xref: /dragonfly/sys/vfs/ufs/ffs_alloc.c (revision e0b1d537)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
30  * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $
31  */
32 
33 #include "opt_quota.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/buf.h>
38 #include <sys/conf.h>
39 #include <sys/proc.h>
40 #include <sys/vnode.h>
41 #include <sys/mount.h>
42 #include <sys/kernel.h>
43 #include <sys/sysctl.h>
44 #include <sys/syslog.h>
45 
46 #include <sys/taskqueue.h>
47 #include <machine/inttypes.h>
48 
49 #include <sys/buf2.h>
50 
51 #include "quota.h"
52 #include "inode.h"
53 #include "ufs_extern.h"
54 #include "ufsmount.h"
55 
56 #include "fs.h"
57 #include "ffs_extern.h"
58 
59 typedef ufs_daddr_t allocfcn_t (struct inode *ip, int cg, ufs_daddr_t bpref,
60 				  int size);
61 
62 static ufs_daddr_t ffs_alloccg (struct inode *, int, ufs_daddr_t, int);
63 static ufs_daddr_t
64 	      ffs_alloccgblk (struct inode *, struct buf *, ufs_daddr_t);
65 static void ffs_blkfree_cg(struct fs *, struct vnode *, cdev_t , ino_t,
66 			   uint32_t , ufs_daddr_t, long );
67 #ifdef DIAGNOSTIC
68 static int	ffs_checkblk (struct inode *, ufs_daddr_t, long);
69 #endif
70 static void	ffs_clusteracct	(struct fs *, struct cg *, ufs_daddr_t,
71 				     int);
72 static ufs_daddr_t ffs_clusteralloc (struct inode *, int, ufs_daddr_t,
73 	    int);
74 static ino_t	ffs_dirpref (struct inode *);
75 static ufs_daddr_t ffs_fragextend (struct inode *, int, long, int, int);
76 static void	ffs_fserr (struct fs *, uint, char *);
77 static u_long	ffs_hashalloc
78 		    (struct inode *, int, long, int, allocfcn_t *);
79 static ino_t	ffs_nodealloccg (struct inode *, int, ufs_daddr_t, int);
80 static ufs_daddr_t ffs_mapsearch (struct fs *, struct cg *, ufs_daddr_t,
81 	    int);
82 
83 /*
84  * Allocate a block in the filesystem.
85  *
86  * The size of the requested block is given, which must be some
87  * multiple of fs_fsize and <= fs_bsize.
88  * A preference may be optionally specified. If a preference is given
89  * the following hierarchy is used to allocate a block:
90  *   1) allocate the requested block.
91  *   2) allocate a rotationally optimal block in the same cylinder.
92  *   3) allocate a block in the same cylinder group.
93  *   4) quadradically rehash into other cylinder groups, until an
94  *      available block is located.
95  * If no block preference is given the following heirarchy is used
96  * to allocate a block:
97  *   1) allocate a block in the cylinder group that contains the
98  *      inode for the file.
99  *   2) quadradically rehash into other cylinder groups, until an
100  *      available block is located.
101  */
102 int
103 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
104 	  struct ucred *cred, ufs_daddr_t *bnp)
105 {
106 	struct fs *fs;
107 	ufs_daddr_t bno;
108 	int cg;
109 #ifdef QUOTA
110 	int error;
111 #endif
112 
113 	*bnp = 0;
114 	fs = ip->i_fs;
115 #ifdef DIAGNOSTIC
116 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
117 		kprintf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
118 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
119 		    fs->fs_fsmnt);
120 		panic("ffs_alloc: bad size");
121 	}
122 	if (cred == NOCRED)
123 		panic("ffs_alloc: missing credential");
124 #endif /* DIAGNOSTIC */
125 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
126 		goto nospace;
127 	if (cred->cr_uid != 0 &&
128 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
129 		goto nospace;
130 #ifdef QUOTA
131 	error = ufs_chkdq(ip, (long)btodb(size), cred, 0);
132 	if (error)
133 		return (error);
134 #endif
135 	if (bpref >= fs->fs_size)
136 		bpref = 0;
137 	if (bpref == 0)
138 		cg = ino_to_cg(fs, ip->i_number);
139 	else
140 		cg = dtog(fs, bpref);
141 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
142 					 ffs_alloccg);
143 	if (bno > 0) {
144 		ip->i_blocks += btodb(size);
145 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
146 		*bnp = bno;
147 		return (0);
148 	}
149 #ifdef QUOTA
150 	/*
151 	 * Restore user's disk quota because allocation failed.
152 	 */
153 	(void) ufs_chkdq(ip, (long)-btodb(size), cred, FORCE);
154 #endif
155 nospace:
156 	ffs_fserr(fs, cred->cr_uid, "filesystem full");
157 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
158 	return (ENOSPC);
159 }
160 
161 /*
162  * Reallocate a fragment to a bigger size
163  *
164  * The number and size of the old block is given, and a preference
165  * and new size is also specified. The allocator attempts to extend
166  * the original block. Failing that, the regular block allocator is
167  * invoked to get an appropriate block.
168  */
169 int
170 ffs_realloccg(struct inode *ip, ufs_daddr_t lbprev, ufs_daddr_t bpref,
171 	      int osize, int nsize, struct ucred *cred, struct buf **bpp)
172 {
173 	struct fs *fs;
174 	struct buf *bp;
175 	int cg, request, error;
176 	ufs_daddr_t bprev, bno;
177 
178 	*bpp = NULL;
179 	fs = ip->i_fs;
180 #ifdef DIAGNOSTIC
181 	if ((uint)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
182 	    (uint)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
183 		kprintf(
184 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
185 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
186 		    nsize, fs->fs_fsmnt);
187 		panic("ffs_realloccg: bad size");
188 	}
189 	if (cred == NOCRED)
190 		panic("ffs_realloccg: missing credential");
191 #endif /* DIAGNOSTIC */
192 	if (cred->cr_uid != 0 &&
193 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
194 		goto nospace;
195 	if ((bprev = ip->i_db[lbprev]) == 0) {
196 		kprintf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
197 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
198 		    fs->fs_fsmnt);
199 		panic("ffs_realloccg: bad bprev");
200 	}
201 	/*
202 	 * Allocate the extra space in the buffer.
203 	 */
204 	error = bread(ITOV(ip), lblktodoff(fs, lbprev), osize, &bp);
205 	if (error) {
206 		brelse(bp);
207 		return (error);
208 	}
209 
210 	if(bp->b_bio2.bio_offset == NOOFFSET) {
211 		if( lbprev >= NDADDR)
212 			panic("ffs_realloccg: lbprev out of range");
213 		bp->b_bio2.bio_offset = fsbtodoff(fs, bprev);
214 	}
215 
216 #ifdef QUOTA
217 	error = ufs_chkdq(ip, (long)btodb(nsize - osize), cred, 0);
218 	if (error) {
219 		brelse(bp);
220 		return (error);
221 	}
222 #endif
223 	/*
224 	 * Check for extension in the existing location.
225 	 */
226 	cg = dtog(fs, bprev);
227 	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
228 	if (bno) {
229 		if (bp->b_bio2.bio_offset != fsbtodoff(fs, bno))
230 			panic("ffs_realloccg: bad blockno");
231 		ip->i_blocks += btodb(nsize - osize);
232 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
233 		allocbuf(bp, nsize);
234 		bzero((char *)bp->b_data + osize, (uint)nsize - osize);
235 		*bpp = bp;
236 		return (0);
237 	}
238 	/*
239 	 * Allocate a new disk location.
240 	 */
241 	if (bpref >= fs->fs_size)
242 		bpref = 0;
243 	switch ((int)fs->fs_optim) {
244 	case FS_OPTSPACE:
245 		/*
246 		 * Allocate an exact sized fragment. Although this makes
247 		 * best use of space, we will waste time relocating it if
248 		 * the file continues to grow. If the fragmentation is
249 		 * less than half of the minimum free reserve, we choose
250 		 * to begin optimizing for time.
251 		 */
252 		request = nsize;
253 		if (fs->fs_minfree <= 5 ||
254 		    fs->fs_cstotal.cs_nffree >
255 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
256 			break;
257 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
258 			fs->fs_fsmnt);
259 		fs->fs_optim = FS_OPTTIME;
260 		break;
261 	case FS_OPTTIME:
262 		/*
263 		 * At this point we have discovered a file that is trying to
264 		 * grow a small fragment to a larger fragment. To save time,
265 		 * we allocate a full sized block, then free the unused portion.
266 		 * If the file continues to grow, the `ffs_fragextend' call
267 		 * above will be able to grow it in place without further
268 		 * copying. If aberrant programs cause disk fragmentation to
269 		 * grow within 2% of the free reserve, we choose to begin
270 		 * optimizing for space.
271 		 */
272 		request = fs->fs_bsize;
273 		if (fs->fs_cstotal.cs_nffree <
274 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
275 			break;
276 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
277 			fs->fs_fsmnt);
278 		fs->fs_optim = FS_OPTSPACE;
279 		break;
280 	default:
281 		kprintf("dev = %s, optim = %ld, fs = %s\n",
282 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
283 		panic("ffs_realloccg: bad optim");
284 		/* NOTREACHED */
285 	}
286 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
287 					 ffs_alloccg);
288 	if (bno > 0) {
289 		bp->b_bio2.bio_offset = fsbtodoff(fs, bno);
290 		if (!DOINGSOFTDEP(ITOV(ip)))
291 			ffs_blkfree(ip, bprev, (long)osize);
292 		if (nsize < request)
293 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
294 			    (long)(request - nsize));
295 		ip->i_blocks += btodb(nsize - osize);
296 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
297 		allocbuf(bp, nsize);
298 		bzero((char *)bp->b_data + osize, (uint)nsize - osize);
299 		*bpp = bp;
300 		return (0);
301 	}
302 #ifdef QUOTA
303 	/*
304 	 * Restore user's disk quota because allocation failed.
305 	 */
306 	(void) ufs_chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
307 #endif
308 	brelse(bp);
309 nospace:
310 	/*
311 	 * no space available
312 	 */
313 	ffs_fserr(fs, cred->cr_uid, "filesystem full");
314 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
315 	return (ENOSPC);
316 }
317 
318 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
319 
320 /*
321  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
322  *
323  * The vnode and an array of buffer pointers for a range of sequential
324  * logical blocks to be made contiguous is given. The allocator attempts
325  * to find a range of sequential blocks starting as close as possible to
326  * an fs_rotdelay offset from the end of the allocation for the logical
327  * block immediately preceeding the current range. If successful, the
328  * physical block numbers in the buffer pointers and in the inode are
329  * changed to reflect the new allocation. If unsuccessful, the allocation
330  * is left unchanged. The success in doing the reallocation is returned.
331  * Note that the error return is not reflected back to the user. Rather
332  * the previous block allocation will be used.
333  */
334 static int doasyncfree = 1;
335 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
336 
337 static int doreallocblks = 1;
338 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
339 
340 #ifdef DEBUG
341 static volatile int prtrealloc = 0;
342 #endif
343 
344 /*
345  * ffs_reallocblks(struct vnode *a_vp, struct cluster_save *a_buflist)
346  */
347 int
348 ffs_reallocblks(struct vop_reallocblks_args *ap)
349 {
350 	struct fs *fs;
351 	struct inode *ip;
352 	struct vnode *vp;
353 	struct buf *sbp, *ebp;
354 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
355 	struct cluster_save *buflist;
356 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
357 #ifdef DIAGNOSTIC
358 	off_t boffset;
359 #endif
360 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
361 	int i, len, slen, start_lvl, end_lvl, pref, ssize;
362 
363 	if (doreallocblks == 0)
364 		return (ENOSPC);
365 	vp = ap->a_vp;
366 	ip = VTOI(vp);
367 	fs = ip->i_fs;
368 	if (fs->fs_contigsumsize <= 0)
369 		return (ENOSPC);
370 	buflist = ap->a_buflist;
371 	len = buflist->bs_nchildren;
372 	start_lbn = lblkno(fs, buflist->bs_children[0]->b_loffset);
373 	end_lbn = start_lbn + len - 1;
374 #ifdef DIAGNOSTIC
375 	for (i = 0; i < len; i++)
376 		if (!ffs_checkblk(ip,
377 		   dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
378 			panic("ffs_reallocblks: unallocated block 1");
379 	for (i = 1; i < len; i++) {
380 		if (buflist->bs_children[i]->b_loffset != lblktodoff(fs, start_lbn) + lblktodoff(fs, i))
381 			panic("ffs_reallocblks: non-logical cluster");
382 	}
383 	boffset = buflist->bs_children[0]->b_bio2.bio_offset;
384 	ssize = (int)fsbtodoff(fs, fs->fs_frag);
385 	for (i = 1; i < len - 1; i++)
386 		if (buflist->bs_children[i]->b_bio2.bio_offset != boffset + (i * ssize))
387 			panic("ffs_reallocblks: non-physical cluster %d", i);
388 #endif
389 	/*
390 	 * If the latest allocation is in a new cylinder group, assume that
391 	 * the filesystem has decided to move and do not force it back to
392 	 * the previous cylinder group.
393 	 */
394 	if (dtog(fs, dofftofsb(fs, buflist->bs_children[0]->b_bio2.bio_offset)) !=
395 	    dtog(fs, dofftofsb(fs, buflist->bs_children[len - 1]->b_bio2.bio_offset)))
396 		return (ENOSPC);
397 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
398 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
399 		return (ENOSPC);
400 	/*
401 	 * Get the starting offset and block map for the first block and
402 	 * the number of blocks that will fit into sbap starting at soff.
403 	 */
404 	if (start_lvl == 0) {
405 		sbap = &ip->i_db[0];
406 		soff = start_lbn;
407 		slen = NDADDR - soff;
408 	} else {
409 		idp = &start_ap[start_lvl - 1];
410 		if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &sbp)) {
411 			brelse(sbp);
412 			return (ENOSPC);
413 		}
414 		sbap = (ufs_daddr_t *)sbp->b_data;
415 		soff = idp->in_off;
416 		slen = fs->fs_nindir - soff;
417 	}
418 	/*
419 	 * Find the preferred location for the cluster.
420 	 */
421 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
422 
423 	/*
424 	 * If the block range spans two block maps, get the second map.
425 	 */
426 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
427 		ssize = len;
428 	} else {
429 #ifdef DIAGNOSTIC
430 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
431 			panic("ffs_reallocblk: start == end");
432 #endif
433 		ssize = len - (idp->in_off + 1);
434 		if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &ebp))
435 			goto fail;
436 		ebap = (ufs_daddr_t *)ebp->b_data;
437 	}
438 
439 	/*
440 	 * Make sure we aren't spanning more then two blockmaps.  ssize is
441 	 * our calculation of the span we have to scan in the first blockmap,
442 	 * while slen is our calculation of the number of entries available
443 	 * in the first blockmap (from soff).
444 	 */
445 	if (ssize > slen) {
446 		panic("ffs_reallocblks: range spans more then two blockmaps!"
447 			" start_lbn %ld len %d (%d/%d)",
448 			(long)start_lbn, len, slen, ssize);
449 	}
450 	/*
451 	 * Search the block map looking for an allocation of the desired size.
452 	 */
453 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
454 	    len, ffs_clusteralloc)) == 0)
455 		goto fail;
456 	/*
457 	 * We have found a new contiguous block.
458 	 *
459 	 * First we have to replace the old block pointers with the new
460 	 * block pointers in the inode and indirect blocks associated
461 	 * with the file.
462 	 */
463 #ifdef DEBUG
464 	if (prtrealloc)
465 		kprintf("realloc: ino %ju, lbns %d-%d\n\told:",
466 		    (uintmax_t)ip->i_number, start_lbn, end_lbn);
467 #endif
468 	blkno = newblk;
469 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
470 		if (i == ssize) {
471 			bap = ebap;
472 			soff = -i;
473 		}
474 #ifdef DIAGNOSTIC
475 		if (!ffs_checkblk(ip,
476 		   dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
477 			panic("ffs_reallocblks: unallocated block 2");
478 		if (dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset) != *bap)
479 			panic("ffs_reallocblks: alloc mismatch");
480 #endif
481 #ifdef DEBUG
482 		if (prtrealloc)
483 			kprintf(" %d,", *bap);
484 #endif
485 		if (DOINGSOFTDEP(vp)) {
486 			if (sbap == &ip->i_db[0] && i < ssize)
487 				softdep_setup_allocdirect(ip, start_lbn + i,
488 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
489 				    buflist->bs_children[i]);
490 			else
491 				softdep_setup_allocindir_page(ip, start_lbn + i,
492 				    i < ssize ? sbp : ebp, soff + i, blkno,
493 				    *bap, buflist->bs_children[i]);
494 		}
495 		*bap++ = blkno;
496 	}
497 	/*
498 	 * Next we must write out the modified inode and indirect blocks.
499 	 * For strict correctness, the writes should be synchronous since
500 	 * the old block values may have been written to disk. In practise
501 	 * they are almost never written, but if we are concerned about
502 	 * strict correctness, the `doasyncfree' flag should be set to zero.
503 	 *
504 	 * The test on `doasyncfree' should be changed to test a flag
505 	 * that shows whether the associated buffers and inodes have
506 	 * been written. The flag should be set when the cluster is
507 	 * started and cleared whenever the buffer or inode is flushed.
508 	 * We can then check below to see if it is set, and do the
509 	 * synchronous write only when it has been cleared.
510 	 */
511 	if (sbap != &ip->i_db[0]) {
512 		if (doasyncfree)
513 			bdwrite(sbp);
514 		else
515 			bwrite(sbp);
516 	} else {
517 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
518 		if (!doasyncfree)
519 			ffs_update(vp, 1);
520 	}
521 	if (ssize < len) {
522 		if (doasyncfree)
523 			bdwrite(ebp);
524 		else
525 			bwrite(ebp);
526 	}
527 	/*
528 	 * Last, free the old blocks and assign the new blocks to the buffers.
529 	 */
530 #ifdef DEBUG
531 	if (prtrealloc)
532 		kprintf("\n\tnew:");
533 #endif
534 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
535 		if (!DOINGSOFTDEP(vp))
536 			ffs_blkfree(ip,
537 			    dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset),
538 			    fs->fs_bsize);
539 		buflist->bs_children[i]->b_bio2.bio_offset = fsbtodoff(fs, blkno);
540 #ifdef DIAGNOSTIC
541 		if (!ffs_checkblk(ip,
542 		   dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
543 			panic("ffs_reallocblks: unallocated block 3");
544 #endif
545 #ifdef DEBUG
546 		if (prtrealloc)
547 			kprintf(" %d,", blkno);
548 #endif
549 	}
550 #ifdef DEBUG
551 	if (prtrealloc) {
552 		prtrealloc--;
553 		kprintf("\n");
554 	}
555 #endif
556 	return (0);
557 
558 fail:
559 	if (ssize < len)
560 		brelse(ebp);
561 	if (sbap != &ip->i_db[0])
562 		brelse(sbp);
563 	return (ENOSPC);
564 }
565 
566 /*
567  * Allocate an inode in the filesystem.
568  *
569  * If allocating a directory, use ffs_dirpref to select the inode.
570  * If allocating in a directory, the following hierarchy is followed:
571  *   1) allocate the preferred inode.
572  *   2) allocate an inode in the same cylinder group.
573  *   3) quadradically rehash into other cylinder groups, until an
574  *      available inode is located.
575  * If no inode preference is given the following heirarchy is used
576  * to allocate an inode:
577  *   1) allocate an inode in cylinder group 0.
578  *   2) quadradically rehash into other cylinder groups, until an
579  *      available inode is located.
580  */
581 int
582 ffs_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
583 {
584 	struct inode *pip;
585 	struct fs *fs;
586 	struct inode *ip;
587 	ino_t ino, ipref;
588 	int cg, error;
589 
590 	*vpp = NULL;
591 	pip = VTOI(pvp);
592 	fs = pip->i_fs;
593 	if (fs->fs_cstotal.cs_nifree == 0)
594 		goto noinodes;
595 
596 	if ((mode & IFMT) == IFDIR)
597 		ipref = ffs_dirpref(pip);
598 	else
599 		ipref = pip->i_number;
600 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
601 		ipref = 0;
602 	cg = ino_to_cg(fs, ipref);
603 	/*
604 	 * Track number of dirs created one after another
605 	 * in a same cg without intervening by files.
606 	 */
607 	if ((mode & IFMT) == IFDIR) {
608 		if (fs->fs_contigdirs[cg] < 255)
609 			fs->fs_contigdirs[cg]++;
610 	} else {
611 		if (fs->fs_contigdirs[cg] > 0)
612 			fs->fs_contigdirs[cg]--;
613 	}
614 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
615 					(allocfcn_t *)ffs_nodealloccg);
616 	if (ino == 0)
617 		goto noinodes;
618 	error = VFS_VGET(pvp->v_mount, NULL, ino, vpp);
619 	if (error) {
620 		ffs_vfree(pvp, ino, mode);
621 		return (error);
622 	}
623 	ip = VTOI(*vpp);
624 	if (ip->i_mode) {
625 		kprintf("mode = 0%o, inum = %lu, fs = %s\n",
626 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
627 		panic("ffs_valloc: dup alloc");
628 	}
629 	if (ip->i_blocks) {				/* XXX */
630 		kprintf("free inode %s/%lu had %ld blocks\n",
631 		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
632 		ip->i_blocks = 0;
633 	}
634 	ip->i_flags = 0;
635 	/*
636 	 * Set up a new generation number for this inode.
637 	 */
638 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
639 		ip->i_gen = krandom() / 2 + 1;
640 	return (0);
641 noinodes:
642 	ffs_fserr(fs, cred->cr_uid, "out of inodes");
643 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
644 	return (ENOSPC);
645 }
646 
647 /*
648  * Find a cylinder group to place a directory.
649  *
650  * The policy implemented by this algorithm is to allocate a
651  * directory inode in the same cylinder group as its parent
652  * directory, but also to reserve space for its files inodes
653  * and data. Restrict the number of directories which may be
654  * allocated one after another in the same cylinder group
655  * without intervening allocation of files.
656  *
657  * If we allocate a first level directory then force allocation
658  * in another cylinder group.
659  */
660 static ino_t
661 ffs_dirpref(struct inode *pip)
662 {
663 	struct fs *fs;
664 	int cg, prefcg, dirsize, cgsize;
665 	int64_t dirsize64;
666 	int avgifree, avgbfree, avgndir, curdirsize;
667 	int minifree, minbfree, maxndir;
668 	int mincg, minndir;
669 	int maxcontigdirs;
670 
671 	fs = pip->i_fs;
672 
673 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
674 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
675 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
676 
677 	/*
678 	 * Force allocation in another cg if creating a first level dir.
679 	 */
680 	if (ITOV(pip)->v_flag & VROOT) {
681 		prefcg = karc4random() % fs->fs_ncg;
682 		mincg = prefcg;
683 		minndir = fs->fs_ipg;
684 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
685 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
686 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
687 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
688 				mincg = cg;
689 				minndir = fs->fs_cs(fs, cg).cs_ndir;
690 			}
691 		for (cg = 0; cg < prefcg; cg++)
692 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
693 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
694 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
695 				mincg = cg;
696 				minndir = fs->fs_cs(fs, cg).cs_ndir;
697 			}
698 		return ((ino_t)(fs->fs_ipg * mincg));
699 	}
700 
701 	/*
702 	 * Count various limits which used for
703 	 * optimal allocation of a directory inode.
704 	 */
705 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
706 	minifree = avgifree - avgifree / 4;
707 	if (minifree < 1)
708 		minifree = 1;
709 	minbfree = avgbfree - avgbfree / 4;
710 	if (minbfree < 1)
711 		minbfree = 1;
712 	cgsize = fs->fs_fsize * fs->fs_fpg;
713 
714 	/*
715 	 * fs_avgfilesize and fs_avgfpdir are user-settable entities and
716 	 * multiplying them may overflow a 32 bit integer.
717 	 */
718 	dirsize64 = fs->fs_avgfilesize * (int64_t)fs->fs_avgfpdir;
719 	if (dirsize64 > 0x7fffffff) {
720 		maxcontigdirs = 1;
721 	} else {
722 		dirsize = (int)dirsize64;
723 		curdirsize = avgndir ?
724 			(cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
725 		if (dirsize < curdirsize)
726 			dirsize = curdirsize;
727 		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
728 		if (fs->fs_avgfpdir > 0)
729 			maxcontigdirs = min(maxcontigdirs,
730 				    fs->fs_ipg / fs->fs_avgfpdir);
731 		if (maxcontigdirs == 0)
732 			maxcontigdirs = 1;
733 	}
734 
735 	/*
736 	 * Limit number of dirs in one cg and reserve space for
737 	 * regular files, but only if we have no deficit in
738 	 * inodes or space.
739 	 */
740 	prefcg = ino_to_cg(fs, pip->i_number);
741 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
742 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
743 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
744 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
745 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
746 				return ((ino_t)(fs->fs_ipg * cg));
747 		}
748 	for (cg = 0; cg < prefcg; cg++)
749 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
750 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
751 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
752 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
753 				return ((ino_t)(fs->fs_ipg * cg));
754 		}
755 	/*
756 	 * This is a backstop when we have deficit in space.
757 	 */
758 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
759 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
760 			return ((ino_t)(fs->fs_ipg * cg));
761 	for (cg = 0; cg < prefcg; cg++)
762 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
763 			break;
764 	return ((ino_t)(fs->fs_ipg * cg));
765 }
766 
767 /*
768  * Select the desired position for the next block in a file.  The file is
769  * logically divided into sections. The first section is composed of the
770  * direct blocks. Each additional section contains fs_maxbpg blocks.
771  *
772  * If no blocks have been allocated in the first section, the policy is to
773  * request a block in the same cylinder group as the inode that describes
774  * the file. If no blocks have been allocated in any other section, the
775  * policy is to place the section in a cylinder group with a greater than
776  * average number of free blocks.  An appropriate cylinder group is found
777  * by using a rotor that sweeps the cylinder groups. When a new group of
778  * blocks is needed, the sweep begins in the cylinder group following the
779  * cylinder group from which the previous allocation was made. The sweep
780  * continues until a cylinder group with greater than the average number
781  * of free blocks is found. If the allocation is for the first block in an
782  * indirect block, the information on the previous allocation is unavailable;
783  * here a best guess is made based upon the logical block number being
784  * allocated.
785  *
786  * If a section is already partially allocated, the policy is to
787  * contiguously allocate fs_maxcontig blocks.  The end of one of these
788  * contiguous blocks and the beginning of the next is physically separated
789  * so that the disk head will be in transit between them for at least
790  * fs_rotdelay milliseconds.  This is to allow time for the processor to
791  * schedule another I/O transfer.
792  */
793 ufs_daddr_t
794 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
795 {
796 	struct fs *fs;
797 	int cg;
798 	int avgbfree, startcg;
799 	ufs_daddr_t nextblk;
800 
801 	fs = ip->i_fs;
802 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
803 		if (lbn < NDADDR + NINDIR(fs)) {
804 			cg = ino_to_cg(fs, ip->i_number);
805 			return (fs->fs_fpg * cg + fs->fs_frag);
806 		}
807 		/*
808 		 * Find a cylinder with greater than average number of
809 		 * unused data blocks.
810 		 */
811 		if (indx == 0 || bap[indx - 1] == 0)
812 			startcg =
813 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
814 		else
815 			startcg = dtog(fs, bap[indx - 1]) + 1;
816 		startcg %= fs->fs_ncg;
817 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
818 		for (cg = startcg; cg < fs->fs_ncg; cg++)
819 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
820 				fs->fs_cgrotor = cg;
821 				return (fs->fs_fpg * cg + fs->fs_frag);
822 			}
823 		for (cg = 0; cg <= startcg; cg++)
824 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
825 				fs->fs_cgrotor = cg;
826 				return (fs->fs_fpg * cg + fs->fs_frag);
827 			}
828 		return (0);
829 	}
830 	/*
831 	 * One or more previous blocks have been laid out. If less
832 	 * than fs_maxcontig previous blocks are contiguous, the
833 	 * next block is requested contiguously, otherwise it is
834 	 * requested rotationally delayed by fs_rotdelay milliseconds.
835 	 */
836 	nextblk = bap[indx - 1] + fs->fs_frag;
837 	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
838 	    bap[indx - fs->fs_maxcontig] +
839 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
840 		return (nextblk);
841 	/*
842 	 * Here we convert ms of delay to frags as:
843 	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
844 	 *	((sect/frag) * (ms/sec))
845 	 * then round up to the next block.
846 	 */
847 	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
848 	    (NSPF(fs) * 1000), fs->fs_frag);
849 	return (nextblk);
850 }
851 
852 /*
853  * Implement the cylinder overflow algorithm.
854  *
855  * The policy implemented by this algorithm is:
856  *   1) allocate the block in its requested cylinder group.
857  *   2) quadradically rehash on the cylinder group number.
858  *   3) brute force search for a free block.
859  */
860 /*VARARGS5*/
861 static u_long
862 ffs_hashalloc(struct inode *ip, int cg, long pref,
863 	      int size,	/* size for data blocks, mode for inodes */
864 	      allocfcn_t *allocator)
865 {
866 	struct fs *fs;
867 	long result;	/* XXX why not same type as we return? */
868 	int i, icg = cg;
869 
870 	fs = ip->i_fs;
871 	/*
872 	 * 1: preferred cylinder group
873 	 */
874 	result = (*allocator)(ip, cg, pref, size);
875 	if (result)
876 		return (result);
877 	/*
878 	 * 2: quadratic rehash
879 	 */
880 	for (i = 1; i < fs->fs_ncg; i *= 2) {
881 		cg += i;
882 		if (cg >= fs->fs_ncg)
883 			cg -= fs->fs_ncg;
884 		result = (*allocator)(ip, cg, 0, size);
885 		if (result)
886 			return (result);
887 	}
888 	/*
889 	 * 3: brute force search
890 	 * Note that we start at i == 2, since 0 was checked initially,
891 	 * and 1 is always checked in the quadratic rehash.
892 	 */
893 	cg = (icg + 2) % fs->fs_ncg;
894 	for (i = 2; i < fs->fs_ncg; i++) {
895 		result = (*allocator)(ip, cg, 0, size);
896 		if (result)
897 			return (result);
898 		cg++;
899 		if (cg == fs->fs_ncg)
900 			cg = 0;
901 	}
902 	return (0);
903 }
904 
905 /*
906  * Determine whether a fragment can be extended.
907  *
908  * Check to see if the necessary fragments are available, and
909  * if they are, allocate them.
910  */
911 static ufs_daddr_t
912 ffs_fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize)
913 {
914 	struct fs *fs;
915 	struct cg *cgp;
916 	struct buf *bp;
917 	long bno;
918 	int frags, bbase;
919 	int i, error;
920 	uint8_t *blksfree;
921 
922 	fs = ip->i_fs;
923 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
924 		return (0);
925 	frags = numfrags(fs, nsize);
926 	bbase = fragnum(fs, bprev);
927 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
928 		/* cannot extend across a block boundary */
929 		return (0);
930 	}
931 	KKASSERT(blknum(fs, bprev) == blknum(fs, bprev + frags - 1));
932 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
933 		(int)fs->fs_cgsize, &bp);
934 	if (error) {
935 		brelse(bp);
936 		return (0);
937 	}
938 	cgp = (struct cg *)bp->b_data;
939 	if (!cg_chkmagic(cgp)) {
940 		brelse(bp);
941 		return (0);
942 	}
943 	cgp->cg_time = time_second;
944 	bno = dtogd(fs, bprev);
945 	blksfree = cg_blksfree(cgp);
946 	for (i = numfrags(fs, osize); i < frags; i++) {
947 		if (isclr(blksfree, bno + i)) {
948 			brelse(bp);
949 			return (0);
950 		}
951 	}
952 
953 	/*
954 	 * the current fragment can be extended
955 	 * deduct the count on fragment being extended into
956 	 * increase the count on the remaining fragment (if any)
957 	 * allocate the extended piece
958 	 *
959 	 * ---oooooooooonnnnnnn111----
960 	 *    [-----frags-----]
961 	 *    ^                       ^
962 	 *    bbase                   fs_frag
963 	 */
964 	for (i = frags; i < fs->fs_frag - bbase; i++) {
965 		if (isclr(blksfree, bno + i))
966 			break;
967 	}
968 
969 	/*
970 	 * Size of original free frag is [i - numfrags(fs, osize)]
971 	 * Size of remaining free frag is [i - frags]
972 	 */
973 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
974 	if (i != frags)
975 		cgp->cg_frsum[i - frags]++;
976 	for (i = numfrags(fs, osize); i < frags; i++) {
977 		clrbit(blksfree, bno + i);
978 		cgp->cg_cs.cs_nffree--;
979 		fs->fs_cstotal.cs_nffree--;
980 		fs->fs_cs(fs, cg).cs_nffree--;
981 	}
982 	fs->fs_fmod = 1;
983 	if (DOINGSOFTDEP(ITOV(ip)))
984 		softdep_setup_blkmapdep(bp, fs, bprev);
985 	bdwrite(bp);
986 	return (bprev);
987 }
988 
989 /*
990  * Determine whether a block can be allocated.
991  *
992  * Check to see if a block of the appropriate size is available,
993  * and if it is, allocate it.
994  */
995 static ufs_daddr_t
996 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
997 {
998 	struct fs *fs;
999 	struct cg *cgp;
1000 	struct buf *bp;
1001 	int i;
1002 	ufs_daddr_t bno, blkno;
1003 	int allocsiz, error, frags;
1004 	uint8_t *blksfree;
1005 
1006 	fs = ip->i_fs;
1007 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1008 		return (0);
1009 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1010 		(int)fs->fs_cgsize, &bp);
1011 	if (error) {
1012 		brelse(bp);
1013 		return (0);
1014 	}
1015 	cgp = (struct cg *)bp->b_data;
1016 	if (!cg_chkmagic(cgp) ||
1017 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1018 		brelse(bp);
1019 		return (0);
1020 	}
1021 	cgp->cg_time = time_second;
1022 	if (size == fs->fs_bsize) {
1023 		bno = ffs_alloccgblk(ip, bp, bpref);
1024 		bdwrite(bp);
1025 		return (bno);
1026 	}
1027 	/*
1028 	 * Check to see if any fragments of sufficient size are already
1029 	 * available.  Fit the data into a larger fragment if necessary,
1030 	 * before allocating a whole new block.
1031 	 */
1032 	blksfree = cg_blksfree(cgp);
1033 	frags = numfrags(fs, size);
1034 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) {
1035 		if (cgp->cg_frsum[allocsiz] != 0)
1036 			break;
1037 	}
1038 	if (allocsiz == fs->fs_frag) {
1039 		/*
1040 		 * No fragments were available, allocate a whole block and
1041 		 * cut the requested fragment (of size frags) out of it.
1042 		 */
1043 		if (cgp->cg_cs.cs_nbfree == 0) {
1044 			brelse(bp);
1045 			return (0);
1046 		}
1047 		bno = ffs_alloccgblk(ip, bp, bpref);
1048 		bpref = dtogd(fs, bno);
1049 		for (i = frags; i < fs->fs_frag; i++)
1050 			setbit(blksfree, bpref + i);
1051 
1052 		/*
1053 		 * Calculate the number of free frags still remaining after
1054 		 * we have cut out the requested allocation.  Indicate that
1055 		 * a fragment of that size is now available for future
1056 		 * allocation.
1057 		 */
1058 		i = fs->fs_frag - frags;
1059 		cgp->cg_cs.cs_nffree += i;
1060 		fs->fs_cstotal.cs_nffree += i;
1061 		fs->fs_cs(fs, cg).cs_nffree += i;
1062 		fs->fs_fmod = 1;
1063 		cgp->cg_frsum[i]++;
1064 		bdwrite(bp);
1065 		return (bno);
1066 	}
1067 
1068 	/*
1069 	 * cg_frsum[] has told us that a free fragment of allocsiz size is
1070 	 * available.  Find it, then clear the bitmap bits associated with
1071 	 * the size we want.
1072 	 */
1073 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1074 	if (bno < 0) {
1075 		brelse(bp);
1076 		return (0);
1077 	}
1078 	for (i = 0; i < frags; i++)
1079 		clrbit(blksfree, bno + i);
1080 	cgp->cg_cs.cs_nffree -= frags;
1081 	fs->fs_cstotal.cs_nffree -= frags;
1082 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1083 	fs->fs_fmod = 1;
1084 
1085 	/*
1086 	 * Account for the allocation.  The original searched size that we
1087 	 * found is no longer available.  If we cut out a smaller piece then
1088 	 * a smaller fragment is now available.
1089 	 */
1090 	cgp->cg_frsum[allocsiz]--;
1091 	if (frags != allocsiz)
1092 		cgp->cg_frsum[allocsiz - frags]++;
1093 	blkno = cg * fs->fs_fpg + bno;
1094 	if (DOINGSOFTDEP(ITOV(ip)))
1095 		softdep_setup_blkmapdep(bp, fs, blkno);
1096 	bdwrite(bp);
1097 	return ((u_long)blkno);
1098 }
1099 
1100 /*
1101  * Allocate a block in a cylinder group.
1102  *
1103  * This algorithm implements the following policy:
1104  *   1) allocate the requested block.
1105  *   2) allocate a rotationally optimal block in the same cylinder.
1106  *   3) allocate the next available block on the block rotor for the
1107  *      specified cylinder group.
1108  * Note that this routine only allocates fs_bsize blocks; these
1109  * blocks may be fragmented by the routine that allocates them.
1110  */
1111 static ufs_daddr_t
1112 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
1113 {
1114 	struct fs *fs;
1115 	struct cg *cgp;
1116 	ufs_daddr_t bno, blkno;
1117 	int cylno, pos, delta;
1118 	short *cylbp;
1119 	int i;
1120 	uint8_t *blksfree;
1121 
1122 	fs = ip->i_fs;
1123 	cgp = (struct cg *)bp->b_data;
1124 	blksfree = cg_blksfree(cgp);
1125 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1126 		bpref = cgp->cg_rotor;
1127 		goto norot;
1128 	}
1129 	bpref = blknum(fs, bpref);
1130 	bpref = dtogd(fs, bpref);
1131 	/*
1132 	 * if the requested block is available, use it
1133 	 */
1134 	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1135 		bno = bpref;
1136 		goto gotit;
1137 	}
1138 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1139 		/*
1140 		 * Block layout information is not available.
1141 		 * Leaving bpref unchanged means we take the
1142 		 * next available free block following the one
1143 		 * we just allocated. Hopefully this will at
1144 		 * least hit a track cache on drives of unknown
1145 		 * geometry (e.g. SCSI).
1146 		 */
1147 		goto norot;
1148 	}
1149 	/*
1150 	 * check for a block available on the same cylinder
1151 	 */
1152 	cylno = cbtocylno(fs, bpref);
1153 	if (cg_blktot(cgp)[cylno] == 0)
1154 		goto norot;
1155 	/*
1156 	 * check the summary information to see if a block is
1157 	 * available in the requested cylinder starting at the
1158 	 * requested rotational position and proceeding around.
1159 	 */
1160 	cylbp = cg_blks(fs, cgp, cylno);
1161 	pos = cbtorpos(fs, bpref);
1162 	for (i = pos; i < fs->fs_nrpos; i++)
1163 		if (cylbp[i] > 0)
1164 			break;
1165 	if (i == fs->fs_nrpos)
1166 		for (i = 0; i < pos; i++)
1167 			if (cylbp[i] > 0)
1168 				break;
1169 	if (cylbp[i] > 0) {
1170 		/*
1171 		 * found a rotational position, now find the actual
1172 		 * block. A panic if none is actually there.
1173 		 */
1174 		pos = cylno % fs->fs_cpc;
1175 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1176 		if (fs_postbl(fs, pos)[i] == -1) {
1177 			kprintf("pos = %d, i = %d, fs = %s\n",
1178 			    pos, i, fs->fs_fsmnt);
1179 			panic("ffs_alloccgblk: cyl groups corrupted");
1180 		}
1181 		for (i = fs_postbl(fs, pos)[i];; ) {
1182 			if (ffs_isblock(fs, blksfree, bno + i)) {
1183 				bno = blkstofrags(fs, (bno + i));
1184 				goto gotit;
1185 			}
1186 			delta = fs_rotbl(fs)[i];
1187 			if (delta <= 0 ||
1188 			    delta + i > fragstoblks(fs, fs->fs_fpg))
1189 				break;
1190 			i += delta;
1191 		}
1192 		kprintf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1193 		panic("ffs_alloccgblk: can't find blk in cyl");
1194 	}
1195 norot:
1196 	/*
1197 	 * no blocks in the requested cylinder, so take next
1198 	 * available one in this cylinder group.
1199 	 */
1200 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1201 	if (bno < 0)
1202 		return (0);
1203 	cgp->cg_rotor = bno;
1204 gotit:
1205 	blkno = fragstoblks(fs, bno);
1206 	ffs_clrblock(fs, blksfree, (long)blkno);
1207 	ffs_clusteracct(fs, cgp, blkno, -1);
1208 	cgp->cg_cs.cs_nbfree--;
1209 	fs->fs_cstotal.cs_nbfree--;
1210 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1211 	cylno = cbtocylno(fs, bno);
1212 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1213 	cg_blktot(cgp)[cylno]--;
1214 	fs->fs_fmod = 1;
1215 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1216 	if (DOINGSOFTDEP(ITOV(ip)))
1217 		softdep_setup_blkmapdep(bp, fs, blkno);
1218 	return (blkno);
1219 }
1220 
1221 /*
1222  * Determine whether a cluster can be allocated.
1223  *
1224  * We do not currently check for optimal rotational layout if there
1225  * are multiple choices in the same cylinder group. Instead we just
1226  * take the first one that we find following bpref.
1227  */
1228 static ufs_daddr_t
1229 ffs_clusteralloc(struct inode *ip, int cg, ufs_daddr_t bpref, int len)
1230 {
1231 	struct fs *fs;
1232 	struct cg *cgp;
1233 	struct buf *bp;
1234 	int i, got, run, bno, bit, map;
1235 	u_char *mapp;
1236 	int32_t *lp;
1237 	uint8_t *blksfree;
1238 
1239 	fs = ip->i_fs;
1240 	if (fs->fs_maxcluster[cg] < len)
1241 		return (0);
1242 	if (bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1243 		  (int)fs->fs_cgsize, &bp)) {
1244 		goto fail;
1245 	}
1246 	cgp = (struct cg *)bp->b_data;
1247 	if (!cg_chkmagic(cgp))
1248 		goto fail;
1249 
1250 	/*
1251 	 * Check to see if a cluster of the needed size (or bigger) is
1252 	 * available in this cylinder group.
1253 	 */
1254 	lp = &cg_clustersum(cgp)[len];
1255 	for (i = len; i <= fs->fs_contigsumsize; i++)
1256 		if (*lp++ > 0)
1257 			break;
1258 	if (i > fs->fs_contigsumsize) {
1259 		/*
1260 		 * This is the first time looking for a cluster in this
1261 		 * cylinder group. Update the cluster summary information
1262 		 * to reflect the true maximum sized cluster so that
1263 		 * future cluster allocation requests can avoid reading
1264 		 * the cylinder group map only to find no clusters.
1265 		 */
1266 		lp = &cg_clustersum(cgp)[len - 1];
1267 		for (i = len - 1; i > 0; i--)
1268 			if (*lp-- > 0)
1269 				break;
1270 		fs->fs_maxcluster[cg] = i;
1271 		goto fail;
1272 	}
1273 	/*
1274 	 * Search the cluster map to find a big enough cluster.
1275 	 * We take the first one that we find, even if it is larger
1276 	 * than we need as we prefer to get one close to the previous
1277 	 * block allocation. We do not search before the current
1278 	 * preference point as we do not want to allocate a block
1279 	 * that is allocated before the previous one (as we will
1280 	 * then have to wait for another pass of the elevator
1281 	 * algorithm before it will be read). We prefer to fail and
1282 	 * be recalled to try an allocation in the next cylinder group.
1283 	 */
1284 	if (dtog(fs, bpref) != cg)
1285 		bpref = 0;
1286 	else
1287 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1288 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1289 	map = *mapp++;
1290 	bit = 1 << (bpref % NBBY);
1291 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1292 		if ((map & bit) == 0) {
1293 			run = 0;
1294 		} else {
1295 			run++;
1296 			if (run == len)
1297 				break;
1298 		}
1299 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1300 			bit <<= 1;
1301 		} else {
1302 			map = *mapp++;
1303 			bit = 1;
1304 		}
1305 	}
1306 	if (got >= cgp->cg_nclusterblks)
1307 		goto fail;
1308 	/*
1309 	 * Allocate the cluster that we have found.
1310 	 */
1311 	blksfree = cg_blksfree(cgp);
1312 	for (i = 1; i <= len; i++) {
1313 		if (!ffs_isblock(fs, blksfree, got - run + i))
1314 			panic("ffs_clusteralloc: map mismatch");
1315 	}
1316 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1317 	if (dtog(fs, bno) != cg)
1318 		panic("ffs_clusteralloc: allocated out of group");
1319 	len = blkstofrags(fs, len);
1320 	for (i = 0; i < len; i += fs->fs_frag) {
1321 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1322 			panic("ffs_clusteralloc: lost block");
1323 	}
1324 	bdwrite(bp);
1325 	return (bno);
1326 
1327 fail:
1328 	brelse(bp);
1329 	return (0);
1330 }
1331 
1332 /*
1333  * Determine whether an inode can be allocated.
1334  *
1335  * Check to see if an inode is available, and if it is,
1336  * allocate it using the following policy:
1337  *   1) allocate the requested inode.
1338  *   2) allocate the next available inode after the requested
1339  *      inode in the specified cylinder group.
1340  *   3) the inode must not already be in the inode hash table.  We
1341  *	can encounter such a case because the vnode reclamation sequence
1342  *	frees the bit
1343  *   3) the inode must not already be in the inode hash, otherwise it
1344  *	may be in the process of being deallocated.  This can occur
1345  *	because the bitmap is updated before the inode is removed from
1346  *	hash.  If we were to reallocate the inode the caller could wind
1347  *	up returning a vnode/inode combination which is in an indeterminate
1348  *	state.
1349  */
1350 static ino_t
1351 ffs_nodealloccg(struct inode *ip, int cg, ufs_daddr_t ipref, int mode)
1352 {
1353 	struct ufsmount *ump;
1354 	struct fs *fs;
1355 	struct cg *cgp;
1356 	struct buf *bp;
1357 	uint8_t *inosused;
1358 	uint8_t map;
1359 	int error, len, arraysize, i;
1360 	int icheckmiss;
1361 	ufs_daddr_t ibase;
1362 	struct vnode *vp;
1363 
1364 	vp = ITOV(ip);
1365 	ump = VFSTOUFS(vp->v_mount);
1366 	fs = ip->i_fs;
1367 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1368 		return (0);
1369 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1370 		      (int)fs->fs_cgsize, &bp);
1371 	if (error) {
1372 		brelse(bp);
1373 		return (0);
1374 	}
1375 	cgp = (struct cg *)bp->b_data;
1376 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1377 		brelse(bp);
1378 		return (0);
1379 	}
1380 	inosused = cg_inosused(cgp);
1381 	icheckmiss = 0;
1382 
1383 	/*
1384 	 * Quick check, reuse the most recently free inode or continue
1385 	 * a scan from where we left off the last time.
1386 	 */
1387 	ibase = cg * fs->fs_ipg;
1388 	if (ipref) {
1389 		ipref %= fs->fs_ipg;
1390 		if (isclr(inosused, ipref)) {
1391 			if (ufs_ihashcheck(ump, ip->i_dev, ibase + ipref) == 0)
1392 				goto gotit;
1393 		}
1394 	}
1395 
1396 	/*
1397 	 * Scan the inode bitmap starting at irotor, be sure to handle
1398 	 * the edge case by going back to the beginning of the array.
1399 	 *
1400 	 * If the number of inodes is not byte-aligned, the unused bits
1401 	 * should be set to 1.  This will be sanity checked in gotit.  Note
1402 	 * that we have to be sure not to overlap the beginning and end
1403 	 * when irotor is in the middle of a byte as this will cause the
1404 	 * same bitmap byte to be checked twice.  To solve this problem we
1405 	 * just convert everything to a byte index for the loop.
1406 	 */
1407 	ipref = (cgp->cg_irotor % fs->fs_ipg) >> 3;	/* byte index */
1408 	len = (fs->fs_ipg + 7) >> 3;			/* byte size */
1409 	arraysize = len;
1410 
1411 	while (len > 0) {
1412 		map = inosused[ipref];
1413 		if (map != 255) {
1414 			for (i = 0; i < NBBY; ++i) {
1415 				/*
1416 				 * If we find a free bit we have to make sure
1417 				 * that the inode is not in the middle of
1418 				 * being destroyed.  The inode should not exist
1419 				 * in the inode hash.
1420 				 *
1421 				 * Adjust the rotor to try to hit the
1422 				 * quick-check up above.
1423 				 */
1424 				if ((map & (1 << i)) == 0) {
1425 					if (ufs_ihashcheck(ump, ip->i_dev, ibase + (ipref << 3) + i) == 0) {
1426 						ipref = (ipref << 3) + i;
1427 						cgp->cg_irotor = (ipref + 1) % fs->fs_ipg;
1428 						goto gotit;
1429 					}
1430 					++icheckmiss;
1431 				}
1432 			}
1433 		}
1434 
1435 		/*
1436 		 * Setup for the next byte, start at the beginning again if
1437 		 * we hit the end of the array.
1438 		 */
1439 		if (++ipref == arraysize)
1440 			ipref = 0;
1441 		--len;
1442 	}
1443 	if (icheckmiss == cgp->cg_cs.cs_nifree) {
1444 		brelse(bp);
1445 		return(0);
1446 	}
1447 	kprintf("fs = %s\n", fs->fs_fsmnt);
1448 	panic("ffs_nodealloccg: block not in map, icheckmiss/nfree %d/%d",
1449 		icheckmiss, cgp->cg_cs.cs_nifree);
1450 	/* NOTREACHED */
1451 
1452 	/*
1453 	 * ipref is a bit index as of the gotit label.
1454 	 */
1455 gotit:
1456 	KKASSERT(ipref >= 0 && ipref < fs->fs_ipg);
1457 	cgp->cg_time = time_second;
1458 	if (DOINGSOFTDEP(ITOV(ip)))
1459 		softdep_setup_inomapdep(bp, ip, ibase + ipref);
1460 	setbit(inosused, ipref);
1461 	cgp->cg_cs.cs_nifree--;
1462 	fs->fs_cstotal.cs_nifree--;
1463 	fs->fs_cs(fs, cg).cs_nifree--;
1464 	fs->fs_fmod = 1;
1465 	if ((mode & IFMT) == IFDIR) {
1466 		cgp->cg_cs.cs_ndir++;
1467 		fs->fs_cstotal.cs_ndir++;
1468 		fs->fs_cs(fs, cg).cs_ndir++;
1469 	}
1470 	bdwrite(bp);
1471 	return (ibase + ipref);
1472 }
1473 
1474 /*
1475  * Free a block or fragment.
1476  *
1477  * The specified block or fragment is placed back in the
1478  * free map. If a fragment is deallocated, a possible
1479  * block reassembly is checked.
1480  */
1481 void
1482 ffs_blkfree_cg(struct fs * fs, struct vnode * i_devvp, cdev_t i_dev, ino_t i_number,
1483 	        uint32_t i_din_uid, ufs_daddr_t bno, long size)
1484 {
1485 	struct cg *cgp;
1486 	struct buf *bp;
1487 	ufs_daddr_t blkno;
1488 	int i, error, cg, blk, frags, bbase;
1489 	uint8_t *blksfree;
1490 
1491 	VOP_FREEBLKS(i_devvp, fsbtodoff(fs, bno), size);
1492 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1493 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1494 		kprintf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1495 		    devtoname(i_dev), (long)bno, (long)fs->fs_bsize, size,
1496 		    fs->fs_fsmnt);
1497 		panic("ffs_blkfree: bad size");
1498 	}
1499 	cg = dtog(fs, bno);
1500 	if ((uint)bno >= fs->fs_size) {
1501 		kprintf("bad block %ld, ino %lu\n",
1502 		    (long)bno, (u_long)i_number);
1503 		ffs_fserr(fs, i_din_uid, "bad block");
1504 		return;
1505 	}
1506 
1507 	/*
1508 	 * Load the cylinder group
1509 	 */
1510 	error = bread(i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1511 		      (int)fs->fs_cgsize, &bp);
1512 	if (error) {
1513 		brelse(bp);
1514 		return;
1515 	}
1516 	cgp = (struct cg *)bp->b_data;
1517 	if (!cg_chkmagic(cgp)) {
1518 		brelse(bp);
1519 		return;
1520 	}
1521 	cgp->cg_time = time_second;
1522 	bno = dtogd(fs, bno);
1523 	blksfree = cg_blksfree(cgp);
1524 
1525 	if (size == fs->fs_bsize) {
1526 		/*
1527 		 * Free a whole block
1528 		 */
1529 		blkno = fragstoblks(fs, bno);
1530 		if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1531 			kprintf("dev = %s, block = %ld, fs = %s\n",
1532 			    devtoname(i_dev), (long)bno, fs->fs_fsmnt);
1533 			panic("ffs_blkfree: freeing free block");
1534 		}
1535 		ffs_setblock(fs, blksfree, blkno);
1536 		ffs_clusteracct(fs, cgp, blkno, 1);
1537 		cgp->cg_cs.cs_nbfree++;
1538 		fs->fs_cstotal.cs_nbfree++;
1539 		fs->fs_cs(fs, cg).cs_nbfree++;
1540 		i = cbtocylno(fs, bno);
1541 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1542 		cg_blktot(cgp)[i]++;
1543 	} else {
1544 		/*
1545 		 * Free a fragment within a block.
1546 		 *
1547 		 * bno is the starting block number of the fragment being
1548 		 * freed.
1549 		 *
1550 		 * bbase is the starting block number for the filesystem
1551 		 * block containing the fragment.
1552 		 *
1553 		 * blk is the current bitmap for the fragments within the
1554 		 * filesystem block containing the fragment.
1555 		 *
1556 		 * frags is the number of fragments being freed
1557 		 *
1558 		 * Call ffs_fragacct() to account for the removal of all
1559 		 * current fragments, then adjust the bitmap to free the
1560 		 * requested fragment, and finally call ffs_fragacct() again
1561 		 * to regenerate the accounting.
1562 		 */
1563 		bbase = bno - fragnum(fs, bno);
1564 		blk = blkmap(fs, blksfree, bbase);
1565 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1566 		frags = numfrags(fs, size);
1567 		for (i = 0; i < frags; i++) {
1568 			if (isset(blksfree, bno + i)) {
1569 				kprintf("dev = %s, block = %ld, fs = %s\n",
1570 				    devtoname(i_dev), (long)(bno + i),
1571 				    fs->fs_fsmnt);
1572 				panic("ffs_blkfree: freeing free frag");
1573 			}
1574 			setbit(blksfree, bno + i);
1575 		}
1576 		cgp->cg_cs.cs_nffree += i;
1577 		fs->fs_cstotal.cs_nffree += i;
1578 		fs->fs_cs(fs, cg).cs_nffree += i;
1579 
1580 		/*
1581 		 * Add back in counts associated with the new frags
1582 		 */
1583 		blk = blkmap(fs, blksfree, bbase);
1584 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1585 
1586 		/*
1587 		 * If a complete block has been reassembled, account for it
1588 		 */
1589 		blkno = fragstoblks(fs, bbase);
1590 		if (ffs_isblock(fs, blksfree, blkno)) {
1591 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1592 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1593 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1594 			ffs_clusteracct(fs, cgp, blkno, 1);
1595 			cgp->cg_cs.cs_nbfree++;
1596 			fs->fs_cstotal.cs_nbfree++;
1597 			fs->fs_cs(fs, cg).cs_nbfree++;
1598 			i = cbtocylno(fs, bbase);
1599 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1600 			cg_blktot(cgp)[i]++;
1601 		}
1602 	}
1603 	fs->fs_fmod = 1;
1604 	bdwrite(bp);
1605 }
1606 
1607 struct ffs_blkfree_trim_params {
1608 	struct task task;
1609 	ufs_daddr_t bno;
1610 	long size;
1611 
1612 	/*
1613 	 * With TRIM,  inode pointer is gone in the callback but we still need
1614 	 * the following fields for  ffs_blkfree_cg()
1615 	 */
1616 	struct vnode *i_devvp;
1617 	struct fs *i_fs;
1618 	cdev_t i_dev;
1619 	ino_t i_number;
1620 	uint32_t i_din_uid;
1621 };
1622 
1623 
1624 static void
1625 ffs_blkfree_trim_task(void *ctx, int pending)
1626 {
1627 	struct ffs_blkfree_trim_params *tp;
1628 
1629 	tp = ctx;
1630 	ffs_blkfree_cg(tp->i_fs, tp->i_devvp, tp->i_dev, tp->i_number,
1631 	    tp->i_din_uid, tp->bno, tp->size);
1632 	kfree(tp, M_TEMP);
1633 }
1634 
1635 
1636 
1637 static void
1638 ffs_blkfree_trim_completed(struct bio *biop)
1639 {
1640 	struct buf *bp = biop->bio_buf;
1641 	struct ffs_blkfree_trim_params *tp;
1642 
1643 	tp = bp->b_bio1.bio_caller_info1.ptr;
1644 	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
1645 	tp = biop->bio_caller_info1.ptr;
1646 	taskqueue_enqueue(taskqueue_swi, &tp->task);
1647 	biodone(biop);
1648 }
1649 
1650 
1651 /*
1652  * If TRIM is enabled, we TRIM the blocks first then free them. We do this
1653  * after TRIM is finished and the callback handler is called. The logic here
1654  * is that we free the blocks before updating the bitmap so that we don't
1655  * reuse a block before we actually trim it, which would result in trimming
1656  * a valid block.
1657  */
1658 void
1659 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
1660 {
1661 	struct mount *mp = ip->i_devvp->v_mount;
1662 	struct ffs_blkfree_trim_params *tp;
1663 
1664 	if (!(mp->mnt_flag & MNT_TRIM)) {
1665 		ffs_blkfree_cg(ip->i_fs, ip->i_devvp,ip->i_dev,ip->i_number,
1666 		    ip->i_uid, bno, size);
1667 		return;
1668 	}
1669 
1670 	struct buf *bp;
1671 
1672 	tp = kmalloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
1673 	tp->bno = bno;
1674 	tp->i_fs= ip->i_fs;
1675 	tp->i_devvp = ip->i_devvp;
1676 	tp->i_dev = ip->i_dev;
1677 	tp->i_din_uid = ip->i_uid;
1678 	tp->i_number = ip->i_number;
1679 	tp->size = size;
1680 
1681 	bp = getnewbuf(0,0,0,1);
1682 	BUF_KERNPROC(bp);
1683 	bp->b_cmd = BUF_CMD_FREEBLKS;
1684 	bp->b_bio1.bio_offset =  fsbtodoff(ip->i_fs, bno);
1685 	bp->b_bcount = size;
1686 	bp->b_bio1.bio_caller_info1.ptr = tp;
1687 	bp->b_bio1.bio_done = ffs_blkfree_trim_completed;
1688 	vn_strategy(ip->i_devvp, &bp->b_bio1);
1689 }
1690 
1691 #ifdef DIAGNOSTIC
1692 /*
1693  * Verify allocation of a block or fragment. Returns true if block or
1694  * fragment is allocated, false if it is free.
1695  */
1696 static int
1697 ffs_checkblk(struct inode *ip, ufs_daddr_t bno, long size)
1698 {
1699 	struct fs *fs;
1700 	struct cg *cgp;
1701 	struct buf *bp;
1702 	int i, error, frags, free;
1703 	uint8_t *blksfree;
1704 
1705 	fs = ip->i_fs;
1706 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1707 		kprintf("bsize = %ld, size = %ld, fs = %s\n",
1708 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1709 		panic("ffs_checkblk: bad size");
1710 	}
1711 	if ((uint)bno >= fs->fs_size)
1712 		panic("ffs_checkblk: bad block %d", bno);
1713 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, dtog(fs, bno))),
1714 		      (int)fs->fs_cgsize, &bp);
1715 	if (error)
1716 		panic("ffs_checkblk: cg bread failed");
1717 	cgp = (struct cg *)bp->b_data;
1718 	if (!cg_chkmagic(cgp))
1719 		panic("ffs_checkblk: cg magic mismatch");
1720 	blksfree = cg_blksfree(cgp);
1721 	bno = dtogd(fs, bno);
1722 	if (size == fs->fs_bsize) {
1723 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1724 	} else {
1725 		frags = numfrags(fs, size);
1726 		for (free = 0, i = 0; i < frags; i++)
1727 			if (isset(blksfree, bno + i))
1728 				free++;
1729 		if (free != 0 && free != frags)
1730 			panic("ffs_checkblk: partially free fragment");
1731 	}
1732 	brelse(bp);
1733 	return (!free);
1734 }
1735 #endif /* DIAGNOSTIC */
1736 
1737 /*
1738  * Free an inode.
1739  */
1740 int
1741 ffs_vfree(struct vnode *pvp, ino_t ino, int mode)
1742 {
1743 	if (DOINGSOFTDEP(pvp)) {
1744 		softdep_freefile(pvp, ino, mode);
1745 		return (0);
1746 	}
1747 	return (ffs_freefile(pvp, ino, mode));
1748 }
1749 
1750 /*
1751  * Do the actual free operation.
1752  * The specified inode is placed back in the free map.
1753  */
1754 int
1755 ffs_freefile(struct vnode *pvp, ino_t ino, int mode)
1756 {
1757 	struct fs *fs;
1758 	struct cg *cgp;
1759 	struct inode *pip;
1760 	struct buf *bp;
1761 	int error, cg;
1762 	uint8_t *inosused;
1763 
1764 	pip = VTOI(pvp);
1765 	fs = pip->i_fs;
1766 	if ((uint)ino >= fs->fs_ipg * fs->fs_ncg)
1767 		panic("ffs_vfree: range: dev = (%d,%d), ino = %"PRId64", fs = %s",
1768 		    major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1769 	cg = ino_to_cg(fs, ino);
1770 	error = bread(pip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1771 		      (int)fs->fs_cgsize, &bp);
1772 	if (error) {
1773 		brelse(bp);
1774 		return (error);
1775 	}
1776 	cgp = (struct cg *)bp->b_data;
1777 	if (!cg_chkmagic(cgp)) {
1778 		brelse(bp);
1779 		return (0);
1780 	}
1781 	cgp->cg_time = time_second;
1782 	inosused = cg_inosused(cgp);
1783 	ino %= fs->fs_ipg;
1784 	if (isclr(inosused, ino)) {
1785 		kprintf("dev = %s, ino = %lu, fs = %s\n",
1786 		    devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1787 		if (fs->fs_ronly == 0)
1788 			panic("ffs_vfree: freeing free inode");
1789 	}
1790 	clrbit(inosused, ino);
1791 	if (ino < cgp->cg_irotor)
1792 		cgp->cg_irotor = ino;
1793 	cgp->cg_cs.cs_nifree++;
1794 	fs->fs_cstotal.cs_nifree++;
1795 	fs->fs_cs(fs, cg).cs_nifree++;
1796 	if ((mode & IFMT) == IFDIR) {
1797 		cgp->cg_cs.cs_ndir--;
1798 		fs->fs_cstotal.cs_ndir--;
1799 		fs->fs_cs(fs, cg).cs_ndir--;
1800 	}
1801 	fs->fs_fmod = 1;
1802 	bdwrite(bp);
1803 	return (0);
1804 }
1805 
1806 /*
1807  * Find a block of the specified size in the specified cylinder group.
1808  *
1809  * It is a panic if a request is made to find a block if none are
1810  * available.
1811  */
1812 static ufs_daddr_t
1813 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
1814 {
1815 	ufs_daddr_t bno;
1816 	int start, len, loc, i;
1817 	int blk, field, subfield, pos;
1818 	uint8_t *blksfree;
1819 
1820 	/*
1821 	 * find the fragment by searching through the free block
1822 	 * map for an appropriate bit pattern.
1823 	 */
1824 	if (bpref)
1825 		start = dtogd(fs, bpref) / NBBY;
1826 	else
1827 		start = cgp->cg_frotor / NBBY;
1828 	blksfree = cg_blksfree(cgp);
1829 	len = howmany(fs->fs_fpg, NBBY) - start;
1830 	loc = scanc((uint)len, (u_char *)&blksfree[start],
1831 		(u_char *)fragtbl[fs->fs_frag],
1832 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1833 	if (loc == 0) {
1834 		len = start + 1;	/* XXX why overlap here? */
1835 		start = 0;
1836 		loc = scanc((uint)len, (u_char *)&blksfree[0],
1837 			(u_char *)fragtbl[fs->fs_frag],
1838 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1839 		if (loc == 0) {
1840 			kprintf("start = %d, len = %d, fs = %s\n",
1841 			    start, len, fs->fs_fsmnt);
1842 			panic("ffs_alloccg: map corrupted");
1843 			/* NOTREACHED */
1844 		}
1845 	}
1846 	bno = (start + len - loc) * NBBY;
1847 	cgp->cg_frotor = bno;
1848 	/*
1849 	 * found the byte in the map
1850 	 * sift through the bits to find the selected frag
1851 	 */
1852 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1853 		blk = blkmap(fs, blksfree, bno);
1854 		blk <<= 1;
1855 		field = around[allocsiz];
1856 		subfield = inside[allocsiz];
1857 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1858 			if ((blk & field) == subfield)
1859 				return (bno + pos);
1860 			field <<= 1;
1861 			subfield <<= 1;
1862 		}
1863 	}
1864 	kprintf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1865 	panic("ffs_alloccg: block not in map");
1866 	return (-1);
1867 }
1868 
1869 /*
1870  * Update the cluster map because of an allocation or free.
1871  *
1872  * Cnt == 1 means free; cnt == -1 means allocating.
1873  */
1874 static void
1875 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
1876 {
1877 	int32_t *sump;
1878 	int32_t *lp;
1879 	u_char *freemapp, *mapp;
1880 	int i, start, end, forw, back, map, bit;
1881 
1882 	if (fs->fs_contigsumsize <= 0)
1883 		return;
1884 	freemapp = cg_clustersfree(cgp);
1885 	sump = cg_clustersum(cgp);
1886 	/*
1887 	 * Allocate or clear the actual block.
1888 	 */
1889 	if (cnt > 0)
1890 		setbit(freemapp, blkno);
1891 	else
1892 		clrbit(freemapp, blkno);
1893 	/*
1894 	 * Find the size of the cluster going forward.
1895 	 */
1896 	start = blkno + 1;
1897 	end = start + fs->fs_contigsumsize;
1898 	if (end >= cgp->cg_nclusterblks)
1899 		end = cgp->cg_nclusterblks;
1900 	mapp = &freemapp[start / NBBY];
1901 	map = *mapp++;
1902 	bit = 1 << (start % NBBY);
1903 	for (i = start; i < end; i++) {
1904 		if ((map & bit) == 0)
1905 			break;
1906 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1907 			bit <<= 1;
1908 		} else {
1909 			map = *mapp++;
1910 			bit = 1;
1911 		}
1912 	}
1913 	forw = i - start;
1914 	/*
1915 	 * Find the size of the cluster going backward.
1916 	 */
1917 	start = blkno - 1;
1918 	end = start - fs->fs_contigsumsize;
1919 	if (end < 0)
1920 		end = -1;
1921 	mapp = &freemapp[start / NBBY];
1922 	map = *mapp--;
1923 	bit = 1 << (start % NBBY);
1924 	for (i = start; i > end; i--) {
1925 		if ((map & bit) == 0)
1926 			break;
1927 		if ((i & (NBBY - 1)) != 0) {
1928 			bit >>= 1;
1929 		} else {
1930 			map = *mapp--;
1931 			bit = 1 << (NBBY - 1);
1932 		}
1933 	}
1934 	back = start - i;
1935 	/*
1936 	 * Account for old cluster and the possibly new forward and
1937 	 * back clusters.
1938 	 */
1939 	i = back + forw + 1;
1940 	if (i > fs->fs_contigsumsize)
1941 		i = fs->fs_contigsumsize;
1942 	sump[i] += cnt;
1943 	if (back > 0)
1944 		sump[back] -= cnt;
1945 	if (forw > 0)
1946 		sump[forw] -= cnt;
1947 	/*
1948 	 * Update cluster summary information.
1949 	 */
1950 	lp = &sump[fs->fs_contigsumsize];
1951 	for (i = fs->fs_contigsumsize; i > 0; i--)
1952 		if (*lp-- > 0)
1953 			break;
1954 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1955 }
1956 
1957 /*
1958  * Fserr prints the name of a filesystem with an error diagnostic.
1959  *
1960  * The form of the error message is:
1961  *	fs: error message
1962  */
1963 static void
1964 ffs_fserr(struct fs *fs, uint uid, char *cp)
1965 {
1966 	struct thread *td = curthread;
1967 	struct proc *p;
1968 
1969 	if ((p = td->td_proc) != NULL) {
1970 	    log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1971 		    p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1972 	} else {
1973 	    log(LOG_ERR, "system thread %p, uid %d on %s: %s\n",
1974 		    td, uid, fs->fs_fsmnt, cp);
1975 	}
1976 }
1977