xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 927da715)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.79 2008/07/16 18:20:40 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsspec_read (struct vop_read_args *);
98 static int	nfsspec_write (struct vop_write_args *);
99 static int	nfsfifo_read (struct vop_read_args *);
100 static int	nfsfifo_write (struct vop_write_args *);
101 static int	nfsspec_close (struct vop_close_args *);
102 static int	nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static	int	nfs_lookup (struct vop_old_lookup_args *);
106 static	int	nfs_create (struct vop_old_create_args *);
107 static	int	nfs_mknod (struct vop_old_mknod_args *);
108 static	int	nfs_open (struct vop_open_args *);
109 static	int	nfs_close (struct vop_close_args *);
110 static	int	nfs_access (struct vop_access_args *);
111 static	int	nfs_getattr (struct vop_getattr_args *);
112 static	int	nfs_setattr (struct vop_setattr_args *);
113 static	int	nfs_read (struct vop_read_args *);
114 static	int	nfs_mmap (struct vop_mmap_args *);
115 static	int	nfs_fsync (struct vop_fsync_args *);
116 static	int	nfs_remove (struct vop_old_remove_args *);
117 static	int	nfs_link (struct vop_old_link_args *);
118 static	int	nfs_rename (struct vop_old_rename_args *);
119 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
120 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
121 static	int	nfs_symlink (struct vop_old_symlink_args *);
122 static	int	nfs_readdir (struct vop_readdir_args *);
123 static	int	nfs_bmap (struct vop_bmap_args *);
124 static	int	nfs_strategy (struct vop_strategy_args *);
125 static	int	nfs_lookitup (struct vnode *, const char *, int,
126 			struct ucred *, struct thread *, struct nfsnode **);
127 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int	nfsspec_access (struct vop_access_args *);
129 static int	nfs_readlink (struct vop_readlink_args *);
130 static int	nfs_print (struct vop_print_args *);
131 static int	nfs_advlock (struct vop_advlock_args *);
132 
133 static	int	nfs_nresolve (struct vop_nresolve_args *);
134 /*
135  * Global vfs data structures for nfs
136  */
137 struct vop_ops nfsv2_vnode_vops = {
138 	.vop_default =		vop_defaultop,
139 	.vop_access =		nfs_access,
140 	.vop_advlock =		nfs_advlock,
141 	.vop_bmap =		nfs_bmap,
142 	.vop_close =		nfs_close,
143 	.vop_old_create =	nfs_create,
144 	.vop_fsync =		nfs_fsync,
145 	.vop_getattr =		nfs_getattr,
146 	.vop_getpages =		nfs_getpages,
147 	.vop_putpages =		nfs_putpages,
148 	.vop_inactive =		nfs_inactive,
149 	.vop_old_link =		nfs_link,
150 	.vop_old_lookup =	nfs_lookup,
151 	.vop_old_mkdir =	nfs_mkdir,
152 	.vop_old_mknod =	nfs_mknod,
153 	.vop_mmap =		nfs_mmap,
154 	.vop_open =		nfs_open,
155 	.vop_poll =		nfs_poll,
156 	.vop_print =		nfs_print,
157 	.vop_read =		nfs_read,
158 	.vop_readdir =		nfs_readdir,
159 	.vop_readlink =		nfs_readlink,
160 	.vop_reclaim =		nfs_reclaim,
161 	.vop_old_remove =	nfs_remove,
162 	.vop_old_rename =	nfs_rename,
163 	.vop_old_rmdir =	nfs_rmdir,
164 	.vop_setattr =		nfs_setattr,
165 	.vop_strategy =		nfs_strategy,
166 	.vop_old_symlink =	nfs_symlink,
167 	.vop_write =		nfs_write,
168 	.vop_nresolve =		nfs_nresolve
169 };
170 
171 /*
172  * Special device vnode ops
173  */
174 struct vop_ops nfsv2_spec_vops = {
175 	.vop_default =		spec_vnoperate,
176 	.vop_access =		nfsspec_access,
177 	.vop_close =		nfsspec_close,
178 	.vop_fsync =		nfs_fsync,
179 	.vop_getattr =		nfs_getattr,
180 	.vop_inactive =		nfs_inactive,
181 	.vop_print =		nfs_print,
182 	.vop_read =		nfsspec_read,
183 	.vop_reclaim =		nfs_reclaim,
184 	.vop_setattr =		nfs_setattr,
185 	.vop_write =		nfsspec_write
186 };
187 
188 struct vop_ops nfsv2_fifo_vops = {
189 	.vop_default =		fifo_vnoperate,
190 	.vop_access =		nfsspec_access,
191 	.vop_close =		nfsfifo_close,
192 	.vop_fsync =		nfs_fsync,
193 	.vop_getattr =		nfs_getattr,
194 	.vop_inactive =		nfs_inactive,
195 	.vop_print =		nfs_print,
196 	.vop_read =		nfsfifo_read,
197 	.vop_reclaim =		nfs_reclaim,
198 	.vop_setattr =		nfs_setattr,
199 	.vop_write =		nfsfifo_write
200 };
201 
202 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
203 				  struct componentname *cnp,
204 				  struct vattr *vap);
205 static int	nfs_removerpc (struct vnode *dvp, const char *name,
206 				   int namelen,
207 				   struct ucred *cred, struct thread *td);
208 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
209 				   int fnamelen, struct vnode *tdvp,
210 				   const char *tnameptr, int tnamelen,
211 				   struct ucred *cred, struct thread *td);
212 static int	nfs_renameit (struct vnode *sdvp,
213 				  struct componentname *scnp,
214 				  struct sillyrename *sp);
215 
216 /*
217  * Global variables
218  */
219 extern u_int32_t nfs_true, nfs_false;
220 extern u_int32_t nfs_xdrneg1;
221 extern struct nfsstats nfsstats;
222 extern nfstype nfsv3_type[9];
223 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
224 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
225 int nfs_numasync = 0;
226 
227 SYSCTL_DECL(_vfs_nfs);
228 
229 static int nfs_flush_on_rename = 1;
230 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
231 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
232 
233 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
234 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
235 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
236 
237 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
238 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
239 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
240 
241 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
242 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
243 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
244 
245 static int	nfsv3_commit_on_close = 0;
246 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
247 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
248 #if 0
249 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
250 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
251 
252 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
253 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
254 #endif
255 
256 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
257 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
258 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
259 static int
260 nfs3_access_otw(struct vnode *vp, int wmode,
261 		struct thread *td, struct ucred *cred)
262 {
263 	const int v3 = 1;
264 	u_int32_t *tl;
265 	int error = 0, attrflag;
266 
267 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
268 	caddr_t bpos, dpos, cp2;
269 	int32_t t1, t2;
270 	caddr_t cp;
271 	u_int32_t rmode;
272 	struct nfsnode *np = VTONFS(vp);
273 
274 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
275 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
276 	nfsm_fhtom(vp, v3);
277 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
278 	*tl = txdr_unsigned(wmode);
279 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
280 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
281 	if (!error) {
282 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
283 		rmode = fxdr_unsigned(u_int32_t, *tl);
284 		np->n_mode = rmode;
285 		np->n_modeuid = cred->cr_uid;
286 		np->n_modestamp = mycpu->gd_time_seconds;
287 	}
288 	m_freem(mrep);
289 nfsmout:
290 	return error;
291 }
292 
293 /*
294  * nfs access vnode op.
295  * For nfs version 2, just return ok. File accesses may fail later.
296  * For nfs version 3, use the access rpc to check accessibility. If file modes
297  * are changed on the server, accesses might still fail later.
298  *
299  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
300  */
301 static int
302 nfs_access(struct vop_access_args *ap)
303 {
304 	struct vnode *vp = ap->a_vp;
305 	thread_t td = curthread;
306 	int error = 0;
307 	u_int32_t mode, wmode;
308 	int v3 = NFS_ISV3(vp);
309 	struct nfsnode *np = VTONFS(vp);
310 
311 	/*
312 	 * Disallow write attempts on filesystems mounted read-only;
313 	 * unless the file is a socket, fifo, or a block or character
314 	 * device resident on the filesystem.
315 	 */
316 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
317 		switch (vp->v_type) {
318 		case VREG:
319 		case VDIR:
320 		case VLNK:
321 			return (EROFS);
322 		default:
323 			break;
324 		}
325 	}
326 	/*
327 	 * For nfs v3, check to see if we have done this recently, and if
328 	 * so return our cached result instead of making an ACCESS call.
329 	 * If not, do an access rpc, otherwise you are stuck emulating
330 	 * ufs_access() locally using the vattr. This may not be correct,
331 	 * since the server may apply other access criteria such as
332 	 * client uid-->server uid mapping that we do not know about.
333 	 */
334 	if (v3) {
335 		if (ap->a_mode & VREAD)
336 			mode = NFSV3ACCESS_READ;
337 		else
338 			mode = 0;
339 		if (vp->v_type != VDIR) {
340 			if (ap->a_mode & VWRITE)
341 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
342 			if (ap->a_mode & VEXEC)
343 				mode |= NFSV3ACCESS_EXECUTE;
344 		} else {
345 			if (ap->a_mode & VWRITE)
346 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
347 					 NFSV3ACCESS_DELETE);
348 			if (ap->a_mode & VEXEC)
349 				mode |= NFSV3ACCESS_LOOKUP;
350 		}
351 		/* XXX safety belt, only make blanket request if caching */
352 		if (nfsaccess_cache_timeout > 0) {
353 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
354 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
355 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
356 		} else {
357 			wmode = mode;
358 		}
359 
360 		/*
361 		 * Does our cached result allow us to give a definite yes to
362 		 * this request?
363 		 */
364 		if (np->n_modestamp &&
365 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
366 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
367 		   ((np->n_mode & mode) == mode)) {
368 			nfsstats.accesscache_hits++;
369 		} else {
370 			/*
371 			 * Either a no, or a don't know.  Go to the wire.
372 			 */
373 			nfsstats.accesscache_misses++;
374 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
375 			if (!error) {
376 				if ((np->n_mode & mode) != mode) {
377 					error = EACCES;
378 				}
379 			}
380 		}
381 	} else {
382 		if ((error = nfsspec_access(ap)) != 0)
383 			return (error);
384 
385 		/*
386 		 * Attempt to prevent a mapped root from accessing a file
387 		 * which it shouldn't.  We try to read a byte from the file
388 		 * if the user is root and the file is not zero length.
389 		 * After calling nfsspec_access, we should have the correct
390 		 * file size cached.
391 		 */
392 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
393 		    && VTONFS(vp)->n_size > 0) {
394 			struct iovec aiov;
395 			struct uio auio;
396 			char buf[1];
397 
398 			aiov.iov_base = buf;
399 			aiov.iov_len = 1;
400 			auio.uio_iov = &aiov;
401 			auio.uio_iovcnt = 1;
402 			auio.uio_offset = 0;
403 			auio.uio_resid = 1;
404 			auio.uio_segflg = UIO_SYSSPACE;
405 			auio.uio_rw = UIO_READ;
406 			auio.uio_td = td;
407 
408 			if (vp->v_type == VREG) {
409 				error = nfs_readrpc(vp, &auio);
410 			} else if (vp->v_type == VDIR) {
411 				char* bp;
412 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
413 				aiov.iov_base = bp;
414 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
415 				error = nfs_readdirrpc(vp, &auio);
416 				kfree(bp, M_TEMP);
417 			} else if (vp->v_type == VLNK) {
418 				error = nfs_readlinkrpc(vp, &auio);
419 			} else {
420 				error = EACCES;
421 			}
422 		}
423 	}
424 	/*
425 	 * [re]record creds for reading and/or writing if access
426 	 * was granted.  Assume the NFS server will grant read access
427 	 * for execute requests.
428 	 */
429 	if (error == 0) {
430 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
431 			crhold(ap->a_cred);
432 			if (np->n_rucred)
433 				crfree(np->n_rucred);
434 			np->n_rucred = ap->a_cred;
435 		}
436 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
437 			crhold(ap->a_cred);
438 			if (np->n_wucred)
439 				crfree(np->n_wucred);
440 			np->n_wucred = ap->a_cred;
441 		}
442 	}
443 	return(error);
444 }
445 
446 /*
447  * nfs open vnode op
448  * Check to see if the type is ok
449  * and that deletion is not in progress.
450  * For paged in text files, you will need to flush the page cache
451  * if consistency is lost.
452  *
453  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
454  *	    struct file *a_fp)
455  */
456 /* ARGSUSED */
457 static int
458 nfs_open(struct vop_open_args *ap)
459 {
460 	struct vnode *vp = ap->a_vp;
461 	struct nfsnode *np = VTONFS(vp);
462 	struct vattr vattr;
463 	int error;
464 
465 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
466 #ifdef DIAGNOSTIC
467 		kprintf("open eacces vtyp=%d\n",vp->v_type);
468 #endif
469 		return (EOPNOTSUPP);
470 	}
471 
472 	/*
473 	 * Clear the attribute cache only if opening with write access.  It
474 	 * is unclear if we should do this at all here, but we certainly
475 	 * should not clear the cache unconditionally simply because a file
476 	 * is being opened.
477 	 */
478 	if (ap->a_mode & FWRITE)
479 		np->n_attrstamp = 0;
480 
481 	/*
482 	 * For normal NFS, reconcile changes made locally verses
483 	 * changes made remotely.  Note that VOP_GETATTR only goes
484 	 * to the wire if the cached attribute has timed out or been
485 	 * cleared.
486 	 *
487 	 * If local modifications have been made clear the attribute
488 	 * cache to force an attribute and modified time check.  If
489 	 * GETATTR detects that the file has been changed by someone
490 	 * other then us it will set NRMODIFIED.
491 	 *
492 	 * If we are opening a directory and local changes have been
493 	 * made we have to invalidate the cache in order to ensure
494 	 * that we get the most up-to-date information from the
495 	 * server.  XXX
496 	 */
497 	if (np->n_flag & NLMODIFIED) {
498 		np->n_attrstamp = 0;
499 		if (vp->v_type == VDIR) {
500 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
501 			if (error == EINTR)
502 				return (error);
503 			nfs_invaldir(vp);
504 		}
505 	}
506 	error = VOP_GETATTR(vp, &vattr);
507 	if (error)
508 		return (error);
509 	if (np->n_flag & NRMODIFIED) {
510 		if (vp->v_type == VDIR)
511 			nfs_invaldir(vp);
512 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
513 		if (error == EINTR)
514 			return (error);
515 		np->n_flag &= ~NRMODIFIED;
516 	}
517 
518 	return (vop_stdopen(ap));
519 }
520 
521 /*
522  * nfs close vnode op
523  * What an NFS client should do upon close after writing is a debatable issue.
524  * Most NFS clients push delayed writes to the server upon close, basically for
525  * two reasons:
526  * 1 - So that any write errors may be reported back to the client process
527  *     doing the close system call. By far the two most likely errors are
528  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
529  * 2 - To put a worst case upper bound on cache inconsistency between
530  *     multiple clients for the file.
531  * There is also a consistency problem for Version 2 of the protocol w.r.t.
532  * not being able to tell if other clients are writing a file concurrently,
533  * since there is no way of knowing if the changed modify time in the reply
534  * is only due to the write for this client.
535  * (NFS Version 3 provides weak cache consistency data in the reply that
536  *  should be sufficient to detect and handle this case.)
537  *
538  * The current code does the following:
539  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
540  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
541  *                     or commit them (this satisfies 1 and 2 except for the
542  *                     case where the server crashes after this close but
543  *                     before the commit RPC, which is felt to be "good
544  *                     enough". Changing the last argument to nfs_flush() to
545  *                     a 1 would force a commit operation, if it is felt a
546  *                     commit is necessary now.
547  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
548  *                     1 should be dealt with via an fsync() system call for
549  *                     cases where write errors are important.
550  *
551  * nfs_close(struct vnode *a_vp, int a_fflag)
552  */
553 /* ARGSUSED */
554 static int
555 nfs_close(struct vop_close_args *ap)
556 {
557 	struct vnode *vp = ap->a_vp;
558 	struct nfsnode *np = VTONFS(vp);
559 	int error = 0;
560 	thread_t td = curthread;
561 
562 	if (vp->v_type == VREG) {
563 	    if (np->n_flag & NLMODIFIED) {
564 		if (NFS_ISV3(vp)) {
565 		    /*
566 		     * Under NFSv3 we have dirty buffers to dispose of.  We
567 		     * must flush them to the NFS server.  We have the option
568 		     * of waiting all the way through the commit rpc or just
569 		     * waiting for the initial write.  The default is to only
570 		     * wait through the initial write so the data is in the
571 		     * server's cache, which is roughly similar to the state
572 		     * a standard disk subsystem leaves the file in on close().
573 		     *
574 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
575 		     * potential races with other processes, and certainly
576 		     * cannot clear it if we don't commit.
577 		     */
578 		    int cm = nfsv3_commit_on_close ? 1 : 0;
579 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
580 		    /* np->n_flag &= ~NLMODIFIED; */
581 		} else {
582 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
583 		}
584 		np->n_attrstamp = 0;
585 	    }
586 	    if (np->n_flag & NWRITEERR) {
587 		np->n_flag &= ~NWRITEERR;
588 		error = np->n_error;
589 	    }
590 	}
591 	vop_stdclose(ap);
592 	return (error);
593 }
594 
595 /*
596  * nfs getattr call from vfs.
597  *
598  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
599  */
600 static int
601 nfs_getattr(struct vop_getattr_args *ap)
602 {
603 	struct vnode *vp = ap->a_vp;
604 	struct nfsnode *np = VTONFS(vp);
605 	caddr_t cp;
606 	u_int32_t *tl;
607 	int32_t t1, t2;
608 	caddr_t bpos, dpos;
609 	int error = 0;
610 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
611 	int v3 = NFS_ISV3(vp);
612 	thread_t td = curthread;
613 
614 	/*
615 	 * Update local times for special files.
616 	 */
617 	if (np->n_flag & (NACC | NUPD))
618 		np->n_flag |= NCHG;
619 	/*
620 	 * First look in the cache.
621 	 */
622 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
623 		return (0);
624 
625 	if (v3 && nfsaccess_cache_timeout > 0) {
626 		nfsstats.accesscache_misses++;
627 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
628 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
629 			return (0);
630 	}
631 
632 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
633 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
634 	nfsm_fhtom(vp, v3);
635 	nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
636 	if (!error) {
637 		nfsm_loadattr(vp, ap->a_vap);
638 	}
639 	m_freem(mrep);
640 nfsmout:
641 	return (error);
642 }
643 
644 /*
645  * nfs setattr call.
646  *
647  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
648  */
649 static int
650 nfs_setattr(struct vop_setattr_args *ap)
651 {
652 	struct vnode *vp = ap->a_vp;
653 	struct nfsnode *np = VTONFS(vp);
654 	struct vattr *vap = ap->a_vap;
655 	int error = 0;
656 	u_quad_t tsize;
657 	thread_t td = curthread;
658 
659 #ifndef nolint
660 	tsize = (u_quad_t)0;
661 #endif
662 
663 	/*
664 	 * Setting of flags is not supported.
665 	 */
666 	if (vap->va_flags != VNOVAL)
667 		return (EOPNOTSUPP);
668 
669 	/*
670 	 * Disallow write attempts if the filesystem is mounted read-only.
671 	 */
672   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
673 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
674 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
675 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
676 		return (EROFS);
677 
678 	if (vap->va_size != VNOVAL) {
679 		/*
680 		 * truncation requested
681 		 */
682  		switch (vp->v_type) {
683  		case VDIR:
684  			return (EISDIR);
685  		case VCHR:
686  		case VBLK:
687  		case VSOCK:
688  		case VFIFO:
689 			if (vap->va_mtime.tv_sec == VNOVAL &&
690 			    vap->va_atime.tv_sec == VNOVAL &&
691 			    vap->va_mode == (mode_t)VNOVAL &&
692 			    vap->va_uid == (uid_t)VNOVAL &&
693 			    vap->va_gid == (gid_t)VNOVAL)
694 				return (0);
695  			vap->va_size = VNOVAL;
696  			break;
697  		default:
698 			/*
699 			 * Disallow write attempts if the filesystem is
700 			 * mounted read-only.
701 			 */
702 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
703 				return (EROFS);
704 
705 			/*
706 			 * This is nasty.  The RPCs we send to flush pending
707 			 * data often return attribute information which is
708 			 * cached via a callback to nfs_loadattrcache(), which
709 			 * has the effect of changing our notion of the file
710 			 * size.  Due to flushed appends and other operations
711 			 * the file size can be set to virtually anything,
712 			 * including values that do not match either the old
713 			 * or intended file size.
714 			 *
715 			 * When this condition is detected we must loop to
716 			 * try the operation again.  Hopefully no more
717 			 * flushing is required on the loop so it works the
718 			 * second time around.  THIS CASE ALMOST ALWAYS
719 			 * HAPPENS!
720 			 */
721 			tsize = np->n_size;
722 again:
723 			error = nfs_meta_setsize(vp, td, vap->va_size);
724 
725  			if (np->n_flag & NLMODIFIED) {
726  			    if (vap->va_size == 0)
727  				error = nfs_vinvalbuf(vp, 0, 1);
728  			    else
729  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
730  			}
731 			/*
732 			 * note: this loop case almost always happens at
733 			 * least once per truncation.
734 			 */
735 			if (error == 0 && np->n_size != vap->va_size)
736 				goto again;
737 			np->n_vattr.va_size = vap->va_size;
738 			break;
739 		}
740 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
741 		/*
742 		 * What to do.  If we are modifying the mtime we lose
743 		 * mtime detection of changes made by the server or other
744 		 * clients.  But programs like rsync/rdist/cpdup are going
745 		 * to call utimes a lot.  We don't want to piecemeal sync.
746 		 *
747 		 * For now sync if any prior remote changes were detected,
748 		 * but allow us to lose track of remote changes made during
749 		 * the utimes operation.
750 		 */
751 		if (np->n_flag & NRMODIFIED)
752 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
753 		if (error == EINTR)
754 			return (error);
755 		if (error == 0) {
756 			if (vap->va_mtime.tv_sec != VNOVAL) {
757 				np->n_mtime = vap->va_mtime.tv_sec;
758 			}
759 		}
760 	}
761 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
762 
763 	/*
764 	 * Sanity check if a truncation was issued.  This should only occur
765 	 * if multiple processes are racing on the same file.
766 	 */
767 	if (error == 0 && vap->va_size != VNOVAL &&
768 	    np->n_size != vap->va_size) {
769 		kprintf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
770 		goto again;
771 	}
772 	if (error && vap->va_size != VNOVAL) {
773 		np->n_size = np->n_vattr.va_size = tsize;
774 		vnode_pager_setsize(vp, np->n_size);
775 	}
776 	return (error);
777 }
778 
779 /*
780  * Do an nfs setattr rpc.
781  */
782 static int
783 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
784 	       struct ucred *cred, struct thread *td)
785 {
786 	struct nfsv2_sattr *sp;
787 	struct nfsnode *np = VTONFS(vp);
788 	caddr_t cp;
789 	int32_t t1, t2;
790 	caddr_t bpos, dpos, cp2;
791 	u_int32_t *tl;
792 	int error = 0, wccflag = NFSV3_WCCRATTR;
793 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
794 	int v3 = NFS_ISV3(vp);
795 
796 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
797 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
798 	nfsm_fhtom(vp, v3);
799 	if (v3) {
800 		nfsm_v3attrbuild(vap, TRUE);
801 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
802 		*tl = nfs_false;
803 	} else {
804 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
805 		if (vap->va_mode == (mode_t)VNOVAL)
806 			sp->sa_mode = nfs_xdrneg1;
807 		else
808 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
809 		if (vap->va_uid == (uid_t)VNOVAL)
810 			sp->sa_uid = nfs_xdrneg1;
811 		else
812 			sp->sa_uid = txdr_unsigned(vap->va_uid);
813 		if (vap->va_gid == (gid_t)VNOVAL)
814 			sp->sa_gid = nfs_xdrneg1;
815 		else
816 			sp->sa_gid = txdr_unsigned(vap->va_gid);
817 		sp->sa_size = txdr_unsigned(vap->va_size);
818 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
819 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
820 	}
821 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
822 	if (v3) {
823 		np->n_modestamp = 0;
824 		nfsm_wcc_data(vp, wccflag);
825 	} else
826 		nfsm_loadattr(vp, (struct vattr *)0);
827 	m_freem(mrep);
828 nfsmout:
829 	return (error);
830 }
831 
832 static
833 void
834 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
835 {
836 	if (nctimeout == 0)
837 		nctimeout = 1;
838 	else
839 		nctimeout *= hz;
840 	cache_setvp(nch, vp);
841 	cache_settimeout(nch, nctimeout);
842 }
843 
844 /*
845  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
846  * nfs_lookup() until all remaining new api calls are implemented.
847  *
848  * Resolve a namecache entry.  This function is passed a locked ncp and
849  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
850  */
851 static int
852 nfs_nresolve(struct vop_nresolve_args *ap)
853 {
854 	struct thread *td = curthread;
855 	struct namecache *ncp;
856 	struct ucred *cred;
857 	struct nfsnode *np;
858 	struct vnode *dvp;
859 	struct vnode *nvp;
860 	nfsfh_t *fhp;
861 	int attrflag;
862 	int fhsize;
863 	int error;
864 	int len;
865 	int v3;
866 	/******NFSM MACROS********/
867 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
868 	caddr_t bpos, dpos, cp, cp2;
869 	u_int32_t *tl;
870 	int32_t t1, t2;
871 
872 	cred = ap->a_cred;
873 	dvp = ap->a_dvp;
874 
875 	if ((error = vget(dvp, LK_SHARED)) != 0)
876 		return (error);
877 
878 	nvp = NULL;
879 	v3 = NFS_ISV3(dvp);
880 	nfsstats.lookupcache_misses++;
881 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
882 	ncp = ap->a_nch->ncp;
883 	len = ncp->nc_nlen;
884 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
885 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
886 	nfsm_fhtom(dvp, v3);
887 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
888 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
889 	if (error) {
890 		/*
891 		 * Cache negatve lookups to reduce NFS traffic, but use
892 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
893 		 * XXX we should add a namecache flag for no-caching
894 		 * to uncache the negative hit as soon as possible, but
895 		 * we cannot simply destroy the entry because it is used
896 		 * as a placeholder by the caller.
897 		 */
898 		if (error == ENOENT)
899 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
900 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
901 		m_freem(mrep);
902 		goto nfsmout;
903 	}
904 
905 	/*
906 	 * Success, get the file handle, do various checks, and load
907 	 * post-operation data from the reply packet.  Theoretically
908 	 * we should never be looking up "." so, theoretically, we
909 	 * should never get the same file handle as our directory.  But
910 	 * we check anyway. XXX
911 	 *
912 	 * Note that no timeout is set for the positive cache hit.  We
913 	 * assume, theoretically, that ESTALE returns will be dealt with
914 	 * properly to handle NFS races and in anycase we cannot depend
915 	 * on a timeout to deal with NFS open/create/excl issues so instead
916 	 * of a bad hack here the rest of the NFS client code needs to do
917 	 * the right thing.
918 	 */
919 	nfsm_getfh(fhp, fhsize, v3);
920 
921 	np = VTONFS(dvp);
922 	if (NFS_CMPFH(np, fhp, fhsize)) {
923 		vref(dvp);
924 		nvp = dvp;
925 	} else {
926 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
927 		if (error) {
928 			m_freem(mrep);
929 			vput(dvp);
930 			return (error);
931 		}
932 		nvp = NFSTOV(np);
933 	}
934 	if (v3) {
935 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
936 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
937 	} else {
938 		nfsm_loadattr(nvp, NULL);
939 	}
940 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
941 	m_freem(mrep);
942 nfsmout:
943 	vput(dvp);
944 	if (nvp) {
945 		if (nvp == dvp)
946 			vrele(nvp);
947 		else
948 			vput(nvp);
949 	}
950 	return (error);
951 }
952 
953 /*
954  * 'cached' nfs directory lookup
955  *
956  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
957  *
958  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
959  *	      struct componentname *a_cnp)
960  */
961 static int
962 nfs_lookup(struct vop_old_lookup_args *ap)
963 {
964 	struct componentname *cnp = ap->a_cnp;
965 	struct vnode *dvp = ap->a_dvp;
966 	struct vnode **vpp = ap->a_vpp;
967 	int flags = cnp->cn_flags;
968 	struct vnode *newvp;
969 	u_int32_t *tl;
970 	caddr_t cp;
971 	int32_t t1, t2;
972 	struct nfsmount *nmp;
973 	caddr_t bpos, dpos, cp2;
974 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
975 	long len;
976 	nfsfh_t *fhp;
977 	struct nfsnode *np;
978 	int lockparent, wantparent, error = 0, attrflag, fhsize;
979 	int v3 = NFS_ISV3(dvp);
980 
981 	/*
982 	 * Read-only mount check and directory check.
983 	 */
984 	*vpp = NULLVP;
985 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
986 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
987 		return (EROFS);
988 
989 	if (dvp->v_type != VDIR)
990 		return (ENOTDIR);
991 
992 	/*
993 	 * Look it up in the cache.  Note that ENOENT is only returned if we
994 	 * previously entered a negative hit (see later on).  The additional
995 	 * nfsneg_cache_timeout check causes previously cached results to
996 	 * be instantly ignored if the negative caching is turned off.
997 	 */
998 	lockparent = flags & CNP_LOCKPARENT;
999 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1000 	nmp = VFSTONFS(dvp->v_mount);
1001 	np = VTONFS(dvp);
1002 
1003 	/*
1004 	 * Go to the wire.
1005 	 */
1006 	error = 0;
1007 	newvp = NULLVP;
1008 	nfsstats.lookupcache_misses++;
1009 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1010 	len = cnp->cn_namelen;
1011 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
1012 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1013 	nfsm_fhtom(dvp, v3);
1014 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1015 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
1016 	if (error) {
1017 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1018 		m_freem(mrep);
1019 		goto nfsmout;
1020 	}
1021 	nfsm_getfh(fhp, fhsize, v3);
1022 
1023 	/*
1024 	 * Handle RENAME case...
1025 	 */
1026 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1027 		if (NFS_CMPFH(np, fhp, fhsize)) {
1028 			m_freem(mrep);
1029 			return (EISDIR);
1030 		}
1031 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1032 		if (error) {
1033 			m_freem(mrep);
1034 			return (error);
1035 		}
1036 		newvp = NFSTOV(np);
1037 		if (v3) {
1038 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1039 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1040 		} else
1041 			nfsm_loadattr(newvp, (struct vattr *)0);
1042 		*vpp = newvp;
1043 		m_freem(mrep);
1044 		if (!lockparent) {
1045 			vn_unlock(dvp);
1046 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1047 		}
1048 		return (0);
1049 	}
1050 
1051 	if (flags & CNP_ISDOTDOT) {
1052 		vn_unlock(dvp);
1053 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1054 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1055 		if (error) {
1056 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1057 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1058 			return (error); /* NOTE: return error from nget */
1059 		}
1060 		newvp = NFSTOV(np);
1061 		if (lockparent) {
1062 			error = vn_lock(dvp, LK_EXCLUSIVE);
1063 			if (error) {
1064 				vput(newvp);
1065 				return (error);
1066 			}
1067 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1068 		}
1069 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1070 		vref(dvp);
1071 		newvp = dvp;
1072 	} else {
1073 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1074 		if (error) {
1075 			m_freem(mrep);
1076 			return (error);
1077 		}
1078 		if (!lockparent) {
1079 			vn_unlock(dvp);
1080 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1081 		}
1082 		newvp = NFSTOV(np);
1083 	}
1084 	if (v3) {
1085 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1086 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1087 	} else
1088 		nfsm_loadattr(newvp, (struct vattr *)0);
1089 #if 0
1090 	/* XXX MOVE TO nfs_nremove() */
1091 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1092 	    cnp->cn_nameiop != NAMEI_DELETE) {
1093 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1094 	}
1095 #endif
1096 	*vpp = newvp;
1097 	m_freem(mrep);
1098 nfsmout:
1099 	if (error) {
1100 		if (newvp != NULLVP) {
1101 			vrele(newvp);
1102 			*vpp = NULLVP;
1103 		}
1104 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1105 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1106 		    error == ENOENT) {
1107 			if (!lockparent) {
1108 				vn_unlock(dvp);
1109 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1110 			}
1111 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1112 				error = EROFS;
1113 			else
1114 				error = EJUSTRETURN;
1115 		}
1116 	}
1117 	return (error);
1118 }
1119 
1120 /*
1121  * nfs read call.
1122  * Just call nfs_bioread() to do the work.
1123  *
1124  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1125  *	    struct ucred *a_cred)
1126  */
1127 static int
1128 nfs_read(struct vop_read_args *ap)
1129 {
1130 	struct vnode *vp = ap->a_vp;
1131 
1132 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1133 	switch (vp->v_type) {
1134 	case VREG:
1135 		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1136 	case VDIR:
1137 		return (EISDIR);
1138 	default:
1139 		return EOPNOTSUPP;
1140 	}
1141 }
1142 
1143 /*
1144  * nfs readlink call
1145  *
1146  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1147  */
1148 static int
1149 nfs_readlink(struct vop_readlink_args *ap)
1150 {
1151 	struct vnode *vp = ap->a_vp;
1152 
1153 	if (vp->v_type != VLNK)
1154 		return (EINVAL);
1155 	return (nfs_bioread(vp, ap->a_uio, 0));
1156 }
1157 
1158 /*
1159  * Do a readlink rpc.
1160  * Called by nfs_doio() from below the buffer cache.
1161  */
1162 int
1163 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1164 {
1165 	u_int32_t *tl;
1166 	caddr_t cp;
1167 	int32_t t1, t2;
1168 	caddr_t bpos, dpos, cp2;
1169 	int error = 0, len, attrflag;
1170 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1171 	int v3 = NFS_ISV3(vp);
1172 
1173 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1174 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1175 	nfsm_fhtom(vp, v3);
1176 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1177 	if (v3)
1178 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1179 	if (!error) {
1180 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1181 		if (len == NFS_MAXPATHLEN) {
1182 			struct nfsnode *np = VTONFS(vp);
1183 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1184 				len = np->n_size;
1185 		}
1186 		nfsm_mtouio(uiop, len);
1187 	}
1188 	m_freem(mrep);
1189 nfsmout:
1190 	return (error);
1191 }
1192 
1193 /*
1194  * nfs read rpc call
1195  * Ditto above
1196  */
1197 int
1198 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1199 {
1200 	u_int32_t *tl;
1201 	caddr_t cp;
1202 	int32_t t1, t2;
1203 	caddr_t bpos, dpos, cp2;
1204 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1205 	struct nfsmount *nmp;
1206 	int error = 0, len, retlen, tsiz, eof, attrflag;
1207 	int v3 = NFS_ISV3(vp);
1208 
1209 #ifndef nolint
1210 	eof = 0;
1211 #endif
1212 	nmp = VFSTONFS(vp->v_mount);
1213 	tsiz = uiop->uio_resid;
1214 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1215 		return (EFBIG);
1216 	while (tsiz > 0) {
1217 		nfsstats.rpccnt[NFSPROC_READ]++;
1218 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1219 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1220 		nfsm_fhtom(vp, v3);
1221 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1222 		if (v3) {
1223 			txdr_hyper(uiop->uio_offset, tl);
1224 			*(tl + 2) = txdr_unsigned(len);
1225 		} else {
1226 			*tl++ = txdr_unsigned(uiop->uio_offset);
1227 			*tl++ = txdr_unsigned(len);
1228 			*tl = 0;
1229 		}
1230 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1231 		if (v3) {
1232 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1233 			if (error) {
1234 				m_freem(mrep);
1235 				goto nfsmout;
1236 			}
1237 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1238 			eof = fxdr_unsigned(int, *(tl + 1));
1239 		} else
1240 			nfsm_loadattr(vp, (struct vattr *)0);
1241 		nfsm_strsiz(retlen, nmp->nm_rsize);
1242 		nfsm_mtouio(uiop, retlen);
1243 		m_freem(mrep);
1244 		tsiz -= retlen;
1245 		if (v3) {
1246 			if (eof || retlen == 0) {
1247 				tsiz = 0;
1248 			}
1249 		} else if (retlen < len) {
1250 			tsiz = 0;
1251 		}
1252 	}
1253 nfsmout:
1254 	return (error);
1255 }
1256 
1257 /*
1258  * nfs write call
1259  */
1260 int
1261 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1262 {
1263 	u_int32_t *tl;
1264 	caddr_t cp;
1265 	int32_t t1, t2, backup;
1266 	caddr_t bpos, dpos, cp2;
1267 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1268 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1269 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1270 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1271 
1272 #ifndef DIAGNOSTIC
1273 	if (uiop->uio_iovcnt != 1)
1274 		panic("nfs: writerpc iovcnt > 1");
1275 #endif
1276 	*must_commit = 0;
1277 	tsiz = uiop->uio_resid;
1278 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1279 		return (EFBIG);
1280 	while (tsiz > 0) {
1281 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1282 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1283 		nfsm_reqhead(vp, NFSPROC_WRITE,
1284 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1285 		nfsm_fhtom(vp, v3);
1286 		if (v3) {
1287 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1288 			txdr_hyper(uiop->uio_offset, tl);
1289 			tl += 2;
1290 			*tl++ = txdr_unsigned(len);
1291 			*tl++ = txdr_unsigned(*iomode);
1292 			*tl = txdr_unsigned(len);
1293 		} else {
1294 			u_int32_t x;
1295 
1296 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1297 			/* Set both "begin" and "current" to non-garbage. */
1298 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1299 			*tl++ = x;	/* "begin offset" */
1300 			*tl++ = x;	/* "current offset" */
1301 			x = txdr_unsigned(len);
1302 			*tl++ = x;	/* total to this offset */
1303 			*tl = x;	/* size of this write */
1304 		}
1305 		nfsm_uiotom(uiop, len);
1306 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1307 		if (v3) {
1308 			/*
1309 			 * The write RPC returns a before and after mtime.  The
1310 			 * nfsm_wcc_data() macro checks the before n_mtime
1311 			 * against the before time and stores the after time
1312 			 * in the nfsnode's cached vattr and n_mtime field.
1313 			 * The NRMODIFIED bit will be set if the before
1314 			 * time did not match the original mtime.
1315 			 */
1316 			wccflag = NFSV3_WCCCHK;
1317 			nfsm_wcc_data(vp, wccflag);
1318 			if (!error) {
1319 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1320 					+ NFSX_V3WRITEVERF);
1321 				rlen = fxdr_unsigned(int, *tl++);
1322 				if (rlen == 0) {
1323 					error = NFSERR_IO;
1324 					m_freem(mrep);
1325 					break;
1326 				} else if (rlen < len) {
1327 					backup = len - rlen;
1328 					uiop->uio_iov->iov_base -= backup;
1329 					uiop->uio_iov->iov_len += backup;
1330 					uiop->uio_offset -= backup;
1331 					uiop->uio_resid += backup;
1332 					len = rlen;
1333 				}
1334 				commit = fxdr_unsigned(int, *tl++);
1335 
1336 				/*
1337 				 * Return the lowest committment level
1338 				 * obtained by any of the RPCs.
1339 				 */
1340 				if (committed == NFSV3WRITE_FILESYNC)
1341 					committed = commit;
1342 				else if (committed == NFSV3WRITE_DATASYNC &&
1343 					commit == NFSV3WRITE_UNSTABLE)
1344 					committed = commit;
1345 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1346 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1347 					NFSX_V3WRITEVERF);
1348 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1349 				} else if (bcmp((caddr_t)tl,
1350 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1351 				    *must_commit = 1;
1352 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1353 					NFSX_V3WRITEVERF);
1354 				}
1355 			}
1356 		} else {
1357 			nfsm_loadattr(vp, (struct vattr *)0);
1358 		}
1359 		m_freem(mrep);
1360 		if (error)
1361 			break;
1362 		tsiz -= len;
1363 	}
1364 nfsmout:
1365 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1366 		committed = NFSV3WRITE_FILESYNC;
1367 	*iomode = committed;
1368 	if (error)
1369 		uiop->uio_resid = tsiz;
1370 	return (error);
1371 }
1372 
1373 /*
1374  * nfs mknod rpc
1375  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1376  * mode set to specify the file type and the size field for rdev.
1377  */
1378 static int
1379 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1380 	     struct vattr *vap)
1381 {
1382 	struct nfsv2_sattr *sp;
1383 	u_int32_t *tl;
1384 	caddr_t cp;
1385 	int32_t t1, t2;
1386 	struct vnode *newvp = (struct vnode *)0;
1387 	struct nfsnode *np = (struct nfsnode *)0;
1388 	struct vattr vattr;
1389 	char *cp2;
1390 	caddr_t bpos, dpos;
1391 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1392 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1393 	int rmajor, rminor;
1394 	int v3 = NFS_ISV3(dvp);
1395 
1396 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1397 		rmajor = txdr_unsigned(vap->va_rmajor);
1398 		rminor = txdr_unsigned(vap->va_rminor);
1399 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1400 		rmajor = nfs_xdrneg1;
1401 		rminor = nfs_xdrneg1;
1402 	} else {
1403 		return (EOPNOTSUPP);
1404 	}
1405 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1406 		return (error);
1407 	}
1408 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1409 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1410 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1411 	nfsm_fhtom(dvp, v3);
1412 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1413 	if (v3) {
1414 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1415 		*tl++ = vtonfsv3_type(vap->va_type);
1416 		nfsm_v3attrbuild(vap, FALSE);
1417 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1418 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1419 			*tl++ = txdr_unsigned(vap->va_rmajor);
1420 			*tl = txdr_unsigned(vap->va_rminor);
1421 		}
1422 	} else {
1423 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1424 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1425 		sp->sa_uid = nfs_xdrneg1;
1426 		sp->sa_gid = nfs_xdrneg1;
1427 		sp->sa_size = makeudev(rmajor, rminor);
1428 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1429 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1430 	}
1431 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1432 	if (!error) {
1433 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1434 		if (!gotvp) {
1435 			if (newvp) {
1436 				vput(newvp);
1437 				newvp = (struct vnode *)0;
1438 			}
1439 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1440 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1441 			if (!error)
1442 				newvp = NFSTOV(np);
1443 		}
1444 	}
1445 	if (v3)
1446 		nfsm_wcc_data(dvp, wccflag);
1447 	m_freem(mrep);
1448 nfsmout:
1449 	if (error) {
1450 		if (newvp)
1451 			vput(newvp);
1452 	} else {
1453 		*vpp = newvp;
1454 	}
1455 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1456 	if (!wccflag)
1457 		VTONFS(dvp)->n_attrstamp = 0;
1458 	return (error);
1459 }
1460 
1461 /*
1462  * nfs mknod vop
1463  * just call nfs_mknodrpc() to do the work.
1464  *
1465  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1466  *	     struct componentname *a_cnp, struct vattr *a_vap)
1467  */
1468 /* ARGSUSED */
1469 static int
1470 nfs_mknod(struct vop_old_mknod_args *ap)
1471 {
1472 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1473 }
1474 
1475 static u_long create_verf;
1476 /*
1477  * nfs file create call
1478  *
1479  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1480  *	      struct componentname *a_cnp, struct vattr *a_vap)
1481  */
1482 static int
1483 nfs_create(struct vop_old_create_args *ap)
1484 {
1485 	struct vnode *dvp = ap->a_dvp;
1486 	struct vattr *vap = ap->a_vap;
1487 	struct componentname *cnp = ap->a_cnp;
1488 	struct nfsv2_sattr *sp;
1489 	u_int32_t *tl;
1490 	caddr_t cp;
1491 	int32_t t1, t2;
1492 	struct nfsnode *np = (struct nfsnode *)0;
1493 	struct vnode *newvp = (struct vnode *)0;
1494 	caddr_t bpos, dpos, cp2;
1495 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1496 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1497 	struct vattr vattr;
1498 	int v3 = NFS_ISV3(dvp);
1499 
1500 	/*
1501 	 * Oops, not for me..
1502 	 */
1503 	if (vap->va_type == VSOCK)
1504 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1505 
1506 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1507 		return (error);
1508 	}
1509 	if (vap->va_vaflags & VA_EXCLUSIVE)
1510 		fmode |= O_EXCL;
1511 again:
1512 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1513 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1514 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1515 	nfsm_fhtom(dvp, v3);
1516 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1517 	if (v3) {
1518 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1519 		if (fmode & O_EXCL) {
1520 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1521 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1522 #ifdef INET
1523 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1524 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1525 			else
1526 #endif
1527 				*tl++ = create_verf;
1528 			*tl = ++create_verf;
1529 		} else {
1530 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1531 			nfsm_v3attrbuild(vap, FALSE);
1532 		}
1533 	} else {
1534 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1535 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1536 		sp->sa_uid = nfs_xdrneg1;
1537 		sp->sa_gid = nfs_xdrneg1;
1538 		sp->sa_size = 0;
1539 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1540 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1541 	}
1542 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1543 	if (!error) {
1544 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1545 		if (!gotvp) {
1546 			if (newvp) {
1547 				vput(newvp);
1548 				newvp = (struct vnode *)0;
1549 			}
1550 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1551 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1552 			if (!error)
1553 				newvp = NFSTOV(np);
1554 		}
1555 	}
1556 	if (v3)
1557 		nfsm_wcc_data(dvp, wccflag);
1558 	m_freem(mrep);
1559 nfsmout:
1560 	if (error) {
1561 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1562 			KKASSERT(newvp == NULL);
1563 			fmode &= ~O_EXCL;
1564 			goto again;
1565 		}
1566 	} else if (v3 && (fmode & O_EXCL)) {
1567 		/*
1568 		 * We are normally called with only a partially initialized
1569 		 * VAP.  Since the NFSv3 spec says that server may use the
1570 		 * file attributes to store the verifier, the spec requires
1571 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1572 		 * in atime, but we can't really assume that all servers will
1573 		 * so we ensure that our SETATTR sets both atime and mtime.
1574 		 */
1575 		if (vap->va_mtime.tv_sec == VNOVAL)
1576 			vfs_timestamp(&vap->va_mtime);
1577 		if (vap->va_atime.tv_sec == VNOVAL)
1578 			vap->va_atime = vap->va_mtime;
1579 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1580 	}
1581 	if (error == 0) {
1582 		/*
1583 		 * The new np may have enough info for access
1584 		 * checks, make sure rucred and wucred are
1585 		 * initialized for read and write rpc's.
1586 		 */
1587 		np = VTONFS(newvp);
1588 		if (np->n_rucred == NULL)
1589 			np->n_rucred = crhold(cnp->cn_cred);
1590 		if (np->n_wucred == NULL)
1591 			np->n_wucred = crhold(cnp->cn_cred);
1592 		*ap->a_vpp = newvp;
1593 	} else if (newvp) {
1594 		vput(newvp);
1595 	}
1596 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1597 	if (!wccflag)
1598 		VTONFS(dvp)->n_attrstamp = 0;
1599 	return (error);
1600 }
1601 
1602 /*
1603  * nfs file remove call
1604  * To try and make nfs semantics closer to ufs semantics, a file that has
1605  * other processes using the vnode is renamed instead of removed and then
1606  * removed later on the last close.
1607  * - If v_sysref.refcnt > 1
1608  *	  If a rename is not already in the works
1609  *	     call nfs_sillyrename() to set it up
1610  *     else
1611  *	  do the remove rpc
1612  *
1613  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1614  *	      struct componentname *a_cnp)
1615  */
1616 static int
1617 nfs_remove(struct vop_old_remove_args *ap)
1618 {
1619 	struct vnode *vp = ap->a_vp;
1620 	struct vnode *dvp = ap->a_dvp;
1621 	struct componentname *cnp = ap->a_cnp;
1622 	struct nfsnode *np = VTONFS(vp);
1623 	int error = 0;
1624 	struct vattr vattr;
1625 
1626 #ifndef DIAGNOSTIC
1627 	if (vp->v_sysref.refcnt < 1)
1628 		panic("nfs_remove: bad v_sysref.refcnt");
1629 #endif
1630 	if (vp->v_type == VDIR)
1631 		error = EPERM;
1632 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1633 	    VOP_GETATTR(vp, &vattr) == 0 &&
1634 	    vattr.va_nlink > 1)) {
1635 		/*
1636 		 * throw away biocache buffers, mainly to avoid
1637 		 * unnecessary delayed writes later.
1638 		 */
1639 		error = nfs_vinvalbuf(vp, 0, 1);
1640 		/* Do the rpc */
1641 		if (error != EINTR)
1642 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1643 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1644 		/*
1645 		 * Kludge City: If the first reply to the remove rpc is lost..
1646 		 *   the reply to the retransmitted request will be ENOENT
1647 		 *   since the file was in fact removed
1648 		 *   Therefore, we cheat and return success.
1649 		 */
1650 		if (error == ENOENT)
1651 			error = 0;
1652 	} else if (!np->n_sillyrename) {
1653 		error = nfs_sillyrename(dvp, vp, cnp);
1654 	}
1655 	np->n_attrstamp = 0;
1656 	return (error);
1657 }
1658 
1659 /*
1660  * nfs file remove rpc called from nfs_inactive
1661  */
1662 int
1663 nfs_removeit(struct sillyrename *sp)
1664 {
1665 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1666 		sp->s_cred, NULL));
1667 }
1668 
1669 /*
1670  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1671  */
1672 static int
1673 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1674 	      struct ucred *cred, struct thread *td)
1675 {
1676 	u_int32_t *tl;
1677 	caddr_t cp;
1678 	int32_t t1, t2;
1679 	caddr_t bpos, dpos, cp2;
1680 	int error = 0, wccflag = NFSV3_WCCRATTR;
1681 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1682 	int v3 = NFS_ISV3(dvp);
1683 
1684 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1685 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1686 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1687 	nfsm_fhtom(dvp, v3);
1688 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1689 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1690 	if (v3)
1691 		nfsm_wcc_data(dvp, wccflag);
1692 	m_freem(mrep);
1693 nfsmout:
1694 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1695 	if (!wccflag)
1696 		VTONFS(dvp)->n_attrstamp = 0;
1697 	return (error);
1698 }
1699 
1700 /*
1701  * nfs file rename call
1702  *
1703  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1704  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1705  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1706  */
1707 static int
1708 nfs_rename(struct vop_old_rename_args *ap)
1709 {
1710 	struct vnode *fvp = ap->a_fvp;
1711 	struct vnode *tvp = ap->a_tvp;
1712 	struct vnode *fdvp = ap->a_fdvp;
1713 	struct vnode *tdvp = ap->a_tdvp;
1714 	struct componentname *tcnp = ap->a_tcnp;
1715 	struct componentname *fcnp = ap->a_fcnp;
1716 	int error;
1717 
1718 	/* Check for cross-device rename */
1719 	if ((fvp->v_mount != tdvp->v_mount) ||
1720 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1721 		error = EXDEV;
1722 		goto out;
1723 	}
1724 
1725 	/*
1726 	 * We shouldn't have to flush fvp on rename as the file handle should
1727 	 * not change, but the default is to do so.
1728 	 *
1729 	 * We must flush tvp on rename because it might become stale on the
1730 	 * server after the rename.
1731 	 */
1732 	if (nfs_flush_on_rename)
1733 	    VOP_FSYNC(fvp, MNT_WAIT);
1734 	if (tvp)
1735 	    VOP_FSYNC(tvp, MNT_WAIT);
1736 
1737 	/*
1738 	 * If the tvp exists and is in use, sillyrename it before doing the
1739 	 * rename of the new file over it.
1740 	 *
1741 	 * XXX Can't sillyrename a directory.
1742 	 *
1743 	 * We do not attempt to do any namecache purges in this old API
1744 	 * routine.  The new API compat functions have access to the actual
1745 	 * namecache structures and will do it for us.
1746 	 */
1747 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1748 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1749 		vput(tvp);
1750 		tvp = NULL;
1751 	} else if (tvp) {
1752 		;
1753 	}
1754 
1755 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1756 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1757 		tcnp->cn_td);
1758 
1759 out:
1760 	if (tdvp == tvp)
1761 		vrele(tdvp);
1762 	else
1763 		vput(tdvp);
1764 	if (tvp)
1765 		vput(tvp);
1766 	vrele(fdvp);
1767 	vrele(fvp);
1768 	/*
1769 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1770 	 */
1771 	if (error == ENOENT)
1772 		error = 0;
1773 	return (error);
1774 }
1775 
1776 /*
1777  * nfs file rename rpc called from nfs_remove() above
1778  */
1779 static int
1780 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1781 	     struct sillyrename *sp)
1782 {
1783 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1784 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1785 }
1786 
1787 /*
1788  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1789  */
1790 static int
1791 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1792 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1793 	      struct ucred *cred, struct thread *td)
1794 {
1795 	u_int32_t *tl;
1796 	caddr_t cp;
1797 	int32_t t1, t2;
1798 	caddr_t bpos, dpos, cp2;
1799 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1800 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1801 	int v3 = NFS_ISV3(fdvp);
1802 
1803 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1804 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1805 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1806 		nfsm_rndup(tnamelen));
1807 	nfsm_fhtom(fdvp, v3);
1808 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1809 	nfsm_fhtom(tdvp, v3);
1810 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1811 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1812 	if (v3) {
1813 		nfsm_wcc_data(fdvp, fwccflag);
1814 		nfsm_wcc_data(tdvp, twccflag);
1815 	}
1816 	m_freem(mrep);
1817 nfsmout:
1818 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1819 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1820 	if (!fwccflag)
1821 		VTONFS(fdvp)->n_attrstamp = 0;
1822 	if (!twccflag)
1823 		VTONFS(tdvp)->n_attrstamp = 0;
1824 	return (error);
1825 }
1826 
1827 /*
1828  * nfs hard link create call
1829  *
1830  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1831  *	    struct componentname *a_cnp)
1832  */
1833 static int
1834 nfs_link(struct vop_old_link_args *ap)
1835 {
1836 	struct vnode *vp = ap->a_vp;
1837 	struct vnode *tdvp = ap->a_tdvp;
1838 	struct componentname *cnp = ap->a_cnp;
1839 	u_int32_t *tl;
1840 	caddr_t cp;
1841 	int32_t t1, t2;
1842 	caddr_t bpos, dpos, cp2;
1843 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1844 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1845 	int v3;
1846 
1847 	if (vp->v_mount != tdvp->v_mount) {
1848 		return (EXDEV);
1849 	}
1850 
1851 	/*
1852 	 * Push all writes to the server, so that the attribute cache
1853 	 * doesn't get "out of sync" with the server.
1854 	 * XXX There should be a better way!
1855 	 */
1856 	VOP_FSYNC(vp, MNT_WAIT);
1857 
1858 	v3 = NFS_ISV3(vp);
1859 	nfsstats.rpccnt[NFSPROC_LINK]++;
1860 	nfsm_reqhead(vp, NFSPROC_LINK,
1861 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1862 	nfsm_fhtom(vp, v3);
1863 	nfsm_fhtom(tdvp, v3);
1864 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1865 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1866 	if (v3) {
1867 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1868 		nfsm_wcc_data(tdvp, wccflag);
1869 	}
1870 	m_freem(mrep);
1871 nfsmout:
1872 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1873 	if (!attrflag)
1874 		VTONFS(vp)->n_attrstamp = 0;
1875 	if (!wccflag)
1876 		VTONFS(tdvp)->n_attrstamp = 0;
1877 	/*
1878 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1879 	 */
1880 	if (error == EEXIST)
1881 		error = 0;
1882 	return (error);
1883 }
1884 
1885 /*
1886  * nfs symbolic link create call
1887  *
1888  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1889  *		struct componentname *a_cnp, struct vattr *a_vap,
1890  *		char *a_target)
1891  */
1892 static int
1893 nfs_symlink(struct vop_old_symlink_args *ap)
1894 {
1895 	struct vnode *dvp = ap->a_dvp;
1896 	struct vattr *vap = ap->a_vap;
1897 	struct componentname *cnp = ap->a_cnp;
1898 	struct nfsv2_sattr *sp;
1899 	u_int32_t *tl;
1900 	caddr_t cp;
1901 	int32_t t1, t2;
1902 	caddr_t bpos, dpos, cp2;
1903 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1904 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1905 	struct vnode *newvp = (struct vnode *)0;
1906 	int v3 = NFS_ISV3(dvp);
1907 
1908 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1909 	slen = strlen(ap->a_target);
1910 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1911 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1912 	nfsm_fhtom(dvp, v3);
1913 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1914 	if (v3) {
1915 		nfsm_v3attrbuild(vap, FALSE);
1916 	}
1917 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1918 	if (!v3) {
1919 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1920 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1921 		sp->sa_uid = nfs_xdrneg1;
1922 		sp->sa_gid = nfs_xdrneg1;
1923 		sp->sa_size = nfs_xdrneg1;
1924 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1925 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1926 	}
1927 
1928 	/*
1929 	 * Issue the NFS request and get the rpc response.
1930 	 *
1931 	 * Only NFSv3 responses returning an error of 0 actually return
1932 	 * a file handle that can be converted into newvp without having
1933 	 * to do an extra lookup rpc.
1934 	 */
1935 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1936 	if (v3) {
1937 		if (error == 0)
1938 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1939 		nfsm_wcc_data(dvp, wccflag);
1940 	}
1941 
1942 	/*
1943 	 * out code jumps -> here, mrep is also freed.
1944 	 */
1945 
1946 	m_freem(mrep);
1947 nfsmout:
1948 
1949 	/*
1950 	 * If we get an EEXIST error, silently convert it to no-error
1951 	 * in case of an NFS retry.
1952 	 */
1953 	if (error == EEXIST)
1954 		error = 0;
1955 
1956 	/*
1957 	 * If we do not have (or no longer have) an error, and we could
1958 	 * not extract the newvp from the response due to the request being
1959 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1960 	 * to obtain a newvp to return.
1961 	 */
1962 	if (error == 0 && newvp == NULL) {
1963 		struct nfsnode *np = NULL;
1964 
1965 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1966 		    cnp->cn_cred, cnp->cn_td, &np);
1967 		if (!error)
1968 			newvp = NFSTOV(np);
1969 	}
1970 	if (error) {
1971 		if (newvp)
1972 			vput(newvp);
1973 	} else {
1974 		*ap->a_vpp = newvp;
1975 	}
1976 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1977 	if (!wccflag)
1978 		VTONFS(dvp)->n_attrstamp = 0;
1979 	return (error);
1980 }
1981 
1982 /*
1983  * nfs make dir call
1984  *
1985  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1986  *	     struct componentname *a_cnp, struct vattr *a_vap)
1987  */
1988 static int
1989 nfs_mkdir(struct vop_old_mkdir_args *ap)
1990 {
1991 	struct vnode *dvp = ap->a_dvp;
1992 	struct vattr *vap = ap->a_vap;
1993 	struct componentname *cnp = ap->a_cnp;
1994 	struct nfsv2_sattr *sp;
1995 	u_int32_t *tl;
1996 	caddr_t cp;
1997 	int32_t t1, t2;
1998 	int len;
1999 	struct nfsnode *np = (struct nfsnode *)0;
2000 	struct vnode *newvp = (struct vnode *)0;
2001 	caddr_t bpos, dpos, cp2;
2002 	int error = 0, wccflag = NFSV3_WCCRATTR;
2003 	int gotvp = 0;
2004 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2005 	struct vattr vattr;
2006 	int v3 = NFS_ISV3(dvp);
2007 
2008 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2009 		return (error);
2010 	}
2011 	len = cnp->cn_namelen;
2012 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2013 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
2014 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
2015 	nfsm_fhtom(dvp, v3);
2016 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
2017 	if (v3) {
2018 		nfsm_v3attrbuild(vap, FALSE);
2019 	} else {
2020 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2021 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2022 		sp->sa_uid = nfs_xdrneg1;
2023 		sp->sa_gid = nfs_xdrneg1;
2024 		sp->sa_size = nfs_xdrneg1;
2025 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2026 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2027 	}
2028 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2029 	if (!error)
2030 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2031 	if (v3)
2032 		nfsm_wcc_data(dvp, wccflag);
2033 	m_freem(mrep);
2034 nfsmout:
2035 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2036 	if (!wccflag)
2037 		VTONFS(dvp)->n_attrstamp = 0;
2038 	/*
2039 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2040 	 * if we can succeed in looking up the directory.
2041 	 */
2042 	if (error == EEXIST || (!error && !gotvp)) {
2043 		if (newvp) {
2044 			vrele(newvp);
2045 			newvp = (struct vnode *)0;
2046 		}
2047 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2048 			cnp->cn_td, &np);
2049 		if (!error) {
2050 			newvp = NFSTOV(np);
2051 			if (newvp->v_type != VDIR)
2052 				error = EEXIST;
2053 		}
2054 	}
2055 	if (error) {
2056 		if (newvp)
2057 			vrele(newvp);
2058 	} else
2059 		*ap->a_vpp = newvp;
2060 	return (error);
2061 }
2062 
2063 /*
2064  * nfs remove directory call
2065  *
2066  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2067  *	     struct componentname *a_cnp)
2068  */
2069 static int
2070 nfs_rmdir(struct vop_old_rmdir_args *ap)
2071 {
2072 	struct vnode *vp = ap->a_vp;
2073 	struct vnode *dvp = ap->a_dvp;
2074 	struct componentname *cnp = ap->a_cnp;
2075 	u_int32_t *tl;
2076 	caddr_t cp;
2077 	int32_t t1, t2;
2078 	caddr_t bpos, dpos, cp2;
2079 	int error = 0, wccflag = NFSV3_WCCRATTR;
2080 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2081 	int v3 = NFS_ISV3(dvp);
2082 
2083 	if (dvp == vp)
2084 		return (EINVAL);
2085 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2086 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2087 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2088 	nfsm_fhtom(dvp, v3);
2089 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2090 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2091 	if (v3)
2092 		nfsm_wcc_data(dvp, wccflag);
2093 	m_freem(mrep);
2094 nfsmout:
2095 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2096 	if (!wccflag)
2097 		VTONFS(dvp)->n_attrstamp = 0;
2098 	/*
2099 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2100 	 */
2101 	if (error == ENOENT)
2102 		error = 0;
2103 	return (error);
2104 }
2105 
2106 /*
2107  * nfs readdir call
2108  *
2109  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2110  */
2111 static int
2112 nfs_readdir(struct vop_readdir_args *ap)
2113 {
2114 	struct vnode *vp = ap->a_vp;
2115 	struct nfsnode *np = VTONFS(vp);
2116 	struct uio *uio = ap->a_uio;
2117 	int tresid, error;
2118 	struct vattr vattr;
2119 
2120 	if (vp->v_type != VDIR)
2121 		return (EPERM);
2122 
2123 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2124 		return (error);
2125 
2126 	/*
2127 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2128 	 * and then check that is still valid, or if this is an NQNFS mount
2129 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2130 	 * VOP_GETATTR() does not necessarily go to the wire.
2131 	 */
2132 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2133 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2134 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2135 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2136 		) {
2137 			nfsstats.direofcache_hits++;
2138 			goto done;
2139 		}
2140 	}
2141 
2142 	/*
2143 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2144 	 * own cache coherency checks so we do not have to.
2145 	 */
2146 	tresid = uio->uio_resid;
2147 	error = nfs_bioread(vp, uio, 0);
2148 
2149 	if (!error && uio->uio_resid == tresid)
2150 		nfsstats.direofcache_misses++;
2151 done:
2152 	vn_unlock(vp);
2153 	return (error);
2154 }
2155 
2156 /*
2157  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2158  *
2159  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2160  * offset/block and converts the nfs formatted directory entries for userland
2161  * consumption as well as deals with offsets into the middle of blocks.
2162  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2163  * be block-bounded.  It must convert to cookies for the actual RPC.
2164  */
2165 int
2166 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2167 {
2168 	int len, left;
2169 	struct nfs_dirent *dp = NULL;
2170 	u_int32_t *tl;
2171 	caddr_t cp;
2172 	int32_t t1, t2;
2173 	nfsuint64 *cookiep;
2174 	caddr_t bpos, dpos, cp2;
2175 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2176 	nfsuint64 cookie;
2177 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2178 	struct nfsnode *dnp = VTONFS(vp);
2179 	u_quad_t fileno;
2180 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2181 	int attrflag;
2182 	int v3 = NFS_ISV3(vp);
2183 
2184 #ifndef DIAGNOSTIC
2185 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2186 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2187 		panic("nfs readdirrpc bad uio");
2188 #endif
2189 
2190 	/*
2191 	 * If there is no cookie, assume directory was stale.
2192 	 */
2193 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2194 	if (cookiep)
2195 		cookie = *cookiep;
2196 	else
2197 		return (NFSERR_BAD_COOKIE);
2198 	/*
2199 	 * Loop around doing readdir rpc's of size nm_readdirsize
2200 	 * truncated to a multiple of DIRBLKSIZ.
2201 	 * The stopping criteria is EOF or buffer full.
2202 	 */
2203 	while (more_dirs && bigenough) {
2204 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2205 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2206 			NFSX_READDIR(v3));
2207 		nfsm_fhtom(vp, v3);
2208 		if (v3) {
2209 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2210 			*tl++ = cookie.nfsuquad[0];
2211 			*tl++ = cookie.nfsuquad[1];
2212 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2213 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2214 		} else {
2215 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2216 			*tl++ = cookie.nfsuquad[0];
2217 		}
2218 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2219 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2220 		if (v3) {
2221 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2222 			if (!error) {
2223 				nfsm_dissect(tl, u_int32_t *,
2224 				    2 * NFSX_UNSIGNED);
2225 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2226 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2227 			} else {
2228 				m_freem(mrep);
2229 				goto nfsmout;
2230 			}
2231 		}
2232 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2233 		more_dirs = fxdr_unsigned(int, *tl);
2234 
2235 		/* loop thru the dir entries, converting them to std form */
2236 		while (more_dirs && bigenough) {
2237 			if (v3) {
2238 				nfsm_dissect(tl, u_int32_t *,
2239 				    3 * NFSX_UNSIGNED);
2240 				fileno = fxdr_hyper(tl);
2241 				len = fxdr_unsigned(int, *(tl + 2));
2242 			} else {
2243 				nfsm_dissect(tl, u_int32_t *,
2244 				    2 * NFSX_UNSIGNED);
2245 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2246 				len = fxdr_unsigned(int, *tl);
2247 			}
2248 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2249 				error = EBADRPC;
2250 				m_freem(mrep);
2251 				goto nfsmout;
2252 			}
2253 
2254 			/*
2255 			 * len is the number of bytes in the path element
2256 			 * name, not including the \0 termination.
2257 			 *
2258 			 * tlen is the number of bytes w have to reserve for
2259 			 * the path element name.
2260 			 */
2261 			tlen = nfsm_rndup(len);
2262 			if (tlen == len)
2263 				tlen += 4;	/* To ensure null termination */
2264 
2265 			/*
2266 			 * If the entry would cross a DIRBLKSIZ boundary,
2267 			 * extend the previous nfs_dirent to cover the
2268 			 * remaining space.
2269 			 */
2270 			left = DIRBLKSIZ - blksiz;
2271 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2272 				dp->nfs_reclen += left;
2273 				uiop->uio_iov->iov_base += left;
2274 				uiop->uio_iov->iov_len -= left;
2275 				uiop->uio_offset += left;
2276 				uiop->uio_resid -= left;
2277 				blksiz = 0;
2278 			}
2279 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2280 				bigenough = 0;
2281 			if (bigenough) {
2282 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2283 				dp->nfs_ino = fileno;
2284 				dp->nfs_namlen = len;
2285 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2286 				dp->nfs_type = DT_UNKNOWN;
2287 				blksiz += dp->nfs_reclen;
2288 				if (blksiz == DIRBLKSIZ)
2289 					blksiz = 0;
2290 				uiop->uio_offset += sizeof(struct nfs_dirent);
2291 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2292 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2293 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2294 				nfsm_mtouio(uiop, len);
2295 
2296 				/*
2297 				 * The uiop has advanced by nfs_dirent + len
2298 				 * but really needs to advance by
2299 				 * nfs_dirent + tlen
2300 				 */
2301 				cp = uiop->uio_iov->iov_base;
2302 				tlen -= len;
2303 				*cp = '\0';	/* null terminate */
2304 				uiop->uio_iov->iov_base += tlen;
2305 				uiop->uio_iov->iov_len -= tlen;
2306 				uiop->uio_offset += tlen;
2307 				uiop->uio_resid -= tlen;
2308 			} else {
2309 				/*
2310 				 * NFS strings must be rounded up (nfsm_myouio
2311 				 * handled that in the bigenough case).
2312 				 */
2313 				nfsm_adv(nfsm_rndup(len));
2314 			}
2315 			if (v3) {
2316 				nfsm_dissect(tl, u_int32_t *,
2317 				    3 * NFSX_UNSIGNED);
2318 			} else {
2319 				nfsm_dissect(tl, u_int32_t *,
2320 				    2 * NFSX_UNSIGNED);
2321 			}
2322 
2323 			/*
2324 			 * If we were able to accomodate the last entry,
2325 			 * get the cookie for the next one.  Otherwise
2326 			 * hold-over the cookie for the one we were not
2327 			 * able to accomodate.
2328 			 */
2329 			if (bigenough) {
2330 				cookie.nfsuquad[0] = *tl++;
2331 				if (v3)
2332 					cookie.nfsuquad[1] = *tl++;
2333 			} else if (v3) {
2334 				tl += 2;
2335 			} else {
2336 				tl++;
2337 			}
2338 			more_dirs = fxdr_unsigned(int, *tl);
2339 		}
2340 		/*
2341 		 * If at end of rpc data, get the eof boolean
2342 		 */
2343 		if (!more_dirs) {
2344 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2345 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2346 		}
2347 		m_freem(mrep);
2348 	}
2349 	/*
2350 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2351 	 * by increasing d_reclen for the last record.
2352 	 */
2353 	if (blksiz > 0) {
2354 		left = DIRBLKSIZ - blksiz;
2355 		dp->nfs_reclen += left;
2356 		uiop->uio_iov->iov_base += left;
2357 		uiop->uio_iov->iov_len -= left;
2358 		uiop->uio_offset += left;
2359 		uiop->uio_resid -= left;
2360 	}
2361 
2362 	if (bigenough) {
2363 		/*
2364 		 * We hit the end of the directory, update direofoffset.
2365 		 */
2366 		dnp->n_direofoffset = uiop->uio_offset;
2367 	} else {
2368 		/*
2369 		 * There is more to go, insert the link cookie so the
2370 		 * next block can be read.
2371 		 */
2372 		if (uiop->uio_resid > 0)
2373 			kprintf("EEK! readdirrpc resid > 0\n");
2374 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2375 		*cookiep = cookie;
2376 	}
2377 nfsmout:
2378 	return (error);
2379 }
2380 
2381 /*
2382  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2383  */
2384 int
2385 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2386 {
2387 	int len, left;
2388 	struct nfs_dirent *dp;
2389 	u_int32_t *tl;
2390 	caddr_t cp;
2391 	int32_t t1, t2;
2392 	struct vnode *newvp;
2393 	nfsuint64 *cookiep;
2394 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2395 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2396 	nfsuint64 cookie;
2397 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2398 	struct nfsnode *dnp = VTONFS(vp), *np;
2399 	nfsfh_t *fhp;
2400 	u_quad_t fileno;
2401 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2402 	int attrflag, fhsize;
2403 	struct nchandle nch;
2404 	struct nchandle dnch;
2405 	struct nlcomponent nlc;
2406 
2407 #ifndef nolint
2408 	dp = NULL;
2409 #endif
2410 #ifndef DIAGNOSTIC
2411 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2412 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2413 		panic("nfs readdirplusrpc bad uio");
2414 #endif
2415 	/*
2416 	 * Obtain the namecache record for the directory so we have something
2417 	 * to use as a basis for creating the entries.  This function will
2418 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2419 	 * from the tree and cannot be used for upward traversals, and the
2420 	 * ncp may be unnamed.  Note that other unrelated operations may
2421 	 * cause the ncp to be named at any time.
2422 	 */
2423 	cache_fromdvp(vp, NULL, 0, &dnch);
2424 	bzero(&nlc, sizeof(nlc));
2425 	newvp = NULLVP;
2426 
2427 	/*
2428 	 * If there is no cookie, assume directory was stale.
2429 	 */
2430 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2431 	if (cookiep)
2432 		cookie = *cookiep;
2433 	else
2434 		return (NFSERR_BAD_COOKIE);
2435 	/*
2436 	 * Loop around doing readdir rpc's of size nm_readdirsize
2437 	 * truncated to a multiple of DIRBLKSIZ.
2438 	 * The stopping criteria is EOF or buffer full.
2439 	 */
2440 	while (more_dirs && bigenough) {
2441 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2442 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2443 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2444 		nfsm_fhtom(vp, 1);
2445  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2446 		*tl++ = cookie.nfsuquad[0];
2447 		*tl++ = cookie.nfsuquad[1];
2448 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2449 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2450 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2451 		*tl = txdr_unsigned(nmp->nm_rsize);
2452 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2453 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2454 		if (error) {
2455 			m_freem(mrep);
2456 			goto nfsmout;
2457 		}
2458 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2459 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2460 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2461 		more_dirs = fxdr_unsigned(int, *tl);
2462 
2463 		/* loop thru the dir entries, doctoring them to 4bsd form */
2464 		while (more_dirs && bigenough) {
2465 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2466 			fileno = fxdr_hyper(tl);
2467 			len = fxdr_unsigned(int, *(tl + 2));
2468 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2469 				error = EBADRPC;
2470 				m_freem(mrep);
2471 				goto nfsmout;
2472 			}
2473 			tlen = nfsm_rndup(len);
2474 			if (tlen == len)
2475 				tlen += 4;	/* To ensure null termination*/
2476 			left = DIRBLKSIZ - blksiz;
2477 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2478 				dp->nfs_reclen += left;
2479 				uiop->uio_iov->iov_base += left;
2480 				uiop->uio_iov->iov_len -= left;
2481 				uiop->uio_offset += left;
2482 				uiop->uio_resid -= left;
2483 				blksiz = 0;
2484 			}
2485 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2486 				bigenough = 0;
2487 			if (bigenough) {
2488 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2489 				dp->nfs_ino = fileno;
2490 				dp->nfs_namlen = len;
2491 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2492 				dp->nfs_type = DT_UNKNOWN;
2493 				blksiz += dp->nfs_reclen;
2494 				if (blksiz == DIRBLKSIZ)
2495 					blksiz = 0;
2496 				uiop->uio_offset += sizeof(struct nfs_dirent);
2497 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2498 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2499 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2500 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2501 				nlc.nlc_namelen = len;
2502 				nfsm_mtouio(uiop, len);
2503 				cp = uiop->uio_iov->iov_base;
2504 				tlen -= len;
2505 				*cp = '\0';
2506 				uiop->uio_iov->iov_base += tlen;
2507 				uiop->uio_iov->iov_len -= tlen;
2508 				uiop->uio_offset += tlen;
2509 				uiop->uio_resid -= tlen;
2510 			} else
2511 				nfsm_adv(nfsm_rndup(len));
2512 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2513 			if (bigenough) {
2514 				cookie.nfsuquad[0] = *tl++;
2515 				cookie.nfsuquad[1] = *tl++;
2516 			} else
2517 				tl += 2;
2518 
2519 			/*
2520 			 * Since the attributes are before the file handle
2521 			 * (sigh), we must skip over the attributes and then
2522 			 * come back and get them.
2523 			 */
2524 			attrflag = fxdr_unsigned(int, *tl);
2525 			if (attrflag) {
2526 			    dpossav1 = dpos;
2527 			    mdsav1 = md;
2528 			    nfsm_adv(NFSX_V3FATTR);
2529 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2530 			    doit = fxdr_unsigned(int, *tl);
2531 			    if (doit) {
2532 				nfsm_getfh(fhp, fhsize, 1);
2533 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2534 				    vref(vp);
2535 				    newvp = vp;
2536 				    np = dnp;
2537 				} else {
2538 				    error = nfs_nget(vp->v_mount, fhp,
2539 					fhsize, &np);
2540 				    if (error)
2541 					doit = 0;
2542 				    else
2543 					newvp = NFSTOV(np);
2544 				}
2545 			    }
2546 			    if (doit && bigenough) {
2547 				dpossav2 = dpos;
2548 				dpos = dpossav1;
2549 				mdsav2 = md;
2550 				md = mdsav1;
2551 				nfsm_loadattr(newvp, (struct vattr *)0);
2552 				dpos = dpossav2;
2553 				md = mdsav2;
2554 				dp->nfs_type =
2555 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2556 				if (dnch.ncp) {
2557 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2558 					nlc.nlc_namelen, nlc.nlc_namelen,
2559 					nlc.nlc_nameptr);
2560 				    nch = cache_nlookup(&dnch, &nlc);
2561 				    cache_setunresolved(&nch);
2562 				    nfs_cache_setvp(&nch, newvp,
2563 						    nfspos_cache_timeout);
2564 				    cache_put(&nch);
2565 				} else {
2566 				    kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2567 					" %*.*s\n",
2568 					nlc.nlc_namelen, nlc.nlc_namelen,
2569 					nlc.nlc_nameptr);
2570 				}
2571 			    }
2572 			} else {
2573 			    /* Just skip over the file handle */
2574 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2575 			    i = fxdr_unsigned(int, *tl);
2576 			    nfsm_adv(nfsm_rndup(i));
2577 			}
2578 			if (newvp != NULLVP) {
2579 			    if (newvp == vp)
2580 				vrele(newvp);
2581 			    else
2582 				vput(newvp);
2583 			    newvp = NULLVP;
2584 			}
2585 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2586 			more_dirs = fxdr_unsigned(int, *tl);
2587 		}
2588 		/*
2589 		 * If at end of rpc data, get the eof boolean
2590 		 */
2591 		if (!more_dirs) {
2592 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2593 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2594 		}
2595 		m_freem(mrep);
2596 	}
2597 	/*
2598 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2599 	 * by increasing d_reclen for the last record.
2600 	 */
2601 	if (blksiz > 0) {
2602 		left = DIRBLKSIZ - blksiz;
2603 		dp->nfs_reclen += left;
2604 		uiop->uio_iov->iov_base += left;
2605 		uiop->uio_iov->iov_len -= left;
2606 		uiop->uio_offset += left;
2607 		uiop->uio_resid -= left;
2608 	}
2609 
2610 	/*
2611 	 * We are now either at the end of the directory or have filled the
2612 	 * block.
2613 	 */
2614 	if (bigenough)
2615 		dnp->n_direofoffset = uiop->uio_offset;
2616 	else {
2617 		if (uiop->uio_resid > 0)
2618 			kprintf("EEK! readdirplusrpc resid > 0\n");
2619 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2620 		*cookiep = cookie;
2621 	}
2622 nfsmout:
2623 	if (newvp != NULLVP) {
2624 	        if (newvp == vp)
2625 			vrele(newvp);
2626 		else
2627 			vput(newvp);
2628 		newvp = NULLVP;
2629 	}
2630 	if (dnch.ncp)
2631 		cache_drop(&dnch);
2632 	return (error);
2633 }
2634 
2635 /*
2636  * Silly rename. To make the NFS filesystem that is stateless look a little
2637  * more like the "ufs" a remove of an active vnode is translated to a rename
2638  * to a funny looking filename that is removed by nfs_inactive on the
2639  * nfsnode. There is the potential for another process on a different client
2640  * to create the same funny name between the nfs_lookitup() fails and the
2641  * nfs_rename() completes, but...
2642  */
2643 static int
2644 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2645 {
2646 	struct sillyrename *sp;
2647 	struct nfsnode *np;
2648 	int error;
2649 
2650 	/*
2651 	 * We previously purged dvp instead of vp.  I don't know why, it
2652 	 * completely destroys performance.  We can't do it anyway with the
2653 	 * new VFS API since we would be breaking the namecache topology.
2654 	 */
2655 	cache_purge(vp);	/* XXX */
2656 	np = VTONFS(vp);
2657 #ifndef DIAGNOSTIC
2658 	if (vp->v_type == VDIR)
2659 		panic("nfs: sillyrename dir");
2660 #endif
2661 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2662 		M_NFSREQ, M_WAITOK);
2663 	sp->s_cred = crdup(cnp->cn_cred);
2664 	sp->s_dvp = dvp;
2665 	vref(dvp);
2666 
2667 	/* Fudge together a funny name */
2668 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2669 
2670 	/* Try lookitups until we get one that isn't there */
2671 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2672 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2673 		sp->s_name[4]++;
2674 		if (sp->s_name[4] > 'z') {
2675 			error = EINVAL;
2676 			goto bad;
2677 		}
2678 	}
2679 	error = nfs_renameit(dvp, cnp, sp);
2680 	if (error)
2681 		goto bad;
2682 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2683 		cnp->cn_td, &np);
2684 	np->n_sillyrename = sp;
2685 	return (0);
2686 bad:
2687 	vrele(sp->s_dvp);
2688 	crfree(sp->s_cred);
2689 	kfree((caddr_t)sp, M_NFSREQ);
2690 	return (error);
2691 }
2692 
2693 /*
2694  * Look up a file name and optionally either update the file handle or
2695  * allocate an nfsnode, depending on the value of npp.
2696  * npp == NULL	--> just do the lookup
2697  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2698  *			handled too
2699  * *npp != NULL --> update the file handle in the vnode
2700  */
2701 static int
2702 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2703 	     struct thread *td, struct nfsnode **npp)
2704 {
2705 	u_int32_t *tl;
2706 	caddr_t cp;
2707 	int32_t t1, t2;
2708 	struct vnode *newvp = (struct vnode *)0;
2709 	struct nfsnode *np, *dnp = VTONFS(dvp);
2710 	caddr_t bpos, dpos, cp2;
2711 	int error = 0, fhlen, attrflag;
2712 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2713 	nfsfh_t *nfhp;
2714 	int v3 = NFS_ISV3(dvp);
2715 
2716 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2717 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2718 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2719 	nfsm_fhtom(dvp, v3);
2720 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2721 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2722 	if (npp && !error) {
2723 		nfsm_getfh(nfhp, fhlen, v3);
2724 		if (*npp) {
2725 		    np = *npp;
2726 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2727 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2728 			np->n_fhp = &np->n_fh;
2729 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2730 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2731 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2732 		    np->n_fhsize = fhlen;
2733 		    newvp = NFSTOV(np);
2734 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2735 		    vref(dvp);
2736 		    newvp = dvp;
2737 		} else {
2738 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2739 		    if (error) {
2740 			m_freem(mrep);
2741 			return (error);
2742 		    }
2743 		    newvp = NFSTOV(np);
2744 		}
2745 		if (v3) {
2746 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2747 			if (!attrflag && *npp == NULL) {
2748 				m_freem(mrep);
2749 				if (newvp == dvp)
2750 					vrele(newvp);
2751 				else
2752 					vput(newvp);
2753 				return (ENOENT);
2754 			}
2755 		} else
2756 			nfsm_loadattr(newvp, (struct vattr *)0);
2757 	}
2758 	m_freem(mrep);
2759 nfsmout:
2760 	if (npp && *npp == NULL) {
2761 		if (error) {
2762 			if (newvp) {
2763 				if (newvp == dvp)
2764 					vrele(newvp);
2765 				else
2766 					vput(newvp);
2767 			}
2768 		} else
2769 			*npp = np;
2770 	}
2771 	return (error);
2772 }
2773 
2774 /*
2775  * Nfs Version 3 commit rpc
2776  */
2777 int
2778 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2779 {
2780 	caddr_t cp;
2781 	u_int32_t *tl;
2782 	int32_t t1, t2;
2783 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2784 	caddr_t bpos, dpos, cp2;
2785 	int error = 0, wccflag = NFSV3_WCCRATTR;
2786 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2787 
2788 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2789 		return (0);
2790 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2791 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2792 	nfsm_fhtom(vp, 1);
2793 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2794 	txdr_hyper(offset, tl);
2795 	tl += 2;
2796 	*tl = txdr_unsigned(cnt);
2797 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2798 	nfsm_wcc_data(vp, wccflag);
2799 	if (!error) {
2800 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2801 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2802 			NFSX_V3WRITEVERF)) {
2803 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2804 				NFSX_V3WRITEVERF);
2805 			error = NFSERR_STALEWRITEVERF;
2806 		}
2807 	}
2808 	m_freem(mrep);
2809 nfsmout:
2810 	return (error);
2811 }
2812 
2813 /*
2814  * Kludge City..
2815  * - make nfs_bmap() essentially a no-op that does no translation
2816  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2817  *   (Maybe I could use the process's page mapping, but I was concerned that
2818  *    Kernel Write might not be enabled and also figured copyout() would do
2819  *    a lot more work than bcopy() and also it currently happens in the
2820  *    context of the swapper process (2).
2821  *
2822  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2823  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2824  */
2825 static int
2826 nfs_bmap(struct vop_bmap_args *ap)
2827 {
2828 	if (ap->a_doffsetp != NULL)
2829 		*ap->a_doffsetp = ap->a_loffset;
2830 	if (ap->a_runp != NULL)
2831 		*ap->a_runp = 0;
2832 	if (ap->a_runb != NULL)
2833 		*ap->a_runb = 0;
2834 	return (0);
2835 }
2836 
2837 /*
2838  * Strategy routine.
2839  *
2840  * For async requests when nfsiod(s) are running, queue the request by
2841  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2842  * request.
2843  */
2844 static int
2845 nfs_strategy(struct vop_strategy_args *ap)
2846 {
2847 	struct bio *bio = ap->a_bio;
2848 	struct bio *nbio;
2849 	struct buf *bp = bio->bio_buf;
2850 	struct thread *td;
2851 	int error = 0;
2852 
2853 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2854 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2855 	KASSERT(BUF_REFCNT(bp) > 0,
2856 		("nfs_strategy: buffer %p not locked", bp));
2857 
2858 	if (bp->b_flags & B_ASYNC)
2859 		td = NULL;
2860 	else
2861 		td = curthread;	/* XXX */
2862 
2863         /*
2864 	 * We probably don't need to push an nbio any more since no
2865 	 * block conversion is required due to the use of 64 bit byte
2866 	 * offsets, but do it anyway.
2867          */
2868 	nbio = push_bio(bio);
2869 	nbio->bio_offset = bio->bio_offset;
2870 
2871 	/*
2872 	 * If the op is asynchronous and an i/o daemon is waiting
2873 	 * queue the request, wake it up and wait for completion
2874 	 * otherwise just do it ourselves.
2875 	 */
2876 	if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2877 		error = nfs_doio(ap->a_vp, nbio, td);
2878 	return (error);
2879 }
2880 
2881 /*
2882  * Mmap a file
2883  *
2884  * NB Currently unsupported.
2885  *
2886  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
2887  */
2888 /* ARGSUSED */
2889 static int
2890 nfs_mmap(struct vop_mmap_args *ap)
2891 {
2892 	return (EINVAL);
2893 }
2894 
2895 /*
2896  * fsync vnode op. Just call nfs_flush() with commit == 1.
2897  *
2898  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
2899  */
2900 /* ARGSUSED */
2901 static int
2902 nfs_fsync(struct vop_fsync_args *ap)
2903 {
2904 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2905 }
2906 
2907 /*
2908  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2909  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2910  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2911  * set the buffer contains data that has already been written to the server
2912  * and which now needs a commit RPC.
2913  *
2914  * If commit is 0 we only take one pass and only flush buffers containing new
2915  * dirty data.
2916  *
2917  * If commit is 1 we take two passes, issuing a commit RPC in the second
2918  * pass.
2919  *
2920  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2921  * to completely flush all pending data.
2922  *
2923  * Note that the RB_SCAN code properly handles the case where the
2924  * callback might block and directly or indirectly (another thread) cause
2925  * the RB tree to change.
2926  */
2927 
2928 #ifndef NFS_COMMITBVECSIZ
2929 #define NFS_COMMITBVECSIZ	16
2930 #endif
2931 
2932 struct nfs_flush_info {
2933 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2934 	struct thread *td;
2935 	struct vnode *vp;
2936 	int waitfor;
2937 	int slpflag;
2938 	int slptimeo;
2939 	int loops;
2940 	struct buf *bvary[NFS_COMMITBVECSIZ];
2941 	int bvsize;
2942 	off_t beg_off;
2943 	off_t end_off;
2944 };
2945 
2946 static int nfs_flush_bp(struct buf *bp, void *data);
2947 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2948 
2949 int
2950 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2951 {
2952 	struct nfsnode *np = VTONFS(vp);
2953 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2954 	struct nfs_flush_info info;
2955 	int error;
2956 
2957 	bzero(&info, sizeof(info));
2958 	info.td = td;
2959 	info.vp = vp;
2960 	info.waitfor = waitfor;
2961 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2962 	info.loops = 0;
2963 
2964 	do {
2965 		/*
2966 		 * Flush mode
2967 		 */
2968 		info.mode = NFI_FLUSHNEW;
2969 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2970 				nfs_flush_bp, &info);
2971 
2972 		/*
2973 		 * Take a second pass if committing and no error occured.
2974 		 * Clean up any left over collection (whether an error
2975 		 * occurs or not).
2976 		 */
2977 		if (commit && error == 0) {
2978 			info.mode = NFI_COMMIT;
2979 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2980 					nfs_flush_bp, &info);
2981 			if (info.bvsize)
2982 				error = nfs_flush_docommit(&info, error);
2983 		}
2984 
2985 		/*
2986 		 * Wait for pending I/O to complete before checking whether
2987 		 * any further dirty buffers exist.
2988 		 */
2989 		while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
2990 			vp->v_track_write.bk_waitflag = 1;
2991 			error = tsleep(&vp->v_track_write,
2992 				info.slpflag, "nfsfsync", info.slptimeo);
2993 			if (error) {
2994 				/*
2995 				 * We have to be able to break out if this
2996 				 * is an 'intr' mount.
2997 				 */
2998 				if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2999 					error = -EINTR;
3000 					break;
3001 				}
3002 
3003 				/*
3004 				 * Since we do not process pending signals,
3005 				 * once we get a PCATCH our tsleep() will no
3006 				 * longer sleep, switch to a fixed timeout
3007 				 * instead.
3008 				 */
3009 				if (info.slpflag == PCATCH) {
3010 					info.slpflag = 0;
3011 					info.slptimeo = 2 * hz;
3012 				}
3013 				error = 0;
3014 			}
3015 		}
3016 		++info.loops;
3017 		/*
3018 		 * Loop if we are flushing synchronous as well as committing,
3019 		 * and dirty buffers are still present.  Otherwise we might livelock.
3020 		 */
3021 	} while (waitfor == MNT_WAIT && commit &&
3022 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3023 
3024 	/*
3025 	 * The callbacks have to return a negative error to terminate the
3026 	 * RB scan.
3027 	 */
3028 	if (error < 0)
3029 		error = -error;
3030 
3031 	/*
3032 	 * Deal with any error collection
3033 	 */
3034 	if (np->n_flag & NWRITEERR) {
3035 		error = np->n_error;
3036 		np->n_flag &= ~NWRITEERR;
3037 	}
3038 	return (error);
3039 }
3040 
3041 
3042 static
3043 int
3044 nfs_flush_bp(struct buf *bp, void *data)
3045 {
3046 	struct nfs_flush_info *info = data;
3047 	off_t toff;
3048 	int error;
3049 
3050 	error = 0;
3051 	switch(info->mode) {
3052 	case NFI_FLUSHNEW:
3053 		crit_enter();
3054 		if (info->loops && info->waitfor == MNT_WAIT) {
3055 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3056 			if (error) {
3057 				int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3058 				if (info->slpflag & PCATCH)
3059 					lkflags |= LK_PCATCH;
3060 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3061 						     info->slptimeo);
3062 			}
3063 		} else {
3064 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3065 		}
3066 		if (error == 0) {
3067 			KKASSERT(bp->b_vp == info->vp);
3068 
3069 			if ((bp->b_flags & B_DELWRI) == 0)
3070 				panic("nfs_fsync: not dirty");
3071 			if (bp->b_flags & B_NEEDCOMMIT) {
3072 				BUF_UNLOCK(bp);
3073 				crit_exit();
3074 				break;
3075 			}
3076 			bremfree(bp);
3077 
3078 			crit_exit();
3079 			bawrite(bp);
3080 		} else {
3081 			crit_exit();
3082 			error = 0;
3083 		}
3084 		break;
3085 	case NFI_COMMIT:
3086 		/*
3087 		 * Only process buffers in need of a commit which we can
3088 		 * immediately lock.  This may prevent a buffer from being
3089 		 * committed, but the normal flush loop will block on the
3090 		 * same buffer so we shouldn't get into an endless loop.
3091 		 */
3092 		crit_enter();
3093 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3094 		    (B_DELWRI | B_NEEDCOMMIT) ||
3095 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3096 			crit_exit();
3097 			break;
3098 		}
3099 
3100 		KKASSERT(bp->b_vp == info->vp);
3101 		bremfree(bp);
3102 
3103 		/*
3104 		 * NOTE: storing the bp in the bvary[] basically sets
3105 		 * it up for a commit operation.
3106 		 *
3107 		 * We must call vfs_busy_pages() now so the commit operation
3108 		 * is interlocked with user modifications to memory mapped
3109 		 * pages.
3110 		 *
3111 		 * Note: to avoid loopback deadlocks, we do not
3112 		 * assign b_runningbufspace.
3113 		 */
3114 		bp->b_cmd = BUF_CMD_WRITE;
3115 		vfs_busy_pages(bp->b_vp, bp);
3116 		info->bvary[info->bvsize] = bp;
3117 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3118 		if (info->bvsize == 0 || toff < info->beg_off)
3119 			info->beg_off = toff;
3120 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3121 		if (info->bvsize == 0 || toff > info->end_off)
3122 			info->end_off = toff;
3123 		++info->bvsize;
3124 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3125 			error = nfs_flush_docommit(info, 0);
3126 			KKASSERT(info->bvsize == 0);
3127 		}
3128 		crit_exit();
3129 	}
3130 	return (error);
3131 }
3132 
3133 static
3134 int
3135 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3136 {
3137 	struct vnode *vp;
3138 	struct buf *bp;
3139 	off_t bytes;
3140 	int retv;
3141 	int i;
3142 
3143 	vp = info->vp;
3144 
3145 	if (info->bvsize > 0) {
3146 		/*
3147 		 * Commit data on the server, as required.  Note that
3148 		 * nfs_commit will use the vnode's cred for the commit.
3149 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3150 		 */
3151 		bytes = info->end_off - info->beg_off;
3152 		if (bytes > 0x40000000)
3153 			bytes = 0x40000000;
3154 		if (error) {
3155 			retv = -error;
3156 		} else {
3157 			retv = nfs_commit(vp, info->beg_off,
3158 					    (int)bytes, info->td);
3159 			if (retv == NFSERR_STALEWRITEVERF)
3160 				nfs_clearcommit(vp->v_mount);
3161 		}
3162 
3163 		/*
3164 		 * Now, either mark the blocks I/O done or mark the
3165 		 * blocks dirty, depending on whether the commit
3166 		 * succeeded.
3167 		 */
3168 		for (i = 0; i < info->bvsize; ++i) {
3169 			bp = info->bvary[i];
3170 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3171 			if (retv) {
3172 				/*
3173 				 * Error, leave B_DELWRI intact
3174 				 */
3175 				vfs_unbusy_pages(bp);
3176 				bp->b_cmd = BUF_CMD_DONE;
3177 				brelse(bp);
3178 			} else {
3179 				/*
3180 				 * Success, remove B_DELWRI ( bundirty() ).
3181 				 *
3182 				 * b_dirtyoff/b_dirtyend seem to be NFS
3183 				 * specific.  We should probably move that
3184 				 * into bundirty(). XXX
3185 				 *
3186 				 * We are faking an I/O write, we have to
3187 				 * start the transaction in order to
3188 				 * immediately biodone() it.
3189 				 */
3190 				crit_enter();
3191 				bp->b_flags |= B_ASYNC;
3192 				bundirty(bp);
3193 				bp->b_flags &= ~B_ERROR;
3194 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3195 				crit_exit();
3196 				biodone(&bp->b_bio1);
3197 			}
3198 		}
3199 		info->bvsize = 0;
3200 	}
3201 	return (error);
3202 }
3203 
3204 /*
3205  * NFS advisory byte-level locks.
3206  * Currently unsupported.
3207  *
3208  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3209  *		int a_flags)
3210  */
3211 static int
3212 nfs_advlock(struct vop_advlock_args *ap)
3213 {
3214 	struct nfsnode *np = VTONFS(ap->a_vp);
3215 
3216 	/*
3217 	 * The following kludge is to allow diskless support to work
3218 	 * until a real NFS lockd is implemented. Basically, just pretend
3219 	 * that this is a local lock.
3220 	 */
3221 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3222 }
3223 
3224 /*
3225  * Print out the contents of an nfsnode.
3226  *
3227  * nfs_print(struct vnode *a_vp)
3228  */
3229 static int
3230 nfs_print(struct vop_print_args *ap)
3231 {
3232 	struct vnode *vp = ap->a_vp;
3233 	struct nfsnode *np = VTONFS(vp);
3234 
3235 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3236 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3237 	if (vp->v_type == VFIFO)
3238 		fifo_printinfo(vp);
3239 	kprintf("\n");
3240 	return (0);
3241 }
3242 
3243 /*
3244  * nfs special file access vnode op.
3245  * Essentially just get vattr and then imitate iaccess() since the device is
3246  * local to the client.
3247  *
3248  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3249  */
3250 static int
3251 nfsspec_access(struct vop_access_args *ap)
3252 {
3253 	struct vattr *vap;
3254 	gid_t *gp;
3255 	struct ucred *cred = ap->a_cred;
3256 	struct vnode *vp = ap->a_vp;
3257 	mode_t mode = ap->a_mode;
3258 	struct vattr vattr;
3259 	int i;
3260 	int error;
3261 
3262 	/*
3263 	 * Disallow write attempts on filesystems mounted read-only;
3264 	 * unless the file is a socket, fifo, or a block or character
3265 	 * device resident on the filesystem.
3266 	 */
3267 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3268 		switch (vp->v_type) {
3269 		case VREG:
3270 		case VDIR:
3271 		case VLNK:
3272 			return (EROFS);
3273 		default:
3274 			break;
3275 		}
3276 	}
3277 	/*
3278 	 * If you're the super-user,
3279 	 * you always get access.
3280 	 */
3281 	if (cred->cr_uid == 0)
3282 		return (0);
3283 	vap = &vattr;
3284 	error = VOP_GETATTR(vp, vap);
3285 	if (error)
3286 		return (error);
3287 	/*
3288 	 * Access check is based on only one of owner, group, public.
3289 	 * If not owner, then check group. If not a member of the
3290 	 * group, then check public access.
3291 	 */
3292 	if (cred->cr_uid != vap->va_uid) {
3293 		mode >>= 3;
3294 		gp = cred->cr_groups;
3295 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3296 			if (vap->va_gid == *gp)
3297 				goto found;
3298 		mode >>= 3;
3299 found:
3300 		;
3301 	}
3302 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3303 	return (error);
3304 }
3305 
3306 /*
3307  * Read wrapper for special devices.
3308  *
3309  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3310  *		struct ucred *a_cred)
3311  */
3312 static int
3313 nfsspec_read(struct vop_read_args *ap)
3314 {
3315 	struct nfsnode *np = VTONFS(ap->a_vp);
3316 
3317 	/*
3318 	 * Set access flag.
3319 	 */
3320 	np->n_flag |= NACC;
3321 	getnanotime(&np->n_atim);
3322 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3323 }
3324 
3325 /*
3326  * Write wrapper for special devices.
3327  *
3328  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3329  *		 struct ucred *a_cred)
3330  */
3331 static int
3332 nfsspec_write(struct vop_write_args *ap)
3333 {
3334 	struct nfsnode *np = VTONFS(ap->a_vp);
3335 
3336 	/*
3337 	 * Set update flag.
3338 	 */
3339 	np->n_flag |= NUPD;
3340 	getnanotime(&np->n_mtim);
3341 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3342 }
3343 
3344 /*
3345  * Close wrapper for special devices.
3346  *
3347  * Update the times on the nfsnode then do device close.
3348  *
3349  * nfsspec_close(struct vnode *a_vp, int a_fflag)
3350  */
3351 static int
3352 nfsspec_close(struct vop_close_args *ap)
3353 {
3354 	struct vnode *vp = ap->a_vp;
3355 	struct nfsnode *np = VTONFS(vp);
3356 	struct vattr vattr;
3357 
3358 	if (np->n_flag & (NACC | NUPD)) {
3359 		np->n_flag |= NCHG;
3360 		if (vp->v_sysref.refcnt == 1 &&
3361 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3362 			VATTR_NULL(&vattr);
3363 			if (np->n_flag & NACC)
3364 				vattr.va_atime = np->n_atim;
3365 			if (np->n_flag & NUPD)
3366 				vattr.va_mtime = np->n_mtim;
3367 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3368 		}
3369 	}
3370 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3371 }
3372 
3373 /*
3374  * Read wrapper for fifos.
3375  *
3376  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3377  *		struct ucred *a_cred)
3378  */
3379 static int
3380 nfsfifo_read(struct vop_read_args *ap)
3381 {
3382 	struct nfsnode *np = VTONFS(ap->a_vp);
3383 
3384 	/*
3385 	 * Set access flag.
3386 	 */
3387 	np->n_flag |= NACC;
3388 	getnanotime(&np->n_atim);
3389 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3390 }
3391 
3392 /*
3393  * Write wrapper for fifos.
3394  *
3395  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3396  *		 struct ucred *a_cred)
3397  */
3398 static int
3399 nfsfifo_write(struct vop_write_args *ap)
3400 {
3401 	struct nfsnode *np = VTONFS(ap->a_vp);
3402 
3403 	/*
3404 	 * Set update flag.
3405 	 */
3406 	np->n_flag |= NUPD;
3407 	getnanotime(&np->n_mtim);
3408 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3409 }
3410 
3411 /*
3412  * Close wrapper for fifos.
3413  *
3414  * Update the times on the nfsnode then do fifo close.
3415  *
3416  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3417  */
3418 static int
3419 nfsfifo_close(struct vop_close_args *ap)
3420 {
3421 	struct vnode *vp = ap->a_vp;
3422 	struct nfsnode *np = VTONFS(vp);
3423 	struct vattr vattr;
3424 	struct timespec ts;
3425 
3426 	if (np->n_flag & (NACC | NUPD)) {
3427 		getnanotime(&ts);
3428 		if (np->n_flag & NACC)
3429 			np->n_atim = ts;
3430 		if (np->n_flag & NUPD)
3431 			np->n_mtim = ts;
3432 		np->n_flag |= NCHG;
3433 		if (vp->v_sysref.refcnt == 1 &&
3434 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3435 			VATTR_NULL(&vattr);
3436 			if (np->n_flag & NACC)
3437 				vattr.va_atime = np->n_atim;
3438 			if (np->n_flag & NUPD)
3439 				vattr.va_mtime = np->n_mtim;
3440 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3441 		}
3442 	}
3443 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3444 }
3445 
3446