xref: /dragonfly/sys/vfs/ufs/ffs_alloc.c (revision cdecd76a)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
34  * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $
35  * $DragonFly: src/sys/vfs/ufs/ffs_alloc.c,v 1.5 2003/07/26 22:04:26 rob Exp $
36  */
37 
38 #include "opt_quota.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/buf.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/mount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/syslog.h>
50 
51 #include <ufs/ufs/quota.h>
52 #include <ufs/ufs/inode.h>
53 #include <ufs/ufs/ufs_extern.h>
54 #include <ufs/ufs/ufsmount.h>
55 
56 #include <ufs/ffs/fs.h>
57 #include <ufs/ffs/ffs_extern.h>
58 
59 typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref,
60 				  int size));
61 
62 static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
63 static ufs_daddr_t
64 	      ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
65 #ifdef DIAGNOSTIC
66 static int	ffs_checkblk __P((struct inode *, ufs_daddr_t, long));
67 #endif
68 static void	ffs_clusteracct	__P((struct fs *, struct cg *, ufs_daddr_t,
69 				     int));
70 static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t,
71 	    int));
72 static ino_t	ffs_dirpref __P((struct inode *));
73 static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
74 static void	ffs_fserr __P((struct fs *, u_int, char *));
75 static u_long	ffs_hashalloc
76 		    __P((struct inode *, int, long, int, allocfcn_t *));
77 static ino_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
78 static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
79 	    int));
80 
81 /*
82  * Allocate a block in the file system.
83  *
84  * The size of the requested block is given, which must be some
85  * multiple of fs_fsize and <= fs_bsize.
86  * A preference may be optionally specified. If a preference is given
87  * the following hierarchy is used to allocate a block:
88  *   1) allocate the requested block.
89  *   2) allocate a rotationally optimal block in the same cylinder.
90  *   3) allocate a block in the same cylinder group.
91  *   4) quadradically rehash into other cylinder groups, until an
92  *      available block is located.
93  * If no block preference is given the following heirarchy is used
94  * to allocate a block:
95  *   1) allocate a block in the cylinder group that contains the
96  *      inode for the file.
97  *   2) quadradically rehash into other cylinder groups, until an
98  *      available block is located.
99  */
100 int
101 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
102 	struct inode *ip;
103 	ufs_daddr_t lbn, bpref;
104 	int size;
105 	struct ucred *cred;
106 	ufs_daddr_t *bnp;
107 {
108 	struct fs *fs;
109 	ufs_daddr_t bno;
110 	int cg;
111 #ifdef QUOTA
112 	int error;
113 #endif
114 
115 	*bnp = 0;
116 	fs = ip->i_fs;
117 #ifdef DIAGNOSTIC
118 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
119 		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
120 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
121 		    fs->fs_fsmnt);
122 		panic("ffs_alloc: bad size");
123 	}
124 	if (cred == NOCRED)
125 		panic("ffs_alloc: missing credential");
126 #endif /* DIAGNOSTIC */
127 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
128 		goto nospace;
129 	if (cred->cr_uid != 0 &&
130 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
131 		goto nospace;
132 #ifdef QUOTA
133 	error = chkdq(ip, (long)btodb(size), cred, 0);
134 	if (error)
135 		return (error);
136 #endif
137 	if (bpref >= fs->fs_size)
138 		bpref = 0;
139 	if (bpref == 0)
140 		cg = ino_to_cg(fs, ip->i_number);
141 	else
142 		cg = dtog(fs, bpref);
143 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
144 					 ffs_alloccg);
145 	if (bno > 0) {
146 		ip->i_blocks += btodb(size);
147 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
148 		*bnp = bno;
149 		return (0);
150 	}
151 #ifdef QUOTA
152 	/*
153 	 * Restore user's disk quota because allocation failed.
154 	 */
155 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
156 #endif
157 nospace:
158 	ffs_fserr(fs, cred->cr_uid, "file system full");
159 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
160 	return (ENOSPC);
161 }
162 
163 /*
164  * Reallocate a fragment to a bigger size
165  *
166  * The number and size of the old block is given, and a preference
167  * and new size is also specified. The allocator attempts to extend
168  * the original block. Failing that, the regular block allocator is
169  * invoked to get an appropriate block.
170  */
171 int
172 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
173 	struct inode *ip;
174 	ufs_daddr_t lbprev;
175 	ufs_daddr_t bpref;
176 	int osize, nsize;
177 	struct ucred *cred;
178 	struct buf **bpp;
179 {
180 	struct fs *fs;
181 	struct buf *bp;
182 	int cg, request, error;
183 	ufs_daddr_t bprev, bno;
184 
185 	*bpp = 0;
186 	fs = ip->i_fs;
187 #ifdef DIAGNOSTIC
188 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
189 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
190 		printf(
191 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
192 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
193 		    nsize, fs->fs_fsmnt);
194 		panic("ffs_realloccg: bad size");
195 	}
196 	if (cred == NOCRED)
197 		panic("ffs_realloccg: missing credential");
198 #endif /* DIAGNOSTIC */
199 	if (cred->cr_uid != 0 &&
200 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
201 		goto nospace;
202 	if ((bprev = ip->i_db[lbprev]) == 0) {
203 		printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
204 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
205 		    fs->fs_fsmnt);
206 		panic("ffs_realloccg: bad bprev");
207 	}
208 	/*
209 	 * Allocate the extra space in the buffer.
210 	 */
211 	error = bread(ITOV(ip), lbprev, osize, &bp);
212 	if (error) {
213 		brelse(bp);
214 		return (error);
215 	}
216 
217 	if( bp->b_blkno == bp->b_lblkno) {
218 		if( lbprev >= NDADDR)
219 			panic("ffs_realloccg: lbprev out of range");
220 		bp->b_blkno = fsbtodb(fs, bprev);
221 	}
222 
223 #ifdef QUOTA
224 	error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
225 	if (error) {
226 		brelse(bp);
227 		return (error);
228 	}
229 #endif
230 	/*
231 	 * Check for extension in the existing location.
232 	 */
233 	cg = dtog(fs, bprev);
234 	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
235 	if (bno) {
236 		if (bp->b_blkno != fsbtodb(fs, bno))
237 			panic("ffs_realloccg: bad blockno");
238 		ip->i_blocks += btodb(nsize - osize);
239 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
240 		allocbuf(bp, nsize);
241 		bp->b_flags |= B_DONE;
242 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
243 		*bpp = bp;
244 		return (0);
245 	}
246 	/*
247 	 * Allocate a new disk location.
248 	 */
249 	if (bpref >= fs->fs_size)
250 		bpref = 0;
251 	switch ((int)fs->fs_optim) {
252 	case FS_OPTSPACE:
253 		/*
254 		 * Allocate an exact sized fragment. Although this makes
255 		 * best use of space, we will waste time relocating it if
256 		 * the file continues to grow. If the fragmentation is
257 		 * less than half of the minimum free reserve, we choose
258 		 * to begin optimizing for time.
259 		 */
260 		request = nsize;
261 		if (fs->fs_minfree <= 5 ||
262 		    fs->fs_cstotal.cs_nffree >
263 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
264 			break;
265 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
266 			fs->fs_fsmnt);
267 		fs->fs_optim = FS_OPTTIME;
268 		break;
269 	case FS_OPTTIME:
270 		/*
271 		 * At this point we have discovered a file that is trying to
272 		 * grow a small fragment to a larger fragment. To save time,
273 		 * we allocate a full sized block, then free the unused portion.
274 		 * If the file continues to grow, the `ffs_fragextend' call
275 		 * above will be able to grow it in place without further
276 		 * copying. If aberrant programs cause disk fragmentation to
277 		 * grow within 2% of the free reserve, we choose to begin
278 		 * optimizing for space.
279 		 */
280 		request = fs->fs_bsize;
281 		if (fs->fs_cstotal.cs_nffree <
282 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
283 			break;
284 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
285 			fs->fs_fsmnt);
286 		fs->fs_optim = FS_OPTSPACE;
287 		break;
288 	default:
289 		printf("dev = %s, optim = %ld, fs = %s\n",
290 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
291 		panic("ffs_realloccg: bad optim");
292 		/* NOTREACHED */
293 	}
294 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
295 					 ffs_alloccg);
296 	if (bno > 0) {
297 		bp->b_blkno = fsbtodb(fs, bno);
298 		if (!DOINGSOFTDEP(ITOV(ip)))
299 			ffs_blkfree(ip, bprev, (long)osize);
300 		if (nsize < request)
301 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
302 			    (long)(request - nsize));
303 		ip->i_blocks += btodb(nsize - osize);
304 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
305 		allocbuf(bp, nsize);
306 		bp->b_flags |= B_DONE;
307 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
308 		*bpp = bp;
309 		return (0);
310 	}
311 #ifdef QUOTA
312 	/*
313 	 * Restore user's disk quota because allocation failed.
314 	 */
315 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
316 #endif
317 	brelse(bp);
318 nospace:
319 	/*
320 	 * no space available
321 	 */
322 	ffs_fserr(fs, cred->cr_uid, "file system full");
323 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
324 	return (ENOSPC);
325 }
326 
327 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
328 
329 /*
330  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
331  *
332  * The vnode and an array of buffer pointers for a range of sequential
333  * logical blocks to be made contiguous is given. The allocator attempts
334  * to find a range of sequential blocks starting as close as possible to
335  * an fs_rotdelay offset from the end of the allocation for the logical
336  * block immediately preceeding the current range. If successful, the
337  * physical block numbers in the buffer pointers and in the inode are
338  * changed to reflect the new allocation. If unsuccessful, the allocation
339  * is left unchanged. The success in doing the reallocation is returned.
340  * Note that the error return is not reflected back to the user. Rather
341  * the previous block allocation will be used.
342  */
343 static int doasyncfree = 1;
344 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
345 
346 static int doreallocblks = 1;
347 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
348 
349 #ifdef DEBUG
350 static volatile int prtrealloc = 0;
351 #endif
352 
353 int
354 ffs_reallocblks(ap)
355 	struct vop_reallocblks_args /* {
356 		struct vnode *a_vp;
357 		struct cluster_save *a_buflist;
358 	} */ *ap;
359 {
360 	struct fs *fs;
361 	struct inode *ip;
362 	struct vnode *vp;
363 	struct buf *sbp, *ebp;
364 	ufs_daddr_t *bap, *sbap, *ebap = 0;
365 	struct cluster_save *buflist;
366 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
367 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
368 	int i, len, start_lvl, end_lvl, pref, ssize;
369 
370 	if (doreallocblks == 0)
371 		return (ENOSPC);
372 	vp = ap->a_vp;
373 	ip = VTOI(vp);
374 	fs = ip->i_fs;
375 	if (fs->fs_contigsumsize <= 0)
376 		return (ENOSPC);
377 	buflist = ap->a_buflist;
378 	len = buflist->bs_nchildren;
379 	start_lbn = buflist->bs_children[0]->b_lblkno;
380 	end_lbn = start_lbn + len - 1;
381 #ifdef DIAGNOSTIC
382 	for (i = 0; i < len; i++)
383 		if (!ffs_checkblk(ip,
384 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
385 			panic("ffs_reallocblks: unallocated block 1");
386 	for (i = 1; i < len; i++)
387 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
388 			panic("ffs_reallocblks: non-logical cluster");
389 	blkno = buflist->bs_children[0]->b_blkno;
390 	ssize = fsbtodb(fs, fs->fs_frag);
391 	for (i = 1; i < len - 1; i++)
392 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
393 			panic("ffs_reallocblks: non-physical cluster %d", i);
394 #endif
395 	/*
396 	 * If the latest allocation is in a new cylinder group, assume that
397 	 * the filesystem has decided to move and do not force it back to
398 	 * the previous cylinder group.
399 	 */
400 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
401 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
402 		return (ENOSPC);
403 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
404 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
405 		return (ENOSPC);
406 	/*
407 	 * Get the starting offset and block map for the first block.
408 	 */
409 	if (start_lvl == 0) {
410 		sbap = &ip->i_db[0];
411 		soff = start_lbn;
412 	} else {
413 		idp = &start_ap[start_lvl - 1];
414 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, &sbp)) {
415 			brelse(sbp);
416 			return (ENOSPC);
417 		}
418 		sbap = (ufs_daddr_t *)sbp->b_data;
419 		soff = idp->in_off;
420 	}
421 	/*
422 	 * Find the preferred location for the cluster.
423 	 */
424 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
425 	/*
426 	 * If the block range spans two block maps, get the second map.
427 	 */
428 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
429 		ssize = len;
430 	} else {
431 #ifdef DIAGNOSTIC
432 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
433 			panic("ffs_reallocblk: start == end");
434 #endif
435 		ssize = len - (idp->in_off + 1);
436 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, &ebp))
437 			goto fail;
438 		ebap = (ufs_daddr_t *)ebp->b_data;
439 	}
440 	/*
441 	 * Search the block map looking for an allocation of the desired size.
442 	 */
443 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
444 	    len, ffs_clusteralloc)) == 0)
445 		goto fail;
446 	/*
447 	 * We have found a new contiguous block.
448 	 *
449 	 * First we have to replace the old block pointers with the new
450 	 * block pointers in the inode and indirect blocks associated
451 	 * with the file.
452 	 */
453 #ifdef DEBUG
454 	if (prtrealloc)
455 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
456 		    start_lbn, end_lbn);
457 #endif
458 	blkno = newblk;
459 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
460 		if (i == ssize) {
461 			bap = ebap;
462 			soff = -i;
463 		}
464 #ifdef DIAGNOSTIC
465 		if (!ffs_checkblk(ip,
466 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
467 			panic("ffs_reallocblks: unallocated block 2");
468 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
469 			panic("ffs_reallocblks: alloc mismatch");
470 #endif
471 #ifdef DEBUG
472 		if (prtrealloc)
473 			printf(" %d,", *bap);
474 #endif
475 		if (DOINGSOFTDEP(vp)) {
476 			if (sbap == &ip->i_db[0] && i < ssize)
477 				softdep_setup_allocdirect(ip, start_lbn + i,
478 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
479 				    buflist->bs_children[i]);
480 			else
481 				softdep_setup_allocindir_page(ip, start_lbn + i,
482 				    i < ssize ? sbp : ebp, soff + i, blkno,
483 				    *bap, buflist->bs_children[i]);
484 		}
485 		*bap++ = blkno;
486 	}
487 	/*
488 	 * Next we must write out the modified inode and indirect blocks.
489 	 * For strict correctness, the writes should be synchronous since
490 	 * the old block values may have been written to disk. In practise
491 	 * they are almost never written, but if we are concerned about
492 	 * strict correctness, the `doasyncfree' flag should be set to zero.
493 	 *
494 	 * The test on `doasyncfree' should be changed to test a flag
495 	 * that shows whether the associated buffers and inodes have
496 	 * been written. The flag should be set when the cluster is
497 	 * started and cleared whenever the buffer or inode is flushed.
498 	 * We can then check below to see if it is set, and do the
499 	 * synchronous write only when it has been cleared.
500 	 */
501 	if (sbap != &ip->i_db[0]) {
502 		if (doasyncfree)
503 			bdwrite(sbp);
504 		else
505 			bwrite(sbp);
506 	} else {
507 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
508 		if (!doasyncfree)
509 			UFS_UPDATE(vp, 1);
510 	}
511 	if (ssize < len) {
512 		if (doasyncfree)
513 			bdwrite(ebp);
514 		else
515 			bwrite(ebp);
516 	}
517 	/*
518 	 * Last, free the old blocks and assign the new blocks to the buffers.
519 	 */
520 #ifdef DEBUG
521 	if (prtrealloc)
522 		printf("\n\tnew:");
523 #endif
524 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
525 		if (!DOINGSOFTDEP(vp))
526 			ffs_blkfree(ip,
527 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
528 			    fs->fs_bsize);
529 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
530 #ifdef DIAGNOSTIC
531 		if (!ffs_checkblk(ip,
532 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
533 			panic("ffs_reallocblks: unallocated block 3");
534 #endif
535 #ifdef DEBUG
536 		if (prtrealloc)
537 			printf(" %d,", blkno);
538 #endif
539 	}
540 #ifdef DEBUG
541 	if (prtrealloc) {
542 		prtrealloc--;
543 		printf("\n");
544 	}
545 #endif
546 	return (0);
547 
548 fail:
549 	if (ssize < len)
550 		brelse(ebp);
551 	if (sbap != &ip->i_db[0])
552 		brelse(sbp);
553 	return (ENOSPC);
554 }
555 
556 /*
557  * Allocate an inode in the file system.
558  *
559  * If allocating a directory, use ffs_dirpref to select the inode.
560  * If allocating in a directory, the following hierarchy is followed:
561  *   1) allocate the preferred inode.
562  *   2) allocate an inode in the same cylinder group.
563  *   3) quadradically rehash into other cylinder groups, until an
564  *      available inode is located.
565  * If no inode preference is given the following heirarchy is used
566  * to allocate an inode:
567  *   1) allocate an inode in cylinder group 0.
568  *   2) quadradically rehash into other cylinder groups, until an
569  *      available inode is located.
570  */
571 int
572 ffs_valloc(pvp, mode, cred, vpp)
573 	struct vnode *pvp;
574 	int mode;
575 	struct ucred *cred;
576 	struct vnode **vpp;
577 {
578 	struct inode *pip;
579 	struct fs *fs;
580 	struct inode *ip;
581 	ino_t ino, ipref;
582 	int cg, error;
583 
584 	*vpp = NULL;
585 	pip = VTOI(pvp);
586 	fs = pip->i_fs;
587 	if (fs->fs_cstotal.cs_nifree == 0)
588 		goto noinodes;
589 
590 	if ((mode & IFMT) == IFDIR)
591 		ipref = ffs_dirpref(pip);
592 	else
593 		ipref = pip->i_number;
594 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
595 		ipref = 0;
596 	cg = ino_to_cg(fs, ipref);
597 	/*
598 	 * Track number of dirs created one after another
599 	 * in a same cg without intervening by files.
600 	 */
601 	if ((mode & IFMT) == IFDIR) {
602 		if (fs->fs_contigdirs[cg] < 255)
603 			fs->fs_contigdirs[cg]++;
604 	} else {
605 		if (fs->fs_contigdirs[cg] > 0)
606 			fs->fs_contigdirs[cg]--;
607 	}
608 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
609 					(allocfcn_t *)ffs_nodealloccg);
610 	if (ino == 0)
611 		goto noinodes;
612 	error = VFS_VGET(pvp->v_mount, ino, vpp);
613 	if (error) {
614 		UFS_VFREE(pvp, ino, mode);
615 		return (error);
616 	}
617 	ip = VTOI(*vpp);
618 	if (ip->i_mode) {
619 		printf("mode = 0%o, inum = %lu, fs = %s\n",
620 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
621 		panic("ffs_valloc: dup alloc");
622 	}
623 	if (ip->i_blocks) {				/* XXX */
624 		printf("free inode %s/%lu had %ld blocks\n",
625 		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
626 		ip->i_blocks = 0;
627 	}
628 	ip->i_flags = 0;
629 	/*
630 	 * Set up a new generation number for this inode.
631 	 */
632 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
633 		ip->i_gen = random() / 2 + 1;
634 	return (0);
635 noinodes:
636 	ffs_fserr(fs, cred->cr_uid, "out of inodes");
637 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
638 	return (ENOSPC);
639 }
640 
641 /*
642  * Find a cylinder group to place a directory.
643  *
644  * The policy implemented by this algorithm is to allocate a
645  * directory inode in the same cylinder group as its parent
646  * directory, but also to reserve space for its files inodes
647  * and data. Restrict the number of directories which may be
648  * allocated one after another in the same cylinder group
649  * without intervening allocation of files.
650  *
651  * If we allocate a first level directory then force allocation
652  * in another cylinder group.
653  */
654 static ino_t
655 ffs_dirpref(pip)
656 	struct inode *pip;
657 {
658 	struct fs *fs;
659 	int cg, prefcg, dirsize, cgsize;
660 	int avgifree, avgbfree, avgndir, curdirsize;
661 	int minifree, minbfree, maxndir;
662 	int mincg, minndir;
663 	int maxcontigdirs;
664 
665 	fs = pip->i_fs;
666 
667 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
668 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
669 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
670 
671 	/*
672 	 * Force allocation in another cg if creating a first level dir.
673 	 */
674 	if (ITOV(pip)->v_flag & VROOT) {
675 		prefcg = arc4random() % fs->fs_ncg;
676 		mincg = prefcg;
677 		minndir = fs->fs_ipg;
678 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
679 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
680 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
681 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
682 				mincg = cg;
683 				minndir = fs->fs_cs(fs, cg).cs_ndir;
684 			}
685 		for (cg = 0; cg < prefcg; cg++)
686 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
687 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
688 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
689 				mincg = cg;
690 				minndir = fs->fs_cs(fs, cg).cs_ndir;
691 			}
692 		return ((ino_t)(fs->fs_ipg * mincg));
693 	}
694 
695 	/*
696 	 * Count various limits which used for
697 	 * optimal allocation of a directory inode.
698 	 */
699 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
700 	minifree = avgifree - fs->fs_ipg / 4;
701 	if (minifree < 0)
702 		minifree = 0;
703 	minbfree = avgbfree - fs->fs_fpg / fs->fs_frag / 4;
704 	if (minbfree < 0)
705 		minbfree = 0;
706 	cgsize = fs->fs_fsize * fs->fs_fpg;
707 	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
708 	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
709 	if (dirsize < curdirsize)
710 		dirsize = curdirsize;
711 	maxcontigdirs = min(cgsize / dirsize, 255);
712 	if (fs->fs_avgfpdir > 0)
713 		maxcontigdirs = min(maxcontigdirs,
714 				    fs->fs_ipg / fs->fs_avgfpdir);
715 	if (maxcontigdirs == 0)
716 		maxcontigdirs = 1;
717 
718 	/*
719 	 * Limit number of dirs in one cg and reserve space for
720 	 * regular files, but only if we have no deficit in
721 	 * inodes or space.
722 	 */
723 	prefcg = ino_to_cg(fs, pip->i_number);
724 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
725 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
726 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
727 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
728 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
729 				return ((ino_t)(fs->fs_ipg * cg));
730 		}
731 	for (cg = 0; cg < prefcg; cg++)
732 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
733 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
734 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
735 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
736 				return ((ino_t)(fs->fs_ipg * cg));
737 		}
738 	/*
739 	 * This is a backstop when we have deficit in space.
740 	 */
741 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
742 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
743 			return ((ino_t)(fs->fs_ipg * cg));
744 	for (cg = 0; cg < prefcg; cg++)
745 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
746 			break;
747 	return ((ino_t)(fs->fs_ipg * cg));
748 }
749 
750 /*
751  * Select the desired position for the next block in a file.  The file is
752  * logically divided into sections. The first section is composed of the
753  * direct blocks. Each additional section contains fs_maxbpg blocks.
754  *
755  * If no blocks have been allocated in the first section, the policy is to
756  * request a block in the same cylinder group as the inode that describes
757  * the file. If no blocks have been allocated in any other section, the
758  * policy is to place the section in a cylinder group with a greater than
759  * average number of free blocks.  An appropriate cylinder group is found
760  * by using a rotor that sweeps the cylinder groups. When a new group of
761  * blocks is needed, the sweep begins in the cylinder group following the
762  * cylinder group from which the previous allocation was made. The sweep
763  * continues until a cylinder group with greater than the average number
764  * of free blocks is found. If the allocation is for the first block in an
765  * indirect block, the information on the previous allocation is unavailable;
766  * here a best guess is made based upon the logical block number being
767  * allocated.
768  *
769  * If a section is already partially allocated, the policy is to
770  * contiguously allocate fs_maxcontig blocks.  The end of one of these
771  * contiguous blocks and the beginning of the next is physically separated
772  * so that the disk head will be in transit between them for at least
773  * fs_rotdelay milliseconds.  This is to allow time for the processor to
774  * schedule another I/O transfer.
775  */
776 ufs_daddr_t
777 ffs_blkpref(ip, lbn, indx, bap)
778 	struct inode *ip;
779 	ufs_daddr_t lbn;
780 	int indx;
781 	ufs_daddr_t *bap;
782 {
783 	struct fs *fs;
784 	int cg;
785 	int avgbfree, startcg;
786 	ufs_daddr_t nextblk;
787 
788 	fs = ip->i_fs;
789 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
790 		if (lbn < NDADDR + NINDIR(fs)) {
791 			cg = ino_to_cg(fs, ip->i_number);
792 			return (fs->fs_fpg * cg + fs->fs_frag);
793 		}
794 		/*
795 		 * Find a cylinder with greater than average number of
796 		 * unused data blocks.
797 		 */
798 		if (indx == 0 || bap[indx - 1] == 0)
799 			startcg =
800 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
801 		else
802 			startcg = dtog(fs, bap[indx - 1]) + 1;
803 		startcg %= fs->fs_ncg;
804 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
805 		for (cg = startcg; cg < fs->fs_ncg; cg++)
806 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
807 				fs->fs_cgrotor = cg;
808 				return (fs->fs_fpg * cg + fs->fs_frag);
809 			}
810 		for (cg = 0; cg <= startcg; cg++)
811 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
812 				fs->fs_cgrotor = cg;
813 				return (fs->fs_fpg * cg + fs->fs_frag);
814 			}
815 		return (0);
816 	}
817 	/*
818 	 * One or more previous blocks have been laid out. If less
819 	 * than fs_maxcontig previous blocks are contiguous, the
820 	 * next block is requested contiguously, otherwise it is
821 	 * requested rotationally delayed by fs_rotdelay milliseconds.
822 	 */
823 	nextblk = bap[indx - 1] + fs->fs_frag;
824 	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
825 	    bap[indx - fs->fs_maxcontig] +
826 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
827 		return (nextblk);
828 	/*
829 	 * Here we convert ms of delay to frags as:
830 	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
831 	 *	((sect/frag) * (ms/sec))
832 	 * then round up to the next block.
833 	 */
834 	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
835 	    (NSPF(fs) * 1000), fs->fs_frag);
836 	return (nextblk);
837 }
838 
839 /*
840  * Implement the cylinder overflow algorithm.
841  *
842  * The policy implemented by this algorithm is:
843  *   1) allocate the block in its requested cylinder group.
844  *   2) quadradically rehash on the cylinder group number.
845  *   3) brute force search for a free block.
846  */
847 /*VARARGS5*/
848 static u_long
849 ffs_hashalloc(ip, cg, pref, size, allocator)
850 	struct inode *ip;
851 	int cg;
852 	long pref;
853 	int size;	/* size for data blocks, mode for inodes */
854 	allocfcn_t *allocator;
855 {
856 	struct fs *fs;
857 	long result;	/* XXX why not same type as we return? */
858 	int i, icg = cg;
859 
860 	fs = ip->i_fs;
861 	/*
862 	 * 1: preferred cylinder group
863 	 */
864 	result = (*allocator)(ip, cg, pref, size);
865 	if (result)
866 		return (result);
867 	/*
868 	 * 2: quadratic rehash
869 	 */
870 	for (i = 1; i < fs->fs_ncg; i *= 2) {
871 		cg += i;
872 		if (cg >= fs->fs_ncg)
873 			cg -= fs->fs_ncg;
874 		result = (*allocator)(ip, cg, 0, size);
875 		if (result)
876 			return (result);
877 	}
878 	/*
879 	 * 3: brute force search
880 	 * Note that we start at i == 2, since 0 was checked initially,
881 	 * and 1 is always checked in the quadratic rehash.
882 	 */
883 	cg = (icg + 2) % fs->fs_ncg;
884 	for (i = 2; i < fs->fs_ncg; i++) {
885 		result = (*allocator)(ip, cg, 0, size);
886 		if (result)
887 			return (result);
888 		cg++;
889 		if (cg == fs->fs_ncg)
890 			cg = 0;
891 	}
892 	return (0);
893 }
894 
895 /*
896  * Determine whether a fragment can be extended.
897  *
898  * Check to see if the necessary fragments are available, and
899  * if they are, allocate them.
900  */
901 static ufs_daddr_t
902 ffs_fragextend(ip, cg, bprev, osize, nsize)
903 	struct inode *ip;
904 	int cg;
905 	long bprev;
906 	int osize, nsize;
907 {
908 	struct fs *fs;
909 	struct cg *cgp;
910 	struct buf *bp;
911 	long bno;
912 	int frags, bbase;
913 	int i, error;
914 	u_int8_t *blksfree;
915 
916 	fs = ip->i_fs;
917 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
918 		return (0);
919 	frags = numfrags(fs, nsize);
920 	bbase = fragnum(fs, bprev);
921 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
922 		/* cannot extend across a block boundary */
923 		return (0);
924 	}
925 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
926 		(int)fs->fs_cgsize, &bp);
927 	if (error) {
928 		brelse(bp);
929 		return (0);
930 	}
931 	cgp = (struct cg *)bp->b_data;
932 	if (!cg_chkmagic(cgp)) {
933 		brelse(bp);
934 		return (0);
935 	}
936 	bp->b_xflags |= BX_BKGRDWRITE;
937 	cgp->cg_time = time_second;
938 	bno = dtogd(fs, bprev);
939 	blksfree = cg_blksfree(cgp);
940 	for (i = numfrags(fs, osize); i < frags; i++)
941 		if (isclr(blksfree, bno + i)) {
942 			brelse(bp);
943 			return (0);
944 		}
945 	/*
946 	 * the current fragment can be extended
947 	 * deduct the count on fragment being extended into
948 	 * increase the count on the remaining fragment (if any)
949 	 * allocate the extended piece
950 	 */
951 	for (i = frags; i < fs->fs_frag - bbase; i++)
952 		if (isclr(blksfree, bno + i))
953 			break;
954 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
955 	if (i != frags)
956 		cgp->cg_frsum[i - frags]++;
957 	for (i = numfrags(fs, osize); i < frags; i++) {
958 		clrbit(blksfree, bno + i);
959 		cgp->cg_cs.cs_nffree--;
960 		fs->fs_cstotal.cs_nffree--;
961 		fs->fs_cs(fs, cg).cs_nffree--;
962 	}
963 	fs->fs_fmod = 1;
964 	if (DOINGSOFTDEP(ITOV(ip)))
965 		softdep_setup_blkmapdep(bp, fs, bprev);
966 	bdwrite(bp);
967 	return (bprev);
968 }
969 
970 /*
971  * Determine whether a block can be allocated.
972  *
973  * Check to see if a block of the appropriate size is available,
974  * and if it is, allocate it.
975  */
976 static ufs_daddr_t
977 ffs_alloccg(ip, cg, bpref, size)
978 	struct inode *ip;
979 	int cg;
980 	ufs_daddr_t bpref;
981 	int size;
982 {
983 	struct fs *fs;
984 	struct cg *cgp;
985 	struct buf *bp;
986 	int i;
987 	ufs_daddr_t bno, blkno;
988 	int allocsiz, error, frags;
989 	u_int8_t *blksfree;
990 
991 	fs = ip->i_fs;
992 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
993 		return (0);
994 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
995 		(int)fs->fs_cgsize, &bp);
996 	if (error) {
997 		brelse(bp);
998 		return (0);
999 	}
1000 	cgp = (struct cg *)bp->b_data;
1001 	if (!cg_chkmagic(cgp) ||
1002 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1003 		brelse(bp);
1004 		return (0);
1005 	}
1006 	bp->b_xflags |= BX_BKGRDWRITE;
1007 	cgp->cg_time = time_second;
1008 	if (size == fs->fs_bsize) {
1009 		bno = ffs_alloccgblk(ip, bp, bpref);
1010 		bdwrite(bp);
1011 		return (bno);
1012 	}
1013 	/*
1014 	 * check to see if any fragments are already available
1015 	 * allocsiz is the size which will be allocated, hacking
1016 	 * it down to a smaller size if necessary
1017 	 */
1018 	blksfree = cg_blksfree(cgp);
1019 	frags = numfrags(fs, size);
1020 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1021 		if (cgp->cg_frsum[allocsiz] != 0)
1022 			break;
1023 	if (allocsiz == fs->fs_frag) {
1024 		/*
1025 		 * no fragments were available, so a block will be
1026 		 * allocated, and hacked up
1027 		 */
1028 		if (cgp->cg_cs.cs_nbfree == 0) {
1029 			brelse(bp);
1030 			return (0);
1031 		}
1032 		bno = ffs_alloccgblk(ip, bp, bpref);
1033 		bpref = dtogd(fs, bno);
1034 		for (i = frags; i < fs->fs_frag; i++)
1035 			setbit(blksfree, bpref + i);
1036 		i = fs->fs_frag - frags;
1037 		cgp->cg_cs.cs_nffree += i;
1038 		fs->fs_cstotal.cs_nffree += i;
1039 		fs->fs_cs(fs, cg).cs_nffree += i;
1040 		fs->fs_fmod = 1;
1041 		cgp->cg_frsum[i]++;
1042 		bdwrite(bp);
1043 		return (bno);
1044 	}
1045 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1046 	if (bno < 0) {
1047 		brelse(bp);
1048 		return (0);
1049 	}
1050 	for (i = 0; i < frags; i++)
1051 		clrbit(blksfree, bno + i);
1052 	cgp->cg_cs.cs_nffree -= frags;
1053 	fs->fs_cstotal.cs_nffree -= frags;
1054 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1055 	fs->fs_fmod = 1;
1056 	cgp->cg_frsum[allocsiz]--;
1057 	if (frags != allocsiz)
1058 		cgp->cg_frsum[allocsiz - frags]++;
1059 	blkno = cg * fs->fs_fpg + bno;
1060 	if (DOINGSOFTDEP(ITOV(ip)))
1061 		softdep_setup_blkmapdep(bp, fs, blkno);
1062 	bdwrite(bp);
1063 	return ((u_long)blkno);
1064 }
1065 
1066 /*
1067  * Allocate a block in a cylinder group.
1068  *
1069  * This algorithm implements the following policy:
1070  *   1) allocate the requested block.
1071  *   2) allocate a rotationally optimal block in the same cylinder.
1072  *   3) allocate the next available block on the block rotor for the
1073  *      specified cylinder group.
1074  * Note that this routine only allocates fs_bsize blocks; these
1075  * blocks may be fragmented by the routine that allocates them.
1076  */
1077 static ufs_daddr_t
1078 ffs_alloccgblk(ip, bp, bpref)
1079 	struct inode *ip;
1080 	struct buf *bp;
1081 	ufs_daddr_t bpref;
1082 {
1083 	struct fs *fs;
1084 	struct cg *cgp;
1085 	ufs_daddr_t bno, blkno;
1086 	int cylno, pos, delta;
1087 	short *cylbp;
1088 	int i;
1089 	u_int8_t *blksfree;
1090 
1091 	fs = ip->i_fs;
1092 	cgp = (struct cg *)bp->b_data;
1093 	blksfree = cg_blksfree(cgp);
1094 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1095 		bpref = cgp->cg_rotor;
1096 		goto norot;
1097 	}
1098 	bpref = blknum(fs, bpref);
1099 	bpref = dtogd(fs, bpref);
1100 	/*
1101 	 * if the requested block is available, use it
1102 	 */
1103 	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1104 		bno = bpref;
1105 		goto gotit;
1106 	}
1107 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1108 		/*
1109 		 * Block layout information is not available.
1110 		 * Leaving bpref unchanged means we take the
1111 		 * next available free block following the one
1112 		 * we just allocated. Hopefully this will at
1113 		 * least hit a track cache on drives of unknown
1114 		 * geometry (e.g. SCSI).
1115 		 */
1116 		goto norot;
1117 	}
1118 	/*
1119 	 * check for a block available on the same cylinder
1120 	 */
1121 	cylno = cbtocylno(fs, bpref);
1122 	if (cg_blktot(cgp)[cylno] == 0)
1123 		goto norot;
1124 	/*
1125 	 * check the summary information to see if a block is
1126 	 * available in the requested cylinder starting at the
1127 	 * requested rotational position and proceeding around.
1128 	 */
1129 	cylbp = cg_blks(fs, cgp, cylno);
1130 	pos = cbtorpos(fs, bpref);
1131 	for (i = pos; i < fs->fs_nrpos; i++)
1132 		if (cylbp[i] > 0)
1133 			break;
1134 	if (i == fs->fs_nrpos)
1135 		for (i = 0; i < pos; i++)
1136 			if (cylbp[i] > 0)
1137 				break;
1138 	if (cylbp[i] > 0) {
1139 		/*
1140 		 * found a rotational position, now find the actual
1141 		 * block. A panic if none is actually there.
1142 		 */
1143 		pos = cylno % fs->fs_cpc;
1144 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1145 		if (fs_postbl(fs, pos)[i] == -1) {
1146 			printf("pos = %d, i = %d, fs = %s\n",
1147 			    pos, i, fs->fs_fsmnt);
1148 			panic("ffs_alloccgblk: cyl groups corrupted");
1149 		}
1150 		for (i = fs_postbl(fs, pos)[i];; ) {
1151 			if (ffs_isblock(fs, blksfree, bno + i)) {
1152 				bno = blkstofrags(fs, (bno + i));
1153 				goto gotit;
1154 			}
1155 			delta = fs_rotbl(fs)[i];
1156 			if (delta <= 0 ||
1157 			    delta + i > fragstoblks(fs, fs->fs_fpg))
1158 				break;
1159 			i += delta;
1160 		}
1161 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1162 		panic("ffs_alloccgblk: can't find blk in cyl");
1163 	}
1164 norot:
1165 	/*
1166 	 * no blocks in the requested cylinder, so take next
1167 	 * available one in this cylinder group.
1168 	 */
1169 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1170 	if (bno < 0)
1171 		return (0);
1172 	cgp->cg_rotor = bno;
1173 gotit:
1174 	blkno = fragstoblks(fs, bno);
1175 	ffs_clrblock(fs, blksfree, (long)blkno);
1176 	ffs_clusteracct(fs, cgp, blkno, -1);
1177 	cgp->cg_cs.cs_nbfree--;
1178 	fs->fs_cstotal.cs_nbfree--;
1179 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1180 	cylno = cbtocylno(fs, bno);
1181 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1182 	cg_blktot(cgp)[cylno]--;
1183 	fs->fs_fmod = 1;
1184 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1185 	if (DOINGSOFTDEP(ITOV(ip)))
1186 		softdep_setup_blkmapdep(bp, fs, blkno);
1187 	return (blkno);
1188 }
1189 
1190 /*
1191  * Determine whether a cluster can be allocated.
1192  *
1193  * We do not currently check for optimal rotational layout if there
1194  * are multiple choices in the same cylinder group. Instead we just
1195  * take the first one that we find following bpref.
1196  */
1197 static ufs_daddr_t
1198 ffs_clusteralloc(ip, cg, bpref, len)
1199 	struct inode *ip;
1200 	int cg;
1201 	ufs_daddr_t bpref;
1202 	int len;
1203 {
1204 	struct fs *fs;
1205 	struct cg *cgp;
1206 	struct buf *bp;
1207 	int i, got, run, bno, bit, map;
1208 	u_char *mapp;
1209 	int32_t *lp;
1210 	u_int8_t *blksfree;
1211 
1212 	fs = ip->i_fs;
1213 	if (fs->fs_maxcluster[cg] < len)
1214 		return (0);
1215 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1216 	    &bp))
1217 		goto fail;
1218 	cgp = (struct cg *)bp->b_data;
1219 	if (!cg_chkmagic(cgp))
1220 		goto fail;
1221 	bp->b_xflags |= BX_BKGRDWRITE;
1222 	/*
1223 	 * Check to see if a cluster of the needed size (or bigger) is
1224 	 * available in this cylinder group.
1225 	 */
1226 	lp = &cg_clustersum(cgp)[len];
1227 	for (i = len; i <= fs->fs_contigsumsize; i++)
1228 		if (*lp++ > 0)
1229 			break;
1230 	if (i > fs->fs_contigsumsize) {
1231 		/*
1232 		 * This is the first time looking for a cluster in this
1233 		 * cylinder group. Update the cluster summary information
1234 		 * to reflect the true maximum sized cluster so that
1235 		 * future cluster allocation requests can avoid reading
1236 		 * the cylinder group map only to find no clusters.
1237 		 */
1238 		lp = &cg_clustersum(cgp)[len - 1];
1239 		for (i = len - 1; i > 0; i--)
1240 			if (*lp-- > 0)
1241 				break;
1242 		fs->fs_maxcluster[cg] = i;
1243 		goto fail;
1244 	}
1245 	/*
1246 	 * Search the cluster map to find a big enough cluster.
1247 	 * We take the first one that we find, even if it is larger
1248 	 * than we need as we prefer to get one close to the previous
1249 	 * block allocation. We do not search before the current
1250 	 * preference point as we do not want to allocate a block
1251 	 * that is allocated before the previous one (as we will
1252 	 * then have to wait for another pass of the elevator
1253 	 * algorithm before it will be read). We prefer to fail and
1254 	 * be recalled to try an allocation in the next cylinder group.
1255 	 */
1256 	if (dtog(fs, bpref) != cg)
1257 		bpref = 0;
1258 	else
1259 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1260 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1261 	map = *mapp++;
1262 	bit = 1 << (bpref % NBBY);
1263 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1264 		if ((map & bit) == 0) {
1265 			run = 0;
1266 		} else {
1267 			run++;
1268 			if (run == len)
1269 				break;
1270 		}
1271 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1272 			bit <<= 1;
1273 		} else {
1274 			map = *mapp++;
1275 			bit = 1;
1276 		}
1277 	}
1278 	if (got >= cgp->cg_nclusterblks)
1279 		goto fail;
1280 	/*
1281 	 * Allocate the cluster that we have found.
1282 	 */
1283 	blksfree = cg_blksfree(cgp);
1284 	for (i = 1; i <= len; i++)
1285 		if (!ffs_isblock(fs, blksfree, got - run + i))
1286 			panic("ffs_clusteralloc: map mismatch");
1287 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1288 	if (dtog(fs, bno) != cg)
1289 		panic("ffs_clusteralloc: allocated out of group");
1290 	len = blkstofrags(fs, len);
1291 	for (i = 0; i < len; i += fs->fs_frag)
1292 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1293 			panic("ffs_clusteralloc: lost block");
1294 	bdwrite(bp);
1295 	return (bno);
1296 
1297 fail:
1298 	brelse(bp);
1299 	return (0);
1300 }
1301 
1302 /*
1303  * Determine whether an inode can be allocated.
1304  *
1305  * Check to see if an inode is available, and if it is,
1306  * allocate it using the following policy:
1307  *   1) allocate the requested inode.
1308  *   2) allocate the next available inode after the requested
1309  *      inode in the specified cylinder group.
1310  */
1311 static ino_t
1312 ffs_nodealloccg(ip, cg, ipref, mode)
1313 	struct inode *ip;
1314 	int cg;
1315 	ufs_daddr_t ipref;
1316 	int mode;
1317 {
1318 	struct fs *fs;
1319 	struct cg *cgp;
1320 	struct buf *bp;
1321 	u_int8_t *inosused;
1322 	int error, start, len, loc, map, i;
1323 
1324 	fs = ip->i_fs;
1325 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1326 		return (0);
1327 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1328 		(int)fs->fs_cgsize, &bp);
1329 	if (error) {
1330 		brelse(bp);
1331 		return (0);
1332 	}
1333 	cgp = (struct cg *)bp->b_data;
1334 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1335 		brelse(bp);
1336 		return (0);
1337 	}
1338 	bp->b_xflags |= BX_BKGRDWRITE;
1339 	cgp->cg_time = time_second;
1340 	inosused = cg_inosused(cgp);
1341 	if (ipref) {
1342 		ipref %= fs->fs_ipg;
1343 		if (isclr(inosused, ipref))
1344 			goto gotit;
1345 	}
1346 	start = cgp->cg_irotor / NBBY;
1347 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1348 	loc = skpc(0xff, len, &inosused[start]);
1349 	if (loc == 0) {
1350 		len = start + 1;
1351 		start = 0;
1352 		loc = skpc(0xff, len, &inosused[0]);
1353 		if (loc == 0) {
1354 			printf("cg = %d, irotor = %ld, fs = %s\n",
1355 			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1356 			panic("ffs_nodealloccg: map corrupted");
1357 			/* NOTREACHED */
1358 		}
1359 	}
1360 	i = start + len - loc;
1361 	map = inosused[i];
1362 	ipref = i * NBBY;
1363 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1364 		if ((map & i) == 0) {
1365 			cgp->cg_irotor = ipref;
1366 			goto gotit;
1367 		}
1368 	}
1369 	printf("fs = %s\n", fs->fs_fsmnt);
1370 	panic("ffs_nodealloccg: block not in map");
1371 	/* NOTREACHED */
1372 gotit:
1373 	if (DOINGSOFTDEP(ITOV(ip)))
1374 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1375 	setbit(inosused, ipref);
1376 	cgp->cg_cs.cs_nifree--;
1377 	fs->fs_cstotal.cs_nifree--;
1378 	fs->fs_cs(fs, cg).cs_nifree--;
1379 	fs->fs_fmod = 1;
1380 	if ((mode & IFMT) == IFDIR) {
1381 		cgp->cg_cs.cs_ndir++;
1382 		fs->fs_cstotal.cs_ndir++;
1383 		fs->fs_cs(fs, cg).cs_ndir++;
1384 	}
1385 	bdwrite(bp);
1386 	return (cg * fs->fs_ipg + ipref);
1387 }
1388 
1389 /*
1390  * Free a block or fragment.
1391  *
1392  * The specified block or fragment is placed back in the
1393  * free map. If a fragment is deallocated, a possible
1394  * block reassembly is checked.
1395  */
1396 void
1397 ffs_blkfree(ip, bno, size)
1398 	struct inode *ip;
1399 	ufs_daddr_t bno;
1400 	long size;
1401 {
1402 	struct fs *fs;
1403 	struct cg *cgp;
1404 	struct buf *bp;
1405 	ufs_daddr_t blkno;
1406 	int i, error, cg, blk, frags, bbase;
1407 	u_int8_t *blksfree;
1408 
1409 	fs = ip->i_fs;
1410 	VOP_FREEBLKS(ip->i_devvp, fsbtodb(fs, bno), size);
1411 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1412 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1413 		printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1414 		    devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size,
1415 		    fs->fs_fsmnt);
1416 		panic("ffs_blkfree: bad size");
1417 	}
1418 	cg = dtog(fs, bno);
1419 	if ((u_int)bno >= fs->fs_size) {
1420 		printf("bad block %ld, ino %lu\n",
1421 		    (long)bno, (u_long)ip->i_number);
1422 		ffs_fserr(fs, ip->i_uid, "bad block");
1423 		return;
1424 	}
1425 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1426 		(int)fs->fs_cgsize, &bp);
1427 	if (error) {
1428 		brelse(bp);
1429 		return;
1430 	}
1431 	cgp = (struct cg *)bp->b_data;
1432 	if (!cg_chkmagic(cgp)) {
1433 		brelse(bp);
1434 		return;
1435 	}
1436 	bp->b_xflags |= BX_BKGRDWRITE;
1437 	cgp->cg_time = time_second;
1438 	bno = dtogd(fs, bno);
1439 	blksfree = cg_blksfree(cgp);
1440 	if (size == fs->fs_bsize) {
1441 		blkno = fragstoblks(fs, bno);
1442 		if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1443 			printf("dev = %s, block = %ld, fs = %s\n",
1444 			    devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt);
1445 			panic("ffs_blkfree: freeing free block");
1446 		}
1447 		ffs_setblock(fs, blksfree, blkno);
1448 		ffs_clusteracct(fs, cgp, blkno, 1);
1449 		cgp->cg_cs.cs_nbfree++;
1450 		fs->fs_cstotal.cs_nbfree++;
1451 		fs->fs_cs(fs, cg).cs_nbfree++;
1452 		i = cbtocylno(fs, bno);
1453 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1454 		cg_blktot(cgp)[i]++;
1455 	} else {
1456 		bbase = bno - fragnum(fs, bno);
1457 		/*
1458 		 * decrement the counts associated with the old frags
1459 		 */
1460 		blk = blkmap(fs, blksfree, bbase);
1461 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1462 		/*
1463 		 * deallocate the fragment
1464 		 */
1465 		frags = numfrags(fs, size);
1466 		for (i = 0; i < frags; i++) {
1467 			if (isset(blksfree, bno + i)) {
1468 				printf("dev = %s, block = %ld, fs = %s\n",
1469 				    devtoname(ip->i_dev), (long)(bno + i),
1470 				    fs->fs_fsmnt);
1471 				panic("ffs_blkfree: freeing free frag");
1472 			}
1473 			setbit(blksfree, bno + i);
1474 		}
1475 		cgp->cg_cs.cs_nffree += i;
1476 		fs->fs_cstotal.cs_nffree += i;
1477 		fs->fs_cs(fs, cg).cs_nffree += i;
1478 		/*
1479 		 * add back in counts associated with the new frags
1480 		 */
1481 		blk = blkmap(fs, blksfree, bbase);
1482 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1483 		/*
1484 		 * if a complete block has been reassembled, account for it
1485 		 */
1486 		blkno = fragstoblks(fs, bbase);
1487 		if (ffs_isblock(fs, blksfree, blkno)) {
1488 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1489 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1490 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1491 			ffs_clusteracct(fs, cgp, blkno, 1);
1492 			cgp->cg_cs.cs_nbfree++;
1493 			fs->fs_cstotal.cs_nbfree++;
1494 			fs->fs_cs(fs, cg).cs_nbfree++;
1495 			i = cbtocylno(fs, bbase);
1496 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1497 			cg_blktot(cgp)[i]++;
1498 		}
1499 	}
1500 	fs->fs_fmod = 1;
1501 	bdwrite(bp);
1502 }
1503 
1504 #ifdef DIAGNOSTIC
1505 /*
1506  * Verify allocation of a block or fragment. Returns true if block or
1507  * fragment is allocated, false if it is free.
1508  */
1509 static int
1510 ffs_checkblk(ip, bno, size)
1511 	struct inode *ip;
1512 	ufs_daddr_t bno;
1513 	long size;
1514 {
1515 	struct fs *fs;
1516 	struct cg *cgp;
1517 	struct buf *bp;
1518 	int i, error, frags, free;
1519 	u_int8_t *blksfree;
1520 
1521 	fs = ip->i_fs;
1522 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1523 		printf("bsize = %ld, size = %ld, fs = %s\n",
1524 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1525 		panic("ffs_checkblk: bad size");
1526 	}
1527 	if ((u_int)bno >= fs->fs_size)
1528 		panic("ffs_checkblk: bad block %d", bno);
1529 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1530 		(int)fs->fs_cgsize, &bp);
1531 	if (error)
1532 		panic("ffs_checkblk: cg bread failed");
1533 	cgp = (struct cg *)bp->b_data;
1534 	if (!cg_chkmagic(cgp))
1535 		panic("ffs_checkblk: cg magic mismatch");
1536 	bp->b_xflags |= BX_BKGRDWRITE;
1537 	blksfree = cg_blksfree(cgp);
1538 	bno = dtogd(fs, bno);
1539 	if (size == fs->fs_bsize) {
1540 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1541 	} else {
1542 		frags = numfrags(fs, size);
1543 		for (free = 0, i = 0; i < frags; i++)
1544 			if (isset(blksfree, bno + i))
1545 				free++;
1546 		if (free != 0 && free != frags)
1547 			panic("ffs_checkblk: partially free fragment");
1548 	}
1549 	brelse(bp);
1550 	return (!free);
1551 }
1552 #endif /* DIAGNOSTIC */
1553 
1554 /*
1555  * Free an inode.
1556  */
1557 int
1558 ffs_vfree( pvp, ino, mode)
1559 	struct vnode *pvp;
1560 	ino_t ino;
1561 	int mode;
1562 {
1563 	if (DOINGSOFTDEP(pvp)) {
1564 		softdep_freefile(pvp, ino, mode);
1565 		return (0);
1566 	}
1567 	return (ffs_freefile(pvp, ino, mode));
1568 }
1569 
1570 /*
1571  * Do the actual free operation.
1572  * The specified inode is placed back in the free map.
1573  */
1574  int
1575  ffs_freefile( pvp, ino, mode)
1576 	struct vnode *pvp;
1577 	ino_t ino;
1578 	int mode;
1579 {
1580 	struct fs *fs;
1581 	struct cg *cgp;
1582 	struct inode *pip;
1583 	struct buf *bp;
1584 	int error, cg;
1585 	u_int8_t *inosused;
1586 
1587 	pip = VTOI(pvp);
1588 	fs = pip->i_fs;
1589 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1590 		panic("ffs_vfree: range: dev = (%d,%d), ino = %d, fs = %s",
1591 		    major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1592 	cg = ino_to_cg(fs, ino);
1593 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1594 		(int)fs->fs_cgsize, &bp);
1595 	if (error) {
1596 		brelse(bp);
1597 		return (error);
1598 	}
1599 	cgp = (struct cg *)bp->b_data;
1600 	if (!cg_chkmagic(cgp)) {
1601 		brelse(bp);
1602 		return (0);
1603 	}
1604 	bp->b_xflags |= BX_BKGRDWRITE;
1605 	cgp->cg_time = time_second;
1606 	inosused = cg_inosused(cgp);
1607 	ino %= fs->fs_ipg;
1608 	if (isclr(inosused, ino)) {
1609 		printf("dev = %s, ino = %lu, fs = %s\n",
1610 		    devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1611 		if (fs->fs_ronly == 0)
1612 			panic("ffs_vfree: freeing free inode");
1613 	}
1614 	clrbit(inosused, ino);
1615 	if (ino < cgp->cg_irotor)
1616 		cgp->cg_irotor = ino;
1617 	cgp->cg_cs.cs_nifree++;
1618 	fs->fs_cstotal.cs_nifree++;
1619 	fs->fs_cs(fs, cg).cs_nifree++;
1620 	if ((mode & IFMT) == IFDIR) {
1621 		cgp->cg_cs.cs_ndir--;
1622 		fs->fs_cstotal.cs_ndir--;
1623 		fs->fs_cs(fs, cg).cs_ndir--;
1624 	}
1625 	fs->fs_fmod = 1;
1626 	bdwrite(bp);
1627 	return (0);
1628 }
1629 
1630 /*
1631  * Find a block of the specified size in the specified cylinder group.
1632  *
1633  * It is a panic if a request is made to find a block if none are
1634  * available.
1635  */
1636 static ufs_daddr_t
1637 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1638 	struct fs *fs;
1639 	struct cg *cgp;
1640 	ufs_daddr_t bpref;
1641 	int allocsiz;
1642 {
1643 	ufs_daddr_t bno;
1644 	int start, len, loc, i;
1645 	int blk, field, subfield, pos;
1646 	u_int8_t *blksfree;
1647 
1648 	/*
1649 	 * find the fragment by searching through the free block
1650 	 * map for an appropriate bit pattern
1651 	 */
1652 	if (bpref)
1653 		start = dtogd(fs, bpref) / NBBY;
1654 	else
1655 		start = cgp->cg_frotor / NBBY;
1656 	blksfree = cg_blksfree(cgp);
1657 	len = howmany(fs->fs_fpg, NBBY) - start;
1658 	loc = scanc((u_int)len, (u_char *)&blksfree[start],
1659 		(u_char *)fragtbl[fs->fs_frag],
1660 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1661 	if (loc == 0) {
1662 		len = start + 1;
1663 		start = 0;
1664 		loc = scanc((u_int)len, (u_char *)&blksfree[0],
1665 			(u_char *)fragtbl[fs->fs_frag],
1666 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1667 		if (loc == 0) {
1668 			printf("start = %d, len = %d, fs = %s\n",
1669 			    start, len, fs->fs_fsmnt);
1670 			panic("ffs_alloccg: map corrupted");
1671 			/* NOTREACHED */
1672 		}
1673 	}
1674 	bno = (start + len - loc) * NBBY;
1675 	cgp->cg_frotor = bno;
1676 	/*
1677 	 * found the byte in the map
1678 	 * sift through the bits to find the selected frag
1679 	 */
1680 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1681 		blk = blkmap(fs, blksfree, bno);
1682 		blk <<= 1;
1683 		field = around[allocsiz];
1684 		subfield = inside[allocsiz];
1685 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1686 			if ((blk & field) == subfield)
1687 				return (bno + pos);
1688 			field <<= 1;
1689 			subfield <<= 1;
1690 		}
1691 	}
1692 	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1693 	panic("ffs_alloccg: block not in map");
1694 	return (-1);
1695 }
1696 
1697 /*
1698  * Update the cluster map because of an allocation or free.
1699  *
1700  * Cnt == 1 means free; cnt == -1 means allocating.
1701  */
1702 static void
1703 ffs_clusteracct(fs, cgp, blkno, cnt)
1704 	struct fs *fs;
1705 	struct cg *cgp;
1706 	ufs_daddr_t blkno;
1707 	int cnt;
1708 {
1709 	int32_t *sump;
1710 	int32_t *lp;
1711 	u_char *freemapp, *mapp;
1712 	int i, start, end, forw, back, map, bit;
1713 
1714 	if (fs->fs_contigsumsize <= 0)
1715 		return;
1716 	freemapp = cg_clustersfree(cgp);
1717 	sump = cg_clustersum(cgp);
1718 	/*
1719 	 * Allocate or clear the actual block.
1720 	 */
1721 	if (cnt > 0)
1722 		setbit(freemapp, blkno);
1723 	else
1724 		clrbit(freemapp, blkno);
1725 	/*
1726 	 * Find the size of the cluster going forward.
1727 	 */
1728 	start = blkno + 1;
1729 	end = start + fs->fs_contigsumsize;
1730 	if (end >= cgp->cg_nclusterblks)
1731 		end = cgp->cg_nclusterblks;
1732 	mapp = &freemapp[start / NBBY];
1733 	map = *mapp++;
1734 	bit = 1 << (start % NBBY);
1735 	for (i = start; i < end; i++) {
1736 		if ((map & bit) == 0)
1737 			break;
1738 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1739 			bit <<= 1;
1740 		} else {
1741 			map = *mapp++;
1742 			bit = 1;
1743 		}
1744 	}
1745 	forw = i - start;
1746 	/*
1747 	 * Find the size of the cluster going backward.
1748 	 */
1749 	start = blkno - 1;
1750 	end = start - fs->fs_contigsumsize;
1751 	if (end < 0)
1752 		end = -1;
1753 	mapp = &freemapp[start / NBBY];
1754 	map = *mapp--;
1755 	bit = 1 << (start % NBBY);
1756 	for (i = start; i > end; i--) {
1757 		if ((map & bit) == 0)
1758 			break;
1759 		if ((i & (NBBY - 1)) != 0) {
1760 			bit >>= 1;
1761 		} else {
1762 			map = *mapp--;
1763 			bit = 1 << (NBBY - 1);
1764 		}
1765 	}
1766 	back = start - i;
1767 	/*
1768 	 * Account for old cluster and the possibly new forward and
1769 	 * back clusters.
1770 	 */
1771 	i = back + forw + 1;
1772 	if (i > fs->fs_contigsumsize)
1773 		i = fs->fs_contigsumsize;
1774 	sump[i] += cnt;
1775 	if (back > 0)
1776 		sump[back] -= cnt;
1777 	if (forw > 0)
1778 		sump[forw] -= cnt;
1779 	/*
1780 	 * Update cluster summary information.
1781 	 */
1782 	lp = &sump[fs->fs_contigsumsize];
1783 	for (i = fs->fs_contigsumsize; i > 0; i--)
1784 		if (*lp-- > 0)
1785 			break;
1786 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1787 }
1788 
1789 /*
1790  * Fserr prints the name of a file system with an error diagnostic.
1791  *
1792  * The form of the error message is:
1793  *	fs: error message
1794  */
1795 static void
1796 ffs_fserr(fs, uid, cp)
1797 	struct fs *fs;
1798 	u_int uid;
1799 	char *cp;
1800 {
1801 	struct thread *td = curthread;
1802 	struct proc *p;
1803 
1804 	if ((p = td->td_proc) != NULL) {
1805 	    log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1806 		    p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1807 	} else {
1808 	    log(LOG_ERR, "system thread %p, uid %d on %s: %s\n",
1809 		    td, uid, fs->fs_fsmnt, cp);
1810 	}
1811 }
1812