = TAILQ_NEXT(bp, b_vnbufs);
2961 
2962 			/*
2963 			 * A list of these buffers is kept so that the
2964 			 * second loop knows which buffers have actually
2965 			 * been committed. This is necessary, since there
2966 			 * may be a race between the commit rpc and new
2967 			 * uncommitted writes on the file.
2968 			 */
2969 			bvec[bvecpos++] = bp;
2970 			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2971 				bp->b_dirtyoff;
2972 			if (toff < off)
2973 				off = toff;
2974 			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2975 			if (toff > endoff)
2976 				endoff = toff;
2977 		}
2978 		splx(s);
2979 	}
2980 	if (bvecpos > 0) {
2981 		/*
2982 		 * Commit data on the server, as required.  Note that
2983 		 * nfs_commit will use the vnode's cred for the commit.
2984 		 */
2985 		retv = nfs_commit(vp, off, (int)(endoff - off), td);
2986 
2987 		if (retv == NFSERR_STALEWRITEVERF)
2988 			nfs_clearcommit(vp->v_mount);
2989 
2990 		/*
2991 		 * Now, either mark the blocks I/O done or mark the
2992 		 * blocks dirty, depending on whether the commit
2993 		 * succeeded.
2994 		 */
2995 		for (i = 0; i < bvecpos; i++) {
2996 			bp = bvec[i];
2997 			bp->b_flags &= ~(B_NEEDCOMMIT | B_WRITEINPROG | B_CLUSTEROK);
2998 			if (retv) {
2999 				/*
3000 				 * Error, leave B_DELWRI intact
3001 				 */
3002 				vfs_unbusy_pages(bp);
3003 				brelse(bp);
3004 			} else {
3005 				/*
3006 				 * Success, remove B_DELWRI ( bundirty() ).
3007 				 *
3008 				 * b_dirtyoff/b_dirtyend seem to be NFS
3009 				 * specific.  We should probably move that
3010 				 * into bundirty(). XXX
3011 				 */
3012 				s = splbio();
3013 				vp->v_numoutput++;
3014 				bp->b_flags |= B_ASYNC;
3015 				bundirty(bp);
3016 				bp->b_flags &= ~(B_READ|B_DONE|B_ERROR);
3017 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3018 				splx(s);
3019 				biodone(bp);
3020 			}
3021 		}
3022 	}
3023 
3024 	/*
3025 	 * Start/do any write(s) that are required.
3026 	 */
3027 loop:
3028 	s = splbio();
3029 	for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
3030 		nbp = TAILQ_NEXT(bp, b_vnbufs);
3031 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
3032 			if (waitfor != MNT_WAIT || passone)
3033 				continue;
3034 			error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
3035 			    "nfsfsync", slpflag, slptimeo);
3036 			splx(s);
3037 			if (error == 0)
3038 				panic("nfs_fsync: inconsistent lock");
3039 			if (error == ENOLCK)
3040 				goto loop;
3041 			if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
3042 				error = EINTR;
3043 				goto done;
3044 			}
3045 			if (slpflag == PCATCH) {
3046 				slpflag = 0;
3047 				slptimeo = 2 * hz;
3048 			}
3049 			goto loop;
3050 		}
3051 		if ((bp->b_flags & B_DELWRI) == 0)
3052 			panic("nfs_fsync: not dirty");
3053 		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
3054 			BUF_UNLOCK(bp);
3055 			continue;
3056 		}
3057 		bremfree(bp);
3058 		if (passone || !commit)
3059 		    bp->b_flags |= B_ASYNC;
3060 		else
3061 		    bp->b_flags |= B_ASYNC | B_WRITEINPROG;
3062 		splx(s);
3063 		VOP_BWRITE(bp->b_vp, bp);
3064 		goto loop;
3065 	}
3066 	splx(s);
3067 	if (passone) {
3068 		passone = 0;
3069 		goto again;
3070 	}
3071 	if (waitfor == MNT_WAIT) {
3072 		while (vp->v_numoutput) {
3073 			vp->v_flag |= VBWAIT;
3074 			error = tsleep((caddr_t)&vp->v_numoutput,
3075 				slpflag, "nfsfsync", slptimeo);
3076 			if (error) {
3077 			    if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
3078 				error = EINTR;
3079 				goto done;
3080 			    }
3081 			    if (slpflag == PCATCH) {
3082 				slpflag = 0;
3083 				slptimeo = 2 * hz;
3084 			    }
3085 			}
3086 		}
3087 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) && commit) {
3088 			goto loop;
3089 		}
3090 	}
3091 	if (np->n_flag & NWRITEERR) {
3092 		error = np->n_error;
3093 		np->n_flag &= ~NWRITEERR;
3094 	}
3095 done:
3096 	if (bvec != NULL && bvec != bvec_on_stack)
3097 		free(bvec, M_TEMP);
3098 	return (error);
3099 }
3100 
3101 /*
3102  * NFS advisory byte-level locks.
3103  * Currently unsupported.
3104  *
3105  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3106  *		int a_flags)
3107  */
3108 static int
3109 nfs_advlock(struct vop_advlock_args *ap)
3110 {
3111 	struct nfsnode *np = VTONFS(ap->a_vp);
3112 
3113 	/*
3114 	 * The following kludge is to allow diskless support to work
3115 	 * until a real NFS lockd is implemented. Basically, just pretend
3116 	 * that this is a local lock.
3117 	 */
3118 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3119 }
3120 
3121 /*
3122  * Print out the contents of an nfsnode.
3123  *
3124  * nfs_print(struct vnode *a_vp)
3125  */
3126 static int
3127 nfs_print(struct vop_print_args *ap)
3128 {
3129 	struct vnode *vp = ap->a_vp;
3130 	struct nfsnode *np = VTONFS(vp);
3131 
3132 	printf("tag VT_NFS, fileid %ld fsid 0x%x",
3133 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3134 	if (vp->v_type == VFIFO)
3135 		fifo_printinfo(vp);
3136 	printf("\n");
3137 	return (0);
3138 }
3139 
3140 /*
3141  * Just call nfs_writebp() with the force argument set to 1.
3142  *
3143  * NOTE: B_DONE may or may not be set in a_bp on call.
3144  *
3145  * nfs_bwrite(struct vnode *a_bp)
3146  */
3147 static int
3148 nfs_bwrite(struct vop_bwrite_args *ap)
3149 {
3150 	return (nfs_writebp(ap->a_bp, 1, curthread));
3151 }
3152 
3153 /*
3154  * This is a clone of vn_bwrite(), except that B_WRITEINPROG isn't set unless
3155  * the force flag is one and it also handles the B_NEEDCOMMIT flag.  We set
3156  * B_CACHE if this is a VMIO buffer.
3157  */
3158 int
3159 nfs_writebp(struct buf *bp, int force, struct thread *td)
3160 {
3161 	int s;
3162 	int oldflags = bp->b_flags;
3163 #if 0
3164 	int retv = 1;
3165 	off_t off;
3166 #endif
3167 
3168 	if (BUF_REFCNT(bp) == 0)
3169 		panic("bwrite: buffer is not locked???");
3170 
3171 	if (bp->b_flags & B_INVAL) {
3172 		brelse(bp);
3173 		return(0);
3174 	}
3175 
3176 	bp->b_flags |= B_CACHE;
3177 
3178 	/*
3179 	 * Undirty the bp.  We will redirty it later if the I/O fails.
3180 	 */
3181 
3182 	s = splbio();
3183 	bundirty(bp);
3184 	bp->b_flags &= ~(B_READ|B_DONE|B_ERROR);
3185 
3186 	bp->b_vp->v_numoutput++;
3187 	splx(s);
3188 
3189 	/*
3190 	 * Note: to avoid loopback deadlocks, we do not
3191 	 * assign b_runningbufspace.
3192 	 */
3193 	vfs_busy_pages(bp, 1);
3194 
3195 	if (force)
3196 		bp->b_flags |= B_WRITEINPROG;
3197 	BUF_KERNPROC(bp);
3198 	VOP_STRATEGY(bp->b_vp, bp);
3199 
3200 	if( (oldflags & B_ASYNC) == 0) {
3201 		int rtval = biowait(bp);
3202 
3203 		if (oldflags & B_DELWRI) {
3204 			s = splbio();
3205 			reassignbuf(bp, bp->b_vp);
3206 			splx(s);
3207 		}
3208 
3209 		brelse(bp);
3210 		return (rtval);
3211 	}
3212 
3213 	return (0);
3214 }
3215 
3216 /*
3217  * nfs special file access vnode op.
3218  * Essentially just get vattr and then imitate iaccess() since the device is
3219  * local to the client.
3220  *
3221  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
3222  *		  struct thread *a_td)
3223  */
3224 static int
3225 nfsspec_access(struct vop_access_args *ap)
3226 {
3227 	struct vattr *vap;
3228 	gid_t *gp;
3229 	struct ucred *cred = ap->a_cred;
3230 	struct vnode *vp = ap->a_vp;
3231 	mode_t mode = ap->a_mode;
3232 	struct vattr vattr;
3233 	int i;
3234 	int error;
3235 
3236 	/*
3237 	 * Disallow write attempts on filesystems mounted read-only;
3238 	 * unless the file is a socket, fifo, or a block or character
3239 	 * device resident on the filesystem.
3240 	 */
3241 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3242 		switch (vp->v_type) {
3243 		case VREG:
3244 		case VDIR:
3245 		case VLNK:
3246 			return (EROFS);
3247 		default:
3248 			break;
3249 		}
3250 	}
3251 	/*
3252 	 * If you're the super-user,
3253 	 * you always get access.
3254 	 */
3255 	if (cred->cr_uid == 0)
3256 		return (0);
3257 	vap = &vattr;
3258 	error = VOP_GETATTR(vp, vap, ap->a_td);
3259 	if (error)
3260 		return (error);
3261 	/*
3262 	 * Access check is based on only one of owner, group, public.
3263 	 * If not owner, then check group. If not a member of the
3264 	 * group, then check public access.
3265 	 */
3266 	if (cred->cr_uid != vap->va_uid) {
3267 		mode >>= 3;
3268 		gp = cred->cr_groups;
3269 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3270 			if (vap->va_gid == *gp)
3271 				goto found;
3272 		mode >>= 3;
3273 found:
3274 		;
3275 	}
3276 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3277 	return (error);
3278 }
3279 
3280 /*
3281  * Read wrapper for special devices.
3282  *
3283  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3284  *		struct ucred *a_cred)
3285  */
3286 static int
3287 nfsspec_read(struct vop_read_args *ap)
3288 {
3289 	struct nfsnode *np = VTONFS(ap->a_vp);
3290 
3291 	/*
3292 	 * Set access flag.
3293 	 */
3294 	np->n_flag |= NACC;
3295 	getnanotime(&np->n_atim);
3296 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3297 }
3298 
3299 /*
3300  * Write wrapper for special devices.
3301  *
3302  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3303  *		 struct ucred *a_cred)
3304  */
3305 static int
3306 nfsspec_write(struct vop_write_args *ap)
3307 {
3308 	struct nfsnode *np = VTONFS(ap->a_vp);
3309 
3310 	/*
3311 	 * Set update flag.
3312 	 */
3313 	np->n_flag |= NUPD;
3314 	getnanotime(&np->n_mtim);
3315 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3316 }
3317 
3318 /*
3319  * Close wrapper for special devices.
3320  *
3321  * Update the times on the nfsnode then do device close.
3322  *
3323  * nfsspec_close(struct vnode *a_vp, int a_fflag, struct ucred *a_cred,
3324  *		 struct thread *a_td)
3325  */
3326 static int
3327 nfsspec_close(struct vop_close_args *ap)
3328 {
3329 	struct vnode *vp = ap->a_vp;
3330 	struct nfsnode *np = VTONFS(vp);
3331 	struct vattr vattr;
3332 
3333 	if (np->n_flag & (NACC | NUPD)) {
3334 		np->n_flag |= NCHG;
3335 		if (vp->v_usecount == 1 &&
3336 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3337 			VATTR_NULL(&vattr);
3338 			if (np->n_flag & NACC)
3339 				vattr.va_atime = np->n_atim;
3340 			if (np->n_flag & NUPD)
3341 				vattr.va_mtime = np->n_mtim;
3342 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE), ap->a_td);
3343 		}
3344 	}
3345 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3346 }
3347 
3348 /*
3349  * Read wrapper for fifos.
3350  *
3351  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3352  *		struct ucred *a_cred)
3353  */
3354 static int
3355 nfsfifo_read(struct vop_read_args *ap)
3356 {
3357 	struct nfsnode *np = VTONFS(ap->a_vp);
3358 
3359 	/*
3360 	 * Set access flag.
3361 	 */
3362 	np->n_flag |= NACC;
3363 	getnanotime(&np->n_atim);
3364 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3365 }
3366 
3367 /*
3368  * Write wrapper for fifos.
3369  *
3370  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3371  *		 struct ucred *a_cred)
3372  */
3373 static int
3374 nfsfifo_write(struct vop_write_args *ap)
3375 {
3376 	struct nfsnode *np = VTONFS(ap->a_vp);
3377 
3378 	/*
3379 	 * Set update flag.
3380 	 */
3381 	np->n_flag |= NUPD;
3382 	getnanotime(&np->n_mtim);
3383 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3384 }
3385 
3386 /*
3387  * Close wrapper for fifos.
3388  *
3389  * Update the times on the nfsnode then do fifo close.
3390  *
3391  * nfsfifo_close(struct vnode *a_vp, int a_fflag, struct thread *a_td)
3392  */
3393 static int
3394 nfsfifo_close(struct vop_close_args *ap)
3395 {
3396 	struct vnode *vp = ap->a_vp;
3397 	struct nfsnode *np = VTONFS(vp);
3398 	struct vattr vattr;
3399 	struct timespec ts;
3400 
3401 	if (np->n_flag & (NACC | NUPD)) {
3402 		getnanotime(&ts);
3403 		if (np->n_flag & NACC)
3404 			np->n_atim = ts;
3405 		if (np->n_flag & NUPD)
3406 			np->n_mtim = ts;
3407 		np->n_flag |= NCHG;
3408 		if (vp->v_usecount == 1 &&
3409 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3410 			VATTR_NULL(&vattr);
3411 			if (np->n_flag & NACC)
3412 				vattr.va_atime = np->n_atim;
3413 			if (np->n_flag & NUPD)
3414 				vattr.va_mtime = np->n_mtim;
3415 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE), ap->a_td);
3416 		}
3417 	}
3418 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3419 }
3420 
3421