xref: /dragonfly/sys/vfs/ufs/ffs_alloc.c (revision f746689a)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
34  * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $
35  * $DragonFly: src/sys/vfs/ufs/ffs_alloc.c,v 1.27 2006/12/29 17:10:20 swildner Exp $
36  */
37 
38 #include "opt_quota.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/buf.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/mount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/syslog.h>
50 
51 #include <machine/inttypes.h>
52 
53 #include "quota.h"
54 #include "inode.h"
55 #include "ufs_extern.h"
56 #include "ufsmount.h"
57 
58 #include "fs.h"
59 #include "ffs_extern.h"
60 
61 typedef ufs_daddr_t allocfcn_t (struct inode *ip, int cg, ufs_daddr_t bpref,
62 				  int size);
63 
64 static ufs_daddr_t ffs_alloccg (struct inode *, int, ufs_daddr_t, int);
65 static ufs_daddr_t
66 	      ffs_alloccgblk (struct inode *, struct buf *, ufs_daddr_t);
67 #ifdef DIAGNOSTIC
68 static int	ffs_checkblk (struct inode *, ufs_daddr_t, long);
69 #endif
70 static void	ffs_clusteracct	(struct fs *, struct cg *, ufs_daddr_t,
71 				     int);
72 static ufs_daddr_t ffs_clusteralloc (struct inode *, int, ufs_daddr_t,
73 	    int);
74 static ino_t	ffs_dirpref (struct inode *);
75 static ufs_daddr_t ffs_fragextend (struct inode *, int, long, int, int);
76 static void	ffs_fserr (struct fs *, uint, char *);
77 static u_long	ffs_hashalloc
78 		    (struct inode *, int, long, int, allocfcn_t *);
79 static ino_t	ffs_nodealloccg (struct inode *, int, ufs_daddr_t, int);
80 static ufs_daddr_t ffs_mapsearch (struct fs *, struct cg *, ufs_daddr_t,
81 	    int);
82 
83 /*
84  * Allocate a block in the filesystem.
85  *
86  * The size of the requested block is given, which must be some
87  * multiple of fs_fsize and <= fs_bsize.
88  * A preference may be optionally specified. If a preference is given
89  * the following hierarchy is used to allocate a block:
90  *   1) allocate the requested block.
91  *   2) allocate a rotationally optimal block in the same cylinder.
92  *   3) allocate a block in the same cylinder group.
93  *   4) quadradically rehash into other cylinder groups, until an
94  *      available block is located.
95  * If no block preference is given the following heirarchy is used
96  * to allocate a block:
97  *   1) allocate a block in the cylinder group that contains the
98  *      inode for the file.
99  *   2) quadradically rehash into other cylinder groups, until an
100  *      available block is located.
101  */
102 int
103 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
104 	  struct ucred *cred, ufs_daddr_t *bnp)
105 {
106 	struct fs *fs;
107 	ufs_daddr_t bno;
108 	int cg;
109 #ifdef QUOTA
110 	int error;
111 #endif
112 
113 	*bnp = 0;
114 	fs = ip->i_fs;
115 #ifdef DIAGNOSTIC
116 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
117 		kprintf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
118 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
119 		    fs->fs_fsmnt);
120 		panic("ffs_alloc: bad size");
121 	}
122 	if (cred == NOCRED)
123 		panic("ffs_alloc: missing credential");
124 #endif /* DIAGNOSTIC */
125 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
126 		goto nospace;
127 	if (cred->cr_uid != 0 &&
128 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
129 		goto nospace;
130 #ifdef QUOTA
131 	error = ufs_chkdq(ip, (long)btodb(size), cred, 0);
132 	if (error)
133 		return (error);
134 #endif
135 	if (bpref >= fs->fs_size)
136 		bpref = 0;
137 	if (bpref == 0)
138 		cg = ino_to_cg(fs, ip->i_number);
139 	else
140 		cg = dtog(fs, bpref);
141 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
142 					 ffs_alloccg);
143 	if (bno > 0) {
144 		ip->i_blocks += btodb(size);
145 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
146 		*bnp = bno;
147 		return (0);
148 	}
149 #ifdef QUOTA
150 	/*
151 	 * Restore user's disk quota because allocation failed.
152 	 */
153 	(void) ufs_chkdq(ip, (long)-btodb(size), cred, FORCE);
154 #endif
155 nospace:
156 	ffs_fserr(fs, cred->cr_uid, "filesystem full");
157 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
158 	return (ENOSPC);
159 }
160 
161 /*
162  * Reallocate a fragment to a bigger size
163  *
164  * The number and size of the old block is given, and a preference
165  * and new size is also specified. The allocator attempts to extend
166  * the original block. Failing that, the regular block allocator is
167  * invoked to get an appropriate block.
168  */
169 int
170 ffs_realloccg(struct inode *ip, ufs_daddr_t lbprev, ufs_daddr_t bpref,
171 	      int osize, int nsize, struct ucred *cred, struct buf **bpp)
172 {
173 	struct fs *fs;
174 	struct buf *bp;
175 	int cg, request, error;
176 	ufs_daddr_t bprev, bno;
177 
178 	*bpp = 0;
179 	fs = ip->i_fs;
180 #ifdef DIAGNOSTIC
181 	if ((uint)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
182 	    (uint)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
183 		kprintf(
184 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
185 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
186 		    nsize, fs->fs_fsmnt);
187 		panic("ffs_realloccg: bad size");
188 	}
189 	if (cred == NOCRED)
190 		panic("ffs_realloccg: missing credential");
191 #endif /* DIAGNOSTIC */
192 	if (cred->cr_uid != 0 &&
193 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
194 		goto nospace;
195 	if ((bprev = ip->i_db[lbprev]) == 0) {
196 		kprintf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
197 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
198 		    fs->fs_fsmnt);
199 		panic("ffs_realloccg: bad bprev");
200 	}
201 	/*
202 	 * Allocate the extra space in the buffer.
203 	 */
204 	error = bread(ITOV(ip), lblktodoff(fs, lbprev), osize, &bp);
205 	if (error) {
206 		brelse(bp);
207 		return (error);
208 	}
209 
210 	if(bp->b_bio2.bio_offset == NOOFFSET) {
211 		if( lbprev >= NDADDR)
212 			panic("ffs_realloccg: lbprev out of range");
213 		bp->b_bio2.bio_offset = fsbtodoff(fs, bprev);
214 	}
215 
216 #ifdef QUOTA
217 	error = ufs_chkdq(ip, (long)btodb(nsize - osize), cred, 0);
218 	if (error) {
219 		brelse(bp);
220 		return (error);
221 	}
222 #endif
223 	/*
224 	 * Check for extension in the existing location.
225 	 */
226 	cg = dtog(fs, bprev);
227 	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
228 	if (bno) {
229 		if (bp->b_bio2.bio_offset != fsbtodoff(fs, bno))
230 			panic("ffs_realloccg: bad blockno");
231 		ip->i_blocks += btodb(nsize - osize);
232 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
233 		allocbuf(bp, nsize);
234 		bzero((char *)bp->b_data + osize, (uint)nsize - osize);
235 		*bpp = bp;
236 		return (0);
237 	}
238 	/*
239 	 * Allocate a new disk location.
240 	 */
241 	if (bpref >= fs->fs_size)
242 		bpref = 0;
243 	switch ((int)fs->fs_optim) {
244 	case FS_OPTSPACE:
245 		/*
246 		 * Allocate an exact sized fragment. Although this makes
247 		 * best use of space, we will waste time relocating it if
248 		 * the file continues to grow. If the fragmentation is
249 		 * less than half of the minimum free reserve, we choose
250 		 * to begin optimizing for time.
251 		 */
252 		request = nsize;
253 		if (fs->fs_minfree <= 5 ||
254 		    fs->fs_cstotal.cs_nffree >
255 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
256 			break;
257 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
258 			fs->fs_fsmnt);
259 		fs->fs_optim = FS_OPTTIME;
260 		break;
261 	case FS_OPTTIME:
262 		/*
263 		 * At this point we have discovered a file that is trying to
264 		 * grow a small fragment to a larger fragment. To save time,
265 		 * we allocate a full sized block, then free the unused portion.
266 		 * If the file continues to grow, the `ffs_fragextend' call
267 		 * above will be able to grow it in place without further
268 		 * copying. If aberrant programs cause disk fragmentation to
269 		 * grow within 2% of the free reserve, we choose to begin
270 		 * optimizing for space.
271 		 */
272 		request = fs->fs_bsize;
273 		if (fs->fs_cstotal.cs_nffree <
274 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
275 			break;
276 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
277 			fs->fs_fsmnt);
278 		fs->fs_optim = FS_OPTSPACE;
279 		break;
280 	default:
281 		kprintf("dev = %s, optim = %ld, fs = %s\n",
282 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
283 		panic("ffs_realloccg: bad optim");
284 		/* NOTREACHED */
285 	}
286 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
287 					 ffs_alloccg);
288 	if (bno > 0) {
289 		bp->b_bio2.bio_offset = fsbtodoff(fs, bno);
290 		if (!DOINGSOFTDEP(ITOV(ip)))
291 			ffs_blkfree(ip, bprev, (long)osize);
292 		if (nsize < request)
293 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
294 			    (long)(request - nsize));
295 		ip->i_blocks += btodb(nsize - osize);
296 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
297 		allocbuf(bp, nsize);
298 		bzero((char *)bp->b_data + osize, (uint)nsize - osize);
299 		*bpp = bp;
300 		return (0);
301 	}
302 #ifdef QUOTA
303 	/*
304 	 * Restore user's disk quota because allocation failed.
305 	 */
306 	(void) ufs_chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
307 #endif
308 	brelse(bp);
309 nospace:
310 	/*
311 	 * no space available
312 	 */
313 	ffs_fserr(fs, cred->cr_uid, "filesystem full");
314 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
315 	return (ENOSPC);
316 }
317 
318 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
319 
320 /*
321  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
322  *
323  * The vnode and an array of buffer pointers for a range of sequential
324  * logical blocks to be made contiguous is given. The allocator attempts
325  * to find a range of sequential blocks starting as close as possible to
326  * an fs_rotdelay offset from the end of the allocation for the logical
327  * block immediately preceeding the current range. If successful, the
328  * physical block numbers in the buffer pointers and in the inode are
329  * changed to reflect the new allocation. If unsuccessful, the allocation
330  * is left unchanged. The success in doing the reallocation is returned.
331  * Note that the error return is not reflected back to the user. Rather
332  * the previous block allocation will be used.
333  */
334 static int doasyncfree = 1;
335 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
336 
337 static int doreallocblks = 1;
338 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
339 
340 #ifdef DEBUG
341 static volatile int prtrealloc = 0;
342 #endif
343 
344 /*
345  * ffs_reallocblks(struct vnode *a_vp, struct cluster_save *a_buflist)
346  */
347 int
348 ffs_reallocblks(struct vop_reallocblks_args *ap)
349 {
350 	struct fs *fs;
351 	struct inode *ip;
352 	struct vnode *vp;
353 	struct buf *sbp, *ebp;
354 	ufs_daddr_t *bap, *sbap, *ebap = 0;
355 	struct cluster_save *buflist;
356 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
357 #ifdef DIAGNOSTIC
358 	off_t boffset;
359 #endif
360 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
361 	int i, len, slen, start_lvl, end_lvl, pref, ssize;
362 
363 	if (doreallocblks == 0)
364 		return (ENOSPC);
365 	vp = ap->a_vp;
366 	ip = VTOI(vp);
367 	fs = ip->i_fs;
368 	if (fs->fs_contigsumsize <= 0)
369 		return (ENOSPC);
370 	buflist = ap->a_buflist;
371 	len = buflist->bs_nchildren;
372 	start_lbn = lblkno(fs, buflist->bs_children[0]->b_loffset);
373 	end_lbn = start_lbn + len - 1;
374 #ifdef DIAGNOSTIC
375 	for (i = 0; i < len; i++)
376 		if (!ffs_checkblk(ip,
377 		   dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
378 			panic("ffs_reallocblks: unallocated block 1");
379 	for (i = 1; i < len; i++) {
380 		if (buflist->bs_children[i]->b_loffset != lblktodoff(fs, start_lbn) + lblktodoff(fs, i))
381 			panic("ffs_reallocblks: non-logical cluster");
382 	}
383 	boffset = buflist->bs_children[0]->b_bio2.bio_offset;
384 	ssize = (int)fsbtodoff(fs, fs->fs_frag);
385 	for (i = 1; i < len - 1; i++)
386 		if (buflist->bs_children[i]->b_bio2.bio_offset != boffset + (i * ssize))
387 			panic("ffs_reallocblks: non-physical cluster %d", i);
388 #endif
389 	/*
390 	 * If the latest allocation is in a new cylinder group, assume that
391 	 * the filesystem has decided to move and do not force it back to
392 	 * the previous cylinder group.
393 	 */
394 	if (dtog(fs, dofftofsb(fs, buflist->bs_children[0]->b_bio2.bio_offset)) !=
395 	    dtog(fs, dofftofsb(fs, buflist->bs_children[len - 1]->b_bio2.bio_offset)))
396 		return (ENOSPC);
397 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
398 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
399 		return (ENOSPC);
400 	/*
401 	 * Get the starting offset and block map for the first block and
402 	 * the number of blocks that will fit into sbap starting at soff.
403 	 */
404 	if (start_lvl == 0) {
405 		sbap = &ip->i_db[0];
406 		soff = start_lbn;
407 		slen = NDADDR - soff;
408 	} else {
409 		idp = &start_ap[start_lvl - 1];
410 		if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &sbp)) {
411 			brelse(sbp);
412 			return (ENOSPC);
413 		}
414 		sbap = (ufs_daddr_t *)sbp->b_data;
415 		soff = idp->in_off;
416 		slen = fs->fs_nindir - soff;
417 	}
418 	/*
419 	 * Find the preferred location for the cluster.
420 	 */
421 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
422 	/*
423 	 * If the block range spans two block maps, get the second map.
424 	 */
425 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
426 		ssize = len;
427 	} else {
428 #ifdef DIAGNOSTIC
429 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
430 			panic("ffs_reallocblk: start == end");
431 #endif
432 		ssize = len - (idp->in_off + 1);
433 		if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &ebp))
434 			goto fail;
435 		ebap = (ufs_daddr_t *)ebp->b_data;
436 	}
437 
438 	/*
439 	 * Make sure we aren't spanning more then two blockmaps.  ssize is
440 	 * our calculation of the span we have to scan in the first blockmap,
441 	 * while slen is our calculation of the number of entries available
442 	 * in the first blockmap (from soff).
443 	 */
444 	if (ssize > slen) {
445 		panic("ffs_reallocblks: range spans more then two blockmaps!"
446 			" start_lbn %ld len %d (%d/%d)",
447 			(long)start_lbn, len, slen, ssize);
448 	}
449 	/*
450 	 * Search the block map looking for an allocation of the desired size.
451 	 */
452 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
453 	    len, ffs_clusteralloc)) == 0)
454 		goto fail;
455 	/*
456 	 * We have found a new contiguous block.
457 	 *
458 	 * First we have to replace the old block pointers with the new
459 	 * block pointers in the inode and indirect blocks associated
460 	 * with the file.
461 	 */
462 #ifdef DEBUG
463 	if (prtrealloc)
464 		kprintf("realloc: ino %ju, lbns %d-%d\n\told:",
465 		    (uintmax_t)ip->i_number, start_lbn, end_lbn);
466 #endif
467 	blkno = newblk;
468 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
469 		if (i == ssize) {
470 			bap = ebap;
471 			soff = -i;
472 		}
473 #ifdef DIAGNOSTIC
474 		if (!ffs_checkblk(ip,
475 		   dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
476 			panic("ffs_reallocblks: unallocated block 2");
477 		if (dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset) != *bap)
478 			panic("ffs_reallocblks: alloc mismatch");
479 #endif
480 #ifdef DEBUG
481 		if (prtrealloc)
482 			kprintf(" %d,", *bap);
483 #endif
484 		if (DOINGSOFTDEP(vp)) {
485 			if (sbap == &ip->i_db[0] && i < ssize)
486 				softdep_setup_allocdirect(ip, start_lbn + i,
487 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
488 				    buflist->bs_children[i]);
489 			else
490 				softdep_setup_allocindir_page(ip, start_lbn + i,
491 				    i < ssize ? sbp : ebp, soff + i, blkno,
492 				    *bap, buflist->bs_children[i]);
493 		}
494 		*bap++ = blkno;
495 	}
496 	/*
497 	 * Next we must write out the modified inode and indirect blocks.
498 	 * For strict correctness, the writes should be synchronous since
499 	 * the old block values may have been written to disk. In practise
500 	 * they are almost never written, but if we are concerned about
501 	 * strict correctness, the `doasyncfree' flag should be set to zero.
502 	 *
503 	 * The test on `doasyncfree' should be changed to test a flag
504 	 * that shows whether the associated buffers and inodes have
505 	 * been written. The flag should be set when the cluster is
506 	 * started and cleared whenever the buffer or inode is flushed.
507 	 * We can then check below to see if it is set, and do the
508 	 * synchronous write only when it has been cleared.
509 	 */
510 	if (sbap != &ip->i_db[0]) {
511 		if (doasyncfree)
512 			bdwrite(sbp);
513 		else
514 			bwrite(sbp);
515 	} else {
516 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
517 		if (!doasyncfree)
518 			ffs_update(vp, 1);
519 	}
520 	if (ssize < len) {
521 		if (doasyncfree)
522 			bdwrite(ebp);
523 		else
524 			bwrite(ebp);
525 	}
526 	/*
527 	 * Last, free the old blocks and assign the new blocks to the buffers.
528 	 */
529 #ifdef DEBUG
530 	if (prtrealloc)
531 		kprintf("\n\tnew:");
532 #endif
533 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
534 		if (!DOINGSOFTDEP(vp))
535 			ffs_blkfree(ip,
536 			    dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset),
537 			    fs->fs_bsize);
538 		buflist->bs_children[i]->b_bio2.bio_offset = fsbtodoff(fs, blkno);
539 #ifdef DIAGNOSTIC
540 		if (!ffs_checkblk(ip,
541 		   dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
542 			panic("ffs_reallocblks: unallocated block 3");
543 #endif
544 #ifdef DEBUG
545 		if (prtrealloc)
546 			kprintf(" %d,", blkno);
547 #endif
548 	}
549 #ifdef DEBUG
550 	if (prtrealloc) {
551 		prtrealloc--;
552 		kprintf("\n");
553 	}
554 #endif
555 	return (0);
556 
557 fail:
558 	if (ssize < len)
559 		brelse(ebp);
560 	if (sbap != &ip->i_db[0])
561 		brelse(sbp);
562 	return (ENOSPC);
563 }
564 
565 /*
566  * Allocate an inode in the filesystem.
567  *
568  * If allocating a directory, use ffs_dirpref to select the inode.
569  * If allocating in a directory, the following hierarchy is followed:
570  *   1) allocate the preferred inode.
571  *   2) allocate an inode in the same cylinder group.
572  *   3) quadradically rehash into other cylinder groups, until an
573  *      available inode is located.
574  * If no inode preference is given the following heirarchy is used
575  * to allocate an inode:
576  *   1) allocate an inode in cylinder group 0.
577  *   2) quadradically rehash into other cylinder groups, until an
578  *      available inode is located.
579  */
580 int
581 ffs_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
582 {
583 	struct inode *pip;
584 	struct fs *fs;
585 	struct inode *ip;
586 	ino_t ino, ipref;
587 	int cg, error;
588 
589 	*vpp = NULL;
590 	pip = VTOI(pvp);
591 	fs = pip->i_fs;
592 	if (fs->fs_cstotal.cs_nifree == 0)
593 		goto noinodes;
594 
595 	if ((mode & IFMT) == IFDIR)
596 		ipref = ffs_dirpref(pip);
597 	else
598 		ipref = pip->i_number;
599 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
600 		ipref = 0;
601 	cg = ino_to_cg(fs, ipref);
602 	/*
603 	 * Track number of dirs created one after another
604 	 * in a same cg without intervening by files.
605 	 */
606 	if ((mode & IFMT) == IFDIR) {
607 		if (fs->fs_contigdirs[cg] < 255)
608 			fs->fs_contigdirs[cg]++;
609 	} else {
610 		if (fs->fs_contigdirs[cg] > 0)
611 			fs->fs_contigdirs[cg]--;
612 	}
613 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
614 					(allocfcn_t *)ffs_nodealloccg);
615 	if (ino == 0)
616 		goto noinodes;
617 	error = VFS_VGET(pvp->v_mount, ino, vpp);
618 	if (error) {
619 		ffs_vfree(pvp, ino, mode);
620 		return (error);
621 	}
622 	ip = VTOI(*vpp);
623 	if (ip->i_mode) {
624 		kprintf("mode = 0%o, inum = %lu, fs = %s\n",
625 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
626 		panic("ffs_valloc: dup alloc");
627 	}
628 	if (ip->i_blocks) {				/* XXX */
629 		kprintf("free inode %s/%lu had %ld blocks\n",
630 		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
631 		ip->i_blocks = 0;
632 	}
633 	ip->i_flags = 0;
634 	/*
635 	 * Set up a new generation number for this inode.
636 	 */
637 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
638 		ip->i_gen = krandom() / 2 + 1;
639 	return (0);
640 noinodes:
641 	ffs_fserr(fs, cred->cr_uid, "out of inodes");
642 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
643 	return (ENOSPC);
644 }
645 
646 /*
647  * Find a cylinder group to place a directory.
648  *
649  * The policy implemented by this algorithm is to allocate a
650  * directory inode in the same cylinder group as its parent
651  * directory, but also to reserve space for its files inodes
652  * and data. Restrict the number of directories which may be
653  * allocated one after another in the same cylinder group
654  * without intervening allocation of files.
655  *
656  * If we allocate a first level directory then force allocation
657  * in another cylinder group.
658  */
659 static ino_t
660 ffs_dirpref(struct inode *pip)
661 {
662 	struct fs *fs;
663 	int cg, prefcg, dirsize, cgsize;
664 	int64_t dirsize64;
665 	int avgifree, avgbfree, avgndir, curdirsize;
666 	int minifree, minbfree, maxndir;
667 	int mincg, minndir;
668 	int maxcontigdirs;
669 
670 	fs = pip->i_fs;
671 
672 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
673 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
674 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
675 
676 	/*
677 	 * Force allocation in another cg if creating a first level dir.
678 	 */
679 	if (ITOV(pip)->v_flag & VROOT) {
680 		prefcg = karc4random() % fs->fs_ncg;
681 		mincg = prefcg;
682 		minndir = fs->fs_ipg;
683 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
684 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
685 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
686 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
687 				mincg = cg;
688 				minndir = fs->fs_cs(fs, cg).cs_ndir;
689 			}
690 		for (cg = 0; cg < prefcg; cg++)
691 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
692 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
693 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
694 				mincg = cg;
695 				minndir = fs->fs_cs(fs, cg).cs_ndir;
696 			}
697 		return ((ino_t)(fs->fs_ipg * mincg));
698 	}
699 
700 	/*
701 	 * Count various limits which used for
702 	 * optimal allocation of a directory inode.
703 	 */
704 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
705 	minifree = avgifree - avgifree / 4;
706 	if (minifree < 1)
707 		minifree = 1;
708 	minbfree = avgbfree - avgbfree / 4;
709 	if (minbfree < 1)
710 		minbfree = 1;
711 	cgsize = fs->fs_fsize * fs->fs_fpg;
712 
713 	/*
714 	 * fs_avgfilesize and fs_avgfpdir are user-settable entities and
715 	 * multiplying them may overflow a 32 bit integer.
716 	 */
717 	dirsize64 = fs->fs_avgfilesize * (int64_t)fs->fs_avgfpdir;
718 	if (dirsize64 > 0x7fffffff) {
719 		maxcontigdirs = 1;
720 	} else {
721 		dirsize = (int)dirsize64;
722 		curdirsize = avgndir ?
723 			(cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
724 		if (dirsize < curdirsize)
725 			dirsize = curdirsize;
726 		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
727 		if (fs->fs_avgfpdir > 0)
728 			maxcontigdirs = min(maxcontigdirs,
729 				    fs->fs_ipg / fs->fs_avgfpdir);
730 		if (maxcontigdirs == 0)
731 			maxcontigdirs = 1;
732 	}
733 
734 	/*
735 	 * Limit number of dirs in one cg and reserve space for
736 	 * regular files, but only if we have no deficit in
737 	 * inodes or space.
738 	 */
739 	prefcg = ino_to_cg(fs, pip->i_number);
740 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
741 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
742 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
743 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
744 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
745 				return ((ino_t)(fs->fs_ipg * cg));
746 		}
747 	for (cg = 0; cg < prefcg; cg++)
748 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
749 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
750 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
751 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
752 				return ((ino_t)(fs->fs_ipg * cg));
753 		}
754 	/*
755 	 * This is a backstop when we have deficit in space.
756 	 */
757 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
758 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
759 			return ((ino_t)(fs->fs_ipg * cg));
760 	for (cg = 0; cg < prefcg; cg++)
761 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
762 			break;
763 	return ((ino_t)(fs->fs_ipg * cg));
764 }
765 
766 /*
767  * Select the desired position for the next block in a file.  The file is
768  * logically divided into sections. The first section is composed of the
769  * direct blocks. Each additional section contains fs_maxbpg blocks.
770  *
771  * If no blocks have been allocated in the first section, the policy is to
772  * request a block in the same cylinder group as the inode that describes
773  * the file. If no blocks have been allocated in any other section, the
774  * policy is to place the section in a cylinder group with a greater than
775  * average number of free blocks.  An appropriate cylinder group is found
776  * by using a rotor that sweeps the cylinder groups. When a new group of
777  * blocks is needed, the sweep begins in the cylinder group following the
778  * cylinder group from which the previous allocation was made. The sweep
779  * continues until a cylinder group with greater than the average number
780  * of free blocks is found. If the allocation is for the first block in an
781  * indirect block, the information on the previous allocation is unavailable;
782  * here a best guess is made based upon the logical block number being
783  * allocated.
784  *
785  * If a section is already partially allocated, the policy is to
786  * contiguously allocate fs_maxcontig blocks.  The end of one of these
787  * contiguous blocks and the beginning of the next is physically separated
788  * so that the disk head will be in transit between them for at least
789  * fs_rotdelay milliseconds.  This is to allow time for the processor to
790  * schedule another I/O transfer.
791  */
792 ufs_daddr_t
793 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
794 {
795 	struct fs *fs;
796 	int cg;
797 	int avgbfree, startcg;
798 	ufs_daddr_t nextblk;
799 
800 	fs = ip->i_fs;
801 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
802 		if (lbn < NDADDR + NINDIR(fs)) {
803 			cg = ino_to_cg(fs, ip->i_number);
804 			return (fs->fs_fpg * cg + fs->fs_frag);
805 		}
806 		/*
807 		 * Find a cylinder with greater than average number of
808 		 * unused data blocks.
809 		 */
810 		if (indx == 0 || bap[indx - 1] == 0)
811 			startcg =
812 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
813 		else
814 			startcg = dtog(fs, bap[indx - 1]) + 1;
815 		startcg %= fs->fs_ncg;
816 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
817 		for (cg = startcg; cg < fs->fs_ncg; cg++)
818 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
819 				fs->fs_cgrotor = cg;
820 				return (fs->fs_fpg * cg + fs->fs_frag);
821 			}
822 		for (cg = 0; cg <= startcg; cg++)
823 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
824 				fs->fs_cgrotor = cg;
825 				return (fs->fs_fpg * cg + fs->fs_frag);
826 			}
827 		return (0);
828 	}
829 	/*
830 	 * One or more previous blocks have been laid out. If less
831 	 * than fs_maxcontig previous blocks are contiguous, the
832 	 * next block is requested contiguously, otherwise it is
833 	 * requested rotationally delayed by fs_rotdelay milliseconds.
834 	 */
835 	nextblk = bap[indx - 1] + fs->fs_frag;
836 	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
837 	    bap[indx - fs->fs_maxcontig] +
838 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
839 		return (nextblk);
840 	/*
841 	 * Here we convert ms of delay to frags as:
842 	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
843 	 *	((sect/frag) * (ms/sec))
844 	 * then round up to the next block.
845 	 */
846 	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
847 	    (NSPF(fs) * 1000), fs->fs_frag);
848 	return (nextblk);
849 }
850 
851 /*
852  * Implement the cylinder overflow algorithm.
853  *
854  * The policy implemented by this algorithm is:
855  *   1) allocate the block in its requested cylinder group.
856  *   2) quadradically rehash on the cylinder group number.
857  *   3) brute force search for a free block.
858  */
859 /*VARARGS5*/
860 static u_long
861 ffs_hashalloc(struct inode *ip, int cg, long pref,
862 	      int size,	/* size for data blocks, mode for inodes */
863 	      allocfcn_t *allocator)
864 {
865 	struct fs *fs;
866 	long result;	/* XXX why not same type as we return? */
867 	int i, icg = cg;
868 
869 	fs = ip->i_fs;
870 	/*
871 	 * 1: preferred cylinder group
872 	 */
873 	result = (*allocator)(ip, cg, pref, size);
874 	if (result)
875 		return (result);
876 	/*
877 	 * 2: quadratic rehash
878 	 */
879 	for (i = 1; i < fs->fs_ncg; i *= 2) {
880 		cg += i;
881 		if (cg >= fs->fs_ncg)
882 			cg -= fs->fs_ncg;
883 		result = (*allocator)(ip, cg, 0, size);
884 		if (result)
885 			return (result);
886 	}
887 	/*
888 	 * 3: brute force search
889 	 * Note that we start at i == 2, since 0 was checked initially,
890 	 * and 1 is always checked in the quadratic rehash.
891 	 */
892 	cg = (icg + 2) % fs->fs_ncg;
893 	for (i = 2; i < fs->fs_ncg; i++) {
894 		result = (*allocator)(ip, cg, 0, size);
895 		if (result)
896 			return (result);
897 		cg++;
898 		if (cg == fs->fs_ncg)
899 			cg = 0;
900 	}
901 	return (0);
902 }
903 
904 /*
905  * Determine whether a fragment can be extended.
906  *
907  * Check to see if the necessary fragments are available, and
908  * if they are, allocate them.
909  */
910 static ufs_daddr_t
911 ffs_fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize)
912 {
913 	struct fs *fs;
914 	struct cg *cgp;
915 	struct buf *bp;
916 	long bno;
917 	int frags, bbase;
918 	int i, error;
919 	uint8_t *blksfree;
920 
921 	fs = ip->i_fs;
922 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
923 		return (0);
924 	frags = numfrags(fs, nsize);
925 	bbase = fragnum(fs, bprev);
926 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
927 		/* cannot extend across a block boundary */
928 		return (0);
929 	}
930 	KKASSERT(blknum(fs, bprev) == blknum(fs, bprev + frags - 1));
931 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
932 		(int)fs->fs_cgsize, &bp);
933 	if (error) {
934 		brelse(bp);
935 		return (0);
936 	}
937 	cgp = (struct cg *)bp->b_data;
938 	if (!cg_chkmagic(cgp)) {
939 		brelse(bp);
940 		return (0);
941 	}
942 	cgp->cg_time = time_second;
943 	bno = dtogd(fs, bprev);
944 	blksfree = cg_blksfree(cgp);
945 	for (i = numfrags(fs, osize); i < frags; i++) {
946 		if (isclr(blksfree, bno + i)) {
947 			brelse(bp);
948 			return (0);
949 		}
950 	}
951 
952 	/*
953 	 * the current fragment can be extended
954 	 * deduct the count on fragment being extended into
955 	 * increase the count on the remaining fragment (if any)
956 	 * allocate the extended piece
957 	 *
958 	 * ---oooooooooonnnnnnn111----
959 	 *    [-----frags-----]
960 	 *    ^                       ^
961 	 *    bbase                   fs_frag
962 	 */
963 	for (i = frags; i < fs->fs_frag - bbase; i++) {
964 		if (isclr(blksfree, bno + i))
965 			break;
966 	}
967 
968 	/*
969 	 * Size of original free frag is [i - numfrags(fs, osize)]
970 	 * Size of remaining free frag is [i - frags]
971 	 */
972 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
973 	if (i != frags)
974 		cgp->cg_frsum[i - frags]++;
975 	for (i = numfrags(fs, osize); i < frags; i++) {
976 		clrbit(blksfree, bno + i);
977 		cgp->cg_cs.cs_nffree--;
978 		fs->fs_cstotal.cs_nffree--;
979 		fs->fs_cs(fs, cg).cs_nffree--;
980 	}
981 	fs->fs_fmod = 1;
982 	if (DOINGSOFTDEP(ITOV(ip)))
983 		softdep_setup_blkmapdep(bp, fs, bprev);
984 	bdwrite(bp);
985 	return (bprev);
986 }
987 
988 /*
989  * Determine whether a block can be allocated.
990  *
991  * Check to see if a block of the appropriate size is available,
992  * and if it is, allocate it.
993  */
994 static ufs_daddr_t
995 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
996 {
997 	struct fs *fs;
998 	struct cg *cgp;
999 	struct buf *bp;
1000 	int i;
1001 	ufs_daddr_t bno, blkno;
1002 	int allocsiz, error, frags;
1003 	uint8_t *blksfree;
1004 
1005 	fs = ip->i_fs;
1006 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1007 		return (0);
1008 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1009 		(int)fs->fs_cgsize, &bp);
1010 	if (error) {
1011 		brelse(bp);
1012 		return (0);
1013 	}
1014 	cgp = (struct cg *)bp->b_data;
1015 	if (!cg_chkmagic(cgp) ||
1016 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1017 		brelse(bp);
1018 		return (0);
1019 	}
1020 	cgp->cg_time = time_second;
1021 	if (size == fs->fs_bsize) {
1022 		bno = ffs_alloccgblk(ip, bp, bpref);
1023 		bdwrite(bp);
1024 		return (bno);
1025 	}
1026 	/*
1027 	 * Check to see if any fragments of sufficient size are already
1028 	 * available.  Fit the data into a larger fragment if necessary,
1029 	 * before allocating a whole new block.
1030 	 */
1031 	blksfree = cg_blksfree(cgp);
1032 	frags = numfrags(fs, size);
1033 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) {
1034 		if (cgp->cg_frsum[allocsiz] != 0)
1035 			break;
1036 	}
1037 	if (allocsiz == fs->fs_frag) {
1038 		/*
1039 		 * No fragments were available, allocate a whole block and
1040 		 * cut the requested fragment (of size frags) out of it.
1041 		 */
1042 		if (cgp->cg_cs.cs_nbfree == 0) {
1043 			brelse(bp);
1044 			return (0);
1045 		}
1046 		bno = ffs_alloccgblk(ip, bp, bpref);
1047 		bpref = dtogd(fs, bno);
1048 		for (i = frags; i < fs->fs_frag; i++)
1049 			setbit(blksfree, bpref + i);
1050 
1051 		/*
1052 		 * Calculate the number of free frags still remaining after
1053 		 * we have cut out the requested allocation.  Indicate that
1054 		 * a fragment of that size is now available for future
1055 		 * allocation.
1056 		 */
1057 		i = fs->fs_frag - frags;
1058 		cgp->cg_cs.cs_nffree += i;
1059 		fs->fs_cstotal.cs_nffree += i;
1060 		fs->fs_cs(fs, cg).cs_nffree += i;
1061 		fs->fs_fmod = 1;
1062 		cgp->cg_frsum[i]++;
1063 		bdwrite(bp);
1064 		return (bno);
1065 	}
1066 
1067 	/*
1068 	 * cg_frsum[] has told us that a free fragment of allocsiz size is
1069 	 * available.  Find it, then clear the bitmap bits associated with
1070 	 * the size we want.
1071 	 */
1072 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1073 	if (bno < 0) {
1074 		brelse(bp);
1075 		return (0);
1076 	}
1077 	for (i = 0; i < frags; i++)
1078 		clrbit(blksfree, bno + i);
1079 	cgp->cg_cs.cs_nffree -= frags;
1080 	fs->fs_cstotal.cs_nffree -= frags;
1081 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1082 	fs->fs_fmod = 1;
1083 
1084 	/*
1085 	 * Account for the allocation.  The original searched size that we
1086 	 * found is no longer available.  If we cut out a smaller piece then
1087 	 * a smaller fragment is now available.
1088 	 */
1089 	cgp->cg_frsum[allocsiz]--;
1090 	if (frags != allocsiz)
1091 		cgp->cg_frsum[allocsiz - frags]++;
1092 	blkno = cg * fs->fs_fpg + bno;
1093 	if (DOINGSOFTDEP(ITOV(ip)))
1094 		softdep_setup_blkmapdep(bp, fs, blkno);
1095 	bdwrite(bp);
1096 	return ((u_long)blkno);
1097 }
1098 
1099 /*
1100  * Allocate a block in a cylinder group.
1101  *
1102  * This algorithm implements the following policy:
1103  *   1) allocate the requested block.
1104  *   2) allocate a rotationally optimal block in the same cylinder.
1105  *   3) allocate the next available block on the block rotor for the
1106  *      specified cylinder group.
1107  * Note that this routine only allocates fs_bsize blocks; these
1108  * blocks may be fragmented by the routine that allocates them.
1109  */
1110 static ufs_daddr_t
1111 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
1112 {
1113 	struct fs *fs;
1114 	struct cg *cgp;
1115 	ufs_daddr_t bno, blkno;
1116 	int cylno, pos, delta;
1117 	short *cylbp;
1118 	int i;
1119 	uint8_t *blksfree;
1120 
1121 	fs = ip->i_fs;
1122 	cgp = (struct cg *)bp->b_data;
1123 	blksfree = cg_blksfree(cgp);
1124 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1125 		bpref = cgp->cg_rotor;
1126 		goto norot;
1127 	}
1128 	bpref = blknum(fs, bpref);
1129 	bpref = dtogd(fs, bpref);
1130 	/*
1131 	 * if the requested block is available, use it
1132 	 */
1133 	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1134 		bno = bpref;
1135 		goto gotit;
1136 	}
1137 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1138 		/*
1139 		 * Block layout information is not available.
1140 		 * Leaving bpref unchanged means we take the
1141 		 * next available free block following the one
1142 		 * we just allocated. Hopefully this will at
1143 		 * least hit a track cache on drives of unknown
1144 		 * geometry (e.g. SCSI).
1145 		 */
1146 		goto norot;
1147 	}
1148 	/*
1149 	 * check for a block available on the same cylinder
1150 	 */
1151 	cylno = cbtocylno(fs, bpref);
1152 	if (cg_blktot(cgp)[cylno] == 0)
1153 		goto norot;
1154 	/*
1155 	 * check the summary information to see if a block is
1156 	 * available in the requested cylinder starting at the
1157 	 * requested rotational position and proceeding around.
1158 	 */
1159 	cylbp = cg_blks(fs, cgp, cylno);
1160 	pos = cbtorpos(fs, bpref);
1161 	for (i = pos; i < fs->fs_nrpos; i++)
1162 		if (cylbp[i] > 0)
1163 			break;
1164 	if (i == fs->fs_nrpos)
1165 		for (i = 0; i < pos; i++)
1166 			if (cylbp[i] > 0)
1167 				break;
1168 	if (cylbp[i] > 0) {
1169 		/*
1170 		 * found a rotational position, now find the actual
1171 		 * block. A panic if none is actually there.
1172 		 */
1173 		pos = cylno % fs->fs_cpc;
1174 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1175 		if (fs_postbl(fs, pos)[i] == -1) {
1176 			kprintf("pos = %d, i = %d, fs = %s\n",
1177 			    pos, i, fs->fs_fsmnt);
1178 			panic("ffs_alloccgblk: cyl groups corrupted");
1179 		}
1180 		for (i = fs_postbl(fs, pos)[i];; ) {
1181 			if (ffs_isblock(fs, blksfree, bno + i)) {
1182 				bno = blkstofrags(fs, (bno + i));
1183 				goto gotit;
1184 			}
1185 			delta = fs_rotbl(fs)[i];
1186 			if (delta <= 0 ||
1187 			    delta + i > fragstoblks(fs, fs->fs_fpg))
1188 				break;
1189 			i += delta;
1190 		}
1191 		kprintf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1192 		panic("ffs_alloccgblk: can't find blk in cyl");
1193 	}
1194 norot:
1195 	/*
1196 	 * no blocks in the requested cylinder, so take next
1197 	 * available one in this cylinder group.
1198 	 */
1199 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1200 	if (bno < 0)
1201 		return (0);
1202 	cgp->cg_rotor = bno;
1203 gotit:
1204 	blkno = fragstoblks(fs, bno);
1205 	ffs_clrblock(fs, blksfree, (long)blkno);
1206 	ffs_clusteracct(fs, cgp, blkno, -1);
1207 	cgp->cg_cs.cs_nbfree--;
1208 	fs->fs_cstotal.cs_nbfree--;
1209 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1210 	cylno = cbtocylno(fs, bno);
1211 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1212 	cg_blktot(cgp)[cylno]--;
1213 	fs->fs_fmod = 1;
1214 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1215 	if (DOINGSOFTDEP(ITOV(ip)))
1216 		softdep_setup_blkmapdep(bp, fs, blkno);
1217 	return (blkno);
1218 }
1219 
1220 /*
1221  * Determine whether a cluster can be allocated.
1222  *
1223  * We do not currently check for optimal rotational layout if there
1224  * are multiple choices in the same cylinder group. Instead we just
1225  * take the first one that we find following bpref.
1226  */
1227 static ufs_daddr_t
1228 ffs_clusteralloc(struct inode *ip, int cg, ufs_daddr_t bpref, int len)
1229 {
1230 	struct fs *fs;
1231 	struct cg *cgp;
1232 	struct buf *bp;
1233 	int i, got, run, bno, bit, map;
1234 	u_char *mapp;
1235 	int32_t *lp;
1236 	uint8_t *blksfree;
1237 
1238 	fs = ip->i_fs;
1239 	if (fs->fs_maxcluster[cg] < len)
1240 		return (0);
1241 	if (bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1242 		  (int)fs->fs_cgsize, &bp)) {
1243 		goto fail;
1244 	}
1245 	cgp = (struct cg *)bp->b_data;
1246 	if (!cg_chkmagic(cgp))
1247 		goto fail;
1248 
1249 	/*
1250 	 * Check to see if a cluster of the needed size (or bigger) is
1251 	 * available in this cylinder group.
1252 	 */
1253 	lp = &cg_clustersum(cgp)[len];
1254 	for (i = len; i <= fs->fs_contigsumsize; i++)
1255 		if (*lp++ > 0)
1256 			break;
1257 	if (i > fs->fs_contigsumsize) {
1258 		/*
1259 		 * This is the first time looking for a cluster in this
1260 		 * cylinder group. Update the cluster summary information
1261 		 * to reflect the true maximum sized cluster so that
1262 		 * future cluster allocation requests can avoid reading
1263 		 * the cylinder group map only to find no clusters.
1264 		 */
1265 		lp = &cg_clustersum(cgp)[len - 1];
1266 		for (i = len - 1; i > 0; i--)
1267 			if (*lp-- > 0)
1268 				break;
1269 		fs->fs_maxcluster[cg] = i;
1270 		goto fail;
1271 	}
1272 	/*
1273 	 * Search the cluster map to find a big enough cluster.
1274 	 * We take the first one that we find, even if it is larger
1275 	 * than we need as we prefer to get one close to the previous
1276 	 * block allocation. We do not search before the current
1277 	 * preference point as we do not want to allocate a block
1278 	 * that is allocated before the previous one (as we will
1279 	 * then have to wait for another pass of the elevator
1280 	 * algorithm before it will be read). We prefer to fail and
1281 	 * be recalled to try an allocation in the next cylinder group.
1282 	 */
1283 	if (dtog(fs, bpref) != cg)
1284 		bpref = 0;
1285 	else
1286 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1287 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1288 	map = *mapp++;
1289 	bit = 1 << (bpref % NBBY);
1290 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1291 		if ((map & bit) == 0) {
1292 			run = 0;
1293 		} else {
1294 			run++;
1295 			if (run == len)
1296 				break;
1297 		}
1298 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1299 			bit <<= 1;
1300 		} else {
1301 			map = *mapp++;
1302 			bit = 1;
1303 		}
1304 	}
1305 	if (got >= cgp->cg_nclusterblks)
1306 		goto fail;
1307 	/*
1308 	 * Allocate the cluster that we have found.
1309 	 */
1310 	blksfree = cg_blksfree(cgp);
1311 	for (i = 1; i <= len; i++) {
1312 		if (!ffs_isblock(fs, blksfree, got - run + i))
1313 			panic("ffs_clusteralloc: map mismatch");
1314 	}
1315 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1316 	if (dtog(fs, bno) != cg)
1317 		panic("ffs_clusteralloc: allocated out of group");
1318 	len = blkstofrags(fs, len);
1319 	for (i = 0; i < len; i += fs->fs_frag) {
1320 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1321 			panic("ffs_clusteralloc: lost block");
1322 	}
1323 	bdwrite(bp);
1324 	return (bno);
1325 
1326 fail:
1327 	brelse(bp);
1328 	return (0);
1329 }
1330 
1331 /*
1332  * Determine whether an inode can be allocated.
1333  *
1334  * Check to see if an inode is available, and if it is,
1335  * allocate it using the following policy:
1336  *   1) allocate the requested inode.
1337  *   2) allocate the next available inode after the requested
1338  *      inode in the specified cylinder group.
1339  *   3) the inode must not already be in the inode hash table.  We
1340  *	can encounter such a case because the vnode reclamation sequence
1341  *	frees the bit
1342  *   3) the inode must not already be in the inode hash, otherwise it
1343  *	may be in the process of being deallocated.  This can occur
1344  *	because the bitmap is updated before the inode is removed from
1345  *	hash.  If we were to reallocate the inode the caller could wind
1346  *	up returning a vnode/inode combination which is in an indeterminate
1347  *	state.
1348  */
1349 static ino_t
1350 ffs_nodealloccg(struct inode *ip, int cg, ufs_daddr_t ipref, int mode)
1351 {
1352 	struct fs *fs;
1353 	struct cg *cgp;
1354 	struct buf *bp;
1355 	uint8_t *inosused;
1356 	uint8_t map;
1357 	int error, len, arraysize, i;
1358 	int icheckmiss;
1359 	ufs_daddr_t ibase;
1360 
1361 	fs = ip->i_fs;
1362 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1363 		return (0);
1364 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1365 		      (int)fs->fs_cgsize, &bp);
1366 	if (error) {
1367 		brelse(bp);
1368 		return (0);
1369 	}
1370 	cgp = (struct cg *)bp->b_data;
1371 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1372 		brelse(bp);
1373 		return (0);
1374 	}
1375 	inosused = cg_inosused(cgp);
1376 	icheckmiss = 0;
1377 
1378 	/*
1379 	 * Quick check, reuse the most recently free inode or continue
1380 	 * a scan from where we left off the last time.
1381 	 */
1382 	ibase = cg * fs->fs_ipg;
1383 	if (ipref) {
1384 		ipref %= fs->fs_ipg;
1385 		if (isclr(inosused, ipref)) {
1386 			if (ufs_ihashcheck(ip->i_dev, ibase + ipref) == 0)
1387 				goto gotit;
1388 		}
1389 	}
1390 
1391 	/*
1392 	 * Scan the inode bitmap starting at irotor, be sure to handle
1393 	 * the edge case by going back to the beginning of the array.
1394 	 *
1395 	 * If the number of inodes is not byte-aligned, the unused bits
1396 	 * should be set to 1.  This will be sanity checked in gotit.  Note
1397 	 * that we have to be sure not to overlap the beginning and end
1398 	 * when irotor is in the middle of a byte as this will cause the
1399 	 * same bitmap byte to be checked twice.  To solve this problem we
1400 	 * just convert everything to a byte index for the loop.
1401 	 */
1402 	ipref = (cgp->cg_irotor % fs->fs_ipg) >> 3;	/* byte index */
1403 	len = (fs->fs_ipg + 7) >> 3;			/* byte size */
1404 	arraysize = len;
1405 
1406 	while (len > 0) {
1407 		map = inosused[ipref];
1408 		if (map != 255) {
1409 			for (i = 0; i < NBBY; ++i) {
1410 				/*
1411 				 * If we find a free bit we have to make sure
1412 				 * that the inode is not in the middle of
1413 				 * being destroyed.  The inode should not exist
1414 				 * in the inode hash.
1415 				 *
1416 				 * Adjust the rotor to try to hit the
1417 				 * quick-check up above.
1418 				 */
1419 				if ((map & (1 << i)) == 0) {
1420 					if (ufs_ihashcheck(ip->i_dev, ibase + (ipref << 3) + i) == 0) {
1421 						ipref = (ipref << 3) + i;
1422 						cgp->cg_irotor = (ipref + 1) % fs->fs_ipg;
1423 						goto gotit;
1424 					}
1425 					++icheckmiss;
1426 				}
1427 			}
1428 		}
1429 
1430 		/*
1431 		 * Setup for the next byte, start at the beginning again if
1432 		 * we hit the end of the array.
1433 		 */
1434 		if (++ipref == arraysize)
1435 			ipref = 0;
1436 		--len;
1437 	}
1438 	if (icheckmiss == cgp->cg_cs.cs_nifree) {
1439 		brelse(bp);
1440 		return(0);
1441 	}
1442 	kprintf("fs = %s\n", fs->fs_fsmnt);
1443 	panic("ffs_nodealloccg: block not in map, icheckmiss/nfree %d/%d",
1444 		icheckmiss, cgp->cg_cs.cs_nifree);
1445 	/* NOTREACHED */
1446 
1447 	/*
1448 	 * ipref is a bit index as of the gotit label.
1449 	 */
1450 gotit:
1451 	KKASSERT(ipref >= 0 && ipref < fs->fs_ipg);
1452 	cgp->cg_time = time_second;
1453 	if (DOINGSOFTDEP(ITOV(ip)))
1454 		softdep_setup_inomapdep(bp, ip, ibase + ipref);
1455 	setbit(inosused, ipref);
1456 	cgp->cg_cs.cs_nifree--;
1457 	fs->fs_cstotal.cs_nifree--;
1458 	fs->fs_cs(fs, cg).cs_nifree--;
1459 	fs->fs_fmod = 1;
1460 	if ((mode & IFMT) == IFDIR) {
1461 		cgp->cg_cs.cs_ndir++;
1462 		fs->fs_cstotal.cs_ndir++;
1463 		fs->fs_cs(fs, cg).cs_ndir++;
1464 	}
1465 	bdwrite(bp);
1466 	return (ibase + ipref);
1467 }
1468 
1469 /*
1470  * Free a block or fragment.
1471  *
1472  * The specified block or fragment is placed back in the
1473  * free map. If a fragment is deallocated, a possible
1474  * block reassembly is checked.
1475  */
1476 void
1477 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
1478 {
1479 	struct fs *fs;
1480 	struct cg *cgp;
1481 	struct buf *bp;
1482 	ufs_daddr_t blkno;
1483 	int i, error, cg, blk, frags, bbase;
1484 	uint8_t *blksfree;
1485 
1486 	fs = ip->i_fs;
1487 	VOP_FREEBLKS(ip->i_devvp, fsbtodoff(fs, bno), size);
1488 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1489 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1490 		kprintf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1491 		    devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size,
1492 		    fs->fs_fsmnt);
1493 		panic("ffs_blkfree: bad size");
1494 	}
1495 	cg = dtog(fs, bno);
1496 	if ((uint)bno >= fs->fs_size) {
1497 		kprintf("bad block %ld, ino %lu\n",
1498 		    (long)bno, (u_long)ip->i_number);
1499 		ffs_fserr(fs, ip->i_uid, "bad block");
1500 		return;
1501 	}
1502 
1503 	/*
1504 	 * Load the cylinder group
1505 	 */
1506 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1507 		      (int)fs->fs_cgsize, &bp);
1508 	if (error) {
1509 		brelse(bp);
1510 		return;
1511 	}
1512 	cgp = (struct cg *)bp->b_data;
1513 	if (!cg_chkmagic(cgp)) {
1514 		brelse(bp);
1515 		return;
1516 	}
1517 	cgp->cg_time = time_second;
1518 	bno = dtogd(fs, bno);
1519 	blksfree = cg_blksfree(cgp);
1520 
1521 	if (size == fs->fs_bsize) {
1522 		/*
1523 		 * Free a whole block
1524 		 */
1525 		blkno = fragstoblks(fs, bno);
1526 		if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1527 			kprintf("dev = %s, block = %ld, fs = %s\n",
1528 			    devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt);
1529 			panic("ffs_blkfree: freeing free block");
1530 		}
1531 		ffs_setblock(fs, blksfree, blkno);
1532 		ffs_clusteracct(fs, cgp, blkno, 1);
1533 		cgp->cg_cs.cs_nbfree++;
1534 		fs->fs_cstotal.cs_nbfree++;
1535 		fs->fs_cs(fs, cg).cs_nbfree++;
1536 		i = cbtocylno(fs, bno);
1537 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1538 		cg_blktot(cgp)[i]++;
1539 	} else {
1540 		/*
1541 		 * Free a fragment within a block.
1542 		 *
1543 		 * bno is the starting block number of the fragment being
1544 		 * freed.
1545 		 *
1546 		 * bbase is the starting block number for the filesystem
1547 		 * block containing the fragment.
1548 		 *
1549 		 * blk is the current bitmap for the fragments within the
1550 		 * filesystem block containing the fragment.
1551 		 *
1552 		 * frags is the number of fragments being freed
1553 		 *
1554 		 * Call ffs_fragacct() to account for the removal of all
1555 		 * current fragments, then adjust the bitmap to free the
1556 		 * requested fragment, and finally call ffs_fragacct() again
1557 		 * to regenerate the accounting.
1558 		 */
1559 		bbase = bno - fragnum(fs, bno);
1560 		blk = blkmap(fs, blksfree, bbase);
1561 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1562 		frags = numfrags(fs, size);
1563 		for (i = 0; i < frags; i++) {
1564 			if (isset(blksfree, bno + i)) {
1565 				kprintf("dev = %s, block = %ld, fs = %s\n",
1566 				    devtoname(ip->i_dev), (long)(bno + i),
1567 				    fs->fs_fsmnt);
1568 				panic("ffs_blkfree: freeing free frag");
1569 			}
1570 			setbit(blksfree, bno + i);
1571 		}
1572 		cgp->cg_cs.cs_nffree += i;
1573 		fs->fs_cstotal.cs_nffree += i;
1574 		fs->fs_cs(fs, cg).cs_nffree += i;
1575 
1576 		/*
1577 		 * Add back in counts associated with the new frags
1578 		 */
1579 		blk = blkmap(fs, blksfree, bbase);
1580 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1581 
1582 		/*
1583 		 * If a complete block has been reassembled, account for it
1584 		 */
1585 		blkno = fragstoblks(fs, bbase);
1586 		if (ffs_isblock(fs, blksfree, blkno)) {
1587 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1588 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1589 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1590 			ffs_clusteracct(fs, cgp, blkno, 1);
1591 			cgp->cg_cs.cs_nbfree++;
1592 			fs->fs_cstotal.cs_nbfree++;
1593 			fs->fs_cs(fs, cg).cs_nbfree++;
1594 			i = cbtocylno(fs, bbase);
1595 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1596 			cg_blktot(cgp)[i]++;
1597 		}
1598 	}
1599 	fs->fs_fmod = 1;
1600 	bdwrite(bp);
1601 }
1602 
1603 #ifdef DIAGNOSTIC
1604 /*
1605  * Verify allocation of a block or fragment. Returns true if block or
1606  * fragment is allocated, false if it is free.
1607  */
1608 static int
1609 ffs_checkblk(struct inode *ip, ufs_daddr_t bno, long size)
1610 {
1611 	struct fs *fs;
1612 	struct cg *cgp;
1613 	struct buf *bp;
1614 	int i, error, frags, free;
1615 	uint8_t *blksfree;
1616 
1617 	fs = ip->i_fs;
1618 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1619 		kprintf("bsize = %ld, size = %ld, fs = %s\n",
1620 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1621 		panic("ffs_checkblk: bad size");
1622 	}
1623 	if ((uint)bno >= fs->fs_size)
1624 		panic("ffs_checkblk: bad block %d", bno);
1625 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, dtog(fs, bno))),
1626 		      (int)fs->fs_cgsize, &bp);
1627 	if (error)
1628 		panic("ffs_checkblk: cg bread failed");
1629 	cgp = (struct cg *)bp->b_data;
1630 	if (!cg_chkmagic(cgp))
1631 		panic("ffs_checkblk: cg magic mismatch");
1632 	blksfree = cg_blksfree(cgp);
1633 	bno = dtogd(fs, bno);
1634 	if (size == fs->fs_bsize) {
1635 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1636 	} else {
1637 		frags = numfrags(fs, size);
1638 		for (free = 0, i = 0; i < frags; i++)
1639 			if (isset(blksfree, bno + i))
1640 				free++;
1641 		if (free != 0 && free != frags)
1642 			panic("ffs_checkblk: partially free fragment");
1643 	}
1644 	brelse(bp);
1645 	return (!free);
1646 }
1647 #endif /* DIAGNOSTIC */
1648 
1649 /*
1650  * Free an inode.
1651  */
1652 int
1653 ffs_vfree(struct vnode *pvp, ino_t ino, int mode)
1654 {
1655 	if (DOINGSOFTDEP(pvp)) {
1656 		softdep_freefile(pvp, ino, mode);
1657 		return (0);
1658 	}
1659 	return (ffs_freefile(pvp, ino, mode));
1660 }
1661 
1662 /*
1663  * Do the actual free operation.
1664  * The specified inode is placed back in the free map.
1665  */
1666 int
1667 ffs_freefile(struct vnode *pvp, ino_t ino, int mode)
1668 {
1669 	struct fs *fs;
1670 	struct cg *cgp;
1671 	struct inode *pip;
1672 	struct buf *bp;
1673 	int error, cg;
1674 	uint8_t *inosused;
1675 
1676 	pip = VTOI(pvp);
1677 	fs = pip->i_fs;
1678 	if ((uint)ino >= fs->fs_ipg * fs->fs_ncg)
1679 		panic("ffs_vfree: range: dev = (%d,%d), ino = %"PRId64", fs = %s",
1680 		    major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1681 	cg = ino_to_cg(fs, ino);
1682 	error = bread(pip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1683 		      (int)fs->fs_cgsize, &bp);
1684 	if (error) {
1685 		brelse(bp);
1686 		return (error);
1687 	}
1688 	cgp = (struct cg *)bp->b_data;
1689 	if (!cg_chkmagic(cgp)) {
1690 		brelse(bp);
1691 		return (0);
1692 	}
1693 	cgp->cg_time = time_second;
1694 	inosused = cg_inosused(cgp);
1695 	ino %= fs->fs_ipg;
1696 	if (isclr(inosused, ino)) {
1697 		kprintf("dev = %s, ino = %lu, fs = %s\n",
1698 		    devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1699 		if (fs->fs_ronly == 0)
1700 			panic("ffs_vfree: freeing free inode");
1701 	}
1702 	clrbit(inosused, ino);
1703 	if (ino < cgp->cg_irotor)
1704 		cgp->cg_irotor = ino;
1705 	cgp->cg_cs.cs_nifree++;
1706 	fs->fs_cstotal.cs_nifree++;
1707 	fs->fs_cs(fs, cg).cs_nifree++;
1708 	if ((mode & IFMT) == IFDIR) {
1709 		cgp->cg_cs.cs_ndir--;
1710 		fs->fs_cstotal.cs_ndir--;
1711 		fs->fs_cs(fs, cg).cs_ndir--;
1712 	}
1713 	fs->fs_fmod = 1;
1714 	bdwrite(bp);
1715 	return (0);
1716 }
1717 
1718 /*
1719  * Find a block of the specified size in the specified cylinder group.
1720  *
1721  * It is a panic if a request is made to find a block if none are
1722  * available.
1723  */
1724 static ufs_daddr_t
1725 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
1726 {
1727 	ufs_daddr_t bno;
1728 	int start, len, loc, i;
1729 	int blk, field, subfield, pos;
1730 	uint8_t *blksfree;
1731 
1732 	/*
1733 	 * find the fragment by searching through the free block
1734 	 * map for an appropriate bit pattern.
1735 	 */
1736 	if (bpref)
1737 		start = dtogd(fs, bpref) / NBBY;
1738 	else
1739 		start = cgp->cg_frotor / NBBY;
1740 	blksfree = cg_blksfree(cgp);
1741 	len = howmany(fs->fs_fpg, NBBY) - start;
1742 	loc = scanc((uint)len, (u_char *)&blksfree[start],
1743 		(u_char *)fragtbl[fs->fs_frag],
1744 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1745 	if (loc == 0) {
1746 		len = start + 1;	/* XXX why overlap here? */
1747 		start = 0;
1748 		loc = scanc((uint)len, (u_char *)&blksfree[0],
1749 			(u_char *)fragtbl[fs->fs_frag],
1750 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1751 		if (loc == 0) {
1752 			kprintf("start = %d, len = %d, fs = %s\n",
1753 			    start, len, fs->fs_fsmnt);
1754 			panic("ffs_alloccg: map corrupted");
1755 			/* NOTREACHED */
1756 		}
1757 	}
1758 	bno = (start + len - loc) * NBBY;
1759 	cgp->cg_frotor = bno;
1760 	/*
1761 	 * found the byte in the map
1762 	 * sift through the bits to find the selected frag
1763 	 */
1764 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1765 		blk = blkmap(fs, blksfree, bno);
1766 		blk <<= 1;
1767 		field = around[allocsiz];
1768 		subfield = inside[allocsiz];
1769 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1770 			if ((blk & field) == subfield)
1771 				return (bno + pos);
1772 			field <<= 1;
1773 			subfield <<= 1;
1774 		}
1775 	}
1776 	kprintf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1777 	panic("ffs_alloccg: block not in map");
1778 	return (-1);
1779 }
1780 
1781 /*
1782  * Update the cluster map because of an allocation or free.
1783  *
1784  * Cnt == 1 means free; cnt == -1 means allocating.
1785  */
1786 static void
1787 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
1788 {
1789 	int32_t *sump;
1790 	int32_t *lp;
1791 	u_char *freemapp, *mapp;
1792 	int i, start, end, forw, back, map, bit;
1793 
1794 	if (fs->fs_contigsumsize <= 0)
1795 		return;
1796 	freemapp = cg_clustersfree(cgp);
1797 	sump = cg_clustersum(cgp);
1798 	/*
1799 	 * Allocate or clear the actual block.
1800 	 */
1801 	if (cnt > 0)
1802 		setbit(freemapp, blkno);
1803 	else
1804 		clrbit(freemapp, blkno);
1805 	/*
1806 	 * Find the size of the cluster going forward.
1807 	 */
1808 	start = blkno + 1;
1809 	end = start + fs->fs_contigsumsize;
1810 	if (end >= cgp->cg_nclusterblks)
1811 		end = cgp->cg_nclusterblks;
1812 	mapp = &freemapp[start / NBBY];
1813 	map = *mapp++;
1814 	bit = 1 << (start % NBBY);
1815 	for (i = start; i < end; i++) {
1816 		if ((map & bit) == 0)
1817 			break;
1818 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1819 			bit <<= 1;
1820 		} else {
1821 			map = *mapp++;
1822 			bit = 1;
1823 		}
1824 	}
1825 	forw = i - start;
1826 	/*
1827 	 * Find the size of the cluster going backward.
1828 	 */
1829 	start = blkno - 1;
1830 	end = start - fs->fs_contigsumsize;
1831 	if (end < 0)
1832 		end = -1;
1833 	mapp = &freemapp[start / NBBY];
1834 	map = *mapp--;
1835 	bit = 1 << (start % NBBY);
1836 	for (i = start; i > end; i--) {
1837 		if ((map & bit) == 0)
1838 			break;
1839 		if ((i & (NBBY - 1)) != 0) {
1840 			bit >>= 1;
1841 		} else {
1842 			map = *mapp--;
1843 			bit = 1 << (NBBY - 1);
1844 		}
1845 	}
1846 	back = start - i;
1847 	/*
1848 	 * Account for old cluster and the possibly new forward and
1849 	 * back clusters.
1850 	 */
1851 	i = back + forw + 1;
1852 	if (i > fs->fs_contigsumsize)
1853 		i = fs->fs_contigsumsize;
1854 	sump[i] += cnt;
1855 	if (back > 0)
1856 		sump[back] -= cnt;
1857 	if (forw > 0)
1858 		sump[forw] -= cnt;
1859 	/*
1860 	 * Update cluster summary information.
1861 	 */
1862 	lp = &sump[fs->fs_contigsumsize];
1863 	for (i = fs->fs_contigsumsize; i > 0; i--)
1864 		if (*lp-- > 0)
1865 			break;
1866 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1867 }
1868 
1869 /*
1870  * Fserr prints the name of a filesystem with an error diagnostic.
1871  *
1872  * The form of the error message is:
1873  *	fs: error message
1874  */
1875 static void
1876 ffs_fserr(struct fs *fs, uint uid, char *cp)
1877 {
1878 	struct thread *td = curthread;
1879 	struct proc *p;
1880 
1881 	if ((p = td->td_proc) != NULL) {
1882 	    log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1883 		    p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1884 	} else {
1885 	    log(LOG_ERR, "system thread %p, uid %d on %s: %s\n",
1886 		    td, uid, fs->fs_fsmnt, cp);
1887 	}
1888 }
1889