xref: /dragonfly/sys/vfs/nullfs/null_vnops.c (revision e8364298)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
37  *
38  * Ancestors:
39  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
40  * $FreeBSD: src/sys/miscfs/nullfs/null_vnops.c,v 1.38.2.6 2002/07/31 00:32:28 semenu Exp $
41  * $DragonFly: src/sys/vfs/nullfs/null_vnops.c,v 1.11 2004/04/24 04:32:04 drhodus Exp $
42  *	...and...
43  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
44  *
45  * $FreeBSD: src/sys/miscfs/nullfs/null_vnops.c,v 1.38.2.6 2002/07/31 00:32:28 semenu Exp $
46  */
47 
48 /*
49  * Null Layer
50  *
51  * (See mount_null(8) for more information.)
52  *
53  * The null layer duplicates a portion of the file system
54  * name space under a new name.  In this respect, it is
55  * similar to the loopback file system.  It differs from
56  * the loopback fs in two respects:  it is implemented using
57  * a stackable layers techniques, and its "null-node"s stack above
58  * all lower-layer vnodes, not just over directory vnodes.
59  *
60  * The null layer has two purposes.  First, it serves as a demonstration
61  * of layering by proving a layer which does nothing.  (It actually
62  * does everything the loopback file system does, which is slightly
63  * more than nothing.)  Second, the null layer can serve as a prototype
64  * layer.  Since it provides all necessary layer framework,
65  * new file system layers can be created very easily be starting
66  * with a null layer.
67  *
68  * The remainder of this man page examines the null layer as a basis
69  * for constructing new layers.
70  *
71  *
72  * INSTANTIATING NEW NULL LAYERS
73  *
74  * New null layers are created with mount_null(8).
75  * Mount_null(8) takes two arguments, the pathname
76  * of the lower vfs (target-pn) and the pathname where the null
77  * layer will appear in the namespace (alias-pn).  After
78  * the null layer is put into place, the contents
79  * of target-pn subtree will be aliased under alias-pn.
80  *
81  *
82  * OPERATION OF A NULL LAYER
83  *
84  * The null layer is the minimum file system layer,
85  * simply bypassing all possible operations to the lower layer
86  * for processing there.  The majority of its activity centers
87  * on the bypass routine, through which nearly all vnode operations
88  * pass.
89  *
90  * The bypass routine accepts arbitrary vnode operations for
91  * handling by the lower layer.  It begins by examing vnode
92  * operation arguments and replacing any null-nodes by their
93  * lower-layer equivlants.  It then invokes the operation
94  * on the lower layer.  Finally, it replaces the null-nodes
95  * in the arguments and, if a vnode is return by the operation,
96  * stacks a null-node on top of the returned vnode.
97  *
98  * Although bypass handles most operations, vop_getattr, vop_lock,
99  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
100  * bypassed. Vop_getattr must change the fsid being returned.
101  * Vop_lock and vop_unlock must handle any locking for the
102  * current vnode as well as pass the lock request down.
103  * Vop_inactive and vop_reclaim are not bypassed so that
104  * they can handle freeing null-layer specific data. Vop_print
105  * is not bypassed to avoid excessive debugging information.
106  * Also, certain vnode operations change the locking state within
107  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
108  * and symlink). Ideally these operations should not change the
109  * lock state, but should be changed to let the caller of the
110  * function unlock them. Otherwise all intermediate vnode layers
111  * (such as union, umapfs, etc) must catch these functions to do
112  * the necessary locking at their layer.
113  *
114  *
115  * INSTANTIATING VNODE STACKS
116  *
117  * Mounting associates the null layer with a lower layer,
118  * effect stacking two VFSes.  Vnode stacks are instead
119  * created on demand as files are accessed.
120  *
121  * The initial mount creates a single vnode stack for the
122  * root of the new null layer.  All other vnode stacks
123  * are created as a result of vnode operations on
124  * this or other null vnode stacks.
125  *
126  * New vnode stacks come into existance as a result of
127  * an operation which returns a vnode.
128  * The bypass routine stacks a null-node above the new
129  * vnode before returning it to the caller.
130  *
131  * For example, imagine mounting a null layer with
132  * "mount_null /usr/include /dev/layer/null".
133  * Changing directory to /dev/layer/null will assign
134  * the root null-node (which was created when the null layer was mounted).
135  * Now consider opening "sys".  A vop_lookup would be
136  * done on the root null-node.  This operation would bypass through
137  * to the lower layer which would return a vnode representing
138  * the UFS "sys".  Null_bypass then builds a null-node
139  * aliasing the UFS "sys" and returns this to the caller.
140  * Later operations on the null-node "sys" will repeat this
141  * process when constructing other vnode stacks.
142  *
143  *
144  * CREATING OTHER FILE SYSTEM LAYERS
145  *
146  * One of the easiest ways to construct new file system layers is to make
147  * a copy of the null layer, rename all files and variables, and
148  * then begin modifing the copy.  Sed can be used to easily rename
149  * all variables.
150  *
151  * The umap layer is an example of a layer descended from the
152  * null layer.
153  *
154  *
155  * INVOKING OPERATIONS ON LOWER LAYERS
156  *
157  * There are two techniques to invoke operations on a lower layer
158  * when the operation cannot be completely bypassed.  Each method
159  * is appropriate in different situations.  In both cases,
160  * it is the responsibility of the aliasing layer to make
161  * the operation arguments "correct" for the lower layer
162  * by mapping an vnode arguments to the lower layer.
163  *
164  * The first approach is to call the aliasing layer's bypass routine.
165  * This method is most suitable when you wish to invoke the operation
166  * currently being handled on the lower layer.  It has the advantage
167  * that the bypass routine already must do argument mapping.
168  * An example of this is null_getattrs in the null layer.
169  *
170  * A second approach is to directly invoke vnode operations on
171  * the lower layer with the VOP_OPERATIONNAME interface.
172  * The advantage of this method is that it is easy to invoke
173  * arbitrary operations on the lower layer.  The disadvantage
174  * is that vnode arguments must be manualy mapped.
175  *
176  */
177 
178 #include <sys/param.h>
179 #include <sys/systm.h>
180 #include <sys/kernel.h>
181 #include <sys/sysctl.h>
182 #include <sys/vnode.h>
183 #include <sys/mount.h>
184 #include <sys/proc.h>
185 #include <sys/namei.h>
186 #include <sys/malloc.h>
187 #include <sys/buf.h>
188 #include "null.h"
189 
190 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
191 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
192 	&null_bug_bypass, 0, "");
193 
194 static int	null_access(struct vop_access_args *ap);
195 static int	null_createvobject(struct vop_createvobject_args *ap);
196 static int	null_destroyvobject(struct vop_destroyvobject_args *ap);
197 static int	null_getattr(struct vop_getattr_args *ap);
198 static int	null_getvobject(struct vop_getvobject_args *ap);
199 static int	null_inactive(struct vop_inactive_args *ap);
200 static int	null_islocked(struct vop_islocked_args *ap);
201 static int	null_lock(struct vop_lock_args *ap);
202 static int	null_lookup(struct vop_lookup_args *ap);
203 static int	null_open(struct vop_open_args *ap);
204 static int	null_print(struct vop_print_args *ap);
205 static int	null_reclaim(struct vop_reclaim_args *ap);
206 static int	null_rename(struct vop_rename_args *ap);
207 static int	null_setattr(struct vop_setattr_args *ap);
208 static int	null_unlock(struct vop_unlock_args *ap);
209 
210 /*
211  * This is the 10-Apr-92 bypass routine.
212  *    This version has been optimized for speed, throwing away some
213  * safety checks.  It should still always work, but it's not as
214  * robust to programmer errors.
215  *
216  * In general, we map all vnodes going down and unmap them on the way back.
217  * As an exception to this, vnodes can be marked "unmapped" by setting
218  * the Nth bit in operation's vdesc_flags.
219  *
220  * Also, some BSD vnode operations have the side effect of vrele'ing
221  * their arguments.  With stacking, the reference counts are held
222  * by the upper node, not the lower one, so we must handle these
223  * side-effects here.  This is not of concern in Sun-derived systems
224  * since there are no such side-effects.
225  *
226  * This makes the following assumptions:
227  * - only one returned vpp
228  * - no INOUT vpp's (Sun's vop_open has one of these)
229  * - the vnode operation vector of the first vnode should be used
230  *   to determine what implementation of the op should be invoked
231  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
232  *   problems on rmdir'ing mount points and renaming?)
233  *
234  * null_bypass(struct vnodeop_desc *a_desc, ...)
235  */
236 int
237 null_bypass(struct vop_generic_args *ap)
238 {
239 	register struct vnode **this_vp_p;
240 	int error;
241 	struct vnode *old_vps[VDESC_MAX_VPS];
242 	struct vnode **vps_p[VDESC_MAX_VPS];
243 	struct vnode ***vppp;
244 	struct vnodeop_desc *descp = ap->a_desc;
245 	int reles, i;
246 
247 	if (null_bug_bypass)
248 		printf ("null_bypass: %s\n", descp->vdesc_name);
249 
250 #ifdef DIAGNOSTIC
251 	/*
252 	 * We require at least one vp.
253 	 */
254 	if (descp->vdesc_vp_offsets == NULL ||
255 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
256 		panic ("null_bypass: no vp's in map");
257 #endif
258 
259 	/*
260 	 * Map the vnodes going in.
261 	 * Later, we'll invoke the operation based on
262 	 * the first mapped vnode's operation vector.
263 	 */
264 	reles = descp->vdesc_flags;
265 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
266 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
267 			break;   /* bail out at end of list */
268 		vps_p[i] = this_vp_p =
269 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
270 		/*
271 		 * We're not guaranteed that any but the first vnode
272 		 * are of our type.  Check for and don't map any
273 		 * that aren't.  (We must always map first vp or vclean fails.)
274 		 */
275 		if (i && (*this_vp_p == NULLVP ||
276 		    (*this_vp_p)->v_op != null_vnodeop_p)) {
277 			old_vps[i] = NULLVP;
278 		} else {
279 			old_vps[i] = *this_vp_p;
280 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
281 			/*
282 			 * XXX - Several operations have the side effect
283 			 * of vrele'ing their vp's.  We must account for
284 			 * that.  (This should go away in the future.)
285 			 */
286 			if (reles & VDESC_VP0_WILLRELE)
287 				vref(*this_vp_p);
288 		}
289 
290 	}
291 
292 	/*
293 	 * Call the operation on the lower layer
294 	 * with the modified argument structure.
295 	 */
296 	if (vps_p[0] && *vps_p[0])
297 		error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
298 	else {
299 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
300 		error = EINVAL;
301 	}
302 
303 	/*
304 	 * Maintain the illusion of call-by-value
305 	 * by restoring vnodes in the argument structure
306 	 * to their original value.
307 	 */
308 	reles = descp->vdesc_flags;
309 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
310 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
311 			break;   /* bail out at end of list */
312 		if (old_vps[i]) {
313 			*(vps_p[i]) = old_vps[i];
314 #if 0
315 			if (reles & VDESC_VP0_WILLUNLOCK)
316 				VOP_UNLOCK(*(vps_p[i]), NULL, LK_THISLAYER, curproc);
317 #endif
318 			if (reles & VDESC_VP0_WILLRELE)
319 				vrele(*(vps_p[i]));
320 		}
321 	}
322 
323 	/*
324 	 * Map the possible out-going vpp
325 	 * (Assumes that the lower layer always returns
326 	 * a vref'ed vpp unless it gets an error.)
327 	 */
328 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
329 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
330 	    !error) {
331 		/*
332 		 * XXX - even though some ops have vpp returned vp's,
333 		 * several ops actually vrele this before returning.
334 		 * We must avoid these ops.
335 		 * (This should go away when these ops are regularized.)
336 		 */
337 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
338 			goto out;
339 		vppp = VOPARG_OFFSETTO(struct vnode***,
340 				 descp->vdesc_vpp_offset,ap);
341 		if (*vppp)
342 			error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
343 	}
344 
345  out:
346 	return (error);
347 }
348 
349 /*
350  * We have to carry on the locking protocol on the null layer vnodes
351  * as we progress through the tree. We also have to enforce read-only
352  * if this layer is mounted read-only.
353  *
354  * null_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
355  *		struct componentname *a_cnp)
356  */
357 static int
358 null_lookup(struct vop_lookup_args *ap)
359 {
360 	struct componentname *cnp = ap->a_cnp;
361 	struct vnode *dvp = ap->a_dvp;
362 	struct thread *td = cnp->cn_td;
363 	int flags = cnp->cn_flags;
364 	struct vnode *vp, *ldvp, *lvp;
365 	int error;
366 
367 	if ((flags & CNP_ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
368 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
369 		return (EROFS);
370 	/*
371 	 * Although it is possible to call null_bypass(), we'll do
372 	 * a direct call to reduce overhead
373 	 */
374 	ldvp = NULLVPTOLOWERVP(dvp);
375 	vp = lvp = NULL;
376 	error = VOP_LOOKUP(ldvp, NCPNULL, &lvp, NCPPNULL, cnp);
377 	if (error == EJUSTRETURN && (flags & CNP_ISLASTCN) &&
378 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
379 	    (cnp->cn_nameiop == NAMEI_CREATE || cnp->cn_nameiop == NAMEI_RENAME))
380 		error = EROFS;
381 
382 	/*
383 	 * Rely only on the PDIRUNLOCK flag which should be carefully
384 	 * tracked by underlying filesystem.
385 	 */
386 	if (cnp->cn_flags & CNP_PDIRUNLOCK)
387 		VOP_UNLOCK(dvp, NULL, LK_THISLAYER, td);
388 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
389 		if (ldvp == lvp) {
390 			*ap->a_vpp = dvp;
391 			vref(dvp);
392 			vrele(lvp);
393 		} else {
394 			error = null_node_create(dvp->v_mount, lvp, &vp);
395 			if (error == 0)
396 				*ap->a_vpp = vp;
397 		}
398 	}
399 	return (error);
400 }
401 
402 /*
403  * Setattr call. Disallow write attempts if the layer is mounted read-only.
404  *
405  * null_setattr(struct vnodeop_desc *a_desc, struct vnode *a_vp,
406  *		struct vattr *a_vap, struct ucred *a_cred,
407  *		struct thread *a_td)
408  */
409 int
410 null_setattr(struct vop_setattr_args *ap)
411 {
412 	struct vnode *vp = ap->a_vp;
413 	struct vattr *vap = ap->a_vap;
414 
415   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
416 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
417 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
418 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
419 		return (EROFS);
420 	if (vap->va_size != VNOVAL) {
421  		switch (vp->v_type) {
422  		case VDIR:
423  			return (EISDIR);
424  		case VCHR:
425  		case VBLK:
426  		case VSOCK:
427  		case VFIFO:
428 			if (vap->va_flags != VNOVAL)
429 				return (EOPNOTSUPP);
430 			return (0);
431 		case VREG:
432 		case VLNK:
433  		default:
434 			/*
435 			 * Disallow write attempts if the filesystem is
436 			 * mounted read-only.
437 			 */
438 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
439 				return (EROFS);
440 		}
441 	}
442 
443 	return (null_bypass((struct vop_generic_args *)ap));
444 }
445 
446 /*
447  *  We handle getattr only to change the fsid.
448  *
449  * null_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
450  *		struct thread *a_td)
451  */
452 static int
453 null_getattr(struct vop_getattr_args *ap)
454 {
455 	int error;
456 
457 	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
458 		return (error);
459 
460 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
461 	return (0);
462 }
463 
464 /*
465  * Handle to disallow write access if mounted read-only.
466  *
467  * null_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
468  *		struct thread *a_td)
469  */
470 static int
471 null_access(struct vop_access_args *ap)
472 {
473 	struct vnode *vp = ap->a_vp;
474 	mode_t mode = ap->a_mode;
475 
476 	/*
477 	 * Disallow write attempts on read-only layers;
478 	 * unless the file is a socket, fifo, or a block or
479 	 * character device resident on the file system.
480 	 */
481 	if (mode & VWRITE) {
482 		switch (vp->v_type) {
483 		case VDIR:
484 		case VLNK:
485 		case VREG:
486 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
487 				return (EROFS);
488 			break;
489 		default:
490 			break;
491 		}
492 	}
493 	return (null_bypass((struct vop_generic_args *)ap));
494 }
495 
496 /*
497  * We must handle open to be able to catch MNT_NODEV and friends.
498  *
499  * null_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
500  *	     struct thread *a_td)
501  */
502 static int
503 null_open(struct vop_open_args *ap)
504 {
505 	struct vnode *vp = ap->a_vp;
506 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
507 
508 	if ((vp->v_mount->mnt_flag & MNT_NODEV) &&
509 	    (lvp->v_type == VBLK || lvp->v_type == VCHR))
510 		return ENXIO;
511 
512 	return (null_bypass((struct vop_generic_args *)ap));
513 }
514 
515 /*
516  * We handle this to eliminate null FS to lower FS
517  * file moving. Don't know why we don't allow this,
518  * possibly we should.
519  *
520  * null_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
521  *		struct componentname *a_fcnp, struct vnode *a_tdvp,
522  *		struct vnode *a_tvp, struct componentname *a_tcnp)
523  */
524 static int
525 null_rename(struct vop_rename_args *ap)
526 {
527 	struct vnode *tdvp = ap->a_tdvp;
528 	struct vnode *fvp = ap->a_fvp;
529 	struct vnode *fdvp = ap->a_fdvp;
530 	struct vnode *tvp = ap->a_tvp;
531 
532 	/* Check for cross-device rename. */
533 	if ((fvp->v_mount != tdvp->v_mount) ||
534 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
535 		if (tdvp == tvp)
536 			vrele(tdvp);
537 		else
538 			vput(tdvp);
539 		if (tvp)
540 			vput(tvp);
541 		vrele(fdvp);
542 		vrele(fvp);
543 		return (EXDEV);
544 	}
545 
546 	return (null_bypass((struct vop_generic_args *)ap));
547 }
548 
549 /*
550  * We need to process our own vnode lock and then clear the
551  * interlock flag as it applies only to our vnode, not the
552  * vnodes below us on the stack.
553  *
554  * null_lock(struct vnode *a_vp, lwkt_tokref_t a_vlock, int a_flags,
555  *	     struct thread *a_td)
556  */
557 static int
558 null_lock(struct vop_lock_args *ap)
559 {
560 	struct vnode *vp = ap->a_vp;
561 	int flags = ap->a_flags;
562 	struct null_node *np = VTONULL(vp);
563 	struct vnode *lvp;
564 	int error;
565 
566 	if (flags & LK_THISLAYER) {
567 		if (vp->v_vnlock != NULL) {
568 			/* lock is shared across layers */
569 			if (flags & LK_INTERLOCK)
570 				lwkt_reltoken(ap->a_vlock);
571 			return 0;
572 		}
573 		error = lockmgr(&np->null_lock, flags & ~LK_THISLAYER,
574 		    ap->a_vlock, ap->a_td);
575 		return (error);
576 	}
577 
578 	if (vp->v_vnlock != NULL) {
579 		/*
580 		 * The lower level has exported a struct lock to us. Use
581 		 * it so that all vnodes in the stack lock and unlock
582 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
583 		 * decommissions the lock - just because our vnode is
584 		 * going away doesn't mean the struct lock below us is.
585 		 * LK_EXCLUSIVE is fine.
586 		 */
587 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
588 			NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
589 			return(lockmgr(vp->v_vnlock,
590 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
591 				ap->a_vlock, ap->a_td));
592 		}
593 		return(lockmgr(vp->v_vnlock, flags, ap->a_vlock, ap->a_td));
594 	}
595 	/*
596 	 * To prevent race conditions involving doing a lookup
597 	 * on "..", we have to lock the lower node, then lock our
598 	 * node. Most of the time it won't matter that we lock our
599 	 * node (as any locking would need the lower one locked
600 	 * first). But we can LK_DRAIN the upper lock as a step
601 	 * towards decomissioning it.
602 	 */
603 	lvp = NULLVPTOLOWERVP(vp);
604 	if (lvp == NULL)
605 		return (lockmgr(&np->null_lock, flags, ap->a_vlock, ap->a_td));
606 	if (flags & LK_INTERLOCK) {
607 		VI_UNLOCK(ap->a_vlock, vp);
608 		flags &= ~LK_INTERLOCK;
609 	}
610 	if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
611 		error = VOP_LOCK(lvp, ap->a_vlock,
612 			(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, ap->a_td);
613 	} else
614 		error = VOP_LOCK(lvp, ap->a_vlock, flags, ap->a_td);
615 	if (error)
616 		return (error);
617 	error = lockmgr(&np->null_lock, flags, ap->a_vlock, ap->a_td);
618 	if (error)
619 		VOP_UNLOCK(lvp, NULL, 0, ap->a_td);
620 	return (error);
621 }
622 
623 /*
624  * We need to process our own vnode unlock and then clear the
625  * interlock flag as it applies only to our vnode, not the
626  * vnodes below us on the stack.
627  *
628  * null_unlock(struct vnode *a_vp, lwkt_tokref_t a_vlock, int a_flags,
629  *		struct thread *a_td)
630  */
631 static int
632 null_unlock(struct vop_unlock_args *ap)
633 {
634 	struct vnode *vp = ap->a_vp;
635 	int flags = ap->a_flags;
636 	struct null_node *np = VTONULL(vp);
637 	struct vnode *lvp;
638 
639 	if (vp->v_vnlock != NULL) {
640 		if (flags & LK_THISLAYER)
641 			return 0;	/* the lock is shared across layers */
642 		flags &= ~LK_THISLAYER;
643 		return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
644 			ap->a_vlock, ap->a_td));
645 	}
646 	lvp = NULLVPTOLOWERVP(vp);
647 	if (lvp == NULL)
648 		return (lockmgr(&np->null_lock, flags | LK_RELEASE, ap->a_vlock, ap->a_td));
649 	if ((flags & LK_THISLAYER) == 0) {
650 		if (flags & LK_INTERLOCK) {
651 			VI_UNLOCK(ap->a_vlock, vp);
652 			flags &= ~LK_INTERLOCK;
653 		}
654 		VOP_UNLOCK(lvp, ap->a_vlock, flags, ap->a_td);
655 	} else {
656 		flags &= ~LK_THISLAYER;
657 	}
658 	ap->a_flags = flags;
659 	return (lockmgr(&np->null_lock, flags | LK_RELEASE, ap->a_vlock, ap->a_td));
660 }
661 
662 /*
663  * null_islocked(struct vnode *a_vp, struct thread *a_td)
664  */
665 static int
666 null_islocked(struct vop_islocked_args *ap)
667 {
668 	struct vnode *vp = ap->a_vp;
669 
670 	if (vp->v_vnlock != NULL)
671 		return (lockstatus(vp->v_vnlock, ap->a_td));
672 	return (lockstatus(&VTONULL(vp)->null_lock, ap->a_td));
673 }
674 
675 
676 /*
677  * There is no way to tell that someone issued remove/rmdir operation
678  * on the underlying filesystem. For now we just have to release lowevrp
679  * as soon as possible.
680  *
681  * null_inactive(struct vnode *a_vp, struct thread *a_td)
682  */
683 static int
684 null_inactive(struct vop_inactive_args *ap)
685 {
686 	struct vnode *vp = ap->a_vp;
687 	struct null_node *xp = VTONULL(vp);
688 	struct vnode *lowervp = xp->null_lowervp;
689 
690 	lockmgr(&null_hashlock, LK_EXCLUSIVE, NULL, ap->a_td);
691 	LIST_REMOVE(xp, null_hash);
692 	lockmgr(&null_hashlock, LK_RELEASE, NULL, ap->a_td);
693 
694 	xp->null_lowervp = NULLVP;
695 	if (vp->v_vnlock != NULL) {
696 		vp->v_vnlock = &xp->null_lock;	/* we no longer share the lock */
697 	} else {
698 		VOP_UNLOCK(vp, NULL, LK_THISLAYER, ap->a_td);
699 	}
700 
701 	vput(lowervp);
702 	/*
703 	 * Now it is safe to drop references to the lower vnode.
704 	 * VOP_INACTIVE() will be called by vrele() if necessary.
705 	 */
706 	vrele (lowervp);
707 
708 	return (0);
709 }
710 
711 /*
712  * We can free memory in null_inactive, but we do this
713  * here. (Possible to guard vp->v_data to point somewhere)
714  *
715  * null_reclaim(struct vnode *a_vp, struct thread *a_td)
716  */
717 static int
718 null_reclaim(struct vop_reclaim_args *ap)
719 {
720 	struct vnode *vp = ap->a_vp;
721 	void *vdata = vp->v_data;
722 
723 	vp->v_data = NULL;
724 	FREE(vdata, M_NULLFSNODE);
725 
726 	return (0);
727 }
728 
729 /*
730  * null_print(struct vnode *a_vp)
731  */
732 static int
733 null_print(struct vop_print_args *ap)
734 {
735 	struct vnode *vp = ap->a_vp;
736 
737 	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
738 	if (vp->v_vnlock != NULL) {
739 		printf("\tvnlock: ");
740 		lockmgr_printinfo(vp->v_vnlock);
741 	} else {
742 		printf("\tnull_lock: ");
743 		lockmgr_printinfo(&VTONULL(vp)->null_lock);
744 	}
745 	printf("\n");
746 	return (0);
747 }
748 
749 /*
750  * Let an underlying filesystem do the work
751  *
752  * null_createvobject(struct vnode *vp, struct ucred *cred, struct proc *p)
753  */
754 static int
755 null_createvobject(struct vop_createvobject_args *ap)
756 {
757 	struct vnode *vp = ap->a_vp;
758 	struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
759 	int error;
760 
761 	if (vp->v_type == VNON || lowervp == NULL)
762 		return 0;
763 	error = VOP_CREATEVOBJECT(lowervp, ap->a_td);
764 	if (error)
765 		return (error);
766 	vp->v_flag |= VOBJBUF;
767 	return (0);
768 }
769 
770 /*
771  * We have nothing to destroy and this operation shouldn't be bypassed.
772  *
773  * null_destroyvobject(struct vnode *vp)
774  */
775 static int
776 null_destroyvobject(struct vop_destroyvobject_args *ap)
777 {
778 	struct vnode *vp = ap->a_vp;
779 
780 	vp->v_flag &= ~VOBJBUF;
781 	return (0);
782 }
783 
784 /*
785  * null_getvobject(struct vnode *vp, struct vm_object **objpp)
786  */
787 static int
788 null_getvobject(struct vop_getvobject_args *ap)
789 {
790 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
791 
792 	if (lvp == NULL)
793 		return EINVAL;
794 	return (VOP_GETVOBJECT(lvp, ap->a_objpp));
795 }
796 
797 /*
798  * Global vfs data structures
799  */
800 vop_t **null_vnodeop_p;
801 static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
802 	{ &vop_default_desc,		(vop_t *) null_bypass },
803 	{ &vop_access_desc,		(vop_t *) null_access },
804 	{ &vop_createvobject_desc,	(vop_t *) null_createvobject },
805 	{ &vop_destroyvobject_desc,	(vop_t *) null_destroyvobject },
806 	{ &vop_getattr_desc,		(vop_t *) null_getattr },
807 	{ &vop_getvobject_desc,		(vop_t *) null_getvobject },
808 	{ &vop_inactive_desc,		(vop_t *) null_inactive },
809 	{ &vop_islocked_desc,		(vop_t *) null_islocked },
810 	{ &vop_lock_desc,		(vop_t *) null_lock },
811 	{ &vop_lookup_desc,		(vop_t *) null_lookup },
812 	{ &vop_open_desc,		(vop_t *) null_open },
813 	{ &vop_print_desc,		(vop_t *) null_print },
814 	{ &vop_reclaim_desc,		(vop_t *) null_reclaim },
815 	{ &vop_rename_desc,		(vop_t *) null_rename },
816 	{ &vop_setattr_desc,		(vop_t *) null_setattr },
817 	{ &vop_unlock_desc,		(vop_t *) null_unlock },
818 	{ NULL, NULL }
819 };
820 static struct vnodeopv_desc null_vnodeop_opv_desc =
821 	{ &null_vnodeop_p, null_vnodeop_entries };
822 
823 VNODEOP_SET(null_vnodeop_opv_desc);
824