xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision dcd37f7d)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsfifo_read (struct vop_read_args *);
98 static int	nfsfifo_write (struct vop_write_args *);
99 static int	nfsfifo_close (struct vop_close_args *);
100 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
101 static	int	nfs_lookup (struct vop_old_lookup_args *);
102 static	int	nfs_create (struct vop_old_create_args *);
103 static	int	nfs_mknod (struct vop_old_mknod_args *);
104 static	int	nfs_open (struct vop_open_args *);
105 static	int	nfs_close (struct vop_close_args *);
106 static	int	nfs_access (struct vop_access_args *);
107 static	int	nfs_getattr (struct vop_getattr_args *);
108 static	int	nfs_setattr (struct vop_setattr_args *);
109 static	int	nfs_read (struct vop_read_args *);
110 static	int	nfs_mmap (struct vop_mmap_args *);
111 static	int	nfs_fsync (struct vop_fsync_args *);
112 static	int	nfs_remove (struct vop_old_remove_args *);
113 static	int	nfs_link (struct vop_old_link_args *);
114 static	int	nfs_rename (struct vop_old_rename_args *);
115 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
116 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
117 static	int	nfs_symlink (struct vop_old_symlink_args *);
118 static	int	nfs_readdir (struct vop_readdir_args *);
119 static	int	nfs_bmap (struct vop_bmap_args *);
120 static	int	nfs_strategy (struct vop_strategy_args *);
121 static	int	nfs_lookitup (struct vnode *, const char *, int,
122 			struct ucred *, struct thread *, struct nfsnode **);
123 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
124 static int	nfs_laccess (struct vop_access_args *);
125 static int	nfs_readlink (struct vop_readlink_args *);
126 static int	nfs_print (struct vop_print_args *);
127 static int	nfs_advlock (struct vop_advlock_args *);
128 
129 static	int	nfs_nresolve (struct vop_nresolve_args *);
130 /*
131  * Global vfs data structures for nfs
132  */
133 struct vop_ops nfsv2_vnode_vops = {
134 	.vop_default =		vop_defaultop,
135 	.vop_access =		nfs_access,
136 	.vop_advlock =		nfs_advlock,
137 	.vop_bmap =		nfs_bmap,
138 	.vop_close =		nfs_close,
139 	.vop_old_create =	nfs_create,
140 	.vop_fsync =		nfs_fsync,
141 	.vop_getattr =		nfs_getattr,
142 	.vop_getpages =		vop_stdgetpages,
143 	.vop_putpages =		vop_stdputpages,
144 	.vop_inactive =		nfs_inactive,
145 	.vop_old_link =		nfs_link,
146 	.vop_old_lookup =	nfs_lookup,
147 	.vop_old_mkdir =	nfs_mkdir,
148 	.vop_old_mknod =	nfs_mknod,
149 	.vop_mmap =		nfs_mmap,
150 	.vop_open =		nfs_open,
151 	.vop_print =		nfs_print,
152 	.vop_read =		nfs_read,
153 	.vop_readdir =		nfs_readdir,
154 	.vop_readlink =		nfs_readlink,
155 	.vop_reclaim =		nfs_reclaim,
156 	.vop_old_remove =	nfs_remove,
157 	.vop_old_rename =	nfs_rename,
158 	.vop_old_rmdir =	nfs_rmdir,
159 	.vop_setattr =		nfs_setattr,
160 	.vop_strategy =		nfs_strategy,
161 	.vop_old_symlink =	nfs_symlink,
162 	.vop_write =		nfs_write,
163 	.vop_nresolve =		nfs_nresolve
164 };
165 
166 /*
167  * Special device vnode ops
168  */
169 struct vop_ops nfsv2_spec_vops = {
170 	.vop_default =		vop_defaultop,
171 	.vop_access =		nfs_laccess,
172 	.vop_close =		nfs_close,
173 	.vop_fsync =		nfs_fsync,
174 	.vop_getattr =		nfs_getattr,
175 	.vop_inactive =		nfs_inactive,
176 	.vop_print =		nfs_print,
177 	.vop_read =		vop_stdnoread,
178 	.vop_reclaim =		nfs_reclaim,
179 	.vop_setattr =		nfs_setattr,
180 	.vop_write =		vop_stdnowrite
181 };
182 
183 struct vop_ops nfsv2_fifo_vops = {
184 	.vop_default =		fifo_vnoperate,
185 	.vop_access =		nfs_laccess,
186 	.vop_close =		nfsfifo_close,
187 	.vop_fsync =		nfs_fsync,
188 	.vop_getattr =		nfs_getattr,
189 	.vop_inactive =		nfs_inactive,
190 	.vop_print =		nfs_print,
191 	.vop_read =		nfsfifo_read,
192 	.vop_reclaim =		nfs_reclaim,
193 	.vop_setattr =		nfs_setattr,
194 	.vop_write =		nfsfifo_write
195 };
196 
197 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
198 				  struct componentname *cnp,
199 				  struct vattr *vap);
200 static int	nfs_removerpc (struct vnode *dvp, const char *name,
201 				   int namelen,
202 				   struct ucred *cred, struct thread *td);
203 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
204 				   int fnamelen, struct vnode *tdvp,
205 				   const char *tnameptr, int tnamelen,
206 				   struct ucred *cred, struct thread *td);
207 static int	nfs_renameit (struct vnode *sdvp,
208 				  struct componentname *scnp,
209 				  struct sillyrename *sp);
210 
211 SYSCTL_DECL(_vfs_nfs);
212 
213 static int nfs_flush_on_rename = 1;
214 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
215 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
216 static int nfs_flush_on_hlink = 0;
217 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
218 	   &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
219 
220 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
221 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
222 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
223 
224 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
225 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
226 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
227 
228 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
229 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
230 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
231 
232 static int	nfsv3_commit_on_close = 0;
233 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
234 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
235 #if 0
236 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
237 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
238 
239 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
240 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
241 #endif
242 
243 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
244 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
245 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
246 
247 /*
248  * Returns whether a name component is a degenerate '.' or '..'.
249  */
250 static __inline
251 int
252 nlcdegenerate(struct nlcomponent *nlc)
253 {
254 	if (nlc->nlc_namelen == 1 && nlc->nlc_nameptr[0] == '.')
255 		return(1);
256 	if (nlc->nlc_namelen == 2 &&
257 	    nlc->nlc_nameptr[0] == '.' && nlc->nlc_nameptr[1] == '.')
258 		return(1);
259 	return(0);
260 }
261 
262 static int
263 nfs3_access_otw(struct vnode *vp, int wmode,
264 		struct thread *td, struct ucred *cred)
265 {
266 	struct nfsnode *np = VTONFS(vp);
267 	int attrflag;
268 	int error = 0;
269 	u_int32_t *tl;
270 	u_int32_t rmode;
271 	struct nfsm_info info;
272 
273 	info.mrep = NULL;
274 	info.v3 = 1;
275 
276 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
277 	nfsm_reqhead(&info, vp, NFSPROC_ACCESS,
278 		     NFSX_FH(info.v3) + NFSX_UNSIGNED);
279 	ERROROUT(nfsm_fhtom(&info, vp));
280 	tl = nfsm_build(&info, NFSX_UNSIGNED);
281 	*tl = txdr_unsigned(wmode);
282 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_ACCESS, td, cred, &error));
283 	ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK));
284 	if (error == 0) {
285 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
286 		rmode = fxdr_unsigned(u_int32_t, *tl);
287 		np->n_mode = rmode;
288 		np->n_modeuid = cred->cr_uid;
289 		np->n_modestamp = mycpu->gd_time_seconds;
290 	}
291 	m_freem(info.mrep);
292 	info.mrep = NULL;
293 nfsmout:
294 	return error;
295 }
296 
297 /*
298  * nfs access vnode op.
299  * For nfs version 2, just return ok. File accesses may fail later.
300  * For nfs version 3, use the access rpc to check accessibility. If file modes
301  * are changed on the server, accesses might still fail later.
302  *
303  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
304  */
305 static int
306 nfs_access(struct vop_access_args *ap)
307 {
308 	struct ucred *cred;
309 	struct vnode *vp = ap->a_vp;
310 	thread_t td = curthread;
311 	int error = 0;
312 	u_int32_t mode, wmode;
313 	struct nfsnode *np = VTONFS(vp);
314 	int v3 = NFS_ISV3(vp);
315 
316 	/*
317 	 * Disallow write attempts on filesystems mounted read-only;
318 	 * unless the file is a socket, fifo, or a block or character
319 	 * device resident on the filesystem.
320 	 */
321 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
322 		switch (vp->v_type) {
323 		case VREG:
324 		case VDIR:
325 		case VLNK:
326 			return (EROFS);
327 		default:
328 			break;
329 		}
330 	}
331 
332 	/*
333 	 * The NFS protocol passes only the effective uid/gid over the wire but
334 	 * we need to check access against real ids if AT_EACCESS not set.
335 	 * Handle this case by cloning the credentials and setting the
336 	 * effective ids to the real ones.
337 	 */
338 	if (ap->a_flags & AT_EACCESS) {
339 		cred = crhold(ap->a_cred);
340 	} else {
341 		cred = crdup(ap->a_cred);
342 		cred->cr_uid = cred->cr_ruid;
343 		cred->cr_gid = cred->cr_rgid;
344 	}
345 
346 	/*
347 	 * For nfs v3, check to see if we have done this recently, and if
348 	 * so return our cached result instead of making an ACCESS call.
349 	 * If not, do an access rpc, otherwise you are stuck emulating
350 	 * ufs_access() locally using the vattr. This may not be correct,
351 	 * since the server may apply other access criteria such as
352 	 * client uid-->server uid mapping that we do not know about.
353 	 */
354 	if (v3) {
355 		if (ap->a_mode & VREAD)
356 			mode = NFSV3ACCESS_READ;
357 		else
358 			mode = 0;
359 		if (vp->v_type != VDIR) {
360 			if (ap->a_mode & VWRITE)
361 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
362 			if (ap->a_mode & VEXEC)
363 				mode |= NFSV3ACCESS_EXECUTE;
364 		} else {
365 			if (ap->a_mode & VWRITE)
366 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
367 					 NFSV3ACCESS_DELETE);
368 			if (ap->a_mode & VEXEC)
369 				mode |= NFSV3ACCESS_LOOKUP;
370 		}
371 		/* XXX safety belt, only make blanket request if caching */
372 		if (nfsaccess_cache_timeout > 0) {
373 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
374 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
375 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
376 		} else {
377 			wmode = mode;
378 		}
379 
380 		/*
381 		 * Does our cached result allow us to give a definite yes to
382 		 * this request?
383 		 */
384 		if (np->n_modestamp &&
385 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
386 		   (cred->cr_uid == np->n_modeuid) &&
387 		   ((np->n_mode & mode) == mode)) {
388 			nfsstats.accesscache_hits++;
389 		} else {
390 			/*
391 			 * Either a no, or a don't know.  Go to the wire.
392 			 */
393 			nfsstats.accesscache_misses++;
394 		        error = nfs3_access_otw(vp, wmode, td, cred);
395 			if (!error) {
396 				if ((np->n_mode & mode) != mode) {
397 					error = EACCES;
398 				}
399 			}
400 		}
401 	} else {
402 		if ((error = nfs_laccess(ap)) != 0) {
403 			crfree(cred);
404 			return (error);
405 		}
406 
407 		/*
408 		 * Attempt to prevent a mapped root from accessing a file
409 		 * which it shouldn't.  We try to read a byte from the file
410 		 * if the user is root and the file is not zero length.
411 		 * After calling nfs_laccess, we should have the correct
412 		 * file size cached.
413 		 */
414 		if (cred->cr_uid == 0 && (ap->a_mode & VREAD)
415 		    && VTONFS(vp)->n_size > 0) {
416 			struct iovec aiov;
417 			struct uio auio;
418 			char buf[1];
419 
420 			aiov.iov_base = buf;
421 			aiov.iov_len = 1;
422 			auio.uio_iov = &aiov;
423 			auio.uio_iovcnt = 1;
424 			auio.uio_offset = 0;
425 			auio.uio_resid = 1;
426 			auio.uio_segflg = UIO_SYSSPACE;
427 			auio.uio_rw = UIO_READ;
428 			auio.uio_td = td;
429 
430 			if (vp->v_type == VREG) {
431 				error = nfs_readrpc_uio(vp, &auio);
432 			} else if (vp->v_type == VDIR) {
433 				char* bp;
434 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
435 				aiov.iov_base = bp;
436 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
437 				error = nfs_readdirrpc_uio(vp, &auio);
438 				kfree(bp, M_TEMP);
439 			} else if (vp->v_type == VLNK) {
440 				error = nfs_readlinkrpc_uio(vp, &auio);
441 			} else {
442 				error = EACCES;
443 			}
444 		}
445 	}
446 	/*
447 	 * [re]record creds for reading and/or writing if access
448 	 * was granted.  Assume the NFS server will grant read access
449 	 * for execute requests.
450 	 */
451 	if (error == 0) {
452 		if ((ap->a_mode & (VREAD|VEXEC)) && cred != np->n_rucred) {
453 			crhold(cred);
454 			if (np->n_rucred)
455 				crfree(np->n_rucred);
456 			np->n_rucred = cred;
457 		}
458 		if ((ap->a_mode & VWRITE) && cred != np->n_wucred) {
459 			crhold(cred);
460 			if (np->n_wucred)
461 				crfree(np->n_wucred);
462 			np->n_wucred = cred;
463 		}
464 	}
465 	crfree(cred);
466 	return(error);
467 }
468 
469 /*
470  * nfs open vnode op
471  * Check to see if the type is ok
472  * and that deletion is not in progress.
473  * For paged in text files, you will need to flush the page cache
474  * if consistency is lost.
475  *
476  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
477  *	    struct file *a_fp)
478  */
479 /* ARGSUSED */
480 static int
481 nfs_open(struct vop_open_args *ap)
482 {
483 	struct vnode *vp = ap->a_vp;
484 	struct nfsnode *np = VTONFS(vp);
485 	struct vattr vattr;
486 	int error;
487 
488 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
489 #ifdef DIAGNOSTIC
490 		kprintf("open eacces vtyp=%d\n",vp->v_type);
491 #endif
492 		return (EOPNOTSUPP);
493 	}
494 
495 	/*
496 	 * Save valid creds for reading and writing for later RPCs.
497 	 */
498 	if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) {
499 		crhold(ap->a_cred);
500 		if (np->n_rucred)
501 			crfree(np->n_rucred);
502 		np->n_rucred = ap->a_cred;
503 	}
504 	if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) {
505 		crhold(ap->a_cred);
506 		if (np->n_wucred)
507 			crfree(np->n_wucred);
508 		np->n_wucred = ap->a_cred;
509 	}
510 
511 	/*
512 	 * Clear the attribute cache only if opening with write access.  It
513 	 * is unclear if we should do this at all here, but we certainly
514 	 * should not clear the cache unconditionally simply because a file
515 	 * is being opened.
516 	 */
517 	if (ap->a_mode & FWRITE)
518 		np->n_attrstamp = 0;
519 
520 	/*
521 	 * For normal NFS, reconcile changes made locally verses
522 	 * changes made remotely.  Note that VOP_GETATTR only goes
523 	 * to the wire if the cached attribute has timed out or been
524 	 * cleared.
525 	 *
526 	 * If local modifications have been made clear the attribute
527 	 * cache to force an attribute and modified time check.  If
528 	 * GETATTR detects that the file has been changed by someone
529 	 * other then us it will set NRMODIFIED.
530 	 *
531 	 * If we are opening a directory and local changes have been
532 	 * made we have to invalidate the cache in order to ensure
533 	 * that we get the most up-to-date information from the
534 	 * server.  XXX
535 	 */
536 	if (np->n_flag & NLMODIFIED) {
537 		np->n_attrstamp = 0;
538 		if (vp->v_type == VDIR) {
539 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
540 			if (error == EINTR)
541 				return (error);
542 			nfs_invaldir(vp);
543 		}
544 	}
545 	error = VOP_GETATTR(vp, &vattr);
546 	if (error)
547 		return (error);
548 	if (np->n_flag & NRMODIFIED) {
549 		if (vp->v_type == VDIR)
550 			nfs_invaldir(vp);
551 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
552 		if (error == EINTR)
553 			return (error);
554 		np->n_flag &= ~NRMODIFIED;
555 	}
556 
557 	return (vop_stdopen(ap));
558 }
559 
560 /*
561  * nfs close vnode op
562  * What an NFS client should do upon close after writing is a debatable issue.
563  * Most NFS clients push delayed writes to the server upon close, basically for
564  * two reasons:
565  * 1 - So that any write errors may be reported back to the client process
566  *     doing the close system call. By far the two most likely errors are
567  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
568  * 2 - To put a worst case upper bound on cache inconsistency between
569  *     multiple clients for the file.
570  * There is also a consistency problem for Version 2 of the protocol w.r.t.
571  * not being able to tell if other clients are writing a file concurrently,
572  * since there is no way of knowing if the changed modify time in the reply
573  * is only due to the write for this client.
574  * (NFS Version 3 provides weak cache consistency data in the reply that
575  *  should be sufficient to detect and handle this case.)
576  *
577  * The current code does the following:
578  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
579  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
580  *                     or commit them (this satisfies 1 and 2 except for the
581  *                     case where the server crashes after this close but
582  *                     before the commit RPC, which is felt to be "good
583  *                     enough". Changing the last argument to nfs_flush() to
584  *                     a 1 would force a commit operation, if it is felt a
585  *                     commit is necessary now.
586  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
587  *                     1 should be dealt with via an fsync() system call for
588  *                     cases where write errors are important.
589  *
590  * nfs_close(struct vnode *a_vp, int a_fflag)
591  */
592 /* ARGSUSED */
593 static int
594 nfs_close(struct vop_close_args *ap)
595 {
596 	struct vnode *vp = ap->a_vp;
597 	struct nfsnode *np = VTONFS(vp);
598 	int error = 0;
599 	thread_t td = curthread;
600 
601 	if (vp->v_type == VREG) {
602 	    if (np->n_flag & NLMODIFIED) {
603 		if (NFS_ISV3(vp)) {
604 		    /*
605 		     * Under NFSv3 we have dirty buffers to dispose of.  We
606 		     * must flush them to the NFS server.  We have the option
607 		     * of waiting all the way through the commit rpc or just
608 		     * waiting for the initial write.  The default is to only
609 		     * wait through the initial write so the data is in the
610 		     * server's cache, which is roughly similar to the state
611 		     * a standard disk subsystem leaves the file in on close().
612 		     *
613 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
614 		     * potential races with other processes, and certainly
615 		     * cannot clear it if we don't commit.
616 		     */
617 		    int cm = nfsv3_commit_on_close ? 1 : 0;
618 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
619 		    /* np->n_flag &= ~NLMODIFIED; */
620 		} else {
621 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
622 		}
623 		np->n_attrstamp = 0;
624 	    }
625 	    if (np->n_flag & NWRITEERR) {
626 		np->n_flag &= ~NWRITEERR;
627 		error = np->n_error;
628 	    }
629 	}
630 	vop_stdclose(ap);
631 	return (error);
632 }
633 
634 /*
635  * nfs getattr call from vfs.
636  *
637  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
638  */
639 static int
640 nfs_getattr(struct vop_getattr_args *ap)
641 {
642 	struct vnode *vp = ap->a_vp;
643 	struct nfsnode *np = VTONFS(vp);
644 	struct nfsmount *nmp;
645 	int error = 0;
646 	thread_t td = curthread;
647 	struct nfsm_info info;
648 
649 	info.mrep = NULL;
650 	info.v3 = NFS_ISV3(vp);
651 	nmp = VFSTONFS(vp->v_mount);
652 
653 	/*
654 	 * Update local times for special files.
655 	 */
656 	if (np->n_flag & (NACC | NUPD))
657 		np->n_flag |= NCHG;
658 	/*
659 	 * First look in the cache.
660 	 */
661 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
662 		goto done;
663 
664 	if (info.v3 && nfsaccess_cache_timeout > 0) {
665 		nfsstats.accesscache_misses++;
666 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
667 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
668 			goto done;
669 	}
670 
671 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
672 	nfsm_reqhead(&info, vp, NFSPROC_GETATTR, NFSX_FH(info.v3));
673 	ERROROUT(nfsm_fhtom(&info, vp));
674 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_GETATTR, td,
675 				nfs_vpcred(vp, ND_CHECK), &error));
676 	if (error == 0) {
677 		ERROROUT(nfsm_loadattr(&info, vp, ap->a_vap));
678 	}
679 	m_freem(info.mrep);
680 	info.mrep = NULL;
681 done:
682 	/*
683 	 * NFS doesn't support chflags flags.  If the nfs mount was
684 	 * made -o cache set the UF_CACHE bit for swapcache.
685 	 */
686 	if ((nmp->nm_flag & NFSMNT_CACHE) && (vp->v_flag & VROOT))
687 		ap->a_vap->va_flags |= UF_CACHE;
688 nfsmout:
689 	return (error);
690 }
691 
692 /*
693  * nfs setattr call.
694  *
695  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
696  */
697 static int
698 nfs_setattr(struct vop_setattr_args *ap)
699 {
700 	struct vnode *vp = ap->a_vp;
701 	struct nfsnode *np = VTONFS(vp);
702 	struct vattr *vap = ap->a_vap;
703 	int biosize = vp->v_mount->mnt_stat.f_iosize;
704 	int error = 0;
705 	int boff;
706 	off_t tsize;
707 	thread_t td = curthread;
708 
709 #ifndef nolint
710 	tsize = (off_t)0;
711 #endif
712 
713 	/*
714 	 * Setting of flags is not supported.
715 	 */
716 	if (vap->va_flags != VNOVAL)
717 		return (EOPNOTSUPP);
718 
719 	/*
720 	 * Disallow write attempts if the filesystem is mounted read-only.
721 	 */
722   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
723 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
724 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
725 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
726 		return (EROFS);
727 
728 	if (vap->va_size != VNOVAL) {
729 		/*
730 		 * truncation requested
731 		 */
732  		switch (vp->v_type) {
733  		case VDIR:
734  			return (EISDIR);
735  		case VCHR:
736  		case VBLK:
737  		case VSOCK:
738  		case VFIFO:
739 			if (vap->va_mtime.tv_sec == VNOVAL &&
740 			    vap->va_atime.tv_sec == VNOVAL &&
741 			    vap->va_mode == (mode_t)VNOVAL &&
742 			    vap->va_uid == (uid_t)VNOVAL &&
743 			    vap->va_gid == (gid_t)VNOVAL)
744 				return (0);
745  			vap->va_size = VNOVAL;
746  			break;
747  		default:
748 			/*
749 			 * Disallow write attempts if the filesystem is
750 			 * mounted read-only.
751 			 */
752 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
753 				return (EROFS);
754 
755 			tsize = np->n_size;
756 again:
757 			boff = (int)vap->va_size & (biosize - 1);
758 			error = nfs_meta_setsize(vp, td, vap->va_size, 0);
759 
760 #if 0
761  			if (np->n_flag & NLMODIFIED) {
762  			    if (vap->va_size == 0)
763  				error = nfs_vinvalbuf(vp, 0, 1);
764  			    else
765  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
766  			}
767 #endif
768 			/*
769 			 * note: this loop case almost always happens at
770 			 * least once per truncation.
771 			 */
772 			if (error == 0 && np->n_size != vap->va_size)
773 				goto again;
774 			np->n_vattr.va_size = vap->va_size;
775 			break;
776 		}
777 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
778 		/*
779 		 * What to do.  If we are modifying the mtime we lose
780 		 * mtime detection of changes made by the server or other
781 		 * clients.  But programs like rsync/rdist/cpdup are going
782 		 * to call utimes a lot.  We don't want to piecemeal sync.
783 		 *
784 		 * For now sync if any prior remote changes were detected,
785 		 * but allow us to lose track of remote changes made during
786 		 * the utimes operation.
787 		 */
788 		if (np->n_flag & NRMODIFIED)
789 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
790 		if (error == EINTR)
791 			return (error);
792 		if (error == 0) {
793 			if (vap->va_mtime.tv_sec != VNOVAL) {
794 				np->n_mtime = vap->va_mtime.tv_sec;
795 			}
796 		}
797 	}
798 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
799 
800 	/*
801 	 * Sanity check if a truncation was issued.  This should only occur
802 	 * if multiple processes are racing on the same file.
803 	 */
804 	if (error == 0 && vap->va_size != VNOVAL &&
805 	    np->n_size != vap->va_size) {
806 		kprintf("NFS ftruncate: server disagrees on the file size: "
807 			"%jd/%jd/%jd\n",
808 			(intmax_t)tsize,
809 			(intmax_t)vap->va_size,
810 			(intmax_t)np->n_size);
811 		goto again;
812 	}
813 	if (error && vap->va_size != VNOVAL) {
814 		np->n_size = np->n_vattr.va_size = tsize;
815 		nfs_meta_setsize(vp, td, np->n_size, 0);
816 	}
817 	return (error);
818 }
819 
820 /*
821  * Do an nfs setattr rpc.
822  */
823 static int
824 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
825 	       struct ucred *cred, struct thread *td)
826 {
827 	struct nfsv2_sattr *sp;
828 	struct nfsnode *np = VTONFS(vp);
829 	u_int32_t *tl;
830 	int error = 0, wccflag = NFSV3_WCCRATTR;
831 	struct nfsm_info info;
832 
833 	info.mrep = NULL;
834 	info.v3 = NFS_ISV3(vp);
835 
836 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
837 	nfsm_reqhead(&info, vp, NFSPROC_SETATTR,
838 		     NFSX_FH(info.v3) + NFSX_SATTR(info.v3));
839 	ERROROUT(nfsm_fhtom(&info, vp));
840 	if (info.v3) {
841 		nfsm_v3attrbuild(&info, vap, TRUE);
842 		tl = nfsm_build(&info, NFSX_UNSIGNED);
843 		*tl = nfs_false;
844 	} else {
845 		sp = nfsm_build(&info, NFSX_V2SATTR);
846 		if (vap->va_mode == (mode_t)VNOVAL)
847 			sp->sa_mode = nfs_xdrneg1;
848 		else
849 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
850 		if (vap->va_uid == (uid_t)VNOVAL)
851 			sp->sa_uid = nfs_xdrneg1;
852 		else
853 			sp->sa_uid = txdr_unsigned(vap->va_uid);
854 		if (vap->va_gid == (gid_t)VNOVAL)
855 			sp->sa_gid = nfs_xdrneg1;
856 		else
857 			sp->sa_gid = txdr_unsigned(vap->va_gid);
858 		sp->sa_size = txdr_unsigned(vap->va_size);
859 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
860 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
861 	}
862 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_SETATTR, td, cred, &error));
863 	if (info.v3) {
864 		np->n_modestamp = 0;
865 		ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
866 	} else {
867 		ERROROUT(nfsm_loadattr(&info, vp, NULL));
868 	}
869 	m_freem(info.mrep);
870 	info.mrep = NULL;
871 nfsmout:
872 	return (error);
873 }
874 
875 static
876 void
877 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
878 {
879 	if (nctimeout == 0)
880 		nctimeout = 1;
881 	else
882 		nctimeout *= hz;
883 	cache_setvp(nch, vp);
884 	cache_settimeout(nch, nctimeout);
885 }
886 
887 /*
888  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
889  * nfs_lookup() until all remaining new api calls are implemented.
890  *
891  * Resolve a namecache entry.  This function is passed a locked ncp and
892  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
893  */
894 static int
895 nfs_nresolve(struct vop_nresolve_args *ap)
896 {
897 	struct thread *td = curthread;
898 	struct namecache *ncp;
899 	struct ucred *cred;
900 	struct nfsnode *np;
901 	struct vnode *dvp;
902 	struct vnode *nvp;
903 	nfsfh_t *fhp;
904 	int attrflag;
905 	int fhsize;
906 	int error;
907 	int tmp_error;
908 	int len;
909 	struct nfsm_info info;
910 
911 	cred = ap->a_cred;
912 	dvp = ap->a_dvp;
913 
914 	if ((error = vget(dvp, LK_SHARED)) != 0)
915 		return (error);
916 
917 	info.mrep = NULL;
918 	info.v3 = NFS_ISV3(dvp);
919 
920 	nvp = NULL;
921 	nfsstats.lookupcache_misses++;
922 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
923 	ncp = ap->a_nch->ncp;
924 	len = ncp->nc_nlen;
925 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
926 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
927 	ERROROUT(nfsm_fhtom(&info, dvp));
928 	ERROROUT(nfsm_strtom(&info, ncp->nc_name, len, NFS_MAXNAMLEN));
929 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td,
930 				ap->a_cred, &error));
931 	if (error) {
932 		/*
933 		 * Cache negatve lookups to reduce NFS traffic, but use
934 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
935 		 * XXX we should add a namecache flag for no-caching
936 		 * to uncache the negative hit as soon as possible, but
937 		 * we cannot simply destroy the entry because it is used
938 		 * as a placeholder by the caller.
939 		 *
940 		 * The refactored nfs code will overwrite a non-zero error
941 		 * with 0 when we use ERROROUT(), so don't here.
942 		 */
943 		if (error == ENOENT)
944 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
945 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
946 					     NFS_LATTR_NOSHRINK);
947 		if (tmp_error) {
948 			error = tmp_error;
949 			goto nfsmout;
950 		}
951 		m_freem(info.mrep);
952 		info.mrep = NULL;
953 		goto nfsmout;
954 	}
955 
956 	/*
957 	 * Success, get the file handle, do various checks, and load
958 	 * post-operation data from the reply packet.  Theoretically
959 	 * we should never be looking up "." so, theoretically, we
960 	 * should never get the same file handle as our directory.  But
961 	 * we check anyway. XXX
962 	 *
963 	 * Note that no timeout is set for the positive cache hit.  We
964 	 * assume, theoretically, that ESTALE returns will be dealt with
965 	 * properly to handle NFS races and in anycase we cannot depend
966 	 * on a timeout to deal with NFS open/create/excl issues so instead
967 	 * of a bad hack here the rest of the NFS client code needs to do
968 	 * the right thing.
969 	 */
970 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
971 
972 	np = VTONFS(dvp);
973 	if (NFS_CMPFH(np, fhp, fhsize)) {
974 		vref(dvp);
975 		nvp = dvp;
976 	} else {
977 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
978 		if (error) {
979 			m_freem(info.mrep);
980 			info.mrep = NULL;
981 			vput(dvp);
982 			return (error);
983 		}
984 		nvp = NFSTOV(np);
985 	}
986 	if (info.v3) {
987 		ERROROUT(nfsm_postop_attr(&info, nvp, &attrflag,
988 					  NFS_LATTR_NOSHRINK));
989 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
990 					  NFS_LATTR_NOSHRINK));
991 	} else {
992 		ERROROUT(nfsm_loadattr(&info, nvp, NULL));
993 	}
994 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
995 	m_freem(info.mrep);
996 	info.mrep = NULL;
997 nfsmout:
998 	vput(dvp);
999 	if (nvp) {
1000 		if (nvp == dvp)
1001 			vrele(nvp);
1002 		else
1003 			vput(nvp);
1004 	}
1005 	return (error);
1006 }
1007 
1008 /*
1009  * 'cached' nfs directory lookup
1010  *
1011  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
1012  *
1013  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
1014  *	      struct componentname *a_cnp)
1015  */
1016 static int
1017 nfs_lookup(struct vop_old_lookup_args *ap)
1018 {
1019 	struct componentname *cnp = ap->a_cnp;
1020 	struct vnode *dvp = ap->a_dvp;
1021 	struct vnode **vpp = ap->a_vpp;
1022 	int flags = cnp->cn_flags;
1023 	struct vnode *newvp;
1024 	struct nfsmount *nmp;
1025 	long len;
1026 	nfsfh_t *fhp;
1027 	struct nfsnode *np;
1028 	int lockparent, wantparent, attrflag, fhsize;
1029 	int error;
1030 	int tmp_error;
1031 	struct nfsm_info info;
1032 
1033 	info.mrep = NULL;
1034 	info.v3 = NFS_ISV3(dvp);
1035 	error = 0;
1036 
1037 	/*
1038 	 * Read-only mount check and directory check.
1039 	 */
1040 	*vpp = NULLVP;
1041 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1042 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1043 		return (EROFS);
1044 
1045 	if (dvp->v_type != VDIR)
1046 		return (ENOTDIR);
1047 
1048 	/*
1049 	 * Look it up in the cache.  Note that ENOENT is only returned if we
1050 	 * previously entered a negative hit (see later on).  The additional
1051 	 * nfsneg_cache_timeout check causes previously cached results to
1052 	 * be instantly ignored if the negative caching is turned off.
1053 	 */
1054 	lockparent = flags & CNP_LOCKPARENT;
1055 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1056 	nmp = VFSTONFS(dvp->v_mount);
1057 	np = VTONFS(dvp);
1058 
1059 	/*
1060 	 * Go to the wire.
1061 	 */
1062 	error = 0;
1063 	newvp = NULLVP;
1064 	nfsstats.lookupcache_misses++;
1065 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1066 	len = cnp->cn_namelen;
1067 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
1068 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1069 	ERROROUT(nfsm_fhtom(&info, dvp));
1070 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
1071 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, cnp->cn_td,
1072 				cnp->cn_cred, &error));
1073 	if (error) {
1074 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
1075 					     NFS_LATTR_NOSHRINK);
1076 		if (tmp_error) {
1077 			error = tmp_error;
1078 			goto nfsmout;
1079 		}
1080 
1081 		m_freem(info.mrep);
1082 		info.mrep = NULL;
1083 		goto nfsmout;
1084 	}
1085 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
1086 
1087 	/*
1088 	 * Handle RENAME case...
1089 	 */
1090 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1091 		if (NFS_CMPFH(np, fhp, fhsize)) {
1092 			m_freem(info.mrep);
1093 			info.mrep = NULL;
1094 			return (EISDIR);
1095 		}
1096 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1097 		if (error) {
1098 			m_freem(info.mrep);
1099 			info.mrep = NULL;
1100 			return (error);
1101 		}
1102 		newvp = NFSTOV(np);
1103 		if (info.v3) {
1104 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1105 						  NFS_LATTR_NOSHRINK));
1106 			ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1107 						  NFS_LATTR_NOSHRINK));
1108 		} else {
1109 			ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1110 		}
1111 		*vpp = newvp;
1112 		m_freem(info.mrep);
1113 		info.mrep = NULL;
1114 		if (!lockparent) {
1115 			vn_unlock(dvp);
1116 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1117 		}
1118 		return (0);
1119 	}
1120 
1121 	if (flags & CNP_ISDOTDOT) {
1122 		vn_unlock(dvp);
1123 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1124 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1125 		if (error) {
1126 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1127 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1128 			return (error); /* NOTE: return error from nget */
1129 		}
1130 		newvp = NFSTOV(np);
1131 		if (lockparent) {
1132 			error = vn_lock(dvp, LK_EXCLUSIVE);
1133 			if (error) {
1134 				vput(newvp);
1135 				return (error);
1136 			}
1137 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1138 		}
1139 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1140 		vref(dvp);
1141 		newvp = dvp;
1142 	} else {
1143 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1144 		if (error) {
1145 			m_freem(info.mrep);
1146 			info.mrep = NULL;
1147 			return (error);
1148 		}
1149 		if (!lockparent) {
1150 			vn_unlock(dvp);
1151 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1152 		}
1153 		newvp = NFSTOV(np);
1154 	}
1155 	if (info.v3) {
1156 		ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1157 					  NFS_LATTR_NOSHRINK));
1158 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1159 					  NFS_LATTR_NOSHRINK));
1160 	} else {
1161 		ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1162 	}
1163 #if 0
1164 	/* XXX MOVE TO nfs_nremove() */
1165 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1166 	    cnp->cn_nameiop != NAMEI_DELETE) {
1167 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1168 	}
1169 #endif
1170 	*vpp = newvp;
1171 	m_freem(info.mrep);
1172 	info.mrep = NULL;
1173 nfsmout:
1174 	if (error) {
1175 		if (newvp != NULLVP) {
1176 			vrele(newvp);
1177 			*vpp = NULLVP;
1178 		}
1179 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1180 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1181 		    error == ENOENT) {
1182 			if (!lockparent) {
1183 				vn_unlock(dvp);
1184 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1185 			}
1186 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1187 				error = EROFS;
1188 			else
1189 				error = EJUSTRETURN;
1190 		}
1191 	}
1192 	return (error);
1193 }
1194 
1195 /*
1196  * nfs read call.
1197  * Just call nfs_bioread() to do the work.
1198  *
1199  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1200  *	    struct ucred *a_cred)
1201  */
1202 static int
1203 nfs_read(struct vop_read_args *ap)
1204 {
1205 	struct vnode *vp = ap->a_vp;
1206 
1207 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1208 }
1209 
1210 /*
1211  * nfs readlink call
1212  *
1213  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1214  */
1215 static int
1216 nfs_readlink(struct vop_readlink_args *ap)
1217 {
1218 	struct vnode *vp = ap->a_vp;
1219 
1220 	if (vp->v_type != VLNK)
1221 		return (EINVAL);
1222 	return (nfs_bioread(vp, ap->a_uio, 0));
1223 }
1224 
1225 /*
1226  * Do a readlink rpc.
1227  * Called by nfs_doio() from below the buffer cache.
1228  */
1229 int
1230 nfs_readlinkrpc_uio(struct vnode *vp, struct uio *uiop)
1231 {
1232 	int error = 0, len, attrflag;
1233 	struct nfsm_info info;
1234 
1235 	info.mrep = NULL;
1236 	info.v3 = NFS_ISV3(vp);
1237 
1238 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1239 	nfsm_reqhead(&info, vp, NFSPROC_READLINK, NFSX_FH(info.v3));
1240 	ERROROUT(nfsm_fhtom(&info, vp));
1241 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READLINK, uiop->uio_td,
1242 				nfs_vpcred(vp, ND_CHECK), &error));
1243 	if (info.v3) {
1244 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1245 					  NFS_LATTR_NOSHRINK));
1246 	}
1247 	if (!error) {
1248 		NEGATIVEOUT(len = nfsm_strsiz(&info, NFS_MAXPATHLEN));
1249 		if (len == NFS_MAXPATHLEN) {
1250 			struct nfsnode *np = VTONFS(vp);
1251 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1252 				len = np->n_size;
1253 		}
1254 		ERROROUT(nfsm_mtouio(&info, uiop, len));
1255 	}
1256 	m_freem(info.mrep);
1257 	info.mrep = NULL;
1258 nfsmout:
1259 	return (error);
1260 }
1261 
1262 /*
1263  * nfs synchronous read rpc using UIO
1264  */
1265 int
1266 nfs_readrpc_uio(struct vnode *vp, struct uio *uiop)
1267 {
1268 	u_int32_t *tl;
1269 	struct nfsmount *nmp;
1270 	int error = 0, len, retlen, tsiz, eof, attrflag;
1271 	struct nfsm_info info;
1272 	off_t tmp_off;
1273 
1274 	info.mrep = NULL;
1275 	info.v3 = NFS_ISV3(vp);
1276 
1277 #ifndef nolint
1278 	eof = 0;
1279 #endif
1280 	nmp = VFSTONFS(vp->v_mount);
1281 	tsiz = uiop->uio_resid;
1282 	tmp_off = uiop->uio_offset + tsiz;
1283 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uiop->uio_offset)
1284 		return (EFBIG);
1285 	tmp_off = uiop->uio_offset;
1286 	while (tsiz > 0) {
1287 		nfsstats.rpccnt[NFSPROC_READ]++;
1288 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1289 		nfsm_reqhead(&info, vp, NFSPROC_READ,
1290 			     NFSX_FH(info.v3) + NFSX_UNSIGNED * 3);
1291 		ERROROUT(nfsm_fhtom(&info, vp));
1292 		tl = nfsm_build(&info, NFSX_UNSIGNED * 3);
1293 		if (info.v3) {
1294 			txdr_hyper(uiop->uio_offset, tl);
1295 			*(tl + 2) = txdr_unsigned(len);
1296 		} else {
1297 			*tl++ = txdr_unsigned(uiop->uio_offset);
1298 			*tl++ = txdr_unsigned(len);
1299 			*tl = 0;
1300 		}
1301 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READ, uiop->uio_td,
1302 					nfs_vpcred(vp, ND_READ), &error));
1303 		if (info.v3) {
1304 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1305 						 NFS_LATTR_NOSHRINK));
1306 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
1307 			eof = fxdr_unsigned(int, *(tl + 1));
1308 		} else {
1309 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1310 		}
1311 		NEGATIVEOUT(retlen = nfsm_strsiz(&info, len));
1312 		ERROROUT(nfsm_mtouio(&info, uiop, retlen));
1313 		m_freem(info.mrep);
1314 		info.mrep = NULL;
1315 
1316 		/*
1317 		 * Handle short-read from server (NFSv3).  If EOF is not
1318 		 * flagged (and no error occurred), but retlen is less
1319 		 * then the request size, we must zero-fill the remainder.
1320 		 */
1321 		if (retlen < len && info.v3 && eof == 0) {
1322 			ERROROUT(uiomovez(len - retlen, uiop));
1323 			retlen = len;
1324 		}
1325 		tsiz -= retlen;
1326 
1327 		/*
1328 		 * Terminate loop on EOF or zero-length read.
1329 		 *
1330 		 * For NFSv2 a short-read indicates EOF, not zero-fill,
1331 		 * and also terminates the loop.
1332 		 */
1333 		if (info.v3) {
1334 			if (eof || retlen == 0)
1335 				tsiz = 0;
1336 		} else if (retlen < len) {
1337 			tsiz = 0;
1338 		}
1339 	}
1340 nfsmout:
1341 	return (error);
1342 }
1343 
1344 /*
1345  * nfs write call
1346  */
1347 int
1348 nfs_writerpc_uio(struct vnode *vp, struct uio *uiop,
1349 		 int *iomode, int *must_commit)
1350 {
1351 	u_int32_t *tl;
1352 	int32_t backup;
1353 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1354 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1355 	int  committed = NFSV3WRITE_FILESYNC;
1356 	struct nfsm_info info;
1357 
1358 	info.mrep = NULL;
1359 	info.v3 = NFS_ISV3(vp);
1360 
1361 #ifndef DIAGNOSTIC
1362 	if (uiop->uio_iovcnt != 1)
1363 		panic("nfs: writerpc iovcnt > 1");
1364 #endif
1365 	*must_commit = 0;
1366 	tsiz = uiop->uio_resid;
1367 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1368 		return (EFBIG);
1369 	while (tsiz > 0) {
1370 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1371 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1372 		nfsm_reqhead(&info, vp, NFSPROC_WRITE,
1373 			     NFSX_FH(info.v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1374 		ERROROUT(nfsm_fhtom(&info, vp));
1375 		if (info.v3) {
1376 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
1377 			txdr_hyper(uiop->uio_offset, tl);
1378 			tl += 2;
1379 			*tl++ = txdr_unsigned(len);
1380 			*tl++ = txdr_unsigned(*iomode);
1381 			*tl = txdr_unsigned(len);
1382 		} else {
1383 			u_int32_t x;
1384 
1385 			tl = nfsm_build(&info, 4 * NFSX_UNSIGNED);
1386 			/* Set both "begin" and "current" to non-garbage. */
1387 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1388 			*tl++ = x;	/* "begin offset" */
1389 			*tl++ = x;	/* "current offset" */
1390 			x = txdr_unsigned(len);
1391 			*tl++ = x;	/* total to this offset */
1392 			*tl = x;	/* size of this write */
1393 		}
1394 		ERROROUT(nfsm_uiotom(&info, uiop, len));
1395 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_WRITE, uiop->uio_td,
1396 					nfs_vpcred(vp, ND_WRITE), &error));
1397 		if (info.v3) {
1398 			/*
1399 			 * The write RPC returns a before and after mtime.  The
1400 			 * nfsm_wcc_data() macro checks the before n_mtime
1401 			 * against the before time and stores the after time
1402 			 * in the nfsnode's cached vattr and n_mtime field.
1403 			 * The NRMODIFIED bit will be set if the before
1404 			 * time did not match the original mtime.
1405 			 */
1406 			wccflag = NFSV3_WCCCHK;
1407 			ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
1408 			if (error == 0) {
1409 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1410 				rlen = fxdr_unsigned(int, *tl++);
1411 				if (rlen == 0) {
1412 					error = NFSERR_IO;
1413 					m_freem(info.mrep);
1414 					info.mrep = NULL;
1415 					break;
1416 				} else if (rlen < len) {
1417 					backup = len - rlen;
1418 					uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1419 					uiop->uio_iov->iov_len += backup;
1420 					uiop->uio_offset -= backup;
1421 					uiop->uio_resid += backup;
1422 					len = rlen;
1423 				}
1424 				commit = fxdr_unsigned(int, *tl++);
1425 
1426 				/*
1427 				 * Return the lowest committment level
1428 				 * obtained by any of the RPCs.
1429 				 */
1430 				if (committed == NFSV3WRITE_FILESYNC)
1431 					committed = commit;
1432 				else if (committed == NFSV3WRITE_DATASYNC &&
1433 					commit == NFSV3WRITE_UNSTABLE)
1434 					committed = commit;
1435 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1436 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1437 					NFSX_V3WRITEVERF);
1438 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1439 				} else if (bcmp((caddr_t)tl,
1440 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1441 				    *must_commit = 1;
1442 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1443 					NFSX_V3WRITEVERF);
1444 				}
1445 			}
1446 		} else {
1447 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1448 		}
1449 		m_freem(info.mrep);
1450 		info.mrep = NULL;
1451 		if (error)
1452 			break;
1453 		tsiz -= len;
1454 	}
1455 nfsmout:
1456 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1457 		committed = NFSV3WRITE_FILESYNC;
1458 	*iomode = committed;
1459 	if (error)
1460 		uiop->uio_resid = tsiz;
1461 	return (error);
1462 }
1463 
1464 /*
1465  * nfs mknod rpc
1466  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1467  * mode set to specify the file type and the size field for rdev.
1468  */
1469 static int
1470 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1471 	     struct vattr *vap)
1472 {
1473 	struct nfsv2_sattr *sp;
1474 	u_int32_t *tl;
1475 	struct vnode *newvp = NULL;
1476 	struct nfsnode *np = NULL;
1477 	struct vattr vattr;
1478 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1479 	int rmajor, rminor;
1480 	struct nfsm_info info;
1481 
1482 	info.mrep = NULL;
1483 	info.v3 = NFS_ISV3(dvp);
1484 
1485 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1486 		rmajor = txdr_unsigned(vap->va_rmajor);
1487 		rminor = txdr_unsigned(vap->va_rminor);
1488 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1489 		rmajor = nfs_xdrneg1;
1490 		rminor = nfs_xdrneg1;
1491 	} else {
1492 		return (EOPNOTSUPP);
1493 	}
1494 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1495 		return (error);
1496 	}
1497 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1498 	nfsm_reqhead(&info, dvp, NFSPROC_MKNOD,
1499 		     NFSX_FH(info.v3) + 4 * NFSX_UNSIGNED +
1500 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1501 	ERROROUT(nfsm_fhtom(&info, dvp));
1502 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1503 			     NFS_MAXNAMLEN));
1504 	if (info.v3) {
1505 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1506 		*tl++ = vtonfsv3_type(vap->va_type);
1507 		nfsm_v3attrbuild(&info, vap, FALSE);
1508 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1509 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1510 			*tl++ = txdr_unsigned(vap->va_rmajor);
1511 			*tl = txdr_unsigned(vap->va_rminor);
1512 		}
1513 	} else {
1514 		sp = nfsm_build(&info, NFSX_V2SATTR);
1515 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1516 		sp->sa_uid = nfs_xdrneg1;
1517 		sp->sa_gid = nfs_xdrneg1;
1518 		sp->sa_size = makeudev(rmajor, rminor);
1519 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1520 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1521 	}
1522 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKNOD, cnp->cn_td,
1523 				cnp->cn_cred, &error));
1524 	if (!error) {
1525 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1526 		if (!gotvp) {
1527 			if (newvp) {
1528 				vput(newvp);
1529 				newvp = NULL;
1530 			}
1531 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1532 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1533 			if (!error)
1534 				newvp = NFSTOV(np);
1535 		}
1536 	}
1537 	if (info.v3) {
1538 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1539 	}
1540 	m_freem(info.mrep);
1541 	info.mrep = NULL;
1542 nfsmout:
1543 	if (error) {
1544 		if (newvp)
1545 			vput(newvp);
1546 	} else {
1547 		*vpp = newvp;
1548 	}
1549 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1550 	if (!wccflag)
1551 		VTONFS(dvp)->n_attrstamp = 0;
1552 	return (error);
1553 }
1554 
1555 /*
1556  * nfs mknod vop
1557  * just call nfs_mknodrpc() to do the work.
1558  *
1559  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1560  *	     struct componentname *a_cnp, struct vattr *a_vap)
1561  */
1562 /* ARGSUSED */
1563 static int
1564 nfs_mknod(struct vop_old_mknod_args *ap)
1565 {
1566 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1567 }
1568 
1569 static u_long create_verf;
1570 /*
1571  * nfs file create call
1572  *
1573  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1574  *	      struct componentname *a_cnp, struct vattr *a_vap)
1575  */
1576 static int
1577 nfs_create(struct vop_old_create_args *ap)
1578 {
1579 	struct vnode *dvp = ap->a_dvp;
1580 	struct vattr *vap = ap->a_vap;
1581 	struct componentname *cnp = ap->a_cnp;
1582 	struct nfsv2_sattr *sp;
1583 	u_int32_t *tl;
1584 	struct nfsnode *np = NULL;
1585 	struct vnode *newvp = NULL;
1586 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1587 	struct vattr vattr;
1588 	struct nfsm_info info;
1589 
1590 	info.mrep = NULL;
1591 	info.v3 = NFS_ISV3(dvp);
1592 
1593 	/*
1594 	 * Oops, not for me..
1595 	 */
1596 	if (vap->va_type == VSOCK)
1597 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1598 
1599 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1600 		return (error);
1601 	}
1602 	if (vap->va_vaflags & VA_EXCLUSIVE)
1603 		fmode |= O_EXCL;
1604 again:
1605 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1606 	nfsm_reqhead(&info, dvp, NFSPROC_CREATE,
1607 		     NFSX_FH(info.v3) + 2 * NFSX_UNSIGNED +
1608 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1609 	ERROROUT(nfsm_fhtom(&info, dvp));
1610 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1611 			     NFS_MAXNAMLEN));
1612 	if (info.v3) {
1613 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1614 		if (fmode & O_EXCL) {
1615 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1616 			tl = nfsm_build(&info, NFSX_V3CREATEVERF);
1617 #ifdef INET
1618 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1619 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1620 			else
1621 #endif
1622 				*tl++ = create_verf;
1623 			*tl = ++create_verf;
1624 		} else {
1625 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1626 			nfsm_v3attrbuild(&info, vap, FALSE);
1627 		}
1628 	} else {
1629 		sp = nfsm_build(&info, NFSX_V2SATTR);
1630 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1631 		sp->sa_uid = nfs_xdrneg1;
1632 		sp->sa_gid = nfs_xdrneg1;
1633 		sp->sa_size = 0;
1634 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1635 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1636 	}
1637 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_CREATE, cnp->cn_td,
1638 				cnp->cn_cred, &error));
1639 	if (error == 0) {
1640 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1641 		if (!gotvp) {
1642 			if (newvp) {
1643 				vput(newvp);
1644 				newvp = NULL;
1645 			}
1646 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1647 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1648 			if (!error)
1649 				newvp = NFSTOV(np);
1650 		}
1651 	}
1652 	if (info.v3) {
1653 		if (error == 0)
1654 			error = nfsm_wcc_data(&info, dvp, &wccflag);
1655 		else
1656 			(void)nfsm_wcc_data(&info, dvp, &wccflag);
1657 	}
1658 	m_freem(info.mrep);
1659 	info.mrep = NULL;
1660 nfsmout:
1661 	if (error) {
1662 		if (info.v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1663 			KKASSERT(newvp == NULL);
1664 			fmode &= ~O_EXCL;
1665 			goto again;
1666 		}
1667 	} else if (info.v3 && (fmode & O_EXCL)) {
1668 		/*
1669 		 * We are normally called with only a partially initialized
1670 		 * VAP.  Since the NFSv3 spec says that server may use the
1671 		 * file attributes to store the verifier, the spec requires
1672 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1673 		 * in atime, but we can't really assume that all servers will
1674 		 * so we ensure that our SETATTR sets both atime and mtime.
1675 		 */
1676 		if (vap->va_mtime.tv_sec == VNOVAL)
1677 			vfs_timestamp(&vap->va_mtime);
1678 		if (vap->va_atime.tv_sec == VNOVAL)
1679 			vap->va_atime = vap->va_mtime;
1680 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1681 	}
1682 	if (error == 0) {
1683 		/*
1684 		 * The new np may have enough info for access
1685 		 * checks, make sure rucred and wucred are
1686 		 * initialized for read and write rpc's.
1687 		 */
1688 		np = VTONFS(newvp);
1689 		if (np->n_rucred == NULL)
1690 			np->n_rucred = crhold(cnp->cn_cred);
1691 		if (np->n_wucred == NULL)
1692 			np->n_wucred = crhold(cnp->cn_cred);
1693 		*ap->a_vpp = newvp;
1694 	} else if (newvp) {
1695 		vput(newvp);
1696 	}
1697 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1698 	if (!wccflag)
1699 		VTONFS(dvp)->n_attrstamp = 0;
1700 	return (error);
1701 }
1702 
1703 /*
1704  * nfs file remove call
1705  * To try and make nfs semantics closer to ufs semantics, a file that has
1706  * other processes using the vnode is renamed instead of removed and then
1707  * removed later on the last close.
1708  * - If v_sysref.refcnt > 1
1709  *	  If a rename is not already in the works
1710  *	     call nfs_sillyrename() to set it up
1711  *     else
1712  *	  do the remove rpc
1713  *
1714  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1715  *	      struct componentname *a_cnp)
1716  */
1717 static int
1718 nfs_remove(struct vop_old_remove_args *ap)
1719 {
1720 	struct vnode *vp = ap->a_vp;
1721 	struct vnode *dvp = ap->a_dvp;
1722 	struct componentname *cnp = ap->a_cnp;
1723 	struct nfsnode *np = VTONFS(vp);
1724 	int error = 0;
1725 	struct vattr vattr;
1726 
1727 #ifndef DIAGNOSTIC
1728 	if (vp->v_sysref.refcnt < 1)
1729 		panic("nfs_remove: bad v_sysref.refcnt");
1730 #endif
1731 	if (vp->v_type == VDIR)
1732 		error = EPERM;
1733 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1734 	    VOP_GETATTR(vp, &vattr) == 0 &&
1735 	    vattr.va_nlink > 1)) {
1736 		/*
1737 		 * throw away biocache buffers, mainly to avoid
1738 		 * unnecessary delayed writes later.
1739 		 */
1740 		error = nfs_vinvalbuf(vp, 0, 1);
1741 		/* Do the rpc */
1742 		if (error != EINTR)
1743 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1744 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1745 		/*
1746 		 * Kludge City: If the first reply to the remove rpc is lost..
1747 		 *   the reply to the retransmitted request will be ENOENT
1748 		 *   since the file was in fact removed
1749 		 *   Therefore, we cheat and return success.
1750 		 */
1751 		if (error == ENOENT)
1752 			error = 0;
1753 	} else if (!np->n_sillyrename) {
1754 		error = nfs_sillyrename(dvp, vp, cnp);
1755 	}
1756 	np->n_attrstamp = 0;
1757 	return (error);
1758 }
1759 
1760 /*
1761  * nfs file remove rpc called from nfs_inactive
1762  */
1763 int
1764 nfs_removeit(struct sillyrename *sp)
1765 {
1766 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1767 		sp->s_cred, NULL));
1768 }
1769 
1770 /*
1771  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1772  */
1773 static int
1774 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1775 	      struct ucred *cred, struct thread *td)
1776 {
1777 	int error = 0, wccflag = NFSV3_WCCRATTR;
1778 	struct nfsm_info info;
1779 
1780 	info.mrep = NULL;
1781 	info.v3 = NFS_ISV3(dvp);
1782 
1783 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1784 	nfsm_reqhead(&info, dvp, NFSPROC_REMOVE,
1785 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1786 	ERROROUT(nfsm_fhtom(&info, dvp));
1787 	ERROROUT(nfsm_strtom(&info, name, namelen, NFS_MAXNAMLEN));
1788 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_REMOVE, td, cred, &error));
1789 	if (info.v3) {
1790 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1791 	}
1792 	m_freem(info.mrep);
1793 	info.mrep = NULL;
1794 nfsmout:
1795 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1796 	if (!wccflag)
1797 		VTONFS(dvp)->n_attrstamp = 0;
1798 	return (error);
1799 }
1800 
1801 /*
1802  * nfs file rename call
1803  *
1804  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1805  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1806  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1807  */
1808 static int
1809 nfs_rename(struct vop_old_rename_args *ap)
1810 {
1811 	struct vnode *fvp = ap->a_fvp;
1812 	struct vnode *tvp = ap->a_tvp;
1813 	struct vnode *fdvp = ap->a_fdvp;
1814 	struct vnode *tdvp = ap->a_tdvp;
1815 	struct componentname *tcnp = ap->a_tcnp;
1816 	struct componentname *fcnp = ap->a_fcnp;
1817 	int error;
1818 
1819 	/* Check for cross-device rename */
1820 	if ((fvp->v_mount != tdvp->v_mount) ||
1821 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1822 		error = EXDEV;
1823 		goto out;
1824 	}
1825 
1826 	/*
1827 	 * We shouldn't have to flush fvp on rename for most server-side
1828 	 * filesystems as the file handle should not change.  Unfortunately
1829 	 * the inode for some filesystems (msdosfs) might be tied to the
1830 	 * file name or directory position so to be completely safe
1831 	 * vfs.nfs.flush_on_rename is set by default.  Clear to improve
1832 	 * performance.
1833 	 *
1834 	 * We must flush tvp on rename because it might become stale on the
1835 	 * server after the rename.
1836 	 */
1837 	if (nfs_flush_on_rename)
1838 	    VOP_FSYNC(fvp, MNT_WAIT, 0);
1839 	if (tvp)
1840 	    VOP_FSYNC(tvp, MNT_WAIT, 0);
1841 
1842 	/*
1843 	 * If the tvp exists and is in use, sillyrename it before doing the
1844 	 * rename of the new file over it.
1845 	 *
1846 	 * XXX Can't sillyrename a directory.
1847 	 *
1848 	 * We do not attempt to do any namecache purges in this old API
1849 	 * routine.  The new API compat functions have access to the actual
1850 	 * namecache structures and will do it for us.
1851 	 */
1852 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1853 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1854 		vput(tvp);
1855 		tvp = NULL;
1856 	} else if (tvp) {
1857 		;
1858 	}
1859 
1860 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1861 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1862 		tcnp->cn_td);
1863 
1864 out:
1865 	if (tdvp == tvp)
1866 		vrele(tdvp);
1867 	else
1868 		vput(tdvp);
1869 	if (tvp)
1870 		vput(tvp);
1871 	vrele(fdvp);
1872 	vrele(fvp);
1873 	/*
1874 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1875 	 */
1876 	if (error == ENOENT)
1877 		error = 0;
1878 	return (error);
1879 }
1880 
1881 /*
1882  * nfs file rename rpc called from nfs_remove() above
1883  */
1884 static int
1885 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1886 	     struct sillyrename *sp)
1887 {
1888 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1889 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1890 }
1891 
1892 /*
1893  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1894  */
1895 static int
1896 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1897 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1898 	      struct ucred *cred, struct thread *td)
1899 {
1900 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1901 	struct nfsm_info info;
1902 
1903 	info.mrep = NULL;
1904 	info.v3 = NFS_ISV3(fdvp);
1905 
1906 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1907 	nfsm_reqhead(&info, fdvp, NFSPROC_RENAME,
1908 		    (NFSX_FH(info.v3) + NFSX_UNSIGNED)*2 +
1909 		    nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen));
1910 	ERROROUT(nfsm_fhtom(&info, fdvp));
1911 	ERROROUT(nfsm_strtom(&info, fnameptr, fnamelen, NFS_MAXNAMLEN));
1912 	ERROROUT(nfsm_fhtom(&info, tdvp));
1913 	ERROROUT(nfsm_strtom(&info, tnameptr, tnamelen, NFS_MAXNAMLEN));
1914 	NEGKEEPOUT(nfsm_request(&info, fdvp, NFSPROC_RENAME, td, cred, &error));
1915 	if (info.v3) {
1916 		ERROROUT(nfsm_wcc_data(&info, fdvp, &fwccflag));
1917 		ERROROUT(nfsm_wcc_data(&info, tdvp, &twccflag));
1918 	}
1919 	m_freem(info.mrep);
1920 	info.mrep = NULL;
1921 nfsmout:
1922 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1923 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1924 	if (!fwccflag)
1925 		VTONFS(fdvp)->n_attrstamp = 0;
1926 	if (!twccflag)
1927 		VTONFS(tdvp)->n_attrstamp = 0;
1928 	return (error);
1929 }
1930 
1931 /*
1932  * nfs hard link create call
1933  *
1934  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1935  *	    struct componentname *a_cnp)
1936  */
1937 static int
1938 nfs_link(struct vop_old_link_args *ap)
1939 {
1940 	struct vnode *vp = ap->a_vp;
1941 	struct vnode *tdvp = ap->a_tdvp;
1942 	struct componentname *cnp = ap->a_cnp;
1943 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1944 	struct nfsm_info info;
1945 
1946 	if (vp->v_mount != tdvp->v_mount) {
1947 		return (EXDEV);
1948 	}
1949 
1950 	/*
1951 	 * The attribute cache may get out of sync with the server on link.
1952 	 * Pushing writes to the server before handle was inherited from
1953 	 * long long ago and it is unclear if we still need to do this.
1954 	 * Defaults to off.
1955 	 */
1956 	if (nfs_flush_on_hlink)
1957 		VOP_FSYNC(vp, MNT_WAIT, 0);
1958 
1959 	info.mrep = NULL;
1960 	info.v3 = NFS_ISV3(vp);
1961 
1962 	nfsstats.rpccnt[NFSPROC_LINK]++;
1963 	nfsm_reqhead(&info, vp, NFSPROC_LINK,
1964 		     NFSX_FH(info.v3) * 2 + NFSX_UNSIGNED +
1965 		     nfsm_rndup(cnp->cn_namelen));
1966 	ERROROUT(nfsm_fhtom(&info, vp));
1967 	ERROROUT(nfsm_fhtom(&info, tdvp));
1968 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1969 			     NFS_MAXNAMLEN));
1970 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_LINK, cnp->cn_td,
1971 				cnp->cn_cred, &error));
1972 	if (info.v3) {
1973 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1974 					 NFS_LATTR_NOSHRINK));
1975 		ERROROUT(nfsm_wcc_data(&info, tdvp, &wccflag));
1976 	}
1977 	m_freem(info.mrep);
1978 	info.mrep = NULL;
1979 nfsmout:
1980 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1981 	if (!attrflag)
1982 		VTONFS(vp)->n_attrstamp = 0;
1983 	if (!wccflag)
1984 		VTONFS(tdvp)->n_attrstamp = 0;
1985 	/*
1986 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1987 	 */
1988 	if (error == EEXIST)
1989 		error = 0;
1990 	return (error);
1991 }
1992 
1993 /*
1994  * nfs symbolic link create call
1995  *
1996  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1997  *		struct componentname *a_cnp, struct vattr *a_vap,
1998  *		char *a_target)
1999  */
2000 static int
2001 nfs_symlink(struct vop_old_symlink_args *ap)
2002 {
2003 	struct vnode *dvp = ap->a_dvp;
2004 	struct vattr *vap = ap->a_vap;
2005 	struct componentname *cnp = ap->a_cnp;
2006 	struct nfsv2_sattr *sp;
2007 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
2008 	struct vnode *newvp = NULL;
2009 	struct nfsm_info info;
2010 
2011 	info.mrep = NULL;
2012 	info.v3 = NFS_ISV3(dvp);
2013 
2014 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
2015 	slen = strlen(ap->a_target);
2016 	nfsm_reqhead(&info, dvp, NFSPROC_SYMLINK,
2017 		     NFSX_FH(info.v3) + 2*NFSX_UNSIGNED +
2018 		     nfsm_rndup(cnp->cn_namelen) +
2019 		     nfsm_rndup(slen) + NFSX_SATTR(info.v3));
2020 	ERROROUT(nfsm_fhtom(&info, dvp));
2021 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2022 			     NFS_MAXNAMLEN));
2023 	if (info.v3) {
2024 		nfsm_v3attrbuild(&info, vap, FALSE);
2025 	}
2026 	ERROROUT(nfsm_strtom(&info, ap->a_target, slen, NFS_MAXPATHLEN));
2027 	if (info.v3 == 0) {
2028 		sp = nfsm_build(&info, NFSX_V2SATTR);
2029 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
2030 		sp->sa_uid = nfs_xdrneg1;
2031 		sp->sa_gid = nfs_xdrneg1;
2032 		sp->sa_size = nfs_xdrneg1;
2033 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2034 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2035 	}
2036 
2037 	/*
2038 	 * Issue the NFS request and get the rpc response.
2039 	 *
2040 	 * Only NFSv3 responses returning an error of 0 actually return
2041 	 * a file handle that can be converted into newvp without having
2042 	 * to do an extra lookup rpc.
2043 	 */
2044 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_SYMLINK, cnp->cn_td,
2045 				cnp->cn_cred, &error));
2046 	if (info.v3) {
2047 		if (error == 0) {
2048 		       ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2049 		}
2050 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2051 	}
2052 
2053 	/*
2054 	 * out code jumps -> here, mrep is also freed.
2055 	 */
2056 
2057 	m_freem(info.mrep);
2058 	info.mrep = NULL;
2059 nfsmout:
2060 
2061 	/*
2062 	 * If we get an EEXIST error, silently convert it to no-error
2063 	 * in case of an NFS retry.
2064 	 */
2065 	if (error == EEXIST)
2066 		error = 0;
2067 
2068 	/*
2069 	 * If we do not have (or no longer have) an error, and we could
2070 	 * not extract the newvp from the response due to the request being
2071 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
2072 	 * to obtain a newvp to return.
2073 	 */
2074 	if (error == 0 && newvp == NULL) {
2075 		struct nfsnode *np = NULL;
2076 
2077 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2078 		    cnp->cn_cred, cnp->cn_td, &np);
2079 		if (!error)
2080 			newvp = NFSTOV(np);
2081 	}
2082 	if (error) {
2083 		if (newvp)
2084 			vput(newvp);
2085 	} else {
2086 		*ap->a_vpp = newvp;
2087 	}
2088 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2089 	if (!wccflag)
2090 		VTONFS(dvp)->n_attrstamp = 0;
2091 	return (error);
2092 }
2093 
2094 /*
2095  * nfs make dir call
2096  *
2097  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2098  *	     struct componentname *a_cnp, struct vattr *a_vap)
2099  */
2100 static int
2101 nfs_mkdir(struct vop_old_mkdir_args *ap)
2102 {
2103 	struct vnode *dvp = ap->a_dvp;
2104 	struct vattr *vap = ap->a_vap;
2105 	struct componentname *cnp = ap->a_cnp;
2106 	struct nfsv2_sattr *sp;
2107 	struct nfsnode *np = NULL;
2108 	struct vnode *newvp = NULL;
2109 	struct vattr vattr;
2110 	int error = 0, wccflag = NFSV3_WCCRATTR;
2111 	int gotvp = 0;
2112 	int len;
2113 	struct nfsm_info info;
2114 
2115 	info.mrep = NULL;
2116 	info.v3 = NFS_ISV3(dvp);
2117 
2118 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2119 		return (error);
2120 	}
2121 	len = cnp->cn_namelen;
2122 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2123 	nfsm_reqhead(&info, dvp, NFSPROC_MKDIR,
2124 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2125 		     nfsm_rndup(len) + NFSX_SATTR(info.v3));
2126 	ERROROUT(nfsm_fhtom(&info, dvp));
2127 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
2128 	if (info.v3) {
2129 		nfsm_v3attrbuild(&info, vap, FALSE);
2130 	} else {
2131 		sp = nfsm_build(&info, NFSX_V2SATTR);
2132 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2133 		sp->sa_uid = nfs_xdrneg1;
2134 		sp->sa_gid = nfs_xdrneg1;
2135 		sp->sa_size = nfs_xdrneg1;
2136 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2137 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2138 	}
2139 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKDIR, cnp->cn_td,
2140 		    cnp->cn_cred, &error));
2141 	if (error == 0) {
2142 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2143 	}
2144 	if (info.v3) {
2145 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2146 	}
2147 	m_freem(info.mrep);
2148 	info.mrep = NULL;
2149 nfsmout:
2150 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2151 	if (!wccflag)
2152 		VTONFS(dvp)->n_attrstamp = 0;
2153 	/*
2154 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2155 	 * if we can succeed in looking up the directory.
2156 	 */
2157 	if (error == EEXIST || (!error && !gotvp)) {
2158 		if (newvp) {
2159 			vrele(newvp);
2160 			newvp = NULL;
2161 		}
2162 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2163 			cnp->cn_td, &np);
2164 		if (!error) {
2165 			newvp = NFSTOV(np);
2166 			if (newvp->v_type != VDIR)
2167 				error = EEXIST;
2168 		}
2169 	}
2170 	if (error) {
2171 		if (newvp)
2172 			vrele(newvp);
2173 	} else
2174 		*ap->a_vpp = newvp;
2175 	return (error);
2176 }
2177 
2178 /*
2179  * nfs remove directory call
2180  *
2181  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2182  *	     struct componentname *a_cnp)
2183  */
2184 static int
2185 nfs_rmdir(struct vop_old_rmdir_args *ap)
2186 {
2187 	struct vnode *vp = ap->a_vp;
2188 	struct vnode *dvp = ap->a_dvp;
2189 	struct componentname *cnp = ap->a_cnp;
2190 	int error = 0, wccflag = NFSV3_WCCRATTR;
2191 	struct nfsm_info info;
2192 
2193 	info.mrep = NULL;
2194 	info.v3 = NFS_ISV3(dvp);
2195 
2196 	if (dvp == vp)
2197 		return (EINVAL);
2198 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2199 	nfsm_reqhead(&info, dvp, NFSPROC_RMDIR,
2200 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2201 		     nfsm_rndup(cnp->cn_namelen));
2202 	ERROROUT(nfsm_fhtom(&info, dvp));
2203 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2204 		 NFS_MAXNAMLEN));
2205 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_RMDIR, cnp->cn_td,
2206 				cnp->cn_cred, &error));
2207 	if (info.v3) {
2208 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2209 	}
2210 	m_freem(info.mrep);
2211 	info.mrep = NULL;
2212 nfsmout:
2213 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2214 	if (!wccflag)
2215 		VTONFS(dvp)->n_attrstamp = 0;
2216 	/*
2217 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2218 	 */
2219 	if (error == ENOENT)
2220 		error = 0;
2221 	return (error);
2222 }
2223 
2224 /*
2225  * nfs readdir call
2226  *
2227  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2228  */
2229 static int
2230 nfs_readdir(struct vop_readdir_args *ap)
2231 {
2232 	struct vnode *vp = ap->a_vp;
2233 	struct nfsnode *np = VTONFS(vp);
2234 	struct uio *uio = ap->a_uio;
2235 	int tresid, error;
2236 	struct vattr vattr;
2237 
2238 	if (vp->v_type != VDIR)
2239 		return (EPERM);
2240 
2241 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2242 		return (error);
2243 
2244 	/*
2245 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2246 	 * and then check that is still valid, or if this is an NQNFS mount
2247 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2248 	 * VOP_GETATTR() does not necessarily go to the wire.
2249 	 */
2250 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2251 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2252 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2253 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2254 		) {
2255 			nfsstats.direofcache_hits++;
2256 			goto done;
2257 		}
2258 	}
2259 
2260 	/*
2261 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2262 	 * own cache coherency checks so we do not have to.
2263 	 */
2264 	tresid = uio->uio_resid;
2265 	error = nfs_bioread(vp, uio, 0);
2266 
2267 	if (!error && uio->uio_resid == tresid)
2268 		nfsstats.direofcache_misses++;
2269 done:
2270 	vn_unlock(vp);
2271 	return (error);
2272 }
2273 
2274 /*
2275  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2276  *
2277  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2278  * offset/block and converts the nfs formatted directory entries for userland
2279  * consumption as well as deals with offsets into the middle of blocks.
2280  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2281  * be block-bounded.  It must convert to cookies for the actual RPC.
2282  */
2283 int
2284 nfs_readdirrpc_uio(struct vnode *vp, struct uio *uiop)
2285 {
2286 	int len, left;
2287 	struct nfs_dirent *dp = NULL;
2288 	u_int32_t *tl;
2289 	nfsuint64 *cookiep;
2290 	caddr_t cp;
2291 	nfsuint64 cookie;
2292 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2293 	struct nfsnode *dnp = VTONFS(vp);
2294 	u_quad_t fileno;
2295 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2296 	int attrflag;
2297 	struct nfsm_info info;
2298 
2299 	info.mrep = NULL;
2300 	info.v3 = NFS_ISV3(vp);
2301 
2302 #ifndef DIAGNOSTIC
2303 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2304 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2305 		panic("nfs readdirrpc bad uio");
2306 #endif
2307 
2308 	/*
2309 	 * If there is no cookie, assume directory was stale.
2310 	 */
2311 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2312 	if (cookiep)
2313 		cookie = *cookiep;
2314 	else
2315 		return (NFSERR_BAD_COOKIE);
2316 	/*
2317 	 * Loop around doing readdir rpc's of size nm_readdirsize
2318 	 * truncated to a multiple of DIRBLKSIZ.
2319 	 * The stopping criteria is EOF or buffer full.
2320 	 */
2321 	while (more_dirs && bigenough) {
2322 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2323 		nfsm_reqhead(&info, vp, NFSPROC_READDIR,
2324 			     NFSX_FH(info.v3) + NFSX_READDIR(info.v3));
2325 		ERROROUT(nfsm_fhtom(&info, vp));
2326 		if (info.v3) {
2327 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
2328 			*tl++ = cookie.nfsuquad[0];
2329 			*tl++ = cookie.nfsuquad[1];
2330 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2331 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2332 		} else {
2333 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
2334 			*tl++ = cookie.nfsuquad[0];
2335 		}
2336 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2337 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIR,
2338 					uiop->uio_td,
2339 					nfs_vpcred(vp, ND_READ), &error));
2340 		if (info.v3) {
2341 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2342 						  NFS_LATTR_NOSHRINK));
2343 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2344 			dnp->n_cookieverf.nfsuquad[0] = *tl++;
2345 			dnp->n_cookieverf.nfsuquad[1] = *tl;
2346 		}
2347 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2348 		more_dirs = fxdr_unsigned(int, *tl);
2349 
2350 		/* loop thru the dir entries, converting them to std form */
2351 		while (more_dirs && bigenough) {
2352 			if (info.v3) {
2353 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2354 				fileno = fxdr_hyper(tl);
2355 				len = fxdr_unsigned(int, *(tl + 2));
2356 			} else {
2357 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2358 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2359 				len = fxdr_unsigned(int, *tl);
2360 			}
2361 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2362 				error = EBADRPC;
2363 				m_freem(info.mrep);
2364 				info.mrep = NULL;
2365 				goto nfsmout;
2366 			}
2367 
2368 			/*
2369 			 * len is the number of bytes in the path element
2370 			 * name, not including the \0 termination.
2371 			 *
2372 			 * tlen is the number of bytes w have to reserve for
2373 			 * the path element name.
2374 			 */
2375 			tlen = nfsm_rndup(len);
2376 			if (tlen == len)
2377 				tlen += 4;	/* To ensure null termination */
2378 
2379 			/*
2380 			 * If the entry would cross a DIRBLKSIZ boundary,
2381 			 * extend the previous nfs_dirent to cover the
2382 			 * remaining space.
2383 			 */
2384 			left = DIRBLKSIZ - blksiz;
2385 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2386 				dp->nfs_reclen += left;
2387 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2388 				uiop->uio_iov->iov_len -= left;
2389 				uiop->uio_offset += left;
2390 				uiop->uio_resid -= left;
2391 				blksiz = 0;
2392 			}
2393 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2394 				bigenough = 0;
2395 			if (bigenough) {
2396 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2397 				dp->nfs_ino = fileno;
2398 				dp->nfs_namlen = len;
2399 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2400 				dp->nfs_type = DT_UNKNOWN;
2401 				blksiz += dp->nfs_reclen;
2402 				if (blksiz == DIRBLKSIZ)
2403 					blksiz = 0;
2404 				uiop->uio_offset += sizeof(struct nfs_dirent);
2405 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2406 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2407 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2408 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2409 
2410 				/*
2411 				 * The uiop has advanced by nfs_dirent + len
2412 				 * but really needs to advance by
2413 				 * nfs_dirent + tlen
2414 				 */
2415 				cp = uiop->uio_iov->iov_base;
2416 				tlen -= len;
2417 				*cp = '\0';	/* null terminate */
2418 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2419 				uiop->uio_iov->iov_len -= tlen;
2420 				uiop->uio_offset += tlen;
2421 				uiop->uio_resid -= tlen;
2422 			} else {
2423 				/*
2424 				 * NFS strings must be rounded up (nfsm_myouio
2425 				 * handled that in the bigenough case).
2426 				 */
2427 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2428 			}
2429 			if (info.v3) {
2430 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2431 			} else {
2432 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2433 			}
2434 
2435 			/*
2436 			 * If we were able to accomodate the last entry,
2437 			 * get the cookie for the next one.  Otherwise
2438 			 * hold-over the cookie for the one we were not
2439 			 * able to accomodate.
2440 			 */
2441 			if (bigenough) {
2442 				cookie.nfsuquad[0] = *tl++;
2443 				if (info.v3)
2444 					cookie.nfsuquad[1] = *tl++;
2445 			} else if (info.v3) {
2446 				tl += 2;
2447 			} else {
2448 				tl++;
2449 			}
2450 			more_dirs = fxdr_unsigned(int, *tl);
2451 		}
2452 		/*
2453 		 * If at end of rpc data, get the eof boolean
2454 		 */
2455 		if (!more_dirs) {
2456 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2457 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2458 		}
2459 		m_freem(info.mrep);
2460 		info.mrep = NULL;
2461 	}
2462 	/*
2463 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2464 	 * by increasing d_reclen for the last record.
2465 	 */
2466 	if (blksiz > 0) {
2467 		left = DIRBLKSIZ - blksiz;
2468 		dp->nfs_reclen += left;
2469 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2470 		uiop->uio_iov->iov_len -= left;
2471 		uiop->uio_offset += left;
2472 		uiop->uio_resid -= left;
2473 	}
2474 
2475 	if (bigenough) {
2476 		/*
2477 		 * We hit the end of the directory, update direofoffset.
2478 		 */
2479 		dnp->n_direofoffset = uiop->uio_offset;
2480 	} else {
2481 		/*
2482 		 * There is more to go, insert the link cookie so the
2483 		 * next block can be read.
2484 		 */
2485 		if (uiop->uio_resid > 0)
2486 			kprintf("EEK! readdirrpc resid > 0\n");
2487 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2488 		*cookiep = cookie;
2489 	}
2490 nfsmout:
2491 	return (error);
2492 }
2493 
2494 /*
2495  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2496  */
2497 int
2498 nfs_readdirplusrpc_uio(struct vnode *vp, struct uio *uiop)
2499 {
2500 	int len, left;
2501 	struct nfs_dirent *dp;
2502 	u_int32_t *tl;
2503 	struct vnode *newvp;
2504 	nfsuint64 *cookiep;
2505 	caddr_t dpossav1, dpossav2;
2506 	caddr_t cp;
2507 	struct mbuf *mdsav1, *mdsav2;
2508 	nfsuint64 cookie;
2509 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2510 	struct nfsnode *dnp = VTONFS(vp), *np;
2511 	nfsfh_t *fhp;
2512 	u_quad_t fileno;
2513 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2514 	int attrflag, fhsize;
2515 	struct nchandle nch;
2516 	struct nchandle dnch;
2517 	struct nlcomponent nlc;
2518 	struct nfsm_info info;
2519 
2520 	info.mrep = NULL;
2521 	info.v3 = 1;
2522 
2523 #ifndef nolint
2524 	dp = NULL;
2525 #endif
2526 #ifndef DIAGNOSTIC
2527 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2528 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2529 		panic("nfs readdirplusrpc bad uio");
2530 #endif
2531 	/*
2532 	 * Obtain the namecache record for the directory so we have something
2533 	 * to use as a basis for creating the entries.  This function will
2534 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2535 	 * from the tree and cannot be used for upward traversals, and the
2536 	 * ncp may be unnamed.  Note that other unrelated operations may
2537 	 * cause the ncp to be named at any time.
2538 	 *
2539 	 * We have to lock the ncp to prevent a lock order reversal when
2540 	 * rdirplus does nlookups of the children, because the vnode is
2541 	 * locked and has to stay that way.
2542 	 */
2543 	cache_fromdvp(vp, NULL, 0, &dnch);
2544 	bzero(&nlc, sizeof(nlc));
2545 	newvp = NULLVP;
2546 
2547 	/*
2548 	 * If there is no cookie, assume directory was stale.
2549 	 */
2550 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2551 	if (cookiep) {
2552 		cookie = *cookiep;
2553 	} else {
2554 		if (dnch.ncp)
2555 			cache_drop(&dnch);
2556 		return (NFSERR_BAD_COOKIE);
2557 	}
2558 
2559 	/*
2560 	 * Loop around doing readdir rpc's of size nm_readdirsize
2561 	 * truncated to a multiple of DIRBLKSIZ.
2562 	 * The stopping criteria is EOF or buffer full.
2563 	 */
2564 	while (more_dirs && bigenough) {
2565 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2566 		nfsm_reqhead(&info, vp, NFSPROC_READDIRPLUS,
2567 			     NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2568 		ERROROUT(nfsm_fhtom(&info, vp));
2569 		tl = nfsm_build(&info, 6 * NFSX_UNSIGNED);
2570 		*tl++ = cookie.nfsuquad[0];
2571 		*tl++ = cookie.nfsuquad[1];
2572 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2573 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2574 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2575 		*tl = txdr_unsigned(nmp->nm_rsize);
2576 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIRPLUS,
2577 					uiop->uio_td,
2578 					nfs_vpcred(vp, ND_READ), &error));
2579 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2580 					  NFS_LATTR_NOSHRINK));
2581 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2582 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2583 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2584 		more_dirs = fxdr_unsigned(int, *tl);
2585 
2586 		/* loop thru the dir entries, doctoring them to 4bsd form */
2587 		while (more_dirs && bigenough) {
2588 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2589 			fileno = fxdr_hyper(tl);
2590 			len = fxdr_unsigned(int, *(tl + 2));
2591 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2592 				error = EBADRPC;
2593 				m_freem(info.mrep);
2594 				info.mrep = NULL;
2595 				goto nfsmout;
2596 			}
2597 			tlen = nfsm_rndup(len);
2598 			if (tlen == len)
2599 				tlen += 4;	/* To ensure null termination*/
2600 			left = DIRBLKSIZ - blksiz;
2601 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2602 				dp->nfs_reclen += left;
2603 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2604 				uiop->uio_iov->iov_len -= left;
2605 				uiop->uio_offset += left;
2606 				uiop->uio_resid -= left;
2607 				blksiz = 0;
2608 			}
2609 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2610 				bigenough = 0;
2611 			if (bigenough) {
2612 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2613 				dp->nfs_ino = fileno;
2614 				dp->nfs_namlen = len;
2615 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2616 				dp->nfs_type = DT_UNKNOWN;
2617 				blksiz += dp->nfs_reclen;
2618 				if (blksiz == DIRBLKSIZ)
2619 					blksiz = 0;
2620 				uiop->uio_offset += sizeof(struct nfs_dirent);
2621 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2622 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2623 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2624 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2625 				nlc.nlc_namelen = len;
2626 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2627 				cp = uiop->uio_iov->iov_base;
2628 				tlen -= len;
2629 				*cp = '\0';
2630 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2631 				uiop->uio_iov->iov_len -= tlen;
2632 				uiop->uio_offset += tlen;
2633 				uiop->uio_resid -= tlen;
2634 			} else {
2635 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2636 			}
2637 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2638 			if (bigenough) {
2639 				cookie.nfsuquad[0] = *tl++;
2640 				cookie.nfsuquad[1] = *tl++;
2641 			} else {
2642 				tl += 2;
2643 			}
2644 
2645 			/*
2646 			 * Since the attributes are before the file handle
2647 			 * (sigh), we must skip over the attributes and then
2648 			 * come back and get them.
2649 			 */
2650 			attrflag = fxdr_unsigned(int, *tl);
2651 			if (attrflag) {
2652 			    dpossav1 = info.dpos;
2653 			    mdsav1 = info.md;
2654 			    ERROROUT(nfsm_adv(&info, NFSX_V3FATTR));
2655 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2656 			    doit = fxdr_unsigned(int, *tl);
2657 			    if (doit) {
2658 				NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
2659 			    }
2660 			    if (doit && bigenough && !nlcdegenerate(&nlc) &&
2661 				!NFS_CMPFH(dnp, fhp, fhsize)
2662 			    ) {
2663 				if (dnch.ncp) {
2664 #if 0
2665 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2666 					nlc.nlc_namelen, nlc.nlc_namelen,
2667 					nlc.nlc_nameptr);
2668 #endif
2669 				    /*
2670 				     * This is a bit hokey but there isn't
2671 				     * much we can do about it.  We can't
2672 				     * hold the directory vp locked while
2673 				     * doing lookups and gets.
2674 				     */
2675 				    nch = cache_nlookup_nonblock(&dnch, &nlc);
2676 				    if (nch.ncp == NULL)
2677 					goto rdfail;
2678 				    cache_setunresolved(&nch);
2679 				    error = nfs_nget_nonblock(vp->v_mount, fhp,
2680 							      fhsize, &np);
2681 				    if (error) {
2682 					cache_put(&nch);
2683 					goto rdfail;
2684 				    }
2685 				    newvp = NFSTOV(np);
2686 				    dpossav2 = info.dpos;
2687 				    info.dpos = dpossav1;
2688 				    mdsav2 = info.md;
2689 				    info.md = mdsav1;
2690 				    ERROROUT(nfsm_loadattr(&info, newvp, NULL));
2691 				    info.dpos = dpossav2;
2692 				    info.md = mdsav2;
2693 				    dp->nfs_type =
2694 					    IFTODT(VTTOIF(np->n_vattr.va_type));
2695 				    nfs_cache_setvp(&nch, newvp,
2696 						    nfspos_cache_timeout);
2697 				    vput(newvp);
2698 				    newvp = NULLVP;
2699 				    cache_put(&nch);
2700 				} else {
2701 rdfail:
2702 				    ;
2703 #if 0
2704 				    kprintf("Warning: NFS/rddirplus, "
2705 					    "UNABLE TO ENTER %*.*s\n",
2706 					nlc.nlc_namelen, nlc.nlc_namelen,
2707 					nlc.nlc_nameptr);
2708 #endif
2709 				}
2710 			    }
2711 			} else {
2712 			    /* Just skip over the file handle */
2713 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2714 			    i = fxdr_unsigned(int, *tl);
2715 			    ERROROUT(nfsm_adv(&info, nfsm_rndup(i)));
2716 			}
2717 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2718 			more_dirs = fxdr_unsigned(int, *tl);
2719 		}
2720 		/*
2721 		 * If at end of rpc data, get the eof boolean
2722 		 */
2723 		if (!more_dirs) {
2724 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2725 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2726 		}
2727 		m_freem(info.mrep);
2728 		info.mrep = NULL;
2729 	}
2730 	/*
2731 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2732 	 * by increasing d_reclen for the last record.
2733 	 */
2734 	if (blksiz > 0) {
2735 		left = DIRBLKSIZ - blksiz;
2736 		dp->nfs_reclen += left;
2737 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2738 		uiop->uio_iov->iov_len -= left;
2739 		uiop->uio_offset += left;
2740 		uiop->uio_resid -= left;
2741 	}
2742 
2743 	/*
2744 	 * We are now either at the end of the directory or have filled the
2745 	 * block.
2746 	 */
2747 	if (bigenough) {
2748 		dnp->n_direofoffset = uiop->uio_offset;
2749 	} else {
2750 		if (uiop->uio_resid > 0)
2751 			kprintf("EEK! readdirplusrpc resid > 0\n");
2752 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2753 		*cookiep = cookie;
2754 	}
2755 nfsmout:
2756 	if (newvp != NULLVP) {
2757 	        if (newvp == vp)
2758 			vrele(newvp);
2759 		else
2760 			vput(newvp);
2761 		newvp = NULLVP;
2762 	}
2763 	if (dnch.ncp)
2764 		cache_drop(&dnch);
2765 	return (error);
2766 }
2767 
2768 /*
2769  * Silly rename. To make the NFS filesystem that is stateless look a little
2770  * more like the "ufs" a remove of an active vnode is translated to a rename
2771  * to a funny looking filename that is removed by nfs_inactive on the
2772  * nfsnode. There is the potential for another process on a different client
2773  * to create the same funny name between the nfs_lookitup() fails and the
2774  * nfs_rename() completes, but...
2775  */
2776 static int
2777 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2778 {
2779 	struct sillyrename *sp;
2780 	struct nfsnode *np;
2781 	int error;
2782 
2783 	/*
2784 	 * We previously purged dvp instead of vp.  I don't know why, it
2785 	 * completely destroys performance.  We can't do it anyway with the
2786 	 * new VFS API since we would be breaking the namecache topology.
2787 	 */
2788 	cache_purge(vp);	/* XXX */
2789 	np = VTONFS(vp);
2790 #ifndef DIAGNOSTIC
2791 	if (vp->v_type == VDIR)
2792 		panic("nfs: sillyrename dir");
2793 #endif
2794 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2795 		M_NFSREQ, M_WAITOK);
2796 	sp->s_cred = crdup(cnp->cn_cred);
2797 	sp->s_dvp = dvp;
2798 	vref(dvp);
2799 
2800 	/* Fudge together a funny name */
2801 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4",
2802 				(int)(intptr_t)cnp->cn_td);
2803 
2804 	/* Try lookitups until we get one that isn't there */
2805 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2806 		cnp->cn_td, NULL) == 0) {
2807 		sp->s_name[4]++;
2808 		if (sp->s_name[4] > 'z') {
2809 			error = EINVAL;
2810 			goto bad;
2811 		}
2812 	}
2813 	error = nfs_renameit(dvp, cnp, sp);
2814 	if (error)
2815 		goto bad;
2816 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2817 		cnp->cn_td, &np);
2818 	np->n_sillyrename = sp;
2819 	return (0);
2820 bad:
2821 	vrele(sp->s_dvp);
2822 	crfree(sp->s_cred);
2823 	kfree((caddr_t)sp, M_NFSREQ);
2824 	return (error);
2825 }
2826 
2827 /*
2828  * Look up a file name and optionally either update the file handle or
2829  * allocate an nfsnode, depending on the value of npp.
2830  * npp == NULL	--> just do the lookup
2831  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2832  *			handled too
2833  * *npp != NULL --> update the file handle in the vnode
2834  */
2835 static int
2836 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2837 	     struct thread *td, struct nfsnode **npp)
2838 {
2839 	struct vnode *newvp = NULL;
2840 	struct nfsnode *np, *dnp = VTONFS(dvp);
2841 	int error = 0, fhlen, attrflag;
2842 	nfsfh_t *nfhp;
2843 	struct nfsm_info info;
2844 
2845 	info.mrep = NULL;
2846 	info.v3 = NFS_ISV3(dvp);
2847 
2848 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2849 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
2850 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2851 	ERROROUT(nfsm_fhtom(&info, dvp));
2852 	ERROROUT(nfsm_strtom(&info, name, len, NFS_MAXNAMLEN));
2853 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, cred, &error));
2854 	if (npp && !error) {
2855 		NEGATIVEOUT(fhlen = nfsm_getfh(&info, &nfhp));
2856 		if (*npp) {
2857 		    np = *npp;
2858 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2859 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2860 			np->n_fhp = &np->n_fh;
2861 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2862 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2863 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2864 		    np->n_fhsize = fhlen;
2865 		    newvp = NFSTOV(np);
2866 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2867 		    vref(dvp);
2868 		    newvp = dvp;
2869 		} else {
2870 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2871 		    if (error) {
2872 			m_freem(info.mrep);
2873 			info.mrep = NULL;
2874 			return (error);
2875 		    }
2876 		    newvp = NFSTOV(np);
2877 		}
2878 		if (info.v3) {
2879 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
2880 						  NFS_LATTR_NOSHRINK));
2881 			if (!attrflag && *npp == NULL) {
2882 				m_freem(info.mrep);
2883 				info.mrep = NULL;
2884 				if (newvp == dvp)
2885 					vrele(newvp);
2886 				else
2887 					vput(newvp);
2888 				return (ENOENT);
2889 			}
2890 		} else {
2891 			ERROROUT(error = nfsm_loadattr(&info, newvp, NULL));
2892 		}
2893 	}
2894 	m_freem(info.mrep);
2895 	info.mrep = NULL;
2896 nfsmout:
2897 	if (npp && *npp == NULL) {
2898 		if (error) {
2899 			if (newvp) {
2900 				if (newvp == dvp)
2901 					vrele(newvp);
2902 				else
2903 					vput(newvp);
2904 			}
2905 		} else
2906 			*npp = np;
2907 	}
2908 	return (error);
2909 }
2910 
2911 /*
2912  * Nfs Version 3 commit rpc
2913  *
2914  * We call it 'uio' to distinguish it from 'bio' but there is no real uio
2915  * involved.
2916  */
2917 int
2918 nfs_commitrpc_uio(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2919 {
2920 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2921 	int error = 0, wccflag = NFSV3_WCCRATTR;
2922 	struct nfsm_info info;
2923 	u_int32_t *tl;
2924 
2925 	info.mrep = NULL;
2926 	info.v3 = 1;
2927 
2928 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2929 		return (0);
2930 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2931 	nfsm_reqhead(&info, vp, NFSPROC_COMMIT, NFSX_FH(1));
2932 	ERROROUT(nfsm_fhtom(&info, vp));
2933 	tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
2934 	txdr_hyper(offset, tl);
2935 	tl += 2;
2936 	*tl = txdr_unsigned(cnt);
2937 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_COMMIT, td,
2938 				nfs_vpcred(vp, ND_WRITE), &error));
2939 	ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
2940 	if (!error) {
2941 		NULLOUT(tl = nfsm_dissect(&info, NFSX_V3WRITEVERF));
2942 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2943 			NFSX_V3WRITEVERF)) {
2944 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2945 				NFSX_V3WRITEVERF);
2946 			error = NFSERR_STALEWRITEVERF;
2947 		}
2948 	}
2949 	m_freem(info.mrep);
2950 	info.mrep = NULL;
2951 nfsmout:
2952 	return (error);
2953 }
2954 
2955 /*
2956  * Kludge City..
2957  * - make nfs_bmap() essentially a no-op that does no translation
2958  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2959  *   (Maybe I could use the process's page mapping, but I was concerned that
2960  *    Kernel Write might not be enabled and also figured copyout() would do
2961  *    a lot more work than bcopy() and also it currently happens in the
2962  *    context of the swapper process (2).
2963  *
2964  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2965  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2966  */
2967 static int
2968 nfs_bmap(struct vop_bmap_args *ap)
2969 {
2970 	if (ap->a_doffsetp != NULL)
2971 		*ap->a_doffsetp = ap->a_loffset;
2972 	if (ap->a_runp != NULL)
2973 		*ap->a_runp = 0;
2974 	if (ap->a_runb != NULL)
2975 		*ap->a_runb = 0;
2976 	return (0);
2977 }
2978 
2979 /*
2980  * Strategy routine.
2981  */
2982 static int
2983 nfs_strategy(struct vop_strategy_args *ap)
2984 {
2985 	struct bio *bio = ap->a_bio;
2986 	struct bio *nbio;
2987 	struct buf *bp __debugvar = bio->bio_buf;
2988 	struct thread *td;
2989 	int error;
2990 
2991 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2992 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2993 	KASSERT(BUF_REFCNT(bp) > 0,
2994 		("nfs_strategy: buffer %p not locked", bp));
2995 
2996 	if (bio->bio_flags & BIO_SYNC)
2997 		td = curthread;	/* XXX */
2998 	else
2999 		td = NULL;
3000 
3001         /*
3002 	 * We probably don't need to push an nbio any more since no
3003 	 * block conversion is required due to the use of 64 bit byte
3004 	 * offsets, but do it anyway.
3005 	 *
3006 	 * NOTE: When NFS callers itself via this strategy routines and
3007 	 *	 sets up a synchronous I/O, it expects the I/O to run
3008 	 *	 synchronously (its bio_done routine just assumes it),
3009 	 *	 so for now we have to honor the bit.
3010          */
3011 	nbio = push_bio(bio);
3012 	nbio->bio_offset = bio->bio_offset;
3013 	nbio->bio_flags = bio->bio_flags & BIO_SYNC;
3014 
3015 	/*
3016 	 * If the op is asynchronous and an i/o daemon is waiting
3017 	 * queue the request, wake it up and wait for completion
3018 	 * otherwise just do it ourselves.
3019 	 */
3020 	if (bio->bio_flags & BIO_SYNC) {
3021 		error = nfs_doio(ap->a_vp, nbio, td);
3022 	} else {
3023 		nfs_asyncio(ap->a_vp, nbio);
3024 		error = 0;
3025 	}
3026 	return (error);
3027 }
3028 
3029 /*
3030  * Mmap a file
3031  *
3032  * NB Currently unsupported.
3033  *
3034  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
3035  */
3036 /* ARGSUSED */
3037 static int
3038 nfs_mmap(struct vop_mmap_args *ap)
3039 {
3040 	return (EINVAL);
3041 }
3042 
3043 /*
3044  * fsync vnode op. Just call nfs_flush() with commit == 1.
3045  *
3046  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
3047  */
3048 /* ARGSUSED */
3049 static int
3050 nfs_fsync(struct vop_fsync_args *ap)
3051 {
3052 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
3053 }
3054 
3055 /*
3056  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
3057  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
3058  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
3059  * set the buffer contains data that has already been written to the server
3060  * and which now needs a commit RPC.
3061  *
3062  * If commit is 0 we only take one pass and only flush buffers containing new
3063  * dirty data.
3064  *
3065  * If commit is 1 we take two passes, issuing a commit RPC in the second
3066  * pass.
3067  *
3068  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
3069  * to completely flush all pending data.
3070  *
3071  * Note that the RB_SCAN code properly handles the case where the
3072  * callback might block and directly or indirectly (another thread) cause
3073  * the RB tree to change.
3074  */
3075 
3076 #ifndef NFS_COMMITBVECSIZ
3077 #define NFS_COMMITBVECSIZ	16
3078 #endif
3079 
3080 struct nfs_flush_info {
3081 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
3082 	struct thread *td;
3083 	struct vnode *vp;
3084 	int waitfor;
3085 	int slpflag;
3086 	int slptimeo;
3087 	int loops;
3088 	struct buf *bvary[NFS_COMMITBVECSIZ];
3089 	int bvsize;
3090 	off_t beg_off;
3091 	off_t end_off;
3092 };
3093 
3094 static int nfs_flush_bp(struct buf *bp, void *data);
3095 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
3096 
3097 int
3098 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
3099 {
3100 	struct nfsnode *np = VTONFS(vp);
3101 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
3102 	struct nfs_flush_info info;
3103 	int error;
3104 
3105 	bzero(&info, sizeof(info));
3106 	info.td = td;
3107 	info.vp = vp;
3108 	info.waitfor = waitfor;
3109 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
3110 	info.loops = 0;
3111 	lwkt_gettoken(&vp->v_token);
3112 
3113 	do {
3114 		/*
3115 		 * Flush mode
3116 		 */
3117 		info.mode = NFI_FLUSHNEW;
3118 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3119 				nfs_flush_bp, &info);
3120 
3121 		/*
3122 		 * Take a second pass if committing and no error occured.
3123 		 * Clean up any left over collection (whether an error
3124 		 * occurs or not).
3125 		 */
3126 		if (commit && error == 0) {
3127 			info.mode = NFI_COMMIT;
3128 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3129 					nfs_flush_bp, &info);
3130 			if (info.bvsize)
3131 				error = nfs_flush_docommit(&info, error);
3132 		}
3133 
3134 		/*
3135 		 * Wait for pending I/O to complete before checking whether
3136 		 * any further dirty buffers exist.
3137 		 */
3138 		while (waitfor == MNT_WAIT &&
3139 		       bio_track_active(&vp->v_track_write)) {
3140 			error = bio_track_wait(&vp->v_track_write,
3141 					       info.slpflag, info.slptimeo);
3142 			if (error) {
3143 				/*
3144 				 * We have to be able to break out if this
3145 				 * is an 'intr' mount.
3146 				 */
3147 				if (nfs_sigintr(nmp, NULL, td)) {
3148 					error = -EINTR;
3149 					break;
3150 				}
3151 
3152 				/*
3153 				 * Since we do not process pending signals,
3154 				 * once we get a PCATCH our tsleep() will no
3155 				 * longer sleep, switch to a fixed timeout
3156 				 * instead.
3157 				 */
3158 				if (info.slpflag == PCATCH) {
3159 					info.slpflag = 0;
3160 					info.slptimeo = 2 * hz;
3161 				}
3162 				error = 0;
3163 			}
3164 		}
3165 		++info.loops;
3166 		/*
3167 		 * Loop if we are flushing synchronous as well as committing,
3168 		 * and dirty buffers are still present.  Otherwise we might livelock.
3169 		 */
3170 	} while (waitfor == MNT_WAIT && commit &&
3171 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3172 
3173 	/*
3174 	 * The callbacks have to return a negative error to terminate the
3175 	 * RB scan.
3176 	 */
3177 	if (error < 0)
3178 		error = -error;
3179 
3180 	/*
3181 	 * Deal with any error collection
3182 	 */
3183 	if (np->n_flag & NWRITEERR) {
3184 		error = np->n_error;
3185 		np->n_flag &= ~NWRITEERR;
3186 	}
3187 	lwkt_reltoken(&vp->v_token);
3188 	return (error);
3189 }
3190 
3191 static
3192 int
3193 nfs_flush_bp(struct buf *bp, void *data)
3194 {
3195 	struct nfs_flush_info *info = data;
3196 	int lkflags;
3197 	int error;
3198 	off_t toff;
3199 
3200 	error = 0;
3201 	switch(info->mode) {
3202 	case NFI_FLUSHNEW:
3203 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3204 		if (error && info->loops && info->waitfor == MNT_WAIT) {
3205 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3206 			if (error) {
3207 				lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3208 				if (info->slpflag & PCATCH)
3209 					lkflags |= LK_PCATCH;
3210 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3211 						     info->slptimeo);
3212 			}
3213 		}
3214 
3215 		/*
3216 		 * Ignore locking errors
3217 		 */
3218 		if (error) {
3219 			error = 0;
3220 			break;
3221 		}
3222 
3223 		/*
3224 		 * The buffer may have changed out from under us, even if
3225 		 * we did not block (MPSAFE).  Check again now that it is
3226 		 * locked.
3227 		 */
3228 		if (bp->b_vp == info->vp &&
3229 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == B_DELWRI) {
3230 			bremfree(bp);
3231 			bawrite(bp);
3232 		} else {
3233 			BUF_UNLOCK(bp);
3234 		}
3235 		break;
3236 	case NFI_COMMIT:
3237 		/*
3238 		 * Only process buffers in need of a commit which we can
3239 		 * immediately lock.  This may prevent a buffer from being
3240 		 * committed, but the normal flush loop will block on the
3241 		 * same buffer so we shouldn't get into an endless loop.
3242 		 */
3243 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3244 		    (B_DELWRI | B_NEEDCOMMIT)) {
3245 			break;
3246 		}
3247 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
3248 			break;
3249 
3250 		/*
3251 		 * We must recheck after successfully locking the buffer.
3252 		 */
3253 		if (bp->b_vp != info->vp ||
3254 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3255 		    (B_DELWRI | B_NEEDCOMMIT)) {
3256 			BUF_UNLOCK(bp);
3257 			break;
3258 		}
3259 
3260 		/*
3261 		 * NOTE: storing the bp in the bvary[] basically sets
3262 		 * it up for a commit operation.
3263 		 *
3264 		 * We must call vfs_busy_pages() now so the commit operation
3265 		 * is interlocked with user modifications to memory mapped
3266 		 * pages.  The b_dirtyoff/b_dirtyend range is not correct
3267 		 * until after the pages have been busied.
3268 		 *
3269 		 * Note: to avoid loopback deadlocks, we do not
3270 		 * assign b_runningbufspace.
3271 		 */
3272 		bremfree(bp);
3273 		bp->b_cmd = BUF_CMD_WRITE;
3274 		vfs_busy_pages(bp->b_vp, bp);
3275 		info->bvary[info->bvsize] = bp;
3276 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3277 		if (info->bvsize == 0 || toff < info->beg_off)
3278 			info->beg_off = toff;
3279 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3280 		if (info->bvsize == 0 || toff > info->end_off)
3281 			info->end_off = toff;
3282 		++info->bvsize;
3283 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3284 			error = nfs_flush_docommit(info, 0);
3285 			KKASSERT(info->bvsize == 0);
3286 		}
3287 	}
3288 	return (error);
3289 }
3290 
3291 static
3292 int
3293 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3294 {
3295 	struct vnode *vp;
3296 	struct buf *bp;
3297 	off_t bytes;
3298 	int retv;
3299 	int i;
3300 
3301 	vp = info->vp;
3302 
3303 	if (info->bvsize > 0) {
3304 		/*
3305 		 * Commit data on the server, as required.  Note that
3306 		 * nfs_commit will use the vnode's cred for the commit.
3307 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3308 		 */
3309 		bytes = info->end_off - info->beg_off;
3310 		if (bytes > 0x40000000)
3311 			bytes = 0x40000000;
3312 		if (error) {
3313 			retv = -error;
3314 		} else {
3315 			retv = nfs_commitrpc_uio(vp, info->beg_off,
3316 						 (int)bytes, info->td);
3317 			if (retv == NFSERR_STALEWRITEVERF)
3318 				nfs_clearcommit(vp->v_mount);
3319 		}
3320 
3321 		/*
3322 		 * Now, either mark the blocks I/O done or mark the
3323 		 * blocks dirty, depending on whether the commit
3324 		 * succeeded.
3325 		 */
3326 		for (i = 0; i < info->bvsize; ++i) {
3327 			bp = info->bvary[i];
3328 			if (retv || (bp->b_flags & B_NEEDCOMMIT) == 0) {
3329 				/*
3330 				 * Either an error or the original
3331 				 * vfs_busy_pages() cleared B_NEEDCOMMIT
3332 				 * due to finding new dirty VM pages in
3333 				 * the buffer.
3334 				 *
3335 				 * Leave B_DELWRI intact.
3336 				 */
3337 				bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3338 				vfs_unbusy_pages(bp);
3339 				bp->b_cmd = BUF_CMD_DONE;
3340 				bqrelse(bp);
3341 			} else {
3342 				/*
3343 				 * Success, remove B_DELWRI ( bundirty() ).
3344 				 *
3345 				 * b_dirtyoff/b_dirtyend seem to be NFS
3346 				 * specific.  We should probably move that
3347 				 * into bundirty(). XXX
3348 				 *
3349 				 * We are faking an I/O write, we have to
3350 				 * start the transaction in order to
3351 				 * immediately biodone() it.
3352 				 */
3353 				bundirty(bp);
3354 				bp->b_flags &= ~B_ERROR;
3355 				bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3356 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3357 				biodone(&bp->b_bio1);
3358 			}
3359 		}
3360 		info->bvsize = 0;
3361 	}
3362 	return (error);
3363 }
3364 
3365 /*
3366  * NFS advisory byte-level locks.
3367  * Currently unsupported.
3368  *
3369  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3370  *		int a_flags)
3371  */
3372 static int
3373 nfs_advlock(struct vop_advlock_args *ap)
3374 {
3375 	struct nfsnode *np = VTONFS(ap->a_vp);
3376 
3377 	/*
3378 	 * The following kludge is to allow diskless support to work
3379 	 * until a real NFS lockd is implemented. Basically, just pretend
3380 	 * that this is a local lock.
3381 	 */
3382 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3383 }
3384 
3385 /*
3386  * Print out the contents of an nfsnode.
3387  *
3388  * nfs_print(struct vnode *a_vp)
3389  */
3390 static int
3391 nfs_print(struct vop_print_args *ap)
3392 {
3393 	struct vnode *vp = ap->a_vp;
3394 	struct nfsnode *np = VTONFS(vp);
3395 
3396 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3397 		(long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3398 	if (vp->v_type == VFIFO)
3399 		fifo_printinfo(vp);
3400 	kprintf("\n");
3401 	return (0);
3402 }
3403 
3404 /*
3405  * nfs special file access vnode op.
3406  *
3407  * nfs_laccess(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3408  */
3409 static int
3410 nfs_laccess(struct vop_access_args *ap)
3411 {
3412 	struct vattr vattr;
3413 	int error;
3414 
3415 	error = VOP_GETATTR(ap->a_vp, &vattr);
3416 	if (!error)
3417 		error = vop_helper_access(ap, vattr.va_uid, vattr.va_gid,
3418 				vattr.va_mode, 0);
3419 	return (error);
3420 }
3421 
3422 /*
3423  * Read wrapper for fifos.
3424  *
3425  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3426  *		struct ucred *a_cred)
3427  */
3428 static int
3429 nfsfifo_read(struct vop_read_args *ap)
3430 {
3431 	struct nfsnode *np = VTONFS(ap->a_vp);
3432 
3433 	/*
3434 	 * Set access flag.
3435 	 */
3436 	np->n_flag |= NACC;
3437 	getnanotime(&np->n_atim);
3438 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3439 }
3440 
3441 /*
3442  * Write wrapper for fifos.
3443  *
3444  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3445  *		 struct ucred *a_cred)
3446  */
3447 static int
3448 nfsfifo_write(struct vop_write_args *ap)
3449 {
3450 	struct nfsnode *np = VTONFS(ap->a_vp);
3451 
3452 	/*
3453 	 * Set update flag.
3454 	 */
3455 	np->n_flag |= NUPD;
3456 	getnanotime(&np->n_mtim);
3457 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3458 }
3459 
3460 /*
3461  * Close wrapper for fifos.
3462  *
3463  * Update the times on the nfsnode then do fifo close.
3464  *
3465  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3466  */
3467 static int
3468 nfsfifo_close(struct vop_close_args *ap)
3469 {
3470 	struct vnode *vp = ap->a_vp;
3471 	struct nfsnode *np = VTONFS(vp);
3472 	struct vattr vattr;
3473 	struct timespec ts;
3474 
3475 	if (np->n_flag & (NACC | NUPD)) {
3476 		getnanotime(&ts);
3477 		if (np->n_flag & NACC)
3478 			np->n_atim = ts;
3479 		if (np->n_flag & NUPD)
3480 			np->n_mtim = ts;
3481 		np->n_flag |= NCHG;
3482 		if (vp->v_sysref.refcnt == 1 &&
3483 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3484 			VATTR_NULL(&vattr);
3485 			if (np->n_flag & NACC)
3486 				vattr.va_atime = np->n_atim;
3487 			if (np->n_flag & NUPD)
3488 				vattr.va_mtime = np->n_mtim;
3489 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3490 		}
3491 	}
3492 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3493 }
3494 
3495