xref: /dragonfly/sys/vfs/ufs/ffs_alloc.c (revision b1e9d17a)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
34  * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $
35  * $DragonFly: src/sys/vfs/ufs/ffs_alloc.c,v 1.14 2005/08/14 18:53:42 dillon Exp $
36  */
37 
38 #include "opt_quota.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/buf.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/mount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/syslog.h>
50 
51 #include <machine/inttypes.h>
52 
53 #include "quota.h"
54 #include "inode.h"
55 #include "ufs_extern.h"
56 #include "ufsmount.h"
57 
58 #include "fs.h"
59 #include "ffs_extern.h"
60 
61 typedef ufs_daddr_t allocfcn_t (struct inode *ip, int cg, ufs_daddr_t bpref,
62 				  int size);
63 
64 static ufs_daddr_t ffs_alloccg (struct inode *, int, ufs_daddr_t, int);
65 static ufs_daddr_t
66 	      ffs_alloccgblk (struct inode *, struct buf *, ufs_daddr_t);
67 #ifdef DIAGNOSTIC
68 static int	ffs_checkblk (struct inode *, ufs_daddr_t, long);
69 #endif
70 static void	ffs_clusteracct	(struct fs *, struct cg *, ufs_daddr_t,
71 				     int);
72 static ufs_daddr_t ffs_clusteralloc (struct inode *, int, ufs_daddr_t,
73 	    int);
74 static ino_t	ffs_dirpref (struct inode *);
75 static ufs_daddr_t ffs_fragextend (struct inode *, int, long, int, int);
76 static void	ffs_fserr (struct fs *, uint, char *);
77 static u_long	ffs_hashalloc
78 		    (struct inode *, int, long, int, allocfcn_t *);
79 static ino_t	ffs_nodealloccg (struct inode *, int, ufs_daddr_t, int);
80 static ufs_daddr_t ffs_mapsearch (struct fs *, struct cg *, ufs_daddr_t,
81 	    int);
82 
83 /*
84  * Allocate a block in the filesystem.
85  *
86  * The size of the requested block is given, which must be some
87  * multiple of fs_fsize and <= fs_bsize.
88  * A preference may be optionally specified. If a preference is given
89  * the following hierarchy is used to allocate a block:
90  *   1) allocate the requested block.
91  *   2) allocate a rotationally optimal block in the same cylinder.
92  *   3) allocate a block in the same cylinder group.
93  *   4) quadradically rehash into other cylinder groups, until an
94  *      available block is located.
95  * If no block preference is given the following heirarchy is used
96  * to allocate a block:
97  *   1) allocate a block in the cylinder group that contains the
98  *      inode for the file.
99  *   2) quadradically rehash into other cylinder groups, until an
100  *      available block is located.
101  */
102 int
103 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
104 	  struct ucred *cred, ufs_daddr_t *bnp)
105 {
106 	struct fs *fs;
107 	ufs_daddr_t bno;
108 	int cg;
109 #ifdef QUOTA
110 	int error;
111 #endif
112 
113 	*bnp = 0;
114 	fs = ip->i_fs;
115 #ifdef DIAGNOSTIC
116 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
117 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
118 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
119 		    fs->fs_fsmnt);
120 		panic("ffs_alloc: bad size");
121 	}
122 	if (cred == NOCRED)
123 		panic("ffs_alloc: missing credential");
124 #endif /* DIAGNOSTIC */
125 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
126 		goto nospace;
127 	if (cred->cr_uid != 0 &&
128 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
129 		goto nospace;
130 #ifdef QUOTA
131 	error = chkdq(ip, (long)btodb(size), cred, 0);
132 	if (error)
133 		return (error);
134 #endif
135 	if (bpref >= fs->fs_size)
136 		bpref = 0;
137 	if (bpref == 0)
138 		cg = ino_to_cg(fs, ip->i_number);
139 	else
140 		cg = dtog(fs, bpref);
141 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
142 					 ffs_alloccg);
143 	if (bno > 0) {
144 		ip->i_blocks += btodb(size);
145 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
146 		*bnp = bno;
147 		return (0);
148 	}
149 #ifdef QUOTA
150 	/*
151 	 * Restore user's disk quota because allocation failed.
152 	 */
153 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
154 #endif
155 nospace:
156 	ffs_fserr(fs, cred->cr_uid, "filesystem full");
157 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
158 	return (ENOSPC);
159 }
160 
161 /*
162  * Reallocate a fragment to a bigger size
163  *
164  * The number and size of the old block is given, and a preference
165  * and new size is also specified. The allocator attempts to extend
166  * the original block. Failing that, the regular block allocator is
167  * invoked to get an appropriate block.
168  */
169 int
170 ffs_realloccg(struct inode *ip, ufs_daddr_t lbprev, ufs_daddr_t bpref,
171 	      int osize, int nsize, struct ucred *cred, struct buf **bpp)
172 {
173 	struct fs *fs;
174 	struct buf *bp;
175 	int cg, request, error;
176 	ufs_daddr_t bprev, bno;
177 
178 	*bpp = 0;
179 	fs = ip->i_fs;
180 #ifdef DIAGNOSTIC
181 	if ((uint)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
182 	    (uint)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
183 		printf(
184 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
185 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
186 		    nsize, fs->fs_fsmnt);
187 		panic("ffs_realloccg: bad size");
188 	}
189 	if (cred == NOCRED)
190 		panic("ffs_realloccg: missing credential");
191 #endif /* DIAGNOSTIC */
192 	if (cred->cr_uid != 0 &&
193 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
194 		goto nospace;
195 	if ((bprev = ip->i_db[lbprev]) == 0) {
196 		printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
197 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
198 		    fs->fs_fsmnt);
199 		panic("ffs_realloccg: bad bprev");
200 	}
201 	/*
202 	 * Allocate the extra space in the buffer.
203 	 */
204 	error = bread(ITOV(ip), lbprev, osize, &bp);
205 	if (error) {
206 		brelse(bp);
207 		return (error);
208 	}
209 
210 	if( bp->b_blkno == bp->b_lblkno) {
211 		if( lbprev >= NDADDR)
212 			panic("ffs_realloccg: lbprev out of range");
213 		bp->b_blkno = fsbtodb(fs, bprev);
214 	}
215 
216 #ifdef QUOTA
217 	error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
218 	if (error) {
219 		brelse(bp);
220 		return (error);
221 	}
222 #endif
223 	/*
224 	 * Check for extension in the existing location.
225 	 */
226 	cg = dtog(fs, bprev);
227 	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
228 	if (bno) {
229 		if (bp->b_blkno != fsbtodb(fs, bno))
230 			panic("ffs_realloccg: bad blockno");
231 		ip->i_blocks += btodb(nsize - osize);
232 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
233 		allocbuf(bp, nsize);
234 		bp->b_flags |= B_DONE;
235 		bzero((char *)bp->b_data + osize, (uint)nsize - osize);
236 		*bpp = bp;
237 		return (0);
238 	}
239 	/*
240 	 * Allocate a new disk location.
241 	 */
242 	if (bpref >= fs->fs_size)
243 		bpref = 0;
244 	switch ((int)fs->fs_optim) {
245 	case FS_OPTSPACE:
246 		/*
247 		 * Allocate an exact sized fragment. Although this makes
248 		 * best use of space, we will waste time relocating it if
249 		 * the file continues to grow. If the fragmentation is
250 		 * less than half of the minimum free reserve, we choose
251 		 * to begin optimizing for time.
252 		 */
253 		request = nsize;
254 		if (fs->fs_minfree <= 5 ||
255 		    fs->fs_cstotal.cs_nffree >
256 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
257 			break;
258 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
259 			fs->fs_fsmnt);
260 		fs->fs_optim = FS_OPTTIME;
261 		break;
262 	case FS_OPTTIME:
263 		/*
264 		 * At this point we have discovered a file that is trying to
265 		 * grow a small fragment to a larger fragment. To save time,
266 		 * we allocate a full sized block, then free the unused portion.
267 		 * If the file continues to grow, the `ffs_fragextend' call
268 		 * above will be able to grow it in place without further
269 		 * copying. If aberrant programs cause disk fragmentation to
270 		 * grow within 2% of the free reserve, we choose to begin
271 		 * optimizing for space.
272 		 */
273 		request = fs->fs_bsize;
274 		if (fs->fs_cstotal.cs_nffree <
275 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
276 			break;
277 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
278 			fs->fs_fsmnt);
279 		fs->fs_optim = FS_OPTSPACE;
280 		break;
281 	default:
282 		printf("dev = %s, optim = %ld, fs = %s\n",
283 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
284 		panic("ffs_realloccg: bad optim");
285 		/* NOTREACHED */
286 	}
287 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
288 					 ffs_alloccg);
289 	if (bno > 0) {
290 		bp->b_blkno = fsbtodb(fs, bno);
291 		if (!DOINGSOFTDEP(ITOV(ip)))
292 			ffs_blkfree(ip, bprev, (long)osize);
293 		if (nsize < request)
294 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
295 			    (long)(request - nsize));
296 		ip->i_blocks += btodb(nsize - osize);
297 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
298 		allocbuf(bp, nsize);
299 		bp->b_flags |= B_DONE;
300 		bzero((char *)bp->b_data + osize, (uint)nsize - osize);
301 		*bpp = bp;
302 		return (0);
303 	}
304 #ifdef QUOTA
305 	/*
306 	 * Restore user's disk quota because allocation failed.
307 	 */
308 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
309 #endif
310 	brelse(bp);
311 nospace:
312 	/*
313 	 * no space available
314 	 */
315 	ffs_fserr(fs, cred->cr_uid, "filesystem full");
316 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
317 	return (ENOSPC);
318 }
319 
320 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
321 
322 /*
323  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
324  *
325  * The vnode and an array of buffer pointers for a range of sequential
326  * logical blocks to be made contiguous is given. The allocator attempts
327  * to find a range of sequential blocks starting as close as possible to
328  * an fs_rotdelay offset from the end of the allocation for the logical
329  * block immediately preceeding the current range. If successful, the
330  * physical block numbers in the buffer pointers and in the inode are
331  * changed to reflect the new allocation. If unsuccessful, the allocation
332  * is left unchanged. The success in doing the reallocation is returned.
333  * Note that the error return is not reflected back to the user. Rather
334  * the previous block allocation will be used.
335  */
336 static int doasyncfree = 1;
337 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
338 
339 static int doreallocblks = 1;
340 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
341 
342 #ifdef DEBUG
343 static volatile int prtrealloc = 0;
344 #endif
345 
346 /*
347  * ffs_reallocblks(struct vnode *a_vp, struct cluster_save *a_buflist)
348  */
349 int
350 ffs_reallocblks(struct vop_reallocblks_args *ap)
351 {
352 	struct fs *fs;
353 	struct inode *ip;
354 	struct vnode *vp;
355 	struct buf *sbp, *ebp;
356 	ufs_daddr_t *bap, *sbap, *ebap = 0;
357 	struct cluster_save *buflist;
358 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
359 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
360 	int i, len, start_lvl, end_lvl, pref, ssize;
361 
362 	if (doreallocblks == 0)
363 		return (ENOSPC);
364 	vp = ap->a_vp;
365 	ip = VTOI(vp);
366 	fs = ip->i_fs;
367 	if (fs->fs_contigsumsize <= 0)
368 		return (ENOSPC);
369 	buflist = ap->a_buflist;
370 	len = buflist->bs_nchildren;
371 	start_lbn = buflist->bs_children[0]->b_lblkno;
372 	end_lbn = start_lbn + len - 1;
373 #ifdef DIAGNOSTIC
374 	for (i = 0; i < len; i++)
375 		if (!ffs_checkblk(ip,
376 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
377 			panic("ffs_reallocblks: unallocated block 1");
378 	for (i = 1; i < len; i++)
379 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
380 			panic("ffs_reallocblks: non-logical cluster");
381 	blkno = buflist->bs_children[0]->b_blkno;
382 	ssize = fsbtodb(fs, fs->fs_frag);
383 	for (i = 1; i < len - 1; i++)
384 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
385 			panic("ffs_reallocblks: non-physical cluster %d", i);
386 #endif
387 	/*
388 	 * If the latest allocation is in a new cylinder group, assume that
389 	 * the filesystem has decided to move and do not force it back to
390 	 * the previous cylinder group.
391 	 */
392 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
393 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
394 		return (ENOSPC);
395 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
396 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
397 		return (ENOSPC);
398 	/*
399 	 * Get the starting offset and block map for the first block.
400 	 */
401 	if (start_lvl == 0) {
402 		sbap = &ip->i_db[0];
403 		soff = start_lbn;
404 	} else {
405 		idp = &start_ap[start_lvl - 1];
406 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, &sbp)) {
407 			brelse(sbp);
408 			return (ENOSPC);
409 		}
410 		sbap = (ufs_daddr_t *)sbp->b_data;
411 		soff = idp->in_off;
412 	}
413 	/*
414 	 * Find the preferred location for the cluster.
415 	 */
416 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
417 	/*
418 	 * If the block range spans two block maps, get the second map.
419 	 */
420 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
421 		ssize = len;
422 	} else {
423 #ifdef DIAGNOSTIC
424 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
425 			panic("ffs_reallocblk: start == end");
426 #endif
427 		ssize = len - (idp->in_off + 1);
428 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, &ebp))
429 			goto fail;
430 		ebap = (ufs_daddr_t *)ebp->b_data;
431 	}
432 	/*
433 	 * Search the block map looking for an allocation of the desired size.
434 	 */
435 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
436 	    len, ffs_clusteralloc)) == 0)
437 		goto fail;
438 	/*
439 	 * We have found a new contiguous block.
440 	 *
441 	 * First we have to replace the old block pointers with the new
442 	 * block pointers in the inode and indirect blocks associated
443 	 * with the file.
444 	 */
445 #ifdef DEBUG
446 	if (prtrealloc)
447 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
448 		    start_lbn, end_lbn);
449 #endif
450 	blkno = newblk;
451 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
452 		if (i == ssize) {
453 			bap = ebap;
454 			soff = -i;
455 		}
456 #ifdef DIAGNOSTIC
457 		if (!ffs_checkblk(ip,
458 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
459 			panic("ffs_reallocblks: unallocated block 2");
460 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
461 			panic("ffs_reallocblks: alloc mismatch");
462 #endif
463 #ifdef DEBUG
464 		if (prtrealloc)
465 			printf(" %d,", *bap);
466 #endif
467 		if (DOINGSOFTDEP(vp)) {
468 			if (sbap == &ip->i_db[0] && i < ssize)
469 				softdep_setup_allocdirect(ip, start_lbn + i,
470 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
471 				    buflist->bs_children[i]);
472 			else
473 				softdep_setup_allocindir_page(ip, start_lbn + i,
474 				    i < ssize ? sbp : ebp, soff + i, blkno,
475 				    *bap, buflist->bs_children[i]);
476 		}
477 		*bap++ = blkno;
478 	}
479 	/*
480 	 * Next we must write out the modified inode and indirect blocks.
481 	 * For strict correctness, the writes should be synchronous since
482 	 * the old block values may have been written to disk. In practise
483 	 * they are almost never written, but if we are concerned about
484 	 * strict correctness, the `doasyncfree' flag should be set to zero.
485 	 *
486 	 * The test on `doasyncfree' should be changed to test a flag
487 	 * that shows whether the associated buffers and inodes have
488 	 * been written. The flag should be set when the cluster is
489 	 * started and cleared whenever the buffer or inode is flushed.
490 	 * We can then check below to see if it is set, and do the
491 	 * synchronous write only when it has been cleared.
492 	 */
493 	if (sbap != &ip->i_db[0]) {
494 		if (doasyncfree)
495 			bdwrite(sbp);
496 		else
497 			bwrite(sbp);
498 	} else {
499 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
500 		if (!doasyncfree)
501 			UFS_UPDATE(vp, 1);
502 	}
503 	if (ssize < len) {
504 		if (doasyncfree)
505 			bdwrite(ebp);
506 		else
507 			bwrite(ebp);
508 	}
509 	/*
510 	 * Last, free the old blocks and assign the new blocks to the buffers.
511 	 */
512 #ifdef DEBUG
513 	if (prtrealloc)
514 		printf("\n\tnew:");
515 #endif
516 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
517 		if (!DOINGSOFTDEP(vp))
518 			ffs_blkfree(ip,
519 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
520 			    fs->fs_bsize);
521 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
522 #ifdef DIAGNOSTIC
523 		if (!ffs_checkblk(ip,
524 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
525 			panic("ffs_reallocblks: unallocated block 3");
526 #endif
527 #ifdef DEBUG
528 		if (prtrealloc)
529 			printf(" %d,", blkno);
530 #endif
531 	}
532 #ifdef DEBUG
533 	if (prtrealloc) {
534 		prtrealloc--;
535 		printf("\n");
536 	}
537 #endif
538 	return (0);
539 
540 fail:
541 	if (ssize < len)
542 		brelse(ebp);
543 	if (sbap != &ip->i_db[0])
544 		brelse(sbp);
545 	return (ENOSPC);
546 }
547 
548 /*
549  * Allocate an inode in the filesystem.
550  *
551  * If allocating a directory, use ffs_dirpref to select the inode.
552  * If allocating in a directory, the following hierarchy is followed:
553  *   1) allocate the preferred inode.
554  *   2) allocate an inode in the same cylinder group.
555  *   3) quadradically rehash into other cylinder groups, until an
556  *      available inode is located.
557  * If no inode preference is given the following heirarchy is used
558  * to allocate an inode:
559  *   1) allocate an inode in cylinder group 0.
560  *   2) quadradically rehash into other cylinder groups, until an
561  *      available inode is located.
562  */
563 int
564 ffs_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
565 {
566 	struct inode *pip;
567 	struct fs *fs;
568 	struct inode *ip;
569 	ino_t ino, ipref;
570 	int cg, error;
571 
572 	*vpp = NULL;
573 	pip = VTOI(pvp);
574 	fs = pip->i_fs;
575 	if (fs->fs_cstotal.cs_nifree == 0)
576 		goto noinodes;
577 
578 	if ((mode & IFMT) == IFDIR)
579 		ipref = ffs_dirpref(pip);
580 	else
581 		ipref = pip->i_number;
582 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
583 		ipref = 0;
584 	cg = ino_to_cg(fs, ipref);
585 	/*
586 	 * Track number of dirs created one after another
587 	 * in a same cg without intervening by files.
588 	 */
589 	if ((mode & IFMT) == IFDIR) {
590 		if (fs->fs_contigdirs[cg] < 255)
591 			fs->fs_contigdirs[cg]++;
592 	} else {
593 		if (fs->fs_contigdirs[cg] > 0)
594 			fs->fs_contigdirs[cg]--;
595 	}
596 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
597 					(allocfcn_t *)ffs_nodealloccg);
598 	if (ino == 0)
599 		goto noinodes;
600 	error = VFS_VGET(pvp->v_mount, ino, vpp);
601 	if (error) {
602 		UFS_VFREE(pvp, ino, mode);
603 		return (error);
604 	}
605 	ip = VTOI(*vpp);
606 	if (ip->i_mode) {
607 		printf("mode = 0%o, inum = %lu, fs = %s\n",
608 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
609 		panic("ffs_valloc: dup alloc");
610 	}
611 	if (ip->i_blocks) {				/* XXX */
612 		printf("free inode %s/%lu had %ld blocks\n",
613 		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
614 		ip->i_blocks = 0;
615 	}
616 	ip->i_flags = 0;
617 	/*
618 	 * Set up a new generation number for this inode.
619 	 */
620 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
621 		ip->i_gen = random() / 2 + 1;
622 	return (0);
623 noinodes:
624 	ffs_fserr(fs, cred->cr_uid, "out of inodes");
625 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
626 	return (ENOSPC);
627 }
628 
629 /*
630  * Find a cylinder group to place a directory.
631  *
632  * The policy implemented by this algorithm is to allocate a
633  * directory inode in the same cylinder group as its parent
634  * directory, but also to reserve space for its files inodes
635  * and data. Restrict the number of directories which may be
636  * allocated one after another in the same cylinder group
637  * without intervening allocation of files.
638  *
639  * If we allocate a first level directory then force allocation
640  * in another cylinder group.
641  */
642 static ino_t
643 ffs_dirpref(struct inode *pip)
644 {
645 	struct fs *fs;
646 	int cg, prefcg, dirsize, cgsize;
647 	int64_t dirsize64;
648 	int avgifree, avgbfree, avgndir, curdirsize;
649 	int minifree, minbfree, maxndir;
650 	int mincg, minndir;
651 	int maxcontigdirs;
652 
653 	fs = pip->i_fs;
654 
655 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
656 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
657 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
658 
659 	/*
660 	 * Force allocation in another cg if creating a first level dir.
661 	 */
662 	if (ITOV(pip)->v_flag & VROOT) {
663 		prefcg = arc4random() % fs->fs_ncg;
664 		mincg = prefcg;
665 		minndir = fs->fs_ipg;
666 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
667 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
668 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
669 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
670 				mincg = cg;
671 				minndir = fs->fs_cs(fs, cg).cs_ndir;
672 			}
673 		for (cg = 0; cg < prefcg; cg++)
674 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
675 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
676 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
677 				mincg = cg;
678 				minndir = fs->fs_cs(fs, cg).cs_ndir;
679 			}
680 		return ((ino_t)(fs->fs_ipg * mincg));
681 	}
682 
683 	/*
684 	 * Count various limits which used for
685 	 * optimal allocation of a directory inode.
686 	 */
687 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
688 	minifree = avgifree - avgifree / 4;
689 	if (minifree < 1)
690 		minifree = 1;
691 	minbfree = avgbfree - avgbfree / 4;
692 	if (minbfree < 1)
693 		minbfree = 1;
694 	cgsize = fs->fs_fsize * fs->fs_fpg;
695 
696 	/*
697 	 * fs_avgfilesize and fs_avgfpdir are user-settable entities and
698 	 * multiplying them may overflow a 32 bit integer.
699 	 */
700 	dirsize64 = fs->fs_avgfilesize * (int64_t)fs->fs_avgfpdir;
701 	if (dirsize64 > 0x7fffffff) {
702 		maxcontigdirs = 1;
703 	} else {
704 		dirsize = (int)dirsize64;
705 		curdirsize = avgndir ?
706 			(cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
707 		if (dirsize < curdirsize)
708 			dirsize = curdirsize;
709 		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
710 		if (fs->fs_avgfpdir > 0)
711 			maxcontigdirs = min(maxcontigdirs,
712 				    fs->fs_ipg / fs->fs_avgfpdir);
713 		if (maxcontigdirs == 0)
714 			maxcontigdirs = 1;
715 	}
716 
717 	/*
718 	 * Limit number of dirs in one cg and reserve space for
719 	 * regular files, but only if we have no deficit in
720 	 * inodes or space.
721 	 */
722 	prefcg = ino_to_cg(fs, pip->i_number);
723 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
724 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
725 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
726 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
727 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
728 				return ((ino_t)(fs->fs_ipg * cg));
729 		}
730 	for (cg = 0; cg < prefcg; cg++)
731 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
732 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
733 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
734 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
735 				return ((ino_t)(fs->fs_ipg * cg));
736 		}
737 	/*
738 	 * This is a backstop when we have deficit in space.
739 	 */
740 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
741 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
742 			return ((ino_t)(fs->fs_ipg * cg));
743 	for (cg = 0; cg < prefcg; cg++)
744 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
745 			break;
746 	return ((ino_t)(fs->fs_ipg * cg));
747 }
748 
749 /*
750  * Select the desired position for the next block in a file.  The file is
751  * logically divided into sections. The first section is composed of the
752  * direct blocks. Each additional section contains fs_maxbpg blocks.
753  *
754  * If no blocks have been allocated in the first section, the policy is to
755  * request a block in the same cylinder group as the inode that describes
756  * the file. If no blocks have been allocated in any other section, the
757  * policy is to place the section in a cylinder group with a greater than
758  * average number of free blocks.  An appropriate cylinder group is found
759  * by using a rotor that sweeps the cylinder groups. When a new group of
760  * blocks is needed, the sweep begins in the cylinder group following the
761  * cylinder group from which the previous allocation was made. The sweep
762  * continues until a cylinder group with greater than the average number
763  * of free blocks is found. If the allocation is for the first block in an
764  * indirect block, the information on the previous allocation is unavailable;
765  * here a best guess is made based upon the logical block number being
766  * allocated.
767  *
768  * If a section is already partially allocated, the policy is to
769  * contiguously allocate fs_maxcontig blocks.  The end of one of these
770  * contiguous blocks and the beginning of the next is physically separated
771  * so that the disk head will be in transit between them for at least
772  * fs_rotdelay milliseconds.  This is to allow time for the processor to
773  * schedule another I/O transfer.
774  */
775 ufs_daddr_t
776 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
777 {
778 	struct fs *fs;
779 	int cg;
780 	int avgbfree, startcg;
781 	ufs_daddr_t nextblk;
782 
783 	fs = ip->i_fs;
784 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
785 		if (lbn < NDADDR + NINDIR(fs)) {
786 			cg = ino_to_cg(fs, ip->i_number);
787 			return (fs->fs_fpg * cg + fs->fs_frag);
788 		}
789 		/*
790 		 * Find a cylinder with greater than average number of
791 		 * unused data blocks.
792 		 */
793 		if (indx == 0 || bap[indx - 1] == 0)
794 			startcg =
795 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
796 		else
797 			startcg = dtog(fs, bap[indx - 1]) + 1;
798 		startcg %= fs->fs_ncg;
799 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
800 		for (cg = startcg; cg < fs->fs_ncg; cg++)
801 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
802 				fs->fs_cgrotor = cg;
803 				return (fs->fs_fpg * cg + fs->fs_frag);
804 			}
805 		for (cg = 0; cg <= startcg; cg++)
806 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
807 				fs->fs_cgrotor = cg;
808 				return (fs->fs_fpg * cg + fs->fs_frag);
809 			}
810 		return (0);
811 	}
812 	/*
813 	 * One or more previous blocks have been laid out. If less
814 	 * than fs_maxcontig previous blocks are contiguous, the
815 	 * next block is requested contiguously, otherwise it is
816 	 * requested rotationally delayed by fs_rotdelay milliseconds.
817 	 */
818 	nextblk = bap[indx - 1] + fs->fs_frag;
819 	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
820 	    bap[indx - fs->fs_maxcontig] +
821 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
822 		return (nextblk);
823 	/*
824 	 * Here we convert ms of delay to frags as:
825 	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
826 	 *	((sect/frag) * (ms/sec))
827 	 * then round up to the next block.
828 	 */
829 	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
830 	    (NSPF(fs) * 1000), fs->fs_frag);
831 	return (nextblk);
832 }
833 
834 /*
835  * Implement the cylinder overflow algorithm.
836  *
837  * The policy implemented by this algorithm is:
838  *   1) allocate the block in its requested cylinder group.
839  *   2) quadradically rehash on the cylinder group number.
840  *   3) brute force search for a free block.
841  */
842 /*VARARGS5*/
843 static u_long
844 ffs_hashalloc(struct inode *ip, int cg, long pref,
845 	      int size,	/* size for data blocks, mode for inodes */
846 	      allocfcn_t *allocator)
847 {
848 	struct fs *fs;
849 	long result;	/* XXX why not same type as we return? */
850 	int i, icg = cg;
851 
852 	fs = ip->i_fs;
853 	/*
854 	 * 1: preferred cylinder group
855 	 */
856 	result = (*allocator)(ip, cg, pref, size);
857 	if (result)
858 		return (result);
859 	/*
860 	 * 2: quadratic rehash
861 	 */
862 	for (i = 1; i < fs->fs_ncg; i *= 2) {
863 		cg += i;
864 		if (cg >= fs->fs_ncg)
865 			cg -= fs->fs_ncg;
866 		result = (*allocator)(ip, cg, 0, size);
867 		if (result)
868 			return (result);
869 	}
870 	/*
871 	 * 3: brute force search
872 	 * Note that we start at i == 2, since 0 was checked initially,
873 	 * and 1 is always checked in the quadratic rehash.
874 	 */
875 	cg = (icg + 2) % fs->fs_ncg;
876 	for (i = 2; i < fs->fs_ncg; i++) {
877 		result = (*allocator)(ip, cg, 0, size);
878 		if (result)
879 			return (result);
880 		cg++;
881 		if (cg == fs->fs_ncg)
882 			cg = 0;
883 	}
884 	return (0);
885 }
886 
887 /*
888  * Determine whether a fragment can be extended.
889  *
890  * Check to see if the necessary fragments are available, and
891  * if they are, allocate them.
892  */
893 static ufs_daddr_t
894 ffs_fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize)
895 {
896 	struct fs *fs;
897 	struct cg *cgp;
898 	struct buf *bp;
899 	long bno;
900 	int frags, bbase;
901 	int i, error;
902 	uint8_t *blksfree;
903 
904 	fs = ip->i_fs;
905 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
906 		return (0);
907 	frags = numfrags(fs, nsize);
908 	bbase = fragnum(fs, bprev);
909 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
910 		/* cannot extend across a block boundary */
911 		return (0);
912 	}
913 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
914 		(int)fs->fs_cgsize, &bp);
915 	if (error) {
916 		brelse(bp);
917 		return (0);
918 	}
919 	cgp = (struct cg *)bp->b_data;
920 	if (!cg_chkmagic(cgp)) {
921 		brelse(bp);
922 		return (0);
923 	}
924 	bp->b_xflags |= BX_BKGRDWRITE;
925 	cgp->cg_time = time_second;
926 	bno = dtogd(fs, bprev);
927 	blksfree = cg_blksfree(cgp);
928 	for (i = numfrags(fs, osize); i < frags; i++)
929 		if (isclr(blksfree, bno + i)) {
930 			brelse(bp);
931 			return (0);
932 		}
933 	/*
934 	 * the current fragment can be extended
935 	 * deduct the count on fragment being extended into
936 	 * increase the count on the remaining fragment (if any)
937 	 * allocate the extended piece
938 	 */
939 	for (i = frags; i < fs->fs_frag - bbase; i++)
940 		if (isclr(blksfree, bno + i))
941 			break;
942 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
943 	if (i != frags)
944 		cgp->cg_frsum[i - frags]++;
945 	for (i = numfrags(fs, osize); i < frags; i++) {
946 		clrbit(blksfree, bno + i);
947 		cgp->cg_cs.cs_nffree--;
948 		fs->fs_cstotal.cs_nffree--;
949 		fs->fs_cs(fs, cg).cs_nffree--;
950 	}
951 	fs->fs_fmod = 1;
952 	if (DOINGSOFTDEP(ITOV(ip)))
953 		softdep_setup_blkmapdep(bp, fs, bprev);
954 	bdwrite(bp);
955 	return (bprev);
956 }
957 
958 /*
959  * Determine whether a block can be allocated.
960  *
961  * Check to see if a block of the appropriate size is available,
962  * and if it is, allocate it.
963  */
964 static ufs_daddr_t
965 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
966 {
967 	struct fs *fs;
968 	struct cg *cgp;
969 	struct buf *bp;
970 	int i;
971 	ufs_daddr_t bno, blkno;
972 	int allocsiz, error, frags;
973 	uint8_t *blksfree;
974 
975 	fs = ip->i_fs;
976 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
977 		return (0);
978 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
979 		(int)fs->fs_cgsize, &bp);
980 	if (error) {
981 		brelse(bp);
982 		return (0);
983 	}
984 	cgp = (struct cg *)bp->b_data;
985 	if (!cg_chkmagic(cgp) ||
986 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
987 		brelse(bp);
988 		return (0);
989 	}
990 	bp->b_xflags |= BX_BKGRDWRITE;
991 	cgp->cg_time = time_second;
992 	if (size == fs->fs_bsize) {
993 		bno = ffs_alloccgblk(ip, bp, bpref);
994 		bdwrite(bp);
995 		return (bno);
996 	}
997 	/*
998 	 * check to see if any fragments are already available
999 	 * allocsiz is the size which will be allocated, hacking
1000 	 * it down to a smaller size if necessary
1001 	 */
1002 	blksfree = cg_blksfree(cgp);
1003 	frags = numfrags(fs, size);
1004 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1005 		if (cgp->cg_frsum[allocsiz] != 0)
1006 			break;
1007 	if (allocsiz == fs->fs_frag) {
1008 		/*
1009 		 * no fragments were available, so a block will be
1010 		 * allocated, and hacked up
1011 		 */
1012 		if (cgp->cg_cs.cs_nbfree == 0) {
1013 			brelse(bp);
1014 			return (0);
1015 		}
1016 		bno = ffs_alloccgblk(ip, bp, bpref);
1017 		bpref = dtogd(fs, bno);
1018 		for (i = frags; i < fs->fs_frag; i++)
1019 			setbit(blksfree, bpref + i);
1020 		i = fs->fs_frag - frags;
1021 		cgp->cg_cs.cs_nffree += i;
1022 		fs->fs_cstotal.cs_nffree += i;
1023 		fs->fs_cs(fs, cg).cs_nffree += i;
1024 		fs->fs_fmod = 1;
1025 		cgp->cg_frsum[i]++;
1026 		bdwrite(bp);
1027 		return (bno);
1028 	}
1029 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1030 	if (bno < 0) {
1031 		brelse(bp);
1032 		return (0);
1033 	}
1034 	for (i = 0; i < frags; i++)
1035 		clrbit(blksfree, bno + i);
1036 	cgp->cg_cs.cs_nffree -= frags;
1037 	fs->fs_cstotal.cs_nffree -= frags;
1038 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1039 	fs->fs_fmod = 1;
1040 	cgp->cg_frsum[allocsiz]--;
1041 	if (frags != allocsiz)
1042 		cgp->cg_frsum[allocsiz - frags]++;
1043 	blkno = cg * fs->fs_fpg + bno;
1044 	if (DOINGSOFTDEP(ITOV(ip)))
1045 		softdep_setup_blkmapdep(bp, fs, blkno);
1046 	bdwrite(bp);
1047 	return ((u_long)blkno);
1048 }
1049 
1050 /*
1051  * Allocate a block in a cylinder group.
1052  *
1053  * This algorithm implements the following policy:
1054  *   1) allocate the requested block.
1055  *   2) allocate a rotationally optimal block in the same cylinder.
1056  *   3) allocate the next available block on the block rotor for the
1057  *      specified cylinder group.
1058  * Note that this routine only allocates fs_bsize blocks; these
1059  * blocks may be fragmented by the routine that allocates them.
1060  */
1061 static ufs_daddr_t
1062 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
1063 {
1064 	struct fs *fs;
1065 	struct cg *cgp;
1066 	ufs_daddr_t bno, blkno;
1067 	int cylno, pos, delta;
1068 	short *cylbp;
1069 	int i;
1070 	uint8_t *blksfree;
1071 
1072 	fs = ip->i_fs;
1073 	cgp = (struct cg *)bp->b_data;
1074 	blksfree = cg_blksfree(cgp);
1075 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1076 		bpref = cgp->cg_rotor;
1077 		goto norot;
1078 	}
1079 	bpref = blknum(fs, bpref);
1080 	bpref = dtogd(fs, bpref);
1081 	/*
1082 	 * if the requested block is available, use it
1083 	 */
1084 	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1085 		bno = bpref;
1086 		goto gotit;
1087 	}
1088 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1089 		/*
1090 		 * Block layout information is not available.
1091 		 * Leaving bpref unchanged means we take the
1092 		 * next available free block following the one
1093 		 * we just allocated. Hopefully this will at
1094 		 * least hit a track cache on drives of unknown
1095 		 * geometry (e.g. SCSI).
1096 		 */
1097 		goto norot;
1098 	}
1099 	/*
1100 	 * check for a block available on the same cylinder
1101 	 */
1102 	cylno = cbtocylno(fs, bpref);
1103 	if (cg_blktot(cgp)[cylno] == 0)
1104 		goto norot;
1105 	/*
1106 	 * check the summary information to see if a block is
1107 	 * available in the requested cylinder starting at the
1108 	 * requested rotational position and proceeding around.
1109 	 */
1110 	cylbp = cg_blks(fs, cgp, cylno);
1111 	pos = cbtorpos(fs, bpref);
1112 	for (i = pos; i < fs->fs_nrpos; i++)
1113 		if (cylbp[i] > 0)
1114 			break;
1115 	if (i == fs->fs_nrpos)
1116 		for (i = 0; i < pos; i++)
1117 			if (cylbp[i] > 0)
1118 				break;
1119 	if (cylbp[i] > 0) {
1120 		/*
1121 		 * found a rotational position, now find the actual
1122 		 * block. A panic if none is actually there.
1123 		 */
1124 		pos = cylno % fs->fs_cpc;
1125 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1126 		if (fs_postbl(fs, pos)[i] == -1) {
1127 			printf("pos = %d, i = %d, fs = %s\n",
1128 			    pos, i, fs->fs_fsmnt);
1129 			panic("ffs_alloccgblk: cyl groups corrupted");
1130 		}
1131 		for (i = fs_postbl(fs, pos)[i];; ) {
1132 			if (ffs_isblock(fs, blksfree, bno + i)) {
1133 				bno = blkstofrags(fs, (bno + i));
1134 				goto gotit;
1135 			}
1136 			delta = fs_rotbl(fs)[i];
1137 			if (delta <= 0 ||
1138 			    delta + i > fragstoblks(fs, fs->fs_fpg))
1139 				break;
1140 			i += delta;
1141 		}
1142 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1143 		panic("ffs_alloccgblk: can't find blk in cyl");
1144 	}
1145 norot:
1146 	/*
1147 	 * no blocks in the requested cylinder, so take next
1148 	 * available one in this cylinder group.
1149 	 */
1150 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1151 	if (bno < 0)
1152 		return (0);
1153 	cgp->cg_rotor = bno;
1154 gotit:
1155 	blkno = fragstoblks(fs, bno);
1156 	ffs_clrblock(fs, blksfree, (long)blkno);
1157 	ffs_clusteracct(fs, cgp, blkno, -1);
1158 	cgp->cg_cs.cs_nbfree--;
1159 	fs->fs_cstotal.cs_nbfree--;
1160 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1161 	cylno = cbtocylno(fs, bno);
1162 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1163 	cg_blktot(cgp)[cylno]--;
1164 	fs->fs_fmod = 1;
1165 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1166 	if (DOINGSOFTDEP(ITOV(ip)))
1167 		softdep_setup_blkmapdep(bp, fs, blkno);
1168 	return (blkno);
1169 }
1170 
1171 /*
1172  * Determine whether a cluster can be allocated.
1173  *
1174  * We do not currently check for optimal rotational layout if there
1175  * are multiple choices in the same cylinder group. Instead we just
1176  * take the first one that we find following bpref.
1177  */
1178 static ufs_daddr_t
1179 ffs_clusteralloc(struct inode *ip, int cg, ufs_daddr_t bpref, int len)
1180 {
1181 	struct fs *fs;
1182 	struct cg *cgp;
1183 	struct buf *bp;
1184 	int i, got, run, bno, bit, map;
1185 	u_char *mapp;
1186 	int32_t *lp;
1187 	uint8_t *blksfree;
1188 
1189 	fs = ip->i_fs;
1190 	if (fs->fs_maxcluster[cg] < len)
1191 		return (0);
1192 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1193 	    &bp))
1194 		goto fail;
1195 	cgp = (struct cg *)bp->b_data;
1196 	if (!cg_chkmagic(cgp))
1197 		goto fail;
1198 	bp->b_xflags |= BX_BKGRDWRITE;
1199 	/*
1200 	 * Check to see if a cluster of the needed size (or bigger) is
1201 	 * available in this cylinder group.
1202 	 */
1203 	lp = &cg_clustersum(cgp)[len];
1204 	for (i = len; i <= fs->fs_contigsumsize; i++)
1205 		if (*lp++ > 0)
1206 			break;
1207 	if (i > fs->fs_contigsumsize) {
1208 		/*
1209 		 * This is the first time looking for a cluster in this
1210 		 * cylinder group. Update the cluster summary information
1211 		 * to reflect the true maximum sized cluster so that
1212 		 * future cluster allocation requests can avoid reading
1213 		 * the cylinder group map only to find no clusters.
1214 		 */
1215 		lp = &cg_clustersum(cgp)[len - 1];
1216 		for (i = len - 1; i > 0; i--)
1217 			if (*lp-- > 0)
1218 				break;
1219 		fs->fs_maxcluster[cg] = i;
1220 		goto fail;
1221 	}
1222 	/*
1223 	 * Search the cluster map to find a big enough cluster.
1224 	 * We take the first one that we find, even if it is larger
1225 	 * than we need as we prefer to get one close to the previous
1226 	 * block allocation. We do not search before the current
1227 	 * preference point as we do not want to allocate a block
1228 	 * that is allocated before the previous one (as we will
1229 	 * then have to wait for another pass of the elevator
1230 	 * algorithm before it will be read). We prefer to fail and
1231 	 * be recalled to try an allocation in the next cylinder group.
1232 	 */
1233 	if (dtog(fs, bpref) != cg)
1234 		bpref = 0;
1235 	else
1236 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1237 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1238 	map = *mapp++;
1239 	bit = 1 << (bpref % NBBY);
1240 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1241 		if ((map & bit) == 0) {
1242 			run = 0;
1243 		} else {
1244 			run++;
1245 			if (run == len)
1246 				break;
1247 		}
1248 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1249 			bit <<= 1;
1250 		} else {
1251 			map = *mapp++;
1252 			bit = 1;
1253 		}
1254 	}
1255 	if (got >= cgp->cg_nclusterblks)
1256 		goto fail;
1257 	/*
1258 	 * Allocate the cluster that we have found.
1259 	 */
1260 	blksfree = cg_blksfree(cgp);
1261 	for (i = 1; i <= len; i++)
1262 		if (!ffs_isblock(fs, blksfree, got - run + i))
1263 			panic("ffs_clusteralloc: map mismatch");
1264 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1265 	if (dtog(fs, bno) != cg)
1266 		panic("ffs_clusteralloc: allocated out of group");
1267 	len = blkstofrags(fs, len);
1268 	for (i = 0; i < len; i += fs->fs_frag)
1269 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1270 			panic("ffs_clusteralloc: lost block");
1271 	bdwrite(bp);
1272 	return (bno);
1273 
1274 fail:
1275 	brelse(bp);
1276 	return (0);
1277 }
1278 
1279 /*
1280  * Determine whether an inode can be allocated.
1281  *
1282  * Check to see if an inode is available, and if it is,
1283  * allocate it using the following policy:
1284  *   1) allocate the requested inode.
1285  *   2) allocate the next available inode after the requested
1286  *      inode in the specified cylinder group.
1287  *   3) the inode must not already be in the inode hash table.  We
1288  *	can encounter such a case because the vnode reclamation sequence
1289  *	frees the bit
1290  *   3) the inode must not already be in the inode hash, otherwise it
1291  *	may be in the process of being deallocated.  This can occur
1292  *	because the bitmap is updated before the inode is removed from
1293  *	hash.  If we were to reallocate the inode the caller could wind
1294  *	up returning a vnode/inode combination which is in an indeterminate
1295  *	state.
1296  */
1297 static ino_t
1298 ffs_nodealloccg(struct inode *ip, int cg, ufs_daddr_t ipref, int mode)
1299 {
1300 	struct fs *fs;
1301 	struct cg *cgp;
1302 	struct buf *bp;
1303 	uint8_t *inosused;
1304 	uint8_t map;
1305 	int error, len, arraysize, i;
1306 	int icheckmiss;
1307 	ufs_daddr_t ibase;
1308 
1309 	fs = ip->i_fs;
1310 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1311 		return (0);
1312 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1313 		(int)fs->fs_cgsize, &bp);
1314 	if (error) {
1315 		brelse(bp);
1316 		return (0);
1317 	}
1318 	cgp = (struct cg *)bp->b_data;
1319 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1320 		brelse(bp);
1321 		return (0);
1322 	}
1323 	inosused = cg_inosused(cgp);
1324 	icheckmiss = 0;
1325 
1326 	/*
1327 	 * Quick check, reuse the most recently free inode or continue
1328 	 * a scan from where we left off the last time.
1329 	 */
1330 	ibase = cg * fs->fs_ipg;
1331 	if (ipref) {
1332 		ipref %= fs->fs_ipg;
1333 		if (isclr(inosused, ipref)) {
1334 			if (ufs_ihashcheck(ip->i_dev, ibase + ipref) == 0)
1335 				goto gotit;
1336 		}
1337 	}
1338 
1339 	/*
1340 	 * Scan the inode bitmap starting at irotor, be sure to handle
1341 	 * the edge case by going back to the beginning of the array.
1342 	 *
1343 	 * If the number of inodes is not byte-aligned, the unused bits
1344 	 * should be set to 1.  This will be sanity checked in gotit.  Note
1345 	 * that we have to be sure not to overlap the beginning and end
1346 	 * when irotor is in the middle of a byte as this will cause the
1347 	 * same bitmap byte to be checked twice.  To solve this problem we
1348 	 * just convert everything to a byte index for the loop.
1349 	 */
1350 	ipref = (cgp->cg_irotor % fs->fs_ipg) >> 3;	/* byte index */
1351 	len = (fs->fs_ipg + 7) >> 3;			/* byte size */
1352 	arraysize = len;
1353 
1354 	while (len > 0) {
1355 		map = inosused[ipref];
1356 		if (map != 255) {
1357 			for (i = 0; i < NBBY; ++i) {
1358 				/*
1359 				 * If we find a free bit we have to make sure
1360 				 * that the inode is not in the middle of
1361 				 * being destroyed.  The inode should not exist
1362 				 * in the inode hash.
1363 				 *
1364 				 * Adjust the rotor to try to hit the
1365 				 * quick-check up above.
1366 				 */
1367 				if ((map & (1 << i)) == 0) {
1368 					if (ufs_ihashcheck(ip->i_dev, ibase + (ipref << 3) + i) == 0) {
1369 						ipref = (ipref << 3) + i;
1370 						cgp->cg_irotor = (ipref + 1) % fs->fs_ipg;
1371 						goto gotit;
1372 					}
1373 					++icheckmiss;
1374 				}
1375 			}
1376 		}
1377 
1378 		/*
1379 		 * Setup for the next byte, start at the beginning again if
1380 		 * we hit the end of the array.
1381 		 */
1382 		if (++ipref == arraysize)
1383 			ipref = 0;
1384 		--len;
1385 	}
1386 	if (icheckmiss == cgp->cg_cs.cs_nifree) {
1387 		brelse(bp);
1388 		return(0);
1389 	}
1390 	printf("fs = %s\n", fs->fs_fsmnt);
1391 	panic("ffs_nodealloccg: block not in map, icheckmiss/nfree %d/%d",
1392 		icheckmiss, cgp->cg_cs.cs_nifree);
1393 	/* NOTREACHED */
1394 
1395 	/*
1396 	 * ipref is a bit index as of the gotit label.
1397 	 */
1398 gotit:
1399 	KKASSERT(ipref >= 0 && ipref < fs->fs_ipg);
1400 	if (icheckmiss) {
1401 		printf("Warning: inode free race avoided %d times\n",
1402 			icheckmiss);
1403 	}
1404 	bp->b_xflags |= BX_BKGRDWRITE;
1405 	cgp->cg_time = time_second;
1406 	if (DOINGSOFTDEP(ITOV(ip)))
1407 		softdep_setup_inomapdep(bp, ip, ibase + ipref);
1408 	setbit(inosused, ipref);
1409 	cgp->cg_cs.cs_nifree--;
1410 	fs->fs_cstotal.cs_nifree--;
1411 	fs->fs_cs(fs, cg).cs_nifree--;
1412 	fs->fs_fmod = 1;
1413 	if ((mode & IFMT) == IFDIR) {
1414 		cgp->cg_cs.cs_ndir++;
1415 		fs->fs_cstotal.cs_ndir++;
1416 		fs->fs_cs(fs, cg).cs_ndir++;
1417 	}
1418 	bdwrite(bp);
1419 	return (ibase + ipref);
1420 }
1421 
1422 /*
1423  * Free a block or fragment.
1424  *
1425  * The specified block or fragment is placed back in the
1426  * free map. If a fragment is deallocated, a possible
1427  * block reassembly is checked.
1428  */
1429 void
1430 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
1431 {
1432 	struct fs *fs;
1433 	struct cg *cgp;
1434 	struct buf *bp;
1435 	ufs_daddr_t blkno;
1436 	int i, error, cg, blk, frags, bbase;
1437 	uint8_t *blksfree;
1438 
1439 	fs = ip->i_fs;
1440 	VOP_FREEBLKS(ip->i_devvp, fsbtodb(fs, bno), size);
1441 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1442 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1443 		printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1444 		    devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size,
1445 		    fs->fs_fsmnt);
1446 		panic("ffs_blkfree: bad size");
1447 	}
1448 	cg = dtog(fs, bno);
1449 	if ((uint)bno >= fs->fs_size) {
1450 		printf("bad block %ld, ino %lu\n",
1451 		    (long)bno, (u_long)ip->i_number);
1452 		ffs_fserr(fs, ip->i_uid, "bad block");
1453 		return;
1454 	}
1455 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1456 		(int)fs->fs_cgsize, &bp);
1457 	if (error) {
1458 		brelse(bp);
1459 		return;
1460 	}
1461 	cgp = (struct cg *)bp->b_data;
1462 	if (!cg_chkmagic(cgp)) {
1463 		brelse(bp);
1464 		return;
1465 	}
1466 	bp->b_xflags |= BX_BKGRDWRITE;
1467 	cgp->cg_time = time_second;
1468 	bno = dtogd(fs, bno);
1469 	blksfree = cg_blksfree(cgp);
1470 	if (size == fs->fs_bsize) {
1471 		blkno = fragstoblks(fs, bno);
1472 		if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1473 			printf("dev = %s, block = %ld, fs = %s\n",
1474 			    devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt);
1475 			panic("ffs_blkfree: freeing free block");
1476 		}
1477 		ffs_setblock(fs, blksfree, blkno);
1478 		ffs_clusteracct(fs, cgp, blkno, 1);
1479 		cgp->cg_cs.cs_nbfree++;
1480 		fs->fs_cstotal.cs_nbfree++;
1481 		fs->fs_cs(fs, cg).cs_nbfree++;
1482 		i = cbtocylno(fs, bno);
1483 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1484 		cg_blktot(cgp)[i]++;
1485 	} else {
1486 		bbase = bno - fragnum(fs, bno);
1487 		/*
1488 		 * decrement the counts associated with the old frags
1489 		 */
1490 		blk = blkmap(fs, blksfree, bbase);
1491 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1492 		/*
1493 		 * deallocate the fragment
1494 		 */
1495 		frags = numfrags(fs, size);
1496 		for (i = 0; i < frags; i++) {
1497 			if (isset(blksfree, bno + i)) {
1498 				printf("dev = %s, block = %ld, fs = %s\n",
1499 				    devtoname(ip->i_dev), (long)(bno + i),
1500 				    fs->fs_fsmnt);
1501 				panic("ffs_blkfree: freeing free frag");
1502 			}
1503 			setbit(blksfree, bno + i);
1504 		}
1505 		cgp->cg_cs.cs_nffree += i;
1506 		fs->fs_cstotal.cs_nffree += i;
1507 		fs->fs_cs(fs, cg).cs_nffree += i;
1508 		/*
1509 		 * add back in counts associated with the new frags
1510 		 */
1511 		blk = blkmap(fs, blksfree, bbase);
1512 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1513 		/*
1514 		 * if a complete block has been reassembled, account for it
1515 		 */
1516 		blkno = fragstoblks(fs, bbase);
1517 		if (ffs_isblock(fs, blksfree, blkno)) {
1518 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1519 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1520 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1521 			ffs_clusteracct(fs, cgp, blkno, 1);
1522 			cgp->cg_cs.cs_nbfree++;
1523 			fs->fs_cstotal.cs_nbfree++;
1524 			fs->fs_cs(fs, cg).cs_nbfree++;
1525 			i = cbtocylno(fs, bbase);
1526 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1527 			cg_blktot(cgp)[i]++;
1528 		}
1529 	}
1530 	fs->fs_fmod = 1;
1531 	bdwrite(bp);
1532 }
1533 
1534 #ifdef DIAGNOSTIC
1535 /*
1536  * Verify allocation of a block or fragment. Returns true if block or
1537  * fragment is allocated, false if it is free.
1538  */
1539 static int
1540 ffs_checkblk(struct inode *ip, ufs_daddr_t bno, long size)
1541 {
1542 	struct fs *fs;
1543 	struct cg *cgp;
1544 	struct buf *bp;
1545 	int i, error, frags, free;
1546 	uint8_t *blksfree;
1547 
1548 	fs = ip->i_fs;
1549 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1550 		printf("bsize = %ld, size = %ld, fs = %s\n",
1551 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1552 		panic("ffs_checkblk: bad size");
1553 	}
1554 	if ((uint)bno >= fs->fs_size)
1555 		panic("ffs_checkblk: bad block %d", bno);
1556 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1557 		(int)fs->fs_cgsize, &bp);
1558 	if (error)
1559 		panic("ffs_checkblk: cg bread failed");
1560 	cgp = (struct cg *)bp->b_data;
1561 	if (!cg_chkmagic(cgp))
1562 		panic("ffs_checkblk: cg magic mismatch");
1563 	bp->b_xflags |= BX_BKGRDWRITE;
1564 	blksfree = cg_blksfree(cgp);
1565 	bno = dtogd(fs, bno);
1566 	if (size == fs->fs_bsize) {
1567 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1568 	} else {
1569 		frags = numfrags(fs, size);
1570 		for (free = 0, i = 0; i < frags; i++)
1571 			if (isset(blksfree, bno + i))
1572 				free++;
1573 		if (free != 0 && free != frags)
1574 			panic("ffs_checkblk: partially free fragment");
1575 	}
1576 	brelse(bp);
1577 	return (!free);
1578 }
1579 #endif /* DIAGNOSTIC */
1580 
1581 /*
1582  * Free an inode.
1583  */
1584 int
1585 ffs_vfree(struct vnode *pvp, ino_t ino, int mode)
1586 {
1587 	if (DOINGSOFTDEP(pvp)) {
1588 		softdep_freefile(pvp, ino, mode);
1589 		return (0);
1590 	}
1591 	return (ffs_freefile(pvp, ino, mode));
1592 }
1593 
1594 /*
1595  * Do the actual free operation.
1596  * The specified inode is placed back in the free map.
1597  */
1598 int
1599 ffs_freefile(struct vnode *pvp, ino_t ino, int mode)
1600 {
1601 	struct fs *fs;
1602 	struct cg *cgp;
1603 	struct inode *pip;
1604 	struct buf *bp;
1605 	int error, cg;
1606 	uint8_t *inosused;
1607 
1608 	pip = VTOI(pvp);
1609 	fs = pip->i_fs;
1610 	if ((uint)ino >= fs->fs_ipg * fs->fs_ncg)
1611 		panic("ffs_vfree: range: dev = (%d,%d), ino = %"PRId64", fs = %s",
1612 		    major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1613 	cg = ino_to_cg(fs, ino);
1614 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1615 		(int)fs->fs_cgsize, &bp);
1616 	if (error) {
1617 		brelse(bp);
1618 		return (error);
1619 	}
1620 	cgp = (struct cg *)bp->b_data;
1621 	if (!cg_chkmagic(cgp)) {
1622 		brelse(bp);
1623 		return (0);
1624 	}
1625 	bp->b_xflags |= BX_BKGRDWRITE;
1626 	cgp->cg_time = time_second;
1627 	inosused = cg_inosused(cgp);
1628 	ino %= fs->fs_ipg;
1629 	if (isclr(inosused, ino)) {
1630 		printf("dev = %s, ino = %lu, fs = %s\n",
1631 		    devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1632 		if (fs->fs_ronly == 0)
1633 			panic("ffs_vfree: freeing free inode");
1634 	}
1635 	clrbit(inosused, ino);
1636 	if (ino < cgp->cg_irotor)
1637 		cgp->cg_irotor = ino;
1638 	cgp->cg_cs.cs_nifree++;
1639 	fs->fs_cstotal.cs_nifree++;
1640 	fs->fs_cs(fs, cg).cs_nifree++;
1641 	if ((mode & IFMT) == IFDIR) {
1642 		cgp->cg_cs.cs_ndir--;
1643 		fs->fs_cstotal.cs_ndir--;
1644 		fs->fs_cs(fs, cg).cs_ndir--;
1645 	}
1646 	fs->fs_fmod = 1;
1647 	bdwrite(bp);
1648 	return (0);
1649 }
1650 
1651 /*
1652  * Find a block of the specified size in the specified cylinder group.
1653  *
1654  * It is a panic if a request is made to find a block if none are
1655  * available.
1656  */
1657 static ufs_daddr_t
1658 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
1659 {
1660 	ufs_daddr_t bno;
1661 	int start, len, loc, i;
1662 	int blk, field, subfield, pos;
1663 	uint8_t *blksfree;
1664 
1665 	/*
1666 	 * find the fragment by searching through the free block
1667 	 * map for an appropriate bit pattern
1668 	 */
1669 	if (bpref)
1670 		start = dtogd(fs, bpref) / NBBY;
1671 	else
1672 		start = cgp->cg_frotor / NBBY;
1673 	blksfree = cg_blksfree(cgp);
1674 	len = howmany(fs->fs_fpg, NBBY) - start;
1675 	loc = scanc((uint)len, (u_char *)&blksfree[start],
1676 		(u_char *)fragtbl[fs->fs_frag],
1677 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1678 	if (loc == 0) {
1679 		len = start + 1;
1680 		start = 0;
1681 		loc = scanc((uint)len, (u_char *)&blksfree[0],
1682 			(u_char *)fragtbl[fs->fs_frag],
1683 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1684 		if (loc == 0) {
1685 			printf("start = %d, len = %d, fs = %s\n",
1686 			    start, len, fs->fs_fsmnt);
1687 			panic("ffs_alloccg: map corrupted");
1688 			/* NOTREACHED */
1689 		}
1690 	}
1691 	bno = (start + len - loc) * NBBY;
1692 	cgp->cg_frotor = bno;
1693 	/*
1694 	 * found the byte in the map
1695 	 * sift through the bits to find the selected frag
1696 	 */
1697 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1698 		blk = blkmap(fs, blksfree, bno);
1699 		blk <<= 1;
1700 		field = around[allocsiz];
1701 		subfield = inside[allocsiz];
1702 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1703 			if ((blk & field) == subfield)
1704 				return (bno + pos);
1705 			field <<= 1;
1706 			subfield <<= 1;
1707 		}
1708 	}
1709 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1710 	panic("ffs_alloccg: block not in map");
1711 	return (-1);
1712 }
1713 
1714 /*
1715  * Update the cluster map because of an allocation or free.
1716  *
1717  * Cnt == 1 means free; cnt == -1 means allocating.
1718  */
1719 static void
1720 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
1721 {
1722 	int32_t *sump;
1723 	int32_t *lp;
1724 	u_char *freemapp, *mapp;
1725 	int i, start, end, forw, back, map, bit;
1726 
1727 	if (fs->fs_contigsumsize <= 0)
1728 		return;
1729 	freemapp = cg_clustersfree(cgp);
1730 	sump = cg_clustersum(cgp);
1731 	/*
1732 	 * Allocate or clear the actual block.
1733 	 */
1734 	if (cnt > 0)
1735 		setbit(freemapp, blkno);
1736 	else
1737 		clrbit(freemapp, blkno);
1738 	/*
1739 	 * Find the size of the cluster going forward.
1740 	 */
1741 	start = blkno + 1;
1742 	end = start + fs->fs_contigsumsize;
1743 	if (end >= cgp->cg_nclusterblks)
1744 		end = cgp->cg_nclusterblks;
1745 	mapp = &freemapp[start / NBBY];
1746 	map = *mapp++;
1747 	bit = 1 << (start % NBBY);
1748 	for (i = start; i < end; i++) {
1749 		if ((map & bit) == 0)
1750 			break;
1751 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1752 			bit <<= 1;
1753 		} else {
1754 			map = *mapp++;
1755 			bit = 1;
1756 		}
1757 	}
1758 	forw = i - start;
1759 	/*
1760 	 * Find the size of the cluster going backward.
1761 	 */
1762 	start = blkno - 1;
1763 	end = start - fs->fs_contigsumsize;
1764 	if (end < 0)
1765 		end = -1;
1766 	mapp = &freemapp[start / NBBY];
1767 	map = *mapp--;
1768 	bit = 1 << (start % NBBY);
1769 	for (i = start; i > end; i--) {
1770 		if ((map & bit) == 0)
1771 			break;
1772 		if ((i & (NBBY - 1)) != 0) {
1773 			bit >>= 1;
1774 		} else {
1775 			map = *mapp--;
1776 			bit = 1 << (NBBY - 1);
1777 		}
1778 	}
1779 	back = start - i;
1780 	/*
1781 	 * Account for old cluster and the possibly new forward and
1782 	 * back clusters.
1783 	 */
1784 	i = back + forw + 1;
1785 	if (i > fs->fs_contigsumsize)
1786 		i = fs->fs_contigsumsize;
1787 	sump[i] += cnt;
1788 	if (back > 0)
1789 		sump[back] -= cnt;
1790 	if (forw > 0)
1791 		sump[forw] -= cnt;
1792 	/*
1793 	 * Update cluster summary information.
1794 	 */
1795 	lp = &sump[fs->fs_contigsumsize];
1796 	for (i = fs->fs_contigsumsize; i > 0; i--)
1797 		if (*lp-- > 0)
1798 			break;
1799 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1800 }
1801 
1802 /*
1803  * Fserr prints the name of a filesystem with an error diagnostic.
1804  *
1805  * The form of the error message is:
1806  *	fs: error message
1807  */
1808 static void
1809 ffs_fserr(struct fs *fs, uint uid, char *cp)
1810 {
1811 	struct thread *td = curthread;
1812 	struct proc *p;
1813 
1814 	if ((p = td->td_proc) != NULL) {
1815 	    log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1816 		    p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1817 	} else {
1818 	    log(LOG_ERR, "system thread %p, uid %d on %s: %s\n",
1819 		    td, uid, fs->fs_fsmnt, cp);
1820 	}
1821 }
1822