xref: /dragonfly/sys/vfs/ufs/ffs_alloc.c (revision b40e316c)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
34  * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $
35  * $DragonFly: src/sys/vfs/ufs/ffs_alloc.c,v 1.12 2005/01/20 18:08:54 dillon Exp $
36  */
37 
38 #include "opt_quota.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/buf.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/mount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/syslog.h>
50 
51 #include "quota.h"
52 #include "inode.h"
53 #include "ufs_extern.h"
54 #include "ufsmount.h"
55 
56 #include "fs.h"
57 #include "ffs_extern.h"
58 
59 typedef ufs_daddr_t allocfcn_t (struct inode *ip, int cg, ufs_daddr_t bpref,
60 				  int size);
61 
62 static ufs_daddr_t ffs_alloccg (struct inode *, int, ufs_daddr_t, int);
63 static ufs_daddr_t
64 	      ffs_alloccgblk (struct inode *, struct buf *, ufs_daddr_t);
65 #ifdef DIAGNOSTIC
66 static int	ffs_checkblk (struct inode *, ufs_daddr_t, long);
67 #endif
68 static void	ffs_clusteracct	(struct fs *, struct cg *, ufs_daddr_t,
69 				     int);
70 static ufs_daddr_t ffs_clusteralloc (struct inode *, int, ufs_daddr_t,
71 	    int);
72 static ino_t	ffs_dirpref (struct inode *);
73 static ufs_daddr_t ffs_fragextend (struct inode *, int, long, int, int);
74 static void	ffs_fserr (struct fs *, uint, char *);
75 static u_long	ffs_hashalloc
76 		    (struct inode *, int, long, int, allocfcn_t *);
77 static ino_t	ffs_nodealloccg (struct inode *, int, ufs_daddr_t, int);
78 static ufs_daddr_t ffs_mapsearch (struct fs *, struct cg *, ufs_daddr_t,
79 	    int);
80 
81 /*
82  * Allocate a block in the filesystem.
83  *
84  * The size of the requested block is given, which must be some
85  * multiple of fs_fsize and <= fs_bsize.
86  * A preference may be optionally specified. If a preference is given
87  * the following hierarchy is used to allocate a block:
88  *   1) allocate the requested block.
89  *   2) allocate a rotationally optimal block in the same cylinder.
90  *   3) allocate a block in the same cylinder group.
91  *   4) quadradically rehash into other cylinder groups, until an
92  *      available block is located.
93  * If no block preference is given the following heirarchy is used
94  * to allocate a block:
95  *   1) allocate a block in the cylinder group that contains the
96  *      inode for the file.
97  *   2) quadradically rehash into other cylinder groups, until an
98  *      available block is located.
99  */
100 int
101 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
102 	  struct ucred *cred, ufs_daddr_t *bnp)
103 {
104 	struct fs *fs;
105 	ufs_daddr_t bno;
106 	int cg;
107 #ifdef QUOTA
108 	int error;
109 #endif
110 
111 	*bnp = 0;
112 	fs = ip->i_fs;
113 #ifdef DIAGNOSTIC
114 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
115 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
116 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
117 		    fs->fs_fsmnt);
118 		panic("ffs_alloc: bad size");
119 	}
120 	if (cred == NOCRED)
121 		panic("ffs_alloc: missing credential");
122 #endif /* DIAGNOSTIC */
123 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
124 		goto nospace;
125 	if (cred->cr_uid != 0 &&
126 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
127 		goto nospace;
128 #ifdef QUOTA
129 	error = chkdq(ip, (long)btodb(size), cred, 0);
130 	if (error)
131 		return (error);
132 #endif
133 	if (bpref >= fs->fs_size)
134 		bpref = 0;
135 	if (bpref == 0)
136 		cg = ino_to_cg(fs, ip->i_number);
137 	else
138 		cg = dtog(fs, bpref);
139 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
140 					 ffs_alloccg);
141 	if (bno > 0) {
142 		ip->i_blocks += btodb(size);
143 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
144 		*bnp = bno;
145 		return (0);
146 	}
147 #ifdef QUOTA
148 	/*
149 	 * Restore user's disk quota because allocation failed.
150 	 */
151 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
152 #endif
153 nospace:
154 	ffs_fserr(fs, cred->cr_uid, "filesystem full");
155 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
156 	return (ENOSPC);
157 }
158 
159 /*
160  * Reallocate a fragment to a bigger size
161  *
162  * The number and size of the old block is given, and a preference
163  * and new size is also specified. The allocator attempts to extend
164  * the original block. Failing that, the regular block allocator is
165  * invoked to get an appropriate block.
166  */
167 int
168 ffs_realloccg(struct inode *ip, ufs_daddr_t lbprev, ufs_daddr_t bpref,
169 	      int osize, int nsize, struct ucred *cred, struct buf **bpp)
170 {
171 	struct fs *fs;
172 	struct buf *bp;
173 	int cg, request, error;
174 	ufs_daddr_t bprev, bno;
175 
176 	*bpp = 0;
177 	fs = ip->i_fs;
178 #ifdef DIAGNOSTIC
179 	if ((uint)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
180 	    (uint)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
181 		printf(
182 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
183 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
184 		    nsize, fs->fs_fsmnt);
185 		panic("ffs_realloccg: bad size");
186 	}
187 	if (cred == NOCRED)
188 		panic("ffs_realloccg: missing credential");
189 #endif /* DIAGNOSTIC */
190 	if (cred->cr_uid != 0 &&
191 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
192 		goto nospace;
193 	if ((bprev = ip->i_db[lbprev]) == 0) {
194 		printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
195 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
196 		    fs->fs_fsmnt);
197 		panic("ffs_realloccg: bad bprev");
198 	}
199 	/*
200 	 * Allocate the extra space in the buffer.
201 	 */
202 	error = bread(ITOV(ip), lbprev, osize, &bp);
203 	if (error) {
204 		brelse(bp);
205 		return (error);
206 	}
207 
208 	if( bp->b_blkno == bp->b_lblkno) {
209 		if( lbprev >= NDADDR)
210 			panic("ffs_realloccg: lbprev out of range");
211 		bp->b_blkno = fsbtodb(fs, bprev);
212 	}
213 
214 #ifdef QUOTA
215 	error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
216 	if (error) {
217 		brelse(bp);
218 		return (error);
219 	}
220 #endif
221 	/*
222 	 * Check for extension in the existing location.
223 	 */
224 	cg = dtog(fs, bprev);
225 	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
226 	if (bno) {
227 		if (bp->b_blkno != fsbtodb(fs, bno))
228 			panic("ffs_realloccg: bad blockno");
229 		ip->i_blocks += btodb(nsize - osize);
230 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
231 		allocbuf(bp, nsize);
232 		bp->b_flags |= B_DONE;
233 		bzero((char *)bp->b_data + osize, (uint)nsize - osize);
234 		*bpp = bp;
235 		return (0);
236 	}
237 	/*
238 	 * Allocate a new disk location.
239 	 */
240 	if (bpref >= fs->fs_size)
241 		bpref = 0;
242 	switch ((int)fs->fs_optim) {
243 	case FS_OPTSPACE:
244 		/*
245 		 * Allocate an exact sized fragment. Although this makes
246 		 * best use of space, we will waste time relocating it if
247 		 * the file continues to grow. If the fragmentation is
248 		 * less than half of the minimum free reserve, we choose
249 		 * to begin optimizing for time.
250 		 */
251 		request = nsize;
252 		if (fs->fs_minfree <= 5 ||
253 		    fs->fs_cstotal.cs_nffree >
254 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
255 			break;
256 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
257 			fs->fs_fsmnt);
258 		fs->fs_optim = FS_OPTTIME;
259 		break;
260 	case FS_OPTTIME:
261 		/*
262 		 * At this point we have discovered a file that is trying to
263 		 * grow a small fragment to a larger fragment. To save time,
264 		 * we allocate a full sized block, then free the unused portion.
265 		 * If the file continues to grow, the `ffs_fragextend' call
266 		 * above will be able to grow it in place without further
267 		 * copying. If aberrant programs cause disk fragmentation to
268 		 * grow within 2% of the free reserve, we choose to begin
269 		 * optimizing for space.
270 		 */
271 		request = fs->fs_bsize;
272 		if (fs->fs_cstotal.cs_nffree <
273 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
274 			break;
275 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
276 			fs->fs_fsmnt);
277 		fs->fs_optim = FS_OPTSPACE;
278 		break;
279 	default:
280 		printf("dev = %s, optim = %ld, fs = %s\n",
281 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
282 		panic("ffs_realloccg: bad optim");
283 		/* NOTREACHED */
284 	}
285 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
286 					 ffs_alloccg);
287 	if (bno > 0) {
288 		bp->b_blkno = fsbtodb(fs, bno);
289 		if (!DOINGSOFTDEP(ITOV(ip)))
290 			ffs_blkfree(ip, bprev, (long)osize);
291 		if (nsize < request)
292 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
293 			    (long)(request - nsize));
294 		ip->i_blocks += btodb(nsize - osize);
295 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
296 		allocbuf(bp, nsize);
297 		bp->b_flags |= B_DONE;
298 		bzero((char *)bp->b_data + osize, (uint)nsize - osize);
299 		*bpp = bp;
300 		return (0);
301 	}
302 #ifdef QUOTA
303 	/*
304 	 * Restore user's disk quota because allocation failed.
305 	 */
306 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
307 #endif
308 	brelse(bp);
309 nospace:
310 	/*
311 	 * no space available
312 	 */
313 	ffs_fserr(fs, cred->cr_uid, "filesystem full");
314 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
315 	return (ENOSPC);
316 }
317 
318 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
319 
320 /*
321  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
322  *
323  * The vnode and an array of buffer pointers for a range of sequential
324  * logical blocks to be made contiguous is given. The allocator attempts
325  * to find a range of sequential blocks starting as close as possible to
326  * an fs_rotdelay offset from the end of the allocation for the logical
327  * block immediately preceeding the current range. If successful, the
328  * physical block numbers in the buffer pointers and in the inode are
329  * changed to reflect the new allocation. If unsuccessful, the allocation
330  * is left unchanged. The success in doing the reallocation is returned.
331  * Note that the error return is not reflected back to the user. Rather
332  * the previous block allocation will be used.
333  */
334 static int doasyncfree = 1;
335 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
336 
337 static int doreallocblks = 1;
338 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
339 
340 #ifdef DEBUG
341 static volatile int prtrealloc = 0;
342 #endif
343 
344 /*
345  * ffs_reallocblks(struct vnode *a_vp, struct cluster_save *a_buflist)
346  */
347 int
348 ffs_reallocblks(struct vop_reallocblks_args *ap)
349 {
350 	struct fs *fs;
351 	struct inode *ip;
352 	struct vnode *vp;
353 	struct buf *sbp, *ebp;
354 	ufs_daddr_t *bap, *sbap, *ebap = 0;
355 	struct cluster_save *buflist;
356 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
357 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
358 	int i, len, start_lvl, end_lvl, pref, ssize;
359 
360 	if (doreallocblks == 0)
361 		return (ENOSPC);
362 	vp = ap->a_vp;
363 	ip = VTOI(vp);
364 	fs = ip->i_fs;
365 	if (fs->fs_contigsumsize <= 0)
366 		return (ENOSPC);
367 	buflist = ap->a_buflist;
368 	len = buflist->bs_nchildren;
369 	start_lbn = buflist->bs_children[0]->b_lblkno;
370 	end_lbn = start_lbn + len - 1;
371 #ifdef DIAGNOSTIC
372 	for (i = 0; i < len; i++)
373 		if (!ffs_checkblk(ip,
374 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
375 			panic("ffs_reallocblks: unallocated block 1");
376 	for (i = 1; i < len; i++)
377 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
378 			panic("ffs_reallocblks: non-logical cluster");
379 	blkno = buflist->bs_children[0]->b_blkno;
380 	ssize = fsbtodb(fs, fs->fs_frag);
381 	for (i = 1; i < len - 1; i++)
382 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
383 			panic("ffs_reallocblks: non-physical cluster %d", i);
384 #endif
385 	/*
386 	 * If the latest allocation is in a new cylinder group, assume that
387 	 * the filesystem has decided to move and do not force it back to
388 	 * the previous cylinder group.
389 	 */
390 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
391 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
392 		return (ENOSPC);
393 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
394 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
395 		return (ENOSPC);
396 	/*
397 	 * Get the starting offset and block map for the first block.
398 	 */
399 	if (start_lvl == 0) {
400 		sbap = &ip->i_db[0];
401 		soff = start_lbn;
402 	} else {
403 		idp = &start_ap[start_lvl - 1];
404 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, &sbp)) {
405 			brelse(sbp);
406 			return (ENOSPC);
407 		}
408 		sbap = (ufs_daddr_t *)sbp->b_data;
409 		soff = idp->in_off;
410 	}
411 	/*
412 	 * Find the preferred location for the cluster.
413 	 */
414 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
415 	/*
416 	 * If the block range spans two block maps, get the second map.
417 	 */
418 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
419 		ssize = len;
420 	} else {
421 #ifdef DIAGNOSTIC
422 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
423 			panic("ffs_reallocblk: start == end");
424 #endif
425 		ssize = len - (idp->in_off + 1);
426 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, &ebp))
427 			goto fail;
428 		ebap = (ufs_daddr_t *)ebp->b_data;
429 	}
430 	/*
431 	 * Search the block map looking for an allocation of the desired size.
432 	 */
433 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
434 	    len, ffs_clusteralloc)) == 0)
435 		goto fail;
436 	/*
437 	 * We have found a new contiguous block.
438 	 *
439 	 * First we have to replace the old block pointers with the new
440 	 * block pointers in the inode and indirect blocks associated
441 	 * with the file.
442 	 */
443 #ifdef DEBUG
444 	if (prtrealloc)
445 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
446 		    start_lbn, end_lbn);
447 #endif
448 	blkno = newblk;
449 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
450 		if (i == ssize) {
451 			bap = ebap;
452 			soff = -i;
453 		}
454 #ifdef DIAGNOSTIC
455 		if (!ffs_checkblk(ip,
456 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
457 			panic("ffs_reallocblks: unallocated block 2");
458 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
459 			panic("ffs_reallocblks: alloc mismatch");
460 #endif
461 #ifdef DEBUG
462 		if (prtrealloc)
463 			printf(" %d,", *bap);
464 #endif
465 		if (DOINGSOFTDEP(vp)) {
466 			if (sbap == &ip->i_db[0] && i < ssize)
467 				softdep_setup_allocdirect(ip, start_lbn + i,
468 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
469 				    buflist->bs_children[i]);
470 			else
471 				softdep_setup_allocindir_page(ip, start_lbn + i,
472 				    i < ssize ? sbp : ebp, soff + i, blkno,
473 				    *bap, buflist->bs_children[i]);
474 		}
475 		*bap++ = blkno;
476 	}
477 	/*
478 	 * Next we must write out the modified inode and indirect blocks.
479 	 * For strict correctness, the writes should be synchronous since
480 	 * the old block values may have been written to disk. In practise
481 	 * they are almost never written, but if we are concerned about
482 	 * strict correctness, the `doasyncfree' flag should be set to zero.
483 	 *
484 	 * The test on `doasyncfree' should be changed to test a flag
485 	 * that shows whether the associated buffers and inodes have
486 	 * been written. The flag should be set when the cluster is
487 	 * started and cleared whenever the buffer or inode is flushed.
488 	 * We can then check below to see if it is set, and do the
489 	 * synchronous write only when it has been cleared.
490 	 */
491 	if (sbap != &ip->i_db[0]) {
492 		if (doasyncfree)
493 			bdwrite(sbp);
494 		else
495 			bwrite(sbp);
496 	} else {
497 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
498 		if (!doasyncfree)
499 			UFS_UPDATE(vp, 1);
500 	}
501 	if (ssize < len) {
502 		if (doasyncfree)
503 			bdwrite(ebp);
504 		else
505 			bwrite(ebp);
506 	}
507 	/*
508 	 * Last, free the old blocks and assign the new blocks to the buffers.
509 	 */
510 #ifdef DEBUG
511 	if (prtrealloc)
512 		printf("\n\tnew:");
513 #endif
514 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
515 		if (!DOINGSOFTDEP(vp))
516 			ffs_blkfree(ip,
517 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
518 			    fs->fs_bsize);
519 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
520 #ifdef DIAGNOSTIC
521 		if (!ffs_checkblk(ip,
522 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
523 			panic("ffs_reallocblks: unallocated block 3");
524 #endif
525 #ifdef DEBUG
526 		if (prtrealloc)
527 			printf(" %d,", blkno);
528 #endif
529 	}
530 #ifdef DEBUG
531 	if (prtrealloc) {
532 		prtrealloc--;
533 		printf("\n");
534 	}
535 #endif
536 	return (0);
537 
538 fail:
539 	if (ssize < len)
540 		brelse(ebp);
541 	if (sbap != &ip->i_db[0])
542 		brelse(sbp);
543 	return (ENOSPC);
544 }
545 
546 /*
547  * Allocate an inode in the filesystem.
548  *
549  * If allocating a directory, use ffs_dirpref to select the inode.
550  * If allocating in a directory, the following hierarchy is followed:
551  *   1) allocate the preferred inode.
552  *   2) allocate an inode in the same cylinder group.
553  *   3) quadradically rehash into other cylinder groups, until an
554  *      available inode is located.
555  * If no inode preference is given the following heirarchy is used
556  * to allocate an inode:
557  *   1) allocate an inode in cylinder group 0.
558  *   2) quadradically rehash into other cylinder groups, until an
559  *      available inode is located.
560  */
561 int
562 ffs_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
563 {
564 	struct inode *pip;
565 	struct fs *fs;
566 	struct inode *ip;
567 	ino_t ino, ipref;
568 	int cg, error;
569 
570 	*vpp = NULL;
571 	pip = VTOI(pvp);
572 	fs = pip->i_fs;
573 	if (fs->fs_cstotal.cs_nifree == 0)
574 		goto noinodes;
575 
576 	if ((mode & IFMT) == IFDIR)
577 		ipref = ffs_dirpref(pip);
578 	else
579 		ipref = pip->i_number;
580 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
581 		ipref = 0;
582 	cg = ino_to_cg(fs, ipref);
583 	/*
584 	 * Track number of dirs created one after another
585 	 * in a same cg without intervening by files.
586 	 */
587 	if ((mode & IFMT) == IFDIR) {
588 		if (fs->fs_contigdirs[cg] < 255)
589 			fs->fs_contigdirs[cg]++;
590 	} else {
591 		if (fs->fs_contigdirs[cg] > 0)
592 			fs->fs_contigdirs[cg]--;
593 	}
594 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
595 					(allocfcn_t *)ffs_nodealloccg);
596 	if (ino == 0)
597 		goto noinodes;
598 	error = VFS_VGET(pvp->v_mount, ino, vpp);
599 	if (error) {
600 		UFS_VFREE(pvp, ino, mode);
601 		return (error);
602 	}
603 	ip = VTOI(*vpp);
604 	if (ip->i_mode) {
605 		printf("mode = 0%o, inum = %lu, fs = %s\n",
606 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
607 		panic("ffs_valloc: dup alloc");
608 	}
609 	if (ip->i_blocks) {				/* XXX */
610 		printf("free inode %s/%lu had %ld blocks\n",
611 		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
612 		ip->i_blocks = 0;
613 	}
614 	ip->i_flags = 0;
615 	/*
616 	 * Set up a new generation number for this inode.
617 	 */
618 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
619 		ip->i_gen = random() / 2 + 1;
620 	return (0);
621 noinodes:
622 	ffs_fserr(fs, cred->cr_uid, "out of inodes");
623 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
624 	return (ENOSPC);
625 }
626 
627 /*
628  * Find a cylinder group to place a directory.
629  *
630  * The policy implemented by this algorithm is to allocate a
631  * directory inode in the same cylinder group as its parent
632  * directory, but also to reserve space for its files inodes
633  * and data. Restrict the number of directories which may be
634  * allocated one after another in the same cylinder group
635  * without intervening allocation of files.
636  *
637  * If we allocate a first level directory then force allocation
638  * in another cylinder group.
639  */
640 static ino_t
641 ffs_dirpref(struct inode *pip)
642 {
643 	struct fs *fs;
644 	int cg, prefcg, dirsize, cgsize;
645 	int64_t dirsize64;
646 	int avgifree, avgbfree, avgndir, curdirsize;
647 	int minifree, minbfree, maxndir;
648 	int mincg, minndir;
649 	int maxcontigdirs;
650 
651 	fs = pip->i_fs;
652 
653 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
654 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
655 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
656 
657 	/*
658 	 * Force allocation in another cg if creating a first level dir.
659 	 */
660 	if (ITOV(pip)->v_flag & VROOT) {
661 		prefcg = arc4random() % fs->fs_ncg;
662 		mincg = prefcg;
663 		minndir = fs->fs_ipg;
664 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
665 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
666 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
667 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
668 				mincg = cg;
669 				minndir = fs->fs_cs(fs, cg).cs_ndir;
670 			}
671 		for (cg = 0; cg < prefcg; cg++)
672 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
673 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
674 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
675 				mincg = cg;
676 				minndir = fs->fs_cs(fs, cg).cs_ndir;
677 			}
678 		return ((ino_t)(fs->fs_ipg * mincg));
679 	}
680 
681 	/*
682 	 * Count various limits which used for
683 	 * optimal allocation of a directory inode.
684 	 */
685 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
686 	minifree = avgifree - avgifree / 4;
687 	if (minifree < 1)
688 		minifree = 1;
689 	minbfree = avgbfree - avgbfree / 4;
690 	if (minbfree < 1)
691 		minbfree = 1;
692 	cgsize = fs->fs_fsize * fs->fs_fpg;
693 
694 	/*
695 	 * fs_avgfilesize and fs_avgfpdir are user-settable entities and
696 	 * multiplying them may overflow a 32 bit integer.
697 	 */
698 	dirsize64 = fs->fs_avgfilesize * (int64_t)fs->fs_avgfpdir;
699 	if (dirsize64 > 0x7fffffff) {
700 		maxcontigdirs = 1;
701 	} else {
702 		dirsize = (int)dirsize64;
703 		curdirsize = avgndir ?
704 			(cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
705 		if (dirsize < curdirsize)
706 			dirsize = curdirsize;
707 		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
708 		if (fs->fs_avgfpdir > 0)
709 			maxcontigdirs = min(maxcontigdirs,
710 				    fs->fs_ipg / fs->fs_avgfpdir);
711 		if (maxcontigdirs == 0)
712 			maxcontigdirs = 1;
713 	}
714 
715 	/*
716 	 * Limit number of dirs in one cg and reserve space for
717 	 * regular files, but only if we have no deficit in
718 	 * inodes or space.
719 	 */
720 	prefcg = ino_to_cg(fs, pip->i_number);
721 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
722 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
723 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
724 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
725 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
726 				return ((ino_t)(fs->fs_ipg * cg));
727 		}
728 	for (cg = 0; cg < prefcg; cg++)
729 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
730 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
731 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
732 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
733 				return ((ino_t)(fs->fs_ipg * cg));
734 		}
735 	/*
736 	 * This is a backstop when we have deficit in space.
737 	 */
738 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
739 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
740 			return ((ino_t)(fs->fs_ipg * cg));
741 	for (cg = 0; cg < prefcg; cg++)
742 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
743 			break;
744 	return ((ino_t)(fs->fs_ipg * cg));
745 }
746 
747 /*
748  * Select the desired position for the next block in a file.  The file is
749  * logically divided into sections. The first section is composed of the
750  * direct blocks. Each additional section contains fs_maxbpg blocks.
751  *
752  * If no blocks have been allocated in the first section, the policy is to
753  * request a block in the same cylinder group as the inode that describes
754  * the file. If no blocks have been allocated in any other section, the
755  * policy is to place the section in a cylinder group with a greater than
756  * average number of free blocks.  An appropriate cylinder group is found
757  * by using a rotor that sweeps the cylinder groups. When a new group of
758  * blocks is needed, the sweep begins in the cylinder group following the
759  * cylinder group from which the previous allocation was made. The sweep
760  * continues until a cylinder group with greater than the average number
761  * of free blocks is found. If the allocation is for the first block in an
762  * indirect block, the information on the previous allocation is unavailable;
763  * here a best guess is made based upon the logical block number being
764  * allocated.
765  *
766  * If a section is already partially allocated, the policy is to
767  * contiguously allocate fs_maxcontig blocks.  The end of one of these
768  * contiguous blocks and the beginning of the next is physically separated
769  * so that the disk head will be in transit between them for at least
770  * fs_rotdelay milliseconds.  This is to allow time for the processor to
771  * schedule another I/O transfer.
772  */
773 ufs_daddr_t
774 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
775 {
776 	struct fs *fs;
777 	int cg;
778 	int avgbfree, startcg;
779 	ufs_daddr_t nextblk;
780 
781 	fs = ip->i_fs;
782 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
783 		if (lbn < NDADDR + NINDIR(fs)) {
784 			cg = ino_to_cg(fs, ip->i_number);
785 			return (fs->fs_fpg * cg + fs->fs_frag);
786 		}
787 		/*
788 		 * Find a cylinder with greater than average number of
789 		 * unused data blocks.
790 		 */
791 		if (indx == 0 || bap[indx - 1] == 0)
792 			startcg =
793 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
794 		else
795 			startcg = dtog(fs, bap[indx - 1]) + 1;
796 		startcg %= fs->fs_ncg;
797 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
798 		for (cg = startcg; cg < fs->fs_ncg; cg++)
799 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
800 				fs->fs_cgrotor = cg;
801 				return (fs->fs_fpg * cg + fs->fs_frag);
802 			}
803 		for (cg = 0; cg <= startcg; cg++)
804 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
805 				fs->fs_cgrotor = cg;
806 				return (fs->fs_fpg * cg + fs->fs_frag);
807 			}
808 		return (0);
809 	}
810 	/*
811 	 * One or more previous blocks have been laid out. If less
812 	 * than fs_maxcontig previous blocks are contiguous, the
813 	 * next block is requested contiguously, otherwise it is
814 	 * requested rotationally delayed by fs_rotdelay milliseconds.
815 	 */
816 	nextblk = bap[indx - 1] + fs->fs_frag;
817 	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
818 	    bap[indx - fs->fs_maxcontig] +
819 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
820 		return (nextblk);
821 	/*
822 	 * Here we convert ms of delay to frags as:
823 	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
824 	 *	((sect/frag) * (ms/sec))
825 	 * then round up to the next block.
826 	 */
827 	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
828 	    (NSPF(fs) * 1000), fs->fs_frag);
829 	return (nextblk);
830 }
831 
832 /*
833  * Implement the cylinder overflow algorithm.
834  *
835  * The policy implemented by this algorithm is:
836  *   1) allocate the block in its requested cylinder group.
837  *   2) quadradically rehash on the cylinder group number.
838  *   3) brute force search for a free block.
839  */
840 /*VARARGS5*/
841 static u_long
842 ffs_hashalloc(struct inode *ip, int cg, long pref,
843 	      int size,	/* size for data blocks, mode for inodes */
844 	      allocfcn_t *allocator)
845 {
846 	struct fs *fs;
847 	long result;	/* XXX why not same type as we return? */
848 	int i, icg = cg;
849 
850 	fs = ip->i_fs;
851 	/*
852 	 * 1: preferred cylinder group
853 	 */
854 	result = (*allocator)(ip, cg, pref, size);
855 	if (result)
856 		return (result);
857 	/*
858 	 * 2: quadratic rehash
859 	 */
860 	for (i = 1; i < fs->fs_ncg; i *= 2) {
861 		cg += i;
862 		if (cg >= fs->fs_ncg)
863 			cg -= fs->fs_ncg;
864 		result = (*allocator)(ip, cg, 0, size);
865 		if (result)
866 			return (result);
867 	}
868 	/*
869 	 * 3: brute force search
870 	 * Note that we start at i == 2, since 0 was checked initially,
871 	 * and 1 is always checked in the quadratic rehash.
872 	 */
873 	cg = (icg + 2) % fs->fs_ncg;
874 	for (i = 2; i < fs->fs_ncg; i++) {
875 		result = (*allocator)(ip, cg, 0, size);
876 		if (result)
877 			return (result);
878 		cg++;
879 		if (cg == fs->fs_ncg)
880 			cg = 0;
881 	}
882 	return (0);
883 }
884 
885 /*
886  * Determine whether a fragment can be extended.
887  *
888  * Check to see if the necessary fragments are available, and
889  * if they are, allocate them.
890  */
891 static ufs_daddr_t
892 ffs_fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize)
893 {
894 	struct fs *fs;
895 	struct cg *cgp;
896 	struct buf *bp;
897 	long bno;
898 	int frags, bbase;
899 	int i, error;
900 	uint8_t *blksfree;
901 
902 	fs = ip->i_fs;
903 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
904 		return (0);
905 	frags = numfrags(fs, nsize);
906 	bbase = fragnum(fs, bprev);
907 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
908 		/* cannot extend across a block boundary */
909 		return (0);
910 	}
911 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
912 		(int)fs->fs_cgsize, &bp);
913 	if (error) {
914 		brelse(bp);
915 		return (0);
916 	}
917 	cgp = (struct cg *)bp->b_data;
918 	if (!cg_chkmagic(cgp)) {
919 		brelse(bp);
920 		return (0);
921 	}
922 	bp->b_xflags |= BX_BKGRDWRITE;
923 	cgp->cg_time = time_second;
924 	bno = dtogd(fs, bprev);
925 	blksfree = cg_blksfree(cgp);
926 	for (i = numfrags(fs, osize); i < frags; i++)
927 		if (isclr(blksfree, bno + i)) {
928 			brelse(bp);
929 			return (0);
930 		}
931 	/*
932 	 * the current fragment can be extended
933 	 * deduct the count on fragment being extended into
934 	 * increase the count on the remaining fragment (if any)
935 	 * allocate the extended piece
936 	 */
937 	for (i = frags; i < fs->fs_frag - bbase; i++)
938 		if (isclr(blksfree, bno + i))
939 			break;
940 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
941 	if (i != frags)
942 		cgp->cg_frsum[i - frags]++;
943 	for (i = numfrags(fs, osize); i < frags; i++) {
944 		clrbit(blksfree, bno + i);
945 		cgp->cg_cs.cs_nffree--;
946 		fs->fs_cstotal.cs_nffree--;
947 		fs->fs_cs(fs, cg).cs_nffree--;
948 	}
949 	fs->fs_fmod = 1;
950 	if (DOINGSOFTDEP(ITOV(ip)))
951 		softdep_setup_blkmapdep(bp, fs, bprev);
952 	bdwrite(bp);
953 	return (bprev);
954 }
955 
956 /*
957  * Determine whether a block can be allocated.
958  *
959  * Check to see if a block of the appropriate size is available,
960  * and if it is, allocate it.
961  */
962 static ufs_daddr_t
963 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
964 {
965 	struct fs *fs;
966 	struct cg *cgp;
967 	struct buf *bp;
968 	int i;
969 	ufs_daddr_t bno, blkno;
970 	int allocsiz, error, frags;
971 	uint8_t *blksfree;
972 
973 	fs = ip->i_fs;
974 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
975 		return (0);
976 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
977 		(int)fs->fs_cgsize, &bp);
978 	if (error) {
979 		brelse(bp);
980 		return (0);
981 	}
982 	cgp = (struct cg *)bp->b_data;
983 	if (!cg_chkmagic(cgp) ||
984 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
985 		brelse(bp);
986 		return (0);
987 	}
988 	bp->b_xflags |= BX_BKGRDWRITE;
989 	cgp->cg_time = time_second;
990 	if (size == fs->fs_bsize) {
991 		bno = ffs_alloccgblk(ip, bp, bpref);
992 		bdwrite(bp);
993 		return (bno);
994 	}
995 	/*
996 	 * check to see if any fragments are already available
997 	 * allocsiz is the size which will be allocated, hacking
998 	 * it down to a smaller size if necessary
999 	 */
1000 	blksfree = cg_blksfree(cgp);
1001 	frags = numfrags(fs, size);
1002 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1003 		if (cgp->cg_frsum[allocsiz] != 0)
1004 			break;
1005 	if (allocsiz == fs->fs_frag) {
1006 		/*
1007 		 * no fragments were available, so a block will be
1008 		 * allocated, and hacked up
1009 		 */
1010 		if (cgp->cg_cs.cs_nbfree == 0) {
1011 			brelse(bp);
1012 			return (0);
1013 		}
1014 		bno = ffs_alloccgblk(ip, bp, bpref);
1015 		bpref = dtogd(fs, bno);
1016 		for (i = frags; i < fs->fs_frag; i++)
1017 			setbit(blksfree, bpref + i);
1018 		i = fs->fs_frag - frags;
1019 		cgp->cg_cs.cs_nffree += i;
1020 		fs->fs_cstotal.cs_nffree += i;
1021 		fs->fs_cs(fs, cg).cs_nffree += i;
1022 		fs->fs_fmod = 1;
1023 		cgp->cg_frsum[i]++;
1024 		bdwrite(bp);
1025 		return (bno);
1026 	}
1027 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1028 	if (bno < 0) {
1029 		brelse(bp);
1030 		return (0);
1031 	}
1032 	for (i = 0; i < frags; i++)
1033 		clrbit(blksfree, bno + i);
1034 	cgp->cg_cs.cs_nffree -= frags;
1035 	fs->fs_cstotal.cs_nffree -= frags;
1036 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1037 	fs->fs_fmod = 1;
1038 	cgp->cg_frsum[allocsiz]--;
1039 	if (frags != allocsiz)
1040 		cgp->cg_frsum[allocsiz - frags]++;
1041 	blkno = cg * fs->fs_fpg + bno;
1042 	if (DOINGSOFTDEP(ITOV(ip)))
1043 		softdep_setup_blkmapdep(bp, fs, blkno);
1044 	bdwrite(bp);
1045 	return ((u_long)blkno);
1046 }
1047 
1048 /*
1049  * Allocate a block in a cylinder group.
1050  *
1051  * This algorithm implements the following policy:
1052  *   1) allocate the requested block.
1053  *   2) allocate a rotationally optimal block in the same cylinder.
1054  *   3) allocate the next available block on the block rotor for the
1055  *      specified cylinder group.
1056  * Note that this routine only allocates fs_bsize blocks; these
1057  * blocks may be fragmented by the routine that allocates them.
1058  */
1059 static ufs_daddr_t
1060 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
1061 {
1062 	struct fs *fs;
1063 	struct cg *cgp;
1064 	ufs_daddr_t bno, blkno;
1065 	int cylno, pos, delta;
1066 	short *cylbp;
1067 	int i;
1068 	uint8_t *blksfree;
1069 
1070 	fs = ip->i_fs;
1071 	cgp = (struct cg *)bp->b_data;
1072 	blksfree = cg_blksfree(cgp);
1073 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1074 		bpref = cgp->cg_rotor;
1075 		goto norot;
1076 	}
1077 	bpref = blknum(fs, bpref);
1078 	bpref = dtogd(fs, bpref);
1079 	/*
1080 	 * if the requested block is available, use it
1081 	 */
1082 	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1083 		bno = bpref;
1084 		goto gotit;
1085 	}
1086 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1087 		/*
1088 		 * Block layout information is not available.
1089 		 * Leaving bpref unchanged means we take the
1090 		 * next available free block following the one
1091 		 * we just allocated. Hopefully this will at
1092 		 * least hit a track cache on drives of unknown
1093 		 * geometry (e.g. SCSI).
1094 		 */
1095 		goto norot;
1096 	}
1097 	/*
1098 	 * check for a block available on the same cylinder
1099 	 */
1100 	cylno = cbtocylno(fs, bpref);
1101 	if (cg_blktot(cgp)[cylno] == 0)
1102 		goto norot;
1103 	/*
1104 	 * check the summary information to see if a block is
1105 	 * available in the requested cylinder starting at the
1106 	 * requested rotational position and proceeding around.
1107 	 */
1108 	cylbp = cg_blks(fs, cgp, cylno);
1109 	pos = cbtorpos(fs, bpref);
1110 	for (i = pos; i < fs->fs_nrpos; i++)
1111 		if (cylbp[i] > 0)
1112 			break;
1113 	if (i == fs->fs_nrpos)
1114 		for (i = 0; i < pos; i++)
1115 			if (cylbp[i] > 0)
1116 				break;
1117 	if (cylbp[i] > 0) {
1118 		/*
1119 		 * found a rotational position, now find the actual
1120 		 * block. A panic if none is actually there.
1121 		 */
1122 		pos = cylno % fs->fs_cpc;
1123 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1124 		if (fs_postbl(fs, pos)[i] == -1) {
1125 			printf("pos = %d, i = %d, fs = %s\n",
1126 			    pos, i, fs->fs_fsmnt);
1127 			panic("ffs_alloccgblk: cyl groups corrupted");
1128 		}
1129 		for (i = fs_postbl(fs, pos)[i];; ) {
1130 			if (ffs_isblock(fs, blksfree, bno + i)) {
1131 				bno = blkstofrags(fs, (bno + i));
1132 				goto gotit;
1133 			}
1134 			delta = fs_rotbl(fs)[i];
1135 			if (delta <= 0 ||
1136 			    delta + i > fragstoblks(fs, fs->fs_fpg))
1137 				break;
1138 			i += delta;
1139 		}
1140 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1141 		panic("ffs_alloccgblk: can't find blk in cyl");
1142 	}
1143 norot:
1144 	/*
1145 	 * no blocks in the requested cylinder, so take next
1146 	 * available one in this cylinder group.
1147 	 */
1148 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1149 	if (bno < 0)
1150 		return (0);
1151 	cgp->cg_rotor = bno;
1152 gotit:
1153 	blkno = fragstoblks(fs, bno);
1154 	ffs_clrblock(fs, blksfree, (long)blkno);
1155 	ffs_clusteracct(fs, cgp, blkno, -1);
1156 	cgp->cg_cs.cs_nbfree--;
1157 	fs->fs_cstotal.cs_nbfree--;
1158 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1159 	cylno = cbtocylno(fs, bno);
1160 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1161 	cg_blktot(cgp)[cylno]--;
1162 	fs->fs_fmod = 1;
1163 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1164 	if (DOINGSOFTDEP(ITOV(ip)))
1165 		softdep_setup_blkmapdep(bp, fs, blkno);
1166 	return (blkno);
1167 }
1168 
1169 /*
1170  * Determine whether a cluster can be allocated.
1171  *
1172  * We do not currently check for optimal rotational layout if there
1173  * are multiple choices in the same cylinder group. Instead we just
1174  * take the first one that we find following bpref.
1175  */
1176 static ufs_daddr_t
1177 ffs_clusteralloc(struct inode *ip, int cg, ufs_daddr_t bpref, int len)
1178 {
1179 	struct fs *fs;
1180 	struct cg *cgp;
1181 	struct buf *bp;
1182 	int i, got, run, bno, bit, map;
1183 	u_char *mapp;
1184 	int32_t *lp;
1185 	uint8_t *blksfree;
1186 
1187 	fs = ip->i_fs;
1188 	if (fs->fs_maxcluster[cg] < len)
1189 		return (0);
1190 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1191 	    &bp))
1192 		goto fail;
1193 	cgp = (struct cg *)bp->b_data;
1194 	if (!cg_chkmagic(cgp))
1195 		goto fail;
1196 	bp->b_xflags |= BX_BKGRDWRITE;
1197 	/*
1198 	 * Check to see if a cluster of the needed size (or bigger) is
1199 	 * available in this cylinder group.
1200 	 */
1201 	lp = &cg_clustersum(cgp)[len];
1202 	for (i = len; i <= fs->fs_contigsumsize; i++)
1203 		if (*lp++ > 0)
1204 			break;
1205 	if (i > fs->fs_contigsumsize) {
1206 		/*
1207 		 * This is the first time looking for a cluster in this
1208 		 * cylinder group. Update the cluster summary information
1209 		 * to reflect the true maximum sized cluster so that
1210 		 * future cluster allocation requests can avoid reading
1211 		 * the cylinder group map only to find no clusters.
1212 		 */
1213 		lp = &cg_clustersum(cgp)[len - 1];
1214 		for (i = len - 1; i > 0; i--)
1215 			if (*lp-- > 0)
1216 				break;
1217 		fs->fs_maxcluster[cg] = i;
1218 		goto fail;
1219 	}
1220 	/*
1221 	 * Search the cluster map to find a big enough cluster.
1222 	 * We take the first one that we find, even if it is larger
1223 	 * than we need as we prefer to get one close to the previous
1224 	 * block allocation. We do not search before the current
1225 	 * preference point as we do not want to allocate a block
1226 	 * that is allocated before the previous one (as we will
1227 	 * then have to wait for another pass of the elevator
1228 	 * algorithm before it will be read). We prefer to fail and
1229 	 * be recalled to try an allocation in the next cylinder group.
1230 	 */
1231 	if (dtog(fs, bpref) != cg)
1232 		bpref = 0;
1233 	else
1234 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1235 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1236 	map = *mapp++;
1237 	bit = 1 << (bpref % NBBY);
1238 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1239 		if ((map & bit) == 0) {
1240 			run = 0;
1241 		} else {
1242 			run++;
1243 			if (run == len)
1244 				break;
1245 		}
1246 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1247 			bit <<= 1;
1248 		} else {
1249 			map = *mapp++;
1250 			bit = 1;
1251 		}
1252 	}
1253 	if (got >= cgp->cg_nclusterblks)
1254 		goto fail;
1255 	/*
1256 	 * Allocate the cluster that we have found.
1257 	 */
1258 	blksfree = cg_blksfree(cgp);
1259 	for (i = 1; i <= len; i++)
1260 		if (!ffs_isblock(fs, blksfree, got - run + i))
1261 			panic("ffs_clusteralloc: map mismatch");
1262 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1263 	if (dtog(fs, bno) != cg)
1264 		panic("ffs_clusteralloc: allocated out of group");
1265 	len = blkstofrags(fs, len);
1266 	for (i = 0; i < len; i += fs->fs_frag)
1267 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1268 			panic("ffs_clusteralloc: lost block");
1269 	bdwrite(bp);
1270 	return (bno);
1271 
1272 fail:
1273 	brelse(bp);
1274 	return (0);
1275 }
1276 
1277 /*
1278  * Determine whether an inode can be allocated.
1279  *
1280  * Check to see if an inode is available, and if it is,
1281  * allocate it using the following policy:
1282  *   1) allocate the requested inode.
1283  *   2) allocate the next available inode after the requested
1284  *      inode in the specified cylinder group.
1285  *   3) the inode must not already be in the inode hash table.  We
1286  *	can encounter such a case because the vnode reclamation sequence
1287  *	frees the bit
1288  *   3) the inode must not already be in the inode hash, otherwise it
1289  *	may be in the process of being deallocated.  This can occur
1290  *	because the bitmap is updated before the inode is removed from
1291  *	hash.  If we were to reallocate the inode the caller could wind
1292  *	up returning a vnode/inode combination which is in an indeterminate
1293  *	state.
1294  */
1295 static ino_t
1296 ffs_nodealloccg(struct inode *ip, int cg, ufs_daddr_t ipref, int mode)
1297 {
1298 	struct fs *fs;
1299 	struct cg *cgp;
1300 	struct buf *bp;
1301 	uint8_t *inosused;
1302 	int error, len, map, i;
1303 	int icheckmiss;
1304 	ufs_daddr_t ibase;
1305 
1306 	fs = ip->i_fs;
1307 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1308 		return (0);
1309 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1310 		(int)fs->fs_cgsize, &bp);
1311 	if (error) {
1312 		brelse(bp);
1313 		return (0);
1314 	}
1315 	cgp = (struct cg *)bp->b_data;
1316 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1317 		brelse(bp);
1318 		return (0);
1319 	}
1320 	inosused = cg_inosused(cgp);
1321 	icheckmiss = 0;
1322 
1323 	/*
1324 	 * Quick check, reuse the most recently free inode or continue
1325 	 * a scan from where we left off the last time.
1326 	 */
1327 	ibase = cg * fs->fs_ipg;
1328 	if (ipref) {
1329 		ipref %= fs->fs_ipg;
1330 		if (isclr(inosused, ipref)) {
1331 			if (ufs_ihashcheck(ip->i_dev, ibase + ipref) == 0)
1332 				goto gotit;
1333 		}
1334 	}
1335 
1336 	/*
1337 	 * Scan the inode bitmap starting at irotor, be sure to handle
1338 	 * the edge case by going back to the beginning of the array.
1339 	 * Note that 'len' can go negative.  Start the scan at bit 0 to
1340 	 * simplify the code.
1341 	 */
1342 	ipref = (cgp->cg_irotor % fs->fs_ipg) & ~7;
1343 	map = inosused[ipref >> 3];
1344 	len = fs->fs_ipg;
1345 
1346 	while (len > 0) {
1347 		if (map != (1 << NBBY) - 1) {
1348 			for (i = 0; i < NBBY; ++i) {
1349 				/*
1350 				 * If we find a free bit we have to make sure
1351 				 * that the inode is not in the middle of
1352 				 * being destroyed.  The inode should not exist
1353 				 * in the inode hash.
1354 				 *
1355 				 * Adjust the rotor to try to hit the
1356 				 * quick-check up above.
1357 				 */
1358 				if ((map & (1 << i)) == 0) {
1359 					KKASSERT(ipref + i < fs->fs_ipg);
1360 					if (ufs_ihashcheck(ip->i_dev, ibase + ipref + i) == 0) {
1361 						ipref += i;
1362 						cgp->cg_irotor = (ipref + 1) % fs->fs_ipg;
1363 						goto gotit;
1364 					}
1365 					++icheckmiss;
1366 				}
1367 			}
1368 		}
1369 
1370 		/*
1371 		 * Setup for the next byte.  If we hit the edge make sure to
1372 		 * adjust the remaining length only by the number of bits in
1373 		 * the last byte.
1374 		 */
1375 		ipref += NBBY;
1376 		if (ipref >= fs->fs_ipg) {
1377 			ipref = 0;
1378 			len -= fs->fs_ipg & 7;
1379 		} else {
1380 			len -= NBBY;
1381 		}
1382 		map = inosused[ipref >> 3];
1383 	}
1384 	if (icheckmiss == cgp->cg_cs.cs_nifree) {
1385 		brelse(bp);
1386 		return(0);
1387 	}
1388 	printf("fs = %s\n", fs->fs_fsmnt);
1389 	panic("ffs_nodealloccg: block not in map, icheckmiss/nfree %d/%d",
1390 		icheckmiss, cgp->cg_cs.cs_nifree);
1391 	/* NOTREACHED */
1392 gotit:
1393 	if (icheckmiss) {
1394 		printf("Warning: inode free race avoided %d times\n",
1395 			icheckmiss);
1396 	}
1397 	bp->b_xflags |= BX_BKGRDWRITE;
1398 	cgp->cg_time = time_second;
1399 	if (DOINGSOFTDEP(ITOV(ip)))
1400 		softdep_setup_inomapdep(bp, ip, ibase + ipref);
1401 	setbit(inosused, ipref);
1402 	cgp->cg_cs.cs_nifree--;
1403 	fs->fs_cstotal.cs_nifree--;
1404 	fs->fs_cs(fs, cg).cs_nifree--;
1405 	fs->fs_fmod = 1;
1406 	if ((mode & IFMT) == IFDIR) {
1407 		cgp->cg_cs.cs_ndir++;
1408 		fs->fs_cstotal.cs_ndir++;
1409 		fs->fs_cs(fs, cg).cs_ndir++;
1410 	}
1411 	bdwrite(bp);
1412 	return (ibase + ipref);
1413 }
1414 
1415 /*
1416  * Free a block or fragment.
1417  *
1418  * The specified block or fragment is placed back in the
1419  * free map. If a fragment is deallocated, a possible
1420  * block reassembly is checked.
1421  */
1422 void
1423 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
1424 {
1425 	struct fs *fs;
1426 	struct cg *cgp;
1427 	struct buf *bp;
1428 	ufs_daddr_t blkno;
1429 	int i, error, cg, blk, frags, bbase;
1430 	uint8_t *blksfree;
1431 
1432 	fs = ip->i_fs;
1433 	VOP_FREEBLKS(ip->i_devvp, fsbtodb(fs, bno), size);
1434 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1435 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1436 		printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1437 		    devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size,
1438 		    fs->fs_fsmnt);
1439 		panic("ffs_blkfree: bad size");
1440 	}
1441 	cg = dtog(fs, bno);
1442 	if ((uint)bno >= fs->fs_size) {
1443 		printf("bad block %ld, ino %lu\n",
1444 		    (long)bno, (u_long)ip->i_number);
1445 		ffs_fserr(fs, ip->i_uid, "bad block");
1446 		return;
1447 	}
1448 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1449 		(int)fs->fs_cgsize, &bp);
1450 	if (error) {
1451 		brelse(bp);
1452 		return;
1453 	}
1454 	cgp = (struct cg *)bp->b_data;
1455 	if (!cg_chkmagic(cgp)) {
1456 		brelse(bp);
1457 		return;
1458 	}
1459 	bp->b_xflags |= BX_BKGRDWRITE;
1460 	cgp->cg_time = time_second;
1461 	bno = dtogd(fs, bno);
1462 	blksfree = cg_blksfree(cgp);
1463 	if (size == fs->fs_bsize) {
1464 		blkno = fragstoblks(fs, bno);
1465 		if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1466 			printf("dev = %s, block = %ld, fs = %s\n",
1467 			    devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt);
1468 			panic("ffs_blkfree: freeing free block");
1469 		}
1470 		ffs_setblock(fs, blksfree, blkno);
1471 		ffs_clusteracct(fs, cgp, blkno, 1);
1472 		cgp->cg_cs.cs_nbfree++;
1473 		fs->fs_cstotal.cs_nbfree++;
1474 		fs->fs_cs(fs, cg).cs_nbfree++;
1475 		i = cbtocylno(fs, bno);
1476 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1477 		cg_blktot(cgp)[i]++;
1478 	} else {
1479 		bbase = bno - fragnum(fs, bno);
1480 		/*
1481 		 * decrement the counts associated with the old frags
1482 		 */
1483 		blk = blkmap(fs, blksfree, bbase);
1484 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1485 		/*
1486 		 * deallocate the fragment
1487 		 */
1488 		frags = numfrags(fs, size);
1489 		for (i = 0; i < frags; i++) {
1490 			if (isset(blksfree, bno + i)) {
1491 				printf("dev = %s, block = %ld, fs = %s\n",
1492 				    devtoname(ip->i_dev), (long)(bno + i),
1493 				    fs->fs_fsmnt);
1494 				panic("ffs_blkfree: freeing free frag");
1495 			}
1496 			setbit(blksfree, bno + i);
1497 		}
1498 		cgp->cg_cs.cs_nffree += i;
1499 		fs->fs_cstotal.cs_nffree += i;
1500 		fs->fs_cs(fs, cg).cs_nffree += i;
1501 		/*
1502 		 * add back in counts associated with the new frags
1503 		 */
1504 		blk = blkmap(fs, blksfree, bbase);
1505 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1506 		/*
1507 		 * if a complete block has been reassembled, account for it
1508 		 */
1509 		blkno = fragstoblks(fs, bbase);
1510 		if (ffs_isblock(fs, blksfree, blkno)) {
1511 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1512 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1513 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1514 			ffs_clusteracct(fs, cgp, blkno, 1);
1515 			cgp->cg_cs.cs_nbfree++;
1516 			fs->fs_cstotal.cs_nbfree++;
1517 			fs->fs_cs(fs, cg).cs_nbfree++;
1518 			i = cbtocylno(fs, bbase);
1519 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1520 			cg_blktot(cgp)[i]++;
1521 		}
1522 	}
1523 	fs->fs_fmod = 1;
1524 	bdwrite(bp);
1525 }
1526 
1527 #ifdef DIAGNOSTIC
1528 /*
1529  * Verify allocation of a block or fragment. Returns true if block or
1530  * fragment is allocated, false if it is free.
1531  */
1532 static int
1533 ffs_checkblk(struct inode *ip, ufs_daddr_t bno, long size)
1534 {
1535 	struct fs *fs;
1536 	struct cg *cgp;
1537 	struct buf *bp;
1538 	int i, error, frags, free;
1539 	uint8_t *blksfree;
1540 
1541 	fs = ip->i_fs;
1542 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1543 		printf("bsize = %ld, size = %ld, fs = %s\n",
1544 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1545 		panic("ffs_checkblk: bad size");
1546 	}
1547 	if ((uint)bno >= fs->fs_size)
1548 		panic("ffs_checkblk: bad block %d", bno);
1549 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1550 		(int)fs->fs_cgsize, &bp);
1551 	if (error)
1552 		panic("ffs_checkblk: cg bread failed");
1553 	cgp = (struct cg *)bp->b_data;
1554 	if (!cg_chkmagic(cgp))
1555 		panic("ffs_checkblk: cg magic mismatch");
1556 	bp->b_xflags |= BX_BKGRDWRITE;
1557 	blksfree = cg_blksfree(cgp);
1558 	bno = dtogd(fs, bno);
1559 	if (size == fs->fs_bsize) {
1560 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1561 	} else {
1562 		frags = numfrags(fs, size);
1563 		for (free = 0, i = 0; i < frags; i++)
1564 			if (isset(blksfree, bno + i))
1565 				free++;
1566 		if (free != 0 && free != frags)
1567 			panic("ffs_checkblk: partially free fragment");
1568 	}
1569 	brelse(bp);
1570 	return (!free);
1571 }
1572 #endif /* DIAGNOSTIC */
1573 
1574 /*
1575  * Free an inode.
1576  */
1577 int
1578 ffs_vfree(struct vnode *pvp, ino_t ino, int mode)
1579 {
1580 	if (DOINGSOFTDEP(pvp)) {
1581 		softdep_freefile(pvp, ino, mode);
1582 		return (0);
1583 	}
1584 	return (ffs_freefile(pvp, ino, mode));
1585 }
1586 
1587 /*
1588  * Do the actual free operation.
1589  * The specified inode is placed back in the free map.
1590  */
1591 int
1592 ffs_freefile(struct vnode *pvp, ino_t ino, int mode)
1593 {
1594 	struct fs *fs;
1595 	struct cg *cgp;
1596 	struct inode *pip;
1597 	struct buf *bp;
1598 	int error, cg;
1599 	uint8_t *inosused;
1600 
1601 	pip = VTOI(pvp);
1602 	fs = pip->i_fs;
1603 	if ((uint)ino >= fs->fs_ipg * fs->fs_ncg)
1604 		panic("ffs_vfree: range: dev = (%d,%d), ino = %d, fs = %s",
1605 		    major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1606 	cg = ino_to_cg(fs, ino);
1607 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1608 		(int)fs->fs_cgsize, &bp);
1609 	if (error) {
1610 		brelse(bp);
1611 		return (error);
1612 	}
1613 	cgp = (struct cg *)bp->b_data;
1614 	if (!cg_chkmagic(cgp)) {
1615 		brelse(bp);
1616 		return (0);
1617 	}
1618 	bp->b_xflags |= BX_BKGRDWRITE;
1619 	cgp->cg_time = time_second;
1620 	inosused = cg_inosused(cgp);
1621 	ino %= fs->fs_ipg;
1622 	if (isclr(inosused, ino)) {
1623 		printf("dev = %s, ino = %lu, fs = %s\n",
1624 		    devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1625 		if (fs->fs_ronly == 0)
1626 			panic("ffs_vfree: freeing free inode");
1627 	}
1628 	clrbit(inosused, ino);
1629 	if (ino < cgp->cg_irotor)
1630 		cgp->cg_irotor = ino;
1631 	cgp->cg_cs.cs_nifree++;
1632 	fs->fs_cstotal.cs_nifree++;
1633 	fs->fs_cs(fs, cg).cs_nifree++;
1634 	if ((mode & IFMT) == IFDIR) {
1635 		cgp->cg_cs.cs_ndir--;
1636 		fs->fs_cstotal.cs_ndir--;
1637 		fs->fs_cs(fs, cg).cs_ndir--;
1638 	}
1639 	fs->fs_fmod = 1;
1640 	bdwrite(bp);
1641 	return (0);
1642 }
1643 
1644 /*
1645  * Find a block of the specified size in the specified cylinder group.
1646  *
1647  * It is a panic if a request is made to find a block if none are
1648  * available.
1649  */
1650 static ufs_daddr_t
1651 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
1652 {
1653 	ufs_daddr_t bno;
1654 	int start, len, loc, i;
1655 	int blk, field, subfield, pos;
1656 	uint8_t *blksfree;
1657 
1658 	/*
1659 	 * find the fragment by searching through the free block
1660 	 * map for an appropriate bit pattern
1661 	 */
1662 	if (bpref)
1663 		start = dtogd(fs, bpref) / NBBY;
1664 	else
1665 		start = cgp->cg_frotor / NBBY;
1666 	blksfree = cg_blksfree(cgp);
1667 	len = howmany(fs->fs_fpg, NBBY) - start;
1668 	loc = scanc((uint)len, (u_char *)&blksfree[start],
1669 		(u_char *)fragtbl[fs->fs_frag],
1670 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1671 	if (loc == 0) {
1672 		len = start + 1;
1673 		start = 0;
1674 		loc = scanc((uint)len, (u_char *)&blksfree[0],
1675 			(u_char *)fragtbl[fs->fs_frag],
1676 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1677 		if (loc == 0) {
1678 			printf("start = %d, len = %d, fs = %s\n",
1679 			    start, len, fs->fs_fsmnt);
1680 			panic("ffs_alloccg: map corrupted");
1681 			/* NOTREACHED */
1682 		}
1683 	}
1684 	bno = (start + len - loc) * NBBY;
1685 	cgp->cg_frotor = bno;
1686 	/*
1687 	 * found the byte in the map
1688 	 * sift through the bits to find the selected frag
1689 	 */
1690 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1691 		blk = blkmap(fs, blksfree, bno);
1692 		blk <<= 1;
1693 		field = around[allocsiz];
1694 		subfield = inside[allocsiz];
1695 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1696 			if ((blk & field) == subfield)
1697 				return (bno + pos);
1698 			field <<= 1;
1699 			subfield <<= 1;
1700 		}
1701 	}
1702 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1703 	panic("ffs_alloccg: block not in map");
1704 	return (-1);
1705 }
1706 
1707 /*
1708  * Update the cluster map because of an allocation or free.
1709  *
1710  * Cnt == 1 means free; cnt == -1 means allocating.
1711  */
1712 static void
1713 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
1714 {
1715 	int32_t *sump;
1716 	int32_t *lp;
1717 	u_char *freemapp, *mapp;
1718 	int i, start, end, forw, back, map, bit;
1719 
1720 	if (fs->fs_contigsumsize <= 0)
1721 		return;
1722 	freemapp = cg_clustersfree(cgp);
1723 	sump = cg_clustersum(cgp);
1724 	/*
1725 	 * Allocate or clear the actual block.
1726 	 */
1727 	if (cnt > 0)
1728 		setbit(freemapp, blkno);
1729 	else
1730 		clrbit(freemapp, blkno);
1731 	/*
1732 	 * Find the size of the cluster going forward.
1733 	 */
1734 	start = blkno + 1;
1735 	end = start + fs->fs_contigsumsize;
1736 	if (end >= cgp->cg_nclusterblks)
1737 		end = cgp->cg_nclusterblks;
1738 	mapp = &freemapp[start / NBBY];
1739 	map = *mapp++;
1740 	bit = 1 << (start % NBBY);
1741 	for (i = start; i < end; i++) {
1742 		if ((map & bit) == 0)
1743 			break;
1744 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1745 			bit <<= 1;
1746 		} else {
1747 			map = *mapp++;
1748 			bit = 1;
1749 		}
1750 	}
1751 	forw = i - start;
1752 	/*
1753 	 * Find the size of the cluster going backward.
1754 	 */
1755 	start = blkno - 1;
1756 	end = start - fs->fs_contigsumsize;
1757 	if (end < 0)
1758 		end = -1;
1759 	mapp = &freemapp[start / NBBY];
1760 	map = *mapp--;
1761 	bit = 1 << (start % NBBY);
1762 	for (i = start; i > end; i--) {
1763 		if ((map & bit) == 0)
1764 			break;
1765 		if ((i & (NBBY - 1)) != 0) {
1766 			bit >>= 1;
1767 		} else {
1768 			map = *mapp--;
1769 			bit = 1 << (NBBY - 1);
1770 		}
1771 	}
1772 	back = start - i;
1773 	/*
1774 	 * Account for old cluster and the possibly new forward and
1775 	 * back clusters.
1776 	 */
1777 	i = back + forw + 1;
1778 	if (i > fs->fs_contigsumsize)
1779 		i = fs->fs_contigsumsize;
1780 	sump[i] += cnt;
1781 	if (back > 0)
1782 		sump[back] -= cnt;
1783 	if (forw > 0)
1784 		sump[forw] -= cnt;
1785 	/*
1786 	 * Update cluster summary information.
1787 	 */
1788 	lp = &sump[fs->fs_contigsumsize];
1789 	for (i = fs->fs_contigsumsize; i > 0; i--)
1790 		if (*lp-- > 0)
1791 			break;
1792 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1793 }
1794 
1795 /*
1796  * Fserr prints the name of a filesystem with an error diagnostic.
1797  *
1798  * The form of the error message is:
1799  *	fs: error message
1800  */
1801 static void
1802 ffs_fserr(struct fs *fs, uint uid, char *cp)
1803 {
1804 	struct thread *td = curthread;
1805 	struct proc *p;
1806 
1807 	if ((p = td->td_proc) != NULL) {
1808 	    log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1809 		    p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1810 	} else {
1811 	    log(LOG_ERR, "system thread %p, uid %d on %s: %s\n",
1812 		    td, uid, fs->fs_fsmnt, cp);
1813 	}
1814 }
1815