xref: /dragonfly/sys/vfs/nullfs/null_vnops.c (revision 71126e33)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
37  *
38  * Ancestors:
39  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
40  * $FreeBSD: src/sys/miscfs/nullfs/null_vnops.c,v 1.38.2.6 2002/07/31 00:32:28 semenu Exp $
41  * $DragonFly: src/sys/vfs/nullfs/null_vnops.c,v 1.21 2004/12/17 00:18:30 dillon Exp $
42  *	...and...
43  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
44  *
45  * $FreeBSD: src/sys/miscfs/nullfs/null_vnops.c,v 1.38.2.6 2002/07/31 00:32:28 semenu Exp $
46  */
47 
48 /*
49  * Null Layer
50  *
51  * (See mount_null(8) for more information.)
52  *
53  * The null layer duplicates a portion of the file system
54  * name space under a new name.  In this respect, it is
55  * similar to the loopback file system.  It differs from
56  * the loopback fs in two respects:  it is implemented using
57  * a stackable layers techniques, and its "null-node"s stack above
58  * all lower-layer vnodes, not just over directory vnodes.
59  *
60  * The null layer has two purposes.  First, it serves as a demonstration
61  * of layering by proving a layer which does nothing.  (It actually
62  * does everything the loopback file system does, which is slightly
63  * more than nothing.)  Second, the null layer can serve as a prototype
64  * layer.  Since it provides all necessary layer framework,
65  * new file system layers can be created very easily be starting
66  * with a null layer.
67  *
68  * The remainder of this man page examines the null layer as a basis
69  * for constructing new layers.
70  *
71  *
72  * INSTANTIATING NEW NULL LAYERS
73  *
74  * New null layers are created with mount_null(8).
75  * Mount_null(8) takes two arguments, the pathname
76  * of the lower vfs (target-pn) and the pathname where the null
77  * layer will appear in the namespace (alias-pn).  After
78  * the null layer is put into place, the contents
79  * of target-pn subtree will be aliased under alias-pn.
80  *
81  *
82  * OPERATION OF A NULL LAYER
83  *
84  * The null layer is the minimum file system layer,
85  * simply bypassing all possible operations to the lower layer
86  * for processing there.  The majority of its activity centers
87  * on the bypass routine, through which nearly all vnode operations
88  * pass.
89  *
90  * The bypass routine accepts arbitrary vnode operations for
91  * handling by the lower layer.  It begins by examing vnode
92  * operation arguments and replacing any null-nodes by their
93  * lower-layer equivlants.  It then invokes the operation
94  * on the lower layer.  Finally, it replaces the null-nodes
95  * in the arguments and, if a vnode is return by the operation,
96  * stacks a null-node on top of the returned vnode.
97  *
98  * Although bypass handles most operations, vop_getattr, vop_lock,
99  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
100  * bypassed. Vop_getattr must change the fsid being returned.
101  * Vop_lock and vop_unlock must handle any locking for the
102  * current vnode as well as pass the lock request down.
103  * Vop_inactive and vop_reclaim are not bypassed so that
104  * they can handle freeing null-layer specific data. Vop_print
105  * is not bypassed to avoid excessive debugging information.
106  * Also, certain vnode operations change the locking state within
107  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
108  * and symlink). Ideally these operations should not change the
109  * lock state, but should be changed to let the caller of the
110  * function unlock them. Otherwise all intermediate vnode layers
111  * (such as union, umapfs, etc) must catch these functions to do
112  * the necessary locking at their layer.
113  *
114  *
115  * INSTANTIATING VNODE STACKS
116  *
117  * Mounting associates the null layer with a lower layer,
118  * effect stacking two VFSes.  Vnode stacks are instead
119  * created on demand as files are accessed.
120  *
121  * The initial mount creates a single vnode stack for the
122  * root of the new null layer.  All other vnode stacks
123  * are created as a result of vnode operations on
124  * this or other null vnode stacks.
125  *
126  * New vnode stacks come into existance as a result of
127  * an operation which returns a vnode.
128  * The bypass routine stacks a null-node above the new
129  * vnode before returning it to the caller.
130  *
131  * For example, imagine mounting a null layer with
132  * "mount_null /usr/include /dev/layer/null".
133  * Changing directory to /dev/layer/null will assign
134  * the root null-node (which was created when the null layer was mounted).
135  * Now consider opening "sys".  A vop_lookup would be
136  * done on the root null-node.  This operation would bypass through
137  * to the lower layer which would return a vnode representing
138  * the UFS "sys".  Null_bypass then builds a null-node
139  * aliasing the UFS "sys" and returns this to the caller.
140  * Later operations on the null-node "sys" will repeat this
141  * process when constructing other vnode stacks.
142  *
143  *
144  * CREATING OTHER FILE SYSTEM LAYERS
145  *
146  * One of the easiest ways to construct new file system layers is to make
147  * a copy of the null layer, rename all files and variables, and
148  * then begin modifing the copy.  Sed can be used to easily rename
149  * all variables.
150  *
151  * The umap layer is an example of a layer descended from the
152  * null layer.
153  *
154  *
155  * INVOKING OPERATIONS ON LOWER LAYERS
156  *
157  * There are two techniques to invoke operations on a lower layer
158  * when the operation cannot be completely bypassed.  Each method
159  * is appropriate in different situations.  In both cases,
160  * it is the responsibility of the aliasing layer to make
161  * the operation arguments "correct" for the lower layer
162  * by mapping an vnode arguments to the lower layer.
163  *
164  * The first approach is to call the aliasing layer's bypass routine.
165  * This method is most suitable when you wish to invoke the operation
166  * currently being handled on the lower layer.  It has the advantage
167  * that the bypass routine already must do argument mapping.
168  * An example of this is null_getattrs in the null layer.
169  *
170  * A second approach is to directly invoke vnode operations on
171  * the lower layer with the VOP_OPERATIONNAME interface.
172  * The advantage of this method is that it is easy to invoke
173  * arbitrary operations on the lower layer.  The disadvantage
174  * is that vnode arguments must be manualy mapped.
175  *
176  */
177 
178 #include <sys/param.h>
179 #include <sys/systm.h>
180 #include <sys/kernel.h>
181 #include <sys/sysctl.h>
182 #include <sys/vnode.h>
183 #include <sys/mount.h>
184 #include <sys/proc.h>
185 #include <sys/namei.h>
186 #include <sys/malloc.h>
187 #include <sys/buf.h>
188 #include "null.h"
189 
190 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
191 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
192 	&null_bug_bypass, 0, "");
193 
194 static int	null_nresolve(struct vop_nresolve_args *ap);
195 static int	null_ncreate(struct vop_ncreate_args *ap);
196 static int	null_nmkdir(struct vop_nmkdir_args *ap);
197 static int	null_nremove(struct vop_nremove_args *ap);
198 static int	null_nrmdir(struct vop_nrmdir_args *ap);
199 static int	null_nrename(struct vop_nrename_args *ap);
200 
201 static int	null_revoke(struct vop_revoke_args *ap);
202 static int	null_access(struct vop_access_args *ap);
203 static int	null_createvobject(struct vop_createvobject_args *ap);
204 static int	null_destroyvobject(struct vop_destroyvobject_args *ap);
205 static int	null_getattr(struct vop_getattr_args *ap);
206 static int	null_getvobject(struct vop_getvobject_args *ap);
207 static int	null_inactive(struct vop_inactive_args *ap);
208 static int	null_islocked(struct vop_islocked_args *ap);
209 static int	null_lock(struct vop_lock_args *ap);
210 static int	null_lookup(struct vop_lookup_args *ap);
211 static int	null_open(struct vop_open_args *ap);
212 static int	null_print(struct vop_print_args *ap);
213 static int	null_reclaim(struct vop_reclaim_args *ap);
214 static int	null_rename(struct vop_rename_args *ap);
215 static int	null_setattr(struct vop_setattr_args *ap);
216 static int	null_unlock(struct vop_unlock_args *ap);
217 
218 /*
219  * This is the 10-Apr-92 bypass routine.
220  *    This version has been optimized for speed, throwing away some
221  * safety checks.  It should still always work, but it's not as
222  * robust to programmer errors.
223  *
224  * In general, we map all vnodes going down and unmap them on the way back.
225  * As an exception to this, vnodes can be marked "unmapped" by setting
226  * the Nth bit in operation's vdesc_flags.
227  *
228  * Also, some BSD vnode operations have the side effect of vrele'ing
229  * their arguments.  With stacking, the reference counts are held
230  * by the upper node, not the lower one, so we must handle these
231  * side-effects here.  This is not of concern in Sun-derived systems
232  * since there are no such side-effects.
233  *
234  * This makes the following assumptions:
235  * - only one returned vpp
236  * - no INOUT vpp's (Sun's vop_open has one of these)
237  * - the vnode operation vector of the first vnode should be used
238  *   to determine what implementation of the op should be invoked
239  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
240  *   problems on rmdir'ing mount points and renaming?)
241  *
242  * null_bypass(struct vnodeop_desc *a_desc, ...)
243  */
244 int
245 null_bypass(struct vop_generic_args *ap)
246 {
247 	struct vnode **this_vp_p;
248 	int error;
249 	struct vnode *old_vps[VDESC_MAX_VPS];
250 	struct vnode **vps_p[VDESC_MAX_VPS];
251 	struct vnode ***vppp;
252 	struct vnodeop_desc *descp = ap->a_desc;
253 	int reles, i, j;
254 
255 	if (null_bug_bypass)
256 		printf ("null_bypass: %s\n", descp->vdesc_name);
257 
258 #ifdef DIAGNOSTIC
259 	/*
260 	 * We require at least one vp.
261 	 */
262 	if (descp->vdesc_vp_offsets == NULL ||
263 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
264 		panic ("null_bypass: no vp's in map");
265 #endif
266 
267 	/*
268 	 * Map the vnodes going in.
269 	 */
270 	reles = descp->vdesc_flags;
271 	for (i = 0; i < VDESC_MAX_VPS; ++i) {
272 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
273 			break;   /* bail out at end of list */
274 		vps_p[i] = this_vp_p =
275 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
276 		/*
277 		 * We're not guaranteed that any but the first vnode
278 		 * are of our type.  Check for and don't map any
279 		 * that aren't.  (We must always map first vp or vclean fails.)
280 		 */
281 		if (i && (*this_vp_p == NULLVP ||
282 		    (*this_vp_p)->v_tag != VT_NULL)) {
283 			old_vps[i] = NULLVP;
284 		} else {
285 			old_vps[i] = *this_vp_p;
286 			*this_vp_p = NULLVPTOLOWERVP(*this_vp_p);
287 			/*
288 			 * Several operations have the side effect of vrele'ing
289 			 * their vp's.  We must account for that in the lower
290 			 * vp we pass down.
291 			 */
292 			if (reles & (VDESC_VP0_WILLRELE << i))
293 				vref(*this_vp_p);
294 		}
295 
296 	}
297 
298 	/*
299 	 * Call the operation on the lower layer with the modified
300 	 * argument structure.  We have to adjust a_fm to point to the
301 	 * lower vp's vop_ops structure.
302 	 */
303 	if (vps_p[0] && *vps_p[0]) {
304 		ap->a_ops = *(*(vps_p[0]))->v_ops;
305 		error = vop_vnoperate_ap(ap);
306 	} else {
307 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
308 		error = EINVAL;
309 	}
310 
311 	/*
312 	 * Maintain the illusion of call-by-value by restoring vnodes in the
313 	 * argument structure to their original value.
314 	 */
315 	reles = descp->vdesc_flags;
316 	for (i = 0; i < VDESC_MAX_VPS; ++i) {
317 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
318 			break;   /* bail out at end of list */
319 		if (old_vps[i]) {
320 			*(vps_p[i]) = old_vps[i];
321 
322 			/*
323 			 * Since we operated on the lowervp's instead of the
324 			 * null node vp's, we have to adjust the null node
325 			 * vp's based on what the VOP did to the lower vp.
326 			 *
327 			 * Note: the unlock case only occurs with rename.
328 			 * tdvp and tvp are both locked on call and must be
329 			 * unlocked on return.
330 			 *
331 			 * Unlock semantics indicate that if two locked vp's
332 			 * are passed and they are the same vp, they are only
333 			 * actually locked once.
334 			 */
335 			if (reles & (VDESC_VP0_WILLUNLOCK << i)) {
336 				VOP_UNLOCK(old_vps[i], LK_THISLAYER, curthread);
337 				for (j = i + 1; j < VDESC_MAX_VPS; ++j) {
338 					if (descp->vdesc_vp_offsets[j] == VDESC_NO_OFFSET)
339 						break;
340 					if (old_vps[i] == old_vps[j]) {
341 						reles &= ~(1 << (VDESC_VP0_WILLUNLOCK << j));
342 					}
343 				}
344 			}
345 
346 			if (reles & (VDESC_VP0_WILLRELE << i))
347 				vrele(old_vps[i]);
348 		}
349 	}
350 
351 	/*
352 	 * Map the possible out-going vpp
353 	 * (Assumes that the lower layer always returns
354 	 * a vref'ed vpp unless it gets an error.)
355 	 */
356 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
357 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
358 	    !error) {
359 		/*
360 		 * XXX - even though some ops have vpp returned vp's,
361 		 * several ops actually vrele this before returning.
362 		 * We must avoid these ops.
363 		 * (This should go away when these ops are regularized.)
364 		 */
365 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
366 			goto out;
367 		vppp = VOPARG_OFFSETTO(struct vnode***,
368 				 descp->vdesc_vpp_offset,ap);
369 		if (*vppp)
370 			error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
371 	}
372 
373  out:
374 	return (error);
375 }
376 
377 /*
378  * We have to carry on the locking protocol on the null layer vnodes
379  * as we progress through the tree. We also have to enforce read-only
380  * if this layer is mounted read-only.
381  *
382  * null_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
383  *		struct componentname *a_cnp)
384  */
385 static int
386 null_lookup(struct vop_lookup_args *ap)
387 {
388 	struct componentname *cnp = ap->a_cnp;
389 	struct vnode *dvp = ap->a_dvp;
390 	struct thread *td = cnp->cn_td;
391 	int flags = cnp->cn_flags;
392 	struct vnode *vp, *ldvp, *lvp;
393 	int error;
394 
395 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
396 	    (cnp->cn_nameiop == NAMEI_DELETE ||
397 	     cnp->cn_nameiop == NAMEI_RENAME)) {
398 		return (EROFS);
399 	}
400 	ldvp = NULLVPTOLOWERVP(dvp);
401 
402 	/*
403 	 * If we are doing a ".." lookup we must release the lock on dvp
404 	 * now, before we run a lookup in the underlying fs, or we may
405 	 * deadlock.  If we do this we must protect ldvp by ref'ing it.
406 	 */
407 	if (flags & CNP_ISDOTDOT) {
408 		vref(ldvp);
409 		VOP_UNLOCK(dvp, LK_THISLAYER, td);
410 	}
411 
412 	/*
413 	 * Due to the non-deterministic nature of the handling of the
414 	 * parent directory lock by lookup, we cannot call null_bypass()
415 	 * here.  We must make a direct call.  It's faster to do a direct
416 	 * call, anyway.
417 	 */
418 	vp = lvp = NULL;
419 	error = VOP_LOOKUP(ldvp, &lvp, cnp);
420 	if (error == EJUSTRETURN &&
421 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
422 	    (cnp->cn_nameiop == NAMEI_CREATE ||
423 	     cnp->cn_nameiop == NAMEI_RENAME)) {
424 		error = EROFS;
425 	}
426 
427 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
428 		if (ldvp == lvp) {
429 			*ap->a_vpp = dvp;
430 			vref(dvp);
431 			vrele(lvp);
432 		} else {
433 			error = null_node_create(dvp->v_mount, lvp, &vp);
434 			if (error == 0)
435 				*ap->a_vpp = vp;
436 		}
437 	}
438 
439 	/*
440 	 * The underlying fs will set PDIRUNLOCK if it unlocked the parent
441 	 * directory, which means we have to follow suit in the nullfs layer.
442 	 * Note that the parent directory may have already been unlocked due
443 	 * to the ".." case.  Note that use of cnp->cn_flags instead of flags.
444 	 */
445 	if (flags & CNP_ISDOTDOT) {
446 		if ((cnp->cn_flags & CNP_PDIRUNLOCK) == 0)
447 			VOP_LOCK(dvp, LK_THISLAYER | LK_EXCLUSIVE, td);
448 		vrele(ldvp);
449 	} else if (cnp->cn_flags & CNP_PDIRUNLOCK) {
450 		VOP_UNLOCK(dvp, LK_THISLAYER, td);
451 	}
452 	return (error);
453 }
454 
455 /*
456  * Setattr call. Disallow write attempts if the layer is mounted read-only.
457  *
458  * null_setattr(struct vnodeop_desc *a_desc, struct vnode *a_vp,
459  *		struct vattr *a_vap, struct ucred *a_cred,
460  *		struct thread *a_td)
461  */
462 int
463 null_setattr(struct vop_setattr_args *ap)
464 {
465 	struct vnode *vp = ap->a_vp;
466 	struct vattr *vap = ap->a_vap;
467 
468   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
469 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
470 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
471 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
472 		return (EROFS);
473 	if (vap->va_size != VNOVAL) {
474  		switch (vp->v_type) {
475  		case VDIR:
476  			return (EISDIR);
477  		case VCHR:
478  		case VBLK:
479  		case VSOCK:
480  		case VFIFO:
481 			if (vap->va_flags != VNOVAL)
482 				return (EOPNOTSUPP);
483 			return (0);
484 		case VREG:
485 		case VLNK:
486  		default:
487 			/*
488 			 * Disallow write attempts if the filesystem is
489 			 * mounted read-only.
490 			 */
491 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
492 				return (EROFS);
493 		}
494 	}
495 
496 	return (null_bypass(&ap->a_head));
497 }
498 
499 /*
500  *  We handle getattr only to change the fsid.
501  *
502  * null_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
503  *		struct thread *a_td)
504  */
505 static int
506 null_getattr(struct vop_getattr_args *ap)
507 {
508 	int error;
509 
510 	if ((error = null_bypass(&ap->a_head)) != 0)
511 		return (error);
512 
513 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
514 	return (0);
515 }
516 
517 /*
518  * Resolve a locked ncp at the nullfs layer.
519  */
520 static int
521 null_nresolve(struct vop_nresolve_args *ap)
522 {
523 	return(vop_compat_nresolve(ap));
524 }
525 
526 /*
527  * Create a file
528  */
529 static int
530 null_ncreate(struct vop_ncreate_args *ap)
531 {
532 	return(vop_compat_ncreate(ap));
533 }
534 
535 static int
536 null_nmkdir(struct vop_nmkdir_args *ap)
537 {
538 	return(vop_compat_nmkdir(ap));
539 }
540 
541 static int
542 null_nremove(struct vop_nremove_args *ap)
543 {
544 	return(vop_compat_nremove(ap));
545 }
546 
547 static int
548 null_nrmdir(struct vop_nrmdir_args *ap)
549 {
550 	return(vop_compat_nrmdir(ap));
551 }
552 
553 static int
554 null_nrename(struct vop_nrename_args *ap)
555 {
556 	return(vop_compat_nrename(ap));
557 }
558 
559 /*
560  * revoke is VX locked, we can't go through null_bypass
561  */
562 static int
563 null_revoke(struct vop_revoke_args *ap)
564 {
565 	struct null_node *np;
566 	struct vnode *lvp;
567 
568 	np = VTONULL(ap->a_vp);
569 	vx_unlock(ap->a_vp);
570 	if ((lvp = np->null_lowervp) != NULL) {
571 		vx_get(lvp);
572 		VOP_REVOKE(lvp, ap->a_flags);
573 		vx_put(lvp);
574 	}
575 	vx_lock(ap->a_vp);
576 	vgone(ap->a_vp);
577 	return(0);
578 }
579 
580 /*
581  * Handle to disallow write access if mounted read-only.
582  *
583  * null_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
584  *		struct thread *a_td)
585  */
586 static int
587 null_access(struct vop_access_args *ap)
588 {
589 	struct vnode *vp = ap->a_vp;
590 	mode_t mode = ap->a_mode;
591 
592 	/*
593 	 * Disallow write attempts on read-only layers;
594 	 * unless the file is a socket, fifo, or a block or
595 	 * character device resident on the file system.
596 	 */
597 	if (mode & VWRITE) {
598 		switch (vp->v_type) {
599 		case VDIR:
600 		case VLNK:
601 		case VREG:
602 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
603 				return (EROFS);
604 			break;
605 		default:
606 			break;
607 		}
608 	}
609 	return (null_bypass(&ap->a_head));
610 }
611 
612 /*
613  * We must handle open to be able to catch MNT_NODEV and friends.
614  *
615  * null_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
616  *	     struct thread *a_td)
617  */
618 static int
619 null_open(struct vop_open_args *ap)
620 {
621 	struct vnode *vp = ap->a_vp;
622 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
623 
624 	if ((vp->v_mount->mnt_flag & MNT_NODEV) &&
625 	    (lvp->v_type == VBLK || lvp->v_type == VCHR))
626 		return ENXIO;
627 
628 	return (null_bypass(&ap->a_head));
629 }
630 
631 /*
632  * We handle this to eliminate null FS to lower FS
633  * file moving. Don't know why we don't allow this,
634  * possibly we should.
635  *
636  * null_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
637  *		struct componentname *a_fcnp, struct vnode *a_tdvp,
638  *		struct vnode *a_tvp, struct componentname *a_tcnp)
639  */
640 static int
641 null_rename(struct vop_rename_args *ap)
642 {
643 	struct vnode *tdvp = ap->a_tdvp;
644 	struct vnode *fvp = ap->a_fvp;
645 	struct vnode *fdvp = ap->a_fdvp;
646 	struct vnode *tvp = ap->a_tvp;
647 
648 	/* Check for cross-device rename. */
649 	if ((fvp->v_mount != tdvp->v_mount) ||
650 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
651 		if (tdvp == tvp)
652 			vrele(tdvp);
653 		else
654 			vput(tdvp);
655 		if (tvp)
656 			vput(tvp);
657 		vrele(fdvp);
658 		vrele(fvp);
659 		return (EXDEV);
660 	}
661 
662 	return (null_bypass(&ap->a_head));
663 }
664 
665 /*
666  * A special flag, LK_THISLAYER, causes the locking function to operate
667  * ONLY on the nullfs layer.  Otherwise we are responsible for locking not
668  * only our layer, but the lower layer as well.
669  *
670  * null_lock(struct vnode *a_vp, int a_flags, struct thread *a_td)
671  */
672 static int
673 null_lock(struct vop_lock_args *ap)
674 {
675 	struct vnode *vp = ap->a_vp;
676 	int flags = ap->a_flags;
677 	struct null_node *np = VTONULL(vp);
678 	struct vnode *lvp;
679 	int error;
680 
681 	/*
682 	 * Lock the nullfs layer first, disposing of the interlock in the
683 	 * process.
684 	 */
685 	KKASSERT((flags & LK_INTERLOCK) == 0);
686 	error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
687 			NULL, ap->a_td);
688 
689 	/*
690 	 * If locking only the nullfs layer, or if there is no lower layer,
691 	 * or if an error occured while attempting to lock the nullfs layer,
692 	 * we are done.
693 	 *
694 	 * np can be NULL is the vnode is being recycled from a previous
695 	 * hash collision.
696 	 */
697 	if ((flags & LK_THISLAYER) || np == NULL ||
698 	    np->null_lowervp == NULL || error) {
699 		return (error);
700 	}
701 
702 	/*
703 	 * Lock the underlying vnode.  If we are draining we should not drain
704 	 * the underlying vnode, since it is not being destroyed, but we do
705 	 * lock it exclusively in that case.  Note that any interlocks have
706 	 * already been disposed of above.
707 	 */
708 	lvp = np->null_lowervp;
709 	if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
710 		NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
711 		error = vn_lock(lvp, (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
712 				ap->a_td);
713 	} else {
714 		error = vn_lock(lvp, flags, ap->a_td);
715 	}
716 
717 	/*
718 	 * If an error occured we have to undo our nullfs lock, then return
719 	 * the original error.
720 	 */
721 	if (error)
722 		lockmgr(&vp->v_lock, LK_RELEASE, NULL, ap->a_td);
723 	return(error);
724 }
725 
726 /*
727  * A special flag, LK_THISLAYER, causes the unlocking function to operate
728  * ONLY on the nullfs layer.  Otherwise we are responsible for unlocking not
729  * only our layer, but the lower layer as well.
730  *
731  * null_unlock(struct vnode *a_vp, int a_flags, struct thread *a_td)
732  */
733 static int
734 null_unlock(struct vop_unlock_args *ap)
735 {
736 	struct vnode *vp = ap->a_vp;
737 	int flags = ap->a_flags;
738 	struct null_node *np = VTONULL(vp);
739 	struct vnode *lvp;
740 	int error;
741 
742 	KKASSERT((flags & LK_INTERLOCK) == 0);
743 	/*
744 	 * nullfs layer only
745 	 */
746 	if (flags & LK_THISLAYER) {
747 		error = lockmgr(&vp->v_lock,
748 				(flags & ~LK_THISLAYER) | LK_RELEASE,
749 				NULL, ap->a_td);
750 		return (error);
751 	}
752 
753 	/*
754 	 * If there is no underlying vnode the lock operation occurs at
755 	 * the nullfs layer.  np can be NULL is the vnode is being recycled
756 	 * from a previous hash collision.
757 	 */
758 	if (np == NULL || (lvp = np->null_lowervp) == NULL) {
759 		error = lockmgr(&vp->v_lock, flags | LK_RELEASE,
760 				NULL, ap->a_td);
761 		return(error);
762 	}
763 
764 	/*
765 	 * Unlock the lower layer first, then our nullfs layer.
766 	 */
767 	VOP_UNLOCK(lvp, flags, ap->a_td);
768 	error = lockmgr(&vp->v_lock, flags | LK_RELEASE, NULL, ap->a_td);
769 	return (error);
770 }
771 
772 /*
773  * null_islocked(struct vnode *a_vp, struct thread *a_td)
774  *
775  * If a lower layer exists return the lock status of the lower layer,
776  * otherwise return the lock status of our nullfs layer.
777  */
778 static int
779 null_islocked(struct vop_islocked_args *ap)
780 {
781 	struct vnode *vp = ap->a_vp;
782 	struct vnode *lvp;
783 	struct null_node *np = VTONULL(vp);
784 	int error;
785 
786 	lvp = np->null_lowervp;
787 	if (lvp == NULL)
788 		error = lockstatus(&vp->v_lock, ap->a_td);
789 	else
790 		error = VOP_ISLOCKED(lvp, ap->a_td);
791 	return (error);
792 }
793 
794 
795 /*
796  * The vnode is no longer active.  However, the new VFS API may retain
797  * the node in the vfs cache.  There is no way to tell that someone issued
798  * a remove/rmdir operation on the underlying filesystem (yet), but we can't
799  * remove the lowervp reference here.
800  *
801  * null_inactive(struct vnode *a_vp, struct thread *a_td)
802  */
803 static int
804 null_inactive(struct vop_inactive_args *ap)
805 {
806 	/*struct vnode *vp = ap->a_vp;*/
807 	/*struct null_node *np = VTONULL(vp);*/
808 
809 	/*
810 	 * At the moment don't do anything here.  All the rest of the code
811 	 * assumes that lowervp will remain inact, and the inactive nullvp
812 	 * may be reactivated at any time.  XXX I'm not sure why the 4.x code
813 	 * even worked.
814 	 */
815 
816 	/*
817 	 * Now it is safe to release our nullfs layer vnode.
818 	 */
819 	return (0);
820 }
821 
822 /*
823  * We can free memory in null_inactive, but we do this
824  * here. (Possible to guard vp->v_data to point somewhere)
825  *
826  * null_reclaim(struct vnode *a_vp, struct thread *a_td)
827  */
828 static int
829 null_reclaim(struct vop_reclaim_args *ap)
830 {
831 	struct vnode *vp = ap->a_vp;
832 	struct vnode *lowervp;
833 	struct null_node *np;
834 
835 	np = VTONULL(vp);
836 	vp->v_data = NULL;
837 	/*
838 	 * null_lowervp reference to lowervp.  The lower vnode's
839 	 * inactive routine may or may not be called when we do the
840 	 * final vrele().
841 	 */
842 	if (np) {
843 		null_node_rem(np);
844 		lowervp = np->null_lowervp;
845 		np->null_lowervp = NULLVP;
846 		if (lowervp)
847 			vrele(lowervp);
848 		free(np, M_NULLFSNODE);
849 	}
850 	return (0);
851 }
852 
853 /*
854  * null_print(struct vnode *a_vp)
855  */
856 static int
857 null_print(struct vop_print_args *ap)
858 {
859 	struct vnode *vp = ap->a_vp;
860 	struct null_node *np = VTONULL(vp);
861 
862 	if (np == NULL) {
863 		printf ("\ttag VT_NULLFS, vp=%p, NULL v_data!\n", vp);
864 		return(0);
865 	}
866 	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, np->null_lowervp);
867 	if (np->null_lowervp != NULL) {
868 		printf("\tlowervp_lock: ");
869 		lockmgr_printinfo(&np->null_lowervp->v_lock);
870 	} else {
871 		printf("\tnull_lock: ");
872 		lockmgr_printinfo(&vp->v_lock);
873 	}
874 	printf("\n");
875 	return (0);
876 }
877 
878 /*
879  * Let an underlying filesystem do the work
880  *
881  * null_createvobject(struct vnode *vp, struct ucred *cred, struct proc *p)
882  */
883 static int
884 null_createvobject(struct vop_createvobject_args *ap)
885 {
886 	struct vnode *vp = ap->a_vp;
887 	struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
888 	int error;
889 
890 	if (vp->v_type == VNON || lowervp == NULL)
891 		return 0;
892 	error = VOP_CREATEVOBJECT(lowervp, ap->a_td);
893 	if (error)
894 		return (error);
895 	vp->v_flag |= VOBJBUF;
896 	return (0);
897 }
898 
899 /*
900  * We have nothing to destroy and this operation shouldn't be bypassed.
901  *
902  * null_destroyvobject(struct vnode *vp)
903  */
904 static int
905 null_destroyvobject(struct vop_destroyvobject_args *ap)
906 {
907 	struct vnode *vp = ap->a_vp;
908 
909 	vp->v_flag &= ~VOBJBUF;
910 	return (0);
911 }
912 
913 /*
914  * null_getvobject(struct vnode *vp, struct vm_object **objpp)
915  *
916  * Note that this can be called when a vnode is being recycled, and
917  * v_data may be NULL in that case if nullfs had to recycle a vnode
918  * due to a null_node collision.
919  */
920 static int
921 null_getvobject(struct vop_getvobject_args *ap)
922 {
923 	struct vnode *lvp;
924 
925 	if (ap->a_vp->v_data == NULL)
926 		return EINVAL;
927 
928 	lvp = NULLVPTOLOWERVP(ap->a_vp);
929 	if (lvp == NULL)
930 		return EINVAL;
931 	return (VOP_GETVOBJECT(lvp, ap->a_objpp));
932 }
933 
934 /*
935  * Global vfs data structures
936  */
937 struct vnodeopv_entry_desc null_vnodeop_entries[] = {
938 	{ &vop_default_desc,		(void *) null_bypass },
939 	{ &vop_access_desc,		(void *) null_access },
940 	{ &vop_createvobject_desc,	(void *) null_createvobject },
941 	{ &vop_destroyvobject_desc,	(void *) null_destroyvobject },
942 	{ &vop_getattr_desc,		(void *) null_getattr },
943 	{ &vop_getvobject_desc,		(void *) null_getvobject },
944 	{ &vop_inactive_desc,		(void *) null_inactive },
945 	{ &vop_islocked_desc,		(void *) null_islocked },
946 	{ &vop_lock_desc,		(void *) null_lock },
947 	{ &vop_lookup_desc,		(void *) null_lookup },
948 	{ &vop_open_desc,		(void *) null_open },
949 	{ &vop_print_desc,		(void *) null_print },
950 	{ &vop_reclaim_desc,		(void *) null_reclaim },
951 	{ &vop_rename_desc,		(void *) null_rename },
952 	{ &vop_setattr_desc,		(void *) null_setattr },
953 	{ &vop_unlock_desc,		(void *) null_unlock },
954 	{ &vop_revoke_desc,		(void *) null_revoke },
955 
956 	{ &vop_nresolve_desc,		(void *) null_nresolve },
957 	{ &vop_ncreate_desc,		(void *) null_ncreate },
958 	{ &vop_nmkdir_desc,		(void *) null_nmkdir },
959 	{ &vop_nremove_desc,		(void *) null_nremove },
960 	{ &vop_nrmdir_desc,		(void *) null_nrmdir },
961 	{ &vop_nrename_desc,		(void *) null_nrename },
962 	{ NULL, NULL }
963 };
964 
965