xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision c97b9141)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsspec_read (struct vop_read_args *);
98 static int	nfsspec_write (struct vop_write_args *);
99 static int	nfsfifo_read (struct vop_read_args *);
100 static int	nfsfifo_write (struct vop_write_args *);
101 static int	nfsspec_close (struct vop_close_args *);
102 static int	nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static	int	nfs_lookup (struct vop_old_lookup_args *);
106 static	int	nfs_create (struct vop_old_create_args *);
107 static	int	nfs_mknod (struct vop_old_mknod_args *);
108 static	int	nfs_open (struct vop_open_args *);
109 static	int	nfs_close (struct vop_close_args *);
110 static	int	nfs_access (struct vop_access_args *);
111 static	int	nfs_getattr (struct vop_getattr_args *);
112 static	int	nfs_setattr (struct vop_setattr_args *);
113 static	int	nfs_read (struct vop_read_args *);
114 static	int	nfs_mmap (struct vop_mmap_args *);
115 static	int	nfs_fsync (struct vop_fsync_args *);
116 static	int	nfs_remove (struct vop_old_remove_args *);
117 static	int	nfs_link (struct vop_old_link_args *);
118 static	int	nfs_rename (struct vop_old_rename_args *);
119 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
120 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
121 static	int	nfs_symlink (struct vop_old_symlink_args *);
122 static	int	nfs_readdir (struct vop_readdir_args *);
123 static	int	nfs_bmap (struct vop_bmap_args *);
124 static	int	nfs_strategy (struct vop_strategy_args *);
125 static	int	nfs_lookitup (struct vnode *, const char *, int,
126 			struct ucred *, struct thread *, struct nfsnode **);
127 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int	nfsspec_access (struct vop_access_args *);
129 static int	nfs_readlink (struct vop_readlink_args *);
130 static int	nfs_print (struct vop_print_args *);
131 static int	nfs_advlock (struct vop_advlock_args *);
132 
133 static	int	nfs_nresolve (struct vop_nresolve_args *);
134 /*
135  * Global vfs data structures for nfs
136  */
137 struct vop_ops nfsv2_vnode_vops = {
138 	.vop_default =		vop_defaultop,
139 	.vop_access =		nfs_access,
140 	.vop_advlock =		nfs_advlock,
141 	.vop_bmap =		nfs_bmap,
142 	.vop_close =		nfs_close,
143 	.vop_old_create =	nfs_create,
144 	.vop_fsync =		nfs_fsync,
145 	.vop_getattr =		nfs_getattr,
146 	.vop_getpages =		nfs_getpages,
147 	.vop_putpages =		nfs_putpages,
148 	.vop_inactive =		nfs_inactive,
149 	.vop_old_link =		nfs_link,
150 	.vop_old_lookup =	nfs_lookup,
151 	.vop_old_mkdir =	nfs_mkdir,
152 	.vop_old_mknod =	nfs_mknod,
153 	.vop_mmap =		nfs_mmap,
154 	.vop_open =		nfs_open,
155 	.vop_poll =		nfs_poll,
156 	.vop_print =		nfs_print,
157 	.vop_read =		nfs_read,
158 	.vop_readdir =		nfs_readdir,
159 	.vop_readlink =		nfs_readlink,
160 	.vop_reclaim =		nfs_reclaim,
161 	.vop_old_remove =	nfs_remove,
162 	.vop_old_rename =	nfs_rename,
163 	.vop_old_rmdir =	nfs_rmdir,
164 	.vop_setattr =		nfs_setattr,
165 	.vop_strategy =		nfs_strategy,
166 	.vop_old_symlink =	nfs_symlink,
167 	.vop_write =		nfs_write,
168 	.vop_nresolve =		nfs_nresolve
169 };
170 
171 /*
172  * Special device vnode ops
173  */
174 struct vop_ops nfsv2_spec_vops = {
175 	.vop_default =		spec_vnoperate,
176 	.vop_access =		nfsspec_access,
177 	.vop_close =		nfsspec_close,
178 	.vop_fsync =		nfs_fsync,
179 	.vop_getattr =		nfs_getattr,
180 	.vop_inactive =		nfs_inactive,
181 	.vop_print =		nfs_print,
182 	.vop_read =		nfsspec_read,
183 	.vop_reclaim =		nfs_reclaim,
184 	.vop_setattr =		nfs_setattr,
185 	.vop_write =		nfsspec_write
186 };
187 
188 struct vop_ops nfsv2_fifo_vops = {
189 	.vop_default =		fifo_vnoperate,
190 	.vop_access =		nfsspec_access,
191 	.vop_close =		nfsfifo_close,
192 	.vop_fsync =		nfs_fsync,
193 	.vop_getattr =		nfs_getattr,
194 	.vop_inactive =		nfs_inactive,
195 	.vop_print =		nfs_print,
196 	.vop_read =		nfsfifo_read,
197 	.vop_reclaim =		nfs_reclaim,
198 	.vop_setattr =		nfs_setattr,
199 	.vop_write =		nfsfifo_write
200 };
201 
202 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
203 				  struct componentname *cnp,
204 				  struct vattr *vap);
205 static int	nfs_removerpc (struct vnode *dvp, const char *name,
206 				   int namelen,
207 				   struct ucred *cred, struct thread *td);
208 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
209 				   int fnamelen, struct vnode *tdvp,
210 				   const char *tnameptr, int tnamelen,
211 				   struct ucred *cred, struct thread *td);
212 static int	nfs_renameit (struct vnode *sdvp,
213 				  struct componentname *scnp,
214 				  struct sillyrename *sp);
215 
216 /*
217  * Global variables
218  */
219 extern u_int32_t nfs_true, nfs_false;
220 extern u_int32_t nfs_xdrneg1;
221 extern struct nfsstats nfsstats;
222 extern nfstype nfsv3_type[9];
223 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
224 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
225 int nfs_numasync = 0;
226 
227 SYSCTL_DECL(_vfs_nfs);
228 
229 static int nfs_flush_on_rename = 1;
230 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
231 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
232 static int nfs_flush_on_hlink = 0;
233 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
234 	   &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
235 
236 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
237 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
238 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
239 
240 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
242 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
243 
244 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
245 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
246 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
247 
248 static int	nfsv3_commit_on_close = 0;
249 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
250 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
251 #if 0
252 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
253 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
254 
255 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
256 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
257 #endif
258 
259 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
260 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
261 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
262 static int
263 nfs3_access_otw(struct vnode *vp, int wmode,
264 		struct thread *td, struct ucred *cred)
265 {
266 	const int v3 = 1;
267 	u_int32_t *tl;
268 	int error = 0, attrflag;
269 
270 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
271 	caddr_t bpos, dpos, cp2;
272 	int32_t t1, t2;
273 	caddr_t cp;
274 	u_int32_t rmode;
275 	struct nfsnode *np = VTONFS(vp);
276 
277 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
278 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
279 	nfsm_fhtom(vp, v3);
280 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
281 	*tl = txdr_unsigned(wmode);
282 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
283 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
284 	if (!error) {
285 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
286 		rmode = fxdr_unsigned(u_int32_t, *tl);
287 		np->n_mode = rmode;
288 		np->n_modeuid = cred->cr_uid;
289 		np->n_modestamp = mycpu->gd_time_seconds;
290 	}
291 	m_freem(mrep);
292 nfsmout:
293 	return error;
294 }
295 
296 /*
297  * nfs access vnode op.
298  * For nfs version 2, just return ok. File accesses may fail later.
299  * For nfs version 3, use the access rpc to check accessibility. If file modes
300  * are changed on the server, accesses might still fail later.
301  *
302  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
303  */
304 static int
305 nfs_access(struct vop_access_args *ap)
306 {
307 	struct vnode *vp = ap->a_vp;
308 	thread_t td = curthread;
309 	int error = 0;
310 	u_int32_t mode, wmode;
311 	int v3 = NFS_ISV3(vp);
312 	struct nfsnode *np = VTONFS(vp);
313 
314 	/*
315 	 * Disallow write attempts on filesystems mounted read-only;
316 	 * unless the file is a socket, fifo, or a block or character
317 	 * device resident on the filesystem.
318 	 */
319 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
320 		switch (vp->v_type) {
321 		case VREG:
322 		case VDIR:
323 		case VLNK:
324 			return (EROFS);
325 		default:
326 			break;
327 		}
328 	}
329 	/*
330 	 * For nfs v3, check to see if we have done this recently, and if
331 	 * so return our cached result instead of making an ACCESS call.
332 	 * If not, do an access rpc, otherwise you are stuck emulating
333 	 * ufs_access() locally using the vattr. This may not be correct,
334 	 * since the server may apply other access criteria such as
335 	 * client uid-->server uid mapping that we do not know about.
336 	 */
337 	if (v3) {
338 		if (ap->a_mode & VREAD)
339 			mode = NFSV3ACCESS_READ;
340 		else
341 			mode = 0;
342 		if (vp->v_type != VDIR) {
343 			if (ap->a_mode & VWRITE)
344 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
345 			if (ap->a_mode & VEXEC)
346 				mode |= NFSV3ACCESS_EXECUTE;
347 		} else {
348 			if (ap->a_mode & VWRITE)
349 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
350 					 NFSV3ACCESS_DELETE);
351 			if (ap->a_mode & VEXEC)
352 				mode |= NFSV3ACCESS_LOOKUP;
353 		}
354 		/* XXX safety belt, only make blanket request if caching */
355 		if (nfsaccess_cache_timeout > 0) {
356 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
357 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
358 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
359 		} else {
360 			wmode = mode;
361 		}
362 
363 		/*
364 		 * Does our cached result allow us to give a definite yes to
365 		 * this request?
366 		 */
367 		if (np->n_modestamp &&
368 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
369 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
370 		   ((np->n_mode & mode) == mode)) {
371 			nfsstats.accesscache_hits++;
372 		} else {
373 			/*
374 			 * Either a no, or a don't know.  Go to the wire.
375 			 */
376 			nfsstats.accesscache_misses++;
377 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
378 			if (!error) {
379 				if ((np->n_mode & mode) != mode) {
380 					error = EACCES;
381 				}
382 			}
383 		}
384 	} else {
385 		if ((error = nfsspec_access(ap)) != 0)
386 			return (error);
387 
388 		/*
389 		 * Attempt to prevent a mapped root from accessing a file
390 		 * which it shouldn't.  We try to read a byte from the file
391 		 * if the user is root and the file is not zero length.
392 		 * After calling nfsspec_access, we should have the correct
393 		 * file size cached.
394 		 */
395 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
396 		    && VTONFS(vp)->n_size > 0) {
397 			struct iovec aiov;
398 			struct uio auio;
399 			char buf[1];
400 
401 			aiov.iov_base = buf;
402 			aiov.iov_len = 1;
403 			auio.uio_iov = &aiov;
404 			auio.uio_iovcnt = 1;
405 			auio.uio_offset = 0;
406 			auio.uio_resid = 1;
407 			auio.uio_segflg = UIO_SYSSPACE;
408 			auio.uio_rw = UIO_READ;
409 			auio.uio_td = td;
410 
411 			if (vp->v_type == VREG) {
412 				error = nfs_readrpc(vp, &auio);
413 			} else if (vp->v_type == VDIR) {
414 				char* bp;
415 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
416 				aiov.iov_base = bp;
417 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
418 				error = nfs_readdirrpc(vp, &auio);
419 				kfree(bp, M_TEMP);
420 			} else if (vp->v_type == VLNK) {
421 				error = nfs_readlinkrpc(vp, &auio);
422 			} else {
423 				error = EACCES;
424 			}
425 		}
426 	}
427 	/*
428 	 * [re]record creds for reading and/or writing if access
429 	 * was granted.  Assume the NFS server will grant read access
430 	 * for execute requests.
431 	 */
432 	if (error == 0) {
433 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
434 			crhold(ap->a_cred);
435 			if (np->n_rucred)
436 				crfree(np->n_rucred);
437 			np->n_rucred = ap->a_cred;
438 		}
439 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
440 			crhold(ap->a_cred);
441 			if (np->n_wucred)
442 				crfree(np->n_wucred);
443 			np->n_wucred = ap->a_cred;
444 		}
445 	}
446 	return(error);
447 }
448 
449 /*
450  * nfs open vnode op
451  * Check to see if the type is ok
452  * and that deletion is not in progress.
453  * For paged in text files, you will need to flush the page cache
454  * if consistency is lost.
455  *
456  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
457  *	    struct file *a_fp)
458  */
459 /* ARGSUSED */
460 static int
461 nfs_open(struct vop_open_args *ap)
462 {
463 	struct vnode *vp = ap->a_vp;
464 	struct nfsnode *np = VTONFS(vp);
465 	struct vattr vattr;
466 	int error;
467 
468 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
469 #ifdef DIAGNOSTIC
470 		kprintf("open eacces vtyp=%d\n",vp->v_type);
471 #endif
472 		return (EOPNOTSUPP);
473 	}
474 
475 	/*
476 	 * Save valid creds for reading and writing for later RPCs.
477 	 */
478 	if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) {
479 		crhold(ap->a_cred);
480 		if (np->n_rucred)
481 			crfree(np->n_rucred);
482 		np->n_rucred = ap->a_cred;
483 	}
484 	if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) {
485 		crhold(ap->a_cred);
486 		if (np->n_wucred)
487 			crfree(np->n_wucred);
488 		np->n_wucred = ap->a_cred;
489 	}
490 
491 	/*
492 	 * Clear the attribute cache only if opening with write access.  It
493 	 * is unclear if we should do this at all here, but we certainly
494 	 * should not clear the cache unconditionally simply because a file
495 	 * is being opened.
496 	 */
497 	if (ap->a_mode & FWRITE)
498 		np->n_attrstamp = 0;
499 
500 	/*
501 	 * For normal NFS, reconcile changes made locally verses
502 	 * changes made remotely.  Note that VOP_GETATTR only goes
503 	 * to the wire if the cached attribute has timed out or been
504 	 * cleared.
505 	 *
506 	 * If local modifications have been made clear the attribute
507 	 * cache to force an attribute and modified time check.  If
508 	 * GETATTR detects that the file has been changed by someone
509 	 * other then us it will set NRMODIFIED.
510 	 *
511 	 * If we are opening a directory and local changes have been
512 	 * made we have to invalidate the cache in order to ensure
513 	 * that we get the most up-to-date information from the
514 	 * server.  XXX
515 	 */
516 	if (np->n_flag & NLMODIFIED) {
517 		np->n_attrstamp = 0;
518 		if (vp->v_type == VDIR) {
519 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
520 			if (error == EINTR)
521 				return (error);
522 			nfs_invaldir(vp);
523 		}
524 	}
525 	error = VOP_GETATTR(vp, &vattr);
526 	if (error)
527 		return (error);
528 	if (np->n_flag & NRMODIFIED) {
529 		if (vp->v_type == VDIR)
530 			nfs_invaldir(vp);
531 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
532 		if (error == EINTR)
533 			return (error);
534 		np->n_flag &= ~NRMODIFIED;
535 	}
536 
537 	return (vop_stdopen(ap));
538 }
539 
540 /*
541  * nfs close vnode op
542  * What an NFS client should do upon close after writing is a debatable issue.
543  * Most NFS clients push delayed writes to the server upon close, basically for
544  * two reasons:
545  * 1 - So that any write errors may be reported back to the client process
546  *     doing the close system call. By far the two most likely errors are
547  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
548  * 2 - To put a worst case upper bound on cache inconsistency between
549  *     multiple clients for the file.
550  * There is also a consistency problem for Version 2 of the protocol w.r.t.
551  * not being able to tell if other clients are writing a file concurrently,
552  * since there is no way of knowing if the changed modify time in the reply
553  * is only due to the write for this client.
554  * (NFS Version 3 provides weak cache consistency data in the reply that
555  *  should be sufficient to detect and handle this case.)
556  *
557  * The current code does the following:
558  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
559  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
560  *                     or commit them (this satisfies 1 and 2 except for the
561  *                     case where the server crashes after this close but
562  *                     before the commit RPC, which is felt to be "good
563  *                     enough". Changing the last argument to nfs_flush() to
564  *                     a 1 would force a commit operation, if it is felt a
565  *                     commit is necessary now.
566  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
567  *                     1 should be dealt with via an fsync() system call for
568  *                     cases where write errors are important.
569  *
570  * nfs_close(struct vnode *a_vp, int a_fflag)
571  */
572 /* ARGSUSED */
573 static int
574 nfs_close(struct vop_close_args *ap)
575 {
576 	struct vnode *vp = ap->a_vp;
577 	struct nfsnode *np = VTONFS(vp);
578 	int error = 0;
579 	thread_t td = curthread;
580 
581 	if (vp->v_type == VREG) {
582 	    if (np->n_flag & NLMODIFIED) {
583 		if (NFS_ISV3(vp)) {
584 		    /*
585 		     * Under NFSv3 we have dirty buffers to dispose of.  We
586 		     * must flush them to the NFS server.  We have the option
587 		     * of waiting all the way through the commit rpc or just
588 		     * waiting for the initial write.  The default is to only
589 		     * wait through the initial write so the data is in the
590 		     * server's cache, which is roughly similar to the state
591 		     * a standard disk subsystem leaves the file in on close().
592 		     *
593 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
594 		     * potential races with other processes, and certainly
595 		     * cannot clear it if we don't commit.
596 		     */
597 		    int cm = nfsv3_commit_on_close ? 1 : 0;
598 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
599 		    /* np->n_flag &= ~NLMODIFIED; */
600 		} else {
601 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
602 		}
603 		np->n_attrstamp = 0;
604 	    }
605 	    if (np->n_flag & NWRITEERR) {
606 		np->n_flag &= ~NWRITEERR;
607 		error = np->n_error;
608 	    }
609 	}
610 	vop_stdclose(ap);
611 	return (error);
612 }
613 
614 /*
615  * nfs getattr call from vfs.
616  *
617  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
618  */
619 static int
620 nfs_getattr(struct vop_getattr_args *ap)
621 {
622 	struct vnode *vp = ap->a_vp;
623 	struct nfsnode *np = VTONFS(vp);
624 	caddr_t cp;
625 	u_int32_t *tl;
626 	int32_t t1, t2;
627 	caddr_t bpos, dpos;
628 	int error = 0;
629 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
630 	int v3 = NFS_ISV3(vp);
631 	thread_t td = curthread;
632 
633 	/*
634 	 * Update local times for special files.
635 	 */
636 	if (np->n_flag & (NACC | NUPD))
637 		np->n_flag |= NCHG;
638 	/*
639 	 * First look in the cache.
640 	 */
641 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
642 		return (0);
643 
644 	if (v3 && nfsaccess_cache_timeout > 0) {
645 		nfsstats.accesscache_misses++;
646 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
647 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
648 			return (0);
649 	}
650 
651 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
652 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
653 	nfsm_fhtom(vp, v3);
654 	nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
655 	if (!error) {
656 		nfsm_loadattr(vp, ap->a_vap);
657 	}
658 	m_freem(mrep);
659 nfsmout:
660 	return (error);
661 }
662 
663 /*
664  * nfs setattr call.
665  *
666  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
667  */
668 static int
669 nfs_setattr(struct vop_setattr_args *ap)
670 {
671 	struct vnode *vp = ap->a_vp;
672 	struct nfsnode *np = VTONFS(vp);
673 	struct vattr *vap = ap->a_vap;
674 	int error = 0;
675 	u_quad_t tsize;
676 	thread_t td = curthread;
677 
678 #ifndef nolint
679 	tsize = (u_quad_t)0;
680 #endif
681 
682 	/*
683 	 * Setting of flags is not supported.
684 	 */
685 	if (vap->va_flags != VNOVAL)
686 		return (EOPNOTSUPP);
687 
688 	/*
689 	 * Disallow write attempts if the filesystem is mounted read-only.
690 	 */
691   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
692 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
693 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
694 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
695 		return (EROFS);
696 
697 	if (vap->va_size != VNOVAL) {
698 		/*
699 		 * truncation requested
700 		 */
701  		switch (vp->v_type) {
702  		case VDIR:
703  			return (EISDIR);
704  		case VCHR:
705  		case VBLK:
706  		case VSOCK:
707  		case VFIFO:
708 			if (vap->va_mtime.tv_sec == VNOVAL &&
709 			    vap->va_atime.tv_sec == VNOVAL &&
710 			    vap->va_mode == (mode_t)VNOVAL &&
711 			    vap->va_uid == (uid_t)VNOVAL &&
712 			    vap->va_gid == (gid_t)VNOVAL)
713 				return (0);
714  			vap->va_size = VNOVAL;
715  			break;
716  		default:
717 			/*
718 			 * Disallow write attempts if the filesystem is
719 			 * mounted read-only.
720 			 */
721 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
722 				return (EROFS);
723 
724 			/*
725 			 * This is nasty.  The RPCs we send to flush pending
726 			 * data often return attribute information which is
727 			 * cached via a callback to nfs_loadattrcache(), which
728 			 * has the effect of changing our notion of the file
729 			 * size.  Due to flushed appends and other operations
730 			 * the file size can be set to virtually anything,
731 			 * including values that do not match either the old
732 			 * or intended file size.
733 			 *
734 			 * When this condition is detected we must loop to
735 			 * try the operation again.  Hopefully no more
736 			 * flushing is required on the loop so it works the
737 			 * second time around.  THIS CASE ALMOST ALWAYS
738 			 * HAPPENS!
739 			 */
740 			tsize = np->n_size;
741 again:
742 			error = nfs_meta_setsize(vp, td, vap->va_size);
743 
744  			if (np->n_flag & NLMODIFIED) {
745  			    if (vap->va_size == 0)
746  				error = nfs_vinvalbuf(vp, 0, 1);
747  			    else
748  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
749  			}
750 			/*
751 			 * note: this loop case almost always happens at
752 			 * least once per truncation.
753 			 */
754 			if (error == 0 && np->n_size != vap->va_size)
755 				goto again;
756 			np->n_vattr.va_size = vap->va_size;
757 			break;
758 		}
759 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
760 		/*
761 		 * What to do.  If we are modifying the mtime we lose
762 		 * mtime detection of changes made by the server or other
763 		 * clients.  But programs like rsync/rdist/cpdup are going
764 		 * to call utimes a lot.  We don't want to piecemeal sync.
765 		 *
766 		 * For now sync if any prior remote changes were detected,
767 		 * but allow us to lose track of remote changes made during
768 		 * the utimes operation.
769 		 */
770 		if (np->n_flag & NRMODIFIED)
771 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
772 		if (error == EINTR)
773 			return (error);
774 		if (error == 0) {
775 			if (vap->va_mtime.tv_sec != VNOVAL) {
776 				np->n_mtime = vap->va_mtime.tv_sec;
777 			}
778 		}
779 	}
780 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
781 
782 	/*
783 	 * Sanity check if a truncation was issued.  This should only occur
784 	 * if multiple processes are racing on the same file.
785 	 */
786 	if (error == 0 && vap->va_size != VNOVAL &&
787 	    np->n_size != vap->va_size) {
788 		kprintf("NFS ftruncate: server disagrees on the file size: "
789 			"%lld/%lld/%lld\n",
790 			(long long)tsize,
791 			(long long)vap->va_size,
792 			(long long)np->n_size);
793 		goto again;
794 	}
795 	if (error && vap->va_size != VNOVAL) {
796 		np->n_size = np->n_vattr.va_size = tsize;
797 		vnode_pager_setsize(vp, np->n_size);
798 	}
799 	return (error);
800 }
801 
802 /*
803  * Do an nfs setattr rpc.
804  */
805 static int
806 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
807 	       struct ucred *cred, struct thread *td)
808 {
809 	struct nfsv2_sattr *sp;
810 	struct nfsnode *np = VTONFS(vp);
811 	caddr_t cp;
812 	int32_t t1, t2;
813 	caddr_t bpos, dpos, cp2;
814 	u_int32_t *tl;
815 	int error = 0, wccflag = NFSV3_WCCRATTR;
816 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
817 	int v3 = NFS_ISV3(vp);
818 
819 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
820 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
821 	nfsm_fhtom(vp, v3);
822 	if (v3) {
823 		nfsm_v3attrbuild(vap, TRUE);
824 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
825 		*tl = nfs_false;
826 	} else {
827 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
828 		if (vap->va_mode == (mode_t)VNOVAL)
829 			sp->sa_mode = nfs_xdrneg1;
830 		else
831 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
832 		if (vap->va_uid == (uid_t)VNOVAL)
833 			sp->sa_uid = nfs_xdrneg1;
834 		else
835 			sp->sa_uid = txdr_unsigned(vap->va_uid);
836 		if (vap->va_gid == (gid_t)VNOVAL)
837 			sp->sa_gid = nfs_xdrneg1;
838 		else
839 			sp->sa_gid = txdr_unsigned(vap->va_gid);
840 		sp->sa_size = txdr_unsigned(vap->va_size);
841 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
842 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
843 	}
844 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
845 	if (v3) {
846 		np->n_modestamp = 0;
847 		nfsm_wcc_data(vp, wccflag);
848 	} else
849 		nfsm_loadattr(vp, NULL);
850 	m_freem(mrep);
851 nfsmout:
852 	return (error);
853 }
854 
855 static
856 void
857 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
858 {
859 	if (nctimeout == 0)
860 		nctimeout = 1;
861 	else
862 		nctimeout *= hz;
863 	cache_setvp(nch, vp);
864 	cache_settimeout(nch, nctimeout);
865 }
866 
867 /*
868  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
869  * nfs_lookup() until all remaining new api calls are implemented.
870  *
871  * Resolve a namecache entry.  This function is passed a locked ncp and
872  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
873  */
874 static int
875 nfs_nresolve(struct vop_nresolve_args *ap)
876 {
877 	struct thread *td = curthread;
878 	struct namecache *ncp;
879 	struct ucred *cred;
880 	struct nfsnode *np;
881 	struct vnode *dvp;
882 	struct vnode *nvp;
883 	nfsfh_t *fhp;
884 	int attrflag;
885 	int fhsize;
886 	int error;
887 	int len;
888 	int v3;
889 	/******NFSM MACROS********/
890 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
891 	caddr_t bpos, dpos, cp, cp2;
892 	u_int32_t *tl;
893 	int32_t t1, t2;
894 
895 	cred = ap->a_cred;
896 	dvp = ap->a_dvp;
897 
898 	if ((error = vget(dvp, LK_SHARED)) != 0)
899 		return (error);
900 
901 	nvp = NULL;
902 	v3 = NFS_ISV3(dvp);
903 	nfsstats.lookupcache_misses++;
904 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
905 	ncp = ap->a_nch->ncp;
906 	len = ncp->nc_nlen;
907 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
908 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
909 	nfsm_fhtom(dvp, v3);
910 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
911 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
912 	if (error) {
913 		/*
914 		 * Cache negatve lookups to reduce NFS traffic, but use
915 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
916 		 * XXX we should add a namecache flag for no-caching
917 		 * to uncache the negative hit as soon as possible, but
918 		 * we cannot simply destroy the entry because it is used
919 		 * as a placeholder by the caller.
920 		 */
921 		if (error == ENOENT)
922 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
923 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
924 		m_freem(mrep);
925 		goto nfsmout;
926 	}
927 
928 	/*
929 	 * Success, get the file handle, do various checks, and load
930 	 * post-operation data from the reply packet.  Theoretically
931 	 * we should never be looking up "." so, theoretically, we
932 	 * should never get the same file handle as our directory.  But
933 	 * we check anyway. XXX
934 	 *
935 	 * Note that no timeout is set for the positive cache hit.  We
936 	 * assume, theoretically, that ESTALE returns will be dealt with
937 	 * properly to handle NFS races and in anycase we cannot depend
938 	 * on a timeout to deal with NFS open/create/excl issues so instead
939 	 * of a bad hack here the rest of the NFS client code needs to do
940 	 * the right thing.
941 	 */
942 	nfsm_getfh(fhp, fhsize, v3);
943 
944 	np = VTONFS(dvp);
945 	if (NFS_CMPFH(np, fhp, fhsize)) {
946 		vref(dvp);
947 		nvp = dvp;
948 	} else {
949 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
950 		if (error) {
951 			m_freem(mrep);
952 			vput(dvp);
953 			return (error);
954 		}
955 		nvp = NFSTOV(np);
956 	}
957 	if (v3) {
958 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
959 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
960 	} else {
961 		nfsm_loadattr(nvp, NULL);
962 	}
963 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
964 	m_freem(mrep);
965 nfsmout:
966 	vput(dvp);
967 	if (nvp) {
968 		if (nvp == dvp)
969 			vrele(nvp);
970 		else
971 			vput(nvp);
972 	}
973 	return (error);
974 }
975 
976 /*
977  * 'cached' nfs directory lookup
978  *
979  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
980  *
981  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
982  *	      struct componentname *a_cnp)
983  */
984 static int
985 nfs_lookup(struct vop_old_lookup_args *ap)
986 {
987 	struct componentname *cnp = ap->a_cnp;
988 	struct vnode *dvp = ap->a_dvp;
989 	struct vnode **vpp = ap->a_vpp;
990 	int flags = cnp->cn_flags;
991 	struct vnode *newvp;
992 	u_int32_t *tl;
993 	caddr_t cp;
994 	int32_t t1, t2;
995 	struct nfsmount *nmp;
996 	caddr_t bpos, dpos, cp2;
997 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
998 	long len;
999 	nfsfh_t *fhp;
1000 	struct nfsnode *np;
1001 	int lockparent, wantparent, error = 0, attrflag, fhsize;
1002 	int v3 = NFS_ISV3(dvp);
1003 
1004 	/*
1005 	 * Read-only mount check and directory check.
1006 	 */
1007 	*vpp = NULLVP;
1008 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1009 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1010 		return (EROFS);
1011 
1012 	if (dvp->v_type != VDIR)
1013 		return (ENOTDIR);
1014 
1015 	/*
1016 	 * Look it up in the cache.  Note that ENOENT is only returned if we
1017 	 * previously entered a negative hit (see later on).  The additional
1018 	 * nfsneg_cache_timeout check causes previously cached results to
1019 	 * be instantly ignored if the negative caching is turned off.
1020 	 */
1021 	lockparent = flags & CNP_LOCKPARENT;
1022 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1023 	nmp = VFSTONFS(dvp->v_mount);
1024 	np = VTONFS(dvp);
1025 
1026 	/*
1027 	 * Go to the wire.
1028 	 */
1029 	error = 0;
1030 	newvp = NULLVP;
1031 	nfsstats.lookupcache_misses++;
1032 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1033 	len = cnp->cn_namelen;
1034 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
1035 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1036 	nfsm_fhtom(dvp, v3);
1037 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1038 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
1039 	if (error) {
1040 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1041 		m_freem(mrep);
1042 		goto nfsmout;
1043 	}
1044 	nfsm_getfh(fhp, fhsize, v3);
1045 
1046 	/*
1047 	 * Handle RENAME case...
1048 	 */
1049 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1050 		if (NFS_CMPFH(np, fhp, fhsize)) {
1051 			m_freem(mrep);
1052 			return (EISDIR);
1053 		}
1054 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1055 		if (error) {
1056 			m_freem(mrep);
1057 			return (error);
1058 		}
1059 		newvp = NFSTOV(np);
1060 		if (v3) {
1061 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1062 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1063 		} else
1064 			nfsm_loadattr(newvp, NULL);
1065 		*vpp = newvp;
1066 		m_freem(mrep);
1067 		if (!lockparent) {
1068 			vn_unlock(dvp);
1069 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1070 		}
1071 		return (0);
1072 	}
1073 
1074 	if (flags & CNP_ISDOTDOT) {
1075 		vn_unlock(dvp);
1076 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1077 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1078 		if (error) {
1079 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1080 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1081 			return (error); /* NOTE: return error from nget */
1082 		}
1083 		newvp = NFSTOV(np);
1084 		if (lockparent) {
1085 			error = vn_lock(dvp, LK_EXCLUSIVE);
1086 			if (error) {
1087 				vput(newvp);
1088 				return (error);
1089 			}
1090 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1091 		}
1092 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1093 		vref(dvp);
1094 		newvp = dvp;
1095 	} else {
1096 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1097 		if (error) {
1098 			m_freem(mrep);
1099 			return (error);
1100 		}
1101 		if (!lockparent) {
1102 			vn_unlock(dvp);
1103 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1104 		}
1105 		newvp = NFSTOV(np);
1106 	}
1107 	if (v3) {
1108 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1109 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1110 	} else
1111 		nfsm_loadattr(newvp, NULL);
1112 #if 0
1113 	/* XXX MOVE TO nfs_nremove() */
1114 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1115 	    cnp->cn_nameiop != NAMEI_DELETE) {
1116 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1117 	}
1118 #endif
1119 	*vpp = newvp;
1120 	m_freem(mrep);
1121 nfsmout:
1122 	if (error) {
1123 		if (newvp != NULLVP) {
1124 			vrele(newvp);
1125 			*vpp = NULLVP;
1126 		}
1127 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1128 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1129 		    error == ENOENT) {
1130 			if (!lockparent) {
1131 				vn_unlock(dvp);
1132 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1133 			}
1134 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1135 				error = EROFS;
1136 			else
1137 				error = EJUSTRETURN;
1138 		}
1139 	}
1140 	return (error);
1141 }
1142 
1143 /*
1144  * nfs read call.
1145  * Just call nfs_bioread() to do the work.
1146  *
1147  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1148  *	    struct ucred *a_cred)
1149  */
1150 static int
1151 nfs_read(struct vop_read_args *ap)
1152 {
1153 	struct vnode *vp = ap->a_vp;
1154 
1155 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1156 }
1157 
1158 /*
1159  * nfs readlink call
1160  *
1161  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1162  */
1163 static int
1164 nfs_readlink(struct vop_readlink_args *ap)
1165 {
1166 	struct vnode *vp = ap->a_vp;
1167 
1168 	if (vp->v_type != VLNK)
1169 		return (EINVAL);
1170 	return (nfs_bioread(vp, ap->a_uio, 0));
1171 }
1172 
1173 /*
1174  * Do a readlink rpc.
1175  * Called by nfs_doio() from below the buffer cache.
1176  */
1177 int
1178 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1179 {
1180 	u_int32_t *tl;
1181 	caddr_t cp;
1182 	int32_t t1, t2;
1183 	caddr_t bpos, dpos, cp2;
1184 	int error = 0, len, attrflag;
1185 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1186 	int v3 = NFS_ISV3(vp);
1187 
1188 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1189 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1190 	nfsm_fhtom(vp, v3);
1191 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1192 	if (v3)
1193 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1194 	if (!error) {
1195 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1196 		if (len == NFS_MAXPATHLEN) {
1197 			struct nfsnode *np = VTONFS(vp);
1198 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1199 				len = np->n_size;
1200 		}
1201 		nfsm_mtouio(uiop, len);
1202 	}
1203 	m_freem(mrep);
1204 nfsmout:
1205 	return (error);
1206 }
1207 
1208 /*
1209  * nfs read rpc call
1210  * Ditto above
1211  */
1212 int
1213 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1214 {
1215 	u_int32_t *tl;
1216 	caddr_t cp;
1217 	int32_t t1, t2;
1218 	caddr_t bpos, dpos, cp2;
1219 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1220 	struct nfsmount *nmp;
1221 	int error = 0, len, retlen, tsiz, eof, attrflag;
1222 	int v3 = NFS_ISV3(vp);
1223 
1224 #ifndef nolint
1225 	eof = 0;
1226 #endif
1227 	nmp = VFSTONFS(vp->v_mount);
1228 	tsiz = uiop->uio_resid;
1229 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1230 		return (EFBIG);
1231 	while (tsiz > 0) {
1232 		nfsstats.rpccnt[NFSPROC_READ]++;
1233 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1234 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1235 		nfsm_fhtom(vp, v3);
1236 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1237 		if (v3) {
1238 			txdr_hyper(uiop->uio_offset, tl);
1239 			*(tl + 2) = txdr_unsigned(len);
1240 		} else {
1241 			*tl++ = txdr_unsigned(uiop->uio_offset);
1242 			*tl++ = txdr_unsigned(len);
1243 			*tl = 0;
1244 		}
1245 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1246 		if (v3) {
1247 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1248 			if (error) {
1249 				m_freem(mrep);
1250 				goto nfsmout;
1251 			}
1252 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1253 			eof = fxdr_unsigned(int, *(tl + 1));
1254 		} else
1255 			nfsm_loadattr(vp, NULL);
1256 		nfsm_strsiz(retlen, nmp->nm_rsize);
1257 		nfsm_mtouio(uiop, retlen);
1258 		m_freem(mrep);
1259 		tsiz -= retlen;
1260 		if (v3) {
1261 			if (eof || retlen == 0) {
1262 				tsiz = 0;
1263 			}
1264 		} else if (retlen < len) {
1265 			tsiz = 0;
1266 		}
1267 	}
1268 nfsmout:
1269 	return (error);
1270 }
1271 
1272 /*
1273  * nfs write call
1274  */
1275 int
1276 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1277 {
1278 	u_int32_t *tl;
1279 	caddr_t cp;
1280 	int32_t t1, t2, backup;
1281 	caddr_t bpos, dpos, cp2;
1282 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1283 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1284 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1285 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1286 
1287 #ifndef DIAGNOSTIC
1288 	if (uiop->uio_iovcnt != 1)
1289 		panic("nfs: writerpc iovcnt > 1");
1290 #endif
1291 	*must_commit = 0;
1292 	tsiz = uiop->uio_resid;
1293 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1294 		return (EFBIG);
1295 	while (tsiz > 0) {
1296 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1297 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1298 		nfsm_reqhead(vp, NFSPROC_WRITE,
1299 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1300 		nfsm_fhtom(vp, v3);
1301 		if (v3) {
1302 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1303 			txdr_hyper(uiop->uio_offset, tl);
1304 			tl += 2;
1305 			*tl++ = txdr_unsigned(len);
1306 			*tl++ = txdr_unsigned(*iomode);
1307 			*tl = txdr_unsigned(len);
1308 		} else {
1309 			u_int32_t x;
1310 
1311 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1312 			/* Set both "begin" and "current" to non-garbage. */
1313 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1314 			*tl++ = x;	/* "begin offset" */
1315 			*tl++ = x;	/* "current offset" */
1316 			x = txdr_unsigned(len);
1317 			*tl++ = x;	/* total to this offset */
1318 			*tl = x;	/* size of this write */
1319 		}
1320 		nfsm_uiotom(uiop, len);
1321 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1322 		if (v3) {
1323 			/*
1324 			 * The write RPC returns a before and after mtime.  The
1325 			 * nfsm_wcc_data() macro checks the before n_mtime
1326 			 * against the before time and stores the after time
1327 			 * in the nfsnode's cached vattr and n_mtime field.
1328 			 * The NRMODIFIED bit will be set if the before
1329 			 * time did not match the original mtime.
1330 			 */
1331 			wccflag = NFSV3_WCCCHK;
1332 			nfsm_wcc_data(vp, wccflag);
1333 			if (!error) {
1334 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1335 					+ NFSX_V3WRITEVERF);
1336 				rlen = fxdr_unsigned(int, *tl++);
1337 				if (rlen == 0) {
1338 					error = NFSERR_IO;
1339 					m_freem(mrep);
1340 					break;
1341 				} else if (rlen < len) {
1342 					backup = len - rlen;
1343 					uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1344 					uiop->uio_iov->iov_len += backup;
1345 					uiop->uio_offset -= backup;
1346 					uiop->uio_resid += backup;
1347 					len = rlen;
1348 				}
1349 				commit = fxdr_unsigned(int, *tl++);
1350 
1351 				/*
1352 				 * Return the lowest committment level
1353 				 * obtained by any of the RPCs.
1354 				 */
1355 				if (committed == NFSV3WRITE_FILESYNC)
1356 					committed = commit;
1357 				else if (committed == NFSV3WRITE_DATASYNC &&
1358 					commit == NFSV3WRITE_UNSTABLE)
1359 					committed = commit;
1360 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1361 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1362 					NFSX_V3WRITEVERF);
1363 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1364 				} else if (bcmp((caddr_t)tl,
1365 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1366 				    *must_commit = 1;
1367 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1368 					NFSX_V3WRITEVERF);
1369 				}
1370 			}
1371 		} else {
1372 			nfsm_loadattr(vp, NULL);
1373 		}
1374 		m_freem(mrep);
1375 		if (error)
1376 			break;
1377 		tsiz -= len;
1378 	}
1379 nfsmout:
1380 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1381 		committed = NFSV3WRITE_FILESYNC;
1382 	*iomode = committed;
1383 	if (error)
1384 		uiop->uio_resid = tsiz;
1385 	return (error);
1386 }
1387 
1388 /*
1389  * nfs mknod rpc
1390  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1391  * mode set to specify the file type and the size field for rdev.
1392  */
1393 static int
1394 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1395 	     struct vattr *vap)
1396 {
1397 	struct nfsv2_sattr *sp;
1398 	u_int32_t *tl;
1399 	caddr_t cp;
1400 	int32_t t1, t2;
1401 	struct vnode *newvp = NULL;
1402 	struct nfsnode *np = NULL;
1403 	struct vattr vattr;
1404 	char *cp2;
1405 	caddr_t bpos, dpos;
1406 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1407 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1408 	int rmajor, rminor;
1409 	int v3 = NFS_ISV3(dvp);
1410 
1411 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1412 		rmajor = txdr_unsigned(vap->va_rmajor);
1413 		rminor = txdr_unsigned(vap->va_rminor);
1414 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1415 		rmajor = nfs_xdrneg1;
1416 		rminor = nfs_xdrneg1;
1417 	} else {
1418 		return (EOPNOTSUPP);
1419 	}
1420 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1421 		return (error);
1422 	}
1423 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1424 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1425 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1426 	nfsm_fhtom(dvp, v3);
1427 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1428 	if (v3) {
1429 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1430 		*tl++ = vtonfsv3_type(vap->va_type);
1431 		nfsm_v3attrbuild(vap, FALSE);
1432 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1433 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1434 			*tl++ = txdr_unsigned(vap->va_rmajor);
1435 			*tl = txdr_unsigned(vap->va_rminor);
1436 		}
1437 	} else {
1438 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1439 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1440 		sp->sa_uid = nfs_xdrneg1;
1441 		sp->sa_gid = nfs_xdrneg1;
1442 		sp->sa_size = makeudev(rmajor, rminor);
1443 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1444 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1445 	}
1446 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1447 	if (!error) {
1448 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1449 		if (!gotvp) {
1450 			if (newvp) {
1451 				vput(newvp);
1452 				newvp = NULL;
1453 			}
1454 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1455 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1456 			if (!error)
1457 				newvp = NFSTOV(np);
1458 		}
1459 	}
1460 	if (v3)
1461 		nfsm_wcc_data(dvp, wccflag);
1462 	m_freem(mrep);
1463 nfsmout:
1464 	if (error) {
1465 		if (newvp)
1466 			vput(newvp);
1467 	} else {
1468 		*vpp = newvp;
1469 	}
1470 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1471 	if (!wccflag)
1472 		VTONFS(dvp)->n_attrstamp = 0;
1473 	return (error);
1474 }
1475 
1476 /*
1477  * nfs mknod vop
1478  * just call nfs_mknodrpc() to do the work.
1479  *
1480  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1481  *	     struct componentname *a_cnp, struct vattr *a_vap)
1482  */
1483 /* ARGSUSED */
1484 static int
1485 nfs_mknod(struct vop_old_mknod_args *ap)
1486 {
1487 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1488 }
1489 
1490 static u_long create_verf;
1491 /*
1492  * nfs file create call
1493  *
1494  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1495  *	      struct componentname *a_cnp, struct vattr *a_vap)
1496  */
1497 static int
1498 nfs_create(struct vop_old_create_args *ap)
1499 {
1500 	struct vnode *dvp = ap->a_dvp;
1501 	struct vattr *vap = ap->a_vap;
1502 	struct componentname *cnp = ap->a_cnp;
1503 	struct nfsv2_sattr *sp;
1504 	u_int32_t *tl;
1505 	caddr_t cp;
1506 	int32_t t1, t2;
1507 	struct nfsnode *np = NULL;
1508 	struct vnode *newvp = NULL;
1509 	caddr_t bpos, dpos, cp2;
1510 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1511 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1512 	struct vattr vattr;
1513 	int v3 = NFS_ISV3(dvp);
1514 
1515 	/*
1516 	 * Oops, not for me..
1517 	 */
1518 	if (vap->va_type == VSOCK)
1519 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1520 
1521 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1522 		return (error);
1523 	}
1524 	if (vap->va_vaflags & VA_EXCLUSIVE)
1525 		fmode |= O_EXCL;
1526 again:
1527 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1528 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1529 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1530 	nfsm_fhtom(dvp, v3);
1531 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1532 	if (v3) {
1533 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1534 		if (fmode & O_EXCL) {
1535 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1536 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1537 #ifdef INET
1538 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1539 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1540 			else
1541 #endif
1542 				*tl++ = create_verf;
1543 			*tl = ++create_verf;
1544 		} else {
1545 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1546 			nfsm_v3attrbuild(vap, FALSE);
1547 		}
1548 	} else {
1549 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1550 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1551 		sp->sa_uid = nfs_xdrneg1;
1552 		sp->sa_gid = nfs_xdrneg1;
1553 		sp->sa_size = 0;
1554 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1555 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1556 	}
1557 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1558 	if (!error) {
1559 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1560 		if (!gotvp) {
1561 			if (newvp) {
1562 				vput(newvp);
1563 				newvp = NULL;
1564 			}
1565 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1566 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1567 			if (!error)
1568 				newvp = NFSTOV(np);
1569 		}
1570 	}
1571 	if (v3)
1572 		nfsm_wcc_data(dvp, wccflag);
1573 	m_freem(mrep);
1574 nfsmout:
1575 	if (error) {
1576 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1577 			KKASSERT(newvp == NULL);
1578 			fmode &= ~O_EXCL;
1579 			goto again;
1580 		}
1581 	} else if (v3 && (fmode & O_EXCL)) {
1582 		/*
1583 		 * We are normally called with only a partially initialized
1584 		 * VAP.  Since the NFSv3 spec says that server may use the
1585 		 * file attributes to store the verifier, the spec requires
1586 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1587 		 * in atime, but we can't really assume that all servers will
1588 		 * so we ensure that our SETATTR sets both atime and mtime.
1589 		 */
1590 		if (vap->va_mtime.tv_sec == VNOVAL)
1591 			vfs_timestamp(&vap->va_mtime);
1592 		if (vap->va_atime.tv_sec == VNOVAL)
1593 			vap->va_atime = vap->va_mtime;
1594 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1595 	}
1596 	if (error == 0) {
1597 		/*
1598 		 * The new np may have enough info for access
1599 		 * checks, make sure rucred and wucred are
1600 		 * initialized for read and write rpc's.
1601 		 */
1602 		np = VTONFS(newvp);
1603 		if (np->n_rucred == NULL)
1604 			np->n_rucred = crhold(cnp->cn_cred);
1605 		if (np->n_wucred == NULL)
1606 			np->n_wucred = crhold(cnp->cn_cred);
1607 		*ap->a_vpp = newvp;
1608 	} else if (newvp) {
1609 		vput(newvp);
1610 	}
1611 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1612 	if (!wccflag)
1613 		VTONFS(dvp)->n_attrstamp = 0;
1614 	return (error);
1615 }
1616 
1617 /*
1618  * nfs file remove call
1619  * To try and make nfs semantics closer to ufs semantics, a file that has
1620  * other processes using the vnode is renamed instead of removed and then
1621  * removed later on the last close.
1622  * - If v_sysref.refcnt > 1
1623  *	  If a rename is not already in the works
1624  *	     call nfs_sillyrename() to set it up
1625  *     else
1626  *	  do the remove rpc
1627  *
1628  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1629  *	      struct componentname *a_cnp)
1630  */
1631 static int
1632 nfs_remove(struct vop_old_remove_args *ap)
1633 {
1634 	struct vnode *vp = ap->a_vp;
1635 	struct vnode *dvp = ap->a_dvp;
1636 	struct componentname *cnp = ap->a_cnp;
1637 	struct nfsnode *np = VTONFS(vp);
1638 	int error = 0;
1639 	struct vattr vattr;
1640 
1641 #ifndef DIAGNOSTIC
1642 	if (vp->v_sysref.refcnt < 1)
1643 		panic("nfs_remove: bad v_sysref.refcnt");
1644 #endif
1645 	if (vp->v_type == VDIR)
1646 		error = EPERM;
1647 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1648 	    VOP_GETATTR(vp, &vattr) == 0 &&
1649 	    vattr.va_nlink > 1)) {
1650 		/*
1651 		 * throw away biocache buffers, mainly to avoid
1652 		 * unnecessary delayed writes later.
1653 		 */
1654 		error = nfs_vinvalbuf(vp, 0, 1);
1655 		/* Do the rpc */
1656 		if (error != EINTR)
1657 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1658 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1659 		/*
1660 		 * Kludge City: If the first reply to the remove rpc is lost..
1661 		 *   the reply to the retransmitted request will be ENOENT
1662 		 *   since the file was in fact removed
1663 		 *   Therefore, we cheat and return success.
1664 		 */
1665 		if (error == ENOENT)
1666 			error = 0;
1667 	} else if (!np->n_sillyrename) {
1668 		error = nfs_sillyrename(dvp, vp, cnp);
1669 	}
1670 	np->n_attrstamp = 0;
1671 	return (error);
1672 }
1673 
1674 /*
1675  * nfs file remove rpc called from nfs_inactive
1676  */
1677 int
1678 nfs_removeit(struct sillyrename *sp)
1679 {
1680 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1681 		sp->s_cred, NULL));
1682 }
1683 
1684 /*
1685  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1686  */
1687 static int
1688 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1689 	      struct ucred *cred, struct thread *td)
1690 {
1691 	u_int32_t *tl;
1692 	caddr_t cp;
1693 	int32_t t1, t2;
1694 	caddr_t bpos, dpos, cp2;
1695 	int error = 0, wccflag = NFSV3_WCCRATTR;
1696 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1697 	int v3 = NFS_ISV3(dvp);
1698 
1699 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1700 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1701 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1702 	nfsm_fhtom(dvp, v3);
1703 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1704 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1705 	if (v3)
1706 		nfsm_wcc_data(dvp, wccflag);
1707 	m_freem(mrep);
1708 nfsmout:
1709 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1710 	if (!wccflag)
1711 		VTONFS(dvp)->n_attrstamp = 0;
1712 	return (error);
1713 }
1714 
1715 /*
1716  * nfs file rename call
1717  *
1718  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1719  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1720  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1721  */
1722 static int
1723 nfs_rename(struct vop_old_rename_args *ap)
1724 {
1725 	struct vnode *fvp = ap->a_fvp;
1726 	struct vnode *tvp = ap->a_tvp;
1727 	struct vnode *fdvp = ap->a_fdvp;
1728 	struct vnode *tdvp = ap->a_tdvp;
1729 	struct componentname *tcnp = ap->a_tcnp;
1730 	struct componentname *fcnp = ap->a_fcnp;
1731 	int error;
1732 
1733 	/* Check for cross-device rename */
1734 	if ((fvp->v_mount != tdvp->v_mount) ||
1735 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1736 		error = EXDEV;
1737 		goto out;
1738 	}
1739 
1740 	/*
1741 	 * We shouldn't have to flush fvp on rename for most server-side
1742 	 * filesystems as the file handle should not change.  Unfortunately
1743 	 * the inode for some filesystems (msdosfs) might be tied to the
1744 	 * file name or directory position so to be completely safe
1745 	 * vfs.nfs.flush_on_rename is set by default.  Clear to improve
1746 	 * performance.
1747 	 *
1748 	 * We must flush tvp on rename because it might become stale on the
1749 	 * server after the rename.
1750 	 */
1751 	if (nfs_flush_on_rename)
1752 	    VOP_FSYNC(fvp, MNT_WAIT);
1753 	if (tvp)
1754 	    VOP_FSYNC(tvp, MNT_WAIT);
1755 
1756 	/*
1757 	 * If the tvp exists and is in use, sillyrename it before doing the
1758 	 * rename of the new file over it.
1759 	 *
1760 	 * XXX Can't sillyrename a directory.
1761 	 *
1762 	 * We do not attempt to do any namecache purges in this old API
1763 	 * routine.  The new API compat functions have access to the actual
1764 	 * namecache structures and will do it for us.
1765 	 */
1766 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1767 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1768 		vput(tvp);
1769 		tvp = NULL;
1770 	} else if (tvp) {
1771 		;
1772 	}
1773 
1774 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1775 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1776 		tcnp->cn_td);
1777 
1778 out:
1779 	if (tdvp == tvp)
1780 		vrele(tdvp);
1781 	else
1782 		vput(tdvp);
1783 	if (tvp)
1784 		vput(tvp);
1785 	vrele(fdvp);
1786 	vrele(fvp);
1787 	/*
1788 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1789 	 */
1790 	if (error == ENOENT)
1791 		error = 0;
1792 	return (error);
1793 }
1794 
1795 /*
1796  * nfs file rename rpc called from nfs_remove() above
1797  */
1798 static int
1799 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1800 	     struct sillyrename *sp)
1801 {
1802 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1803 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1804 }
1805 
1806 /*
1807  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1808  */
1809 static int
1810 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1811 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1812 	      struct ucred *cred, struct thread *td)
1813 {
1814 	u_int32_t *tl;
1815 	caddr_t cp;
1816 	int32_t t1, t2;
1817 	caddr_t bpos, dpos, cp2;
1818 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1819 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1820 	int v3 = NFS_ISV3(fdvp);
1821 
1822 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1823 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1824 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1825 		nfsm_rndup(tnamelen));
1826 	nfsm_fhtom(fdvp, v3);
1827 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1828 	nfsm_fhtom(tdvp, v3);
1829 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1830 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1831 	if (v3) {
1832 		nfsm_wcc_data(fdvp, fwccflag);
1833 		nfsm_wcc_data(tdvp, twccflag);
1834 	}
1835 	m_freem(mrep);
1836 nfsmout:
1837 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1838 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1839 	if (!fwccflag)
1840 		VTONFS(fdvp)->n_attrstamp = 0;
1841 	if (!twccflag)
1842 		VTONFS(tdvp)->n_attrstamp = 0;
1843 	return (error);
1844 }
1845 
1846 /*
1847  * nfs hard link create call
1848  *
1849  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1850  *	    struct componentname *a_cnp)
1851  */
1852 static int
1853 nfs_link(struct vop_old_link_args *ap)
1854 {
1855 	struct vnode *vp = ap->a_vp;
1856 	struct vnode *tdvp = ap->a_tdvp;
1857 	struct componentname *cnp = ap->a_cnp;
1858 	u_int32_t *tl;
1859 	caddr_t cp;
1860 	int32_t t1, t2;
1861 	caddr_t bpos, dpos, cp2;
1862 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1863 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1864 	int v3;
1865 
1866 	if (vp->v_mount != tdvp->v_mount) {
1867 		return (EXDEV);
1868 	}
1869 
1870 	/*
1871 	 * The attribute cache may get out of sync with the server on link.
1872 	 * Pushing writes to the server before handle was inherited from
1873 	 * long long ago and it is unclear if we still need to do this.
1874 	 * Defaults to off.
1875 	 */
1876 	if (nfs_flush_on_hlink)
1877 		VOP_FSYNC(vp, MNT_WAIT);
1878 
1879 	v3 = NFS_ISV3(vp);
1880 	nfsstats.rpccnt[NFSPROC_LINK]++;
1881 	nfsm_reqhead(vp, NFSPROC_LINK,
1882 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1883 	nfsm_fhtom(vp, v3);
1884 	nfsm_fhtom(tdvp, v3);
1885 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1886 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1887 	if (v3) {
1888 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1889 		nfsm_wcc_data(tdvp, wccflag);
1890 	}
1891 	m_freem(mrep);
1892 nfsmout:
1893 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1894 	if (!attrflag)
1895 		VTONFS(vp)->n_attrstamp = 0;
1896 	if (!wccflag)
1897 		VTONFS(tdvp)->n_attrstamp = 0;
1898 	/*
1899 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1900 	 */
1901 	if (error == EEXIST)
1902 		error = 0;
1903 	return (error);
1904 }
1905 
1906 /*
1907  * nfs symbolic link create call
1908  *
1909  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1910  *		struct componentname *a_cnp, struct vattr *a_vap,
1911  *		char *a_target)
1912  */
1913 static int
1914 nfs_symlink(struct vop_old_symlink_args *ap)
1915 {
1916 	struct vnode *dvp = ap->a_dvp;
1917 	struct vattr *vap = ap->a_vap;
1918 	struct componentname *cnp = ap->a_cnp;
1919 	struct nfsv2_sattr *sp;
1920 	u_int32_t *tl;
1921 	caddr_t cp;
1922 	int32_t t1, t2;
1923 	caddr_t bpos, dpos, cp2;
1924 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1925 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1926 	struct vnode *newvp = NULL;
1927 	int v3 = NFS_ISV3(dvp);
1928 
1929 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1930 	slen = strlen(ap->a_target);
1931 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1932 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1933 	nfsm_fhtom(dvp, v3);
1934 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1935 	if (v3) {
1936 		nfsm_v3attrbuild(vap, FALSE);
1937 	}
1938 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1939 	if (!v3) {
1940 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1941 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1942 		sp->sa_uid = nfs_xdrneg1;
1943 		sp->sa_gid = nfs_xdrneg1;
1944 		sp->sa_size = nfs_xdrneg1;
1945 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1946 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1947 	}
1948 
1949 	/*
1950 	 * Issue the NFS request and get the rpc response.
1951 	 *
1952 	 * Only NFSv3 responses returning an error of 0 actually return
1953 	 * a file handle that can be converted into newvp without having
1954 	 * to do an extra lookup rpc.
1955 	 */
1956 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1957 	if (v3) {
1958 		if (error == 0)
1959 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1960 		nfsm_wcc_data(dvp, wccflag);
1961 	}
1962 
1963 	/*
1964 	 * out code jumps -> here, mrep is also freed.
1965 	 */
1966 
1967 	m_freem(mrep);
1968 nfsmout:
1969 
1970 	/*
1971 	 * If we get an EEXIST error, silently convert it to no-error
1972 	 * in case of an NFS retry.
1973 	 */
1974 	if (error == EEXIST)
1975 		error = 0;
1976 
1977 	/*
1978 	 * If we do not have (or no longer have) an error, and we could
1979 	 * not extract the newvp from the response due to the request being
1980 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1981 	 * to obtain a newvp to return.
1982 	 */
1983 	if (error == 0 && newvp == NULL) {
1984 		struct nfsnode *np = NULL;
1985 
1986 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1987 		    cnp->cn_cred, cnp->cn_td, &np);
1988 		if (!error)
1989 			newvp = NFSTOV(np);
1990 	}
1991 	if (error) {
1992 		if (newvp)
1993 			vput(newvp);
1994 	} else {
1995 		*ap->a_vpp = newvp;
1996 	}
1997 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1998 	if (!wccflag)
1999 		VTONFS(dvp)->n_attrstamp = 0;
2000 	return (error);
2001 }
2002 
2003 /*
2004  * nfs make dir call
2005  *
2006  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2007  *	     struct componentname *a_cnp, struct vattr *a_vap)
2008  */
2009 static int
2010 nfs_mkdir(struct vop_old_mkdir_args *ap)
2011 {
2012 	struct vnode *dvp = ap->a_dvp;
2013 	struct vattr *vap = ap->a_vap;
2014 	struct componentname *cnp = ap->a_cnp;
2015 	struct nfsv2_sattr *sp;
2016 	u_int32_t *tl;
2017 	caddr_t cp;
2018 	int32_t t1, t2;
2019 	int len;
2020 	struct nfsnode *np = NULL;
2021 	struct vnode *newvp = NULL;
2022 	caddr_t bpos, dpos, cp2;
2023 	int error = 0, wccflag = NFSV3_WCCRATTR;
2024 	int gotvp = 0;
2025 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2026 	struct vattr vattr;
2027 	int v3 = NFS_ISV3(dvp);
2028 
2029 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2030 		return (error);
2031 	}
2032 	len = cnp->cn_namelen;
2033 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2034 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
2035 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
2036 	nfsm_fhtom(dvp, v3);
2037 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
2038 	if (v3) {
2039 		nfsm_v3attrbuild(vap, FALSE);
2040 	} else {
2041 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2042 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2043 		sp->sa_uid = nfs_xdrneg1;
2044 		sp->sa_gid = nfs_xdrneg1;
2045 		sp->sa_size = nfs_xdrneg1;
2046 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2047 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2048 	}
2049 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2050 	if (!error)
2051 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2052 	if (v3)
2053 		nfsm_wcc_data(dvp, wccflag);
2054 	m_freem(mrep);
2055 nfsmout:
2056 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2057 	if (!wccflag)
2058 		VTONFS(dvp)->n_attrstamp = 0;
2059 	/*
2060 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2061 	 * if we can succeed in looking up the directory.
2062 	 */
2063 	if (error == EEXIST || (!error && !gotvp)) {
2064 		if (newvp) {
2065 			vrele(newvp);
2066 			newvp = NULL;
2067 		}
2068 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2069 			cnp->cn_td, &np);
2070 		if (!error) {
2071 			newvp = NFSTOV(np);
2072 			if (newvp->v_type != VDIR)
2073 				error = EEXIST;
2074 		}
2075 	}
2076 	if (error) {
2077 		if (newvp)
2078 			vrele(newvp);
2079 	} else
2080 		*ap->a_vpp = newvp;
2081 	return (error);
2082 }
2083 
2084 /*
2085  * nfs remove directory call
2086  *
2087  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2088  *	     struct componentname *a_cnp)
2089  */
2090 static int
2091 nfs_rmdir(struct vop_old_rmdir_args *ap)
2092 {
2093 	struct vnode *vp = ap->a_vp;
2094 	struct vnode *dvp = ap->a_dvp;
2095 	struct componentname *cnp = ap->a_cnp;
2096 	u_int32_t *tl;
2097 	caddr_t cp;
2098 	int32_t t1, t2;
2099 	caddr_t bpos, dpos, cp2;
2100 	int error = 0, wccflag = NFSV3_WCCRATTR;
2101 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2102 	int v3 = NFS_ISV3(dvp);
2103 
2104 	if (dvp == vp)
2105 		return (EINVAL);
2106 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2107 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2108 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2109 	nfsm_fhtom(dvp, v3);
2110 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2111 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2112 	if (v3)
2113 		nfsm_wcc_data(dvp, wccflag);
2114 	m_freem(mrep);
2115 nfsmout:
2116 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2117 	if (!wccflag)
2118 		VTONFS(dvp)->n_attrstamp = 0;
2119 	/*
2120 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2121 	 */
2122 	if (error == ENOENT)
2123 		error = 0;
2124 	return (error);
2125 }
2126 
2127 /*
2128  * nfs readdir call
2129  *
2130  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2131  */
2132 static int
2133 nfs_readdir(struct vop_readdir_args *ap)
2134 {
2135 	struct vnode *vp = ap->a_vp;
2136 	struct nfsnode *np = VTONFS(vp);
2137 	struct uio *uio = ap->a_uio;
2138 	int tresid, error;
2139 	struct vattr vattr;
2140 
2141 	if (vp->v_type != VDIR)
2142 		return (EPERM);
2143 
2144 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2145 		return (error);
2146 
2147 	/*
2148 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2149 	 * and then check that is still valid, or if this is an NQNFS mount
2150 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2151 	 * VOP_GETATTR() does not necessarily go to the wire.
2152 	 */
2153 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2154 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2155 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2156 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2157 		) {
2158 			nfsstats.direofcache_hits++;
2159 			goto done;
2160 		}
2161 	}
2162 
2163 	/*
2164 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2165 	 * own cache coherency checks so we do not have to.
2166 	 */
2167 	tresid = uio->uio_resid;
2168 	error = nfs_bioread(vp, uio, 0);
2169 
2170 	if (!error && uio->uio_resid == tresid)
2171 		nfsstats.direofcache_misses++;
2172 done:
2173 	vn_unlock(vp);
2174 	return (error);
2175 }
2176 
2177 /*
2178  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2179  *
2180  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2181  * offset/block and converts the nfs formatted directory entries for userland
2182  * consumption as well as deals with offsets into the middle of blocks.
2183  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2184  * be block-bounded.  It must convert to cookies for the actual RPC.
2185  */
2186 int
2187 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2188 {
2189 	int len, left;
2190 	struct nfs_dirent *dp = NULL;
2191 	u_int32_t *tl;
2192 	caddr_t cp;
2193 	int32_t t1, t2;
2194 	nfsuint64 *cookiep;
2195 	caddr_t bpos, dpos, cp2;
2196 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2197 	nfsuint64 cookie;
2198 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2199 	struct nfsnode *dnp = VTONFS(vp);
2200 	u_quad_t fileno;
2201 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2202 	int attrflag;
2203 	int v3 = NFS_ISV3(vp);
2204 
2205 #ifndef DIAGNOSTIC
2206 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2207 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2208 		panic("nfs readdirrpc bad uio");
2209 #endif
2210 
2211 	/*
2212 	 * If there is no cookie, assume directory was stale.
2213 	 */
2214 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2215 	if (cookiep)
2216 		cookie = *cookiep;
2217 	else
2218 		return (NFSERR_BAD_COOKIE);
2219 	/*
2220 	 * Loop around doing readdir rpc's of size nm_readdirsize
2221 	 * truncated to a multiple of DIRBLKSIZ.
2222 	 * The stopping criteria is EOF or buffer full.
2223 	 */
2224 	while (more_dirs && bigenough) {
2225 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2226 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2227 			NFSX_READDIR(v3));
2228 		nfsm_fhtom(vp, v3);
2229 		if (v3) {
2230 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2231 			*tl++ = cookie.nfsuquad[0];
2232 			*tl++ = cookie.nfsuquad[1];
2233 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2234 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2235 		} else {
2236 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2237 			*tl++ = cookie.nfsuquad[0];
2238 		}
2239 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2240 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2241 		if (v3) {
2242 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2243 			if (!error) {
2244 				nfsm_dissect(tl, u_int32_t *,
2245 				    2 * NFSX_UNSIGNED);
2246 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2247 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2248 			} else {
2249 				m_freem(mrep);
2250 				goto nfsmout;
2251 			}
2252 		}
2253 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2254 		more_dirs = fxdr_unsigned(int, *tl);
2255 
2256 		/* loop thru the dir entries, converting them to std form */
2257 		while (more_dirs && bigenough) {
2258 			if (v3) {
2259 				nfsm_dissect(tl, u_int32_t *,
2260 				    3 * NFSX_UNSIGNED);
2261 				fileno = fxdr_hyper(tl);
2262 				len = fxdr_unsigned(int, *(tl + 2));
2263 			} else {
2264 				nfsm_dissect(tl, u_int32_t *,
2265 				    2 * NFSX_UNSIGNED);
2266 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2267 				len = fxdr_unsigned(int, *tl);
2268 			}
2269 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2270 				error = EBADRPC;
2271 				m_freem(mrep);
2272 				goto nfsmout;
2273 			}
2274 
2275 			/*
2276 			 * len is the number of bytes in the path element
2277 			 * name, not including the \0 termination.
2278 			 *
2279 			 * tlen is the number of bytes w have to reserve for
2280 			 * the path element name.
2281 			 */
2282 			tlen = nfsm_rndup(len);
2283 			if (tlen == len)
2284 				tlen += 4;	/* To ensure null termination */
2285 
2286 			/*
2287 			 * If the entry would cross a DIRBLKSIZ boundary,
2288 			 * extend the previous nfs_dirent to cover the
2289 			 * remaining space.
2290 			 */
2291 			left = DIRBLKSIZ - blksiz;
2292 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2293 				dp->nfs_reclen += left;
2294 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2295 				uiop->uio_iov->iov_len -= left;
2296 				uiop->uio_offset += left;
2297 				uiop->uio_resid -= left;
2298 				blksiz = 0;
2299 			}
2300 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2301 				bigenough = 0;
2302 			if (bigenough) {
2303 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2304 				dp->nfs_ino = fileno;
2305 				dp->nfs_namlen = len;
2306 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2307 				dp->nfs_type = DT_UNKNOWN;
2308 				blksiz += dp->nfs_reclen;
2309 				if (blksiz == DIRBLKSIZ)
2310 					blksiz = 0;
2311 				uiop->uio_offset += sizeof(struct nfs_dirent);
2312 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2313 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2314 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2315 				nfsm_mtouio(uiop, len);
2316 
2317 				/*
2318 				 * The uiop has advanced by nfs_dirent + len
2319 				 * but really needs to advance by
2320 				 * nfs_dirent + tlen
2321 				 */
2322 				cp = uiop->uio_iov->iov_base;
2323 				tlen -= len;
2324 				*cp = '\0';	/* null terminate */
2325 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2326 				uiop->uio_iov->iov_len -= tlen;
2327 				uiop->uio_offset += tlen;
2328 				uiop->uio_resid -= tlen;
2329 			} else {
2330 				/*
2331 				 * NFS strings must be rounded up (nfsm_myouio
2332 				 * handled that in the bigenough case).
2333 				 */
2334 				nfsm_adv(nfsm_rndup(len));
2335 			}
2336 			if (v3) {
2337 				nfsm_dissect(tl, u_int32_t *,
2338 				    3 * NFSX_UNSIGNED);
2339 			} else {
2340 				nfsm_dissect(tl, u_int32_t *,
2341 				    2 * NFSX_UNSIGNED);
2342 			}
2343 
2344 			/*
2345 			 * If we were able to accomodate the last entry,
2346 			 * get the cookie for the next one.  Otherwise
2347 			 * hold-over the cookie for the one we were not
2348 			 * able to accomodate.
2349 			 */
2350 			if (bigenough) {
2351 				cookie.nfsuquad[0] = *tl++;
2352 				if (v3)
2353 					cookie.nfsuquad[1] = *tl++;
2354 			} else if (v3) {
2355 				tl += 2;
2356 			} else {
2357 				tl++;
2358 			}
2359 			more_dirs = fxdr_unsigned(int, *tl);
2360 		}
2361 		/*
2362 		 * If at end of rpc data, get the eof boolean
2363 		 */
2364 		if (!more_dirs) {
2365 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2366 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2367 		}
2368 		m_freem(mrep);
2369 	}
2370 	/*
2371 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2372 	 * by increasing d_reclen for the last record.
2373 	 */
2374 	if (blksiz > 0) {
2375 		left = DIRBLKSIZ - blksiz;
2376 		dp->nfs_reclen += left;
2377 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2378 		uiop->uio_iov->iov_len -= left;
2379 		uiop->uio_offset += left;
2380 		uiop->uio_resid -= left;
2381 	}
2382 
2383 	if (bigenough) {
2384 		/*
2385 		 * We hit the end of the directory, update direofoffset.
2386 		 */
2387 		dnp->n_direofoffset = uiop->uio_offset;
2388 	} else {
2389 		/*
2390 		 * There is more to go, insert the link cookie so the
2391 		 * next block can be read.
2392 		 */
2393 		if (uiop->uio_resid > 0)
2394 			kprintf("EEK! readdirrpc resid > 0\n");
2395 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2396 		*cookiep = cookie;
2397 	}
2398 nfsmout:
2399 	return (error);
2400 }
2401 
2402 /*
2403  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2404  */
2405 int
2406 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2407 {
2408 	int len, left;
2409 	struct nfs_dirent *dp;
2410 	u_int32_t *tl;
2411 	caddr_t cp;
2412 	int32_t t1, t2;
2413 	struct vnode *newvp;
2414 	nfsuint64 *cookiep;
2415 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2416 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2417 	nfsuint64 cookie;
2418 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2419 	struct nfsnode *dnp = VTONFS(vp), *np;
2420 	nfsfh_t *fhp;
2421 	u_quad_t fileno;
2422 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2423 	int attrflag, fhsize;
2424 	struct nchandle nch;
2425 	struct nchandle dnch;
2426 	struct nlcomponent nlc;
2427 
2428 #ifndef nolint
2429 	dp = NULL;
2430 #endif
2431 #ifndef DIAGNOSTIC
2432 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2433 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2434 		panic("nfs readdirplusrpc bad uio");
2435 #endif
2436 	/*
2437 	 * Obtain the namecache record for the directory so we have something
2438 	 * to use as a basis for creating the entries.  This function will
2439 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2440 	 * from the tree and cannot be used for upward traversals, and the
2441 	 * ncp may be unnamed.  Note that other unrelated operations may
2442 	 * cause the ncp to be named at any time.
2443 	 */
2444 	cache_fromdvp(vp, NULL, 0, &dnch);
2445 	bzero(&nlc, sizeof(nlc));
2446 	newvp = NULLVP;
2447 
2448 	/*
2449 	 * If there is no cookie, assume directory was stale.
2450 	 */
2451 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2452 	if (cookiep)
2453 		cookie = *cookiep;
2454 	else
2455 		return (NFSERR_BAD_COOKIE);
2456 	/*
2457 	 * Loop around doing readdir rpc's of size nm_readdirsize
2458 	 * truncated to a multiple of DIRBLKSIZ.
2459 	 * The stopping criteria is EOF or buffer full.
2460 	 */
2461 	while (more_dirs && bigenough) {
2462 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2463 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2464 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2465 		nfsm_fhtom(vp, 1);
2466  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2467 		*tl++ = cookie.nfsuquad[0];
2468 		*tl++ = cookie.nfsuquad[1];
2469 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2470 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2471 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2472 		*tl = txdr_unsigned(nmp->nm_rsize);
2473 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2474 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2475 		if (error) {
2476 			m_freem(mrep);
2477 			goto nfsmout;
2478 		}
2479 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2480 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2481 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2482 		more_dirs = fxdr_unsigned(int, *tl);
2483 
2484 		/* loop thru the dir entries, doctoring them to 4bsd form */
2485 		while (more_dirs && bigenough) {
2486 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2487 			fileno = fxdr_hyper(tl);
2488 			len = fxdr_unsigned(int, *(tl + 2));
2489 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2490 				error = EBADRPC;
2491 				m_freem(mrep);
2492 				goto nfsmout;
2493 			}
2494 			tlen = nfsm_rndup(len);
2495 			if (tlen == len)
2496 				tlen += 4;	/* To ensure null termination*/
2497 			left = DIRBLKSIZ - blksiz;
2498 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2499 				dp->nfs_reclen += left;
2500 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2501 				uiop->uio_iov->iov_len -= left;
2502 				uiop->uio_offset += left;
2503 				uiop->uio_resid -= left;
2504 				blksiz = 0;
2505 			}
2506 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2507 				bigenough = 0;
2508 			if (bigenough) {
2509 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2510 				dp->nfs_ino = fileno;
2511 				dp->nfs_namlen = len;
2512 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2513 				dp->nfs_type = DT_UNKNOWN;
2514 				blksiz += dp->nfs_reclen;
2515 				if (blksiz == DIRBLKSIZ)
2516 					blksiz = 0;
2517 				uiop->uio_offset += sizeof(struct nfs_dirent);
2518 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2519 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2520 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2521 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2522 				nlc.nlc_namelen = len;
2523 				nfsm_mtouio(uiop, len);
2524 				cp = uiop->uio_iov->iov_base;
2525 				tlen -= len;
2526 				*cp = '\0';
2527 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2528 				uiop->uio_iov->iov_len -= tlen;
2529 				uiop->uio_offset += tlen;
2530 				uiop->uio_resid -= tlen;
2531 			} else
2532 				nfsm_adv(nfsm_rndup(len));
2533 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2534 			if (bigenough) {
2535 				cookie.nfsuquad[0] = *tl++;
2536 				cookie.nfsuquad[1] = *tl++;
2537 			} else
2538 				tl += 2;
2539 
2540 			/*
2541 			 * Since the attributes are before the file handle
2542 			 * (sigh), we must skip over the attributes and then
2543 			 * come back and get them.
2544 			 */
2545 			attrflag = fxdr_unsigned(int, *tl);
2546 			if (attrflag) {
2547 			    dpossav1 = dpos;
2548 			    mdsav1 = md;
2549 			    nfsm_adv(NFSX_V3FATTR);
2550 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2551 			    doit = fxdr_unsigned(int, *tl);
2552 			    if (doit) {
2553 				nfsm_getfh(fhp, fhsize, 1);
2554 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2555 				    vref(vp);
2556 				    newvp = vp;
2557 				    np = dnp;
2558 				} else {
2559 				    error = nfs_nget(vp->v_mount, fhp,
2560 					fhsize, &np);
2561 				    if (error)
2562 					doit = 0;
2563 				    else
2564 					newvp = NFSTOV(np);
2565 				}
2566 			    }
2567 			    if (doit && bigenough) {
2568 				dpossav2 = dpos;
2569 				dpos = dpossav1;
2570 				mdsav2 = md;
2571 				md = mdsav1;
2572 				nfsm_loadattr(newvp, NULL);
2573 				dpos = dpossav2;
2574 				md = mdsav2;
2575 				dp->nfs_type =
2576 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2577 				if (dnch.ncp) {
2578 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2579 					nlc.nlc_namelen, nlc.nlc_namelen,
2580 					nlc.nlc_nameptr);
2581 				    nch = cache_nlookup(&dnch, &nlc);
2582 				    cache_setunresolved(&nch);
2583 				    nfs_cache_setvp(&nch, newvp,
2584 						    nfspos_cache_timeout);
2585 				    cache_put(&nch);
2586 				} else {
2587 				    kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2588 					" %*.*s\n",
2589 					nlc.nlc_namelen, nlc.nlc_namelen,
2590 					nlc.nlc_nameptr);
2591 				}
2592 			    }
2593 			} else {
2594 			    /* Just skip over the file handle */
2595 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2596 			    i = fxdr_unsigned(int, *tl);
2597 			    nfsm_adv(nfsm_rndup(i));
2598 			}
2599 			if (newvp != NULLVP) {
2600 			    if (newvp == vp)
2601 				vrele(newvp);
2602 			    else
2603 				vput(newvp);
2604 			    newvp = NULLVP;
2605 			}
2606 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2607 			more_dirs = fxdr_unsigned(int, *tl);
2608 		}
2609 		/*
2610 		 * If at end of rpc data, get the eof boolean
2611 		 */
2612 		if (!more_dirs) {
2613 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2614 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2615 		}
2616 		m_freem(mrep);
2617 	}
2618 	/*
2619 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2620 	 * by increasing d_reclen for the last record.
2621 	 */
2622 	if (blksiz > 0) {
2623 		left = DIRBLKSIZ - blksiz;
2624 		dp->nfs_reclen += left;
2625 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2626 		uiop->uio_iov->iov_len -= left;
2627 		uiop->uio_offset += left;
2628 		uiop->uio_resid -= left;
2629 	}
2630 
2631 	/*
2632 	 * We are now either at the end of the directory or have filled the
2633 	 * block.
2634 	 */
2635 	if (bigenough)
2636 		dnp->n_direofoffset = uiop->uio_offset;
2637 	else {
2638 		if (uiop->uio_resid > 0)
2639 			kprintf("EEK! readdirplusrpc resid > 0\n");
2640 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2641 		*cookiep = cookie;
2642 	}
2643 nfsmout:
2644 	if (newvp != NULLVP) {
2645 	        if (newvp == vp)
2646 			vrele(newvp);
2647 		else
2648 			vput(newvp);
2649 		newvp = NULLVP;
2650 	}
2651 	if (dnch.ncp)
2652 		cache_drop(&dnch);
2653 	return (error);
2654 }
2655 
2656 /*
2657  * Silly rename. To make the NFS filesystem that is stateless look a little
2658  * more like the "ufs" a remove of an active vnode is translated to a rename
2659  * to a funny looking filename that is removed by nfs_inactive on the
2660  * nfsnode. There is the potential for another process on a different client
2661  * to create the same funny name between the nfs_lookitup() fails and the
2662  * nfs_rename() completes, but...
2663  */
2664 static int
2665 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2666 {
2667 	struct sillyrename *sp;
2668 	struct nfsnode *np;
2669 	int error;
2670 
2671 	/*
2672 	 * We previously purged dvp instead of vp.  I don't know why, it
2673 	 * completely destroys performance.  We can't do it anyway with the
2674 	 * new VFS API since we would be breaking the namecache topology.
2675 	 */
2676 	cache_purge(vp);	/* XXX */
2677 	np = VTONFS(vp);
2678 #ifndef DIAGNOSTIC
2679 	if (vp->v_type == VDIR)
2680 		panic("nfs: sillyrename dir");
2681 #endif
2682 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2683 		M_NFSREQ, M_WAITOK);
2684 	sp->s_cred = crdup(cnp->cn_cred);
2685 	sp->s_dvp = dvp;
2686 	vref(dvp);
2687 
2688 	/* Fudge together a funny name */
2689 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4",
2690 				(int)(intptr_t)cnp->cn_td);
2691 
2692 	/* Try lookitups until we get one that isn't there */
2693 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2694 		cnp->cn_td, NULL) == 0) {
2695 		sp->s_name[4]++;
2696 		if (sp->s_name[4] > 'z') {
2697 			error = EINVAL;
2698 			goto bad;
2699 		}
2700 	}
2701 	error = nfs_renameit(dvp, cnp, sp);
2702 	if (error)
2703 		goto bad;
2704 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2705 		cnp->cn_td, &np);
2706 	np->n_sillyrename = sp;
2707 	return (0);
2708 bad:
2709 	vrele(sp->s_dvp);
2710 	crfree(sp->s_cred);
2711 	kfree((caddr_t)sp, M_NFSREQ);
2712 	return (error);
2713 }
2714 
2715 /*
2716  * Look up a file name and optionally either update the file handle or
2717  * allocate an nfsnode, depending on the value of npp.
2718  * npp == NULL	--> just do the lookup
2719  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2720  *			handled too
2721  * *npp != NULL --> update the file handle in the vnode
2722  */
2723 static int
2724 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2725 	     struct thread *td, struct nfsnode **npp)
2726 {
2727 	u_int32_t *tl;
2728 	caddr_t cp;
2729 	int32_t t1, t2;
2730 	struct vnode *newvp = NULL;
2731 	struct nfsnode *np, *dnp = VTONFS(dvp);
2732 	caddr_t bpos, dpos, cp2;
2733 	int error = 0, fhlen, attrflag;
2734 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2735 	nfsfh_t *nfhp;
2736 	int v3 = NFS_ISV3(dvp);
2737 
2738 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2739 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2740 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2741 	nfsm_fhtom(dvp, v3);
2742 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2743 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2744 	if (npp && !error) {
2745 		nfsm_getfh(nfhp, fhlen, v3);
2746 		if (*npp) {
2747 		    np = *npp;
2748 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2749 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2750 			np->n_fhp = &np->n_fh;
2751 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2752 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2753 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2754 		    np->n_fhsize = fhlen;
2755 		    newvp = NFSTOV(np);
2756 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2757 		    vref(dvp);
2758 		    newvp = dvp;
2759 		} else {
2760 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2761 		    if (error) {
2762 			m_freem(mrep);
2763 			return (error);
2764 		    }
2765 		    newvp = NFSTOV(np);
2766 		}
2767 		if (v3) {
2768 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2769 			if (!attrflag && *npp == NULL) {
2770 				m_freem(mrep);
2771 				if (newvp == dvp)
2772 					vrele(newvp);
2773 				else
2774 					vput(newvp);
2775 				return (ENOENT);
2776 			}
2777 		} else
2778 			nfsm_loadattr(newvp, NULL);
2779 	}
2780 	m_freem(mrep);
2781 nfsmout:
2782 	if (npp && *npp == NULL) {
2783 		if (error) {
2784 			if (newvp) {
2785 				if (newvp == dvp)
2786 					vrele(newvp);
2787 				else
2788 					vput(newvp);
2789 			}
2790 		} else
2791 			*npp = np;
2792 	}
2793 	return (error);
2794 }
2795 
2796 /*
2797  * Nfs Version 3 commit rpc
2798  */
2799 int
2800 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2801 {
2802 	caddr_t cp;
2803 	u_int32_t *tl;
2804 	int32_t t1, t2;
2805 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2806 	caddr_t bpos, dpos, cp2;
2807 	int error = 0, wccflag = NFSV3_WCCRATTR;
2808 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2809 
2810 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2811 		return (0);
2812 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2813 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2814 	nfsm_fhtom(vp, 1);
2815 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2816 	txdr_hyper(offset, tl);
2817 	tl += 2;
2818 	*tl = txdr_unsigned(cnt);
2819 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2820 	nfsm_wcc_data(vp, wccflag);
2821 	if (!error) {
2822 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2823 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2824 			NFSX_V3WRITEVERF)) {
2825 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2826 				NFSX_V3WRITEVERF);
2827 			error = NFSERR_STALEWRITEVERF;
2828 		}
2829 	}
2830 	m_freem(mrep);
2831 nfsmout:
2832 	return (error);
2833 }
2834 
2835 /*
2836  * Kludge City..
2837  * - make nfs_bmap() essentially a no-op that does no translation
2838  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2839  *   (Maybe I could use the process's page mapping, but I was concerned that
2840  *    Kernel Write might not be enabled and also figured copyout() would do
2841  *    a lot more work than bcopy() and also it currently happens in the
2842  *    context of the swapper process (2).
2843  *
2844  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2845  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2846  */
2847 static int
2848 nfs_bmap(struct vop_bmap_args *ap)
2849 {
2850 	if (ap->a_doffsetp != NULL)
2851 		*ap->a_doffsetp = ap->a_loffset;
2852 	if (ap->a_runp != NULL)
2853 		*ap->a_runp = 0;
2854 	if (ap->a_runb != NULL)
2855 		*ap->a_runb = 0;
2856 	return (0);
2857 }
2858 
2859 /*
2860  * Strategy routine.
2861  *
2862  * For async requests when nfsiod(s) are running, queue the request by
2863  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2864  * request.
2865  */
2866 static int
2867 nfs_strategy(struct vop_strategy_args *ap)
2868 {
2869 	struct bio *bio = ap->a_bio;
2870 	struct bio *nbio;
2871 	struct buf *bp = bio->bio_buf;
2872 	struct thread *td;
2873 	int error = 0;
2874 
2875 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2876 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2877 	KASSERT(BUF_REFCNT(bp) > 0,
2878 		("nfs_strategy: buffer %p not locked", bp));
2879 
2880 	if (bp->b_flags & B_ASYNC)
2881 		td = NULL;
2882 	else
2883 		td = curthread;	/* XXX */
2884 
2885         /*
2886 	 * We probably don't need to push an nbio any more since no
2887 	 * block conversion is required due to the use of 64 bit byte
2888 	 * offsets, but do it anyway.
2889          */
2890 	nbio = push_bio(bio);
2891 	nbio->bio_offset = bio->bio_offset;
2892 
2893 	/*
2894 	 * If the op is asynchronous and an i/o daemon is waiting
2895 	 * queue the request, wake it up and wait for completion
2896 	 * otherwise just do it ourselves.
2897 	 */
2898 	if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2899 		error = nfs_doio(ap->a_vp, nbio, td);
2900 	return (error);
2901 }
2902 
2903 /*
2904  * Mmap a file
2905  *
2906  * NB Currently unsupported.
2907  *
2908  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
2909  */
2910 /* ARGSUSED */
2911 static int
2912 nfs_mmap(struct vop_mmap_args *ap)
2913 {
2914 	return (EINVAL);
2915 }
2916 
2917 /*
2918  * fsync vnode op. Just call nfs_flush() with commit == 1.
2919  *
2920  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
2921  */
2922 /* ARGSUSED */
2923 static int
2924 nfs_fsync(struct vop_fsync_args *ap)
2925 {
2926 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2927 }
2928 
2929 /*
2930  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2931  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2932  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2933  * set the buffer contains data that has already been written to the server
2934  * and which now needs a commit RPC.
2935  *
2936  * If commit is 0 we only take one pass and only flush buffers containing new
2937  * dirty data.
2938  *
2939  * If commit is 1 we take two passes, issuing a commit RPC in the second
2940  * pass.
2941  *
2942  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2943  * to completely flush all pending data.
2944  *
2945  * Note that the RB_SCAN code properly handles the case where the
2946  * callback might block and directly or indirectly (another thread) cause
2947  * the RB tree to change.
2948  */
2949 
2950 #ifndef NFS_COMMITBVECSIZ
2951 #define NFS_COMMITBVECSIZ	16
2952 #endif
2953 
2954 struct nfs_flush_info {
2955 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2956 	struct thread *td;
2957 	struct vnode *vp;
2958 	int waitfor;
2959 	int slpflag;
2960 	int slptimeo;
2961 	int loops;
2962 	struct buf *bvary[NFS_COMMITBVECSIZ];
2963 	int bvsize;
2964 	off_t beg_off;
2965 	off_t end_off;
2966 };
2967 
2968 static int nfs_flush_bp(struct buf *bp, void *data);
2969 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2970 
2971 int
2972 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2973 {
2974 	struct nfsnode *np = VTONFS(vp);
2975 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2976 	struct nfs_flush_info info;
2977 	int error;
2978 
2979 	bzero(&info, sizeof(info));
2980 	info.td = td;
2981 	info.vp = vp;
2982 	info.waitfor = waitfor;
2983 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2984 	info.loops = 0;
2985 
2986 	do {
2987 		/*
2988 		 * Flush mode
2989 		 */
2990 		info.mode = NFI_FLUSHNEW;
2991 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2992 				nfs_flush_bp, &info);
2993 
2994 		/*
2995 		 * Take a second pass if committing and no error occured.
2996 		 * Clean up any left over collection (whether an error
2997 		 * occurs or not).
2998 		 */
2999 		if (commit && error == 0) {
3000 			info.mode = NFI_COMMIT;
3001 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3002 					nfs_flush_bp, &info);
3003 			if (info.bvsize)
3004 				error = nfs_flush_docommit(&info, error);
3005 		}
3006 
3007 		/*
3008 		 * Wait for pending I/O to complete before checking whether
3009 		 * any further dirty buffers exist.
3010 		 */
3011 		while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
3012 			vp->v_track_write.bk_waitflag = 1;
3013 			error = tsleep(&vp->v_track_write,
3014 				info.slpflag, "nfsfsync", info.slptimeo);
3015 			if (error) {
3016 				/*
3017 				 * We have to be able to break out if this
3018 				 * is an 'intr' mount.
3019 				 */
3020 				if (nfs_sigintr(nmp, NULL, td)) {
3021 					error = -EINTR;
3022 					break;
3023 				}
3024 
3025 				/*
3026 				 * Since we do not process pending signals,
3027 				 * once we get a PCATCH our tsleep() will no
3028 				 * longer sleep, switch to a fixed timeout
3029 				 * instead.
3030 				 */
3031 				if (info.slpflag == PCATCH) {
3032 					info.slpflag = 0;
3033 					info.slptimeo = 2 * hz;
3034 				}
3035 				error = 0;
3036 			}
3037 		}
3038 		++info.loops;
3039 		/*
3040 		 * Loop if we are flushing synchronous as well as committing,
3041 		 * and dirty buffers are still present.  Otherwise we might livelock.
3042 		 */
3043 	} while (waitfor == MNT_WAIT && commit &&
3044 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3045 
3046 	/*
3047 	 * The callbacks have to return a negative error to terminate the
3048 	 * RB scan.
3049 	 */
3050 	if (error < 0)
3051 		error = -error;
3052 
3053 	/*
3054 	 * Deal with any error collection
3055 	 */
3056 	if (np->n_flag & NWRITEERR) {
3057 		error = np->n_error;
3058 		np->n_flag &= ~NWRITEERR;
3059 	}
3060 	return (error);
3061 }
3062 
3063 
3064 static
3065 int
3066 nfs_flush_bp(struct buf *bp, void *data)
3067 {
3068 	struct nfs_flush_info *info = data;
3069 	off_t toff;
3070 	int error;
3071 
3072 	error = 0;
3073 	switch(info->mode) {
3074 	case NFI_FLUSHNEW:
3075 		crit_enter();
3076 		if (info->loops && info->waitfor == MNT_WAIT) {
3077 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3078 			if (error) {
3079 				int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3080 				if (info->slpflag & PCATCH)
3081 					lkflags |= LK_PCATCH;
3082 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3083 						     info->slptimeo);
3084 			}
3085 		} else {
3086 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3087 		}
3088 		if (error == 0) {
3089 			KKASSERT(bp->b_vp == info->vp);
3090 
3091 			if ((bp->b_flags & B_DELWRI) == 0)
3092 				panic("nfs_fsync: not dirty");
3093 			if (bp->b_flags & B_NEEDCOMMIT) {
3094 				BUF_UNLOCK(bp);
3095 				crit_exit();
3096 				break;
3097 			}
3098 			bremfree(bp);
3099 
3100 			crit_exit();
3101 			bawrite(bp);
3102 		} else {
3103 			crit_exit();
3104 			error = 0;
3105 		}
3106 		break;
3107 	case NFI_COMMIT:
3108 		/*
3109 		 * Only process buffers in need of a commit which we can
3110 		 * immediately lock.  This may prevent a buffer from being
3111 		 * committed, but the normal flush loop will block on the
3112 		 * same buffer so we shouldn't get into an endless loop.
3113 		 */
3114 		crit_enter();
3115 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3116 		    (B_DELWRI | B_NEEDCOMMIT) ||
3117 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3118 			crit_exit();
3119 			break;
3120 		}
3121 
3122 		KKASSERT(bp->b_vp == info->vp);
3123 		bremfree(bp);
3124 
3125 		/*
3126 		 * NOTE: storing the bp in the bvary[] basically sets
3127 		 * it up for a commit operation.
3128 		 *
3129 		 * We must call vfs_busy_pages() now so the commit operation
3130 		 * is interlocked with user modifications to memory mapped
3131 		 * pages.
3132 		 *
3133 		 * Note: to avoid loopback deadlocks, we do not
3134 		 * assign b_runningbufspace.
3135 		 */
3136 		bp->b_cmd = BUF_CMD_WRITE;
3137 		vfs_busy_pages(bp->b_vp, bp);
3138 		info->bvary[info->bvsize] = bp;
3139 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3140 		if (info->bvsize == 0 || toff < info->beg_off)
3141 			info->beg_off = toff;
3142 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3143 		if (info->bvsize == 0 || toff > info->end_off)
3144 			info->end_off = toff;
3145 		++info->bvsize;
3146 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3147 			error = nfs_flush_docommit(info, 0);
3148 			KKASSERT(info->bvsize == 0);
3149 		}
3150 		crit_exit();
3151 	}
3152 	return (error);
3153 }
3154 
3155 static
3156 int
3157 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3158 {
3159 	struct vnode *vp;
3160 	struct buf *bp;
3161 	off_t bytes;
3162 	int retv;
3163 	int i;
3164 
3165 	vp = info->vp;
3166 
3167 	if (info->bvsize > 0) {
3168 		/*
3169 		 * Commit data on the server, as required.  Note that
3170 		 * nfs_commit will use the vnode's cred for the commit.
3171 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3172 		 */
3173 		bytes = info->end_off - info->beg_off;
3174 		if (bytes > 0x40000000)
3175 			bytes = 0x40000000;
3176 		if (error) {
3177 			retv = -error;
3178 		} else {
3179 			retv = nfs_commit(vp, info->beg_off,
3180 					    (int)bytes, info->td);
3181 			if (retv == NFSERR_STALEWRITEVERF)
3182 				nfs_clearcommit(vp->v_mount);
3183 		}
3184 
3185 		/*
3186 		 * Now, either mark the blocks I/O done or mark the
3187 		 * blocks dirty, depending on whether the commit
3188 		 * succeeded.
3189 		 */
3190 		for (i = 0; i < info->bvsize; ++i) {
3191 			bp = info->bvary[i];
3192 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3193 			if (retv) {
3194 				/*
3195 				 * Error, leave B_DELWRI intact
3196 				 */
3197 				vfs_unbusy_pages(bp);
3198 				bp->b_cmd = BUF_CMD_DONE;
3199 				brelse(bp);
3200 			} else {
3201 				/*
3202 				 * Success, remove B_DELWRI ( bundirty() ).
3203 				 *
3204 				 * b_dirtyoff/b_dirtyend seem to be NFS
3205 				 * specific.  We should probably move that
3206 				 * into bundirty(). XXX
3207 				 *
3208 				 * We are faking an I/O write, we have to
3209 				 * start the transaction in order to
3210 				 * immediately biodone() it.
3211 				 */
3212 				crit_enter();
3213 				bp->b_flags |= B_ASYNC;
3214 				bundirty(bp);
3215 				bp->b_flags &= ~B_ERROR;
3216 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3217 				crit_exit();
3218 				biodone(&bp->b_bio1);
3219 			}
3220 		}
3221 		info->bvsize = 0;
3222 	}
3223 	return (error);
3224 }
3225 
3226 /*
3227  * NFS advisory byte-level locks.
3228  * Currently unsupported.
3229  *
3230  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3231  *		int a_flags)
3232  */
3233 static int
3234 nfs_advlock(struct vop_advlock_args *ap)
3235 {
3236 	struct nfsnode *np = VTONFS(ap->a_vp);
3237 
3238 	/*
3239 	 * The following kludge is to allow diskless support to work
3240 	 * until a real NFS lockd is implemented. Basically, just pretend
3241 	 * that this is a local lock.
3242 	 */
3243 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3244 }
3245 
3246 /*
3247  * Print out the contents of an nfsnode.
3248  *
3249  * nfs_print(struct vnode *a_vp)
3250  */
3251 static int
3252 nfs_print(struct vop_print_args *ap)
3253 {
3254 	struct vnode *vp = ap->a_vp;
3255 	struct nfsnode *np = VTONFS(vp);
3256 
3257 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3258 		(long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3259 	if (vp->v_type == VFIFO)
3260 		fifo_printinfo(vp);
3261 	kprintf("\n");
3262 	return (0);
3263 }
3264 
3265 /*
3266  * nfs special file access vnode op.
3267  * Essentially just get vattr and then imitate iaccess() since the device is
3268  * local to the client.
3269  *
3270  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3271  */
3272 static int
3273 nfsspec_access(struct vop_access_args *ap)
3274 {
3275 	struct vattr *vap;
3276 	gid_t *gp;
3277 	struct ucred *cred = ap->a_cred;
3278 	struct vnode *vp = ap->a_vp;
3279 	mode_t mode = ap->a_mode;
3280 	struct vattr vattr;
3281 	int i;
3282 	int error;
3283 
3284 	/*
3285 	 * Disallow write attempts on filesystems mounted read-only;
3286 	 * unless the file is a socket, fifo, or a block or character
3287 	 * device resident on the filesystem.
3288 	 */
3289 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3290 		switch (vp->v_type) {
3291 		case VREG:
3292 		case VDIR:
3293 		case VLNK:
3294 			return (EROFS);
3295 		default:
3296 			break;
3297 		}
3298 	}
3299 	/*
3300 	 * If you're the super-user,
3301 	 * you always get access.
3302 	 */
3303 	if (cred->cr_uid == 0)
3304 		return (0);
3305 	vap = &vattr;
3306 	error = VOP_GETATTR(vp, vap);
3307 	if (error)
3308 		return (error);
3309 	/*
3310 	 * Access check is based on only one of owner, group, public.
3311 	 * If not owner, then check group. If not a member of the
3312 	 * group, then check public access.
3313 	 */
3314 	if (cred->cr_uid != vap->va_uid) {
3315 		mode >>= 3;
3316 		gp = cred->cr_groups;
3317 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3318 			if (vap->va_gid == *gp)
3319 				goto found;
3320 		mode >>= 3;
3321 found:
3322 		;
3323 	}
3324 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3325 	return (error);
3326 }
3327 
3328 /*
3329  * Read wrapper for special devices.
3330  *
3331  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3332  *		struct ucred *a_cred)
3333  */
3334 static int
3335 nfsspec_read(struct vop_read_args *ap)
3336 {
3337 	struct nfsnode *np = VTONFS(ap->a_vp);
3338 
3339 	/*
3340 	 * Set access flag.
3341 	 */
3342 	np->n_flag |= NACC;
3343 	getnanotime(&np->n_atim);
3344 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3345 }
3346 
3347 /*
3348  * Write wrapper for special devices.
3349  *
3350  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3351  *		 struct ucred *a_cred)
3352  */
3353 static int
3354 nfsspec_write(struct vop_write_args *ap)
3355 {
3356 	struct nfsnode *np = VTONFS(ap->a_vp);
3357 
3358 	/*
3359 	 * Set update flag.
3360 	 */
3361 	np->n_flag |= NUPD;
3362 	getnanotime(&np->n_mtim);
3363 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3364 }
3365 
3366 /*
3367  * Close wrapper for special devices.
3368  *
3369  * Update the times on the nfsnode then do device close.
3370  *
3371  * nfsspec_close(struct vnode *a_vp, int a_fflag)
3372  */
3373 static int
3374 nfsspec_close(struct vop_close_args *ap)
3375 {
3376 	struct vnode *vp = ap->a_vp;
3377 	struct nfsnode *np = VTONFS(vp);
3378 	struct vattr vattr;
3379 
3380 	if (np->n_flag & (NACC | NUPD)) {
3381 		np->n_flag |= NCHG;
3382 		if (vp->v_sysref.refcnt == 1 &&
3383 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3384 			VATTR_NULL(&vattr);
3385 			if (np->n_flag & NACC)
3386 				vattr.va_atime = np->n_atim;
3387 			if (np->n_flag & NUPD)
3388 				vattr.va_mtime = np->n_mtim;
3389 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3390 		}
3391 	}
3392 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3393 }
3394 
3395 /*
3396  * Read wrapper for fifos.
3397  *
3398  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3399  *		struct ucred *a_cred)
3400  */
3401 static int
3402 nfsfifo_read(struct vop_read_args *ap)
3403 {
3404 	struct nfsnode *np = VTONFS(ap->a_vp);
3405 
3406 	/*
3407 	 * Set access flag.
3408 	 */
3409 	np->n_flag |= NACC;
3410 	getnanotime(&np->n_atim);
3411 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3412 }
3413 
3414 /*
3415  * Write wrapper for fifos.
3416  *
3417  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3418  *		 struct ucred *a_cred)
3419  */
3420 static int
3421 nfsfifo_write(struct vop_write_args *ap)
3422 {
3423 	struct nfsnode *np = VTONFS(ap->a_vp);
3424 
3425 	/*
3426 	 * Set update flag.
3427 	 */
3428 	np->n_flag |= NUPD;
3429 	getnanotime(&np->n_mtim);
3430 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3431 }
3432 
3433 /*
3434  * Close wrapper for fifos.
3435  *
3436  * Update the times on the nfsnode then do fifo close.
3437  *
3438  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3439  */
3440 static int
3441 nfsfifo_close(struct vop_close_args *ap)
3442 {
3443 	struct vnode *vp = ap->a_vp;
3444 	struct nfsnode *np = VTONFS(vp);
3445 	struct vattr vattr;
3446 	struct timespec ts;
3447 
3448 	if (np->n_flag & (NACC | NUPD)) {
3449 		getnanotime(&ts);
3450 		if (np->n_flag & NACC)
3451 			np->n_atim = ts;
3452 		if (np->n_flag & NUPD)
3453 			np->n_mtim = ts;
3454 		np->n_flag |= NCHG;
3455 		if (vp->v_sysref.refcnt == 1 &&
3456 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3457 			VATTR_NULL(&vattr);
3458 			if (np->n_flag & NACC)
3459 				vattr.va_atime = np->n_atim;
3460 			if (np->n_flag & NUPD)
3461 				vattr.va_mtime = np->n_mtim;
3462 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3463 		}
3464 	}
3465 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3466 }
3467 
3468