xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 9b5a9965)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.72 2007/06/15 17:25:05 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsspec_read (struct vop_read_args *);
98 static int	nfsspec_write (struct vop_write_args *);
99 static int	nfsfifo_read (struct vop_read_args *);
100 static int	nfsfifo_write (struct vop_write_args *);
101 static int	nfsspec_close (struct vop_close_args *);
102 static int	nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static	int	nfs_lookup (struct vop_old_lookup_args *);
106 static	int	nfs_create (struct vop_old_create_args *);
107 static	int	nfs_mknod (struct vop_old_mknod_args *);
108 static	int	nfs_open (struct vop_open_args *);
109 static	int	nfs_close (struct vop_close_args *);
110 static	int	nfs_access (struct vop_access_args *);
111 static	int	nfs_getattr (struct vop_getattr_args *);
112 static	int	nfs_setattr (struct vop_setattr_args *);
113 static	int	nfs_read (struct vop_read_args *);
114 static	int	nfs_mmap (struct vop_mmap_args *);
115 static	int	nfs_fsync (struct vop_fsync_args *);
116 static	int	nfs_remove (struct vop_old_remove_args *);
117 static	int	nfs_link (struct vop_old_link_args *);
118 static	int	nfs_rename (struct vop_old_rename_args *);
119 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
120 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
121 static	int	nfs_symlink (struct vop_old_symlink_args *);
122 static	int	nfs_readdir (struct vop_readdir_args *);
123 static	int	nfs_bmap (struct vop_bmap_args *);
124 static	int	nfs_strategy (struct vop_strategy_args *);
125 static	int	nfs_lookitup (struct vnode *, const char *, int,
126 			struct ucred *, struct thread *, struct nfsnode **);
127 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int	nfsspec_access (struct vop_access_args *);
129 static int	nfs_readlink (struct vop_readlink_args *);
130 static int	nfs_print (struct vop_print_args *);
131 static int	nfs_advlock (struct vop_advlock_args *);
132 
133 static	int	nfs_nresolve (struct vop_nresolve_args *);
134 /*
135  * Global vfs data structures for nfs
136  */
137 struct vop_ops nfsv2_vnode_vops = {
138 	.vop_default =		vop_defaultop,
139 	.vop_access =		nfs_access,
140 	.vop_advlock =		nfs_advlock,
141 	.vop_bmap =		nfs_bmap,
142 	.vop_close =		nfs_close,
143 	.vop_old_create =	nfs_create,
144 	.vop_fsync =		nfs_fsync,
145 	.vop_getattr =		nfs_getattr,
146 	.vop_getpages =		nfs_getpages,
147 	.vop_putpages =		nfs_putpages,
148 	.vop_inactive =		nfs_inactive,
149 	.vop_old_link =		nfs_link,
150 	.vop_old_lookup =	nfs_lookup,
151 	.vop_old_mkdir =	nfs_mkdir,
152 	.vop_old_mknod =	nfs_mknod,
153 	.vop_mmap =		nfs_mmap,
154 	.vop_open =		nfs_open,
155 	.vop_poll =		nfs_poll,
156 	.vop_print =		nfs_print,
157 	.vop_read =		nfs_read,
158 	.vop_readdir =		nfs_readdir,
159 	.vop_readlink =		nfs_readlink,
160 	.vop_reclaim =		nfs_reclaim,
161 	.vop_old_remove =	nfs_remove,
162 	.vop_old_rename =	nfs_rename,
163 	.vop_old_rmdir =	nfs_rmdir,
164 	.vop_setattr =		nfs_setattr,
165 	.vop_strategy =		nfs_strategy,
166 	.vop_old_symlink =	nfs_symlink,
167 	.vop_write =		nfs_write,
168 	.vop_nresolve =		nfs_nresolve
169 };
170 
171 /*
172  * Special device vnode ops
173  */
174 struct vop_ops nfsv2_spec_vops = {
175 	.vop_default =		spec_vnoperate,
176 	.vop_access =		nfsspec_access,
177 	.vop_close =		nfsspec_close,
178 	.vop_fsync =		nfs_fsync,
179 	.vop_getattr =		nfs_getattr,
180 	.vop_inactive =		nfs_inactive,
181 	.vop_print =		nfs_print,
182 	.vop_read =		nfsspec_read,
183 	.vop_reclaim =		nfs_reclaim,
184 	.vop_setattr =		nfs_setattr,
185 	.vop_write =		nfsspec_write
186 };
187 
188 struct vop_ops nfsv2_fifo_vops = {
189 	.vop_default =		fifo_vnoperate,
190 	.vop_access =		nfsspec_access,
191 	.vop_close =		nfsfifo_close,
192 	.vop_fsync =		nfs_fsync,
193 	.vop_getattr =		nfs_getattr,
194 	.vop_inactive =		nfs_inactive,
195 	.vop_print =		nfs_print,
196 	.vop_read =		nfsfifo_read,
197 	.vop_reclaim =		nfs_reclaim,
198 	.vop_setattr =		nfs_setattr,
199 	.vop_write =		nfsfifo_write
200 };
201 
202 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
203 				  struct componentname *cnp,
204 				  struct vattr *vap);
205 static int	nfs_removerpc (struct vnode *dvp, const char *name,
206 				   int namelen,
207 				   struct ucred *cred, struct thread *td);
208 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
209 				   int fnamelen, struct vnode *tdvp,
210 				   const char *tnameptr, int tnamelen,
211 				   struct ucred *cred, struct thread *td);
212 static int	nfs_renameit (struct vnode *sdvp,
213 				  struct componentname *scnp,
214 				  struct sillyrename *sp);
215 
216 /*
217  * Global variables
218  */
219 extern u_int32_t nfs_true, nfs_false;
220 extern u_int32_t nfs_xdrneg1;
221 extern struct nfsstats nfsstats;
222 extern nfstype nfsv3_type[9];
223 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
224 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
225 int nfs_numasync = 0;
226 
227 SYSCTL_DECL(_vfs_nfs);
228 
229 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
230 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
231 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
232 
233 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
234 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
235 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
236 
237 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
238 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
239 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
240 
241 static int	nfsv3_commit_on_close = 0;
242 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
243 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
244 #if 0
245 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
246 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
247 
248 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
249 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
250 #endif
251 
252 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
253 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
254 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
255 static int
256 nfs3_access_otw(struct vnode *vp, int wmode,
257 		struct thread *td, struct ucred *cred)
258 {
259 	const int v3 = 1;
260 	u_int32_t *tl;
261 	int error = 0, attrflag;
262 
263 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
264 	caddr_t bpos, dpos, cp2;
265 	int32_t t1, t2;
266 	caddr_t cp;
267 	u_int32_t rmode;
268 	struct nfsnode *np = VTONFS(vp);
269 
270 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
271 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
272 	nfsm_fhtom(vp, v3);
273 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
274 	*tl = txdr_unsigned(wmode);
275 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
276 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
277 	if (!error) {
278 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
279 		rmode = fxdr_unsigned(u_int32_t, *tl);
280 		np->n_mode = rmode;
281 		np->n_modeuid = cred->cr_uid;
282 		np->n_modestamp = mycpu->gd_time_seconds;
283 	}
284 	m_freem(mrep);
285 nfsmout:
286 	return error;
287 }
288 
289 /*
290  * nfs access vnode op.
291  * For nfs version 2, just return ok. File accesses may fail later.
292  * For nfs version 3, use the access rpc to check accessibility. If file modes
293  * are changed on the server, accesses might still fail later.
294  *
295  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
296  *	      struct thread *a_td)
297  */
298 static int
299 nfs_access(struct vop_access_args *ap)
300 {
301 	struct vnode *vp = ap->a_vp;
302 	thread_t td = curthread;
303 	int error = 0;
304 	u_int32_t mode, wmode;
305 	int v3 = NFS_ISV3(vp);
306 	struct nfsnode *np = VTONFS(vp);
307 
308 	/*
309 	 * Disallow write attempts on filesystems mounted read-only;
310 	 * unless the file is a socket, fifo, or a block or character
311 	 * device resident on the filesystem.
312 	 */
313 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
314 		switch (vp->v_type) {
315 		case VREG:
316 		case VDIR:
317 		case VLNK:
318 			return (EROFS);
319 		default:
320 			break;
321 		}
322 	}
323 	/*
324 	 * For nfs v3, check to see if we have done this recently, and if
325 	 * so return our cached result instead of making an ACCESS call.
326 	 * If not, do an access rpc, otherwise you are stuck emulating
327 	 * ufs_access() locally using the vattr. This may not be correct,
328 	 * since the server may apply other access criteria such as
329 	 * client uid-->server uid mapping that we do not know about.
330 	 */
331 	if (v3) {
332 		if (ap->a_mode & VREAD)
333 			mode = NFSV3ACCESS_READ;
334 		else
335 			mode = 0;
336 		if (vp->v_type != VDIR) {
337 			if (ap->a_mode & VWRITE)
338 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
339 			if (ap->a_mode & VEXEC)
340 				mode |= NFSV3ACCESS_EXECUTE;
341 		} else {
342 			if (ap->a_mode & VWRITE)
343 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
344 					 NFSV3ACCESS_DELETE);
345 			if (ap->a_mode & VEXEC)
346 				mode |= NFSV3ACCESS_LOOKUP;
347 		}
348 		/* XXX safety belt, only make blanket request if caching */
349 		if (nfsaccess_cache_timeout > 0) {
350 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
351 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
352 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
353 		} else {
354 			wmode = mode;
355 		}
356 
357 		/*
358 		 * Does our cached result allow us to give a definite yes to
359 		 * this request?
360 		 */
361 		if (np->n_modestamp &&
362 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
363 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
364 		   ((np->n_mode & mode) == mode)) {
365 			nfsstats.accesscache_hits++;
366 		} else {
367 			/*
368 			 * Either a no, or a don't know.  Go to the wire.
369 			 */
370 			nfsstats.accesscache_misses++;
371 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
372 			if (!error) {
373 				if ((np->n_mode & mode) != mode) {
374 					error = EACCES;
375 				}
376 			}
377 		}
378 	} else {
379 		if ((error = nfsspec_access(ap)) != 0)
380 			return (error);
381 
382 		/*
383 		 * Attempt to prevent a mapped root from accessing a file
384 		 * which it shouldn't.  We try to read a byte from the file
385 		 * if the user is root and the file is not zero length.
386 		 * After calling nfsspec_access, we should have the correct
387 		 * file size cached.
388 		 */
389 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
390 		    && VTONFS(vp)->n_size > 0) {
391 			struct iovec aiov;
392 			struct uio auio;
393 			char buf[1];
394 
395 			aiov.iov_base = buf;
396 			aiov.iov_len = 1;
397 			auio.uio_iov = &aiov;
398 			auio.uio_iovcnt = 1;
399 			auio.uio_offset = 0;
400 			auio.uio_resid = 1;
401 			auio.uio_segflg = UIO_SYSSPACE;
402 			auio.uio_rw = UIO_READ;
403 			auio.uio_td = td;
404 
405 			if (vp->v_type == VREG) {
406 				error = nfs_readrpc(vp, &auio);
407 			} else if (vp->v_type == VDIR) {
408 				char* bp;
409 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
410 				aiov.iov_base = bp;
411 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
412 				error = nfs_readdirrpc(vp, &auio);
413 				kfree(bp, M_TEMP);
414 			} else if (vp->v_type == VLNK) {
415 				error = nfs_readlinkrpc(vp, &auio);
416 			} else {
417 				error = EACCES;
418 			}
419 		}
420 	}
421 	/*
422 	 * [re]record creds for reading and/or writing if access
423 	 * was granted.  Assume the NFS server will grant read access
424 	 * for execute requests.
425 	 */
426 	if (error == 0) {
427 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
428 			crhold(ap->a_cred);
429 			if (np->n_rucred)
430 				crfree(np->n_rucred);
431 			np->n_rucred = ap->a_cred;
432 		}
433 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
434 			crhold(ap->a_cred);
435 			if (np->n_wucred)
436 				crfree(np->n_wucred);
437 			np->n_wucred = ap->a_cred;
438 		}
439 	}
440 	return(error);
441 }
442 
443 /*
444  * nfs open vnode op
445  * Check to see if the type is ok
446  * and that deletion is not in progress.
447  * For paged in text files, you will need to flush the page cache
448  * if consistency is lost.
449  *
450  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
451  */
452 /* ARGSUSED */
453 static int
454 nfs_open(struct vop_open_args *ap)
455 {
456 	struct vnode *vp = ap->a_vp;
457 	struct nfsnode *np = VTONFS(vp);
458 	struct vattr vattr;
459 	int error;
460 
461 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
462 #ifdef DIAGNOSTIC
463 		kprintf("open eacces vtyp=%d\n",vp->v_type);
464 #endif
465 		return (EOPNOTSUPP);
466 	}
467 
468 	/*
469 	 * Clear the attribute cache only if opening with write access.  It
470 	 * is unclear if we should do this at all here, but we certainly
471 	 * should not clear the cache unconditionally simply because a file
472 	 * is being opened.
473 	 */
474 	if (ap->a_mode & FWRITE)
475 		np->n_attrstamp = 0;
476 
477 	/*
478 	 * For normal NFS, reconcile changes made locally verses
479 	 * changes made remotely.  Note that VOP_GETATTR only goes
480 	 * to the wire if the cached attribute has timed out or been
481 	 * cleared.
482 	 *
483 	 * If local modifications have been made clear the attribute
484 	 * cache to force an attribute and modified time check.  If
485 	 * GETATTR detects that the file has been changed by someone
486 	 * other then us it will set NRMODIFIED.
487 	 *
488 	 * If we are opening a directory and local changes have been
489 	 * made we have to invalidate the cache in order to ensure
490 	 * that we get the most up-to-date information from the
491 	 * server.  XXX
492 	 */
493 	if (np->n_flag & NLMODIFIED) {
494 		np->n_attrstamp = 0;
495 		if (vp->v_type == VDIR) {
496 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
497 			if (error == EINTR)
498 				return (error);
499 			nfs_invaldir(vp);
500 		}
501 	}
502 	error = VOP_GETATTR(vp, &vattr);
503 	if (error)
504 		return (error);
505 	if (np->n_flag & NRMODIFIED) {
506 		if (vp->v_type == VDIR)
507 			nfs_invaldir(vp);
508 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
509 		if (error == EINTR)
510 			return (error);
511 		np->n_flag &= ~NRMODIFIED;
512 	}
513 
514 	return (vop_stdopen(ap));
515 }
516 
517 /*
518  * nfs close vnode op
519  * What an NFS client should do upon close after writing is a debatable issue.
520  * Most NFS clients push delayed writes to the server upon close, basically for
521  * two reasons:
522  * 1 - So that any write errors may be reported back to the client process
523  *     doing the close system call. By far the two most likely errors are
524  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
525  * 2 - To put a worst case upper bound on cache inconsistency between
526  *     multiple clients for the file.
527  * There is also a consistency problem for Version 2 of the protocol w.r.t.
528  * not being able to tell if other clients are writing a file concurrently,
529  * since there is no way of knowing if the changed modify time in the reply
530  * is only due to the write for this client.
531  * (NFS Version 3 provides weak cache consistency data in the reply that
532  *  should be sufficient to detect and handle this case.)
533  *
534  * The current code does the following:
535  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
536  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
537  *                     or commit them (this satisfies 1 and 2 except for the
538  *                     case where the server crashes after this close but
539  *                     before the commit RPC, which is felt to be "good
540  *                     enough". Changing the last argument to nfs_flush() to
541  *                     a 1 would force a commit operation, if it is felt a
542  *                     commit is necessary now.
543  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
544  *                     1 should be dealt with via an fsync() system call for
545  *                     cases where write errors are important.
546  *
547  * nfs_close(struct vnode *a_vp, int a_fflag,
548  *	     struct ucred *a_cred, struct thread *a_td)
549  */
550 /* ARGSUSED */
551 static int
552 nfs_close(struct vop_close_args *ap)
553 {
554 	struct vnode *vp = ap->a_vp;
555 	struct nfsnode *np = VTONFS(vp);
556 	int error = 0;
557 	thread_t td = curthread;
558 
559 	if (vp->v_type == VREG) {
560 	    if (np->n_flag & NLMODIFIED) {
561 		if (NFS_ISV3(vp)) {
562 		    /*
563 		     * Under NFSv3 we have dirty buffers to dispose of.  We
564 		     * must flush them to the NFS server.  We have the option
565 		     * of waiting all the way through the commit rpc or just
566 		     * waiting for the initial write.  The default is to only
567 		     * wait through the initial write so the data is in the
568 		     * server's cache, which is roughly similar to the state
569 		     * a standard disk subsystem leaves the file in on close().
570 		     *
571 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
572 		     * potential races with other processes, and certainly
573 		     * cannot clear it if we don't commit.
574 		     */
575 		    int cm = nfsv3_commit_on_close ? 1 : 0;
576 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
577 		    /* np->n_flag &= ~NLMODIFIED; */
578 		} else {
579 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
580 		}
581 		np->n_attrstamp = 0;
582 	    }
583 	    if (np->n_flag & NWRITEERR) {
584 		np->n_flag &= ~NWRITEERR;
585 		error = np->n_error;
586 	    }
587 	}
588 	vop_stdclose(ap);
589 	return (error);
590 }
591 
592 /*
593  * nfs getattr call from vfs.
594  *
595  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
596  *		struct thread *a_td)
597  */
598 static int
599 nfs_getattr(struct vop_getattr_args *ap)
600 {
601 	struct vnode *vp = ap->a_vp;
602 	struct nfsnode *np = VTONFS(vp);
603 	caddr_t cp;
604 	u_int32_t *tl;
605 	int32_t t1, t2;
606 	caddr_t bpos, dpos;
607 	int error = 0;
608 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
609 	int v3 = NFS_ISV3(vp);
610 	thread_t td = curthread;
611 
612 	/*
613 	 * Update local times for special files.
614 	 */
615 	if (np->n_flag & (NACC | NUPD))
616 		np->n_flag |= NCHG;
617 	/*
618 	 * First look in the cache.
619 	 */
620 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
621 		return (0);
622 
623 	if (v3 && nfsaccess_cache_timeout > 0) {
624 		nfsstats.accesscache_misses++;
625 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
626 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
627 			return (0);
628 	}
629 
630 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
631 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
632 	nfsm_fhtom(vp, v3);
633 	nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
634 	if (!error) {
635 		nfsm_loadattr(vp, ap->a_vap);
636 	}
637 	m_freem(mrep);
638 nfsmout:
639 	return (error);
640 }
641 
642 /*
643  * nfs setattr call.
644  *
645  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
646  */
647 static int
648 nfs_setattr(struct vop_setattr_args *ap)
649 {
650 	struct vnode *vp = ap->a_vp;
651 	struct nfsnode *np = VTONFS(vp);
652 	struct vattr *vap = ap->a_vap;
653 	int error = 0;
654 	u_quad_t tsize;
655 	thread_t td = curthread;
656 
657 #ifndef nolint
658 	tsize = (u_quad_t)0;
659 #endif
660 
661 	/*
662 	 * Setting of flags is not supported.
663 	 */
664 	if (vap->va_flags != VNOVAL)
665 		return (EOPNOTSUPP);
666 
667 	/*
668 	 * Disallow write attempts if the filesystem is mounted read-only.
669 	 */
670   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
671 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
672 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
673 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
674 		return (EROFS);
675 	if (vap->va_size != VNOVAL) {
676  		switch (vp->v_type) {
677  		case VDIR:
678  			return (EISDIR);
679  		case VCHR:
680  		case VBLK:
681  		case VSOCK:
682  		case VFIFO:
683 			if (vap->va_mtime.tv_sec == VNOVAL &&
684 			    vap->va_atime.tv_sec == VNOVAL &&
685 			    vap->va_mode == (mode_t)VNOVAL &&
686 			    vap->va_uid == (uid_t)VNOVAL &&
687 			    vap->va_gid == (gid_t)VNOVAL)
688 				return (0);
689  			vap->va_size = VNOVAL;
690  			break;
691  		default:
692 			/*
693 			 * Disallow write attempts if the filesystem is
694 			 * mounted read-only.
695 			 */
696 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
697 				return (EROFS);
698 
699 			/*
700 			 * This is nasty.  The RPCs we send to flush pending
701 			 * data often return attribute information which is
702 			 * cached via a callback to nfs_loadattrcache(), which
703 			 * has the effect of changing our notion of the file
704 			 * size.  Due to flushed appends and other operations
705 			 * the file size can be set to virtually anything,
706 			 * including values that do not match either the old
707 			 * or intended file size.
708 			 *
709 			 * When this condition is detected we must loop to
710 			 * try the operation again.  Hopefully no more
711 			 * flushing is required on the loop so it works the
712 			 * second time around.  THIS CASE ALMOST ALWAYS
713 			 * HAPPENS!
714 			 */
715 			tsize = np->n_size;
716 again:
717 			error = nfs_meta_setsize(vp, td, vap->va_size);
718 
719  			if (np->n_flag & NLMODIFIED) {
720  			    if (vap->va_size == 0)
721  				error = nfs_vinvalbuf(vp, 0, 1);
722  			    else
723  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
724  			}
725 			/*
726 			 * note: this loop case almost always happens at
727 			 * least once per truncation.
728 			 */
729 			if (error == 0 && np->n_size != vap->va_size)
730 				goto again;
731 			np->n_vattr.va_size = vap->va_size;
732 			break;
733 		}
734   	} else if ((vap->va_mtime.tv_sec != VNOVAL ||
735 		vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NLMODIFIED) &&
736 		vp->v_type == VREG &&
737   		(error = nfs_vinvalbuf(vp, V_SAVE, 1)) == EINTR
738 	) {
739 		return (error);
740 	}
741 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
742 
743 	/*
744 	 * Sanity check if a truncation was issued.  This should only occur
745 	 * if multiple processes are racing on the same file.
746 	 */
747 	if (error == 0 && vap->va_size != VNOVAL &&
748 	    np->n_size != vap->va_size) {
749 		kprintf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
750 		goto again;
751 	}
752 	if (error && vap->va_size != VNOVAL) {
753 		np->n_size = np->n_vattr.va_size = tsize;
754 		vnode_pager_setsize(vp, np->n_size);
755 	}
756 	return (error);
757 }
758 
759 /*
760  * Do an nfs setattr rpc.
761  */
762 static int
763 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
764 	       struct ucred *cred, struct thread *td)
765 {
766 	struct nfsv2_sattr *sp;
767 	struct nfsnode *np = VTONFS(vp);
768 	caddr_t cp;
769 	int32_t t1, t2;
770 	caddr_t bpos, dpos, cp2;
771 	u_int32_t *tl;
772 	int error = 0, wccflag = NFSV3_WCCRATTR;
773 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
774 	int v3 = NFS_ISV3(vp);
775 
776 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
777 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
778 	nfsm_fhtom(vp, v3);
779 	if (v3) {
780 		nfsm_v3attrbuild(vap, TRUE);
781 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
782 		*tl = nfs_false;
783 	} else {
784 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
785 		if (vap->va_mode == (mode_t)VNOVAL)
786 			sp->sa_mode = nfs_xdrneg1;
787 		else
788 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
789 		if (vap->va_uid == (uid_t)VNOVAL)
790 			sp->sa_uid = nfs_xdrneg1;
791 		else
792 			sp->sa_uid = txdr_unsigned(vap->va_uid);
793 		if (vap->va_gid == (gid_t)VNOVAL)
794 			sp->sa_gid = nfs_xdrneg1;
795 		else
796 			sp->sa_gid = txdr_unsigned(vap->va_gid);
797 		sp->sa_size = txdr_unsigned(vap->va_size);
798 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
799 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
800 	}
801 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
802 	if (v3) {
803 		np->n_modestamp = 0;
804 		nfsm_wcc_data(vp, wccflag);
805 	} else
806 		nfsm_loadattr(vp, (struct vattr *)0);
807 	m_freem(mrep);
808 nfsmout:
809 	return (error);
810 }
811 
812 static
813 void
814 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
815 {
816 	if (nctimeout == 0)
817 		nctimeout = 1;
818 	else
819 		nctimeout *= hz;
820 	cache_setvp(nch, vp);
821 	cache_settimeout(nch, nctimeout);
822 }
823 
824 /*
825  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
826  * nfs_lookup() until all remaining new api calls are implemented.
827  *
828  * Resolve a namecache entry.  This function is passed a locked ncp and
829  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
830  */
831 static int
832 nfs_nresolve(struct vop_nresolve_args *ap)
833 {
834 	struct thread *td = curthread;
835 	struct namecache *ncp;
836 	struct ucred *cred;
837 	struct nfsnode *np;
838 	struct vnode *dvp;
839 	struct vnode *nvp;
840 	nfsfh_t *fhp;
841 	int attrflag;
842 	int fhsize;
843 	int error;
844 	int len;
845 	int v3;
846 	/******NFSM MACROS********/
847 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
848 	caddr_t bpos, dpos, cp, cp2;
849 	u_int32_t *tl;
850 	int32_t t1, t2;
851 
852 	cred = ap->a_cred;
853 	ncp = ap->a_nch->ncp;
854 
855 	KKASSERT(ncp->nc_parent && ncp->nc_parent->nc_vp);
856 	dvp = ncp->nc_parent->nc_vp;
857 	if ((error = vget(dvp, LK_SHARED)) != 0)
858 		return (error);
859 
860 	nvp = NULL;
861 	v3 = NFS_ISV3(dvp);
862 	nfsstats.lookupcache_misses++;
863 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
864 	len = ncp->nc_nlen;
865 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
866 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
867 	nfsm_fhtom(dvp, v3);
868 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
869 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
870 	if (error) {
871 		/*
872 		 * Cache negatve lookups to reduce NFS traffic, but use
873 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
874 		 * XXX we should add a namecache flag for no-caching
875 		 * to uncache the negative hit as soon as possible, but
876 		 * we cannot simply destroy the entry because it is used
877 		 * as a placeholder by the caller.
878 		 */
879 		if (error == ENOENT)
880 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
881 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
882 		m_freem(mrep);
883 		goto nfsmout;
884 	}
885 
886 	/*
887 	 * Success, get the file handle, do various checks, and load
888 	 * post-operation data from the reply packet.  Theoretically
889 	 * we should never be looking up "." so, theoretically, we
890 	 * should never get the same file handle as our directory.  But
891 	 * we check anyway. XXX
892 	 *
893 	 * Note that no timeout is set for the positive cache hit.  We
894 	 * assume, theoretically, that ESTALE returns will be dealt with
895 	 * properly to handle NFS races and in anycase we cannot depend
896 	 * on a timeout to deal with NFS open/create/excl issues so instead
897 	 * of a bad hack here the rest of the NFS client code needs to do
898 	 * the right thing.
899 	 */
900 	nfsm_getfh(fhp, fhsize, v3);
901 
902 	np = VTONFS(dvp);
903 	if (NFS_CMPFH(np, fhp, fhsize)) {
904 		vref(dvp);
905 		nvp = dvp;
906 	} else {
907 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
908 		if (error) {
909 			m_freem(mrep);
910 			vput(dvp);
911 			return (error);
912 		}
913 		nvp = NFSTOV(np);
914 	}
915 	if (v3) {
916 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
917 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
918 	} else {
919 		nfsm_loadattr(nvp, NULL);
920 	}
921 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
922 	m_freem(mrep);
923 nfsmout:
924 	vput(dvp);
925 	if (nvp) {
926 		if (nvp == dvp)
927 			vrele(nvp);
928 		else
929 			vput(nvp);
930 	}
931 	return (error);
932 }
933 
934 /*
935  * 'cached' nfs directory lookup
936  *
937  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
938  *
939  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
940  *	      struct componentname *a_cnp)
941  */
942 static int
943 nfs_lookup(struct vop_old_lookup_args *ap)
944 {
945 	struct componentname *cnp = ap->a_cnp;
946 	struct vnode *dvp = ap->a_dvp;
947 	struct vnode **vpp = ap->a_vpp;
948 	int flags = cnp->cn_flags;
949 	struct vnode *newvp;
950 	u_int32_t *tl;
951 	caddr_t cp;
952 	int32_t t1, t2;
953 	struct nfsmount *nmp;
954 	caddr_t bpos, dpos, cp2;
955 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
956 	long len;
957 	nfsfh_t *fhp;
958 	struct nfsnode *np;
959 	int lockparent, wantparent, error = 0, attrflag, fhsize;
960 	int v3 = NFS_ISV3(dvp);
961 
962 	/*
963 	 * Read-only mount check and directory check.
964 	 */
965 	*vpp = NULLVP;
966 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
967 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
968 		return (EROFS);
969 
970 	if (dvp->v_type != VDIR)
971 		return (ENOTDIR);
972 
973 	/*
974 	 * Look it up in the cache.  Note that ENOENT is only returned if we
975 	 * previously entered a negative hit (see later on).  The additional
976 	 * nfsneg_cache_timeout check causes previously cached results to
977 	 * be instantly ignored if the negative caching is turned off.
978 	 */
979 	lockparent = flags & CNP_LOCKPARENT;
980 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
981 	nmp = VFSTONFS(dvp->v_mount);
982 	np = VTONFS(dvp);
983 
984 	/*
985 	 * Go to the wire.
986 	 */
987 	error = 0;
988 	newvp = NULLVP;
989 	nfsstats.lookupcache_misses++;
990 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
991 	len = cnp->cn_namelen;
992 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
993 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
994 	nfsm_fhtom(dvp, v3);
995 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
996 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
997 	if (error) {
998 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
999 		m_freem(mrep);
1000 		goto nfsmout;
1001 	}
1002 	nfsm_getfh(fhp, fhsize, v3);
1003 
1004 	/*
1005 	 * Handle RENAME case...
1006 	 */
1007 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1008 		if (NFS_CMPFH(np, fhp, fhsize)) {
1009 			m_freem(mrep);
1010 			return (EISDIR);
1011 		}
1012 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1013 		if (error) {
1014 			m_freem(mrep);
1015 			return (error);
1016 		}
1017 		newvp = NFSTOV(np);
1018 		if (v3) {
1019 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1020 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1021 		} else
1022 			nfsm_loadattr(newvp, (struct vattr *)0);
1023 		*vpp = newvp;
1024 		m_freem(mrep);
1025 		if (!lockparent) {
1026 			vn_unlock(dvp);
1027 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1028 		}
1029 		return (0);
1030 	}
1031 
1032 	if (flags & CNP_ISDOTDOT) {
1033 		vn_unlock(dvp);
1034 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1035 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1036 		if (error) {
1037 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1038 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1039 			return (error); /* NOTE: return error from nget */
1040 		}
1041 		newvp = NFSTOV(np);
1042 		if (lockparent) {
1043 			error = vn_lock(dvp, LK_EXCLUSIVE);
1044 			if (error) {
1045 				vput(newvp);
1046 				return (error);
1047 			}
1048 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1049 		}
1050 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1051 		vref(dvp);
1052 		newvp = dvp;
1053 	} else {
1054 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1055 		if (error) {
1056 			m_freem(mrep);
1057 			return (error);
1058 		}
1059 		if (!lockparent) {
1060 			vn_unlock(dvp);
1061 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1062 		}
1063 		newvp = NFSTOV(np);
1064 	}
1065 	if (v3) {
1066 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1067 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1068 	} else
1069 		nfsm_loadattr(newvp, (struct vattr *)0);
1070 #if 0
1071 	/* XXX MOVE TO nfs_nremove() */
1072 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1073 	    cnp->cn_nameiop != NAMEI_DELETE) {
1074 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1075 	}
1076 #endif
1077 	*vpp = newvp;
1078 	m_freem(mrep);
1079 nfsmout:
1080 	if (error) {
1081 		if (newvp != NULLVP) {
1082 			vrele(newvp);
1083 			*vpp = NULLVP;
1084 		}
1085 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1086 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1087 		    error == ENOENT) {
1088 			if (!lockparent) {
1089 				vn_unlock(dvp);
1090 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1091 			}
1092 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1093 				error = EROFS;
1094 			else
1095 				error = EJUSTRETURN;
1096 		}
1097 	}
1098 	return (error);
1099 }
1100 
1101 /*
1102  * nfs read call.
1103  * Just call nfs_bioread() to do the work.
1104  *
1105  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1106  *	    struct ucred *a_cred)
1107  */
1108 static int
1109 nfs_read(struct vop_read_args *ap)
1110 {
1111 	struct vnode *vp = ap->a_vp;
1112 
1113 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1114 	switch (vp->v_type) {
1115 	case VREG:
1116 		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1117 	case VDIR:
1118 		return (EISDIR);
1119 	default:
1120 		return EOPNOTSUPP;
1121 	}
1122 }
1123 
1124 /*
1125  * nfs readlink call
1126  *
1127  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1128  */
1129 static int
1130 nfs_readlink(struct vop_readlink_args *ap)
1131 {
1132 	struct vnode *vp = ap->a_vp;
1133 
1134 	if (vp->v_type != VLNK)
1135 		return (EINVAL);
1136 	return (nfs_bioread(vp, ap->a_uio, 0));
1137 }
1138 
1139 /*
1140  * Do a readlink rpc.
1141  * Called by nfs_doio() from below the buffer cache.
1142  */
1143 int
1144 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1145 {
1146 	u_int32_t *tl;
1147 	caddr_t cp;
1148 	int32_t t1, t2;
1149 	caddr_t bpos, dpos, cp2;
1150 	int error = 0, len, attrflag;
1151 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1152 	int v3 = NFS_ISV3(vp);
1153 
1154 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1155 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1156 	nfsm_fhtom(vp, v3);
1157 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1158 	if (v3)
1159 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1160 	if (!error) {
1161 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1162 		if (len == NFS_MAXPATHLEN) {
1163 			struct nfsnode *np = VTONFS(vp);
1164 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1165 				len = np->n_size;
1166 		}
1167 		nfsm_mtouio(uiop, len);
1168 	}
1169 	m_freem(mrep);
1170 nfsmout:
1171 	return (error);
1172 }
1173 
1174 /*
1175  * nfs read rpc call
1176  * Ditto above
1177  */
1178 int
1179 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1180 {
1181 	u_int32_t *tl;
1182 	caddr_t cp;
1183 	int32_t t1, t2;
1184 	caddr_t bpos, dpos, cp2;
1185 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1186 	struct nfsmount *nmp;
1187 	int error = 0, len, retlen, tsiz, eof, attrflag;
1188 	int v3 = NFS_ISV3(vp);
1189 
1190 #ifndef nolint
1191 	eof = 0;
1192 #endif
1193 	nmp = VFSTONFS(vp->v_mount);
1194 	tsiz = uiop->uio_resid;
1195 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1196 		return (EFBIG);
1197 	while (tsiz > 0) {
1198 		nfsstats.rpccnt[NFSPROC_READ]++;
1199 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1200 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1201 		nfsm_fhtom(vp, v3);
1202 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1203 		if (v3) {
1204 			txdr_hyper(uiop->uio_offset, tl);
1205 			*(tl + 2) = txdr_unsigned(len);
1206 		} else {
1207 			*tl++ = txdr_unsigned(uiop->uio_offset);
1208 			*tl++ = txdr_unsigned(len);
1209 			*tl = 0;
1210 		}
1211 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1212 		if (v3) {
1213 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1214 			if (error) {
1215 				m_freem(mrep);
1216 				goto nfsmout;
1217 			}
1218 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1219 			eof = fxdr_unsigned(int, *(tl + 1));
1220 		} else
1221 			nfsm_loadattr(vp, (struct vattr *)0);
1222 		nfsm_strsiz(retlen, nmp->nm_rsize);
1223 		nfsm_mtouio(uiop, retlen);
1224 		m_freem(mrep);
1225 		tsiz -= retlen;
1226 		if (v3) {
1227 			if (eof || retlen == 0) {
1228 				tsiz = 0;
1229 			}
1230 		} else if (retlen < len) {
1231 			tsiz = 0;
1232 		}
1233 	}
1234 nfsmout:
1235 	return (error);
1236 }
1237 
1238 /*
1239  * nfs write call
1240  */
1241 int
1242 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1243 {
1244 	u_int32_t *tl;
1245 	caddr_t cp;
1246 	int32_t t1, t2, backup;
1247 	caddr_t bpos, dpos, cp2;
1248 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1249 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1250 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1251 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1252 
1253 #ifndef DIAGNOSTIC
1254 	if (uiop->uio_iovcnt != 1)
1255 		panic("nfs: writerpc iovcnt > 1");
1256 #endif
1257 	*must_commit = 0;
1258 	tsiz = uiop->uio_resid;
1259 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1260 		return (EFBIG);
1261 	while (tsiz > 0) {
1262 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1263 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1264 		nfsm_reqhead(vp, NFSPROC_WRITE,
1265 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1266 		nfsm_fhtom(vp, v3);
1267 		if (v3) {
1268 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1269 			txdr_hyper(uiop->uio_offset, tl);
1270 			tl += 2;
1271 			*tl++ = txdr_unsigned(len);
1272 			*tl++ = txdr_unsigned(*iomode);
1273 			*tl = txdr_unsigned(len);
1274 		} else {
1275 			u_int32_t x;
1276 
1277 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1278 			/* Set both "begin" and "current" to non-garbage. */
1279 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1280 			*tl++ = x;	/* "begin offset" */
1281 			*tl++ = x;	/* "current offset" */
1282 			x = txdr_unsigned(len);
1283 			*tl++ = x;	/* total to this offset */
1284 			*tl = x;	/* size of this write */
1285 		}
1286 		nfsm_uiotom(uiop, len);
1287 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1288 		if (v3) {
1289 			/*
1290 			 * The write RPC returns a before and after mtime.  The
1291 			 * nfsm_wcc_data() macro checks the before n_mtime
1292 			 * against the before time and stores the after time
1293 			 * in the nfsnode's cached vattr and n_mtime field.
1294 			 * The NRMODIFIED bit will be set if the before
1295 			 * time did not match the original mtime.
1296 			 */
1297 			wccflag = NFSV3_WCCCHK;
1298 			nfsm_wcc_data(vp, wccflag);
1299 			if (!error) {
1300 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1301 					+ NFSX_V3WRITEVERF);
1302 				rlen = fxdr_unsigned(int, *tl++);
1303 				if (rlen == 0) {
1304 					error = NFSERR_IO;
1305 					m_freem(mrep);
1306 					break;
1307 				} else if (rlen < len) {
1308 					backup = len - rlen;
1309 					uiop->uio_iov->iov_base -= backup;
1310 					uiop->uio_iov->iov_len += backup;
1311 					uiop->uio_offset -= backup;
1312 					uiop->uio_resid += backup;
1313 					len = rlen;
1314 				}
1315 				commit = fxdr_unsigned(int, *tl++);
1316 
1317 				/*
1318 				 * Return the lowest committment level
1319 				 * obtained by any of the RPCs.
1320 				 */
1321 				if (committed == NFSV3WRITE_FILESYNC)
1322 					committed = commit;
1323 				else if (committed == NFSV3WRITE_DATASYNC &&
1324 					commit == NFSV3WRITE_UNSTABLE)
1325 					committed = commit;
1326 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1327 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1328 					NFSX_V3WRITEVERF);
1329 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1330 				} else if (bcmp((caddr_t)tl,
1331 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1332 				    *must_commit = 1;
1333 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1334 					NFSX_V3WRITEVERF);
1335 				}
1336 			}
1337 		} else {
1338 			nfsm_loadattr(vp, (struct vattr *)0);
1339 		}
1340 		m_freem(mrep);
1341 		if (error)
1342 			break;
1343 		tsiz -= len;
1344 	}
1345 nfsmout:
1346 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1347 		committed = NFSV3WRITE_FILESYNC;
1348 	*iomode = committed;
1349 	if (error)
1350 		uiop->uio_resid = tsiz;
1351 	return (error);
1352 }
1353 
1354 /*
1355  * nfs mknod rpc
1356  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1357  * mode set to specify the file type and the size field for rdev.
1358  */
1359 static int
1360 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1361 	     struct vattr *vap)
1362 {
1363 	struct nfsv2_sattr *sp;
1364 	u_int32_t *tl;
1365 	caddr_t cp;
1366 	int32_t t1, t2;
1367 	struct vnode *newvp = (struct vnode *)0;
1368 	struct nfsnode *np = (struct nfsnode *)0;
1369 	struct vattr vattr;
1370 	char *cp2;
1371 	caddr_t bpos, dpos;
1372 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1373 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1374 	int rmajor, rminor;
1375 	int v3 = NFS_ISV3(dvp);
1376 
1377 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1378 		rmajor = txdr_unsigned(vap->va_rmajor);
1379 		rminor = txdr_unsigned(vap->va_rminor);
1380 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1381 		rmajor = nfs_xdrneg1;
1382 		rminor = nfs_xdrneg1;
1383 	} else {
1384 		return (EOPNOTSUPP);
1385 	}
1386 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1387 		return (error);
1388 	}
1389 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1390 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1391 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1392 	nfsm_fhtom(dvp, v3);
1393 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1394 	if (v3) {
1395 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1396 		*tl++ = vtonfsv3_type(vap->va_type);
1397 		nfsm_v3attrbuild(vap, FALSE);
1398 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1399 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1400 			*tl++ = txdr_unsigned(vap->va_rmajor);
1401 			*tl = txdr_unsigned(vap->va_rminor);
1402 		}
1403 	} else {
1404 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1405 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1406 		sp->sa_uid = nfs_xdrneg1;
1407 		sp->sa_gid = nfs_xdrneg1;
1408 		sp->sa_size = makeudev(rmajor, rminor);
1409 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1410 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1411 	}
1412 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1413 	if (!error) {
1414 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1415 		if (!gotvp) {
1416 			if (newvp) {
1417 				vput(newvp);
1418 				newvp = (struct vnode *)0;
1419 			}
1420 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1421 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1422 			if (!error)
1423 				newvp = NFSTOV(np);
1424 		}
1425 	}
1426 	if (v3)
1427 		nfsm_wcc_data(dvp, wccflag);
1428 	m_freem(mrep);
1429 nfsmout:
1430 	if (error) {
1431 		if (newvp)
1432 			vput(newvp);
1433 	} else {
1434 		*vpp = newvp;
1435 	}
1436 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1437 	if (!wccflag)
1438 		VTONFS(dvp)->n_attrstamp = 0;
1439 	return (error);
1440 }
1441 
1442 /*
1443  * nfs mknod vop
1444  * just call nfs_mknodrpc() to do the work.
1445  *
1446  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1447  *	     struct componentname *a_cnp, struct vattr *a_vap)
1448  */
1449 /* ARGSUSED */
1450 static int
1451 nfs_mknod(struct vop_old_mknod_args *ap)
1452 {
1453 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1454 }
1455 
1456 static u_long create_verf;
1457 /*
1458  * nfs file create call
1459  *
1460  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1461  *	      struct componentname *a_cnp, struct vattr *a_vap)
1462  */
1463 static int
1464 nfs_create(struct vop_old_create_args *ap)
1465 {
1466 	struct vnode *dvp = ap->a_dvp;
1467 	struct vattr *vap = ap->a_vap;
1468 	struct componentname *cnp = ap->a_cnp;
1469 	struct nfsv2_sattr *sp;
1470 	u_int32_t *tl;
1471 	caddr_t cp;
1472 	int32_t t1, t2;
1473 	struct nfsnode *np = (struct nfsnode *)0;
1474 	struct vnode *newvp = (struct vnode *)0;
1475 	caddr_t bpos, dpos, cp2;
1476 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1477 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1478 	struct vattr vattr;
1479 	int v3 = NFS_ISV3(dvp);
1480 
1481 	/*
1482 	 * Oops, not for me..
1483 	 */
1484 	if (vap->va_type == VSOCK)
1485 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1486 
1487 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1488 		return (error);
1489 	}
1490 	if (vap->va_vaflags & VA_EXCLUSIVE)
1491 		fmode |= O_EXCL;
1492 again:
1493 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1494 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1495 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1496 	nfsm_fhtom(dvp, v3);
1497 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1498 	if (v3) {
1499 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1500 		if (fmode & O_EXCL) {
1501 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1502 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1503 #ifdef INET
1504 			if (!TAILQ_EMPTY(&in_ifaddrhead))
1505 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr.s_addr;
1506 			else
1507 #endif
1508 				*tl++ = create_verf;
1509 			*tl = ++create_verf;
1510 		} else {
1511 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1512 			nfsm_v3attrbuild(vap, FALSE);
1513 		}
1514 	} else {
1515 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1516 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1517 		sp->sa_uid = nfs_xdrneg1;
1518 		sp->sa_gid = nfs_xdrneg1;
1519 		sp->sa_size = 0;
1520 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1521 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1522 	}
1523 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1524 	if (!error) {
1525 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1526 		if (!gotvp) {
1527 			if (newvp) {
1528 				vput(newvp);
1529 				newvp = (struct vnode *)0;
1530 			}
1531 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1532 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1533 			if (!error)
1534 				newvp = NFSTOV(np);
1535 		}
1536 	}
1537 	if (v3)
1538 		nfsm_wcc_data(dvp, wccflag);
1539 	m_freem(mrep);
1540 nfsmout:
1541 	if (error) {
1542 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1543 			fmode &= ~O_EXCL;
1544 			goto again;
1545 		}
1546 		if (newvp)
1547 			vput(newvp);
1548 	} else if (v3 && (fmode & O_EXCL)) {
1549 		/*
1550 		 * We are normally called with only a partially initialized
1551 		 * VAP.  Since the NFSv3 spec says that server may use the
1552 		 * file attributes to store the verifier, the spec requires
1553 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1554 		 * in atime, but we can't really assume that all servers will
1555 		 * so we ensure that our SETATTR sets both atime and mtime.
1556 		 */
1557 		if (vap->va_mtime.tv_sec == VNOVAL)
1558 			vfs_timestamp(&vap->va_mtime);
1559 		if (vap->va_atime.tv_sec == VNOVAL)
1560 			vap->va_atime = vap->va_mtime;
1561 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1562 	}
1563 	if (!error) {
1564 		/*
1565 		 * The new np may have enough info for access
1566 		 * checks, make sure rucred and wucred are
1567 		 * initialized for read and write rpc's.
1568 		 */
1569 		np = VTONFS(newvp);
1570 		if (np->n_rucred == NULL)
1571 			np->n_rucred = crhold(cnp->cn_cred);
1572 		if (np->n_wucred == NULL)
1573 			np->n_wucred = crhold(cnp->cn_cred);
1574 		*ap->a_vpp = newvp;
1575 	}
1576 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1577 	if (!wccflag)
1578 		VTONFS(dvp)->n_attrstamp = 0;
1579 	return (error);
1580 }
1581 
1582 /*
1583  * nfs file remove call
1584  * To try and make nfs semantics closer to ufs semantics, a file that has
1585  * other processes using the vnode is renamed instead of removed and then
1586  * removed later on the last close.
1587  * - If v_sysref.refcnt > 1
1588  *	  If a rename is not already in the works
1589  *	     call nfs_sillyrename() to set it up
1590  *     else
1591  *	  do the remove rpc
1592  *
1593  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1594  *	      struct componentname *a_cnp)
1595  */
1596 static int
1597 nfs_remove(struct vop_old_remove_args *ap)
1598 {
1599 	struct vnode *vp = ap->a_vp;
1600 	struct vnode *dvp = ap->a_dvp;
1601 	struct componentname *cnp = ap->a_cnp;
1602 	struct nfsnode *np = VTONFS(vp);
1603 	int error = 0;
1604 	struct vattr vattr;
1605 
1606 #ifndef DIAGNOSTIC
1607 	if (vp->v_sysref.refcnt < 1)
1608 		panic("nfs_remove: bad v_sysref.refcnt");
1609 #endif
1610 	if (vp->v_type == VDIR)
1611 		error = EPERM;
1612 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1613 	    VOP_GETATTR(vp, &vattr) == 0 &&
1614 	    vattr.va_nlink > 1)) {
1615 		/*
1616 		 * throw away biocache buffers, mainly to avoid
1617 		 * unnecessary delayed writes later.
1618 		 */
1619 		error = nfs_vinvalbuf(vp, 0, 1);
1620 		/* Do the rpc */
1621 		if (error != EINTR)
1622 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1623 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1624 		/*
1625 		 * Kludge City: If the first reply to the remove rpc is lost..
1626 		 *   the reply to the retransmitted request will be ENOENT
1627 		 *   since the file was in fact removed
1628 		 *   Therefore, we cheat and return success.
1629 		 */
1630 		if (error == ENOENT)
1631 			error = 0;
1632 	} else if (!np->n_sillyrename) {
1633 		error = nfs_sillyrename(dvp, vp, cnp);
1634 	}
1635 	np->n_attrstamp = 0;
1636 	return (error);
1637 }
1638 
1639 /*
1640  * nfs file remove rpc called from nfs_inactive
1641  */
1642 int
1643 nfs_removeit(struct sillyrename *sp)
1644 {
1645 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1646 		sp->s_cred, NULL));
1647 }
1648 
1649 /*
1650  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1651  */
1652 static int
1653 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1654 	      struct ucred *cred, struct thread *td)
1655 {
1656 	u_int32_t *tl;
1657 	caddr_t cp;
1658 	int32_t t1, t2;
1659 	caddr_t bpos, dpos, cp2;
1660 	int error = 0, wccflag = NFSV3_WCCRATTR;
1661 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1662 	int v3 = NFS_ISV3(dvp);
1663 
1664 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1665 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1666 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1667 	nfsm_fhtom(dvp, v3);
1668 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1669 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1670 	if (v3)
1671 		nfsm_wcc_data(dvp, wccflag);
1672 	m_freem(mrep);
1673 nfsmout:
1674 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1675 	if (!wccflag)
1676 		VTONFS(dvp)->n_attrstamp = 0;
1677 	return (error);
1678 }
1679 
1680 /*
1681  * nfs file rename call
1682  *
1683  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1684  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1685  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1686  */
1687 static int
1688 nfs_rename(struct vop_old_rename_args *ap)
1689 {
1690 	struct vnode *fvp = ap->a_fvp;
1691 	struct vnode *tvp = ap->a_tvp;
1692 	struct vnode *fdvp = ap->a_fdvp;
1693 	struct vnode *tdvp = ap->a_tdvp;
1694 	struct componentname *tcnp = ap->a_tcnp;
1695 	struct componentname *fcnp = ap->a_fcnp;
1696 	int error;
1697 
1698 	/* Check for cross-device rename */
1699 	if ((fvp->v_mount != tdvp->v_mount) ||
1700 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1701 		error = EXDEV;
1702 		goto out;
1703 	}
1704 
1705 	/*
1706 	 * We have to flush B_DELWRI data prior to renaming
1707 	 * the file.  If we don't, the delayed-write buffers
1708 	 * can be flushed out later after the file has gone stale
1709 	 * under NFSV3.  NFSV2 does not have this problem because
1710 	 * ( as far as I can tell ) it flushes dirty buffers more
1711 	 * often.
1712 	 */
1713 
1714 	VOP_FSYNC(fvp, MNT_WAIT);
1715 	if (tvp)
1716 	    VOP_FSYNC(tvp, MNT_WAIT);
1717 
1718 	/*
1719 	 * If the tvp exists and is in use, sillyrename it before doing the
1720 	 * rename of the new file over it.
1721 	 *
1722 	 * XXX Can't sillyrename a directory.
1723 	 *
1724 	 * We do not attempt to do any namecache purges in this old API
1725 	 * routine.  The new API compat functions have access to the actual
1726 	 * namecache structures and will do it for us.
1727 	 */
1728 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1729 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1730 		vput(tvp);
1731 		tvp = NULL;
1732 	} else if (tvp) {
1733 		;
1734 	}
1735 
1736 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1737 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1738 		tcnp->cn_td);
1739 
1740 out:
1741 	if (tdvp == tvp)
1742 		vrele(tdvp);
1743 	else
1744 		vput(tdvp);
1745 	if (tvp)
1746 		vput(tvp);
1747 	vrele(fdvp);
1748 	vrele(fvp);
1749 	/*
1750 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1751 	 */
1752 	if (error == ENOENT)
1753 		error = 0;
1754 	return (error);
1755 }
1756 
1757 /*
1758  * nfs file rename rpc called from nfs_remove() above
1759  */
1760 static int
1761 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1762 	     struct sillyrename *sp)
1763 {
1764 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1765 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1766 }
1767 
1768 /*
1769  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1770  */
1771 static int
1772 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1773 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1774 	      struct ucred *cred, struct thread *td)
1775 {
1776 	u_int32_t *tl;
1777 	caddr_t cp;
1778 	int32_t t1, t2;
1779 	caddr_t bpos, dpos, cp2;
1780 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1781 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1782 	int v3 = NFS_ISV3(fdvp);
1783 
1784 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1785 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1786 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1787 		nfsm_rndup(tnamelen));
1788 	nfsm_fhtom(fdvp, v3);
1789 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1790 	nfsm_fhtom(tdvp, v3);
1791 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1792 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1793 	if (v3) {
1794 		nfsm_wcc_data(fdvp, fwccflag);
1795 		nfsm_wcc_data(tdvp, twccflag);
1796 	}
1797 	m_freem(mrep);
1798 nfsmout:
1799 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1800 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1801 	if (!fwccflag)
1802 		VTONFS(fdvp)->n_attrstamp = 0;
1803 	if (!twccflag)
1804 		VTONFS(tdvp)->n_attrstamp = 0;
1805 	return (error);
1806 }
1807 
1808 /*
1809  * nfs hard link create call
1810  *
1811  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1812  *	    struct componentname *a_cnp)
1813  */
1814 static int
1815 nfs_link(struct vop_old_link_args *ap)
1816 {
1817 	struct vnode *vp = ap->a_vp;
1818 	struct vnode *tdvp = ap->a_tdvp;
1819 	struct componentname *cnp = ap->a_cnp;
1820 	u_int32_t *tl;
1821 	caddr_t cp;
1822 	int32_t t1, t2;
1823 	caddr_t bpos, dpos, cp2;
1824 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1825 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1826 	int v3;
1827 
1828 	if (vp->v_mount != tdvp->v_mount) {
1829 		return (EXDEV);
1830 	}
1831 
1832 	/*
1833 	 * Push all writes to the server, so that the attribute cache
1834 	 * doesn't get "out of sync" with the server.
1835 	 * XXX There should be a better way!
1836 	 */
1837 	VOP_FSYNC(vp, MNT_WAIT);
1838 
1839 	v3 = NFS_ISV3(vp);
1840 	nfsstats.rpccnt[NFSPROC_LINK]++;
1841 	nfsm_reqhead(vp, NFSPROC_LINK,
1842 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1843 	nfsm_fhtom(vp, v3);
1844 	nfsm_fhtom(tdvp, v3);
1845 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1846 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1847 	if (v3) {
1848 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1849 		nfsm_wcc_data(tdvp, wccflag);
1850 	}
1851 	m_freem(mrep);
1852 nfsmout:
1853 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1854 	if (!attrflag)
1855 		VTONFS(vp)->n_attrstamp = 0;
1856 	if (!wccflag)
1857 		VTONFS(tdvp)->n_attrstamp = 0;
1858 	/*
1859 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1860 	 */
1861 	if (error == EEXIST)
1862 		error = 0;
1863 	return (error);
1864 }
1865 
1866 /*
1867  * nfs symbolic link create call
1868  *
1869  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1870  *		struct componentname *a_cnp, struct vattr *a_vap,
1871  *		char *a_target)
1872  */
1873 static int
1874 nfs_symlink(struct vop_old_symlink_args *ap)
1875 {
1876 	struct vnode *dvp = ap->a_dvp;
1877 	struct vattr *vap = ap->a_vap;
1878 	struct componentname *cnp = ap->a_cnp;
1879 	struct nfsv2_sattr *sp;
1880 	u_int32_t *tl;
1881 	caddr_t cp;
1882 	int32_t t1, t2;
1883 	caddr_t bpos, dpos, cp2;
1884 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1885 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1886 	struct vnode *newvp = (struct vnode *)0;
1887 	int v3 = NFS_ISV3(dvp);
1888 
1889 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1890 	slen = strlen(ap->a_target);
1891 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1892 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1893 	nfsm_fhtom(dvp, v3);
1894 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1895 	if (v3) {
1896 		nfsm_v3attrbuild(vap, FALSE);
1897 	}
1898 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1899 	if (!v3) {
1900 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1901 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1902 		sp->sa_uid = nfs_xdrneg1;
1903 		sp->sa_gid = nfs_xdrneg1;
1904 		sp->sa_size = nfs_xdrneg1;
1905 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1906 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1907 	}
1908 
1909 	/*
1910 	 * Issue the NFS request and get the rpc response.
1911 	 *
1912 	 * Only NFSv3 responses returning an error of 0 actually return
1913 	 * a file handle that can be converted into newvp without having
1914 	 * to do an extra lookup rpc.
1915 	 */
1916 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1917 	if (v3) {
1918 		if (error == 0)
1919 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1920 		nfsm_wcc_data(dvp, wccflag);
1921 	}
1922 
1923 	/*
1924 	 * out code jumps -> here, mrep is also freed.
1925 	 */
1926 
1927 	m_freem(mrep);
1928 nfsmout:
1929 
1930 	/*
1931 	 * If we get an EEXIST error, silently convert it to no-error
1932 	 * in case of an NFS retry.
1933 	 */
1934 	if (error == EEXIST)
1935 		error = 0;
1936 
1937 	/*
1938 	 * If we do not have (or no longer have) an error, and we could
1939 	 * not extract the newvp from the response due to the request being
1940 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1941 	 * to obtain a newvp to return.
1942 	 */
1943 	if (error == 0 && newvp == NULL) {
1944 		struct nfsnode *np = NULL;
1945 
1946 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1947 		    cnp->cn_cred, cnp->cn_td, &np);
1948 		if (!error)
1949 			newvp = NFSTOV(np);
1950 	}
1951 	if (error) {
1952 		if (newvp)
1953 			vput(newvp);
1954 	} else {
1955 		*ap->a_vpp = newvp;
1956 	}
1957 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1958 	if (!wccflag)
1959 		VTONFS(dvp)->n_attrstamp = 0;
1960 	return (error);
1961 }
1962 
1963 /*
1964  * nfs make dir call
1965  *
1966  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1967  *	     struct componentname *a_cnp, struct vattr *a_vap)
1968  */
1969 static int
1970 nfs_mkdir(struct vop_old_mkdir_args *ap)
1971 {
1972 	struct vnode *dvp = ap->a_dvp;
1973 	struct vattr *vap = ap->a_vap;
1974 	struct componentname *cnp = ap->a_cnp;
1975 	struct nfsv2_sattr *sp;
1976 	u_int32_t *tl;
1977 	caddr_t cp;
1978 	int32_t t1, t2;
1979 	int len;
1980 	struct nfsnode *np = (struct nfsnode *)0;
1981 	struct vnode *newvp = (struct vnode *)0;
1982 	caddr_t bpos, dpos, cp2;
1983 	int error = 0, wccflag = NFSV3_WCCRATTR;
1984 	int gotvp = 0;
1985 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1986 	struct vattr vattr;
1987 	int v3 = NFS_ISV3(dvp);
1988 
1989 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1990 		return (error);
1991 	}
1992 	len = cnp->cn_namelen;
1993 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
1994 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
1995 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
1996 	nfsm_fhtom(dvp, v3);
1997 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1998 	if (v3) {
1999 		nfsm_v3attrbuild(vap, FALSE);
2000 	} else {
2001 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2002 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2003 		sp->sa_uid = nfs_xdrneg1;
2004 		sp->sa_gid = nfs_xdrneg1;
2005 		sp->sa_size = nfs_xdrneg1;
2006 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2007 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2008 	}
2009 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2010 	if (!error)
2011 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2012 	if (v3)
2013 		nfsm_wcc_data(dvp, wccflag);
2014 	m_freem(mrep);
2015 nfsmout:
2016 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2017 	if (!wccflag)
2018 		VTONFS(dvp)->n_attrstamp = 0;
2019 	/*
2020 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2021 	 * if we can succeed in looking up the directory.
2022 	 */
2023 	if (error == EEXIST || (!error && !gotvp)) {
2024 		if (newvp) {
2025 			vrele(newvp);
2026 			newvp = (struct vnode *)0;
2027 		}
2028 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2029 			cnp->cn_td, &np);
2030 		if (!error) {
2031 			newvp = NFSTOV(np);
2032 			if (newvp->v_type != VDIR)
2033 				error = EEXIST;
2034 		}
2035 	}
2036 	if (error) {
2037 		if (newvp)
2038 			vrele(newvp);
2039 	} else
2040 		*ap->a_vpp = newvp;
2041 	return (error);
2042 }
2043 
2044 /*
2045  * nfs remove directory call
2046  *
2047  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2048  *	     struct componentname *a_cnp)
2049  */
2050 static int
2051 nfs_rmdir(struct vop_old_rmdir_args *ap)
2052 {
2053 	struct vnode *vp = ap->a_vp;
2054 	struct vnode *dvp = ap->a_dvp;
2055 	struct componentname *cnp = ap->a_cnp;
2056 	u_int32_t *tl;
2057 	caddr_t cp;
2058 	int32_t t1, t2;
2059 	caddr_t bpos, dpos, cp2;
2060 	int error = 0, wccflag = NFSV3_WCCRATTR;
2061 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2062 	int v3 = NFS_ISV3(dvp);
2063 
2064 	if (dvp == vp)
2065 		return (EINVAL);
2066 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2067 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2068 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2069 	nfsm_fhtom(dvp, v3);
2070 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2071 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2072 	if (v3)
2073 		nfsm_wcc_data(dvp, wccflag);
2074 	m_freem(mrep);
2075 nfsmout:
2076 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2077 	if (!wccflag)
2078 		VTONFS(dvp)->n_attrstamp = 0;
2079 	/*
2080 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2081 	 */
2082 	if (error == ENOENT)
2083 		error = 0;
2084 	return (error);
2085 }
2086 
2087 /*
2088  * nfs readdir call
2089  *
2090  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2091  */
2092 static int
2093 nfs_readdir(struct vop_readdir_args *ap)
2094 {
2095 	struct vnode *vp = ap->a_vp;
2096 	struct nfsnode *np = VTONFS(vp);
2097 	struct uio *uio = ap->a_uio;
2098 	int tresid, error;
2099 	struct vattr vattr;
2100 
2101 	if (vp->v_type != VDIR)
2102 		return (EPERM);
2103 
2104 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2105 		return (error);
2106 
2107 	/*
2108 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2109 	 * and then check that is still valid, or if this is an NQNFS mount
2110 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2111 	 * VOP_GETATTR() does not necessarily go to the wire.
2112 	 */
2113 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2114 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2115 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2116 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2117 		) {
2118 			nfsstats.direofcache_hits++;
2119 			goto done;
2120 		}
2121 	}
2122 
2123 	/*
2124 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2125 	 * own cache coherency checks so we do not have to.
2126 	 */
2127 	tresid = uio->uio_resid;
2128 	error = nfs_bioread(vp, uio, 0);
2129 
2130 	if (!error && uio->uio_resid == tresid)
2131 		nfsstats.direofcache_misses++;
2132 done:
2133 	vn_unlock(vp);
2134 	return (error);
2135 }
2136 
2137 /*
2138  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2139  *
2140  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2141  * offset/block and converts the nfs formatted directory entries for userland
2142  * consumption as well as deals with offsets into the middle of blocks.
2143  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2144  * be block-bounded.  It must convert to cookies for the actual RPC.
2145  */
2146 int
2147 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2148 {
2149 	int len, left;
2150 	struct nfs_dirent *dp = NULL;
2151 	u_int32_t *tl;
2152 	caddr_t cp;
2153 	int32_t t1, t2;
2154 	nfsuint64 *cookiep;
2155 	caddr_t bpos, dpos, cp2;
2156 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2157 	nfsuint64 cookie;
2158 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2159 	struct nfsnode *dnp = VTONFS(vp);
2160 	u_quad_t fileno;
2161 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2162 	int attrflag;
2163 	int v3 = NFS_ISV3(vp);
2164 
2165 #ifndef DIAGNOSTIC
2166 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2167 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2168 		panic("nfs readdirrpc bad uio");
2169 #endif
2170 
2171 	/*
2172 	 * If there is no cookie, assume directory was stale.
2173 	 */
2174 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2175 	if (cookiep)
2176 		cookie = *cookiep;
2177 	else
2178 		return (NFSERR_BAD_COOKIE);
2179 	/*
2180 	 * Loop around doing readdir rpc's of size nm_readdirsize
2181 	 * truncated to a multiple of DIRBLKSIZ.
2182 	 * The stopping criteria is EOF or buffer full.
2183 	 */
2184 	while (more_dirs && bigenough) {
2185 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2186 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2187 			NFSX_READDIR(v3));
2188 		nfsm_fhtom(vp, v3);
2189 		if (v3) {
2190 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2191 			*tl++ = cookie.nfsuquad[0];
2192 			*tl++ = cookie.nfsuquad[1];
2193 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2194 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2195 		} else {
2196 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2197 			*tl++ = cookie.nfsuquad[0];
2198 		}
2199 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2200 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2201 		if (v3) {
2202 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2203 			if (!error) {
2204 				nfsm_dissect(tl, u_int32_t *,
2205 				    2 * NFSX_UNSIGNED);
2206 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2207 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2208 			} else {
2209 				m_freem(mrep);
2210 				goto nfsmout;
2211 			}
2212 		}
2213 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2214 		more_dirs = fxdr_unsigned(int, *tl);
2215 
2216 		/* loop thru the dir entries, converting them to std form */
2217 		while (more_dirs && bigenough) {
2218 			if (v3) {
2219 				nfsm_dissect(tl, u_int32_t *,
2220 				    3 * NFSX_UNSIGNED);
2221 				fileno = fxdr_hyper(tl);
2222 				len = fxdr_unsigned(int, *(tl + 2));
2223 			} else {
2224 				nfsm_dissect(tl, u_int32_t *,
2225 				    2 * NFSX_UNSIGNED);
2226 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2227 				len = fxdr_unsigned(int, *tl);
2228 			}
2229 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2230 				error = EBADRPC;
2231 				m_freem(mrep);
2232 				goto nfsmout;
2233 			}
2234 
2235 			/*
2236 			 * len is the number of bytes in the path element
2237 			 * name, not including the \0 termination.
2238 			 *
2239 			 * tlen is the number of bytes w have to reserve for
2240 			 * the path element name.
2241 			 */
2242 			tlen = nfsm_rndup(len);
2243 			if (tlen == len)
2244 				tlen += 4;	/* To ensure null termination */
2245 
2246 			/*
2247 			 * If the entry would cross a DIRBLKSIZ boundary,
2248 			 * extend the previous nfs_dirent to cover the
2249 			 * remaining space.
2250 			 */
2251 			left = DIRBLKSIZ - blksiz;
2252 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2253 				dp->nfs_reclen += left;
2254 				uiop->uio_iov->iov_base += left;
2255 				uiop->uio_iov->iov_len -= left;
2256 				uiop->uio_offset += left;
2257 				uiop->uio_resid -= left;
2258 				blksiz = 0;
2259 			}
2260 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2261 				bigenough = 0;
2262 			if (bigenough) {
2263 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2264 				dp->nfs_ino = fileno;
2265 				dp->nfs_namlen = len;
2266 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2267 				dp->nfs_type = DT_UNKNOWN;
2268 				blksiz += dp->nfs_reclen;
2269 				if (blksiz == DIRBLKSIZ)
2270 					blksiz = 0;
2271 				uiop->uio_offset += sizeof(struct nfs_dirent);
2272 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2273 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2274 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2275 				nfsm_mtouio(uiop, len);
2276 
2277 				/*
2278 				 * The uiop has advanced by nfs_dirent + len
2279 				 * but really needs to advance by
2280 				 * nfs_dirent + tlen
2281 				 */
2282 				cp = uiop->uio_iov->iov_base;
2283 				tlen -= len;
2284 				*cp = '\0';	/* null terminate */
2285 				uiop->uio_iov->iov_base += tlen;
2286 				uiop->uio_iov->iov_len -= tlen;
2287 				uiop->uio_offset += tlen;
2288 				uiop->uio_resid -= tlen;
2289 			} else {
2290 				/*
2291 				 * NFS strings must be rounded up (nfsm_myouio
2292 				 * handled that in the bigenough case).
2293 				 */
2294 				nfsm_adv(nfsm_rndup(len));
2295 			}
2296 			if (v3) {
2297 				nfsm_dissect(tl, u_int32_t *,
2298 				    3 * NFSX_UNSIGNED);
2299 			} else {
2300 				nfsm_dissect(tl, u_int32_t *,
2301 				    2 * NFSX_UNSIGNED);
2302 			}
2303 
2304 			/*
2305 			 * If we were able to accomodate the last entry,
2306 			 * get the cookie for the next one.  Otherwise
2307 			 * hold-over the cookie for the one we were not
2308 			 * able to accomodate.
2309 			 */
2310 			if (bigenough) {
2311 				cookie.nfsuquad[0] = *tl++;
2312 				if (v3)
2313 					cookie.nfsuquad[1] = *tl++;
2314 			} else if (v3) {
2315 				tl += 2;
2316 			} else {
2317 				tl++;
2318 			}
2319 			more_dirs = fxdr_unsigned(int, *tl);
2320 		}
2321 		/*
2322 		 * If at end of rpc data, get the eof boolean
2323 		 */
2324 		if (!more_dirs) {
2325 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2326 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2327 		}
2328 		m_freem(mrep);
2329 	}
2330 	/*
2331 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2332 	 * by increasing d_reclen for the last record.
2333 	 */
2334 	if (blksiz > 0) {
2335 		left = DIRBLKSIZ - blksiz;
2336 		dp->nfs_reclen += left;
2337 		uiop->uio_iov->iov_base += left;
2338 		uiop->uio_iov->iov_len -= left;
2339 		uiop->uio_offset += left;
2340 		uiop->uio_resid -= left;
2341 	}
2342 
2343 	if (bigenough) {
2344 		/*
2345 		 * We hit the end of the directory, update direofoffset.
2346 		 */
2347 		dnp->n_direofoffset = uiop->uio_offset;
2348 	} else {
2349 		/*
2350 		 * There is more to go, insert the link cookie so the
2351 		 * next block can be read.
2352 		 */
2353 		if (uiop->uio_resid > 0)
2354 			kprintf("EEK! readdirrpc resid > 0\n");
2355 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2356 		*cookiep = cookie;
2357 	}
2358 nfsmout:
2359 	return (error);
2360 }
2361 
2362 /*
2363  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2364  */
2365 int
2366 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2367 {
2368 	int len, left;
2369 	struct nfs_dirent *dp;
2370 	u_int32_t *tl;
2371 	caddr_t cp;
2372 	int32_t t1, t2;
2373 	struct vnode *newvp;
2374 	nfsuint64 *cookiep;
2375 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2376 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2377 	nfsuint64 cookie;
2378 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2379 	struct nfsnode *dnp = VTONFS(vp), *np;
2380 	nfsfh_t *fhp;
2381 	u_quad_t fileno;
2382 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2383 	int attrflag, fhsize;
2384 	struct nchandle nch;
2385 	struct nchandle dnch;
2386 	struct nlcomponent nlc;
2387 
2388 #ifndef nolint
2389 	dp = NULL;
2390 #endif
2391 #ifndef DIAGNOSTIC
2392 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2393 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2394 		panic("nfs readdirplusrpc bad uio");
2395 #endif
2396 	/*
2397 	 * Obtain the namecache record for the directory so we have something
2398 	 * to use as a basis for creating the entries.  This function will
2399 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2400 	 * from the tree and cannot be used for upward traversals, and the
2401 	 * ncp may be unnamed.  Note that other unrelated operations may
2402 	 * cause the ncp to be named at any time.
2403 	 */
2404 	cache_fromdvp(vp, NULL, 0, &dnch);
2405 	bzero(&nlc, sizeof(nlc));
2406 	newvp = NULLVP;
2407 
2408 	/*
2409 	 * If there is no cookie, assume directory was stale.
2410 	 */
2411 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2412 	if (cookiep)
2413 		cookie = *cookiep;
2414 	else
2415 		return (NFSERR_BAD_COOKIE);
2416 	/*
2417 	 * Loop around doing readdir rpc's of size nm_readdirsize
2418 	 * truncated to a multiple of DIRBLKSIZ.
2419 	 * The stopping criteria is EOF or buffer full.
2420 	 */
2421 	while (more_dirs && bigenough) {
2422 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2423 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2424 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2425 		nfsm_fhtom(vp, 1);
2426  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2427 		*tl++ = cookie.nfsuquad[0];
2428 		*tl++ = cookie.nfsuquad[1];
2429 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2430 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2431 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2432 		*tl = txdr_unsigned(nmp->nm_rsize);
2433 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2434 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2435 		if (error) {
2436 			m_freem(mrep);
2437 			goto nfsmout;
2438 		}
2439 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2440 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2441 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2442 		more_dirs = fxdr_unsigned(int, *tl);
2443 
2444 		/* loop thru the dir entries, doctoring them to 4bsd form */
2445 		while (more_dirs && bigenough) {
2446 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2447 			fileno = fxdr_hyper(tl);
2448 			len = fxdr_unsigned(int, *(tl + 2));
2449 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2450 				error = EBADRPC;
2451 				m_freem(mrep);
2452 				goto nfsmout;
2453 			}
2454 			tlen = nfsm_rndup(len);
2455 			if (tlen == len)
2456 				tlen += 4;	/* To ensure null termination*/
2457 			left = DIRBLKSIZ - blksiz;
2458 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2459 				dp->nfs_reclen += left;
2460 				uiop->uio_iov->iov_base += left;
2461 				uiop->uio_iov->iov_len -= left;
2462 				uiop->uio_offset += left;
2463 				uiop->uio_resid -= left;
2464 				blksiz = 0;
2465 			}
2466 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2467 				bigenough = 0;
2468 			if (bigenough) {
2469 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2470 				dp->nfs_ino = fileno;
2471 				dp->nfs_namlen = len;
2472 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2473 				dp->nfs_type = DT_UNKNOWN;
2474 				blksiz += dp->nfs_reclen;
2475 				if (blksiz == DIRBLKSIZ)
2476 					blksiz = 0;
2477 				uiop->uio_offset += sizeof(struct nfs_dirent);
2478 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2479 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2480 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2481 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2482 				nlc.nlc_namelen = len;
2483 				nfsm_mtouio(uiop, len);
2484 				cp = uiop->uio_iov->iov_base;
2485 				tlen -= len;
2486 				*cp = '\0';
2487 				uiop->uio_iov->iov_base += tlen;
2488 				uiop->uio_iov->iov_len -= tlen;
2489 				uiop->uio_offset += tlen;
2490 				uiop->uio_resid -= tlen;
2491 			} else
2492 				nfsm_adv(nfsm_rndup(len));
2493 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2494 			if (bigenough) {
2495 				cookie.nfsuquad[0] = *tl++;
2496 				cookie.nfsuquad[1] = *tl++;
2497 			} else
2498 				tl += 2;
2499 
2500 			/*
2501 			 * Since the attributes are before the file handle
2502 			 * (sigh), we must skip over the attributes and then
2503 			 * come back and get them.
2504 			 */
2505 			attrflag = fxdr_unsigned(int, *tl);
2506 			if (attrflag) {
2507 			    dpossav1 = dpos;
2508 			    mdsav1 = md;
2509 			    nfsm_adv(NFSX_V3FATTR);
2510 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2511 			    doit = fxdr_unsigned(int, *tl);
2512 			    if (doit) {
2513 				nfsm_getfh(fhp, fhsize, 1);
2514 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2515 				    vref(vp);
2516 				    newvp = vp;
2517 				    np = dnp;
2518 				} else {
2519 				    error = nfs_nget(vp->v_mount, fhp,
2520 					fhsize, &np);
2521 				    if (error)
2522 					doit = 0;
2523 				    else
2524 					newvp = NFSTOV(np);
2525 				}
2526 			    }
2527 			    if (doit && bigenough) {
2528 				dpossav2 = dpos;
2529 				dpos = dpossav1;
2530 				mdsav2 = md;
2531 				md = mdsav1;
2532 				nfsm_loadattr(newvp, (struct vattr *)0);
2533 				dpos = dpossav2;
2534 				md = mdsav2;
2535 				dp->nfs_type =
2536 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2537 				if (dnch.ncp) {
2538 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2539 					nlc.nlc_namelen, nlc.nlc_namelen,
2540 					nlc.nlc_nameptr);
2541 				    nch = cache_nlookup(&dnch, &nlc);
2542 				    cache_setunresolved(&nch);
2543 				    nfs_cache_setvp(&nch, newvp,
2544 						    nfspos_cache_timeout);
2545 				    cache_put(&nch);
2546 				} else {
2547 				    kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2548 					" %*.*s\n",
2549 					nlc.nlc_namelen, nlc.nlc_namelen,
2550 					nlc.nlc_nameptr);
2551 				}
2552 			    }
2553 			} else {
2554 			    /* Just skip over the file handle */
2555 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2556 			    i = fxdr_unsigned(int, *tl);
2557 			    nfsm_adv(nfsm_rndup(i));
2558 			}
2559 			if (newvp != NULLVP) {
2560 			    if (newvp == vp)
2561 				vrele(newvp);
2562 			    else
2563 				vput(newvp);
2564 			    newvp = NULLVP;
2565 			}
2566 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2567 			more_dirs = fxdr_unsigned(int, *tl);
2568 		}
2569 		/*
2570 		 * If at end of rpc data, get the eof boolean
2571 		 */
2572 		if (!more_dirs) {
2573 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2574 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2575 		}
2576 		m_freem(mrep);
2577 	}
2578 	/*
2579 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2580 	 * by increasing d_reclen for the last record.
2581 	 */
2582 	if (blksiz > 0) {
2583 		left = DIRBLKSIZ - blksiz;
2584 		dp->nfs_reclen += left;
2585 		uiop->uio_iov->iov_base += left;
2586 		uiop->uio_iov->iov_len -= left;
2587 		uiop->uio_offset += left;
2588 		uiop->uio_resid -= left;
2589 	}
2590 
2591 	/*
2592 	 * We are now either at the end of the directory or have filled the
2593 	 * block.
2594 	 */
2595 	if (bigenough)
2596 		dnp->n_direofoffset = uiop->uio_offset;
2597 	else {
2598 		if (uiop->uio_resid > 0)
2599 			kprintf("EEK! readdirplusrpc resid > 0\n");
2600 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2601 		*cookiep = cookie;
2602 	}
2603 nfsmout:
2604 	if (newvp != NULLVP) {
2605 	        if (newvp == vp)
2606 			vrele(newvp);
2607 		else
2608 			vput(newvp);
2609 		newvp = NULLVP;
2610 	}
2611 	if (dnch.ncp)
2612 		cache_drop(&dnch);
2613 	return (error);
2614 }
2615 
2616 /*
2617  * Silly rename. To make the NFS filesystem that is stateless look a little
2618  * more like the "ufs" a remove of an active vnode is translated to a rename
2619  * to a funny looking filename that is removed by nfs_inactive on the
2620  * nfsnode. There is the potential for another process on a different client
2621  * to create the same funny name between the nfs_lookitup() fails and the
2622  * nfs_rename() completes, but...
2623  */
2624 static int
2625 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2626 {
2627 	struct sillyrename *sp;
2628 	struct nfsnode *np;
2629 	int error;
2630 
2631 	/*
2632 	 * We previously purged dvp instead of vp.  I don't know why, it
2633 	 * completely destroys performance.  We can't do it anyway with the
2634 	 * new VFS API since we would be breaking the namecache topology.
2635 	 */
2636 	cache_purge(vp);	/* XXX */
2637 	np = VTONFS(vp);
2638 #ifndef DIAGNOSTIC
2639 	if (vp->v_type == VDIR)
2640 		panic("nfs: sillyrename dir");
2641 #endif
2642 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2643 		M_NFSREQ, M_WAITOK);
2644 	sp->s_cred = crdup(cnp->cn_cred);
2645 	sp->s_dvp = dvp;
2646 	vref(dvp);
2647 
2648 	/* Fudge together a funny name */
2649 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2650 
2651 	/* Try lookitups until we get one that isn't there */
2652 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2653 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2654 		sp->s_name[4]++;
2655 		if (sp->s_name[4] > 'z') {
2656 			error = EINVAL;
2657 			goto bad;
2658 		}
2659 	}
2660 	error = nfs_renameit(dvp, cnp, sp);
2661 	if (error)
2662 		goto bad;
2663 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2664 		cnp->cn_td, &np);
2665 	np->n_sillyrename = sp;
2666 	return (0);
2667 bad:
2668 	vrele(sp->s_dvp);
2669 	crfree(sp->s_cred);
2670 	kfree((caddr_t)sp, M_NFSREQ);
2671 	return (error);
2672 }
2673 
2674 /*
2675  * Look up a file name and optionally either update the file handle or
2676  * allocate an nfsnode, depending on the value of npp.
2677  * npp == NULL	--> just do the lookup
2678  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2679  *			handled too
2680  * *npp != NULL --> update the file handle in the vnode
2681  */
2682 static int
2683 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2684 	     struct thread *td, struct nfsnode **npp)
2685 {
2686 	u_int32_t *tl;
2687 	caddr_t cp;
2688 	int32_t t1, t2;
2689 	struct vnode *newvp = (struct vnode *)0;
2690 	struct nfsnode *np, *dnp = VTONFS(dvp);
2691 	caddr_t bpos, dpos, cp2;
2692 	int error = 0, fhlen, attrflag;
2693 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2694 	nfsfh_t *nfhp;
2695 	int v3 = NFS_ISV3(dvp);
2696 
2697 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2698 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2699 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2700 	nfsm_fhtom(dvp, v3);
2701 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2702 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2703 	if (npp && !error) {
2704 		nfsm_getfh(nfhp, fhlen, v3);
2705 		if (*npp) {
2706 		    np = *npp;
2707 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2708 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2709 			np->n_fhp = &np->n_fh;
2710 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2711 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2712 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2713 		    np->n_fhsize = fhlen;
2714 		    newvp = NFSTOV(np);
2715 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2716 		    vref(dvp);
2717 		    newvp = dvp;
2718 		} else {
2719 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2720 		    if (error) {
2721 			m_freem(mrep);
2722 			return (error);
2723 		    }
2724 		    newvp = NFSTOV(np);
2725 		}
2726 		if (v3) {
2727 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2728 			if (!attrflag && *npp == NULL) {
2729 				m_freem(mrep);
2730 				if (newvp == dvp)
2731 					vrele(newvp);
2732 				else
2733 					vput(newvp);
2734 				return (ENOENT);
2735 			}
2736 		} else
2737 			nfsm_loadattr(newvp, (struct vattr *)0);
2738 	}
2739 	m_freem(mrep);
2740 nfsmout:
2741 	if (npp && *npp == NULL) {
2742 		if (error) {
2743 			if (newvp) {
2744 				if (newvp == dvp)
2745 					vrele(newvp);
2746 				else
2747 					vput(newvp);
2748 			}
2749 		} else
2750 			*npp = np;
2751 	}
2752 	return (error);
2753 }
2754 
2755 /*
2756  * Nfs Version 3 commit rpc
2757  */
2758 int
2759 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2760 {
2761 	caddr_t cp;
2762 	u_int32_t *tl;
2763 	int32_t t1, t2;
2764 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2765 	caddr_t bpos, dpos, cp2;
2766 	int error = 0, wccflag = NFSV3_WCCRATTR;
2767 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2768 
2769 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2770 		return (0);
2771 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2772 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2773 	nfsm_fhtom(vp, 1);
2774 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2775 	txdr_hyper(offset, tl);
2776 	tl += 2;
2777 	*tl = txdr_unsigned(cnt);
2778 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2779 	nfsm_wcc_data(vp, wccflag);
2780 	if (!error) {
2781 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2782 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2783 			NFSX_V3WRITEVERF)) {
2784 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2785 				NFSX_V3WRITEVERF);
2786 			error = NFSERR_STALEWRITEVERF;
2787 		}
2788 	}
2789 	m_freem(mrep);
2790 nfsmout:
2791 	return (error);
2792 }
2793 
2794 /*
2795  * Kludge City..
2796  * - make nfs_bmap() essentially a no-op that does no translation
2797  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2798  *   (Maybe I could use the process's page mapping, but I was concerned that
2799  *    Kernel Write might not be enabled and also figured copyout() would do
2800  *    a lot more work than bcopy() and also it currently happens in the
2801  *    context of the swapper process (2).
2802  *
2803  * nfs_bmap(struct vnode *a_vp, off_t a_loffset, struct vnode **a_vpp,
2804  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2805  */
2806 static int
2807 nfs_bmap(struct vop_bmap_args *ap)
2808 {
2809 	struct vnode *vp = ap->a_vp;
2810 
2811 	if (ap->a_vpp != NULL)
2812 		*ap->a_vpp = vp;
2813 	if (ap->a_doffsetp != NULL)
2814 		*ap->a_doffsetp = ap->a_loffset;
2815 	if (ap->a_runp != NULL)
2816 		*ap->a_runp = 0;
2817 	if (ap->a_runb != NULL)
2818 		*ap->a_runb = 0;
2819 	return (0);
2820 }
2821 
2822 /*
2823  * Strategy routine.
2824  *
2825  * For async requests when nfsiod(s) are running, queue the request by
2826  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2827  * request.
2828  */
2829 static int
2830 nfs_strategy(struct vop_strategy_args *ap)
2831 {
2832 	struct bio *bio = ap->a_bio;
2833 	struct bio *nbio;
2834 	struct buf *bp = bio->bio_buf;
2835 	struct thread *td;
2836 	int error = 0;
2837 
2838 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2839 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2840 	KASSERT(BUF_REFCNT(bp) > 0,
2841 		("nfs_strategy: buffer %p not locked", bp));
2842 
2843 	if (bp->b_flags & B_ASYNC)
2844 		td = NULL;
2845 	else
2846 		td = curthread;	/* XXX */
2847 
2848         /*
2849 	 * We probably don't need to push an nbio any more since no
2850 	 * block conversion is required due to the use of 64 bit byte
2851 	 * offsets, but do it anyway.
2852          */
2853 	nbio = push_bio(bio);
2854 	nbio->bio_offset = bio->bio_offset;
2855 
2856 	/*
2857 	 * If the op is asynchronous and an i/o daemon is waiting
2858 	 * queue the request, wake it up and wait for completion
2859 	 * otherwise just do it ourselves.
2860 	 */
2861 	if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2862 		error = nfs_doio(ap->a_vp, nbio, td);
2863 	return (error);
2864 }
2865 
2866 /*
2867  * Mmap a file
2868  *
2869  * NB Currently unsupported.
2870  *
2871  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred,
2872  *	    struct thread *a_td)
2873  */
2874 /* ARGSUSED */
2875 static int
2876 nfs_mmap(struct vop_mmap_args *ap)
2877 {
2878 	return (EINVAL);
2879 }
2880 
2881 /*
2882  * fsync vnode op. Just call nfs_flush() with commit == 1.
2883  *
2884  * nfs_fsync(struct vnode *a_vp, struct ucred * a_cred, int a_waitfor,
2885  *	     struct thread *a_td)
2886  */
2887 /* ARGSUSED */
2888 static int
2889 nfs_fsync(struct vop_fsync_args *ap)
2890 {
2891 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2892 }
2893 
2894 /*
2895  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2896  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2897  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2898  * set the buffer contains data that has already been written to the server
2899  * and which now needs a commit RPC.
2900  *
2901  * If commit is 0 we only take one pass and only flush buffers containing new
2902  * dirty data.
2903  *
2904  * If commit is 1 we take two passes, issuing a commit RPC in the second
2905  * pass.
2906  *
2907  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2908  * to completely flush all pending data.
2909  *
2910  * Note that the RB_SCAN code properly handles the case where the
2911  * callback might block and directly or indirectly (another thread) cause
2912  * the RB tree to change.
2913  */
2914 
2915 #ifndef NFS_COMMITBVECSIZ
2916 #define NFS_COMMITBVECSIZ	16
2917 #endif
2918 
2919 struct nfs_flush_info {
2920 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2921 	struct thread *td;
2922 	struct vnode *vp;
2923 	int waitfor;
2924 	int slpflag;
2925 	int slptimeo;
2926 	int loops;
2927 	struct buf *bvary[NFS_COMMITBVECSIZ];
2928 	int bvsize;
2929 	off_t beg_off;
2930 	off_t end_off;
2931 };
2932 
2933 static int nfs_flush_bp(struct buf *bp, void *data);
2934 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2935 
2936 int
2937 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2938 {
2939 	struct nfsnode *np = VTONFS(vp);
2940 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2941 	struct nfs_flush_info info;
2942 	int error;
2943 
2944 	bzero(&info, sizeof(info));
2945 	info.td = td;
2946 	info.vp = vp;
2947 	info.waitfor = waitfor;
2948 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2949 	info.loops = 0;
2950 
2951 	do {
2952 		/*
2953 		 * Flush mode
2954 		 */
2955 		info.mode = NFI_FLUSHNEW;
2956 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2957 				nfs_flush_bp, &info);
2958 
2959 		/*
2960 		 * Take a second pass if committing and no error occured.
2961 		 * Clean up any left over collection (whether an error
2962 		 * occurs or not).
2963 		 */
2964 		if (commit && error == 0) {
2965 			info.mode = NFI_COMMIT;
2966 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2967 					nfs_flush_bp, &info);
2968 			if (info.bvsize)
2969 				error = nfs_flush_docommit(&info, error);
2970 		}
2971 
2972 		/*
2973 		 * Wait for pending I/O to complete before checking whether
2974 		 * any further dirty buffers exist.
2975 		 */
2976 		while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
2977 			vp->v_track_write.bk_waitflag = 1;
2978 			error = tsleep(&vp->v_track_write,
2979 				info.slpflag, "nfsfsync", info.slptimeo);
2980 			if (error) {
2981 				/*
2982 				 * We have to be able to break out if this
2983 				 * is an 'intr' mount.
2984 				 */
2985 				if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2986 					error = -EINTR;
2987 					break;
2988 				}
2989 
2990 				/*
2991 				 * Since we do not process pending signals,
2992 				 * once we get a PCATCH our tsleep() will no
2993 				 * longer sleep, switch to a fixed timeout
2994 				 * instead.
2995 				 */
2996 				if (info.slpflag == PCATCH) {
2997 					info.slpflag = 0;
2998 					info.slptimeo = 2 * hz;
2999 				}
3000 				error = 0;
3001 			}
3002 		}
3003 		++info.loops;
3004 		/*
3005 		 * Loop if we are flushing synchronous as well as committing,
3006 		 * and dirty buffers are still present.  Otherwise we might livelock.
3007 		 */
3008 	} while (waitfor == MNT_WAIT && commit &&
3009 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3010 
3011 	/*
3012 	 * The callbacks have to return a negative error to terminate the
3013 	 * RB scan.
3014 	 */
3015 	if (error < 0)
3016 		error = -error;
3017 
3018 	/*
3019 	 * Deal with any error collection
3020 	 */
3021 	if (np->n_flag & NWRITEERR) {
3022 		error = np->n_error;
3023 		np->n_flag &= ~NWRITEERR;
3024 	}
3025 	return (error);
3026 }
3027 
3028 
3029 static
3030 int
3031 nfs_flush_bp(struct buf *bp, void *data)
3032 {
3033 	struct nfs_flush_info *info = data;
3034 	off_t toff;
3035 	int error;
3036 
3037 	error = 0;
3038 	switch(info->mode) {
3039 	case NFI_FLUSHNEW:
3040 		crit_enter();
3041 		if (info->loops && info->waitfor == MNT_WAIT) {
3042 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3043 			if (error) {
3044 				int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3045 				if (info->slpflag & PCATCH)
3046 					lkflags |= LK_PCATCH;
3047 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3048 						     info->slptimeo);
3049 			}
3050 		} else {
3051 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3052 		}
3053 		if (error == 0) {
3054 			KKASSERT(bp->b_vp == info->vp);
3055 
3056 			if ((bp->b_flags & B_DELWRI) == 0)
3057 				panic("nfs_fsync: not dirty");
3058 			if (bp->b_flags & B_NEEDCOMMIT) {
3059 				BUF_UNLOCK(bp);
3060 				crit_exit();
3061 				break;
3062 			}
3063 			bremfree(bp);
3064 
3065 			bp->b_flags |= B_ASYNC;
3066 			crit_exit();
3067 			bwrite(bp);
3068 		} else {
3069 			crit_exit();
3070 			error = 0;
3071 		}
3072 		break;
3073 	case NFI_COMMIT:
3074 		/*
3075 		 * Only process buffers in need of a commit which we can
3076 		 * immediately lock.  This may prevent a buffer from being
3077 		 * committed, but the normal flush loop will block on the
3078 		 * same buffer so we shouldn't get into an endless loop.
3079 		 */
3080 		crit_enter();
3081 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3082 		    (B_DELWRI | B_NEEDCOMMIT) ||
3083 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3084 			crit_exit();
3085 			break;
3086 		}
3087 
3088 		KKASSERT(bp->b_vp == info->vp);
3089 		bremfree(bp);
3090 
3091 		/*
3092 		 * NOTE: storing the bp in the bvary[] basically sets
3093 		 * it up for a commit operation.
3094 		 *
3095 		 * We must call vfs_busy_pages() now so the commit operation
3096 		 * is interlocked with user modifications to memory mapped
3097 		 * pages.
3098 		 *
3099 		 * Note: to avoid loopback deadlocks, we do not
3100 		 * assign b_runningbufspace.
3101 		 */
3102 		bp->b_cmd = BUF_CMD_WRITE;
3103 		vfs_busy_pages(bp->b_vp, bp);
3104 		info->bvary[info->bvsize] = bp;
3105 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3106 		if (info->bvsize == 0 || toff < info->beg_off)
3107 			info->beg_off = toff;
3108 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3109 		if (info->bvsize == 0 || toff > info->end_off)
3110 			info->end_off = toff;
3111 		++info->bvsize;
3112 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3113 			error = nfs_flush_docommit(info, 0);
3114 			KKASSERT(info->bvsize == 0);
3115 		}
3116 		crit_exit();
3117 	}
3118 	return (error);
3119 }
3120 
3121 static
3122 int
3123 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3124 {
3125 	struct vnode *vp;
3126 	struct buf *bp;
3127 	off_t bytes;
3128 	int retv;
3129 	int i;
3130 
3131 	vp = info->vp;
3132 
3133 	if (info->bvsize > 0) {
3134 		/*
3135 		 * Commit data on the server, as required.  Note that
3136 		 * nfs_commit will use the vnode's cred for the commit.
3137 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3138 		 */
3139 		bytes = info->end_off - info->beg_off;
3140 		if (bytes > 0x40000000)
3141 			bytes = 0x40000000;
3142 		if (error) {
3143 			retv = -error;
3144 		} else {
3145 			retv = nfs_commit(vp, info->beg_off,
3146 					    (int)bytes, info->td);
3147 			if (retv == NFSERR_STALEWRITEVERF)
3148 				nfs_clearcommit(vp->v_mount);
3149 		}
3150 
3151 		/*
3152 		 * Now, either mark the blocks I/O done or mark the
3153 		 * blocks dirty, depending on whether the commit
3154 		 * succeeded.
3155 		 */
3156 		for (i = 0; i < info->bvsize; ++i) {
3157 			bp = info->bvary[i];
3158 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3159 			if (retv) {
3160 				/*
3161 				 * Error, leave B_DELWRI intact
3162 				 */
3163 				vfs_unbusy_pages(bp);
3164 				bp->b_cmd = BUF_CMD_DONE;
3165 				brelse(bp);
3166 			} else {
3167 				/*
3168 				 * Success, remove B_DELWRI ( bundirty() ).
3169 				 *
3170 				 * b_dirtyoff/b_dirtyend seem to be NFS
3171 				 * specific.  We should probably move that
3172 				 * into bundirty(). XXX
3173 				 *
3174 				 * We are faking an I/O write, we have to
3175 				 * start the transaction in order to
3176 				 * immediately biodone() it.
3177 				 */
3178 				crit_enter();
3179 				bp->b_flags |= B_ASYNC;
3180 				bundirty(bp);
3181 				bp->b_flags &= ~B_ERROR;
3182 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3183 				crit_exit();
3184 				biodone(&bp->b_bio1);
3185 			}
3186 		}
3187 		info->bvsize = 0;
3188 	}
3189 	return (error);
3190 }
3191 
3192 /*
3193  * NFS advisory byte-level locks.
3194  * Currently unsupported.
3195  *
3196  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3197  *		int a_flags)
3198  */
3199 static int
3200 nfs_advlock(struct vop_advlock_args *ap)
3201 {
3202 	struct nfsnode *np = VTONFS(ap->a_vp);
3203 
3204 	/*
3205 	 * The following kludge is to allow diskless support to work
3206 	 * until a real NFS lockd is implemented. Basically, just pretend
3207 	 * that this is a local lock.
3208 	 */
3209 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3210 }
3211 
3212 /*
3213  * Print out the contents of an nfsnode.
3214  *
3215  * nfs_print(struct vnode *a_vp)
3216  */
3217 static int
3218 nfs_print(struct vop_print_args *ap)
3219 {
3220 	struct vnode *vp = ap->a_vp;
3221 	struct nfsnode *np = VTONFS(vp);
3222 
3223 	kprintf("tag VT_NFS, fileid %ld fsid 0x%x",
3224 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3225 	if (vp->v_type == VFIFO)
3226 		fifo_printinfo(vp);
3227 	kprintf("\n");
3228 	return (0);
3229 }
3230 
3231 /*
3232  * nfs special file access vnode op.
3233  * Essentially just get vattr and then imitate iaccess() since the device is
3234  * local to the client.
3235  *
3236  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
3237  *		  struct thread *a_td)
3238  */
3239 static int
3240 nfsspec_access(struct vop_access_args *ap)
3241 {
3242 	struct vattr *vap;
3243 	gid_t *gp;
3244 	struct ucred *cred = ap->a_cred;
3245 	struct vnode *vp = ap->a_vp;
3246 	mode_t mode = ap->a_mode;
3247 	struct vattr vattr;
3248 	int i;
3249 	int error;
3250 
3251 	/*
3252 	 * Disallow write attempts on filesystems mounted read-only;
3253 	 * unless the file is a socket, fifo, or a block or character
3254 	 * device resident on the filesystem.
3255 	 */
3256 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3257 		switch (vp->v_type) {
3258 		case VREG:
3259 		case VDIR:
3260 		case VLNK:
3261 			return (EROFS);
3262 		default:
3263 			break;
3264 		}
3265 	}
3266 	/*
3267 	 * If you're the super-user,
3268 	 * you always get access.
3269 	 */
3270 	if (cred->cr_uid == 0)
3271 		return (0);
3272 	vap = &vattr;
3273 	error = VOP_GETATTR(vp, vap);
3274 	if (error)
3275 		return (error);
3276 	/*
3277 	 * Access check is based on only one of owner, group, public.
3278 	 * If not owner, then check group. If not a member of the
3279 	 * group, then check public access.
3280 	 */
3281 	if (cred->cr_uid != vap->va_uid) {
3282 		mode >>= 3;
3283 		gp = cred->cr_groups;
3284 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3285 			if (vap->va_gid == *gp)
3286 				goto found;
3287 		mode >>= 3;
3288 found:
3289 		;
3290 	}
3291 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3292 	return (error);
3293 }
3294 
3295 /*
3296  * Read wrapper for special devices.
3297  *
3298  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3299  *		struct ucred *a_cred)
3300  */
3301 static int
3302 nfsspec_read(struct vop_read_args *ap)
3303 {
3304 	struct nfsnode *np = VTONFS(ap->a_vp);
3305 
3306 	/*
3307 	 * Set access flag.
3308 	 */
3309 	np->n_flag |= NACC;
3310 	getnanotime(&np->n_atim);
3311 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3312 }
3313 
3314 /*
3315  * Write wrapper for special devices.
3316  *
3317  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3318  *		 struct ucred *a_cred)
3319  */
3320 static int
3321 nfsspec_write(struct vop_write_args *ap)
3322 {
3323 	struct nfsnode *np = VTONFS(ap->a_vp);
3324 
3325 	/*
3326 	 * Set update flag.
3327 	 */
3328 	np->n_flag |= NUPD;
3329 	getnanotime(&np->n_mtim);
3330 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3331 }
3332 
3333 /*
3334  * Close wrapper for special devices.
3335  *
3336  * Update the times on the nfsnode then do device close.
3337  *
3338  * nfsspec_close(struct vnode *a_vp, int a_fflag, struct ucred *a_cred,
3339  *		 struct thread *a_td)
3340  */
3341 static int
3342 nfsspec_close(struct vop_close_args *ap)
3343 {
3344 	struct vnode *vp = ap->a_vp;
3345 	struct nfsnode *np = VTONFS(vp);
3346 	struct vattr vattr;
3347 
3348 	if (np->n_flag & (NACC | NUPD)) {
3349 		np->n_flag |= NCHG;
3350 		if (vp->v_sysref.refcnt == 1 &&
3351 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3352 			VATTR_NULL(&vattr);
3353 			if (np->n_flag & NACC)
3354 				vattr.va_atime = np->n_atim;
3355 			if (np->n_flag & NUPD)
3356 				vattr.va_mtime = np->n_mtim;
3357 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3358 		}
3359 	}
3360 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3361 }
3362 
3363 /*
3364  * Read wrapper for fifos.
3365  *
3366  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3367  *		struct ucred *a_cred)
3368  */
3369 static int
3370 nfsfifo_read(struct vop_read_args *ap)
3371 {
3372 	struct nfsnode *np = VTONFS(ap->a_vp);
3373 
3374 	/*
3375 	 * Set access flag.
3376 	 */
3377 	np->n_flag |= NACC;
3378 	getnanotime(&np->n_atim);
3379 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3380 }
3381 
3382 /*
3383  * Write wrapper for fifos.
3384  *
3385  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3386  *		 struct ucred *a_cred)
3387  */
3388 static int
3389 nfsfifo_write(struct vop_write_args *ap)
3390 {
3391 	struct nfsnode *np = VTONFS(ap->a_vp);
3392 
3393 	/*
3394 	 * Set update flag.
3395 	 */
3396 	np->n_flag |= NUPD;
3397 	getnanotime(&np->n_mtim);
3398 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3399 }
3400 
3401 /*
3402  * Close wrapper for fifos.
3403  *
3404  * Update the times on the nfsnode then do fifo close.
3405  *
3406  * nfsfifo_close(struct vnode *a_vp, int a_fflag, struct thread *a_td)
3407  */
3408 static int
3409 nfsfifo_close(struct vop_close_args *ap)
3410 {
3411 	struct vnode *vp = ap->a_vp;
3412 	struct nfsnode *np = VTONFS(vp);
3413 	struct vattr vattr;
3414 	struct timespec ts;
3415 
3416 	if (np->n_flag & (NACC | NUPD)) {
3417 		getnanotime(&ts);
3418 		if (np->n_flag & NACC)
3419 			np->n_atim = ts;
3420 		if (np->n_flag & NUPD)
3421 			np->n_mtim = ts;
3422 		np->n_flag |= NCHG;
3423 		if (vp->v_sysref.refcnt == 1 &&
3424 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3425 			VATTR_NULL(&vattr);
3426 			if (np->n_flag & NACC)
3427 				vattr.va_atime = np->n_atim;
3428 			if (np->n_flag & NUPD)
3429 				vattr.va_mtime = np->n_mtim;
3430 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3431 		}
3432 	}
3433 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3434 }
3435 
3436