xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision fcce2b94)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.61 2006/05/06 02:43:14 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsspec_read (struct vop_read_args *);
98 static int	nfsspec_write (struct vop_write_args *);
99 static int	nfsfifo_read (struct vop_read_args *);
100 static int	nfsfifo_write (struct vop_write_args *);
101 static int	nfsspec_close (struct vop_close_args *);
102 static int	nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static	int	nfs_lookup (struct vop_old_lookup_args *);
106 static	int	nfs_create (struct vop_old_create_args *);
107 static	int	nfs_mknod (struct vop_old_mknod_args *);
108 static	int	nfs_open (struct vop_open_args *);
109 static	int	nfs_close (struct vop_close_args *);
110 static	int	nfs_access (struct vop_access_args *);
111 static	int	nfs_getattr (struct vop_getattr_args *);
112 static	int	nfs_setattr (struct vop_setattr_args *);
113 static	int	nfs_read (struct vop_read_args *);
114 static	int	nfs_mmap (struct vop_mmap_args *);
115 static	int	nfs_fsync (struct vop_fsync_args *);
116 static	int	nfs_remove (struct vop_old_remove_args *);
117 static	int	nfs_link (struct vop_old_link_args *);
118 static	int	nfs_rename (struct vop_old_rename_args *);
119 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
120 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
121 static	int	nfs_symlink (struct vop_old_symlink_args *);
122 static	int	nfs_readdir (struct vop_readdir_args *);
123 static	int	nfs_bmap (struct vop_bmap_args *);
124 static	int	nfs_strategy (struct vop_strategy_args *);
125 static	int	nfs_lookitup (struct vnode *, const char *, int,
126 			struct ucred *, struct thread *, struct nfsnode **);
127 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int	nfsspec_access (struct vop_access_args *);
129 static int	nfs_readlink (struct vop_readlink_args *);
130 static int	nfs_print (struct vop_print_args *);
131 static int	nfs_advlock (struct vop_advlock_args *);
132 
133 static	int	nfs_nresolve (struct vop_nresolve_args *);
134 /*
135  * Global vfs data structures for nfs
136  */
137 struct vnodeopv_entry_desc nfsv2_vnodeop_entries[] = {
138 	{ &vop_default_desc,		vop_defaultop },
139 	{ &vop_access_desc,		(vnodeopv_entry_t) nfs_access },
140 	{ &vop_advlock_desc,		(vnodeopv_entry_t) nfs_advlock },
141 	{ &vop_bmap_desc,		(vnodeopv_entry_t) nfs_bmap },
142 	{ &vop_close_desc,		(vnodeopv_entry_t) nfs_close },
143 	{ &vop_old_create_desc,		(vnodeopv_entry_t) nfs_create },
144 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
145 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
146 	{ &vop_getpages_desc,		(vnodeopv_entry_t) nfs_getpages },
147 	{ &vop_putpages_desc,		(vnodeopv_entry_t) nfs_putpages },
148 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
149 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
150 	{ &vop_old_link_desc,		(vnodeopv_entry_t) nfs_link },
151 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
152 	{ &vop_old_lookup_desc,		(vnodeopv_entry_t) nfs_lookup },
153 	{ &vop_old_mkdir_desc,		(vnodeopv_entry_t) nfs_mkdir },
154 	{ &vop_old_mknod_desc,		(vnodeopv_entry_t) nfs_mknod },
155 	{ &vop_mmap_desc,		(vnodeopv_entry_t) nfs_mmap },
156 	{ &vop_open_desc,		(vnodeopv_entry_t) nfs_open },
157 	{ &vop_poll_desc,		(vnodeopv_entry_t) nfs_poll },
158 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
159 	{ &vop_read_desc,		(vnodeopv_entry_t) nfs_read },
160 	{ &vop_readdir_desc,		(vnodeopv_entry_t) nfs_readdir },
161 	{ &vop_readlink_desc,		(vnodeopv_entry_t) nfs_readlink },
162 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
163 	{ &vop_old_remove_desc,		(vnodeopv_entry_t) nfs_remove },
164 	{ &vop_old_rename_desc,		(vnodeopv_entry_t) nfs_rename },
165 	{ &vop_old_rmdir_desc,		(vnodeopv_entry_t) nfs_rmdir },
166 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
167 	{ &vop_strategy_desc,		(vnodeopv_entry_t) nfs_strategy },
168 	{ &vop_old_symlink_desc,	(vnodeopv_entry_t) nfs_symlink },
169 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
170 	{ &vop_write_desc,		(vnodeopv_entry_t) nfs_write },
171 
172 	{ &vop_nresolve_desc,		(vnodeopv_entry_t) nfs_nresolve },
173 	{ NULL, NULL }
174 };
175 
176 /*
177  * Special device vnode ops
178  */
179 struct vnodeopv_entry_desc nfsv2_specop_entries[] = {
180 	{ &vop_default_desc,		(vnodeopv_entry_t) spec_vnoperate },
181 	{ &vop_access_desc,		(vnodeopv_entry_t) nfsspec_access },
182 	{ &vop_close_desc,		(vnodeopv_entry_t) nfsspec_close },
183 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
184 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
185 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
186 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
187 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
188 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
189 	{ &vop_read_desc,		(vnodeopv_entry_t) nfsspec_read },
190 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
191 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
192 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
193 	{ &vop_write_desc,		(vnodeopv_entry_t) nfsspec_write },
194 	{ NULL, NULL }
195 };
196 
197 struct vnodeopv_entry_desc nfsv2_fifoop_entries[] = {
198 	{ &vop_default_desc,		(vnodeopv_entry_t) fifo_vnoperate },
199 	{ &vop_access_desc,		(vnodeopv_entry_t) nfsspec_access },
200 	{ &vop_close_desc,		(vnodeopv_entry_t) nfsfifo_close },
201 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
202 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
203 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
204 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
205 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
206 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
207 	{ &vop_read_desc,		(vnodeopv_entry_t) nfsfifo_read },
208 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
209 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
210 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
211 	{ &vop_write_desc,		(vnodeopv_entry_t) nfsfifo_write },
212 	{ NULL, NULL }
213 };
214 
215 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
216 				  struct componentname *cnp,
217 				  struct vattr *vap);
218 static int	nfs_removerpc (struct vnode *dvp, const char *name,
219 				   int namelen,
220 				   struct ucred *cred, struct thread *td);
221 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
222 				   int fnamelen, struct vnode *tdvp,
223 				   const char *tnameptr, int tnamelen,
224 				   struct ucred *cred, struct thread *td);
225 static int	nfs_renameit (struct vnode *sdvp,
226 				  struct componentname *scnp,
227 				  struct sillyrename *sp);
228 
229 /*
230  * Global variables
231  */
232 extern u_int32_t nfs_true, nfs_false;
233 extern u_int32_t nfs_xdrneg1;
234 extern struct nfsstats nfsstats;
235 extern nfstype nfsv3_type[9];
236 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
237 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
238 int nfs_numasync = 0;
239 
240 SYSCTL_DECL(_vfs_nfs);
241 
242 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
243 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
244 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
245 
246 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
247 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
248 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE ACCESS cache timeout");
249 
250 static int	nfsv3_commit_on_close = 0;
251 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
252 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
253 #if 0
254 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
255 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
256 
257 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
258 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
259 #endif
260 
261 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
262 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
263 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
264 static int
265 nfs3_access_otw(struct vnode *vp, int wmode,
266 		struct thread *td, struct ucred *cred)
267 {
268 	const int v3 = 1;
269 	u_int32_t *tl;
270 	int error = 0, attrflag;
271 
272 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
273 	caddr_t bpos, dpos, cp2;
274 	int32_t t1, t2;
275 	caddr_t cp;
276 	u_int32_t rmode;
277 	struct nfsnode *np = VTONFS(vp);
278 
279 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
280 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
281 	nfsm_fhtom(vp, v3);
282 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
283 	*tl = txdr_unsigned(wmode);
284 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
285 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
286 	if (!error) {
287 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
288 		rmode = fxdr_unsigned(u_int32_t, *tl);
289 		np->n_mode = rmode;
290 		np->n_modeuid = cred->cr_uid;
291 		np->n_modestamp = mycpu->gd_time_seconds;
292 	}
293 	m_freem(mrep);
294 nfsmout:
295 	return error;
296 }
297 
298 /*
299  * nfs access vnode op.
300  * For nfs version 2, just return ok. File accesses may fail later.
301  * For nfs version 3, use the access rpc to check accessibility. If file modes
302  * are changed on the server, accesses might still fail later.
303  *
304  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
305  *	      struct thread *a_td)
306  */
307 static int
308 nfs_access(struct vop_access_args *ap)
309 {
310 	struct vnode *vp = ap->a_vp;
311 	thread_t td = curthread;
312 	int error = 0;
313 	u_int32_t mode, wmode;
314 	int v3 = NFS_ISV3(vp);
315 	struct nfsnode *np = VTONFS(vp);
316 
317 	/*
318 	 * Disallow write attempts on filesystems mounted read-only;
319 	 * unless the file is a socket, fifo, or a block or character
320 	 * device resident on the filesystem.
321 	 */
322 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
323 		switch (vp->v_type) {
324 		case VREG:
325 		case VDIR:
326 		case VLNK:
327 			return (EROFS);
328 		default:
329 			break;
330 		}
331 	}
332 	/*
333 	 * For nfs v3, check to see if we have done this recently, and if
334 	 * so return our cached result instead of making an ACCESS call.
335 	 * If not, do an access rpc, otherwise you are stuck emulating
336 	 * ufs_access() locally using the vattr. This may not be correct,
337 	 * since the server may apply other access criteria such as
338 	 * client uid-->server uid mapping that we do not know about.
339 	 */
340 	if (v3) {
341 		if (ap->a_mode & VREAD)
342 			mode = NFSV3ACCESS_READ;
343 		else
344 			mode = 0;
345 		if (vp->v_type != VDIR) {
346 			if (ap->a_mode & VWRITE)
347 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
348 			if (ap->a_mode & VEXEC)
349 				mode |= NFSV3ACCESS_EXECUTE;
350 		} else {
351 			if (ap->a_mode & VWRITE)
352 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
353 					 NFSV3ACCESS_DELETE);
354 			if (ap->a_mode & VEXEC)
355 				mode |= NFSV3ACCESS_LOOKUP;
356 		}
357 		/* XXX safety belt, only make blanket request if caching */
358 		if (nfsaccess_cache_timeout > 0) {
359 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
360 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
361 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
362 		} else {
363 			wmode = mode;
364 		}
365 
366 		/*
367 		 * Does our cached result allow us to give a definite yes to
368 		 * this request?
369 		 */
370 		if (np->n_modestamp &&
371 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
372 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
373 		   ((np->n_mode & mode) == mode)) {
374 			nfsstats.accesscache_hits++;
375 		} else {
376 			/*
377 			 * Either a no, or a don't know.  Go to the wire.
378 			 */
379 			nfsstats.accesscache_misses++;
380 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
381 			if (!error) {
382 				if ((np->n_mode & mode) != mode) {
383 					error = EACCES;
384 				}
385 			}
386 		}
387 	} else {
388 		if ((error = nfsspec_access(ap)) != 0)
389 			return (error);
390 
391 		/*
392 		 * Attempt to prevent a mapped root from accessing a file
393 		 * which it shouldn't.  We try to read a byte from the file
394 		 * if the user is root and the file is not zero length.
395 		 * After calling nfsspec_access, we should have the correct
396 		 * file size cached.
397 		 */
398 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
399 		    && VTONFS(vp)->n_size > 0) {
400 			struct iovec aiov;
401 			struct uio auio;
402 			char buf[1];
403 
404 			aiov.iov_base = buf;
405 			aiov.iov_len = 1;
406 			auio.uio_iov = &aiov;
407 			auio.uio_iovcnt = 1;
408 			auio.uio_offset = 0;
409 			auio.uio_resid = 1;
410 			auio.uio_segflg = UIO_SYSSPACE;
411 			auio.uio_rw = UIO_READ;
412 			auio.uio_td = td;
413 
414 			if (vp->v_type == VREG) {
415 				error = nfs_readrpc(vp, &auio);
416 			} else if (vp->v_type == VDIR) {
417 				char* bp;
418 				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
419 				aiov.iov_base = bp;
420 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
421 				error = nfs_readdirrpc(vp, &auio);
422 				free(bp, M_TEMP);
423 			} else if (vp->v_type == VLNK) {
424 				error = nfs_readlinkrpc(vp, &auio);
425 			} else {
426 				error = EACCES;
427 			}
428 		}
429 	}
430 	/*
431 	 * [re]record creds for reading and/or writing if access
432 	 * was granted.  Assume the NFS server will grant read access
433 	 * for execute requests.
434 	 */
435 	if (error == 0) {
436 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
437 			crhold(ap->a_cred);
438 			if (np->n_rucred)
439 				crfree(np->n_rucred);
440 			np->n_rucred = ap->a_cred;
441 		}
442 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
443 			crhold(ap->a_cred);
444 			if (np->n_wucred)
445 				crfree(np->n_wucred);
446 			np->n_wucred = ap->a_cred;
447 		}
448 	}
449 	return(error);
450 }
451 
452 /*
453  * nfs open vnode op
454  * Check to see if the type is ok
455  * and that deletion is not in progress.
456  * For paged in text files, you will need to flush the page cache
457  * if consistency is lost.
458  *
459  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
460  */
461 /* ARGSUSED */
462 static int
463 nfs_open(struct vop_open_args *ap)
464 {
465 	struct vnode *vp = ap->a_vp;
466 	struct nfsnode *np = VTONFS(vp);
467 	struct vattr vattr;
468 	int error;
469 
470 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
471 #ifdef DIAGNOSTIC
472 		printf("open eacces vtyp=%d\n",vp->v_type);
473 #endif
474 		return (EOPNOTSUPP);
475 	}
476 
477 	/*
478 	 * Clear the attribute cache only if opening with write access.  It
479 	 * is unclear if we should do this at all here, but we certainly
480 	 * should not clear the cache unconditionally simply because a file
481 	 * is being opened.
482 	 */
483 	if (ap->a_mode & FWRITE)
484 		np->n_attrstamp = 0;
485 
486 	/*
487 	 * For normal NFS, reconcile changes made locally verses
488 	 * changes made remotely.  Note that VOP_GETATTR only goes
489 	 * to the wire if the cached attribute has timed out or been
490 	 * cleared.
491 	 *
492 	 * If local modifications have been made clear the attribute
493 	 * cache to force an attribute and modified time check.  If
494 	 * GETATTR detects that the file has been changed by someone
495 	 * other then us it will set NRMODIFIED.
496 	 *
497 	 * If we are opening a directory and local changes have been
498 	 * made we have to invalidate the cache in order to ensure
499 	 * that we get the most up-to-date information from the
500 	 * server.  XXX
501 	 */
502 	if (np->n_flag & NLMODIFIED) {
503 		np->n_attrstamp = 0;
504 		if (vp->v_type == VDIR) {
505 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
506 			if (error == EINTR)
507 				return (error);
508 			nfs_invaldir(vp);
509 		}
510 	}
511 	error = VOP_GETATTR(vp, &vattr);
512 	if (error)
513 		return (error);
514 	if (np->n_flag & NRMODIFIED) {
515 		if (vp->v_type == VDIR)
516 			nfs_invaldir(vp);
517 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
518 		if (error == EINTR)
519 			return (error);
520 		np->n_flag &= ~NRMODIFIED;
521 	}
522 
523 	return (vop_stdopen(ap));
524 }
525 
526 /*
527  * nfs close vnode op
528  * What an NFS client should do upon close after writing is a debatable issue.
529  * Most NFS clients push delayed writes to the server upon close, basically for
530  * two reasons:
531  * 1 - So that any write errors may be reported back to the client process
532  *     doing the close system call. By far the two most likely errors are
533  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
534  * 2 - To put a worst case upper bound on cache inconsistency between
535  *     multiple clients for the file.
536  * There is also a consistency problem for Version 2 of the protocol w.r.t.
537  * not being able to tell if other clients are writing a file concurrently,
538  * since there is no way of knowing if the changed modify time in the reply
539  * is only due to the write for this client.
540  * (NFS Version 3 provides weak cache consistency data in the reply that
541  *  should be sufficient to detect and handle this case.)
542  *
543  * The current code does the following:
544  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
545  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
546  *                     or commit them (this satisfies 1 and 2 except for the
547  *                     case where the server crashes after this close but
548  *                     before the commit RPC, which is felt to be "good
549  *                     enough". Changing the last argument to nfs_flush() to
550  *                     a 1 would force a commit operation, if it is felt a
551  *                     commit is necessary now.
552  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
553  *                     1 should be dealt with via an fsync() system call for
554  *                     cases where write errors are important.
555  *
556  * nfs_close(struct vnodeop_desc *a_desc, struct vnode *a_vp, int a_fflag,
557  *	     struct ucred *a_cred, struct thread *a_td)
558  */
559 /* ARGSUSED */
560 static int
561 nfs_close(struct vop_close_args *ap)
562 {
563 	struct vnode *vp = ap->a_vp;
564 	struct nfsnode *np = VTONFS(vp);
565 	int error = 0;
566 	thread_t td = curthread;
567 
568 	if (vp->v_type == VREG) {
569 	    if (np->n_flag & NLMODIFIED) {
570 		if (NFS_ISV3(vp)) {
571 		    /*
572 		     * Under NFSv3 we have dirty buffers to dispose of.  We
573 		     * must flush them to the NFS server.  We have the option
574 		     * of waiting all the way through the commit rpc or just
575 		     * waiting for the initial write.  The default is to only
576 		     * wait through the initial write so the data is in the
577 		     * server's cache, which is roughly similar to the state
578 		     * a standard disk subsystem leaves the file in on close().
579 		     *
580 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
581 		     * potential races with other processes, and certainly
582 		     * cannot clear it if we don't commit.
583 		     */
584 		    int cm = nfsv3_commit_on_close ? 1 : 0;
585 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
586 		    /* np->n_flag &= ~NLMODIFIED; */
587 		} else {
588 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
589 		}
590 		np->n_attrstamp = 0;
591 	    }
592 	    if (np->n_flag & NWRITEERR) {
593 		np->n_flag &= ~NWRITEERR;
594 		error = np->n_error;
595 	    }
596 	}
597 	vop_stdclose(ap);
598 	return (error);
599 }
600 
601 /*
602  * nfs getattr call from vfs.
603  *
604  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
605  *		struct thread *a_td)
606  */
607 static int
608 nfs_getattr(struct vop_getattr_args *ap)
609 {
610 	struct vnode *vp = ap->a_vp;
611 	struct nfsnode *np = VTONFS(vp);
612 	caddr_t cp;
613 	u_int32_t *tl;
614 	int32_t t1, t2;
615 	caddr_t bpos, dpos;
616 	int error = 0;
617 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
618 	int v3 = NFS_ISV3(vp);
619 	thread_t td = curthread;
620 
621 	/*
622 	 * Update local times for special files.
623 	 */
624 	if (np->n_flag & (NACC | NUPD))
625 		np->n_flag |= NCHG;
626 	/*
627 	 * First look in the cache.
628 	 */
629 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
630 		return (0);
631 
632 	if (v3 && nfsaccess_cache_timeout > 0) {
633 		nfsstats.accesscache_misses++;
634 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
635 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
636 			return (0);
637 	}
638 
639 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
640 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
641 	nfsm_fhtom(vp, v3);
642 	nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
643 	if (!error) {
644 		nfsm_loadattr(vp, ap->a_vap);
645 	}
646 	m_freem(mrep);
647 nfsmout:
648 	return (error);
649 }
650 
651 /*
652  * nfs setattr call.
653  *
654  * nfs_setattr(struct vnodeop_desc *a_desc, struct vnode *a_vp,
655  *		struct vattr *a_vap, struct ucred *a_cred)
656  */
657 static int
658 nfs_setattr(struct vop_setattr_args *ap)
659 {
660 	struct vnode *vp = ap->a_vp;
661 	struct nfsnode *np = VTONFS(vp);
662 	struct vattr *vap = ap->a_vap;
663 	int error = 0;
664 	u_quad_t tsize;
665 	thread_t td = curthread;
666 
667 #ifndef nolint
668 	tsize = (u_quad_t)0;
669 #endif
670 
671 	/*
672 	 * Setting of flags is not supported.
673 	 */
674 	if (vap->va_flags != VNOVAL)
675 		return (EOPNOTSUPP);
676 
677 	/*
678 	 * Disallow write attempts if the filesystem is mounted read-only.
679 	 */
680   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
681 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
682 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
683 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
684 		return (EROFS);
685 	if (vap->va_size != VNOVAL) {
686  		switch (vp->v_type) {
687  		case VDIR:
688  			return (EISDIR);
689  		case VCHR:
690  		case VBLK:
691  		case VSOCK:
692  		case VFIFO:
693 			if (vap->va_mtime.tv_sec == VNOVAL &&
694 			    vap->va_atime.tv_sec == VNOVAL &&
695 			    vap->va_mode == (mode_t)VNOVAL &&
696 			    vap->va_uid == (uid_t)VNOVAL &&
697 			    vap->va_gid == (gid_t)VNOVAL)
698 				return (0);
699  			vap->va_size = VNOVAL;
700  			break;
701  		default:
702 			/*
703 			 * Disallow write attempts if the filesystem is
704 			 * mounted read-only.
705 			 */
706 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
707 				return (EROFS);
708 
709 			/*
710 			 * This is nasty.  The RPCs we send to flush pending
711 			 * data often return attribute information which is
712 			 * cached via a callback to nfs_loadattrcache(), which
713 			 * has the effect of changing our notion of the file
714 			 * size.  Due to flushed appends and other operations
715 			 * the file size can be set to virtually anything,
716 			 * including values that do not match either the old
717 			 * or intended file size.
718 			 *
719 			 * When this condition is detected we must loop to
720 			 * try the operation again.  Hopefully no more
721 			 * flushing is required on the loop so it works the
722 			 * second time around.  THIS CASE ALMOST ALWAYS
723 			 * HAPPENS!
724 			 */
725 			tsize = np->n_size;
726 again:
727 			error = nfs_meta_setsize(vp, td, vap->va_size);
728 
729  			if (np->n_flag & NLMODIFIED) {
730  			    if (vap->va_size == 0)
731  				error = nfs_vinvalbuf(vp, 0, 1);
732  			    else
733  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
734  			}
735 			/*
736 			 * note: this loop case almost always happens at
737 			 * least once per truncation.
738 			 */
739 			if (error == 0 && np->n_size != vap->va_size)
740 				goto again;
741 			np->n_vattr.va_size = vap->va_size;
742 			break;
743 		}
744   	} else if ((vap->va_mtime.tv_sec != VNOVAL ||
745 		vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NLMODIFIED) &&
746 		vp->v_type == VREG &&
747   		(error = nfs_vinvalbuf(vp, V_SAVE, 1)) == EINTR
748 	) {
749 		return (error);
750 	}
751 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
752 
753 	/*
754 	 * Sanity check if a truncation was issued.  This should only occur
755 	 * if multiple processes are racing on the same file.
756 	 */
757 	if (error == 0 && vap->va_size != VNOVAL &&
758 	    np->n_size != vap->va_size) {
759 		printf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
760 		goto again;
761 	}
762 	if (error && vap->va_size != VNOVAL) {
763 		np->n_size = np->n_vattr.va_size = tsize;
764 		vnode_pager_setsize(vp, np->n_size);
765 	}
766 	return (error);
767 }
768 
769 /*
770  * Do an nfs setattr rpc.
771  */
772 static int
773 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
774 	       struct ucred *cred, struct thread *td)
775 {
776 	struct nfsv2_sattr *sp;
777 	struct nfsnode *np = VTONFS(vp);
778 	caddr_t cp;
779 	int32_t t1, t2;
780 	caddr_t bpos, dpos, cp2;
781 	u_int32_t *tl;
782 	int error = 0, wccflag = NFSV3_WCCRATTR;
783 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
784 	int v3 = NFS_ISV3(vp);
785 
786 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
787 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
788 	nfsm_fhtom(vp, v3);
789 	if (v3) {
790 		nfsm_v3attrbuild(vap, TRUE);
791 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
792 		*tl = nfs_false;
793 	} else {
794 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
795 		if (vap->va_mode == (mode_t)VNOVAL)
796 			sp->sa_mode = nfs_xdrneg1;
797 		else
798 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
799 		if (vap->va_uid == (uid_t)VNOVAL)
800 			sp->sa_uid = nfs_xdrneg1;
801 		else
802 			sp->sa_uid = txdr_unsigned(vap->va_uid);
803 		if (vap->va_gid == (gid_t)VNOVAL)
804 			sp->sa_gid = nfs_xdrneg1;
805 		else
806 			sp->sa_gid = txdr_unsigned(vap->va_gid);
807 		sp->sa_size = txdr_unsigned(vap->va_size);
808 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
809 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
810 	}
811 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
812 	if (v3) {
813 		np->n_modestamp = 0;
814 		nfsm_wcc_data(vp, wccflag);
815 	} else
816 		nfsm_loadattr(vp, (struct vattr *)0);
817 	m_freem(mrep);
818 nfsmout:
819 	return (error);
820 }
821 
822 /*
823  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
824  * nfs_lookup() until all remaining new api calls are implemented.
825  *
826  * Resolve a namecache entry.  This function is passed a locked ncp and
827  * must call cache_setvp() on it as appropriate to resolve the entry.
828  */
829 static int
830 nfs_nresolve(struct vop_nresolve_args *ap)
831 {
832 	struct thread *td = curthread;
833 	struct namecache *ncp;
834 	struct ucred *cred;
835 	struct nfsnode *np;
836 	struct vnode *dvp;
837 	struct vnode *nvp;
838 	nfsfh_t *fhp;
839 	int attrflag;
840 	int fhsize;
841 	int error;
842 	int len;
843 	int v3;
844 	/******NFSM MACROS********/
845 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
846 	caddr_t bpos, dpos, cp, cp2;
847 	u_int32_t *tl;
848 	int32_t t1, t2;
849 
850 	cred = ap->a_cred;
851 	ncp = ap->a_ncp;
852 
853 	KKASSERT(ncp->nc_parent && ncp->nc_parent->nc_vp);
854 	dvp = ncp->nc_parent->nc_vp;
855 	if ((error = vget(dvp, LK_SHARED)) != 0)
856 		return (error);
857 
858 	nvp = NULL;
859 	v3 = NFS_ISV3(dvp);
860 	nfsstats.lookupcache_misses++;
861 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
862 	len = ncp->nc_nlen;
863 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
864 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
865 	nfsm_fhtom(dvp, v3);
866 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
867 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
868 	if (error) {
869 		/*
870 		 * Cache negatve lookups to reduce NFS traffic, but use
871 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
872 		 * XXX we should add a namecache flag for no-caching
873 		 * to uncache the negative hit as soon as possible, but
874 		 * we cannot simply destroy the entry because it is used
875 		 * as a placeholder by the caller.
876 		 */
877 		if (error == ENOENT) {
878 			int nticks;
879 
880 			if (nfsneg_cache_timeout)
881 				nticks = nfsneg_cache_timeout * hz;
882 			else
883 				nticks = 1;
884 			cache_setvp(ncp, NULL);
885 			cache_settimeout(ncp, nticks);
886 		}
887 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
888 		m_freem(mrep);
889 		goto nfsmout;
890 	}
891 
892 	/*
893 	 * Success, get the file handle, do various checks, and load
894 	 * post-operation data from the reply packet.  Theoretically
895 	 * we should never be looking up "." so, theoretically, we
896 	 * should never get the same file handle as our directory.  But
897 	 * we check anyway. XXX
898 	 *
899 	 * Note that no timeout is set for the positive cache hit.  We
900 	 * assume, theoretically, that ESTALE returns will be dealt with
901 	 * properly to handle NFS races and in anycase we cannot depend
902 	 * on a timeout to deal with NFS open/create/excl issues so instead
903 	 * of a bad hack here the rest of the NFS client code needs to do
904 	 * the right thing.
905 	 */
906 	nfsm_getfh(fhp, fhsize, v3);
907 
908 	np = VTONFS(dvp);
909 	if (NFS_CMPFH(np, fhp, fhsize)) {
910 		vref(dvp);
911 		nvp = dvp;
912 	} else {
913 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
914 		if (error) {
915 			m_freem(mrep);
916 			vput(dvp);
917 			return (error);
918 		}
919 		nvp = NFSTOV(np);
920 	}
921 	if (v3) {
922 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
923 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
924 	} else {
925 		nfsm_loadattr(nvp, NULL);
926 	}
927 	cache_setvp(ncp, nvp);
928 	m_freem(mrep);
929 nfsmout:
930 	vput(dvp);
931 	if (nvp) {
932 		if (nvp == dvp)
933 			vrele(nvp);
934 		else
935 			vput(nvp);
936 	}
937 	return (error);
938 }
939 
940 /*
941  * 'cached' nfs directory lookup
942  *
943  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
944  *
945  * nfs_lookup(struct vnodeop_desc *a_desc, struct vnode *a_dvp,
946  *	      struct vnode **a_vpp, struct componentname *a_cnp)
947  */
948 static int
949 nfs_lookup(struct vop_old_lookup_args *ap)
950 {
951 	struct componentname *cnp = ap->a_cnp;
952 	struct vnode *dvp = ap->a_dvp;
953 	struct vnode **vpp = ap->a_vpp;
954 	int flags = cnp->cn_flags;
955 	struct vnode *newvp;
956 	u_int32_t *tl;
957 	caddr_t cp;
958 	int32_t t1, t2;
959 	struct nfsmount *nmp;
960 	caddr_t bpos, dpos, cp2;
961 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
962 	long len;
963 	nfsfh_t *fhp;
964 	struct nfsnode *np;
965 	int lockparent, wantparent, error = 0, attrflag, fhsize;
966 	int v3 = NFS_ISV3(dvp);
967 
968 	/*
969 	 * Read-only mount check and directory check.
970 	 */
971 	*vpp = NULLVP;
972 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
973 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
974 		return (EROFS);
975 
976 	if (dvp->v_type != VDIR)
977 		return (ENOTDIR);
978 
979 	/*
980 	 * Look it up in the cache.  Note that ENOENT is only returned if we
981 	 * previously entered a negative hit (see later on).  The additional
982 	 * nfsneg_cache_timeout check causes previously cached results to
983 	 * be instantly ignored if the negative caching is turned off.
984 	 */
985 	lockparent = flags & CNP_LOCKPARENT;
986 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
987 	nmp = VFSTONFS(dvp->v_mount);
988 	np = VTONFS(dvp);
989 
990 	/*
991 	 * Go to the wire.
992 	 */
993 	error = 0;
994 	newvp = NULLVP;
995 	nfsstats.lookupcache_misses++;
996 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
997 	len = cnp->cn_namelen;
998 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
999 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1000 	nfsm_fhtom(dvp, v3);
1001 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1002 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
1003 	if (error) {
1004 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1005 		m_freem(mrep);
1006 		goto nfsmout;
1007 	}
1008 	nfsm_getfh(fhp, fhsize, v3);
1009 
1010 	/*
1011 	 * Handle RENAME case...
1012 	 */
1013 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1014 		if (NFS_CMPFH(np, fhp, fhsize)) {
1015 			m_freem(mrep);
1016 			return (EISDIR);
1017 		}
1018 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1019 		if (error) {
1020 			m_freem(mrep);
1021 			return (error);
1022 		}
1023 		newvp = NFSTOV(np);
1024 		if (v3) {
1025 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1026 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1027 		} else
1028 			nfsm_loadattr(newvp, (struct vattr *)0);
1029 		*vpp = newvp;
1030 		m_freem(mrep);
1031 		if (!lockparent) {
1032 			VOP_UNLOCK(dvp, 0);
1033 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1034 		}
1035 		return (0);
1036 	}
1037 
1038 	if (flags & CNP_ISDOTDOT) {
1039 		VOP_UNLOCK(dvp, 0);
1040 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1041 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1042 		if (error) {
1043 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1044 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1045 			return (error); /* NOTE: return error from nget */
1046 		}
1047 		newvp = NFSTOV(np);
1048 		if (lockparent) {
1049 			error = vn_lock(dvp, LK_EXCLUSIVE);
1050 			if (error) {
1051 				vput(newvp);
1052 				return (error);
1053 			}
1054 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1055 		}
1056 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1057 		vref(dvp);
1058 		newvp = dvp;
1059 	} else {
1060 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1061 		if (error) {
1062 			m_freem(mrep);
1063 			return (error);
1064 		}
1065 		if (!lockparent) {
1066 			VOP_UNLOCK(dvp, 0);
1067 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1068 		}
1069 		newvp = NFSTOV(np);
1070 	}
1071 	if (v3) {
1072 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1073 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1074 	} else
1075 		nfsm_loadattr(newvp, (struct vattr *)0);
1076 #if 0
1077 	/* XXX MOVE TO nfs_nremove() */
1078 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1079 	    cnp->cn_nameiop != NAMEI_DELETE) {
1080 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1081 	}
1082 #endif
1083 	*vpp = newvp;
1084 	m_freem(mrep);
1085 nfsmout:
1086 	if (error) {
1087 		if (newvp != NULLVP) {
1088 			vrele(newvp);
1089 			*vpp = NULLVP;
1090 		}
1091 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1092 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1093 		    error == ENOENT) {
1094 			if (!lockparent) {
1095 				VOP_UNLOCK(dvp, 0);
1096 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1097 			}
1098 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1099 				error = EROFS;
1100 			else
1101 				error = EJUSTRETURN;
1102 		}
1103 	}
1104 	return (error);
1105 }
1106 
1107 /*
1108  * nfs read call.
1109  * Just call nfs_bioread() to do the work.
1110  *
1111  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1112  *	    struct ucred *a_cred)
1113  */
1114 static int
1115 nfs_read(struct vop_read_args *ap)
1116 {
1117 	struct vnode *vp = ap->a_vp;
1118 
1119 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1120 	switch (vp->v_type) {
1121 	case VREG:
1122 		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1123 	case VDIR:
1124 		return (EISDIR);
1125 	default:
1126 		return EOPNOTSUPP;
1127 	}
1128 }
1129 
1130 /*
1131  * nfs readlink call
1132  *
1133  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1134  */
1135 static int
1136 nfs_readlink(struct vop_readlink_args *ap)
1137 {
1138 	struct vnode *vp = ap->a_vp;
1139 
1140 	if (vp->v_type != VLNK)
1141 		return (EINVAL);
1142 	return (nfs_bioread(vp, ap->a_uio, 0));
1143 }
1144 
1145 /*
1146  * Do a readlink rpc.
1147  * Called by nfs_doio() from below the buffer cache.
1148  */
1149 int
1150 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1151 {
1152 	u_int32_t *tl;
1153 	caddr_t cp;
1154 	int32_t t1, t2;
1155 	caddr_t bpos, dpos, cp2;
1156 	int error = 0, len, attrflag;
1157 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1158 	int v3 = NFS_ISV3(vp);
1159 
1160 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1161 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1162 	nfsm_fhtom(vp, v3);
1163 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1164 	if (v3)
1165 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1166 	if (!error) {
1167 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1168 		if (len == NFS_MAXPATHLEN) {
1169 			struct nfsnode *np = VTONFS(vp);
1170 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1171 				len = np->n_size;
1172 		}
1173 		nfsm_mtouio(uiop, len);
1174 	}
1175 	m_freem(mrep);
1176 nfsmout:
1177 	return (error);
1178 }
1179 
1180 /*
1181  * nfs read rpc call
1182  * Ditto above
1183  */
1184 int
1185 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1186 {
1187 	u_int32_t *tl;
1188 	caddr_t cp;
1189 	int32_t t1, t2;
1190 	caddr_t bpos, dpos, cp2;
1191 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1192 	struct nfsmount *nmp;
1193 	int error = 0, len, retlen, tsiz, eof, attrflag;
1194 	int v3 = NFS_ISV3(vp);
1195 
1196 #ifndef nolint
1197 	eof = 0;
1198 #endif
1199 	nmp = VFSTONFS(vp->v_mount);
1200 	tsiz = uiop->uio_resid;
1201 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1202 		return (EFBIG);
1203 	while (tsiz > 0) {
1204 		nfsstats.rpccnt[NFSPROC_READ]++;
1205 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1206 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1207 		nfsm_fhtom(vp, v3);
1208 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1209 		if (v3) {
1210 			txdr_hyper(uiop->uio_offset, tl);
1211 			*(tl + 2) = txdr_unsigned(len);
1212 		} else {
1213 			*tl++ = txdr_unsigned(uiop->uio_offset);
1214 			*tl++ = txdr_unsigned(len);
1215 			*tl = 0;
1216 		}
1217 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1218 		if (v3) {
1219 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1220 			if (error) {
1221 				m_freem(mrep);
1222 				goto nfsmout;
1223 			}
1224 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1225 			eof = fxdr_unsigned(int, *(tl + 1));
1226 		} else
1227 			nfsm_loadattr(vp, (struct vattr *)0);
1228 		nfsm_strsiz(retlen, nmp->nm_rsize);
1229 		nfsm_mtouio(uiop, retlen);
1230 		m_freem(mrep);
1231 		tsiz -= retlen;
1232 		if (v3) {
1233 			if (eof || retlen == 0) {
1234 				tsiz = 0;
1235 			}
1236 		} else if (retlen < len) {
1237 			tsiz = 0;
1238 		}
1239 	}
1240 nfsmout:
1241 	return (error);
1242 }
1243 
1244 /*
1245  * nfs write call
1246  */
1247 int
1248 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1249 {
1250 	u_int32_t *tl;
1251 	caddr_t cp;
1252 	int32_t t1, t2, backup;
1253 	caddr_t bpos, dpos, cp2;
1254 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1255 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1256 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1257 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1258 
1259 #ifndef DIAGNOSTIC
1260 	if (uiop->uio_iovcnt != 1)
1261 		panic("nfs: writerpc iovcnt > 1");
1262 #endif
1263 	*must_commit = 0;
1264 	tsiz = uiop->uio_resid;
1265 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1266 		return (EFBIG);
1267 	while (tsiz > 0) {
1268 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1269 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1270 		nfsm_reqhead(vp, NFSPROC_WRITE,
1271 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1272 		nfsm_fhtom(vp, v3);
1273 		if (v3) {
1274 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1275 			txdr_hyper(uiop->uio_offset, tl);
1276 			tl += 2;
1277 			*tl++ = txdr_unsigned(len);
1278 			*tl++ = txdr_unsigned(*iomode);
1279 			*tl = txdr_unsigned(len);
1280 		} else {
1281 			u_int32_t x;
1282 
1283 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1284 			/* Set both "begin" and "current" to non-garbage. */
1285 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1286 			*tl++ = x;	/* "begin offset" */
1287 			*tl++ = x;	/* "current offset" */
1288 			x = txdr_unsigned(len);
1289 			*tl++ = x;	/* total to this offset */
1290 			*tl = x;	/* size of this write */
1291 		}
1292 		nfsm_uiotom(uiop, len);
1293 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1294 		if (v3) {
1295 			/*
1296 			 * The write RPC returns a before and after mtime.  The
1297 			 * nfsm_wcc_data() macro checks the before n_mtime
1298 			 * against the before time and stores the after time
1299 			 * in the nfsnode's cached vattr and n_mtime field.
1300 			 * The NRMODIFIED bit will be set if the before
1301 			 * time did not match the original mtime.
1302 			 */
1303 			wccflag = NFSV3_WCCCHK;
1304 			nfsm_wcc_data(vp, wccflag);
1305 			if (!error) {
1306 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1307 					+ NFSX_V3WRITEVERF);
1308 				rlen = fxdr_unsigned(int, *tl++);
1309 				if (rlen == 0) {
1310 					error = NFSERR_IO;
1311 					m_freem(mrep);
1312 					break;
1313 				} else if (rlen < len) {
1314 					backup = len - rlen;
1315 					uiop->uio_iov->iov_base -= backup;
1316 					uiop->uio_iov->iov_len += backup;
1317 					uiop->uio_offset -= backup;
1318 					uiop->uio_resid += backup;
1319 					len = rlen;
1320 				}
1321 				commit = fxdr_unsigned(int, *tl++);
1322 
1323 				/*
1324 				 * Return the lowest committment level
1325 				 * obtained by any of the RPCs.
1326 				 */
1327 				if (committed == NFSV3WRITE_FILESYNC)
1328 					committed = commit;
1329 				else if (committed == NFSV3WRITE_DATASYNC &&
1330 					commit == NFSV3WRITE_UNSTABLE)
1331 					committed = commit;
1332 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1333 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1334 					NFSX_V3WRITEVERF);
1335 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1336 				} else if (bcmp((caddr_t)tl,
1337 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1338 				    *must_commit = 1;
1339 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1340 					NFSX_V3WRITEVERF);
1341 				}
1342 			}
1343 		} else {
1344 			nfsm_loadattr(vp, (struct vattr *)0);
1345 		}
1346 		m_freem(mrep);
1347 		if (error)
1348 			break;
1349 		tsiz -= len;
1350 	}
1351 nfsmout:
1352 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1353 		committed = NFSV3WRITE_FILESYNC;
1354 	*iomode = committed;
1355 	if (error)
1356 		uiop->uio_resid = tsiz;
1357 	return (error);
1358 }
1359 
1360 /*
1361  * nfs mknod rpc
1362  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1363  * mode set to specify the file type and the size field for rdev.
1364  */
1365 static int
1366 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1367 	     struct vattr *vap)
1368 {
1369 	struct nfsv2_sattr *sp;
1370 	u_int32_t *tl;
1371 	caddr_t cp;
1372 	int32_t t1, t2;
1373 	struct vnode *newvp = (struct vnode *)0;
1374 	struct nfsnode *np = (struct nfsnode *)0;
1375 	struct vattr vattr;
1376 	char *cp2;
1377 	caddr_t bpos, dpos;
1378 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1379 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1380 	u_int32_t rdev;
1381 	int v3 = NFS_ISV3(dvp);
1382 
1383 	if (vap->va_type == VCHR || vap->va_type == VBLK)
1384 		rdev = txdr_unsigned(vap->va_rdev);
1385 	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1386 		rdev = nfs_xdrneg1;
1387 	else {
1388 		return (EOPNOTSUPP);
1389 	}
1390 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1391 		return (error);
1392 	}
1393 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1394 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1395 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1396 	nfsm_fhtom(dvp, v3);
1397 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1398 	if (v3) {
1399 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1400 		*tl++ = vtonfsv3_type(vap->va_type);
1401 		nfsm_v3attrbuild(vap, FALSE);
1402 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1403 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1404 			*tl++ = txdr_unsigned(umajor(vap->va_rdev));
1405 			*tl = txdr_unsigned(uminor(vap->va_rdev));
1406 		}
1407 	} else {
1408 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1409 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1410 		sp->sa_uid = nfs_xdrneg1;
1411 		sp->sa_gid = nfs_xdrneg1;
1412 		sp->sa_size = rdev;
1413 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1414 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1415 	}
1416 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1417 	if (!error) {
1418 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1419 		if (!gotvp) {
1420 			if (newvp) {
1421 				vput(newvp);
1422 				newvp = (struct vnode *)0;
1423 			}
1424 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1425 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1426 			if (!error)
1427 				newvp = NFSTOV(np);
1428 		}
1429 	}
1430 	if (v3)
1431 		nfsm_wcc_data(dvp, wccflag);
1432 	m_freem(mrep);
1433 nfsmout:
1434 	if (error) {
1435 		if (newvp)
1436 			vput(newvp);
1437 	} else {
1438 		*vpp = newvp;
1439 	}
1440 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1441 	if (!wccflag)
1442 		VTONFS(dvp)->n_attrstamp = 0;
1443 	return (error);
1444 }
1445 
1446 /*
1447  * nfs mknod vop
1448  * just call nfs_mknodrpc() to do the work.
1449  *
1450  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1451  *	     struct componentname *a_cnp, struct vattr *a_vap)
1452  */
1453 /* ARGSUSED */
1454 static int
1455 nfs_mknod(struct vop_old_mknod_args *ap)
1456 {
1457 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1458 }
1459 
1460 static u_long create_verf;
1461 /*
1462  * nfs file create call
1463  *
1464  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1465  *	      struct componentname *a_cnp, struct vattr *a_vap)
1466  */
1467 static int
1468 nfs_create(struct vop_old_create_args *ap)
1469 {
1470 	struct vnode *dvp = ap->a_dvp;
1471 	struct vattr *vap = ap->a_vap;
1472 	struct componentname *cnp = ap->a_cnp;
1473 	struct nfsv2_sattr *sp;
1474 	u_int32_t *tl;
1475 	caddr_t cp;
1476 	int32_t t1, t2;
1477 	struct nfsnode *np = (struct nfsnode *)0;
1478 	struct vnode *newvp = (struct vnode *)0;
1479 	caddr_t bpos, dpos, cp2;
1480 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1481 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1482 	struct vattr vattr;
1483 	int v3 = NFS_ISV3(dvp);
1484 
1485 	/*
1486 	 * Oops, not for me..
1487 	 */
1488 	if (vap->va_type == VSOCK)
1489 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1490 
1491 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1492 		return (error);
1493 	}
1494 	if (vap->va_vaflags & VA_EXCLUSIVE)
1495 		fmode |= O_EXCL;
1496 again:
1497 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1498 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1499 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1500 	nfsm_fhtom(dvp, v3);
1501 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1502 	if (v3) {
1503 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1504 		if (fmode & O_EXCL) {
1505 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1506 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1507 #ifdef INET
1508 			if (!TAILQ_EMPTY(&in_ifaddrhead))
1509 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr.s_addr;
1510 			else
1511 #endif
1512 				*tl++ = create_verf;
1513 			*tl = ++create_verf;
1514 		} else {
1515 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1516 			nfsm_v3attrbuild(vap, FALSE);
1517 		}
1518 	} else {
1519 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1520 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1521 		sp->sa_uid = nfs_xdrneg1;
1522 		sp->sa_gid = nfs_xdrneg1;
1523 		sp->sa_size = 0;
1524 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1525 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1526 	}
1527 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1528 	if (!error) {
1529 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1530 		if (!gotvp) {
1531 			if (newvp) {
1532 				vput(newvp);
1533 				newvp = (struct vnode *)0;
1534 			}
1535 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1536 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1537 			if (!error)
1538 				newvp = NFSTOV(np);
1539 		}
1540 	}
1541 	if (v3)
1542 		nfsm_wcc_data(dvp, wccflag);
1543 	m_freem(mrep);
1544 nfsmout:
1545 	if (error) {
1546 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1547 			fmode &= ~O_EXCL;
1548 			goto again;
1549 		}
1550 		if (newvp)
1551 			vput(newvp);
1552 	} else if (v3 && (fmode & O_EXCL)) {
1553 		/*
1554 		 * We are normally called with only a partially initialized
1555 		 * VAP.  Since the NFSv3 spec says that server may use the
1556 		 * file attributes to store the verifier, the spec requires
1557 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1558 		 * in atime, but we can't really assume that all servers will
1559 		 * so we ensure that our SETATTR sets both atime and mtime.
1560 		 */
1561 		if (vap->va_mtime.tv_sec == VNOVAL)
1562 			vfs_timestamp(&vap->va_mtime);
1563 		if (vap->va_atime.tv_sec == VNOVAL)
1564 			vap->va_atime = vap->va_mtime;
1565 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1566 	}
1567 	if (!error) {
1568 		/*
1569 		 * The new np may have enough info for access
1570 		 * checks, make sure rucred and wucred are
1571 		 * initialized for read and write rpc's.
1572 		 */
1573 		np = VTONFS(newvp);
1574 		if (np->n_rucred == NULL)
1575 			np->n_rucred = crhold(cnp->cn_cred);
1576 		if (np->n_wucred == NULL)
1577 			np->n_wucred = crhold(cnp->cn_cred);
1578 		*ap->a_vpp = newvp;
1579 	}
1580 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1581 	if (!wccflag)
1582 		VTONFS(dvp)->n_attrstamp = 0;
1583 	return (error);
1584 }
1585 
1586 /*
1587  * nfs file remove call
1588  * To try and make nfs semantics closer to ufs semantics, a file that has
1589  * other processes using the vnode is renamed instead of removed and then
1590  * removed later on the last close.
1591  * - If v_usecount > 1
1592  *	  If a rename is not already in the works
1593  *	     call nfs_sillyrename() to set it up
1594  *     else
1595  *	  do the remove rpc
1596  *
1597  * nfs_remove(struct vnodeop_desc *a_desc, struct vnode *a_dvp,
1598  *	      struct vnode *a_vp, struct componentname *a_cnp)
1599  */
1600 static int
1601 nfs_remove(struct vop_old_remove_args *ap)
1602 {
1603 	struct vnode *vp = ap->a_vp;
1604 	struct vnode *dvp = ap->a_dvp;
1605 	struct componentname *cnp = ap->a_cnp;
1606 	struct nfsnode *np = VTONFS(vp);
1607 	int error = 0;
1608 	struct vattr vattr;
1609 
1610 #ifndef DIAGNOSTIC
1611 	if (vp->v_usecount < 1)
1612 		panic("nfs_remove: bad v_usecount");
1613 #endif
1614 	if (vp->v_type == VDIR)
1615 		error = EPERM;
1616 	else if (vp->v_usecount == 1 || (np->n_sillyrename &&
1617 	    VOP_GETATTR(vp, &vattr) == 0 &&
1618 	    vattr.va_nlink > 1)) {
1619 		/*
1620 		 * throw away biocache buffers, mainly to avoid
1621 		 * unnecessary delayed writes later.
1622 		 */
1623 		error = nfs_vinvalbuf(vp, 0, 1);
1624 		/* Do the rpc */
1625 		if (error != EINTR)
1626 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1627 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1628 		/*
1629 		 * Kludge City: If the first reply to the remove rpc is lost..
1630 		 *   the reply to the retransmitted request will be ENOENT
1631 		 *   since the file was in fact removed
1632 		 *   Therefore, we cheat and return success.
1633 		 */
1634 		if (error == ENOENT)
1635 			error = 0;
1636 	} else if (!np->n_sillyrename) {
1637 		error = nfs_sillyrename(dvp, vp, cnp);
1638 	}
1639 	np->n_attrstamp = 0;
1640 	return (error);
1641 }
1642 
1643 /*
1644  * nfs file remove rpc called from nfs_inactive
1645  */
1646 int
1647 nfs_removeit(struct sillyrename *sp)
1648 {
1649 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1650 		sp->s_cred, NULL));
1651 }
1652 
1653 /*
1654  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1655  */
1656 static int
1657 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1658 	      struct ucred *cred, struct thread *td)
1659 {
1660 	u_int32_t *tl;
1661 	caddr_t cp;
1662 	int32_t t1, t2;
1663 	caddr_t bpos, dpos, cp2;
1664 	int error = 0, wccflag = NFSV3_WCCRATTR;
1665 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1666 	int v3 = NFS_ISV3(dvp);
1667 
1668 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1669 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1670 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1671 	nfsm_fhtom(dvp, v3);
1672 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1673 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1674 	if (v3)
1675 		nfsm_wcc_data(dvp, wccflag);
1676 	m_freem(mrep);
1677 nfsmout:
1678 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1679 	if (!wccflag)
1680 		VTONFS(dvp)->n_attrstamp = 0;
1681 	return (error);
1682 }
1683 
1684 /*
1685  * nfs file rename call
1686  *
1687  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1688  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1689  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1690  */
1691 static int
1692 nfs_rename(struct vop_old_rename_args *ap)
1693 {
1694 	struct vnode *fvp = ap->a_fvp;
1695 	struct vnode *tvp = ap->a_tvp;
1696 	struct vnode *fdvp = ap->a_fdvp;
1697 	struct vnode *tdvp = ap->a_tdvp;
1698 	struct componentname *tcnp = ap->a_tcnp;
1699 	struct componentname *fcnp = ap->a_fcnp;
1700 	int error;
1701 
1702 	/* Check for cross-device rename */
1703 	if ((fvp->v_mount != tdvp->v_mount) ||
1704 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1705 		error = EXDEV;
1706 		goto out;
1707 	}
1708 
1709 	/*
1710 	 * We have to flush B_DELWRI data prior to renaming
1711 	 * the file.  If we don't, the delayed-write buffers
1712 	 * can be flushed out later after the file has gone stale
1713 	 * under NFSV3.  NFSV2 does not have this problem because
1714 	 * ( as far as I can tell ) it flushes dirty buffers more
1715 	 * often.
1716 	 */
1717 
1718 	VOP_FSYNC(fvp, MNT_WAIT);
1719 	if (tvp)
1720 	    VOP_FSYNC(tvp, MNT_WAIT);
1721 
1722 	/*
1723 	 * If the tvp exists and is in use, sillyrename it before doing the
1724 	 * rename of the new file over it.
1725 	 *
1726 	 * XXX Can't sillyrename a directory.
1727 	 *
1728 	 * We do not attempt to do any namecache purges in this old API
1729 	 * routine.  The new API compat functions have access to the actual
1730 	 * namecache structures and will do it for us.
1731 	 */
1732 	if (tvp && tvp->v_usecount > 1 && !VTONFS(tvp)->n_sillyrename &&
1733 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1734 		vput(tvp);
1735 		tvp = NULL;
1736 	} else if (tvp) {
1737 		;
1738 	}
1739 
1740 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1741 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1742 		tcnp->cn_td);
1743 
1744 out:
1745 	if (tdvp == tvp)
1746 		vrele(tdvp);
1747 	else
1748 		vput(tdvp);
1749 	if (tvp)
1750 		vput(tvp);
1751 	vrele(fdvp);
1752 	vrele(fvp);
1753 	/*
1754 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1755 	 */
1756 	if (error == ENOENT)
1757 		error = 0;
1758 	return (error);
1759 }
1760 
1761 /*
1762  * nfs file rename rpc called from nfs_remove() above
1763  */
1764 static int
1765 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1766 	     struct sillyrename *sp)
1767 {
1768 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1769 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1770 }
1771 
1772 /*
1773  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1774  */
1775 static int
1776 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1777 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1778 	      struct ucred *cred, struct thread *td)
1779 {
1780 	u_int32_t *tl;
1781 	caddr_t cp;
1782 	int32_t t1, t2;
1783 	caddr_t bpos, dpos, cp2;
1784 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1785 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1786 	int v3 = NFS_ISV3(fdvp);
1787 
1788 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1789 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1790 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1791 		nfsm_rndup(tnamelen));
1792 	nfsm_fhtom(fdvp, v3);
1793 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1794 	nfsm_fhtom(tdvp, v3);
1795 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1796 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1797 	if (v3) {
1798 		nfsm_wcc_data(fdvp, fwccflag);
1799 		nfsm_wcc_data(tdvp, twccflag);
1800 	}
1801 	m_freem(mrep);
1802 nfsmout:
1803 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1804 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1805 	if (!fwccflag)
1806 		VTONFS(fdvp)->n_attrstamp = 0;
1807 	if (!twccflag)
1808 		VTONFS(tdvp)->n_attrstamp = 0;
1809 	return (error);
1810 }
1811 
1812 /*
1813  * nfs hard link create call
1814  *
1815  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1816  *	    struct componentname *a_cnp)
1817  */
1818 static int
1819 nfs_link(struct vop_old_link_args *ap)
1820 {
1821 	struct vnode *vp = ap->a_vp;
1822 	struct vnode *tdvp = ap->a_tdvp;
1823 	struct componentname *cnp = ap->a_cnp;
1824 	u_int32_t *tl;
1825 	caddr_t cp;
1826 	int32_t t1, t2;
1827 	caddr_t bpos, dpos, cp2;
1828 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1829 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1830 	int v3;
1831 
1832 	if (vp->v_mount != tdvp->v_mount) {
1833 		return (EXDEV);
1834 	}
1835 
1836 	/*
1837 	 * Push all writes to the server, so that the attribute cache
1838 	 * doesn't get "out of sync" with the server.
1839 	 * XXX There should be a better way!
1840 	 */
1841 	VOP_FSYNC(vp, MNT_WAIT);
1842 
1843 	v3 = NFS_ISV3(vp);
1844 	nfsstats.rpccnt[NFSPROC_LINK]++;
1845 	nfsm_reqhead(vp, NFSPROC_LINK,
1846 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1847 	nfsm_fhtom(vp, v3);
1848 	nfsm_fhtom(tdvp, v3);
1849 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1850 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1851 	if (v3) {
1852 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1853 		nfsm_wcc_data(tdvp, wccflag);
1854 	}
1855 	m_freem(mrep);
1856 nfsmout:
1857 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1858 	if (!attrflag)
1859 		VTONFS(vp)->n_attrstamp = 0;
1860 	if (!wccflag)
1861 		VTONFS(tdvp)->n_attrstamp = 0;
1862 	/*
1863 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1864 	 */
1865 	if (error == EEXIST)
1866 		error = 0;
1867 	return (error);
1868 }
1869 
1870 /*
1871  * nfs symbolic link create call
1872  *
1873  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1874  *		struct componentname *a_cnp, struct vattr *a_vap,
1875  *		char *a_target)
1876  */
1877 static int
1878 nfs_symlink(struct vop_old_symlink_args *ap)
1879 {
1880 	struct vnode *dvp = ap->a_dvp;
1881 	struct vattr *vap = ap->a_vap;
1882 	struct componentname *cnp = ap->a_cnp;
1883 	struct nfsv2_sattr *sp;
1884 	u_int32_t *tl;
1885 	caddr_t cp;
1886 	int32_t t1, t2;
1887 	caddr_t bpos, dpos, cp2;
1888 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1889 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1890 	struct vnode *newvp = (struct vnode *)0;
1891 	int v3 = NFS_ISV3(dvp);
1892 
1893 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1894 	slen = strlen(ap->a_target);
1895 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1896 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1897 	nfsm_fhtom(dvp, v3);
1898 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1899 	if (v3) {
1900 		nfsm_v3attrbuild(vap, FALSE);
1901 	}
1902 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1903 	if (!v3) {
1904 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1905 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1906 		sp->sa_uid = nfs_xdrneg1;
1907 		sp->sa_gid = nfs_xdrneg1;
1908 		sp->sa_size = nfs_xdrneg1;
1909 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1910 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1911 	}
1912 
1913 	/*
1914 	 * Issue the NFS request and get the rpc response.
1915 	 *
1916 	 * Only NFSv3 responses returning an error of 0 actually return
1917 	 * a file handle that can be converted into newvp without having
1918 	 * to do an extra lookup rpc.
1919 	 */
1920 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1921 	if (v3) {
1922 		if (error == 0)
1923 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1924 		nfsm_wcc_data(dvp, wccflag);
1925 	}
1926 
1927 	/*
1928 	 * out code jumps -> here, mrep is also freed.
1929 	 */
1930 
1931 	m_freem(mrep);
1932 nfsmout:
1933 
1934 	/*
1935 	 * If we get an EEXIST error, silently convert it to no-error
1936 	 * in case of an NFS retry.
1937 	 */
1938 	if (error == EEXIST)
1939 		error = 0;
1940 
1941 	/*
1942 	 * If we do not have (or no longer have) an error, and we could
1943 	 * not extract the newvp from the response due to the request being
1944 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1945 	 * to obtain a newvp to return.
1946 	 */
1947 	if (error == 0 && newvp == NULL) {
1948 		struct nfsnode *np = NULL;
1949 
1950 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1951 		    cnp->cn_cred, cnp->cn_td, &np);
1952 		if (!error)
1953 			newvp = NFSTOV(np);
1954 	}
1955 	if (error) {
1956 		if (newvp)
1957 			vput(newvp);
1958 	} else {
1959 		*ap->a_vpp = newvp;
1960 	}
1961 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1962 	if (!wccflag)
1963 		VTONFS(dvp)->n_attrstamp = 0;
1964 	return (error);
1965 }
1966 
1967 /*
1968  * nfs make dir call
1969  *
1970  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1971  *	     struct componentname *a_cnp, struct vattr *a_vap)
1972  */
1973 static int
1974 nfs_mkdir(struct vop_old_mkdir_args *ap)
1975 {
1976 	struct vnode *dvp = ap->a_dvp;
1977 	struct vattr *vap = ap->a_vap;
1978 	struct componentname *cnp = ap->a_cnp;
1979 	struct nfsv2_sattr *sp;
1980 	u_int32_t *tl;
1981 	caddr_t cp;
1982 	int32_t t1, t2;
1983 	int len;
1984 	struct nfsnode *np = (struct nfsnode *)0;
1985 	struct vnode *newvp = (struct vnode *)0;
1986 	caddr_t bpos, dpos, cp2;
1987 	int error = 0, wccflag = NFSV3_WCCRATTR;
1988 	int gotvp = 0;
1989 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1990 	struct vattr vattr;
1991 	int v3 = NFS_ISV3(dvp);
1992 
1993 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1994 		return (error);
1995 	}
1996 	len = cnp->cn_namelen;
1997 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
1998 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
1999 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
2000 	nfsm_fhtom(dvp, v3);
2001 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
2002 	if (v3) {
2003 		nfsm_v3attrbuild(vap, FALSE);
2004 	} else {
2005 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2006 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2007 		sp->sa_uid = nfs_xdrneg1;
2008 		sp->sa_gid = nfs_xdrneg1;
2009 		sp->sa_size = nfs_xdrneg1;
2010 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2011 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2012 	}
2013 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2014 	if (!error)
2015 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2016 	if (v3)
2017 		nfsm_wcc_data(dvp, wccflag);
2018 	m_freem(mrep);
2019 nfsmout:
2020 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2021 	if (!wccflag)
2022 		VTONFS(dvp)->n_attrstamp = 0;
2023 	/*
2024 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2025 	 * if we can succeed in looking up the directory.
2026 	 */
2027 	if (error == EEXIST || (!error && !gotvp)) {
2028 		if (newvp) {
2029 			vrele(newvp);
2030 			newvp = (struct vnode *)0;
2031 		}
2032 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2033 			cnp->cn_td, &np);
2034 		if (!error) {
2035 			newvp = NFSTOV(np);
2036 			if (newvp->v_type != VDIR)
2037 				error = EEXIST;
2038 		}
2039 	}
2040 	if (error) {
2041 		if (newvp)
2042 			vrele(newvp);
2043 	} else
2044 		*ap->a_vpp = newvp;
2045 	return (error);
2046 }
2047 
2048 /*
2049  * nfs remove directory call
2050  *
2051  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2052  *	     struct componentname *a_cnp)
2053  */
2054 static int
2055 nfs_rmdir(struct vop_old_rmdir_args *ap)
2056 {
2057 	struct vnode *vp = ap->a_vp;
2058 	struct vnode *dvp = ap->a_dvp;
2059 	struct componentname *cnp = ap->a_cnp;
2060 	u_int32_t *tl;
2061 	caddr_t cp;
2062 	int32_t t1, t2;
2063 	caddr_t bpos, dpos, cp2;
2064 	int error = 0, wccflag = NFSV3_WCCRATTR;
2065 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2066 	int v3 = NFS_ISV3(dvp);
2067 
2068 	if (dvp == vp)
2069 		return (EINVAL);
2070 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2071 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2072 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2073 	nfsm_fhtom(dvp, v3);
2074 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2075 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2076 	if (v3)
2077 		nfsm_wcc_data(dvp, wccflag);
2078 	m_freem(mrep);
2079 nfsmout:
2080 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2081 	if (!wccflag)
2082 		VTONFS(dvp)->n_attrstamp = 0;
2083 	/*
2084 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2085 	 */
2086 	if (error == ENOENT)
2087 		error = 0;
2088 	return (error);
2089 }
2090 
2091 /*
2092  * nfs readdir call
2093  *
2094  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2095  */
2096 static int
2097 nfs_readdir(struct vop_readdir_args *ap)
2098 {
2099 	struct vnode *vp = ap->a_vp;
2100 	struct nfsnode *np = VTONFS(vp);
2101 	struct uio *uio = ap->a_uio;
2102 	int tresid, error;
2103 	struct vattr vattr;
2104 
2105 	if (vp->v_type != VDIR)
2106 		return (EPERM);
2107 
2108 	/*
2109 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2110 	 * and then check that is still valid, or if this is an NQNFS mount
2111 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2112 	 * VOP_GETATTR() does not necessarily go to the wire.
2113 	 */
2114 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2115 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2116 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2117 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2118 		) {
2119 			nfsstats.direofcache_hits++;
2120 			return (0);
2121 		}
2122 	}
2123 
2124 	/*
2125 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2126 	 * own cache coherency checks so we do not have to.
2127 	 */
2128 	tresid = uio->uio_resid;
2129 	error = nfs_bioread(vp, uio, 0);
2130 
2131 	if (!error && uio->uio_resid == tresid)
2132 		nfsstats.direofcache_misses++;
2133 	return (error);
2134 }
2135 
2136 /*
2137  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2138  *
2139  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2140  * offset/block and converts the nfs formatted directory entries for userland
2141  * consumption as well as deals with offsets into the middle of blocks.
2142  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2143  * be block-bounded.  It must convert to cookies for the actual RPC.
2144  */
2145 int
2146 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2147 {
2148 	int len, left;
2149 	struct nfs_dirent *dp = NULL;
2150 	u_int32_t *tl;
2151 	caddr_t cp;
2152 	int32_t t1, t2;
2153 	nfsuint64 *cookiep;
2154 	caddr_t bpos, dpos, cp2;
2155 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2156 	nfsuint64 cookie;
2157 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2158 	struct nfsnode *dnp = VTONFS(vp);
2159 	u_quad_t fileno;
2160 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2161 	int attrflag;
2162 	int v3 = NFS_ISV3(vp);
2163 
2164 #ifndef DIAGNOSTIC
2165 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2166 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2167 		panic("nfs readdirrpc bad uio");
2168 #endif
2169 
2170 	/*
2171 	 * If there is no cookie, assume directory was stale.
2172 	 */
2173 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2174 	if (cookiep)
2175 		cookie = *cookiep;
2176 	else
2177 		return (NFSERR_BAD_COOKIE);
2178 	/*
2179 	 * Loop around doing readdir rpc's of size nm_readdirsize
2180 	 * truncated to a multiple of DIRBLKSIZ.
2181 	 * The stopping criteria is EOF or buffer full.
2182 	 */
2183 	while (more_dirs && bigenough) {
2184 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2185 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2186 			NFSX_READDIR(v3));
2187 		nfsm_fhtom(vp, v3);
2188 		if (v3) {
2189 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2190 			*tl++ = cookie.nfsuquad[0];
2191 			*tl++ = cookie.nfsuquad[1];
2192 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2193 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2194 		} else {
2195 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2196 			*tl++ = cookie.nfsuquad[0];
2197 		}
2198 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2199 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2200 		if (v3) {
2201 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2202 			if (!error) {
2203 				nfsm_dissect(tl, u_int32_t *,
2204 				    2 * NFSX_UNSIGNED);
2205 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2206 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2207 			} else {
2208 				m_freem(mrep);
2209 				goto nfsmout;
2210 			}
2211 		}
2212 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2213 		more_dirs = fxdr_unsigned(int, *tl);
2214 
2215 		/* loop thru the dir entries, converting them to std form */
2216 		while (more_dirs && bigenough) {
2217 			if (v3) {
2218 				nfsm_dissect(tl, u_int32_t *,
2219 				    3 * NFSX_UNSIGNED);
2220 				fileno = fxdr_hyper(tl);
2221 				len = fxdr_unsigned(int, *(tl + 2));
2222 			} else {
2223 				nfsm_dissect(tl, u_int32_t *,
2224 				    2 * NFSX_UNSIGNED);
2225 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2226 				len = fxdr_unsigned(int, *tl);
2227 			}
2228 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2229 				error = EBADRPC;
2230 				m_freem(mrep);
2231 				goto nfsmout;
2232 			}
2233 
2234 			/*
2235 			 * len is the number of bytes in the path element
2236 			 * name, not including the \0 termination.
2237 			 *
2238 			 * tlen is the number of bytes w have to reserve for
2239 			 * the path element name.
2240 			 */
2241 			tlen = nfsm_rndup(len);
2242 			if (tlen == len)
2243 				tlen += 4;	/* To ensure null termination */
2244 
2245 			/*
2246 			 * If the entry would cross a DIRBLKSIZ boundary,
2247 			 * extend the previous nfs_dirent to cover the
2248 			 * remaining space.
2249 			 */
2250 			left = DIRBLKSIZ - blksiz;
2251 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2252 				dp->nfs_reclen += left;
2253 				uiop->uio_iov->iov_base += left;
2254 				uiop->uio_iov->iov_len -= left;
2255 				uiop->uio_offset += left;
2256 				uiop->uio_resid -= left;
2257 				blksiz = 0;
2258 			}
2259 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2260 				bigenough = 0;
2261 			if (bigenough) {
2262 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2263 				dp->nfs_ino = fileno;
2264 				dp->nfs_namlen = len;
2265 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2266 				dp->nfs_type = DT_UNKNOWN;
2267 				blksiz += dp->nfs_reclen;
2268 				if (blksiz == DIRBLKSIZ)
2269 					blksiz = 0;
2270 				uiop->uio_offset += sizeof(struct nfs_dirent);
2271 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2272 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2273 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2274 				nfsm_mtouio(uiop, len);
2275 
2276 				/*
2277 				 * The uiop has advanced by nfs_dirent + len
2278 				 * but really needs to advance by
2279 				 * nfs_dirent + tlen
2280 				 */
2281 				cp = uiop->uio_iov->iov_base;
2282 				tlen -= len;
2283 				*cp = '\0';	/* null terminate */
2284 				uiop->uio_iov->iov_base += tlen;
2285 				uiop->uio_iov->iov_len -= tlen;
2286 				uiop->uio_offset += tlen;
2287 				uiop->uio_resid -= tlen;
2288 			} else {
2289 				/*
2290 				 * NFS strings must be rounded up (nfsm_myouio
2291 				 * handled that in the bigenough case).
2292 				 */
2293 				nfsm_adv(nfsm_rndup(len));
2294 			}
2295 			if (v3) {
2296 				nfsm_dissect(tl, u_int32_t *,
2297 				    3 * NFSX_UNSIGNED);
2298 			} else {
2299 				nfsm_dissect(tl, u_int32_t *,
2300 				    2 * NFSX_UNSIGNED);
2301 			}
2302 
2303 			/*
2304 			 * If we were able to accomodate the last entry,
2305 			 * get the cookie for the next one.  Otherwise
2306 			 * hold-over the cookie for the one we were not
2307 			 * able to accomodate.
2308 			 */
2309 			if (bigenough) {
2310 				cookie.nfsuquad[0] = *tl++;
2311 				if (v3)
2312 					cookie.nfsuquad[1] = *tl++;
2313 			} else if (v3) {
2314 				tl += 2;
2315 			} else {
2316 				tl++;
2317 			}
2318 			more_dirs = fxdr_unsigned(int, *tl);
2319 		}
2320 		/*
2321 		 * If at end of rpc data, get the eof boolean
2322 		 */
2323 		if (!more_dirs) {
2324 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2325 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2326 		}
2327 		m_freem(mrep);
2328 	}
2329 	/*
2330 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2331 	 * by increasing d_reclen for the last record.
2332 	 */
2333 	if (blksiz > 0) {
2334 		left = DIRBLKSIZ - blksiz;
2335 		dp->nfs_reclen += left;
2336 		uiop->uio_iov->iov_base += left;
2337 		uiop->uio_iov->iov_len -= left;
2338 		uiop->uio_offset += left;
2339 		uiop->uio_resid -= left;
2340 	}
2341 
2342 	if (bigenough) {
2343 		/*
2344 		 * We hit the end of the directory, update direofoffset.
2345 		 */
2346 		dnp->n_direofoffset = uiop->uio_offset;
2347 	} else {
2348 		/*
2349 		 * There is more to go, insert the link cookie so the
2350 		 * next block can be read.
2351 		 */
2352 		if (uiop->uio_resid > 0)
2353 			printf("EEK! readdirrpc resid > 0\n");
2354 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2355 		*cookiep = cookie;
2356 	}
2357 nfsmout:
2358 	return (error);
2359 }
2360 
2361 /*
2362  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2363  */
2364 int
2365 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2366 {
2367 	int len, left;
2368 	struct nfs_dirent *dp;
2369 	u_int32_t *tl;
2370 	caddr_t cp;
2371 	int32_t t1, t2;
2372 	struct vnode *newvp;
2373 	nfsuint64 *cookiep;
2374 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2375 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2376 	nfsuint64 cookie;
2377 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2378 	struct nfsnode *dnp = VTONFS(vp), *np;
2379 	nfsfh_t *fhp;
2380 	u_quad_t fileno;
2381 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2382 	int attrflag, fhsize;
2383 	struct namecache *ncp;
2384 	struct namecache *dncp;
2385 	struct nlcomponent nlc;
2386 
2387 #ifndef nolint
2388 	dp = NULL;
2389 #endif
2390 #ifndef DIAGNOSTIC
2391 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2392 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2393 		panic("nfs readdirplusrpc bad uio");
2394 #endif
2395 	/*
2396 	 * Obtain the namecache record for the directory so we have something
2397 	 * to use as a basis for creating the entries.  This function will
2398 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2399 	 * from the tree and cannot be used for upward traversals, and the
2400 	 * ncp may be unnamed.  Note that other unrelated operations may
2401 	 * cause the ncp to be named at any time.
2402 	 */
2403 	dncp = cache_fromdvp(vp, NULL, 0);
2404 	bzero(&nlc, sizeof(nlc));
2405 	newvp = NULLVP;
2406 
2407 	/*
2408 	 * If there is no cookie, assume directory was stale.
2409 	 */
2410 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2411 	if (cookiep)
2412 		cookie = *cookiep;
2413 	else
2414 		return (NFSERR_BAD_COOKIE);
2415 	/*
2416 	 * Loop around doing readdir rpc's of size nm_readdirsize
2417 	 * truncated to a multiple of DIRBLKSIZ.
2418 	 * The stopping criteria is EOF or buffer full.
2419 	 */
2420 	while (more_dirs && bigenough) {
2421 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2422 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2423 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2424 		nfsm_fhtom(vp, 1);
2425  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2426 		*tl++ = cookie.nfsuquad[0];
2427 		*tl++ = cookie.nfsuquad[1];
2428 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2429 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2430 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2431 		*tl = txdr_unsigned(nmp->nm_rsize);
2432 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2433 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2434 		if (error) {
2435 			m_freem(mrep);
2436 			goto nfsmout;
2437 		}
2438 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2439 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2440 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2441 		more_dirs = fxdr_unsigned(int, *tl);
2442 
2443 		/* loop thru the dir entries, doctoring them to 4bsd form */
2444 		while (more_dirs && bigenough) {
2445 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2446 			fileno = fxdr_hyper(tl);
2447 			len = fxdr_unsigned(int, *(tl + 2));
2448 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2449 				error = EBADRPC;
2450 				m_freem(mrep);
2451 				goto nfsmout;
2452 			}
2453 			tlen = nfsm_rndup(len);
2454 			if (tlen == len)
2455 				tlen += 4;	/* To ensure null termination*/
2456 			left = DIRBLKSIZ - blksiz;
2457 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2458 				dp->nfs_reclen += left;
2459 				uiop->uio_iov->iov_base += left;
2460 				uiop->uio_iov->iov_len -= left;
2461 				uiop->uio_offset += left;
2462 				uiop->uio_resid -= left;
2463 				blksiz = 0;
2464 			}
2465 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2466 				bigenough = 0;
2467 			if (bigenough) {
2468 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2469 				dp->nfs_ino = fileno;
2470 				dp->nfs_namlen = len;
2471 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2472 				dp->nfs_type = DT_UNKNOWN;
2473 				blksiz += dp->nfs_reclen;
2474 				if (blksiz == DIRBLKSIZ)
2475 					blksiz = 0;
2476 				uiop->uio_offset += sizeof(struct nfs_dirent);
2477 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2478 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2479 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2480 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2481 				nlc.nlc_namelen = len;
2482 				nfsm_mtouio(uiop, len);
2483 				cp = uiop->uio_iov->iov_base;
2484 				tlen -= len;
2485 				*cp = '\0';
2486 				uiop->uio_iov->iov_base += tlen;
2487 				uiop->uio_iov->iov_len -= tlen;
2488 				uiop->uio_offset += tlen;
2489 				uiop->uio_resid -= tlen;
2490 			} else
2491 				nfsm_adv(nfsm_rndup(len));
2492 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2493 			if (bigenough) {
2494 				cookie.nfsuquad[0] = *tl++;
2495 				cookie.nfsuquad[1] = *tl++;
2496 			} else
2497 				tl += 2;
2498 
2499 			/*
2500 			 * Since the attributes are before the file handle
2501 			 * (sigh), we must skip over the attributes and then
2502 			 * come back and get them.
2503 			 */
2504 			attrflag = fxdr_unsigned(int, *tl);
2505 			if (attrflag) {
2506 			    dpossav1 = dpos;
2507 			    mdsav1 = md;
2508 			    nfsm_adv(NFSX_V3FATTR);
2509 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2510 			    doit = fxdr_unsigned(int, *tl);
2511 			    if (doit) {
2512 				nfsm_getfh(fhp, fhsize, 1);
2513 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2514 				    vref(vp);
2515 				    newvp = vp;
2516 				    np = dnp;
2517 				} else {
2518 				    error = nfs_nget(vp->v_mount, fhp,
2519 					fhsize, &np);
2520 				    if (error)
2521 					doit = 0;
2522 				    else
2523 					newvp = NFSTOV(np);
2524 				}
2525 			    }
2526 			    if (doit && bigenough) {
2527 				dpossav2 = dpos;
2528 				dpos = dpossav1;
2529 				mdsav2 = md;
2530 				md = mdsav1;
2531 				nfsm_loadattr(newvp, (struct vattr *)0);
2532 				dpos = dpossav2;
2533 				md = mdsav2;
2534 				dp->nfs_type =
2535 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2536 				if (dncp) {
2537 				    printf("NFS/READDIRPLUS, ENTER %*.*s\n",
2538 					nlc.nlc_namelen, nlc.nlc_namelen,
2539 					nlc.nlc_nameptr);
2540 				    ncp = cache_nlookup(dncp, &nlc);
2541 				    cache_setunresolved(ncp);
2542 				    cache_setvp(ncp, newvp);
2543 				    cache_put(ncp);
2544 				} else {
2545 				    printf("NFS/READDIRPLUS, UNABLE TO ENTER"
2546 					" %*.*s\n",
2547 					nlc.nlc_namelen, nlc.nlc_namelen,
2548 					nlc.nlc_nameptr);
2549 				}
2550 			    }
2551 			} else {
2552 			    /* Just skip over the file handle */
2553 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2554 			    i = fxdr_unsigned(int, *tl);
2555 			    nfsm_adv(nfsm_rndup(i));
2556 			}
2557 			if (newvp != NULLVP) {
2558 			    if (newvp == vp)
2559 				vrele(newvp);
2560 			    else
2561 				vput(newvp);
2562 			    newvp = NULLVP;
2563 			}
2564 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2565 			more_dirs = fxdr_unsigned(int, *tl);
2566 		}
2567 		/*
2568 		 * If at end of rpc data, get the eof boolean
2569 		 */
2570 		if (!more_dirs) {
2571 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2572 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2573 		}
2574 		m_freem(mrep);
2575 	}
2576 	/*
2577 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2578 	 * by increasing d_reclen for the last record.
2579 	 */
2580 	if (blksiz > 0) {
2581 		left = DIRBLKSIZ - blksiz;
2582 		dp->nfs_reclen += left;
2583 		uiop->uio_iov->iov_base += left;
2584 		uiop->uio_iov->iov_len -= left;
2585 		uiop->uio_offset += left;
2586 		uiop->uio_resid -= left;
2587 	}
2588 
2589 	/*
2590 	 * We are now either at the end of the directory or have filled the
2591 	 * block.
2592 	 */
2593 	if (bigenough)
2594 		dnp->n_direofoffset = uiop->uio_offset;
2595 	else {
2596 		if (uiop->uio_resid > 0)
2597 			printf("EEK! readdirplusrpc resid > 0\n");
2598 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2599 		*cookiep = cookie;
2600 	}
2601 nfsmout:
2602 	if (newvp != NULLVP) {
2603 	        if (newvp == vp)
2604 			vrele(newvp);
2605 		else
2606 			vput(newvp);
2607 		newvp = NULLVP;
2608 	}
2609 	if (dncp)
2610 		cache_drop(dncp);
2611 	return (error);
2612 }
2613 
2614 /*
2615  * Silly rename. To make the NFS filesystem that is stateless look a little
2616  * more like the "ufs" a remove of an active vnode is translated to a rename
2617  * to a funny looking filename that is removed by nfs_inactive on the
2618  * nfsnode. There is the potential for another process on a different client
2619  * to create the same funny name between the nfs_lookitup() fails and the
2620  * nfs_rename() completes, but...
2621  */
2622 static int
2623 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2624 {
2625 	struct sillyrename *sp;
2626 	struct nfsnode *np;
2627 	int error;
2628 
2629 	/*
2630 	 * We previously purged dvp instead of vp.  I don't know why, it
2631 	 * completely destroys performance.  We can't do it anyway with the
2632 	 * new VFS API since we would be breaking the namecache topology.
2633 	 */
2634 	cache_purge(vp);	/* XXX */
2635 	np = VTONFS(vp);
2636 #ifndef DIAGNOSTIC
2637 	if (vp->v_type == VDIR)
2638 		panic("nfs: sillyrename dir");
2639 #endif
2640 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2641 		M_NFSREQ, M_WAITOK);
2642 	sp->s_cred = crdup(cnp->cn_cred);
2643 	sp->s_dvp = dvp;
2644 	vref(dvp);
2645 
2646 	/* Fudge together a funny name */
2647 	sp->s_namlen = sprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2648 
2649 	/* Try lookitups until we get one that isn't there */
2650 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2651 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2652 		sp->s_name[4]++;
2653 		if (sp->s_name[4] > 'z') {
2654 			error = EINVAL;
2655 			goto bad;
2656 		}
2657 	}
2658 	error = nfs_renameit(dvp, cnp, sp);
2659 	if (error)
2660 		goto bad;
2661 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2662 		cnp->cn_td, &np);
2663 	np->n_sillyrename = sp;
2664 	return (0);
2665 bad:
2666 	vrele(sp->s_dvp);
2667 	crfree(sp->s_cred);
2668 	free((caddr_t)sp, M_NFSREQ);
2669 	return (error);
2670 }
2671 
2672 /*
2673  * Look up a file name and optionally either update the file handle or
2674  * allocate an nfsnode, depending on the value of npp.
2675  * npp == NULL	--> just do the lookup
2676  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2677  *			handled too
2678  * *npp != NULL --> update the file handle in the vnode
2679  */
2680 static int
2681 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2682 	     struct thread *td, struct nfsnode **npp)
2683 {
2684 	u_int32_t *tl;
2685 	caddr_t cp;
2686 	int32_t t1, t2;
2687 	struct vnode *newvp = (struct vnode *)0;
2688 	struct nfsnode *np, *dnp = VTONFS(dvp);
2689 	caddr_t bpos, dpos, cp2;
2690 	int error = 0, fhlen, attrflag;
2691 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2692 	nfsfh_t *nfhp;
2693 	int v3 = NFS_ISV3(dvp);
2694 
2695 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2696 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2697 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2698 	nfsm_fhtom(dvp, v3);
2699 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2700 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2701 	if (npp && !error) {
2702 		nfsm_getfh(nfhp, fhlen, v3);
2703 		if (*npp) {
2704 		    np = *npp;
2705 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2706 			free((caddr_t)np->n_fhp, M_NFSBIGFH);
2707 			np->n_fhp = &np->n_fh;
2708 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2709 			np->n_fhp =(nfsfh_t *)malloc(fhlen,M_NFSBIGFH,M_WAITOK);
2710 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2711 		    np->n_fhsize = fhlen;
2712 		    newvp = NFSTOV(np);
2713 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2714 		    vref(dvp);
2715 		    newvp = dvp;
2716 		} else {
2717 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2718 		    if (error) {
2719 			m_freem(mrep);
2720 			return (error);
2721 		    }
2722 		    newvp = NFSTOV(np);
2723 		}
2724 		if (v3) {
2725 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2726 			if (!attrflag && *npp == NULL) {
2727 				m_freem(mrep);
2728 				if (newvp == dvp)
2729 					vrele(newvp);
2730 				else
2731 					vput(newvp);
2732 				return (ENOENT);
2733 			}
2734 		} else
2735 			nfsm_loadattr(newvp, (struct vattr *)0);
2736 	}
2737 	m_freem(mrep);
2738 nfsmout:
2739 	if (npp && *npp == NULL) {
2740 		if (error) {
2741 			if (newvp) {
2742 				if (newvp == dvp)
2743 					vrele(newvp);
2744 				else
2745 					vput(newvp);
2746 			}
2747 		} else
2748 			*npp = np;
2749 	}
2750 	return (error);
2751 }
2752 
2753 /*
2754  * Nfs Version 3 commit rpc
2755  */
2756 int
2757 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2758 {
2759 	caddr_t cp;
2760 	u_int32_t *tl;
2761 	int32_t t1, t2;
2762 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2763 	caddr_t bpos, dpos, cp2;
2764 	int error = 0, wccflag = NFSV3_WCCRATTR;
2765 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2766 
2767 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2768 		return (0);
2769 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2770 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2771 	nfsm_fhtom(vp, 1);
2772 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2773 	txdr_hyper(offset, tl);
2774 	tl += 2;
2775 	*tl = txdr_unsigned(cnt);
2776 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2777 	nfsm_wcc_data(vp, wccflag);
2778 	if (!error) {
2779 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2780 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2781 			NFSX_V3WRITEVERF)) {
2782 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2783 				NFSX_V3WRITEVERF);
2784 			error = NFSERR_STALEWRITEVERF;
2785 		}
2786 	}
2787 	m_freem(mrep);
2788 nfsmout:
2789 	return (error);
2790 }
2791 
2792 /*
2793  * Kludge City..
2794  * - make nfs_bmap() essentially a no-op that does no translation
2795  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2796  *   (Maybe I could use the process's page mapping, but I was concerned that
2797  *    Kernel Write might not be enabled and also figured copyout() would do
2798  *    a lot more work than bcopy() and also it currently happens in the
2799  *    context of the swapper process (2).
2800  *
2801  * nfs_bmap(struct vnode *a_vp, off_t a_loffset, struct vnode **a_vpp,
2802  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2803  */
2804 static int
2805 nfs_bmap(struct vop_bmap_args *ap)
2806 {
2807 	struct vnode *vp = ap->a_vp;
2808 
2809 	if (ap->a_vpp != NULL)
2810 		*ap->a_vpp = vp;
2811 	if (ap->a_doffsetp != NULL)
2812 		*ap->a_doffsetp = ap->a_loffset;
2813 	if (ap->a_runp != NULL)
2814 		*ap->a_runp = 0;
2815 	if (ap->a_runb != NULL)
2816 		*ap->a_runb = 0;
2817 	return (0);
2818 }
2819 
2820 /*
2821  * Strategy routine.
2822  *
2823  * For async requests when nfsiod(s) are running, queue the request by
2824  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2825  * request.
2826  */
2827 static int
2828 nfs_strategy(struct vop_strategy_args *ap)
2829 {
2830 	struct bio *bio = ap->a_bio;
2831 	struct bio *nbio;
2832 	struct buf *bp = bio->bio_buf;
2833 	struct thread *td;
2834 	int error = 0;
2835 
2836 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2837 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2838 	KASSERT(BUF_REFCNT(bp) > 0,
2839 		("nfs_strategy: buffer %p not locked", bp));
2840 
2841 	if (bp->b_flags & B_ASYNC)
2842 		td = NULL;
2843 	else
2844 		td = curthread;	/* XXX */
2845 
2846         /*
2847 	 * We probably don't need to push an nbio any more since no
2848 	 * block conversion is required due to the use of 64 bit byte
2849 	 * offsets, but do it anyway.
2850          */
2851 	nbio = push_bio(bio);
2852 	nbio->bio_offset = bio->bio_offset;
2853 
2854 	/*
2855 	 * If the op is asynchronous and an i/o daemon is waiting
2856 	 * queue the request, wake it up and wait for completion
2857 	 * otherwise just do it ourselves.
2858 	 */
2859 	if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2860 		error = nfs_doio(ap->a_vp, nbio, td);
2861 	return (error);
2862 }
2863 
2864 /*
2865  * Mmap a file
2866  *
2867  * NB Currently unsupported.
2868  *
2869  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred,
2870  *	    struct thread *a_td)
2871  */
2872 /* ARGSUSED */
2873 static int
2874 nfs_mmap(struct vop_mmap_args *ap)
2875 {
2876 	return (EINVAL);
2877 }
2878 
2879 /*
2880  * fsync vnode op. Just call nfs_flush() with commit == 1.
2881  *
2882  * nfs_fsync(struct vnodeop_desc *a_desc, struct vnode *a_vp,
2883  *	     struct ucred * a_cred, int a_waitfor, struct thread *a_td)
2884  */
2885 /* ARGSUSED */
2886 static int
2887 nfs_fsync(struct vop_fsync_args *ap)
2888 {
2889 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2890 }
2891 
2892 /*
2893  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2894  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2895  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2896  * set the buffer contains data that has already been written to the server
2897  * and which now needs a commit RPC.
2898  *
2899  * If commit is 0 we only take one pass and only flush buffers containing new
2900  * dirty data.
2901  *
2902  * If commit is 1 we take two passes, issuing a commit RPC in the second
2903  * pass.
2904  *
2905  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2906  * to completely flush all pending data.
2907  *
2908  * Note that the RB_SCAN code properly handles the case where the
2909  * callback might block and directly or indirectly (another thread) cause
2910  * the RB tree to change.
2911  */
2912 
2913 #ifndef NFS_COMMITBVECSIZ
2914 #define NFS_COMMITBVECSIZ	16
2915 #endif
2916 
2917 struct nfs_flush_info {
2918 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2919 	struct thread *td;
2920 	struct vnode *vp;
2921 	int waitfor;
2922 	int slpflag;
2923 	int slptimeo;
2924 	int loops;
2925 	struct buf *bvary[NFS_COMMITBVECSIZ];
2926 	int bvsize;
2927 	off_t beg_off;
2928 	off_t end_off;
2929 };
2930 
2931 static int nfs_flush_bp(struct buf *bp, void *data);
2932 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2933 
2934 int
2935 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2936 {
2937 	struct nfsnode *np = VTONFS(vp);
2938 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2939 	struct nfs_flush_info info;
2940 	int error;
2941 
2942 	bzero(&info, sizeof(info));
2943 	info.td = td;
2944 	info.vp = vp;
2945 	info.waitfor = waitfor;
2946 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2947 	info.loops = 0;
2948 
2949 	do {
2950 		/*
2951 		 * Flush mode
2952 		 */
2953 		info.mode = NFI_FLUSHNEW;
2954 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2955 				nfs_flush_bp, &info);
2956 
2957 		/*
2958 		 * Take a second pass if committing and no error occured.
2959 		 * Clean up any left over collection (whether an error
2960 		 * occurs or not).
2961 		 */
2962 		if (commit && error == 0) {
2963 			info.mode = NFI_COMMIT;
2964 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2965 					nfs_flush_bp, &info);
2966 			if (info.bvsize)
2967 				error = nfs_flush_docommit(&info, error);
2968 		}
2969 
2970 		/*
2971 		 * Wait for pending I/O to complete before checking whether
2972 		 * any further dirty buffers exist.
2973 		 */
2974 		while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
2975 			vp->v_track_write.bk_waitflag = 1;
2976 			error = tsleep(&vp->v_track_write,
2977 				info.slpflag, "nfsfsync", info.slptimeo);
2978 			if (error) {
2979 				/*
2980 				 * We have to be able to break out if this
2981 				 * is an 'intr' mount.
2982 				 */
2983 				if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2984 					error = -EINTR;
2985 					break;
2986 				}
2987 
2988 				/*
2989 				 * Since we do not process pending signals,
2990 				 * once we get a PCATCH our tsleep() will no
2991 				 * longer sleep, switch to a fixed timeout
2992 				 * instead.
2993 				 */
2994 				if (info.slpflag == PCATCH) {
2995 					info.slpflag = 0;
2996 					info.slptimeo = 2 * hz;
2997 				}
2998 				error = 0;
2999 			}
3000 		}
3001 		++info.loops;
3002 		/*
3003 		 * Loop if we are flushing synchronous as well as committing,
3004 		 * and dirty buffers are still present.  Otherwise we might livelock.
3005 		 */
3006 	} while (waitfor == MNT_WAIT && commit &&
3007 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3008 
3009 	/*
3010 	 * The callbacks have to return a negative error to terminate the
3011 	 * RB scan.
3012 	 */
3013 	if (error < 0)
3014 		error = -error;
3015 
3016 	/*
3017 	 * Deal with any error collection
3018 	 */
3019 	if (np->n_flag & NWRITEERR) {
3020 		error = np->n_error;
3021 		np->n_flag &= ~NWRITEERR;
3022 	}
3023 	return (error);
3024 }
3025 
3026 
3027 static
3028 int
3029 nfs_flush_bp(struct buf *bp, void *data)
3030 {
3031 	struct nfs_flush_info *info = data;
3032 	off_t toff;
3033 	int error;
3034 
3035 	error = 0;
3036 	switch(info->mode) {
3037 	case NFI_FLUSHNEW:
3038 		crit_enter();
3039 		if (info->loops && info->waitfor == MNT_WAIT) {
3040 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3041 			if (error) {
3042 				int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3043 				if (info->slpflag & PCATCH)
3044 					lkflags |= LK_PCATCH;
3045 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3046 						     info->slptimeo);
3047 			}
3048 		} else {
3049 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3050 		}
3051 		if (error == 0) {
3052 			KKASSERT(bp->b_vp == info->vp);
3053 
3054 			if ((bp->b_flags & B_DELWRI) == 0)
3055 				panic("nfs_fsync: not dirty");
3056 			if (bp->b_flags & B_NEEDCOMMIT) {
3057 				BUF_UNLOCK(bp);
3058 				crit_exit();
3059 				break;
3060 			}
3061 			bremfree(bp);
3062 
3063 			bp->b_flags |= B_ASYNC;
3064 			crit_exit();
3065 			bwrite(bp);
3066 		} else {
3067 			crit_exit();
3068 			error = 0;
3069 		}
3070 		break;
3071 	case NFI_COMMIT:
3072 		/*
3073 		 * Only process buffers in need of a commit which we can
3074 		 * immediately lock.  This may prevent a buffer from being
3075 		 * committed, but the normal flush loop will block on the
3076 		 * same buffer so we shouldn't get into an endless loop.
3077 		 */
3078 		crit_enter();
3079 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3080 		    (B_DELWRI | B_NEEDCOMMIT) ||
3081 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3082 			crit_exit();
3083 			break;
3084 		}
3085 
3086 		KKASSERT(bp->b_vp == info->vp);
3087 		bremfree(bp);
3088 
3089 		/*
3090 		 * NOTE: storing the bp in the bvary[] basically sets
3091 		 * it up for a commit operation.
3092 		 *
3093 		 * We must call vfs_busy_pages() now so the commit operation
3094 		 * is interlocked with user modifications to memory mapped
3095 		 * pages.
3096 		 *
3097 		 * Note: to avoid loopback deadlocks, we do not
3098 		 * assign b_runningbufspace.
3099 		 */
3100 		bp->b_cmd = BUF_CMD_WRITE;
3101 		vfs_busy_pages(bp->b_vp, bp);
3102 		info->bvary[info->bvsize] = bp;
3103 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3104 		if (info->bvsize == 0 || toff < info->beg_off)
3105 			info->beg_off = toff;
3106 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3107 		if (info->bvsize == 0 || toff > info->end_off)
3108 			info->end_off = toff;
3109 		++info->bvsize;
3110 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3111 			error = nfs_flush_docommit(info, 0);
3112 			KKASSERT(info->bvsize == 0);
3113 		}
3114 		crit_exit();
3115 	}
3116 	return (error);
3117 }
3118 
3119 static
3120 int
3121 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3122 {
3123 	struct vnode *vp;
3124 	struct buf *bp;
3125 	off_t bytes;
3126 	int retv;
3127 	int i;
3128 
3129 	vp = info->vp;
3130 
3131 	if (info->bvsize > 0) {
3132 		/*
3133 		 * Commit data on the server, as required.  Note that
3134 		 * nfs_commit will use the vnode's cred for the commit.
3135 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3136 		 */
3137 		bytes = info->end_off - info->beg_off;
3138 		if (bytes > 0x40000000)
3139 			bytes = 0x40000000;
3140 		if (error) {
3141 			retv = -error;
3142 		} else {
3143 			retv = nfs_commit(vp, info->beg_off,
3144 					    (int)bytes, info->td);
3145 			if (retv == NFSERR_STALEWRITEVERF)
3146 				nfs_clearcommit(vp->v_mount);
3147 		}
3148 
3149 		/*
3150 		 * Now, either mark the blocks I/O done or mark the
3151 		 * blocks dirty, depending on whether the commit
3152 		 * succeeded.
3153 		 */
3154 		for (i = 0; i < info->bvsize; ++i) {
3155 			bp = info->bvary[i];
3156 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3157 			if (retv) {
3158 				/*
3159 				 * Error, leave B_DELWRI intact
3160 				 */
3161 				vfs_unbusy_pages(bp);
3162 				bp->b_cmd = BUF_CMD_DONE;
3163 				brelse(bp);
3164 			} else {
3165 				/*
3166 				 * Success, remove B_DELWRI ( bundirty() ).
3167 				 *
3168 				 * b_dirtyoff/b_dirtyend seem to be NFS
3169 				 * specific.  We should probably move that
3170 				 * into bundirty(). XXX
3171 				 *
3172 				 * We are faking an I/O write, we have to
3173 				 * start the transaction in order to
3174 				 * immediately biodone() it.
3175 				 */
3176 				crit_enter();
3177 				bp->b_flags |= B_ASYNC;
3178 				bundirty(bp);
3179 				bp->b_flags &= ~B_ERROR;
3180 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3181 				crit_exit();
3182 				biodone(&bp->b_bio1);
3183 			}
3184 		}
3185 		info->bvsize = 0;
3186 	}
3187 	return (error);
3188 }
3189 
3190 /*
3191  * NFS advisory byte-level locks.
3192  * Currently unsupported.
3193  *
3194  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3195  *		int a_flags)
3196  */
3197 static int
3198 nfs_advlock(struct vop_advlock_args *ap)
3199 {
3200 	struct nfsnode *np = VTONFS(ap->a_vp);
3201 
3202 	/*
3203 	 * The following kludge is to allow diskless support to work
3204 	 * until a real NFS lockd is implemented. Basically, just pretend
3205 	 * that this is a local lock.
3206 	 */
3207 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3208 }
3209 
3210 /*
3211  * Print out the contents of an nfsnode.
3212  *
3213  * nfs_print(struct vnode *a_vp)
3214  */
3215 static int
3216 nfs_print(struct vop_print_args *ap)
3217 {
3218 	struct vnode *vp = ap->a_vp;
3219 	struct nfsnode *np = VTONFS(vp);
3220 
3221 	printf("tag VT_NFS, fileid %ld fsid 0x%x",
3222 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3223 	if (vp->v_type == VFIFO)
3224 		fifo_printinfo(vp);
3225 	printf("\n");
3226 	return (0);
3227 }
3228 
3229 /*
3230  * nfs special file access vnode op.
3231  * Essentially just get vattr and then imitate iaccess() since the device is
3232  * local to the client.
3233  *
3234  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
3235  *		  struct thread *a_td)
3236  */
3237 static int
3238 nfsspec_access(struct vop_access_args *ap)
3239 {
3240 	struct vattr *vap;
3241 	gid_t *gp;
3242 	struct ucred *cred = ap->a_cred;
3243 	struct vnode *vp = ap->a_vp;
3244 	mode_t mode = ap->a_mode;
3245 	struct vattr vattr;
3246 	int i;
3247 	int error;
3248 
3249 	/*
3250 	 * Disallow write attempts on filesystems mounted read-only;
3251 	 * unless the file is a socket, fifo, or a block or character
3252 	 * device resident on the filesystem.
3253 	 */
3254 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3255 		switch (vp->v_type) {
3256 		case VREG:
3257 		case VDIR:
3258 		case VLNK:
3259 			return (EROFS);
3260 		default:
3261 			break;
3262 		}
3263 	}
3264 	/*
3265 	 * If you're the super-user,
3266 	 * you always get access.
3267 	 */
3268 	if (cred->cr_uid == 0)
3269 		return (0);
3270 	vap = &vattr;
3271 	error = VOP_GETATTR(vp, vap);
3272 	if (error)
3273 		return (error);
3274 	/*
3275 	 * Access check is based on only one of owner, group, public.
3276 	 * If not owner, then check group. If not a member of the
3277 	 * group, then check public access.
3278 	 */
3279 	if (cred->cr_uid != vap->va_uid) {
3280 		mode >>= 3;
3281 		gp = cred->cr_groups;
3282 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3283 			if (vap->va_gid == *gp)
3284 				goto found;
3285 		mode >>= 3;
3286 found:
3287 		;
3288 	}
3289 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3290 	return (error);
3291 }
3292 
3293 /*
3294  * Read wrapper for special devices.
3295  *
3296  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3297  *		struct ucred *a_cred)
3298  */
3299 static int
3300 nfsspec_read(struct vop_read_args *ap)
3301 {
3302 	struct nfsnode *np = VTONFS(ap->a_vp);
3303 
3304 	/*
3305 	 * Set access flag.
3306 	 */
3307 	np->n_flag |= NACC;
3308 	getnanotime(&np->n_atim);
3309 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3310 }
3311 
3312 /*
3313  * Write wrapper for special devices.
3314  *
3315  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3316  *		 struct ucred *a_cred)
3317  */
3318 static int
3319 nfsspec_write(struct vop_write_args *ap)
3320 {
3321 	struct nfsnode *np = VTONFS(ap->a_vp);
3322 
3323 	/*
3324 	 * Set update flag.
3325 	 */
3326 	np->n_flag |= NUPD;
3327 	getnanotime(&np->n_mtim);
3328 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3329 }
3330 
3331 /*
3332  * Close wrapper for special devices.
3333  *
3334  * Update the times on the nfsnode then do device close.
3335  *
3336  * nfsspec_close(struct vnode *a_vp, int a_fflag, struct ucred *a_cred,
3337  *		 struct thread *a_td)
3338  */
3339 static int
3340 nfsspec_close(struct vop_close_args *ap)
3341 {
3342 	struct vnode *vp = ap->a_vp;
3343 	struct nfsnode *np = VTONFS(vp);
3344 	struct vattr vattr;
3345 
3346 	if (np->n_flag & (NACC | NUPD)) {
3347 		np->n_flag |= NCHG;
3348 		if (vp->v_usecount == 1 &&
3349 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3350 			VATTR_NULL(&vattr);
3351 			if (np->n_flag & NACC)
3352 				vattr.va_atime = np->n_atim;
3353 			if (np->n_flag & NUPD)
3354 				vattr.va_mtime = np->n_mtim;
3355 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3356 		}
3357 	}
3358 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3359 }
3360 
3361 /*
3362  * Read wrapper for fifos.
3363  *
3364  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3365  *		struct ucred *a_cred)
3366  */
3367 static int
3368 nfsfifo_read(struct vop_read_args *ap)
3369 {
3370 	struct nfsnode *np = VTONFS(ap->a_vp);
3371 
3372 	/*
3373 	 * Set access flag.
3374 	 */
3375 	np->n_flag |= NACC;
3376 	getnanotime(&np->n_atim);
3377 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3378 }
3379 
3380 /*
3381  * Write wrapper for fifos.
3382  *
3383  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3384  *		 struct ucred *a_cred)
3385  */
3386 static int
3387 nfsfifo_write(struct vop_write_args *ap)
3388 {
3389 	struct nfsnode *np = VTONFS(ap->a_vp);
3390 
3391 	/*
3392 	 * Set update flag.
3393 	 */
3394 	np->n_flag |= NUPD;
3395 	getnanotime(&np->n_mtim);
3396 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3397 }
3398 
3399 /*
3400  * Close wrapper for fifos.
3401  *
3402  * Update the times on the nfsnode then do fifo close.
3403  *
3404  * nfsfifo_close(struct vnode *a_vp, int a_fflag, struct thread *a_td)
3405  */
3406 static int
3407 nfsfifo_close(struct vop_close_args *ap)
3408 {
3409 	struct vnode *vp = ap->a_vp;
3410 	struct nfsnode *np = VTONFS(vp);
3411 	struct vattr vattr;
3412 	struct timespec ts;
3413 
3414 	if (np->n_flag & (NACC | NUPD)) {
3415 		getnanotime(&ts);
3416 		if (np->n_flag & NACC)
3417 			np->n_atim = ts;
3418 		if (np->n_flag & NUPD)
3419 			np->n_mtim = ts;
3420 		np->n_flag |= NCHG;
3421 		if (vp->v_usecount == 1 &&
3422 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3423 			VATTR_NULL(&vattr);
3424 			if (np->n_flag & NACC)
3425 				vattr.va_atime = np->n_atim;
3426 			if (np->n_flag & NUPD)
3427 				vattr.va_mtime = np->n_mtim;
3428 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3429 		}
3430 	}
3431 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3432 }
3433 
3434