xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision bc5df1c6)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsspec_read (struct vop_read_args *);
98 static int	nfsspec_write (struct vop_write_args *);
99 static int	nfsfifo_read (struct vop_read_args *);
100 static int	nfsfifo_write (struct vop_write_args *);
101 static int	nfsspec_close (struct vop_close_args *);
102 static int	nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static	int	nfs_lookup (struct vop_old_lookup_args *);
106 static	int	nfs_create (struct vop_old_create_args *);
107 static	int	nfs_mknod (struct vop_old_mknod_args *);
108 static	int	nfs_open (struct vop_open_args *);
109 static	int	nfs_close (struct vop_close_args *);
110 static	int	nfs_access (struct vop_access_args *);
111 static	int	nfs_getattr (struct vop_getattr_args *);
112 static	int	nfs_setattr (struct vop_setattr_args *);
113 static	int	nfs_read (struct vop_read_args *);
114 static	int	nfs_mmap (struct vop_mmap_args *);
115 static	int	nfs_fsync (struct vop_fsync_args *);
116 static	int	nfs_remove (struct vop_old_remove_args *);
117 static	int	nfs_link (struct vop_old_link_args *);
118 static	int	nfs_rename (struct vop_old_rename_args *);
119 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
120 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
121 static	int	nfs_symlink (struct vop_old_symlink_args *);
122 static	int	nfs_readdir (struct vop_readdir_args *);
123 static	int	nfs_bmap (struct vop_bmap_args *);
124 static	int	nfs_strategy (struct vop_strategy_args *);
125 static	int	nfs_lookitup (struct vnode *, const char *, int,
126 			struct ucred *, struct thread *, struct nfsnode **);
127 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int	nfsspec_access (struct vop_access_args *);
129 static int	nfs_readlink (struct vop_readlink_args *);
130 static int	nfs_print (struct vop_print_args *);
131 static int	nfs_advlock (struct vop_advlock_args *);
132 
133 static	int	nfs_nresolve (struct vop_nresolve_args *);
134 /*
135  * Global vfs data structures for nfs
136  */
137 struct vop_ops nfsv2_vnode_vops = {
138 	.vop_default =		vop_defaultop,
139 	.vop_access =		nfs_access,
140 	.vop_advlock =		nfs_advlock,
141 	.vop_bmap =		nfs_bmap,
142 	.vop_close =		nfs_close,
143 	.vop_old_create =	nfs_create,
144 	.vop_fsync =		nfs_fsync,
145 	.vop_getattr =		nfs_getattr,
146 	.vop_getpages =		nfs_getpages,
147 	.vop_putpages =		nfs_putpages,
148 	.vop_inactive =		nfs_inactive,
149 	.vop_old_link =		nfs_link,
150 	.vop_old_lookup =	nfs_lookup,
151 	.vop_old_mkdir =	nfs_mkdir,
152 	.vop_old_mknod =	nfs_mknod,
153 	.vop_mmap =		nfs_mmap,
154 	.vop_open =		nfs_open,
155 	.vop_poll =		nfs_poll,
156 	.vop_print =		nfs_print,
157 	.vop_read =		nfs_read,
158 	.vop_readdir =		nfs_readdir,
159 	.vop_readlink =		nfs_readlink,
160 	.vop_reclaim =		nfs_reclaim,
161 	.vop_old_remove =	nfs_remove,
162 	.vop_old_rename =	nfs_rename,
163 	.vop_old_rmdir =	nfs_rmdir,
164 	.vop_setattr =		nfs_setattr,
165 	.vop_strategy =		nfs_strategy,
166 	.vop_old_symlink =	nfs_symlink,
167 	.vop_write =		nfs_write,
168 	.vop_nresolve =		nfs_nresolve
169 };
170 
171 /*
172  * Special device vnode ops
173  */
174 struct vop_ops nfsv2_spec_vops = {
175 	.vop_default =		spec_vnoperate,
176 	.vop_access =		nfsspec_access,
177 	.vop_close =		nfsspec_close,
178 	.vop_fsync =		nfs_fsync,
179 	.vop_getattr =		nfs_getattr,
180 	.vop_inactive =		nfs_inactive,
181 	.vop_print =		nfs_print,
182 	.vop_read =		nfsspec_read,
183 	.vop_reclaim =		nfs_reclaim,
184 	.vop_setattr =		nfs_setattr,
185 	.vop_write =		nfsspec_write
186 };
187 
188 struct vop_ops nfsv2_fifo_vops = {
189 	.vop_default =		fifo_vnoperate,
190 	.vop_access =		nfsspec_access,
191 	.vop_close =		nfsfifo_close,
192 	.vop_fsync =		nfs_fsync,
193 	.vop_getattr =		nfs_getattr,
194 	.vop_inactive =		nfs_inactive,
195 	.vop_print =		nfs_print,
196 	.vop_read =		nfsfifo_read,
197 	.vop_reclaim =		nfs_reclaim,
198 	.vop_setattr =		nfs_setattr,
199 	.vop_write =		nfsfifo_write
200 };
201 
202 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
203 				  struct componentname *cnp,
204 				  struct vattr *vap);
205 static int	nfs_removerpc (struct vnode *dvp, const char *name,
206 				   int namelen,
207 				   struct ucred *cred, struct thread *td);
208 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
209 				   int fnamelen, struct vnode *tdvp,
210 				   const char *tnameptr, int tnamelen,
211 				   struct ucred *cred, struct thread *td);
212 static int	nfs_renameit (struct vnode *sdvp,
213 				  struct componentname *scnp,
214 				  struct sillyrename *sp);
215 
216 /*
217  * Global variables
218  */
219 extern u_int32_t nfs_true, nfs_false;
220 extern u_int32_t nfs_xdrneg1;
221 extern struct nfsstats nfsstats;
222 extern nfstype nfsv3_type[9];
223 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
224 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
225 int nfs_numasync = 0;
226 
227 SYSCTL_DECL(_vfs_nfs);
228 
229 static int nfs_flush_on_rename = 1;
230 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
231 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
232 static int nfs_flush_on_hlink = 0;
233 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
234 	   &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
235 
236 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
237 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
238 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
239 
240 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
242 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
243 
244 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
245 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
246 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
247 
248 static int	nfsv3_commit_on_close = 0;
249 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
250 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
251 #if 0
252 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
253 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
254 
255 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
256 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
257 #endif
258 
259 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
260 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
261 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
262 static int
263 nfs3_access_otw(struct vnode *vp, int wmode,
264 		struct thread *td, struct ucred *cred)
265 {
266 	const int v3 = 1;
267 	u_int32_t *tl;
268 	int error = 0, attrflag;
269 
270 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
271 	caddr_t bpos, dpos, cp2;
272 	int32_t t1, t2;
273 	caddr_t cp;
274 	u_int32_t rmode;
275 	struct nfsnode *np = VTONFS(vp);
276 
277 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
278 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
279 	nfsm_fhtom(vp, v3);
280 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
281 	*tl = txdr_unsigned(wmode);
282 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
283 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
284 	if (!error) {
285 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
286 		rmode = fxdr_unsigned(u_int32_t, *tl);
287 		np->n_mode = rmode;
288 		np->n_modeuid = cred->cr_uid;
289 		np->n_modestamp = mycpu->gd_time_seconds;
290 	}
291 	m_freem(mrep);
292 nfsmout:
293 	return error;
294 }
295 
296 /*
297  * nfs access vnode op.
298  * For nfs version 2, just return ok. File accesses may fail later.
299  * For nfs version 3, use the access rpc to check accessibility. If file modes
300  * are changed on the server, accesses might still fail later.
301  *
302  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
303  */
304 static int
305 nfs_access(struct vop_access_args *ap)
306 {
307 	struct vnode *vp = ap->a_vp;
308 	thread_t td = curthread;
309 	int error = 0;
310 	u_int32_t mode, wmode;
311 	int v3 = NFS_ISV3(vp);
312 	struct nfsnode *np = VTONFS(vp);
313 
314 	/*
315 	 * Disallow write attempts on filesystems mounted read-only;
316 	 * unless the file is a socket, fifo, or a block or character
317 	 * device resident on the filesystem.
318 	 */
319 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
320 		switch (vp->v_type) {
321 		case VREG:
322 		case VDIR:
323 		case VLNK:
324 			return (EROFS);
325 		default:
326 			break;
327 		}
328 	}
329 	/*
330 	 * For nfs v3, check to see if we have done this recently, and if
331 	 * so return our cached result instead of making an ACCESS call.
332 	 * If not, do an access rpc, otherwise you are stuck emulating
333 	 * ufs_access() locally using the vattr. This may not be correct,
334 	 * since the server may apply other access criteria such as
335 	 * client uid-->server uid mapping that we do not know about.
336 	 */
337 	if (v3) {
338 		if (ap->a_mode & VREAD)
339 			mode = NFSV3ACCESS_READ;
340 		else
341 			mode = 0;
342 		if (vp->v_type != VDIR) {
343 			if (ap->a_mode & VWRITE)
344 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
345 			if (ap->a_mode & VEXEC)
346 				mode |= NFSV3ACCESS_EXECUTE;
347 		} else {
348 			if (ap->a_mode & VWRITE)
349 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
350 					 NFSV3ACCESS_DELETE);
351 			if (ap->a_mode & VEXEC)
352 				mode |= NFSV3ACCESS_LOOKUP;
353 		}
354 		/* XXX safety belt, only make blanket request if caching */
355 		if (nfsaccess_cache_timeout > 0) {
356 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
357 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
358 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
359 		} else {
360 			wmode = mode;
361 		}
362 
363 		/*
364 		 * Does our cached result allow us to give a definite yes to
365 		 * this request?
366 		 */
367 		if (np->n_modestamp &&
368 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
369 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
370 		   ((np->n_mode & mode) == mode)) {
371 			nfsstats.accesscache_hits++;
372 		} else {
373 			/*
374 			 * Either a no, or a don't know.  Go to the wire.
375 			 */
376 			nfsstats.accesscache_misses++;
377 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
378 			if (!error) {
379 				if ((np->n_mode & mode) != mode) {
380 					error = EACCES;
381 				}
382 			}
383 		}
384 	} else {
385 		if ((error = nfsspec_access(ap)) != 0)
386 			return (error);
387 
388 		/*
389 		 * Attempt to prevent a mapped root from accessing a file
390 		 * which it shouldn't.  We try to read a byte from the file
391 		 * if the user is root and the file is not zero length.
392 		 * After calling nfsspec_access, we should have the correct
393 		 * file size cached.
394 		 */
395 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
396 		    && VTONFS(vp)->n_size > 0) {
397 			struct iovec aiov;
398 			struct uio auio;
399 			char buf[1];
400 
401 			aiov.iov_base = buf;
402 			aiov.iov_len = 1;
403 			auio.uio_iov = &aiov;
404 			auio.uio_iovcnt = 1;
405 			auio.uio_offset = 0;
406 			auio.uio_resid = 1;
407 			auio.uio_segflg = UIO_SYSSPACE;
408 			auio.uio_rw = UIO_READ;
409 			auio.uio_td = td;
410 
411 			if (vp->v_type == VREG) {
412 				error = nfs_readrpc(vp, &auio);
413 			} else if (vp->v_type == VDIR) {
414 				char* bp;
415 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
416 				aiov.iov_base = bp;
417 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
418 				error = nfs_readdirrpc(vp, &auio);
419 				kfree(bp, M_TEMP);
420 			} else if (vp->v_type == VLNK) {
421 				error = nfs_readlinkrpc(vp, &auio);
422 			} else {
423 				error = EACCES;
424 			}
425 		}
426 	}
427 	/*
428 	 * [re]record creds for reading and/or writing if access
429 	 * was granted.  Assume the NFS server will grant read access
430 	 * for execute requests.
431 	 */
432 	if (error == 0) {
433 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
434 			crhold(ap->a_cred);
435 			if (np->n_rucred)
436 				crfree(np->n_rucred);
437 			np->n_rucred = ap->a_cred;
438 		}
439 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
440 			crhold(ap->a_cred);
441 			if (np->n_wucred)
442 				crfree(np->n_wucred);
443 			np->n_wucred = ap->a_cred;
444 		}
445 	}
446 	return(error);
447 }
448 
449 /*
450  * nfs open vnode op
451  * Check to see if the type is ok
452  * and that deletion is not in progress.
453  * For paged in text files, you will need to flush the page cache
454  * if consistency is lost.
455  *
456  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
457  *	    struct file *a_fp)
458  */
459 /* ARGSUSED */
460 static int
461 nfs_open(struct vop_open_args *ap)
462 {
463 	struct vnode *vp = ap->a_vp;
464 	struct nfsnode *np = VTONFS(vp);
465 	struct vattr vattr;
466 	int error;
467 
468 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
469 #ifdef DIAGNOSTIC
470 		kprintf("open eacces vtyp=%d\n",vp->v_type);
471 #endif
472 		return (EOPNOTSUPP);
473 	}
474 
475 	/*
476 	 * Clear the attribute cache only if opening with write access.  It
477 	 * is unclear if we should do this at all here, but we certainly
478 	 * should not clear the cache unconditionally simply because a file
479 	 * is being opened.
480 	 */
481 	if (ap->a_mode & FWRITE)
482 		np->n_attrstamp = 0;
483 
484 	/*
485 	 * For normal NFS, reconcile changes made locally verses
486 	 * changes made remotely.  Note that VOP_GETATTR only goes
487 	 * to the wire if the cached attribute has timed out or been
488 	 * cleared.
489 	 *
490 	 * If local modifications have been made clear the attribute
491 	 * cache to force an attribute and modified time check.  If
492 	 * GETATTR detects that the file has been changed by someone
493 	 * other then us it will set NRMODIFIED.
494 	 *
495 	 * If we are opening a directory and local changes have been
496 	 * made we have to invalidate the cache in order to ensure
497 	 * that we get the most up-to-date information from the
498 	 * server.  XXX
499 	 */
500 	if (np->n_flag & NLMODIFIED) {
501 		np->n_attrstamp = 0;
502 		if (vp->v_type == VDIR) {
503 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
504 			if (error == EINTR)
505 				return (error);
506 			nfs_invaldir(vp);
507 		}
508 	}
509 	error = VOP_GETATTR(vp, &vattr);
510 	if (error)
511 		return (error);
512 	if (np->n_flag & NRMODIFIED) {
513 		if (vp->v_type == VDIR)
514 			nfs_invaldir(vp);
515 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
516 		if (error == EINTR)
517 			return (error);
518 		np->n_flag &= ~NRMODIFIED;
519 	}
520 
521 	return (vop_stdopen(ap));
522 }
523 
524 /*
525  * nfs close vnode op
526  * What an NFS client should do upon close after writing is a debatable issue.
527  * Most NFS clients push delayed writes to the server upon close, basically for
528  * two reasons:
529  * 1 - So that any write errors may be reported back to the client process
530  *     doing the close system call. By far the two most likely errors are
531  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
532  * 2 - To put a worst case upper bound on cache inconsistency between
533  *     multiple clients for the file.
534  * There is also a consistency problem for Version 2 of the protocol w.r.t.
535  * not being able to tell if other clients are writing a file concurrently,
536  * since there is no way of knowing if the changed modify time in the reply
537  * is only due to the write for this client.
538  * (NFS Version 3 provides weak cache consistency data in the reply that
539  *  should be sufficient to detect and handle this case.)
540  *
541  * The current code does the following:
542  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
543  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
544  *                     or commit them (this satisfies 1 and 2 except for the
545  *                     case where the server crashes after this close but
546  *                     before the commit RPC, which is felt to be "good
547  *                     enough". Changing the last argument to nfs_flush() to
548  *                     a 1 would force a commit operation, if it is felt a
549  *                     commit is necessary now.
550  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
551  *                     1 should be dealt with via an fsync() system call for
552  *                     cases where write errors are important.
553  *
554  * nfs_close(struct vnode *a_vp, int a_fflag)
555  */
556 /* ARGSUSED */
557 static int
558 nfs_close(struct vop_close_args *ap)
559 {
560 	struct vnode *vp = ap->a_vp;
561 	struct nfsnode *np = VTONFS(vp);
562 	int error = 0;
563 	thread_t td = curthread;
564 
565 	if (vp->v_type == VREG) {
566 	    if (np->n_flag & NLMODIFIED) {
567 		if (NFS_ISV3(vp)) {
568 		    /*
569 		     * Under NFSv3 we have dirty buffers to dispose of.  We
570 		     * must flush them to the NFS server.  We have the option
571 		     * of waiting all the way through the commit rpc or just
572 		     * waiting for the initial write.  The default is to only
573 		     * wait through the initial write so the data is in the
574 		     * server's cache, which is roughly similar to the state
575 		     * a standard disk subsystem leaves the file in on close().
576 		     *
577 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
578 		     * potential races with other processes, and certainly
579 		     * cannot clear it if we don't commit.
580 		     */
581 		    int cm = nfsv3_commit_on_close ? 1 : 0;
582 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
583 		    /* np->n_flag &= ~NLMODIFIED; */
584 		} else {
585 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
586 		}
587 		np->n_attrstamp = 0;
588 	    }
589 	    if (np->n_flag & NWRITEERR) {
590 		np->n_flag &= ~NWRITEERR;
591 		error = np->n_error;
592 	    }
593 	}
594 	vop_stdclose(ap);
595 	return (error);
596 }
597 
598 /*
599  * nfs getattr call from vfs.
600  *
601  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
602  */
603 static int
604 nfs_getattr(struct vop_getattr_args *ap)
605 {
606 	struct vnode *vp = ap->a_vp;
607 	struct nfsnode *np = VTONFS(vp);
608 	caddr_t cp;
609 	u_int32_t *tl;
610 	int32_t t1, t2;
611 	caddr_t bpos, dpos;
612 	int error = 0;
613 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
614 	int v3 = NFS_ISV3(vp);
615 	thread_t td = curthread;
616 
617 	/*
618 	 * Update local times for special files.
619 	 */
620 	if (np->n_flag & (NACC | NUPD))
621 		np->n_flag |= NCHG;
622 	/*
623 	 * First look in the cache.
624 	 */
625 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
626 		return (0);
627 
628 	if (v3 && nfsaccess_cache_timeout > 0) {
629 		nfsstats.accesscache_misses++;
630 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
631 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
632 			return (0);
633 	}
634 
635 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
636 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
637 	nfsm_fhtom(vp, v3);
638 	nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
639 	if (!error) {
640 		nfsm_loadattr(vp, ap->a_vap);
641 	}
642 	m_freem(mrep);
643 nfsmout:
644 	return (error);
645 }
646 
647 /*
648  * nfs setattr call.
649  *
650  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
651  */
652 static int
653 nfs_setattr(struct vop_setattr_args *ap)
654 {
655 	struct vnode *vp = ap->a_vp;
656 	struct nfsnode *np = VTONFS(vp);
657 	struct vattr *vap = ap->a_vap;
658 	int error = 0;
659 	u_quad_t tsize;
660 	thread_t td = curthread;
661 
662 #ifndef nolint
663 	tsize = (u_quad_t)0;
664 #endif
665 
666 	/*
667 	 * Setting of flags is not supported.
668 	 */
669 	if (vap->va_flags != VNOVAL)
670 		return (EOPNOTSUPP);
671 
672 	/*
673 	 * Disallow write attempts if the filesystem is mounted read-only.
674 	 */
675   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
676 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
677 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
678 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
679 		return (EROFS);
680 
681 	if (vap->va_size != VNOVAL) {
682 		/*
683 		 * truncation requested
684 		 */
685  		switch (vp->v_type) {
686  		case VDIR:
687  			return (EISDIR);
688  		case VCHR:
689  		case VBLK:
690  		case VSOCK:
691  		case VFIFO:
692 			if (vap->va_mtime.tv_sec == VNOVAL &&
693 			    vap->va_atime.tv_sec == VNOVAL &&
694 			    vap->va_mode == (mode_t)VNOVAL &&
695 			    vap->va_uid == (uid_t)VNOVAL &&
696 			    vap->va_gid == (gid_t)VNOVAL)
697 				return (0);
698  			vap->va_size = VNOVAL;
699  			break;
700  		default:
701 			/*
702 			 * Disallow write attempts if the filesystem is
703 			 * mounted read-only.
704 			 */
705 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
706 				return (EROFS);
707 
708 			/*
709 			 * This is nasty.  The RPCs we send to flush pending
710 			 * data often return attribute information which is
711 			 * cached via a callback to nfs_loadattrcache(), which
712 			 * has the effect of changing our notion of the file
713 			 * size.  Due to flushed appends and other operations
714 			 * the file size can be set to virtually anything,
715 			 * including values that do not match either the old
716 			 * or intended file size.
717 			 *
718 			 * When this condition is detected we must loop to
719 			 * try the operation again.  Hopefully no more
720 			 * flushing is required on the loop so it works the
721 			 * second time around.  THIS CASE ALMOST ALWAYS
722 			 * HAPPENS!
723 			 */
724 			tsize = np->n_size;
725 again:
726 			error = nfs_meta_setsize(vp, td, vap->va_size);
727 
728  			if (np->n_flag & NLMODIFIED) {
729  			    if (vap->va_size == 0)
730  				error = nfs_vinvalbuf(vp, 0, 1);
731  			    else
732  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
733  			}
734 			/*
735 			 * note: this loop case almost always happens at
736 			 * least once per truncation.
737 			 */
738 			if (error == 0 && np->n_size != vap->va_size)
739 				goto again;
740 			np->n_vattr.va_size = vap->va_size;
741 			break;
742 		}
743 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
744 		/*
745 		 * What to do.  If we are modifying the mtime we lose
746 		 * mtime detection of changes made by the server or other
747 		 * clients.  But programs like rsync/rdist/cpdup are going
748 		 * to call utimes a lot.  We don't want to piecemeal sync.
749 		 *
750 		 * For now sync if any prior remote changes were detected,
751 		 * but allow us to lose track of remote changes made during
752 		 * the utimes operation.
753 		 */
754 		if (np->n_flag & NRMODIFIED)
755 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
756 		if (error == EINTR)
757 			return (error);
758 		if (error == 0) {
759 			if (vap->va_mtime.tv_sec != VNOVAL) {
760 				np->n_mtime = vap->va_mtime.tv_sec;
761 			}
762 		}
763 	}
764 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
765 
766 	/*
767 	 * Sanity check if a truncation was issued.  This should only occur
768 	 * if multiple processes are racing on the same file.
769 	 */
770 	if (error == 0 && vap->va_size != VNOVAL &&
771 	    np->n_size != vap->va_size) {
772 		kprintf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
773 		goto again;
774 	}
775 	if (error && vap->va_size != VNOVAL) {
776 		np->n_size = np->n_vattr.va_size = tsize;
777 		vnode_pager_setsize(vp, np->n_size);
778 	}
779 	return (error);
780 }
781 
782 /*
783  * Do an nfs setattr rpc.
784  */
785 static int
786 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
787 	       struct ucred *cred, struct thread *td)
788 {
789 	struct nfsv2_sattr *sp;
790 	struct nfsnode *np = VTONFS(vp);
791 	caddr_t cp;
792 	int32_t t1, t2;
793 	caddr_t bpos, dpos, cp2;
794 	u_int32_t *tl;
795 	int error = 0, wccflag = NFSV3_WCCRATTR;
796 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
797 	int v3 = NFS_ISV3(vp);
798 
799 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
800 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
801 	nfsm_fhtom(vp, v3);
802 	if (v3) {
803 		nfsm_v3attrbuild(vap, TRUE);
804 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
805 		*tl = nfs_false;
806 	} else {
807 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
808 		if (vap->va_mode == (mode_t)VNOVAL)
809 			sp->sa_mode = nfs_xdrneg1;
810 		else
811 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
812 		if (vap->va_uid == (uid_t)VNOVAL)
813 			sp->sa_uid = nfs_xdrneg1;
814 		else
815 			sp->sa_uid = txdr_unsigned(vap->va_uid);
816 		if (vap->va_gid == (gid_t)VNOVAL)
817 			sp->sa_gid = nfs_xdrneg1;
818 		else
819 			sp->sa_gid = txdr_unsigned(vap->va_gid);
820 		sp->sa_size = txdr_unsigned(vap->va_size);
821 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
822 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
823 	}
824 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
825 	if (v3) {
826 		np->n_modestamp = 0;
827 		nfsm_wcc_data(vp, wccflag);
828 	} else
829 		nfsm_loadattr(vp, NULL);
830 	m_freem(mrep);
831 nfsmout:
832 	return (error);
833 }
834 
835 static
836 void
837 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
838 {
839 	if (nctimeout == 0)
840 		nctimeout = 1;
841 	else
842 		nctimeout *= hz;
843 	cache_setvp(nch, vp);
844 	cache_settimeout(nch, nctimeout);
845 }
846 
847 /*
848  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
849  * nfs_lookup() until all remaining new api calls are implemented.
850  *
851  * Resolve a namecache entry.  This function is passed a locked ncp and
852  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
853  */
854 static int
855 nfs_nresolve(struct vop_nresolve_args *ap)
856 {
857 	struct thread *td = curthread;
858 	struct namecache *ncp;
859 	struct ucred *cred;
860 	struct nfsnode *np;
861 	struct vnode *dvp;
862 	struct vnode *nvp;
863 	nfsfh_t *fhp;
864 	int attrflag;
865 	int fhsize;
866 	int error;
867 	int len;
868 	int v3;
869 	/******NFSM MACROS********/
870 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
871 	caddr_t bpos, dpos, cp, cp2;
872 	u_int32_t *tl;
873 	int32_t t1, t2;
874 
875 	cred = ap->a_cred;
876 	dvp = ap->a_dvp;
877 
878 	if ((error = vget(dvp, LK_SHARED)) != 0)
879 		return (error);
880 
881 	nvp = NULL;
882 	v3 = NFS_ISV3(dvp);
883 	nfsstats.lookupcache_misses++;
884 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
885 	ncp = ap->a_nch->ncp;
886 	len = ncp->nc_nlen;
887 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
888 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
889 	nfsm_fhtom(dvp, v3);
890 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
891 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
892 	if (error) {
893 		/*
894 		 * Cache negatve lookups to reduce NFS traffic, but use
895 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
896 		 * XXX we should add a namecache flag for no-caching
897 		 * to uncache the negative hit as soon as possible, but
898 		 * we cannot simply destroy the entry because it is used
899 		 * as a placeholder by the caller.
900 		 */
901 		if (error == ENOENT)
902 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
903 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
904 		m_freem(mrep);
905 		goto nfsmout;
906 	}
907 
908 	/*
909 	 * Success, get the file handle, do various checks, and load
910 	 * post-operation data from the reply packet.  Theoretically
911 	 * we should never be looking up "." so, theoretically, we
912 	 * should never get the same file handle as our directory.  But
913 	 * we check anyway. XXX
914 	 *
915 	 * Note that no timeout is set for the positive cache hit.  We
916 	 * assume, theoretically, that ESTALE returns will be dealt with
917 	 * properly to handle NFS races and in anycase we cannot depend
918 	 * on a timeout to deal with NFS open/create/excl issues so instead
919 	 * of a bad hack here the rest of the NFS client code needs to do
920 	 * the right thing.
921 	 */
922 	nfsm_getfh(fhp, fhsize, v3);
923 
924 	np = VTONFS(dvp);
925 	if (NFS_CMPFH(np, fhp, fhsize)) {
926 		vref(dvp);
927 		nvp = dvp;
928 	} else {
929 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
930 		if (error) {
931 			m_freem(mrep);
932 			vput(dvp);
933 			return (error);
934 		}
935 		nvp = NFSTOV(np);
936 	}
937 	if (v3) {
938 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
939 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
940 	} else {
941 		nfsm_loadattr(nvp, NULL);
942 	}
943 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
944 	m_freem(mrep);
945 nfsmout:
946 	vput(dvp);
947 	if (nvp) {
948 		if (nvp == dvp)
949 			vrele(nvp);
950 		else
951 			vput(nvp);
952 	}
953 	return (error);
954 }
955 
956 /*
957  * 'cached' nfs directory lookup
958  *
959  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
960  *
961  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
962  *	      struct componentname *a_cnp)
963  */
964 static int
965 nfs_lookup(struct vop_old_lookup_args *ap)
966 {
967 	struct componentname *cnp = ap->a_cnp;
968 	struct vnode *dvp = ap->a_dvp;
969 	struct vnode **vpp = ap->a_vpp;
970 	int flags = cnp->cn_flags;
971 	struct vnode *newvp;
972 	u_int32_t *tl;
973 	caddr_t cp;
974 	int32_t t1, t2;
975 	struct nfsmount *nmp;
976 	caddr_t bpos, dpos, cp2;
977 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
978 	long len;
979 	nfsfh_t *fhp;
980 	struct nfsnode *np;
981 	int lockparent, wantparent, error = 0, attrflag, fhsize;
982 	int v3 = NFS_ISV3(dvp);
983 
984 	/*
985 	 * Read-only mount check and directory check.
986 	 */
987 	*vpp = NULLVP;
988 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
989 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
990 		return (EROFS);
991 
992 	if (dvp->v_type != VDIR)
993 		return (ENOTDIR);
994 
995 	/*
996 	 * Look it up in the cache.  Note that ENOENT is only returned if we
997 	 * previously entered a negative hit (see later on).  The additional
998 	 * nfsneg_cache_timeout check causes previously cached results to
999 	 * be instantly ignored if the negative caching is turned off.
1000 	 */
1001 	lockparent = flags & CNP_LOCKPARENT;
1002 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1003 	nmp = VFSTONFS(dvp->v_mount);
1004 	np = VTONFS(dvp);
1005 
1006 	/*
1007 	 * Go to the wire.
1008 	 */
1009 	error = 0;
1010 	newvp = NULLVP;
1011 	nfsstats.lookupcache_misses++;
1012 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1013 	len = cnp->cn_namelen;
1014 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
1015 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1016 	nfsm_fhtom(dvp, v3);
1017 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1018 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
1019 	if (error) {
1020 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1021 		m_freem(mrep);
1022 		goto nfsmout;
1023 	}
1024 	nfsm_getfh(fhp, fhsize, v3);
1025 
1026 	/*
1027 	 * Handle RENAME case...
1028 	 */
1029 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1030 		if (NFS_CMPFH(np, fhp, fhsize)) {
1031 			m_freem(mrep);
1032 			return (EISDIR);
1033 		}
1034 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1035 		if (error) {
1036 			m_freem(mrep);
1037 			return (error);
1038 		}
1039 		newvp = NFSTOV(np);
1040 		if (v3) {
1041 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1042 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1043 		} else
1044 			nfsm_loadattr(newvp, NULL);
1045 		*vpp = newvp;
1046 		m_freem(mrep);
1047 		if (!lockparent) {
1048 			vn_unlock(dvp);
1049 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1050 		}
1051 		return (0);
1052 	}
1053 
1054 	if (flags & CNP_ISDOTDOT) {
1055 		vn_unlock(dvp);
1056 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1057 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1058 		if (error) {
1059 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1060 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1061 			return (error); /* NOTE: return error from nget */
1062 		}
1063 		newvp = NFSTOV(np);
1064 		if (lockparent) {
1065 			error = vn_lock(dvp, LK_EXCLUSIVE);
1066 			if (error) {
1067 				vput(newvp);
1068 				return (error);
1069 			}
1070 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1071 		}
1072 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1073 		vref(dvp);
1074 		newvp = dvp;
1075 	} else {
1076 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1077 		if (error) {
1078 			m_freem(mrep);
1079 			return (error);
1080 		}
1081 		if (!lockparent) {
1082 			vn_unlock(dvp);
1083 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1084 		}
1085 		newvp = NFSTOV(np);
1086 	}
1087 	if (v3) {
1088 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1089 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1090 	} else
1091 		nfsm_loadattr(newvp, NULL);
1092 #if 0
1093 	/* XXX MOVE TO nfs_nremove() */
1094 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1095 	    cnp->cn_nameiop != NAMEI_DELETE) {
1096 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1097 	}
1098 #endif
1099 	*vpp = newvp;
1100 	m_freem(mrep);
1101 nfsmout:
1102 	if (error) {
1103 		if (newvp != NULLVP) {
1104 			vrele(newvp);
1105 			*vpp = NULLVP;
1106 		}
1107 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1108 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1109 		    error == ENOENT) {
1110 			if (!lockparent) {
1111 				vn_unlock(dvp);
1112 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1113 			}
1114 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1115 				error = EROFS;
1116 			else
1117 				error = EJUSTRETURN;
1118 		}
1119 	}
1120 	return (error);
1121 }
1122 
1123 /*
1124  * nfs read call.
1125  * Just call nfs_bioread() to do the work.
1126  *
1127  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1128  *	    struct ucred *a_cred)
1129  */
1130 static int
1131 nfs_read(struct vop_read_args *ap)
1132 {
1133 	struct vnode *vp = ap->a_vp;
1134 
1135 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1136 }
1137 
1138 /*
1139  * nfs readlink call
1140  *
1141  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1142  */
1143 static int
1144 nfs_readlink(struct vop_readlink_args *ap)
1145 {
1146 	struct vnode *vp = ap->a_vp;
1147 
1148 	if (vp->v_type != VLNK)
1149 		return (EINVAL);
1150 	return (nfs_bioread(vp, ap->a_uio, 0));
1151 }
1152 
1153 /*
1154  * Do a readlink rpc.
1155  * Called by nfs_doio() from below the buffer cache.
1156  */
1157 int
1158 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1159 {
1160 	u_int32_t *tl;
1161 	caddr_t cp;
1162 	int32_t t1, t2;
1163 	caddr_t bpos, dpos, cp2;
1164 	int error = 0, len, attrflag;
1165 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1166 	int v3 = NFS_ISV3(vp);
1167 
1168 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1169 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1170 	nfsm_fhtom(vp, v3);
1171 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1172 	if (v3)
1173 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1174 	if (!error) {
1175 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1176 		if (len == NFS_MAXPATHLEN) {
1177 			struct nfsnode *np = VTONFS(vp);
1178 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1179 				len = np->n_size;
1180 		}
1181 		nfsm_mtouio(uiop, len);
1182 	}
1183 	m_freem(mrep);
1184 nfsmout:
1185 	return (error);
1186 }
1187 
1188 /*
1189  * nfs read rpc call
1190  * Ditto above
1191  */
1192 int
1193 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1194 {
1195 	u_int32_t *tl;
1196 	caddr_t cp;
1197 	int32_t t1, t2;
1198 	caddr_t bpos, dpos, cp2;
1199 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1200 	struct nfsmount *nmp;
1201 	int error = 0, len, retlen, tsiz, eof, attrflag;
1202 	int v3 = NFS_ISV3(vp);
1203 
1204 #ifndef nolint
1205 	eof = 0;
1206 #endif
1207 	nmp = VFSTONFS(vp->v_mount);
1208 	tsiz = uiop->uio_resid;
1209 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1210 		return (EFBIG);
1211 	while (tsiz > 0) {
1212 		nfsstats.rpccnt[NFSPROC_READ]++;
1213 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1214 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1215 		nfsm_fhtom(vp, v3);
1216 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1217 		if (v3) {
1218 			txdr_hyper(uiop->uio_offset, tl);
1219 			*(tl + 2) = txdr_unsigned(len);
1220 		} else {
1221 			*tl++ = txdr_unsigned(uiop->uio_offset);
1222 			*tl++ = txdr_unsigned(len);
1223 			*tl = 0;
1224 		}
1225 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1226 		if (v3) {
1227 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1228 			if (error) {
1229 				m_freem(mrep);
1230 				goto nfsmout;
1231 			}
1232 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1233 			eof = fxdr_unsigned(int, *(tl + 1));
1234 		} else
1235 			nfsm_loadattr(vp, NULL);
1236 		nfsm_strsiz(retlen, nmp->nm_rsize);
1237 		nfsm_mtouio(uiop, retlen);
1238 		m_freem(mrep);
1239 		tsiz -= retlen;
1240 		if (v3) {
1241 			if (eof || retlen == 0) {
1242 				tsiz = 0;
1243 			}
1244 		} else if (retlen < len) {
1245 			tsiz = 0;
1246 		}
1247 	}
1248 nfsmout:
1249 	return (error);
1250 }
1251 
1252 /*
1253  * nfs write call
1254  */
1255 int
1256 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1257 {
1258 	u_int32_t *tl;
1259 	caddr_t cp;
1260 	int32_t t1, t2, backup;
1261 	caddr_t bpos, dpos, cp2;
1262 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1263 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1264 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1265 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1266 
1267 #ifndef DIAGNOSTIC
1268 	if (uiop->uio_iovcnt != 1)
1269 		panic("nfs: writerpc iovcnt > 1");
1270 #endif
1271 	*must_commit = 0;
1272 	tsiz = uiop->uio_resid;
1273 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1274 		return (EFBIG);
1275 	while (tsiz > 0) {
1276 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1277 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1278 		nfsm_reqhead(vp, NFSPROC_WRITE,
1279 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1280 		nfsm_fhtom(vp, v3);
1281 		if (v3) {
1282 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1283 			txdr_hyper(uiop->uio_offset, tl);
1284 			tl += 2;
1285 			*tl++ = txdr_unsigned(len);
1286 			*tl++ = txdr_unsigned(*iomode);
1287 			*tl = txdr_unsigned(len);
1288 		} else {
1289 			u_int32_t x;
1290 
1291 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1292 			/* Set both "begin" and "current" to non-garbage. */
1293 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1294 			*tl++ = x;	/* "begin offset" */
1295 			*tl++ = x;	/* "current offset" */
1296 			x = txdr_unsigned(len);
1297 			*tl++ = x;	/* total to this offset */
1298 			*tl = x;	/* size of this write */
1299 		}
1300 		nfsm_uiotom(uiop, len);
1301 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1302 		if (v3) {
1303 			/*
1304 			 * The write RPC returns a before and after mtime.  The
1305 			 * nfsm_wcc_data() macro checks the before n_mtime
1306 			 * against the before time and stores the after time
1307 			 * in the nfsnode's cached vattr and n_mtime field.
1308 			 * The NRMODIFIED bit will be set if the before
1309 			 * time did not match the original mtime.
1310 			 */
1311 			wccflag = NFSV3_WCCCHK;
1312 			nfsm_wcc_data(vp, wccflag);
1313 			if (!error) {
1314 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1315 					+ NFSX_V3WRITEVERF);
1316 				rlen = fxdr_unsigned(int, *tl++);
1317 				if (rlen == 0) {
1318 					error = NFSERR_IO;
1319 					m_freem(mrep);
1320 					break;
1321 				} else if (rlen < len) {
1322 					backup = len - rlen;
1323 					uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1324 					uiop->uio_iov->iov_len += backup;
1325 					uiop->uio_offset -= backup;
1326 					uiop->uio_resid += backup;
1327 					len = rlen;
1328 				}
1329 				commit = fxdr_unsigned(int, *tl++);
1330 
1331 				/*
1332 				 * Return the lowest committment level
1333 				 * obtained by any of the RPCs.
1334 				 */
1335 				if (committed == NFSV3WRITE_FILESYNC)
1336 					committed = commit;
1337 				else if (committed == NFSV3WRITE_DATASYNC &&
1338 					commit == NFSV3WRITE_UNSTABLE)
1339 					committed = commit;
1340 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1341 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1342 					NFSX_V3WRITEVERF);
1343 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1344 				} else if (bcmp((caddr_t)tl,
1345 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1346 				    *must_commit = 1;
1347 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1348 					NFSX_V3WRITEVERF);
1349 				}
1350 			}
1351 		} else {
1352 			nfsm_loadattr(vp, NULL);
1353 		}
1354 		m_freem(mrep);
1355 		if (error)
1356 			break;
1357 		tsiz -= len;
1358 	}
1359 nfsmout:
1360 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1361 		committed = NFSV3WRITE_FILESYNC;
1362 	*iomode = committed;
1363 	if (error)
1364 		uiop->uio_resid = tsiz;
1365 	return (error);
1366 }
1367 
1368 /*
1369  * nfs mknod rpc
1370  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1371  * mode set to specify the file type and the size field for rdev.
1372  */
1373 static int
1374 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1375 	     struct vattr *vap)
1376 {
1377 	struct nfsv2_sattr *sp;
1378 	u_int32_t *tl;
1379 	caddr_t cp;
1380 	int32_t t1, t2;
1381 	struct vnode *newvp = NULL;
1382 	struct nfsnode *np = NULL;
1383 	struct vattr vattr;
1384 	char *cp2;
1385 	caddr_t bpos, dpos;
1386 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1387 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1388 	int rmajor, rminor;
1389 	int v3 = NFS_ISV3(dvp);
1390 
1391 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1392 		rmajor = txdr_unsigned(vap->va_rmajor);
1393 		rminor = txdr_unsigned(vap->va_rminor);
1394 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1395 		rmajor = nfs_xdrneg1;
1396 		rminor = nfs_xdrneg1;
1397 	} else {
1398 		return (EOPNOTSUPP);
1399 	}
1400 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1401 		return (error);
1402 	}
1403 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1404 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1405 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1406 	nfsm_fhtom(dvp, v3);
1407 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1408 	if (v3) {
1409 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1410 		*tl++ = vtonfsv3_type(vap->va_type);
1411 		nfsm_v3attrbuild(vap, FALSE);
1412 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1413 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1414 			*tl++ = txdr_unsigned(vap->va_rmajor);
1415 			*tl = txdr_unsigned(vap->va_rminor);
1416 		}
1417 	} else {
1418 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1419 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1420 		sp->sa_uid = nfs_xdrneg1;
1421 		sp->sa_gid = nfs_xdrneg1;
1422 		sp->sa_size = makeudev(rmajor, rminor);
1423 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1424 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1425 	}
1426 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1427 	if (!error) {
1428 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1429 		if (!gotvp) {
1430 			if (newvp) {
1431 				vput(newvp);
1432 				newvp = NULL;
1433 			}
1434 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1435 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1436 			if (!error)
1437 				newvp = NFSTOV(np);
1438 		}
1439 	}
1440 	if (v3)
1441 		nfsm_wcc_data(dvp, wccflag);
1442 	m_freem(mrep);
1443 nfsmout:
1444 	if (error) {
1445 		if (newvp)
1446 			vput(newvp);
1447 	} else {
1448 		*vpp = newvp;
1449 	}
1450 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1451 	if (!wccflag)
1452 		VTONFS(dvp)->n_attrstamp = 0;
1453 	return (error);
1454 }
1455 
1456 /*
1457  * nfs mknod vop
1458  * just call nfs_mknodrpc() to do the work.
1459  *
1460  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1461  *	     struct componentname *a_cnp, struct vattr *a_vap)
1462  */
1463 /* ARGSUSED */
1464 static int
1465 nfs_mknod(struct vop_old_mknod_args *ap)
1466 {
1467 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1468 }
1469 
1470 static u_long create_verf;
1471 /*
1472  * nfs file create call
1473  *
1474  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1475  *	      struct componentname *a_cnp, struct vattr *a_vap)
1476  */
1477 static int
1478 nfs_create(struct vop_old_create_args *ap)
1479 {
1480 	struct vnode *dvp = ap->a_dvp;
1481 	struct vattr *vap = ap->a_vap;
1482 	struct componentname *cnp = ap->a_cnp;
1483 	struct nfsv2_sattr *sp;
1484 	u_int32_t *tl;
1485 	caddr_t cp;
1486 	int32_t t1, t2;
1487 	struct nfsnode *np = NULL;
1488 	struct vnode *newvp = NULL;
1489 	caddr_t bpos, dpos, cp2;
1490 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1491 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1492 	struct vattr vattr;
1493 	int v3 = NFS_ISV3(dvp);
1494 
1495 	/*
1496 	 * Oops, not for me..
1497 	 */
1498 	if (vap->va_type == VSOCK)
1499 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1500 
1501 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1502 		return (error);
1503 	}
1504 	if (vap->va_vaflags & VA_EXCLUSIVE)
1505 		fmode |= O_EXCL;
1506 again:
1507 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1508 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1509 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1510 	nfsm_fhtom(dvp, v3);
1511 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1512 	if (v3) {
1513 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1514 		if (fmode & O_EXCL) {
1515 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1516 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1517 #ifdef INET
1518 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1519 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1520 			else
1521 #endif
1522 				*tl++ = create_verf;
1523 			*tl = ++create_verf;
1524 		} else {
1525 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1526 			nfsm_v3attrbuild(vap, FALSE);
1527 		}
1528 	} else {
1529 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1530 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1531 		sp->sa_uid = nfs_xdrneg1;
1532 		sp->sa_gid = nfs_xdrneg1;
1533 		sp->sa_size = 0;
1534 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1535 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1536 	}
1537 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1538 	if (!error) {
1539 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1540 		if (!gotvp) {
1541 			if (newvp) {
1542 				vput(newvp);
1543 				newvp = NULL;
1544 			}
1545 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1546 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1547 			if (!error)
1548 				newvp = NFSTOV(np);
1549 		}
1550 	}
1551 	if (v3)
1552 		nfsm_wcc_data(dvp, wccflag);
1553 	m_freem(mrep);
1554 nfsmout:
1555 	if (error) {
1556 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1557 			KKASSERT(newvp == NULL);
1558 			fmode &= ~O_EXCL;
1559 			goto again;
1560 		}
1561 	} else if (v3 && (fmode & O_EXCL)) {
1562 		/*
1563 		 * We are normally called with only a partially initialized
1564 		 * VAP.  Since the NFSv3 spec says that server may use the
1565 		 * file attributes to store the verifier, the spec requires
1566 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1567 		 * in atime, but we can't really assume that all servers will
1568 		 * so we ensure that our SETATTR sets both atime and mtime.
1569 		 */
1570 		if (vap->va_mtime.tv_sec == VNOVAL)
1571 			vfs_timestamp(&vap->va_mtime);
1572 		if (vap->va_atime.tv_sec == VNOVAL)
1573 			vap->va_atime = vap->va_mtime;
1574 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1575 	}
1576 	if (error == 0) {
1577 		/*
1578 		 * The new np may have enough info for access
1579 		 * checks, make sure rucred and wucred are
1580 		 * initialized for read and write rpc's.
1581 		 */
1582 		np = VTONFS(newvp);
1583 		if (np->n_rucred == NULL)
1584 			np->n_rucred = crhold(cnp->cn_cred);
1585 		if (np->n_wucred == NULL)
1586 			np->n_wucred = crhold(cnp->cn_cred);
1587 		*ap->a_vpp = newvp;
1588 	} else if (newvp) {
1589 		vput(newvp);
1590 	}
1591 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1592 	if (!wccflag)
1593 		VTONFS(dvp)->n_attrstamp = 0;
1594 	return (error);
1595 }
1596 
1597 /*
1598  * nfs file remove call
1599  * To try and make nfs semantics closer to ufs semantics, a file that has
1600  * other processes using the vnode is renamed instead of removed and then
1601  * removed later on the last close.
1602  * - If v_sysref.refcnt > 1
1603  *	  If a rename is not already in the works
1604  *	     call nfs_sillyrename() to set it up
1605  *     else
1606  *	  do the remove rpc
1607  *
1608  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1609  *	      struct componentname *a_cnp)
1610  */
1611 static int
1612 nfs_remove(struct vop_old_remove_args *ap)
1613 {
1614 	struct vnode *vp = ap->a_vp;
1615 	struct vnode *dvp = ap->a_dvp;
1616 	struct componentname *cnp = ap->a_cnp;
1617 	struct nfsnode *np = VTONFS(vp);
1618 	int error = 0;
1619 	struct vattr vattr;
1620 
1621 #ifndef DIAGNOSTIC
1622 	if (vp->v_sysref.refcnt < 1)
1623 		panic("nfs_remove: bad v_sysref.refcnt");
1624 #endif
1625 	if (vp->v_type == VDIR)
1626 		error = EPERM;
1627 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1628 	    VOP_GETATTR(vp, &vattr) == 0 &&
1629 	    vattr.va_nlink > 1)) {
1630 		/*
1631 		 * throw away biocache buffers, mainly to avoid
1632 		 * unnecessary delayed writes later.
1633 		 */
1634 		error = nfs_vinvalbuf(vp, 0, 1);
1635 		/* Do the rpc */
1636 		if (error != EINTR)
1637 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1638 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1639 		/*
1640 		 * Kludge City: If the first reply to the remove rpc is lost..
1641 		 *   the reply to the retransmitted request will be ENOENT
1642 		 *   since the file was in fact removed
1643 		 *   Therefore, we cheat and return success.
1644 		 */
1645 		if (error == ENOENT)
1646 			error = 0;
1647 	} else if (!np->n_sillyrename) {
1648 		error = nfs_sillyrename(dvp, vp, cnp);
1649 	}
1650 	np->n_attrstamp = 0;
1651 	return (error);
1652 }
1653 
1654 /*
1655  * nfs file remove rpc called from nfs_inactive
1656  */
1657 int
1658 nfs_removeit(struct sillyrename *sp)
1659 {
1660 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1661 		sp->s_cred, NULL));
1662 }
1663 
1664 /*
1665  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1666  */
1667 static int
1668 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1669 	      struct ucred *cred, struct thread *td)
1670 {
1671 	u_int32_t *tl;
1672 	caddr_t cp;
1673 	int32_t t1, t2;
1674 	caddr_t bpos, dpos, cp2;
1675 	int error = 0, wccflag = NFSV3_WCCRATTR;
1676 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1677 	int v3 = NFS_ISV3(dvp);
1678 
1679 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1680 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1681 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1682 	nfsm_fhtom(dvp, v3);
1683 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1684 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1685 	if (v3)
1686 		nfsm_wcc_data(dvp, wccflag);
1687 	m_freem(mrep);
1688 nfsmout:
1689 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1690 	if (!wccflag)
1691 		VTONFS(dvp)->n_attrstamp = 0;
1692 	return (error);
1693 }
1694 
1695 /*
1696  * nfs file rename call
1697  *
1698  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1699  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1700  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1701  */
1702 static int
1703 nfs_rename(struct vop_old_rename_args *ap)
1704 {
1705 	struct vnode *fvp = ap->a_fvp;
1706 	struct vnode *tvp = ap->a_tvp;
1707 	struct vnode *fdvp = ap->a_fdvp;
1708 	struct vnode *tdvp = ap->a_tdvp;
1709 	struct componentname *tcnp = ap->a_tcnp;
1710 	struct componentname *fcnp = ap->a_fcnp;
1711 	int error;
1712 
1713 	/* Check for cross-device rename */
1714 	if ((fvp->v_mount != tdvp->v_mount) ||
1715 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1716 		error = EXDEV;
1717 		goto out;
1718 	}
1719 
1720 	/*
1721 	 * We shouldn't have to flush fvp on rename for most server-side
1722 	 * filesystems as the file handle should not change.  Unfortunately
1723 	 * the inode for some filesystems (msdosfs) might be tied to the
1724 	 * file name or directory position so to be completely safe
1725 	 * vfs.nfs.flush_on_rename is set by default.  Clear to improve
1726 	 * performance.
1727 	 *
1728 	 * We must flush tvp on rename because it might become stale on the
1729 	 * server after the rename.
1730 	 */
1731 	if (nfs_flush_on_rename)
1732 	    VOP_FSYNC(fvp, MNT_WAIT);
1733 	if (tvp)
1734 	    VOP_FSYNC(tvp, MNT_WAIT);
1735 
1736 	/*
1737 	 * If the tvp exists and is in use, sillyrename it before doing the
1738 	 * rename of the new file over it.
1739 	 *
1740 	 * XXX Can't sillyrename a directory.
1741 	 *
1742 	 * We do not attempt to do any namecache purges in this old API
1743 	 * routine.  The new API compat functions have access to the actual
1744 	 * namecache structures and will do it for us.
1745 	 */
1746 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1747 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1748 		vput(tvp);
1749 		tvp = NULL;
1750 	} else if (tvp) {
1751 		;
1752 	}
1753 
1754 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1755 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1756 		tcnp->cn_td);
1757 
1758 out:
1759 	if (tdvp == tvp)
1760 		vrele(tdvp);
1761 	else
1762 		vput(tdvp);
1763 	if (tvp)
1764 		vput(tvp);
1765 	vrele(fdvp);
1766 	vrele(fvp);
1767 	/*
1768 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1769 	 */
1770 	if (error == ENOENT)
1771 		error = 0;
1772 	return (error);
1773 }
1774 
1775 /*
1776  * nfs file rename rpc called from nfs_remove() above
1777  */
1778 static int
1779 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1780 	     struct sillyrename *sp)
1781 {
1782 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1783 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1784 }
1785 
1786 /*
1787  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1788  */
1789 static int
1790 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1791 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1792 	      struct ucred *cred, struct thread *td)
1793 {
1794 	u_int32_t *tl;
1795 	caddr_t cp;
1796 	int32_t t1, t2;
1797 	caddr_t bpos, dpos, cp2;
1798 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1799 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1800 	int v3 = NFS_ISV3(fdvp);
1801 
1802 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1803 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1804 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1805 		nfsm_rndup(tnamelen));
1806 	nfsm_fhtom(fdvp, v3);
1807 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1808 	nfsm_fhtom(tdvp, v3);
1809 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1810 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1811 	if (v3) {
1812 		nfsm_wcc_data(fdvp, fwccflag);
1813 		nfsm_wcc_data(tdvp, twccflag);
1814 	}
1815 	m_freem(mrep);
1816 nfsmout:
1817 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1818 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1819 	if (!fwccflag)
1820 		VTONFS(fdvp)->n_attrstamp = 0;
1821 	if (!twccflag)
1822 		VTONFS(tdvp)->n_attrstamp = 0;
1823 	return (error);
1824 }
1825 
1826 /*
1827  * nfs hard link create call
1828  *
1829  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1830  *	    struct componentname *a_cnp)
1831  */
1832 static int
1833 nfs_link(struct vop_old_link_args *ap)
1834 {
1835 	struct vnode *vp = ap->a_vp;
1836 	struct vnode *tdvp = ap->a_tdvp;
1837 	struct componentname *cnp = ap->a_cnp;
1838 	u_int32_t *tl;
1839 	caddr_t cp;
1840 	int32_t t1, t2;
1841 	caddr_t bpos, dpos, cp2;
1842 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1843 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1844 	int v3;
1845 
1846 	if (vp->v_mount != tdvp->v_mount) {
1847 		return (EXDEV);
1848 	}
1849 
1850 	/*
1851 	 * The attribute cache may get out of sync with the server on link.
1852 	 * Pushing writes to the server before handle was inherited from
1853 	 * long long ago and it is unclear if we still need to do this.
1854 	 * Defaults to off.
1855 	 */
1856 	if (nfs_flush_on_hlink)
1857 		VOP_FSYNC(vp, MNT_WAIT);
1858 
1859 	v3 = NFS_ISV3(vp);
1860 	nfsstats.rpccnt[NFSPROC_LINK]++;
1861 	nfsm_reqhead(vp, NFSPROC_LINK,
1862 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1863 	nfsm_fhtom(vp, v3);
1864 	nfsm_fhtom(tdvp, v3);
1865 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1866 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1867 	if (v3) {
1868 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1869 		nfsm_wcc_data(tdvp, wccflag);
1870 	}
1871 	m_freem(mrep);
1872 nfsmout:
1873 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1874 	if (!attrflag)
1875 		VTONFS(vp)->n_attrstamp = 0;
1876 	if (!wccflag)
1877 		VTONFS(tdvp)->n_attrstamp = 0;
1878 	/*
1879 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1880 	 */
1881 	if (error == EEXIST)
1882 		error = 0;
1883 	return (error);
1884 }
1885 
1886 /*
1887  * nfs symbolic link create call
1888  *
1889  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1890  *		struct componentname *a_cnp, struct vattr *a_vap,
1891  *		char *a_target)
1892  */
1893 static int
1894 nfs_symlink(struct vop_old_symlink_args *ap)
1895 {
1896 	struct vnode *dvp = ap->a_dvp;
1897 	struct vattr *vap = ap->a_vap;
1898 	struct componentname *cnp = ap->a_cnp;
1899 	struct nfsv2_sattr *sp;
1900 	u_int32_t *tl;
1901 	caddr_t cp;
1902 	int32_t t1, t2;
1903 	caddr_t bpos, dpos, cp2;
1904 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1905 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1906 	struct vnode *newvp = NULL;
1907 	int v3 = NFS_ISV3(dvp);
1908 
1909 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1910 	slen = strlen(ap->a_target);
1911 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1912 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1913 	nfsm_fhtom(dvp, v3);
1914 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1915 	if (v3) {
1916 		nfsm_v3attrbuild(vap, FALSE);
1917 	}
1918 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1919 	if (!v3) {
1920 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1921 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1922 		sp->sa_uid = nfs_xdrneg1;
1923 		sp->sa_gid = nfs_xdrneg1;
1924 		sp->sa_size = nfs_xdrneg1;
1925 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1926 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1927 	}
1928 
1929 	/*
1930 	 * Issue the NFS request and get the rpc response.
1931 	 *
1932 	 * Only NFSv3 responses returning an error of 0 actually return
1933 	 * a file handle that can be converted into newvp without having
1934 	 * to do an extra lookup rpc.
1935 	 */
1936 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1937 	if (v3) {
1938 		if (error == 0)
1939 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1940 		nfsm_wcc_data(dvp, wccflag);
1941 	}
1942 
1943 	/*
1944 	 * out code jumps -> here, mrep is also freed.
1945 	 */
1946 
1947 	m_freem(mrep);
1948 nfsmout:
1949 
1950 	/*
1951 	 * If we get an EEXIST error, silently convert it to no-error
1952 	 * in case of an NFS retry.
1953 	 */
1954 	if (error == EEXIST)
1955 		error = 0;
1956 
1957 	/*
1958 	 * If we do not have (or no longer have) an error, and we could
1959 	 * not extract the newvp from the response due to the request being
1960 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1961 	 * to obtain a newvp to return.
1962 	 */
1963 	if (error == 0 && newvp == NULL) {
1964 		struct nfsnode *np = NULL;
1965 
1966 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1967 		    cnp->cn_cred, cnp->cn_td, &np);
1968 		if (!error)
1969 			newvp = NFSTOV(np);
1970 	}
1971 	if (error) {
1972 		if (newvp)
1973 			vput(newvp);
1974 	} else {
1975 		*ap->a_vpp = newvp;
1976 	}
1977 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1978 	if (!wccflag)
1979 		VTONFS(dvp)->n_attrstamp = 0;
1980 	return (error);
1981 }
1982 
1983 /*
1984  * nfs make dir call
1985  *
1986  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1987  *	     struct componentname *a_cnp, struct vattr *a_vap)
1988  */
1989 static int
1990 nfs_mkdir(struct vop_old_mkdir_args *ap)
1991 {
1992 	struct vnode *dvp = ap->a_dvp;
1993 	struct vattr *vap = ap->a_vap;
1994 	struct componentname *cnp = ap->a_cnp;
1995 	struct nfsv2_sattr *sp;
1996 	u_int32_t *tl;
1997 	caddr_t cp;
1998 	int32_t t1, t2;
1999 	int len;
2000 	struct nfsnode *np = NULL;
2001 	struct vnode *newvp = NULL;
2002 	caddr_t bpos, dpos, cp2;
2003 	int error = 0, wccflag = NFSV3_WCCRATTR;
2004 	int gotvp = 0;
2005 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2006 	struct vattr vattr;
2007 	int v3 = NFS_ISV3(dvp);
2008 
2009 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2010 		return (error);
2011 	}
2012 	len = cnp->cn_namelen;
2013 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2014 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
2015 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
2016 	nfsm_fhtom(dvp, v3);
2017 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
2018 	if (v3) {
2019 		nfsm_v3attrbuild(vap, FALSE);
2020 	} else {
2021 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2022 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2023 		sp->sa_uid = nfs_xdrneg1;
2024 		sp->sa_gid = nfs_xdrneg1;
2025 		sp->sa_size = nfs_xdrneg1;
2026 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2027 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2028 	}
2029 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2030 	if (!error)
2031 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2032 	if (v3)
2033 		nfsm_wcc_data(dvp, wccflag);
2034 	m_freem(mrep);
2035 nfsmout:
2036 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2037 	if (!wccflag)
2038 		VTONFS(dvp)->n_attrstamp = 0;
2039 	/*
2040 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2041 	 * if we can succeed in looking up the directory.
2042 	 */
2043 	if (error == EEXIST || (!error && !gotvp)) {
2044 		if (newvp) {
2045 			vrele(newvp);
2046 			newvp = NULL;
2047 		}
2048 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2049 			cnp->cn_td, &np);
2050 		if (!error) {
2051 			newvp = NFSTOV(np);
2052 			if (newvp->v_type != VDIR)
2053 				error = EEXIST;
2054 		}
2055 	}
2056 	if (error) {
2057 		if (newvp)
2058 			vrele(newvp);
2059 	} else
2060 		*ap->a_vpp = newvp;
2061 	return (error);
2062 }
2063 
2064 /*
2065  * nfs remove directory call
2066  *
2067  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2068  *	     struct componentname *a_cnp)
2069  */
2070 static int
2071 nfs_rmdir(struct vop_old_rmdir_args *ap)
2072 {
2073 	struct vnode *vp = ap->a_vp;
2074 	struct vnode *dvp = ap->a_dvp;
2075 	struct componentname *cnp = ap->a_cnp;
2076 	u_int32_t *tl;
2077 	caddr_t cp;
2078 	int32_t t1, t2;
2079 	caddr_t bpos, dpos, cp2;
2080 	int error = 0, wccflag = NFSV3_WCCRATTR;
2081 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2082 	int v3 = NFS_ISV3(dvp);
2083 
2084 	if (dvp == vp)
2085 		return (EINVAL);
2086 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2087 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2088 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2089 	nfsm_fhtom(dvp, v3);
2090 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2091 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2092 	if (v3)
2093 		nfsm_wcc_data(dvp, wccflag);
2094 	m_freem(mrep);
2095 nfsmout:
2096 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2097 	if (!wccflag)
2098 		VTONFS(dvp)->n_attrstamp = 0;
2099 	/*
2100 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2101 	 */
2102 	if (error == ENOENT)
2103 		error = 0;
2104 	return (error);
2105 }
2106 
2107 /*
2108  * nfs readdir call
2109  *
2110  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2111  */
2112 static int
2113 nfs_readdir(struct vop_readdir_args *ap)
2114 {
2115 	struct vnode *vp = ap->a_vp;
2116 	struct nfsnode *np = VTONFS(vp);
2117 	struct uio *uio = ap->a_uio;
2118 	int tresid, error;
2119 	struct vattr vattr;
2120 
2121 	if (vp->v_type != VDIR)
2122 		return (EPERM);
2123 
2124 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2125 		return (error);
2126 
2127 	/*
2128 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2129 	 * and then check that is still valid, or if this is an NQNFS mount
2130 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2131 	 * VOP_GETATTR() does not necessarily go to the wire.
2132 	 */
2133 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2134 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2135 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2136 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2137 		) {
2138 			nfsstats.direofcache_hits++;
2139 			goto done;
2140 		}
2141 	}
2142 
2143 	/*
2144 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2145 	 * own cache coherency checks so we do not have to.
2146 	 */
2147 	tresid = uio->uio_resid;
2148 	error = nfs_bioread(vp, uio, 0);
2149 
2150 	if (!error && uio->uio_resid == tresid)
2151 		nfsstats.direofcache_misses++;
2152 done:
2153 	vn_unlock(vp);
2154 	return (error);
2155 }
2156 
2157 /*
2158  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2159  *
2160  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2161  * offset/block and converts the nfs formatted directory entries for userland
2162  * consumption as well as deals with offsets into the middle of blocks.
2163  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2164  * be block-bounded.  It must convert to cookies for the actual RPC.
2165  */
2166 int
2167 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2168 {
2169 	int len, left;
2170 	struct nfs_dirent *dp = NULL;
2171 	u_int32_t *tl;
2172 	caddr_t cp;
2173 	int32_t t1, t2;
2174 	nfsuint64 *cookiep;
2175 	caddr_t bpos, dpos, cp2;
2176 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2177 	nfsuint64 cookie;
2178 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2179 	struct nfsnode *dnp = VTONFS(vp);
2180 	u_quad_t fileno;
2181 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2182 	int attrflag;
2183 	int v3 = NFS_ISV3(vp);
2184 
2185 #ifndef DIAGNOSTIC
2186 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2187 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2188 		panic("nfs readdirrpc bad uio");
2189 #endif
2190 
2191 	/*
2192 	 * If there is no cookie, assume directory was stale.
2193 	 */
2194 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2195 	if (cookiep)
2196 		cookie = *cookiep;
2197 	else
2198 		return (NFSERR_BAD_COOKIE);
2199 	/*
2200 	 * Loop around doing readdir rpc's of size nm_readdirsize
2201 	 * truncated to a multiple of DIRBLKSIZ.
2202 	 * The stopping criteria is EOF or buffer full.
2203 	 */
2204 	while (more_dirs && bigenough) {
2205 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2206 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2207 			NFSX_READDIR(v3));
2208 		nfsm_fhtom(vp, v3);
2209 		if (v3) {
2210 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2211 			*tl++ = cookie.nfsuquad[0];
2212 			*tl++ = cookie.nfsuquad[1];
2213 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2214 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2215 		} else {
2216 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2217 			*tl++ = cookie.nfsuquad[0];
2218 		}
2219 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2220 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2221 		if (v3) {
2222 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2223 			if (!error) {
2224 				nfsm_dissect(tl, u_int32_t *,
2225 				    2 * NFSX_UNSIGNED);
2226 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2227 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2228 			} else {
2229 				m_freem(mrep);
2230 				goto nfsmout;
2231 			}
2232 		}
2233 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2234 		more_dirs = fxdr_unsigned(int, *tl);
2235 
2236 		/* loop thru the dir entries, converting them to std form */
2237 		while (more_dirs && bigenough) {
2238 			if (v3) {
2239 				nfsm_dissect(tl, u_int32_t *,
2240 				    3 * NFSX_UNSIGNED);
2241 				fileno = fxdr_hyper(tl);
2242 				len = fxdr_unsigned(int, *(tl + 2));
2243 			} else {
2244 				nfsm_dissect(tl, u_int32_t *,
2245 				    2 * NFSX_UNSIGNED);
2246 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2247 				len = fxdr_unsigned(int, *tl);
2248 			}
2249 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2250 				error = EBADRPC;
2251 				m_freem(mrep);
2252 				goto nfsmout;
2253 			}
2254 
2255 			/*
2256 			 * len is the number of bytes in the path element
2257 			 * name, not including the \0 termination.
2258 			 *
2259 			 * tlen is the number of bytes w have to reserve for
2260 			 * the path element name.
2261 			 */
2262 			tlen = nfsm_rndup(len);
2263 			if (tlen == len)
2264 				tlen += 4;	/* To ensure null termination */
2265 
2266 			/*
2267 			 * If the entry would cross a DIRBLKSIZ boundary,
2268 			 * extend the previous nfs_dirent to cover the
2269 			 * remaining space.
2270 			 */
2271 			left = DIRBLKSIZ - blksiz;
2272 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2273 				dp->nfs_reclen += left;
2274 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2275 				uiop->uio_iov->iov_len -= left;
2276 				uiop->uio_offset += left;
2277 				uiop->uio_resid -= left;
2278 				blksiz = 0;
2279 			}
2280 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2281 				bigenough = 0;
2282 			if (bigenough) {
2283 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2284 				dp->nfs_ino = fileno;
2285 				dp->nfs_namlen = len;
2286 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2287 				dp->nfs_type = DT_UNKNOWN;
2288 				blksiz += dp->nfs_reclen;
2289 				if (blksiz == DIRBLKSIZ)
2290 					blksiz = 0;
2291 				uiop->uio_offset += sizeof(struct nfs_dirent);
2292 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2293 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2294 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2295 				nfsm_mtouio(uiop, len);
2296 
2297 				/*
2298 				 * The uiop has advanced by nfs_dirent + len
2299 				 * but really needs to advance by
2300 				 * nfs_dirent + tlen
2301 				 */
2302 				cp = uiop->uio_iov->iov_base;
2303 				tlen -= len;
2304 				*cp = '\0';	/* null terminate */
2305 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2306 				uiop->uio_iov->iov_len -= tlen;
2307 				uiop->uio_offset += tlen;
2308 				uiop->uio_resid -= tlen;
2309 			} else {
2310 				/*
2311 				 * NFS strings must be rounded up (nfsm_myouio
2312 				 * handled that in the bigenough case).
2313 				 */
2314 				nfsm_adv(nfsm_rndup(len));
2315 			}
2316 			if (v3) {
2317 				nfsm_dissect(tl, u_int32_t *,
2318 				    3 * NFSX_UNSIGNED);
2319 			} else {
2320 				nfsm_dissect(tl, u_int32_t *,
2321 				    2 * NFSX_UNSIGNED);
2322 			}
2323 
2324 			/*
2325 			 * If we were able to accomodate the last entry,
2326 			 * get the cookie for the next one.  Otherwise
2327 			 * hold-over the cookie for the one we were not
2328 			 * able to accomodate.
2329 			 */
2330 			if (bigenough) {
2331 				cookie.nfsuquad[0] = *tl++;
2332 				if (v3)
2333 					cookie.nfsuquad[1] = *tl++;
2334 			} else if (v3) {
2335 				tl += 2;
2336 			} else {
2337 				tl++;
2338 			}
2339 			more_dirs = fxdr_unsigned(int, *tl);
2340 		}
2341 		/*
2342 		 * If at end of rpc data, get the eof boolean
2343 		 */
2344 		if (!more_dirs) {
2345 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2346 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2347 		}
2348 		m_freem(mrep);
2349 	}
2350 	/*
2351 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2352 	 * by increasing d_reclen for the last record.
2353 	 */
2354 	if (blksiz > 0) {
2355 		left = DIRBLKSIZ - blksiz;
2356 		dp->nfs_reclen += left;
2357 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2358 		uiop->uio_iov->iov_len -= left;
2359 		uiop->uio_offset += left;
2360 		uiop->uio_resid -= left;
2361 	}
2362 
2363 	if (bigenough) {
2364 		/*
2365 		 * We hit the end of the directory, update direofoffset.
2366 		 */
2367 		dnp->n_direofoffset = uiop->uio_offset;
2368 	} else {
2369 		/*
2370 		 * There is more to go, insert the link cookie so the
2371 		 * next block can be read.
2372 		 */
2373 		if (uiop->uio_resid > 0)
2374 			kprintf("EEK! readdirrpc resid > 0\n");
2375 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2376 		*cookiep = cookie;
2377 	}
2378 nfsmout:
2379 	return (error);
2380 }
2381 
2382 /*
2383  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2384  */
2385 int
2386 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2387 {
2388 	int len, left;
2389 	struct nfs_dirent *dp;
2390 	u_int32_t *tl;
2391 	caddr_t cp;
2392 	int32_t t1, t2;
2393 	struct vnode *newvp;
2394 	nfsuint64 *cookiep;
2395 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2396 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2397 	nfsuint64 cookie;
2398 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2399 	struct nfsnode *dnp = VTONFS(vp), *np;
2400 	nfsfh_t *fhp;
2401 	u_quad_t fileno;
2402 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2403 	int attrflag, fhsize;
2404 	struct nchandle nch;
2405 	struct nchandle dnch;
2406 	struct nlcomponent nlc;
2407 
2408 #ifndef nolint
2409 	dp = NULL;
2410 #endif
2411 #ifndef DIAGNOSTIC
2412 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2413 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2414 		panic("nfs readdirplusrpc bad uio");
2415 #endif
2416 	/*
2417 	 * Obtain the namecache record for the directory so we have something
2418 	 * to use as a basis for creating the entries.  This function will
2419 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2420 	 * from the tree and cannot be used for upward traversals, and the
2421 	 * ncp may be unnamed.  Note that other unrelated operations may
2422 	 * cause the ncp to be named at any time.
2423 	 */
2424 	cache_fromdvp(vp, NULL, 0, &dnch);
2425 	bzero(&nlc, sizeof(nlc));
2426 	newvp = NULLVP;
2427 
2428 	/*
2429 	 * If there is no cookie, assume directory was stale.
2430 	 */
2431 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2432 	if (cookiep)
2433 		cookie = *cookiep;
2434 	else
2435 		return (NFSERR_BAD_COOKIE);
2436 	/*
2437 	 * Loop around doing readdir rpc's of size nm_readdirsize
2438 	 * truncated to a multiple of DIRBLKSIZ.
2439 	 * The stopping criteria is EOF or buffer full.
2440 	 */
2441 	while (more_dirs && bigenough) {
2442 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2443 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2444 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2445 		nfsm_fhtom(vp, 1);
2446  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2447 		*tl++ = cookie.nfsuquad[0];
2448 		*tl++ = cookie.nfsuquad[1];
2449 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2450 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2451 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2452 		*tl = txdr_unsigned(nmp->nm_rsize);
2453 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2454 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2455 		if (error) {
2456 			m_freem(mrep);
2457 			goto nfsmout;
2458 		}
2459 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2460 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2461 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2462 		more_dirs = fxdr_unsigned(int, *tl);
2463 
2464 		/* loop thru the dir entries, doctoring them to 4bsd form */
2465 		while (more_dirs && bigenough) {
2466 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2467 			fileno = fxdr_hyper(tl);
2468 			len = fxdr_unsigned(int, *(tl + 2));
2469 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2470 				error = EBADRPC;
2471 				m_freem(mrep);
2472 				goto nfsmout;
2473 			}
2474 			tlen = nfsm_rndup(len);
2475 			if (tlen == len)
2476 				tlen += 4;	/* To ensure null termination*/
2477 			left = DIRBLKSIZ - blksiz;
2478 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2479 				dp->nfs_reclen += left;
2480 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2481 				uiop->uio_iov->iov_len -= left;
2482 				uiop->uio_offset += left;
2483 				uiop->uio_resid -= left;
2484 				blksiz = 0;
2485 			}
2486 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2487 				bigenough = 0;
2488 			if (bigenough) {
2489 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2490 				dp->nfs_ino = fileno;
2491 				dp->nfs_namlen = len;
2492 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2493 				dp->nfs_type = DT_UNKNOWN;
2494 				blksiz += dp->nfs_reclen;
2495 				if (blksiz == DIRBLKSIZ)
2496 					blksiz = 0;
2497 				uiop->uio_offset += sizeof(struct nfs_dirent);
2498 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2499 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2500 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2501 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2502 				nlc.nlc_namelen = len;
2503 				nfsm_mtouio(uiop, len);
2504 				cp = uiop->uio_iov->iov_base;
2505 				tlen -= len;
2506 				*cp = '\0';
2507 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2508 				uiop->uio_iov->iov_len -= tlen;
2509 				uiop->uio_offset += tlen;
2510 				uiop->uio_resid -= tlen;
2511 			} else
2512 				nfsm_adv(nfsm_rndup(len));
2513 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2514 			if (bigenough) {
2515 				cookie.nfsuquad[0] = *tl++;
2516 				cookie.nfsuquad[1] = *tl++;
2517 			} else
2518 				tl += 2;
2519 
2520 			/*
2521 			 * Since the attributes are before the file handle
2522 			 * (sigh), we must skip over the attributes and then
2523 			 * come back and get them.
2524 			 */
2525 			attrflag = fxdr_unsigned(int, *tl);
2526 			if (attrflag) {
2527 			    dpossav1 = dpos;
2528 			    mdsav1 = md;
2529 			    nfsm_adv(NFSX_V3FATTR);
2530 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2531 			    doit = fxdr_unsigned(int, *tl);
2532 			    if (doit) {
2533 				nfsm_getfh(fhp, fhsize, 1);
2534 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2535 				    vref(vp);
2536 				    newvp = vp;
2537 				    np = dnp;
2538 				} else {
2539 				    error = nfs_nget(vp->v_mount, fhp,
2540 					fhsize, &np);
2541 				    if (error)
2542 					doit = 0;
2543 				    else
2544 					newvp = NFSTOV(np);
2545 				}
2546 			    }
2547 			    if (doit && bigenough) {
2548 				dpossav2 = dpos;
2549 				dpos = dpossav1;
2550 				mdsav2 = md;
2551 				md = mdsav1;
2552 				nfsm_loadattr(newvp, NULL);
2553 				dpos = dpossav2;
2554 				md = mdsav2;
2555 				dp->nfs_type =
2556 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2557 				if (dnch.ncp) {
2558 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2559 					nlc.nlc_namelen, nlc.nlc_namelen,
2560 					nlc.nlc_nameptr);
2561 				    nch = cache_nlookup(&dnch, &nlc);
2562 				    cache_setunresolved(&nch);
2563 				    nfs_cache_setvp(&nch, newvp,
2564 						    nfspos_cache_timeout);
2565 				    cache_put(&nch);
2566 				} else {
2567 				    kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2568 					" %*.*s\n",
2569 					nlc.nlc_namelen, nlc.nlc_namelen,
2570 					nlc.nlc_nameptr);
2571 				}
2572 			    }
2573 			} else {
2574 			    /* Just skip over the file handle */
2575 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2576 			    i = fxdr_unsigned(int, *tl);
2577 			    nfsm_adv(nfsm_rndup(i));
2578 			}
2579 			if (newvp != NULLVP) {
2580 			    if (newvp == vp)
2581 				vrele(newvp);
2582 			    else
2583 				vput(newvp);
2584 			    newvp = NULLVP;
2585 			}
2586 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2587 			more_dirs = fxdr_unsigned(int, *tl);
2588 		}
2589 		/*
2590 		 * If at end of rpc data, get the eof boolean
2591 		 */
2592 		if (!more_dirs) {
2593 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2594 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2595 		}
2596 		m_freem(mrep);
2597 	}
2598 	/*
2599 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2600 	 * by increasing d_reclen for the last record.
2601 	 */
2602 	if (blksiz > 0) {
2603 		left = DIRBLKSIZ - blksiz;
2604 		dp->nfs_reclen += left;
2605 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2606 		uiop->uio_iov->iov_len -= left;
2607 		uiop->uio_offset += left;
2608 		uiop->uio_resid -= left;
2609 	}
2610 
2611 	/*
2612 	 * We are now either at the end of the directory or have filled the
2613 	 * block.
2614 	 */
2615 	if (bigenough)
2616 		dnp->n_direofoffset = uiop->uio_offset;
2617 	else {
2618 		if (uiop->uio_resid > 0)
2619 			kprintf("EEK! readdirplusrpc resid > 0\n");
2620 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2621 		*cookiep = cookie;
2622 	}
2623 nfsmout:
2624 	if (newvp != NULLVP) {
2625 	        if (newvp == vp)
2626 			vrele(newvp);
2627 		else
2628 			vput(newvp);
2629 		newvp = NULLVP;
2630 	}
2631 	if (dnch.ncp)
2632 		cache_drop(&dnch);
2633 	return (error);
2634 }
2635 
2636 /*
2637  * Silly rename. To make the NFS filesystem that is stateless look a little
2638  * more like the "ufs" a remove of an active vnode is translated to a rename
2639  * to a funny looking filename that is removed by nfs_inactive on the
2640  * nfsnode. There is the potential for another process on a different client
2641  * to create the same funny name between the nfs_lookitup() fails and the
2642  * nfs_rename() completes, but...
2643  */
2644 static int
2645 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2646 {
2647 	struct sillyrename *sp;
2648 	struct nfsnode *np;
2649 	int error;
2650 
2651 	/*
2652 	 * We previously purged dvp instead of vp.  I don't know why, it
2653 	 * completely destroys performance.  We can't do it anyway with the
2654 	 * new VFS API since we would be breaking the namecache topology.
2655 	 */
2656 	cache_purge(vp);	/* XXX */
2657 	np = VTONFS(vp);
2658 #ifndef DIAGNOSTIC
2659 	if (vp->v_type == VDIR)
2660 		panic("nfs: sillyrename dir");
2661 #endif
2662 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2663 		M_NFSREQ, M_WAITOK);
2664 	sp->s_cred = crdup(cnp->cn_cred);
2665 	sp->s_dvp = dvp;
2666 	vref(dvp);
2667 
2668 	/* Fudge together a funny name */
2669 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2670 
2671 	/* Try lookitups until we get one that isn't there */
2672 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2673 		cnp->cn_td, NULL) == 0) {
2674 		sp->s_name[4]++;
2675 		if (sp->s_name[4] > 'z') {
2676 			error = EINVAL;
2677 			goto bad;
2678 		}
2679 	}
2680 	error = nfs_renameit(dvp, cnp, sp);
2681 	if (error)
2682 		goto bad;
2683 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2684 		cnp->cn_td, &np);
2685 	np->n_sillyrename = sp;
2686 	return (0);
2687 bad:
2688 	vrele(sp->s_dvp);
2689 	crfree(sp->s_cred);
2690 	kfree((caddr_t)sp, M_NFSREQ);
2691 	return (error);
2692 }
2693 
2694 /*
2695  * Look up a file name and optionally either update the file handle or
2696  * allocate an nfsnode, depending on the value of npp.
2697  * npp == NULL	--> just do the lookup
2698  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2699  *			handled too
2700  * *npp != NULL --> update the file handle in the vnode
2701  */
2702 static int
2703 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2704 	     struct thread *td, struct nfsnode **npp)
2705 {
2706 	u_int32_t *tl;
2707 	caddr_t cp;
2708 	int32_t t1, t2;
2709 	struct vnode *newvp = NULL;
2710 	struct nfsnode *np, *dnp = VTONFS(dvp);
2711 	caddr_t bpos, dpos, cp2;
2712 	int error = 0, fhlen, attrflag;
2713 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2714 	nfsfh_t *nfhp;
2715 	int v3 = NFS_ISV3(dvp);
2716 
2717 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2718 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2719 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2720 	nfsm_fhtom(dvp, v3);
2721 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2722 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2723 	if (npp && !error) {
2724 		nfsm_getfh(nfhp, fhlen, v3);
2725 		if (*npp) {
2726 		    np = *npp;
2727 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2728 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2729 			np->n_fhp = &np->n_fh;
2730 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2731 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2732 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2733 		    np->n_fhsize = fhlen;
2734 		    newvp = NFSTOV(np);
2735 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2736 		    vref(dvp);
2737 		    newvp = dvp;
2738 		} else {
2739 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2740 		    if (error) {
2741 			m_freem(mrep);
2742 			return (error);
2743 		    }
2744 		    newvp = NFSTOV(np);
2745 		}
2746 		if (v3) {
2747 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2748 			if (!attrflag && *npp == NULL) {
2749 				m_freem(mrep);
2750 				if (newvp == dvp)
2751 					vrele(newvp);
2752 				else
2753 					vput(newvp);
2754 				return (ENOENT);
2755 			}
2756 		} else
2757 			nfsm_loadattr(newvp, NULL);
2758 	}
2759 	m_freem(mrep);
2760 nfsmout:
2761 	if (npp && *npp == NULL) {
2762 		if (error) {
2763 			if (newvp) {
2764 				if (newvp == dvp)
2765 					vrele(newvp);
2766 				else
2767 					vput(newvp);
2768 			}
2769 		} else
2770 			*npp = np;
2771 	}
2772 	return (error);
2773 }
2774 
2775 /*
2776  * Nfs Version 3 commit rpc
2777  */
2778 int
2779 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2780 {
2781 	caddr_t cp;
2782 	u_int32_t *tl;
2783 	int32_t t1, t2;
2784 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2785 	caddr_t bpos, dpos, cp2;
2786 	int error = 0, wccflag = NFSV3_WCCRATTR;
2787 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2788 
2789 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2790 		return (0);
2791 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2792 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2793 	nfsm_fhtom(vp, 1);
2794 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2795 	txdr_hyper(offset, tl);
2796 	tl += 2;
2797 	*tl = txdr_unsigned(cnt);
2798 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2799 	nfsm_wcc_data(vp, wccflag);
2800 	if (!error) {
2801 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2802 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2803 			NFSX_V3WRITEVERF)) {
2804 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2805 				NFSX_V3WRITEVERF);
2806 			error = NFSERR_STALEWRITEVERF;
2807 		}
2808 	}
2809 	m_freem(mrep);
2810 nfsmout:
2811 	return (error);
2812 }
2813 
2814 /*
2815  * Kludge City..
2816  * - make nfs_bmap() essentially a no-op that does no translation
2817  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2818  *   (Maybe I could use the process's page mapping, but I was concerned that
2819  *    Kernel Write might not be enabled and also figured copyout() would do
2820  *    a lot more work than bcopy() and also it currently happens in the
2821  *    context of the swapper process (2).
2822  *
2823  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2824  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2825  */
2826 static int
2827 nfs_bmap(struct vop_bmap_args *ap)
2828 {
2829 	if (ap->a_doffsetp != NULL)
2830 		*ap->a_doffsetp = ap->a_loffset;
2831 	if (ap->a_runp != NULL)
2832 		*ap->a_runp = 0;
2833 	if (ap->a_runb != NULL)
2834 		*ap->a_runb = 0;
2835 	return (0);
2836 }
2837 
2838 /*
2839  * Strategy routine.
2840  *
2841  * For async requests when nfsiod(s) are running, queue the request by
2842  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2843  * request.
2844  */
2845 static int
2846 nfs_strategy(struct vop_strategy_args *ap)
2847 {
2848 	struct bio *bio = ap->a_bio;
2849 	struct bio *nbio;
2850 	struct buf *bp = bio->bio_buf;
2851 	struct thread *td;
2852 	int error = 0;
2853 
2854 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2855 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2856 	KASSERT(BUF_REFCNT(bp) > 0,
2857 		("nfs_strategy: buffer %p not locked", bp));
2858 
2859 	if (bp->b_flags & B_ASYNC)
2860 		td = NULL;
2861 	else
2862 		td = curthread;	/* XXX */
2863 
2864         /*
2865 	 * We probably don't need to push an nbio any more since no
2866 	 * block conversion is required due to the use of 64 bit byte
2867 	 * offsets, but do it anyway.
2868          */
2869 	nbio = push_bio(bio);
2870 	nbio->bio_offset = bio->bio_offset;
2871 
2872 	/*
2873 	 * If the op is asynchronous and an i/o daemon is waiting
2874 	 * queue the request, wake it up and wait for completion
2875 	 * otherwise just do it ourselves.
2876 	 */
2877 	if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2878 		error = nfs_doio(ap->a_vp, nbio, td);
2879 	return (error);
2880 }
2881 
2882 /*
2883  * Mmap a file
2884  *
2885  * NB Currently unsupported.
2886  *
2887  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
2888  */
2889 /* ARGSUSED */
2890 static int
2891 nfs_mmap(struct vop_mmap_args *ap)
2892 {
2893 	return (EINVAL);
2894 }
2895 
2896 /*
2897  * fsync vnode op. Just call nfs_flush() with commit == 1.
2898  *
2899  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
2900  */
2901 /* ARGSUSED */
2902 static int
2903 nfs_fsync(struct vop_fsync_args *ap)
2904 {
2905 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2906 }
2907 
2908 /*
2909  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2910  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2911  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2912  * set the buffer contains data that has already been written to the server
2913  * and which now needs a commit RPC.
2914  *
2915  * If commit is 0 we only take one pass and only flush buffers containing new
2916  * dirty data.
2917  *
2918  * If commit is 1 we take two passes, issuing a commit RPC in the second
2919  * pass.
2920  *
2921  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2922  * to completely flush all pending data.
2923  *
2924  * Note that the RB_SCAN code properly handles the case where the
2925  * callback might block and directly or indirectly (another thread) cause
2926  * the RB tree to change.
2927  */
2928 
2929 #ifndef NFS_COMMITBVECSIZ
2930 #define NFS_COMMITBVECSIZ	16
2931 #endif
2932 
2933 struct nfs_flush_info {
2934 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2935 	struct thread *td;
2936 	struct vnode *vp;
2937 	int waitfor;
2938 	int slpflag;
2939 	int slptimeo;
2940 	int loops;
2941 	struct buf *bvary[NFS_COMMITBVECSIZ];
2942 	int bvsize;
2943 	off_t beg_off;
2944 	off_t end_off;
2945 };
2946 
2947 static int nfs_flush_bp(struct buf *bp, void *data);
2948 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2949 
2950 int
2951 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2952 {
2953 	struct nfsnode *np = VTONFS(vp);
2954 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2955 	struct nfs_flush_info info;
2956 	int error;
2957 
2958 	bzero(&info, sizeof(info));
2959 	info.td = td;
2960 	info.vp = vp;
2961 	info.waitfor = waitfor;
2962 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2963 	info.loops = 0;
2964 
2965 	do {
2966 		/*
2967 		 * Flush mode
2968 		 */
2969 		info.mode = NFI_FLUSHNEW;
2970 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2971 				nfs_flush_bp, &info);
2972 
2973 		/*
2974 		 * Take a second pass if committing and no error occured.
2975 		 * Clean up any left over collection (whether an error
2976 		 * occurs or not).
2977 		 */
2978 		if (commit && error == 0) {
2979 			info.mode = NFI_COMMIT;
2980 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2981 					nfs_flush_bp, &info);
2982 			if (info.bvsize)
2983 				error = nfs_flush_docommit(&info, error);
2984 		}
2985 
2986 		/*
2987 		 * Wait for pending I/O to complete before checking whether
2988 		 * any further dirty buffers exist.
2989 		 */
2990 		while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
2991 			vp->v_track_write.bk_waitflag = 1;
2992 			error = tsleep(&vp->v_track_write,
2993 				info.slpflag, "nfsfsync", info.slptimeo);
2994 			if (error) {
2995 				/*
2996 				 * We have to be able to break out if this
2997 				 * is an 'intr' mount.
2998 				 */
2999 				if (nfs_sigintr(nmp, NULL, td)) {
3000 					error = -EINTR;
3001 					break;
3002 				}
3003 
3004 				/*
3005 				 * Since we do not process pending signals,
3006 				 * once we get a PCATCH our tsleep() will no
3007 				 * longer sleep, switch to a fixed timeout
3008 				 * instead.
3009 				 */
3010 				if (info.slpflag == PCATCH) {
3011 					info.slpflag = 0;
3012 					info.slptimeo = 2 * hz;
3013 				}
3014 				error = 0;
3015 			}
3016 		}
3017 		++info.loops;
3018 		/*
3019 		 * Loop if we are flushing synchronous as well as committing,
3020 		 * and dirty buffers are still present.  Otherwise we might livelock.
3021 		 */
3022 	} while (waitfor == MNT_WAIT && commit &&
3023 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3024 
3025 	/*
3026 	 * The callbacks have to return a negative error to terminate the
3027 	 * RB scan.
3028 	 */
3029 	if (error < 0)
3030 		error = -error;
3031 
3032 	/*
3033 	 * Deal with any error collection
3034 	 */
3035 	if (np->n_flag & NWRITEERR) {
3036 		error = np->n_error;
3037 		np->n_flag &= ~NWRITEERR;
3038 	}
3039 	return (error);
3040 }
3041 
3042 
3043 static
3044 int
3045 nfs_flush_bp(struct buf *bp, void *data)
3046 {
3047 	struct nfs_flush_info *info = data;
3048 	off_t toff;
3049 	int error;
3050 
3051 	error = 0;
3052 	switch(info->mode) {
3053 	case NFI_FLUSHNEW:
3054 		crit_enter();
3055 		if (info->loops && info->waitfor == MNT_WAIT) {
3056 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3057 			if (error) {
3058 				int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3059 				if (info->slpflag & PCATCH)
3060 					lkflags |= LK_PCATCH;
3061 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3062 						     info->slptimeo);
3063 			}
3064 		} else {
3065 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3066 		}
3067 		if (error == 0) {
3068 			KKASSERT(bp->b_vp == info->vp);
3069 
3070 			if ((bp->b_flags & B_DELWRI) == 0)
3071 				panic("nfs_fsync: not dirty");
3072 			if (bp->b_flags & B_NEEDCOMMIT) {
3073 				BUF_UNLOCK(bp);
3074 				crit_exit();
3075 				break;
3076 			}
3077 			bremfree(bp);
3078 
3079 			crit_exit();
3080 			bawrite(bp);
3081 		} else {
3082 			crit_exit();
3083 			error = 0;
3084 		}
3085 		break;
3086 	case NFI_COMMIT:
3087 		/*
3088 		 * Only process buffers in need of a commit which we can
3089 		 * immediately lock.  This may prevent a buffer from being
3090 		 * committed, but the normal flush loop will block on the
3091 		 * same buffer so we shouldn't get into an endless loop.
3092 		 */
3093 		crit_enter();
3094 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3095 		    (B_DELWRI | B_NEEDCOMMIT) ||
3096 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3097 			crit_exit();
3098 			break;
3099 		}
3100 
3101 		KKASSERT(bp->b_vp == info->vp);
3102 		bremfree(bp);
3103 
3104 		/*
3105 		 * NOTE: storing the bp in the bvary[] basically sets
3106 		 * it up for a commit operation.
3107 		 *
3108 		 * We must call vfs_busy_pages() now so the commit operation
3109 		 * is interlocked with user modifications to memory mapped
3110 		 * pages.
3111 		 *
3112 		 * Note: to avoid loopback deadlocks, we do not
3113 		 * assign b_runningbufspace.
3114 		 */
3115 		bp->b_cmd = BUF_CMD_WRITE;
3116 		vfs_busy_pages(bp->b_vp, bp);
3117 		info->bvary[info->bvsize] = bp;
3118 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3119 		if (info->bvsize == 0 || toff < info->beg_off)
3120 			info->beg_off = toff;
3121 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3122 		if (info->bvsize == 0 || toff > info->end_off)
3123 			info->end_off = toff;
3124 		++info->bvsize;
3125 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3126 			error = nfs_flush_docommit(info, 0);
3127 			KKASSERT(info->bvsize == 0);
3128 		}
3129 		crit_exit();
3130 	}
3131 	return (error);
3132 }
3133 
3134 static
3135 int
3136 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3137 {
3138 	struct vnode *vp;
3139 	struct buf *bp;
3140 	off_t bytes;
3141 	int retv;
3142 	int i;
3143 
3144 	vp = info->vp;
3145 
3146 	if (info->bvsize > 0) {
3147 		/*
3148 		 * Commit data on the server, as required.  Note that
3149 		 * nfs_commit will use the vnode's cred for the commit.
3150 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3151 		 */
3152 		bytes = info->end_off - info->beg_off;
3153 		if (bytes > 0x40000000)
3154 			bytes = 0x40000000;
3155 		if (error) {
3156 			retv = -error;
3157 		} else {
3158 			retv = nfs_commit(vp, info->beg_off,
3159 					    (int)bytes, info->td);
3160 			if (retv == NFSERR_STALEWRITEVERF)
3161 				nfs_clearcommit(vp->v_mount);
3162 		}
3163 
3164 		/*
3165 		 * Now, either mark the blocks I/O done or mark the
3166 		 * blocks dirty, depending on whether the commit
3167 		 * succeeded.
3168 		 */
3169 		for (i = 0; i < info->bvsize; ++i) {
3170 			bp = info->bvary[i];
3171 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3172 			if (retv) {
3173 				/*
3174 				 * Error, leave B_DELWRI intact
3175 				 */
3176 				vfs_unbusy_pages(bp);
3177 				bp->b_cmd = BUF_CMD_DONE;
3178 				brelse(bp);
3179 			} else {
3180 				/*
3181 				 * Success, remove B_DELWRI ( bundirty() ).
3182 				 *
3183 				 * b_dirtyoff/b_dirtyend seem to be NFS
3184 				 * specific.  We should probably move that
3185 				 * into bundirty(). XXX
3186 				 *
3187 				 * We are faking an I/O write, we have to
3188 				 * start the transaction in order to
3189 				 * immediately biodone() it.
3190 				 */
3191 				crit_enter();
3192 				bp->b_flags |= B_ASYNC;
3193 				bundirty(bp);
3194 				bp->b_flags &= ~B_ERROR;
3195 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3196 				crit_exit();
3197 				biodone(&bp->b_bio1);
3198 			}
3199 		}
3200 		info->bvsize = 0;
3201 	}
3202 	return (error);
3203 }
3204 
3205 /*
3206  * NFS advisory byte-level locks.
3207  * Currently unsupported.
3208  *
3209  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3210  *		int a_flags)
3211  */
3212 static int
3213 nfs_advlock(struct vop_advlock_args *ap)
3214 {
3215 	struct nfsnode *np = VTONFS(ap->a_vp);
3216 
3217 	/*
3218 	 * The following kludge is to allow diskless support to work
3219 	 * until a real NFS lockd is implemented. Basically, just pretend
3220 	 * that this is a local lock.
3221 	 */
3222 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3223 }
3224 
3225 /*
3226  * Print out the contents of an nfsnode.
3227  *
3228  * nfs_print(struct vnode *a_vp)
3229  */
3230 static int
3231 nfs_print(struct vop_print_args *ap)
3232 {
3233 	struct vnode *vp = ap->a_vp;
3234 	struct nfsnode *np = VTONFS(vp);
3235 
3236 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3237 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3238 	if (vp->v_type == VFIFO)
3239 		fifo_printinfo(vp);
3240 	kprintf("\n");
3241 	return (0);
3242 }
3243 
3244 /*
3245  * nfs special file access vnode op.
3246  * Essentially just get vattr and then imitate iaccess() since the device is
3247  * local to the client.
3248  *
3249  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3250  */
3251 static int
3252 nfsspec_access(struct vop_access_args *ap)
3253 {
3254 	struct vattr *vap;
3255 	gid_t *gp;
3256 	struct ucred *cred = ap->a_cred;
3257 	struct vnode *vp = ap->a_vp;
3258 	mode_t mode = ap->a_mode;
3259 	struct vattr vattr;
3260 	int i;
3261 	int error;
3262 
3263 	/*
3264 	 * Disallow write attempts on filesystems mounted read-only;
3265 	 * unless the file is a socket, fifo, or a block or character
3266 	 * device resident on the filesystem.
3267 	 */
3268 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3269 		switch (vp->v_type) {
3270 		case VREG:
3271 		case VDIR:
3272 		case VLNK:
3273 			return (EROFS);
3274 		default:
3275 			break;
3276 		}
3277 	}
3278 	/*
3279 	 * If you're the super-user,
3280 	 * you always get access.
3281 	 */
3282 	if (cred->cr_uid == 0)
3283 		return (0);
3284 	vap = &vattr;
3285 	error = VOP_GETATTR(vp, vap);
3286 	if (error)
3287 		return (error);
3288 	/*
3289 	 * Access check is based on only one of owner, group, public.
3290 	 * If not owner, then check group. If not a member of the
3291 	 * group, then check public access.
3292 	 */
3293 	if (cred->cr_uid != vap->va_uid) {
3294 		mode >>= 3;
3295 		gp = cred->cr_groups;
3296 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3297 			if (vap->va_gid == *gp)
3298 				goto found;
3299 		mode >>= 3;
3300 found:
3301 		;
3302 	}
3303 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3304 	return (error);
3305 }
3306 
3307 /*
3308  * Read wrapper for special devices.
3309  *
3310  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3311  *		struct ucred *a_cred)
3312  */
3313 static int
3314 nfsspec_read(struct vop_read_args *ap)
3315 {
3316 	struct nfsnode *np = VTONFS(ap->a_vp);
3317 
3318 	/*
3319 	 * Set access flag.
3320 	 */
3321 	np->n_flag |= NACC;
3322 	getnanotime(&np->n_atim);
3323 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3324 }
3325 
3326 /*
3327  * Write wrapper for special devices.
3328  *
3329  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3330  *		 struct ucred *a_cred)
3331  */
3332 static int
3333 nfsspec_write(struct vop_write_args *ap)
3334 {
3335 	struct nfsnode *np = VTONFS(ap->a_vp);
3336 
3337 	/*
3338 	 * Set update flag.
3339 	 */
3340 	np->n_flag |= NUPD;
3341 	getnanotime(&np->n_mtim);
3342 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3343 }
3344 
3345 /*
3346  * Close wrapper for special devices.
3347  *
3348  * Update the times on the nfsnode then do device close.
3349  *
3350  * nfsspec_close(struct vnode *a_vp, int a_fflag)
3351  */
3352 static int
3353 nfsspec_close(struct vop_close_args *ap)
3354 {
3355 	struct vnode *vp = ap->a_vp;
3356 	struct nfsnode *np = VTONFS(vp);
3357 	struct vattr vattr;
3358 
3359 	if (np->n_flag & (NACC | NUPD)) {
3360 		np->n_flag |= NCHG;
3361 		if (vp->v_sysref.refcnt == 1 &&
3362 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3363 			VATTR_NULL(&vattr);
3364 			if (np->n_flag & NACC)
3365 				vattr.va_atime = np->n_atim;
3366 			if (np->n_flag & NUPD)
3367 				vattr.va_mtime = np->n_mtim;
3368 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3369 		}
3370 	}
3371 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3372 }
3373 
3374 /*
3375  * Read wrapper for fifos.
3376  *
3377  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3378  *		struct ucred *a_cred)
3379  */
3380 static int
3381 nfsfifo_read(struct vop_read_args *ap)
3382 {
3383 	struct nfsnode *np = VTONFS(ap->a_vp);
3384 
3385 	/*
3386 	 * Set access flag.
3387 	 */
3388 	np->n_flag |= NACC;
3389 	getnanotime(&np->n_atim);
3390 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3391 }
3392 
3393 /*
3394  * Write wrapper for fifos.
3395  *
3396  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3397  *		 struct ucred *a_cred)
3398  */
3399 static int
3400 nfsfifo_write(struct vop_write_args *ap)
3401 {
3402 	struct nfsnode *np = VTONFS(ap->a_vp);
3403 
3404 	/*
3405 	 * Set update flag.
3406 	 */
3407 	np->n_flag |= NUPD;
3408 	getnanotime(&np->n_mtim);
3409 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3410 }
3411 
3412 /*
3413  * Close wrapper for fifos.
3414  *
3415  * Update the times on the nfsnode then do fifo close.
3416  *
3417  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3418  */
3419 static int
3420 nfsfifo_close(struct vop_close_args *ap)
3421 {
3422 	struct vnode *vp = ap->a_vp;
3423 	struct nfsnode *np = VTONFS(vp);
3424 	struct vattr vattr;
3425 	struct timespec ts;
3426 
3427 	if (np->n_flag & (NACC | NUPD)) {
3428 		getnanotime(&ts);
3429 		if (np->n_flag & NACC)
3430 			np->n_atim = ts;
3431 		if (np->n_flag & NUPD)
3432 			np->n_mtim = ts;
3433 		np->n_flag |= NCHG;
3434 		if (vp->v_sysref.refcnt == 1 &&
3435 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3436 			VATTR_NULL(&vattr);
3437 			if (np->n_flag & NACC)
3438 				vattr.va_atime = np->n_atim;
3439 			if (np->n_flag & NUPD)
3440 				vattr.va_mtime = np->n_mtim;
3441 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3442 		}
3443 	}
3444 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3445 }
3446 
3447