xref: /dragonfly/sys/vfs/ufs/ffs_alloc.c (revision ffe53622)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
30  * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $
31  */
32 
33 #include "opt_quota.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/buf.h>
38 #include <sys/conf.h>
39 #include <sys/proc.h>
40 #include <sys/vnode.h>
41 #include <sys/mount.h>
42 #include <sys/kernel.h>
43 #include <sys/sysctl.h>
44 #include <sys/syslog.h>
45 
46 #include <sys/taskqueue.h>
47 #include <machine/inttypes.h>
48 
49 #include <sys/buf2.h>
50 
51 #include "quota.h"
52 #include "inode.h"
53 #include "ufs_extern.h"
54 #include "ufsmount.h"
55 
56 #include "fs.h"
57 #include "ffs_extern.h"
58 
59 typedef ufs_daddr_t allocfcn_t (struct inode *ip, int cg, ufs_daddr_t bpref,
60 				  int size);
61 
62 static ufs_daddr_t ffs_alloccg (struct inode *, int, ufs_daddr_t, int);
63 static ufs_daddr_t
64 	      ffs_alloccgblk (struct inode *, struct buf *, ufs_daddr_t);
65 static void ffs_blkfree_cg(struct fs *, struct vnode *, cdev_t , ino_t,
66 			   uint32_t , ufs_daddr_t, long );
67 #ifdef DIAGNOSTIC
68 static int	ffs_checkblk (struct inode *, ufs_daddr_t, long);
69 #endif
70 static void	ffs_clusteracct	(struct fs *, struct cg *, ufs_daddr_t,
71 				     int);
72 static ufs_daddr_t ffs_clusteralloc (struct inode *, int, ufs_daddr_t,
73 	    int);
74 static ino_t	ffs_dirpref (struct inode *);
75 static ufs_daddr_t ffs_fragextend (struct inode *, int, long, int, int);
76 static void	ffs_fserr (struct fs *, uint, char *);
77 static u_long	ffs_hashalloc
78 		    (struct inode *, int, long, int, allocfcn_t *);
79 static ino_t	ffs_nodealloccg (struct inode *, int, ufs_daddr_t, int);
80 static ufs_daddr_t ffs_mapsearch (struct fs *, struct cg *, ufs_daddr_t,
81 	    int);
82 
83 /*
84  * Allocate a block in the filesystem.
85  *
86  * The size of the requested block is given, which must be some
87  * multiple of fs_fsize and <= fs_bsize.
88  * A preference may be optionally specified. If a preference is given
89  * the following hierarchy is used to allocate a block:
90  *   1) allocate the requested block.
91  *   2) allocate a rotationally optimal block in the same cylinder.
92  *   3) allocate a block in the same cylinder group.
93  *   4) quadradically rehash into other cylinder groups, until an
94  *      available block is located.
95  * If no block preference is given the following heirarchy is used
96  * to allocate a block:
97  *   1) allocate a block in the cylinder group that contains the
98  *      inode for the file.
99  *   2) quadradically rehash into other cylinder groups, until an
100  *      available block is located.
101  */
102 int
103 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
104 	  struct ucred *cred, ufs_daddr_t *bnp)
105 {
106 	struct fs *fs;
107 	ufs_daddr_t bno;
108 	int cg;
109 #ifdef QUOTA
110 	int error;
111 #endif
112 
113 	*bnp = 0;
114 	fs = ip->i_fs;
115 #ifdef DIAGNOSTIC
116 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
117 		kprintf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
118 		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
119 		    fs->fs_fsmnt);
120 		panic("ffs_alloc: bad size");
121 	}
122 	if (cred == NOCRED)
123 		panic("ffs_alloc: missing credential");
124 #endif /* DIAGNOSTIC */
125 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
126 		goto nospace;
127 	if (cred->cr_uid != 0 &&
128 	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
129 		goto nospace;
130 #ifdef QUOTA
131 	error = ufs_chkdq(ip, (long)btodb(size), cred, 0);
132 	if (error)
133 		return (error);
134 #endif
135 	if (bpref >= fs->fs_size)
136 		bpref = 0;
137 	if (bpref == 0)
138 		cg = ino_to_cg(fs, ip->i_number);
139 	else
140 		cg = dtog(fs, bpref);
141 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
142 					 ffs_alloccg);
143 	if (bno > 0) {
144 		ip->i_blocks += btodb(size);
145 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
146 		*bnp = bno;
147 		return (0);
148 	}
149 #ifdef QUOTA
150 	/*
151 	 * Restore user's disk quota because allocation failed.
152 	 */
153 	(void) ufs_chkdq(ip, (long)-btodb(size), cred, FORCE);
154 #endif
155 nospace:
156 	ffs_fserr(fs, cred->cr_uid, "filesystem full");
157 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
158 	return (ENOSPC);
159 }
160 
161 /*
162  * Reallocate a fragment to a bigger size
163  *
164  * The number and size of the old block is given, and a preference
165  * and new size is also specified. The allocator attempts to extend
166  * the original block. Failing that, the regular block allocator is
167  * invoked to get an appropriate block.
168  */
169 int
170 ffs_realloccg(struct inode *ip, ufs_daddr_t lbprev, ufs_daddr_t bpref,
171 	      int osize, int nsize, struct ucred *cred, struct buf **bpp)
172 {
173 	struct fs *fs;
174 	struct buf *bp;
175 	int cg, request, error;
176 	ufs_daddr_t bprev, bno;
177 
178 	*bpp = NULL;
179 	fs = ip->i_fs;
180 #ifdef DIAGNOSTIC
181 	if ((uint)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
182 	    (uint)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
183 		kprintf(
184 		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
185 		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
186 		    nsize, fs->fs_fsmnt);
187 		panic("ffs_realloccg: bad size");
188 	}
189 	if (cred == NOCRED)
190 		panic("ffs_realloccg: missing credential");
191 #endif /* DIAGNOSTIC */
192 	if (cred->cr_uid != 0 &&
193 	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
194 		goto nospace;
195 	if ((bprev = ip->i_db[lbprev]) == 0) {
196 		kprintf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
197 		    devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
198 		    fs->fs_fsmnt);
199 		panic("ffs_realloccg: bad bprev");
200 	}
201 	/*
202 	 * Allocate the extra space in the buffer.
203 	 */
204 	error = bread(ITOV(ip), lblktodoff(fs, lbprev), osize, &bp);
205 	if (error) {
206 		brelse(bp);
207 		return (error);
208 	}
209 
210 	if(bp->b_bio2.bio_offset == NOOFFSET) {
211 		if( lbprev >= NDADDR)
212 			panic("ffs_realloccg: lbprev out of range");
213 		bp->b_bio2.bio_offset = fsbtodoff(fs, bprev);
214 	}
215 
216 #ifdef QUOTA
217 	error = ufs_chkdq(ip, (long)btodb(nsize - osize), cred, 0);
218 	if (error) {
219 		brelse(bp);
220 		return (error);
221 	}
222 #endif
223 	/*
224 	 * Check for extension in the existing location.
225 	 */
226 	cg = dtog(fs, bprev);
227 	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
228 	if (bno) {
229 		if (bp->b_bio2.bio_offset != fsbtodoff(fs, bno))
230 			panic("ffs_realloccg: bad blockno");
231 		ip->i_blocks += btodb(nsize - osize);
232 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
233 		allocbuf(bp, nsize);
234 		bzero((char *)bp->b_data + osize, (uint)nsize - osize);
235 		*bpp = bp;
236 		return (0);
237 	}
238 	/*
239 	 * Allocate a new disk location.
240 	 */
241 	if (bpref >= fs->fs_size)
242 		bpref = 0;
243 	switch ((int)fs->fs_optim) {
244 	case FS_OPTSPACE:
245 		/*
246 		 * Allocate an exact sized fragment. Although this makes
247 		 * best use of space, we will waste time relocating it if
248 		 * the file continues to grow. If the fragmentation is
249 		 * less than half of the minimum free reserve, we choose
250 		 * to begin optimizing for time.
251 		 */
252 		request = nsize;
253 		if (fs->fs_minfree <= 5 ||
254 		    fs->fs_cstotal.cs_nffree >
255 		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
256 			break;
257 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
258 			fs->fs_fsmnt);
259 		fs->fs_optim = FS_OPTTIME;
260 		break;
261 	case FS_OPTTIME:
262 		/*
263 		 * At this point we have discovered a file that is trying to
264 		 * grow a small fragment to a larger fragment. To save time,
265 		 * we allocate a full sized block, then free the unused portion.
266 		 * If the file continues to grow, the `ffs_fragextend' call
267 		 * above will be able to grow it in place without further
268 		 * copying. If aberrant programs cause disk fragmentation to
269 		 * grow within 2% of the free reserve, we choose to begin
270 		 * optimizing for space.
271 		 */
272 		request = fs->fs_bsize;
273 		if (fs->fs_cstotal.cs_nffree <
274 		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
275 			break;
276 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
277 			fs->fs_fsmnt);
278 		fs->fs_optim = FS_OPTSPACE;
279 		break;
280 	default:
281 		kprintf("dev = %s, optim = %ld, fs = %s\n",
282 		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
283 		panic("ffs_realloccg: bad optim");
284 		/* NOTREACHED */
285 	}
286 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
287 					 ffs_alloccg);
288 	if (bno > 0) {
289 		bp->b_bio2.bio_offset = fsbtodoff(fs, bno);
290 		if (!DOINGSOFTDEP(ITOV(ip)))
291 			ffs_blkfree(ip, bprev, (long)osize);
292 		if (nsize < request)
293 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
294 			    (long)(request - nsize));
295 		ip->i_blocks += btodb(nsize - osize);
296 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
297 		allocbuf(bp, nsize);
298 		bzero((char *)bp->b_data + osize, (uint)nsize - osize);
299 		*bpp = bp;
300 		return (0);
301 	}
302 #ifdef QUOTA
303 	/*
304 	 * Restore user's disk quota because allocation failed.
305 	 */
306 	(void) ufs_chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
307 #endif
308 	brelse(bp);
309 nospace:
310 	/*
311 	 * no space available
312 	 */
313 	ffs_fserr(fs, cred->cr_uid, "filesystem full");
314 	uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
315 	return (ENOSPC);
316 }
317 
318 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
319 
320 /*
321  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
322  *
323  * The vnode and an array of buffer pointers for a range of sequential
324  * logical blocks to be made contiguous is given. The allocator attempts
325  * to find a range of sequential blocks starting as close as possible to
326  * an fs_rotdelay offset from the end of the allocation for the logical
327  * block immediately preceeding the current range. If successful, the
328  * physical block numbers in the buffer pointers and in the inode are
329  * changed to reflect the new allocation. If unsuccessful, the allocation
330  * is left unchanged. The success in doing the reallocation is returned.
331  * Note that the error return is not reflected back to the user. Rather
332  * the previous block allocation will be used.
333  */
334 static int doasyncfree = 1;
335 SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
336 
337 static int doreallocblks = 1;
338 SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
339 
340 #ifdef DEBUG
341 static volatile int prtrealloc = 0;
342 #endif
343 
344 /*
345  * ffs_reallocblks(struct vnode *a_vp, struct cluster_save *a_buflist)
346  */
347 int
348 ffs_reallocblks(struct vop_reallocblks_args *ap)
349 {
350 	struct fs *fs;
351 	struct inode *ip;
352 	struct vnode *vp;
353 	struct buf *sbp, *ebp;
354 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
355 	struct cluster_save *buflist;
356 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
357 #ifdef DIAGNOSTIC
358 	off_t boffset;
359 #endif
360 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
361 	int i, len, slen, start_lvl, end_lvl, pref, ssize;
362 
363 	if (doreallocblks == 0)
364 		return (ENOSPC);
365 	vp = ap->a_vp;
366 	ip = VTOI(vp);
367 	fs = ip->i_fs;
368 	if (fs->fs_contigsumsize <= 0)
369 		return (ENOSPC);
370 	buflist = ap->a_buflist;
371 	len = buflist->bs_nchildren;
372 	start_lbn = lblkno(fs, buflist->bs_children[0]->b_loffset);
373 	end_lbn = start_lbn + len - 1;
374 #ifdef DIAGNOSTIC
375 	for (i = 0; i < len; i++)
376 		if (!ffs_checkblk(ip,
377 		   dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
378 			panic("ffs_reallocblks: unallocated block 1");
379 	for (i = 1; i < len; i++) {
380 		if (buflist->bs_children[i]->b_loffset != lblktodoff(fs, start_lbn) + lblktodoff(fs, i))
381 			panic("ffs_reallocblks: non-logical cluster");
382 	}
383 	boffset = buflist->bs_children[0]->b_bio2.bio_offset;
384 	ssize = (int)fsbtodoff(fs, fs->fs_frag);
385 	for (i = 1; i < len - 1; i++)
386 		if (buflist->bs_children[i]->b_bio2.bio_offset != boffset + (i * ssize))
387 			panic("ffs_reallocblks: non-physical cluster %d", i);
388 #endif
389 	/*
390 	 * If the latest allocation is in a new cylinder group, assume that
391 	 * the filesystem has decided to move and do not force it back to
392 	 * the previous cylinder group.
393 	 */
394 	if (dtog(fs, dofftofsb(fs, buflist->bs_children[0]->b_bio2.bio_offset)) !=
395 	    dtog(fs, dofftofsb(fs, buflist->bs_children[len - 1]->b_bio2.bio_offset)))
396 		return (ENOSPC);
397 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
398 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
399 		return (ENOSPC);
400 	/*
401 	 * Get the starting offset and block map for the first block and
402 	 * the number of blocks that will fit into sbap starting at soff.
403 	 */
404 	if (start_lvl == 0) {
405 		sbap = &ip->i_db[0];
406 		soff = start_lbn;
407 		slen = NDADDR - soff;
408 	} else {
409 		idp = &start_ap[start_lvl - 1];
410 		if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &sbp)) {
411 			brelse(sbp);
412 			return (ENOSPC);
413 		}
414 		sbap = (ufs_daddr_t *)sbp->b_data;
415 		soff = idp->in_off;
416 		slen = fs->fs_nindir - soff;
417 	}
418 	/*
419 	 * Find the preferred location for the cluster.
420 	 */
421 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
422 
423 	/*
424 	 * If the block range spans two block maps, get the second map.
425 	 */
426 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
427 		ssize = len;
428 	} else {
429 #ifdef DIAGNOSTIC
430 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
431 			panic("ffs_reallocblk: start == end");
432 #endif
433 		ssize = len - (idp->in_off + 1);
434 		if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &ebp))
435 			goto fail;
436 		ebap = (ufs_daddr_t *)ebp->b_data;
437 	}
438 
439 	/*
440 	 * Make sure we aren't spanning more then two blockmaps.  ssize is
441 	 * our calculation of the span we have to scan in the first blockmap,
442 	 * while slen is our calculation of the number of entries available
443 	 * in the first blockmap (from soff).
444 	 */
445 	if (ssize > slen) {
446 		panic("ffs_reallocblks: range spans more then two blockmaps!"
447 			" start_lbn %ld len %d (%d/%d)",
448 			(long)start_lbn, len, slen, ssize);
449 	}
450 	/*
451 	 * Search the block map looking for an allocation of the desired size.
452 	 */
453 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
454 	    len, ffs_clusteralloc)) == 0)
455 		goto fail;
456 	/*
457 	 * We have found a new contiguous block.
458 	 *
459 	 * First we have to replace the old block pointers with the new
460 	 * block pointers in the inode and indirect blocks associated
461 	 * with the file.
462 	 */
463 #ifdef DEBUG
464 	if (prtrealloc)
465 		kprintf("realloc: ino %ju, lbns %d-%d\n\told:",
466 		    (uintmax_t)ip->i_number, start_lbn, end_lbn);
467 #endif
468 	blkno = newblk;
469 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
470 		if (i == ssize) {
471 			bap = ebap;
472 			soff = -i;
473 		}
474 #ifdef DIAGNOSTIC
475 		if (!ffs_checkblk(ip,
476 		   dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
477 			panic("ffs_reallocblks: unallocated block 2");
478 		if (dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset) != *bap)
479 			panic("ffs_reallocblks: alloc mismatch");
480 #endif
481 #ifdef DEBUG
482 		if (prtrealloc)
483 			kprintf(" %d,", *bap);
484 #endif
485 		if (DOINGSOFTDEP(vp)) {
486 			if (sbap == &ip->i_db[0] && i < ssize)
487 				softdep_setup_allocdirect(ip, start_lbn + i,
488 				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
489 				    buflist->bs_children[i]);
490 			else
491 				softdep_setup_allocindir_page(ip, start_lbn + i,
492 				    i < ssize ? sbp : ebp, soff + i, blkno,
493 				    *bap, buflist->bs_children[i]);
494 		}
495 		*bap++ = blkno;
496 	}
497 	/*
498 	 * Next we must write out the modified inode and indirect blocks.
499 	 * For strict correctness, the writes should be synchronous since
500 	 * the old block values may have been written to disk. In practise
501 	 * they are almost never written, but if we are concerned about
502 	 * strict correctness, the `doasyncfree' flag should be set to zero.
503 	 *
504 	 * The test on `doasyncfree' should be changed to test a flag
505 	 * that shows whether the associated buffers and inodes have
506 	 * been written. The flag should be set when the cluster is
507 	 * started and cleared whenever the buffer or inode is flushed.
508 	 * We can then check below to see if it is set, and do the
509 	 * synchronous write only when it has been cleared.
510 	 */
511 	if (sbap != &ip->i_db[0]) {
512 		if (doasyncfree)
513 			bdwrite(sbp);
514 		else
515 			bwrite(sbp);
516 	} else {
517 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
518 		if (!doasyncfree)
519 			ffs_update(vp, 1);
520 	}
521 	if (ssize < len) {
522 		if (doasyncfree)
523 			bdwrite(ebp);
524 		else
525 			bwrite(ebp);
526 	}
527 	/*
528 	 * Last, free the old blocks and assign the new blocks to the buffers.
529 	 */
530 #ifdef DEBUG
531 	if (prtrealloc)
532 		kprintf("\n\tnew:");
533 #endif
534 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
535 		if (!DOINGSOFTDEP(vp) &&
536 		    buflist->bs_children[i]->b_bio2.bio_offset != NOOFFSET) {
537 			ffs_blkfree(ip,
538 			    dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset),
539 			    fs->fs_bsize);
540 		}
541 		buflist->bs_children[i]->b_bio2.bio_offset = fsbtodoff(fs, blkno);
542 #ifdef DIAGNOSTIC
543 		if (!ffs_checkblk(ip,
544 		   dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
545 			panic("ffs_reallocblks: unallocated block 3");
546 #endif
547 #ifdef DEBUG
548 		if (prtrealloc)
549 			kprintf(" %d,", blkno);
550 #endif
551 	}
552 #ifdef DEBUG
553 	if (prtrealloc) {
554 		prtrealloc--;
555 		kprintf("\n");
556 	}
557 #endif
558 	return (0);
559 
560 fail:
561 	if (ssize < len)
562 		brelse(ebp);
563 	if (sbap != &ip->i_db[0])
564 		brelse(sbp);
565 	return (ENOSPC);
566 }
567 
568 /*
569  * Allocate an inode in the filesystem.
570  *
571  * If allocating a directory, use ffs_dirpref to select the inode.
572  * If allocating in a directory, the following hierarchy is followed:
573  *   1) allocate the preferred inode.
574  *   2) allocate an inode in the same cylinder group.
575  *   3) quadradically rehash into other cylinder groups, until an
576  *      available inode is located.
577  * If no inode preference is given the following heirarchy is used
578  * to allocate an inode:
579  *   1) allocate an inode in cylinder group 0.
580  *   2) quadradically rehash into other cylinder groups, until an
581  *      available inode is located.
582  */
583 int
584 ffs_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
585 {
586 	struct inode *pip;
587 	struct fs *fs;
588 	struct inode *ip;
589 	ino_t ino, ipref;
590 	int cg, error;
591 
592 	*vpp = NULL;
593 	pip = VTOI(pvp);
594 	fs = pip->i_fs;
595 	if (fs->fs_cstotal.cs_nifree == 0)
596 		goto noinodes;
597 
598 	if ((mode & IFMT) == IFDIR)
599 		ipref = ffs_dirpref(pip);
600 	else
601 		ipref = pip->i_number;
602 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
603 		ipref = 0;
604 	cg = ino_to_cg(fs, ipref);
605 	/*
606 	 * Track number of dirs created one after another
607 	 * in a same cg without intervening by files.
608 	 */
609 	if ((mode & IFMT) == IFDIR) {
610 		if (fs->fs_contigdirs[cg] < 255)
611 			fs->fs_contigdirs[cg]++;
612 	} else {
613 		if (fs->fs_contigdirs[cg] > 0)
614 			fs->fs_contigdirs[cg]--;
615 	}
616 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
617 					(allocfcn_t *)ffs_nodealloccg);
618 	if (ino == 0)
619 		goto noinodes;
620 	error = VFS_VGET(pvp->v_mount, NULL, ino, vpp);
621 	if (error) {
622 		ffs_vfree(pvp, ino, mode);
623 		return (error);
624 	}
625 	ip = VTOI(*vpp);
626 	if (ip->i_mode) {
627 		kprintf("mode = 0%o, inum = %lu, fs = %s\n",
628 		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
629 		panic("ffs_valloc: dup alloc");
630 	}
631 	if (ip->i_blocks) {				/* XXX */
632 		kprintf("free inode %s/%lu had %ld blocks\n",
633 		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
634 		ip->i_blocks = 0;
635 	}
636 	ip->i_flags = 0;
637 	/*
638 	 * Set up a new generation number for this inode.
639 	 */
640 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
641 		ip->i_gen = krandom() / 2 + 1;
642 	return (0);
643 noinodes:
644 	ffs_fserr(fs, cred->cr_uid, "out of inodes");
645 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
646 	return (ENOSPC);
647 }
648 
649 /*
650  * Find a cylinder group to place a directory.
651  *
652  * The policy implemented by this algorithm is to allocate a
653  * directory inode in the same cylinder group as its parent
654  * directory, but also to reserve space for its files inodes
655  * and data. Restrict the number of directories which may be
656  * allocated one after another in the same cylinder group
657  * without intervening allocation of files.
658  *
659  * If we allocate a first level directory then force allocation
660  * in another cylinder group.
661  */
662 static ino_t
663 ffs_dirpref(struct inode *pip)
664 {
665 	struct fs *fs;
666 	int cg, prefcg, dirsize, cgsize;
667 	int64_t dirsize64;
668 	int avgifree, avgbfree, avgndir, curdirsize;
669 	int minifree, minbfree, maxndir;
670 	int mincg, minndir;
671 	int maxcontigdirs;
672 
673 	fs = pip->i_fs;
674 
675 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
676 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
677 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
678 
679 	/*
680 	 * Force allocation in another cg if creating a first level dir.
681 	 */
682 	if (ITOV(pip)->v_flag & VROOT) {
683 		prefcg = karc4random() % fs->fs_ncg;
684 		mincg = prefcg;
685 		minndir = fs->fs_ipg;
686 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
687 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
688 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
689 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
690 				mincg = cg;
691 				minndir = fs->fs_cs(fs, cg).cs_ndir;
692 			}
693 		for (cg = 0; cg < prefcg; cg++)
694 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
695 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
696 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
697 				mincg = cg;
698 				minndir = fs->fs_cs(fs, cg).cs_ndir;
699 			}
700 		return ((ino_t)(fs->fs_ipg * mincg));
701 	}
702 
703 	/*
704 	 * Count various limits which used for
705 	 * optimal allocation of a directory inode.
706 	 */
707 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
708 	minifree = avgifree - avgifree / 4;
709 	if (minifree < 1)
710 		minifree = 1;
711 	minbfree = avgbfree - avgbfree / 4;
712 	if (minbfree < 1)
713 		minbfree = 1;
714 	cgsize = fs->fs_fsize * fs->fs_fpg;
715 
716 	/*
717 	 * fs_avgfilesize and fs_avgfpdir are user-settable entities and
718 	 * multiplying them may overflow a 32 bit integer.
719 	 */
720 	dirsize64 = fs->fs_avgfilesize * (int64_t)fs->fs_avgfpdir;
721 	if (dirsize64 > 0x7fffffff) {
722 		maxcontigdirs = 1;
723 	} else {
724 		dirsize = (int)dirsize64;
725 		curdirsize = avgndir ?
726 			(cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
727 		if (dirsize < curdirsize)
728 			dirsize = curdirsize;
729 		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
730 		if (fs->fs_avgfpdir > 0)
731 			maxcontigdirs = min(maxcontigdirs,
732 				    fs->fs_ipg / fs->fs_avgfpdir);
733 		if (maxcontigdirs == 0)
734 			maxcontigdirs = 1;
735 	}
736 
737 	/*
738 	 * Limit number of dirs in one cg and reserve space for
739 	 * regular files, but only if we have no deficit in
740 	 * inodes or space.
741 	 */
742 	prefcg = ino_to_cg(fs, pip->i_number);
743 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
744 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
745 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
746 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
747 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
748 				return ((ino_t)(fs->fs_ipg * cg));
749 		}
750 	for (cg = 0; cg < prefcg; cg++)
751 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
752 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
753 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
754 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
755 				return ((ino_t)(fs->fs_ipg * cg));
756 		}
757 	/*
758 	 * This is a backstop when we have deficit in space.
759 	 */
760 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
761 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
762 			return ((ino_t)(fs->fs_ipg * cg));
763 	for (cg = 0; cg < prefcg; cg++)
764 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
765 			break;
766 	return ((ino_t)(fs->fs_ipg * cg));
767 }
768 
769 /*
770  * Select the desired position for the next block in a file.  The file is
771  * logically divided into sections. The first section is composed of the
772  * direct blocks. Each additional section contains fs_maxbpg blocks.
773  *
774  * If no blocks have been allocated in the first section, the policy is to
775  * request a block in the same cylinder group as the inode that describes
776  * the file. If no blocks have been allocated in any other section, the
777  * policy is to place the section in a cylinder group with a greater than
778  * average number of free blocks.  An appropriate cylinder group is found
779  * by using a rotor that sweeps the cylinder groups. When a new group of
780  * blocks is needed, the sweep begins in the cylinder group following the
781  * cylinder group from which the previous allocation was made. The sweep
782  * continues until a cylinder group with greater than the average number
783  * of free blocks is found. If the allocation is for the first block in an
784  * indirect block, the information on the previous allocation is unavailable;
785  * here a best guess is made based upon the logical block number being
786  * allocated.
787  *
788  * If a section is already partially allocated, the policy is to
789  * contiguously allocate fs_maxcontig blocks.  The end of one of these
790  * contiguous blocks and the beginning of the next is physically separated
791  * so that the disk head will be in transit between them for at least
792  * fs_rotdelay milliseconds.  This is to allow time for the processor to
793  * schedule another I/O transfer.
794  */
795 ufs_daddr_t
796 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
797 {
798 	struct fs *fs;
799 	int cg;
800 	int avgbfree, startcg;
801 	ufs_daddr_t nextblk;
802 
803 	fs = ip->i_fs;
804 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
805 		if (lbn < NDADDR + NINDIR(fs)) {
806 			cg = ino_to_cg(fs, ip->i_number);
807 			return (fs->fs_fpg * cg + fs->fs_frag);
808 		}
809 		/*
810 		 * Find a cylinder with greater than average number of
811 		 * unused data blocks.
812 		 */
813 		if (indx == 0 || bap[indx - 1] == 0)
814 			startcg =
815 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
816 		else
817 			startcg = dtog(fs, bap[indx - 1]) + 1;
818 		startcg %= fs->fs_ncg;
819 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
820 		for (cg = startcg; cg < fs->fs_ncg; cg++)
821 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
822 				fs->fs_cgrotor = cg;
823 				return (fs->fs_fpg * cg + fs->fs_frag);
824 			}
825 		for (cg = 0; cg <= startcg; cg++)
826 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
827 				fs->fs_cgrotor = cg;
828 				return (fs->fs_fpg * cg + fs->fs_frag);
829 			}
830 		return (0);
831 	}
832 	/*
833 	 * One or more previous blocks have been laid out. If less
834 	 * than fs_maxcontig previous blocks are contiguous, the
835 	 * next block is requested contiguously, otherwise it is
836 	 * requested rotationally delayed by fs_rotdelay milliseconds.
837 	 */
838 	nextblk = bap[indx - 1] + fs->fs_frag;
839 	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
840 	    bap[indx - fs->fs_maxcontig] +
841 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
842 		return (nextblk);
843 	/*
844 	 * Here we convert ms of delay to frags as:
845 	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
846 	 *	((sect/frag) * (ms/sec))
847 	 * then round up to the next block.
848 	 */
849 	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
850 	    (NSPF(fs) * 1000), fs->fs_frag);
851 	return (nextblk);
852 }
853 
854 /*
855  * Implement the cylinder overflow algorithm.
856  *
857  * The policy implemented by this algorithm is:
858  *   1) allocate the block in its requested cylinder group.
859  *   2) quadradically rehash on the cylinder group number.
860  *   3) brute force search for a free block.
861  */
862 /*VARARGS5*/
863 static u_long
864 ffs_hashalloc(struct inode *ip, int cg, long pref,
865 	      int size,	/* size for data blocks, mode for inodes */
866 	      allocfcn_t *allocator)
867 {
868 	struct fs *fs;
869 	long result;	/* XXX why not same type as we return? */
870 	int i, icg = cg;
871 
872 	fs = ip->i_fs;
873 	/*
874 	 * 1: preferred cylinder group
875 	 */
876 	result = (*allocator)(ip, cg, pref, size);
877 	if (result)
878 		return (result);
879 	/*
880 	 * 2: quadratic rehash
881 	 */
882 	for (i = 1; i < fs->fs_ncg; i *= 2) {
883 		cg += i;
884 		if (cg >= fs->fs_ncg)
885 			cg -= fs->fs_ncg;
886 		result = (*allocator)(ip, cg, 0, size);
887 		if (result)
888 			return (result);
889 	}
890 	/*
891 	 * 3: brute force search
892 	 * Note that we start at i == 2, since 0 was checked initially,
893 	 * and 1 is always checked in the quadratic rehash.
894 	 */
895 	cg = (icg + 2) % fs->fs_ncg;
896 	for (i = 2; i < fs->fs_ncg; i++) {
897 		result = (*allocator)(ip, cg, 0, size);
898 		if (result)
899 			return (result);
900 		cg++;
901 		if (cg == fs->fs_ncg)
902 			cg = 0;
903 	}
904 	return (0);
905 }
906 
907 /*
908  * Determine whether a fragment can be extended.
909  *
910  * Check to see if the necessary fragments are available, and
911  * if they are, allocate them.
912  */
913 static ufs_daddr_t
914 ffs_fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize)
915 {
916 	struct fs *fs;
917 	struct cg *cgp;
918 	struct buf *bp;
919 	long bno;
920 	int frags, bbase;
921 	int i, error;
922 	uint8_t *blksfree;
923 
924 	fs = ip->i_fs;
925 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
926 		return (0);
927 	frags = numfrags(fs, nsize);
928 	bbase = fragnum(fs, bprev);
929 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
930 		/* cannot extend across a block boundary */
931 		return (0);
932 	}
933 	KKASSERT(blknum(fs, bprev) == blknum(fs, bprev + frags - 1));
934 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
935 		(int)fs->fs_cgsize, &bp);
936 	if (error) {
937 		brelse(bp);
938 		return (0);
939 	}
940 	cgp = (struct cg *)bp->b_data;
941 	if (!cg_chkmagic(cgp)) {
942 		brelse(bp);
943 		return (0);
944 	}
945 	cgp->cg_time = time_second;
946 	bno = dtogd(fs, bprev);
947 	blksfree = cg_blksfree(cgp);
948 	for (i = numfrags(fs, osize); i < frags; i++) {
949 		if (isclr(blksfree, bno + i)) {
950 			brelse(bp);
951 			return (0);
952 		}
953 	}
954 
955 	/*
956 	 * the current fragment can be extended
957 	 * deduct the count on fragment being extended into
958 	 * increase the count on the remaining fragment (if any)
959 	 * allocate the extended piece
960 	 *
961 	 * ---oooooooooonnnnnnn111----
962 	 *    [-----frags-----]
963 	 *    ^                       ^
964 	 *    bbase                   fs_frag
965 	 */
966 	for (i = frags; i < fs->fs_frag - bbase; i++) {
967 		if (isclr(blksfree, bno + i))
968 			break;
969 	}
970 
971 	/*
972 	 * Size of original free frag is [i - numfrags(fs, osize)]
973 	 * Size of remaining free frag is [i - frags]
974 	 */
975 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
976 	if (i != frags)
977 		cgp->cg_frsum[i - frags]++;
978 	for (i = numfrags(fs, osize); i < frags; i++) {
979 		clrbit(blksfree, bno + i);
980 		cgp->cg_cs.cs_nffree--;
981 		fs->fs_cstotal.cs_nffree--;
982 		fs->fs_cs(fs, cg).cs_nffree--;
983 	}
984 	fs->fs_fmod = 1;
985 	if (DOINGSOFTDEP(ITOV(ip)))
986 		softdep_setup_blkmapdep(bp, fs, bprev);
987 	bdwrite(bp);
988 	return (bprev);
989 }
990 
991 /*
992  * Determine whether a block can be allocated.
993  *
994  * Check to see if a block of the appropriate size is available,
995  * and if it is, allocate it.
996  */
997 static ufs_daddr_t
998 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
999 {
1000 	struct fs *fs;
1001 	struct cg *cgp;
1002 	struct buf *bp;
1003 	int i;
1004 	ufs_daddr_t bno, blkno;
1005 	int allocsiz, error, frags;
1006 	uint8_t *blksfree;
1007 
1008 	fs = ip->i_fs;
1009 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1010 		return (0);
1011 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1012 		(int)fs->fs_cgsize, &bp);
1013 	if (error) {
1014 		brelse(bp);
1015 		return (0);
1016 	}
1017 	cgp = (struct cg *)bp->b_data;
1018 	if (!cg_chkmagic(cgp) ||
1019 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1020 		brelse(bp);
1021 		return (0);
1022 	}
1023 	cgp->cg_time = time_second;
1024 	if (size == fs->fs_bsize) {
1025 		bno = ffs_alloccgblk(ip, bp, bpref);
1026 		bdwrite(bp);
1027 		return (bno);
1028 	}
1029 	/*
1030 	 * Check to see if any fragments of sufficient size are already
1031 	 * available.  Fit the data into a larger fragment if necessary,
1032 	 * before allocating a whole new block.
1033 	 */
1034 	blksfree = cg_blksfree(cgp);
1035 	frags = numfrags(fs, size);
1036 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) {
1037 		if (cgp->cg_frsum[allocsiz] != 0)
1038 			break;
1039 	}
1040 	if (allocsiz == fs->fs_frag) {
1041 		/*
1042 		 * No fragments were available, allocate a whole block and
1043 		 * cut the requested fragment (of size frags) out of it.
1044 		 */
1045 		if (cgp->cg_cs.cs_nbfree == 0) {
1046 			brelse(bp);
1047 			return (0);
1048 		}
1049 		bno = ffs_alloccgblk(ip, bp, bpref);
1050 		bpref = dtogd(fs, bno);
1051 		for (i = frags; i < fs->fs_frag; i++)
1052 			setbit(blksfree, bpref + i);
1053 
1054 		/*
1055 		 * Calculate the number of free frags still remaining after
1056 		 * we have cut out the requested allocation.  Indicate that
1057 		 * a fragment of that size is now available for future
1058 		 * allocation.
1059 		 */
1060 		i = fs->fs_frag - frags;
1061 		cgp->cg_cs.cs_nffree += i;
1062 		fs->fs_cstotal.cs_nffree += i;
1063 		fs->fs_cs(fs, cg).cs_nffree += i;
1064 		fs->fs_fmod = 1;
1065 		cgp->cg_frsum[i]++;
1066 		bdwrite(bp);
1067 		return (bno);
1068 	}
1069 
1070 	/*
1071 	 * cg_frsum[] has told us that a free fragment of allocsiz size is
1072 	 * available.  Find it, then clear the bitmap bits associated with
1073 	 * the size we want.
1074 	 */
1075 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1076 	if (bno < 0) {
1077 		brelse(bp);
1078 		return (0);
1079 	}
1080 	for (i = 0; i < frags; i++)
1081 		clrbit(blksfree, bno + i);
1082 	cgp->cg_cs.cs_nffree -= frags;
1083 	fs->fs_cstotal.cs_nffree -= frags;
1084 	fs->fs_cs(fs, cg).cs_nffree -= frags;
1085 	fs->fs_fmod = 1;
1086 
1087 	/*
1088 	 * Account for the allocation.  The original searched size that we
1089 	 * found is no longer available.  If we cut out a smaller piece then
1090 	 * a smaller fragment is now available.
1091 	 */
1092 	cgp->cg_frsum[allocsiz]--;
1093 	if (frags != allocsiz)
1094 		cgp->cg_frsum[allocsiz - frags]++;
1095 	blkno = cg * fs->fs_fpg + bno;
1096 	if (DOINGSOFTDEP(ITOV(ip)))
1097 		softdep_setup_blkmapdep(bp, fs, blkno);
1098 	bdwrite(bp);
1099 	return ((u_long)blkno);
1100 }
1101 
1102 /*
1103  * Allocate a block in a cylinder group.
1104  *
1105  * This algorithm implements the following policy:
1106  *   1) allocate the requested block.
1107  *   2) allocate a rotationally optimal block in the same cylinder.
1108  *   3) allocate the next available block on the block rotor for the
1109  *      specified cylinder group.
1110  * Note that this routine only allocates fs_bsize blocks; these
1111  * blocks may be fragmented by the routine that allocates them.
1112  */
1113 static ufs_daddr_t
1114 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
1115 {
1116 	struct fs *fs;
1117 	struct cg *cgp;
1118 	ufs_daddr_t bno, blkno;
1119 	int cylno, pos, delta;
1120 	short *cylbp;
1121 	int i;
1122 	uint8_t *blksfree;
1123 
1124 	fs = ip->i_fs;
1125 	cgp = (struct cg *)bp->b_data;
1126 	blksfree = cg_blksfree(cgp);
1127 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1128 		bpref = cgp->cg_rotor;
1129 		goto norot;
1130 	}
1131 	bpref = blknum(fs, bpref);
1132 	bpref = dtogd(fs, bpref);
1133 	/*
1134 	 * if the requested block is available, use it
1135 	 */
1136 	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1137 		bno = bpref;
1138 		goto gotit;
1139 	}
1140 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1141 		/*
1142 		 * Block layout information is not available.
1143 		 * Leaving bpref unchanged means we take the
1144 		 * next available free block following the one
1145 		 * we just allocated. Hopefully this will at
1146 		 * least hit a track cache on drives of unknown
1147 		 * geometry (e.g. SCSI).
1148 		 */
1149 		goto norot;
1150 	}
1151 	/*
1152 	 * check for a block available on the same cylinder
1153 	 */
1154 	cylno = cbtocylno(fs, bpref);
1155 	if (cg_blktot(cgp)[cylno] == 0)
1156 		goto norot;
1157 	/*
1158 	 * check the summary information to see if a block is
1159 	 * available in the requested cylinder starting at the
1160 	 * requested rotational position and proceeding around.
1161 	 */
1162 	cylbp = cg_blks(fs, cgp, cylno);
1163 	pos = cbtorpos(fs, bpref);
1164 	for (i = pos; i < fs->fs_nrpos; i++)
1165 		if (cylbp[i] > 0)
1166 			break;
1167 	if (i == fs->fs_nrpos)
1168 		for (i = 0; i < pos; i++)
1169 			if (cylbp[i] > 0)
1170 				break;
1171 	if (cylbp[i] > 0) {
1172 		/*
1173 		 * found a rotational position, now find the actual
1174 		 * block. A panic if none is actually there.
1175 		 */
1176 		pos = cylno % fs->fs_cpc;
1177 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1178 		if (fs_postbl(fs, pos)[i] == -1) {
1179 			kprintf("pos = %d, i = %d, fs = %s\n",
1180 			    pos, i, fs->fs_fsmnt);
1181 			panic("ffs_alloccgblk: cyl groups corrupted");
1182 		}
1183 		for (i = fs_postbl(fs, pos)[i];; ) {
1184 			if (ffs_isblock(fs, blksfree, bno + i)) {
1185 				bno = blkstofrags(fs, (bno + i));
1186 				goto gotit;
1187 			}
1188 			delta = fs_rotbl(fs)[i];
1189 			if (delta <= 0 ||
1190 			    delta + i > fragstoblks(fs, fs->fs_fpg))
1191 				break;
1192 			i += delta;
1193 		}
1194 		kprintf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1195 		panic("ffs_alloccgblk: can't find blk in cyl");
1196 	}
1197 norot:
1198 	/*
1199 	 * no blocks in the requested cylinder, so take next
1200 	 * available one in this cylinder group.
1201 	 */
1202 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1203 	if (bno < 0)
1204 		return (0);
1205 	cgp->cg_rotor = bno;
1206 gotit:
1207 	blkno = fragstoblks(fs, bno);
1208 	ffs_clrblock(fs, blksfree, (long)blkno);
1209 	ffs_clusteracct(fs, cgp, blkno, -1);
1210 	cgp->cg_cs.cs_nbfree--;
1211 	fs->fs_cstotal.cs_nbfree--;
1212 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1213 	cylno = cbtocylno(fs, bno);
1214 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1215 	cg_blktot(cgp)[cylno]--;
1216 	fs->fs_fmod = 1;
1217 	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1218 	if (DOINGSOFTDEP(ITOV(ip)))
1219 		softdep_setup_blkmapdep(bp, fs, blkno);
1220 	return (blkno);
1221 }
1222 
1223 /*
1224  * Determine whether a cluster can be allocated.
1225  *
1226  * We do not currently check for optimal rotational layout if there
1227  * are multiple choices in the same cylinder group. Instead we just
1228  * take the first one that we find following bpref.
1229  */
1230 static ufs_daddr_t
1231 ffs_clusteralloc(struct inode *ip, int cg, ufs_daddr_t bpref, int len)
1232 {
1233 	struct fs *fs;
1234 	struct cg *cgp;
1235 	struct buf *bp;
1236 	int i, got, run, bno, bit, map;
1237 	u_char *mapp;
1238 	int32_t *lp;
1239 	uint8_t *blksfree;
1240 
1241 	fs = ip->i_fs;
1242 	if (fs->fs_maxcluster[cg] < len)
1243 		return (0);
1244 	if (bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1245 		  (int)fs->fs_cgsize, &bp)) {
1246 		goto fail;
1247 	}
1248 	cgp = (struct cg *)bp->b_data;
1249 	if (!cg_chkmagic(cgp))
1250 		goto fail;
1251 
1252 	/*
1253 	 * Check to see if a cluster of the needed size (or bigger) is
1254 	 * available in this cylinder group.
1255 	 */
1256 	lp = &cg_clustersum(cgp)[len];
1257 	for (i = len; i <= fs->fs_contigsumsize; i++)
1258 		if (*lp++ > 0)
1259 			break;
1260 	if (i > fs->fs_contigsumsize) {
1261 		/*
1262 		 * This is the first time looking for a cluster in this
1263 		 * cylinder group. Update the cluster summary information
1264 		 * to reflect the true maximum sized cluster so that
1265 		 * future cluster allocation requests can avoid reading
1266 		 * the cylinder group map only to find no clusters.
1267 		 */
1268 		lp = &cg_clustersum(cgp)[len - 1];
1269 		for (i = len - 1; i > 0; i--)
1270 			if (*lp-- > 0)
1271 				break;
1272 		fs->fs_maxcluster[cg] = i;
1273 		goto fail;
1274 	}
1275 	/*
1276 	 * Search the cluster map to find a big enough cluster.
1277 	 * We take the first one that we find, even if it is larger
1278 	 * than we need as we prefer to get one close to the previous
1279 	 * block allocation. We do not search before the current
1280 	 * preference point as we do not want to allocate a block
1281 	 * that is allocated before the previous one (as we will
1282 	 * then have to wait for another pass of the elevator
1283 	 * algorithm before it will be read). We prefer to fail and
1284 	 * be recalled to try an allocation in the next cylinder group.
1285 	 */
1286 	if (dtog(fs, bpref) != cg)
1287 		bpref = 0;
1288 	else
1289 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1290 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1291 	map = *mapp++;
1292 	bit = 1 << (bpref % NBBY);
1293 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1294 		if ((map & bit) == 0) {
1295 			run = 0;
1296 		} else {
1297 			run++;
1298 			if (run == len)
1299 				break;
1300 		}
1301 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1302 			bit <<= 1;
1303 		} else {
1304 			map = *mapp++;
1305 			bit = 1;
1306 		}
1307 	}
1308 	if (got >= cgp->cg_nclusterblks)
1309 		goto fail;
1310 	/*
1311 	 * Allocate the cluster that we have found.
1312 	 */
1313 	blksfree = cg_blksfree(cgp);
1314 	for (i = 1; i <= len; i++) {
1315 		if (!ffs_isblock(fs, blksfree, got - run + i))
1316 			panic("ffs_clusteralloc: map mismatch");
1317 	}
1318 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1319 	if (dtog(fs, bno) != cg)
1320 		panic("ffs_clusteralloc: allocated out of group");
1321 	len = blkstofrags(fs, len);
1322 	for (i = 0; i < len; i += fs->fs_frag) {
1323 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1324 			panic("ffs_clusteralloc: lost block");
1325 	}
1326 	bdwrite(bp);
1327 	return (bno);
1328 
1329 fail:
1330 	brelse(bp);
1331 	return (0);
1332 }
1333 
1334 /*
1335  * Determine whether an inode can be allocated.
1336  *
1337  * Check to see if an inode is available, and if it is,
1338  * allocate it using the following policy:
1339  *   1) allocate the requested inode.
1340  *   2) allocate the next available inode after the requested
1341  *      inode in the specified cylinder group.
1342  *   3) the inode must not already be in the inode hash table.  We
1343  *	can encounter such a case because the vnode reclamation sequence
1344  *	frees the bit
1345  *   3) the inode must not already be in the inode hash, otherwise it
1346  *	may be in the process of being deallocated.  This can occur
1347  *	because the bitmap is updated before the inode is removed from
1348  *	hash.  If we were to reallocate the inode the caller could wind
1349  *	up returning a vnode/inode combination which is in an indeterminate
1350  *	state.
1351  */
1352 static ino_t
1353 ffs_nodealloccg(struct inode *ip, int cg, ufs_daddr_t ipref, int mode)
1354 {
1355 	struct ufsmount *ump;
1356 	struct fs *fs;
1357 	struct cg *cgp;
1358 	struct buf *bp;
1359 	uint8_t *inosused;
1360 	uint8_t map;
1361 	int error, len, arraysize, i;
1362 	int icheckmiss;
1363 	ufs_daddr_t ibase;
1364 	struct vnode *vp;
1365 
1366 	vp = ITOV(ip);
1367 	ump = VFSTOUFS(vp->v_mount);
1368 	fs = ip->i_fs;
1369 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1370 		return (0);
1371 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1372 		      (int)fs->fs_cgsize, &bp);
1373 	if (error) {
1374 		brelse(bp);
1375 		return (0);
1376 	}
1377 	cgp = (struct cg *)bp->b_data;
1378 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1379 		brelse(bp);
1380 		return (0);
1381 	}
1382 	inosused = cg_inosused(cgp);
1383 	icheckmiss = 0;
1384 
1385 	/*
1386 	 * Quick check, reuse the most recently free inode or continue
1387 	 * a scan from where we left off the last time.
1388 	 */
1389 	ibase = cg * fs->fs_ipg;
1390 	if (ipref) {
1391 		ipref %= fs->fs_ipg;
1392 		if (isclr(inosused, ipref)) {
1393 			if (ufs_ihashcheck(ump, ip->i_dev, ibase + ipref) == 0)
1394 				goto gotit;
1395 		}
1396 	}
1397 
1398 	/*
1399 	 * Scan the inode bitmap starting at irotor, be sure to handle
1400 	 * the edge case by going back to the beginning of the array.
1401 	 *
1402 	 * If the number of inodes is not byte-aligned, the unused bits
1403 	 * should be set to 1.  This will be sanity checked in gotit.  Note
1404 	 * that we have to be sure not to overlap the beginning and end
1405 	 * when irotor is in the middle of a byte as this will cause the
1406 	 * same bitmap byte to be checked twice.  To solve this problem we
1407 	 * just convert everything to a byte index for the loop.
1408 	 */
1409 	ipref = (cgp->cg_irotor % fs->fs_ipg) >> 3;	/* byte index */
1410 	len = (fs->fs_ipg + 7) >> 3;			/* byte size */
1411 	arraysize = len;
1412 
1413 	while (len > 0) {
1414 		map = inosused[ipref];
1415 		if (map != 255) {
1416 			for (i = 0; i < NBBY; ++i) {
1417 				/*
1418 				 * If we find a free bit we have to make sure
1419 				 * that the inode is not in the middle of
1420 				 * being destroyed.  The inode should not exist
1421 				 * in the inode hash.
1422 				 *
1423 				 * Adjust the rotor to try to hit the
1424 				 * quick-check up above.
1425 				 */
1426 				if ((map & (1 << i)) == 0) {
1427 					if (ufs_ihashcheck(ump, ip->i_dev, ibase + (ipref << 3) + i) == 0) {
1428 						ipref = (ipref << 3) + i;
1429 						cgp->cg_irotor = (ipref + 1) % fs->fs_ipg;
1430 						goto gotit;
1431 					}
1432 					++icheckmiss;
1433 				}
1434 			}
1435 		}
1436 
1437 		/*
1438 		 * Setup for the next byte, start at the beginning again if
1439 		 * we hit the end of the array.
1440 		 */
1441 		if (++ipref == arraysize)
1442 			ipref = 0;
1443 		--len;
1444 	}
1445 	if (icheckmiss == cgp->cg_cs.cs_nifree) {
1446 		brelse(bp);
1447 		return(0);
1448 	}
1449 	kprintf("fs = %s\n", fs->fs_fsmnt);
1450 	panic("ffs_nodealloccg: block not in map, icheckmiss/nfree %d/%d",
1451 		icheckmiss, cgp->cg_cs.cs_nifree);
1452 	/* NOTREACHED */
1453 
1454 	/*
1455 	 * ipref is a bit index as of the gotit label.
1456 	 */
1457 gotit:
1458 	KKASSERT(ipref >= 0 && ipref < fs->fs_ipg);
1459 	cgp->cg_time = time_second;
1460 	if (DOINGSOFTDEP(ITOV(ip)))
1461 		softdep_setup_inomapdep(bp, ip, ibase + ipref);
1462 	setbit(inosused, ipref);
1463 	cgp->cg_cs.cs_nifree--;
1464 	fs->fs_cstotal.cs_nifree--;
1465 	fs->fs_cs(fs, cg).cs_nifree--;
1466 	fs->fs_fmod = 1;
1467 	if ((mode & IFMT) == IFDIR) {
1468 		cgp->cg_cs.cs_ndir++;
1469 		fs->fs_cstotal.cs_ndir++;
1470 		fs->fs_cs(fs, cg).cs_ndir++;
1471 	}
1472 	bdwrite(bp);
1473 	return (ibase + ipref);
1474 }
1475 
1476 /*
1477  * Free a block or fragment.
1478  *
1479  * The specified block or fragment is placed back in the
1480  * free map. If a fragment is deallocated, a possible
1481  * block reassembly is checked.
1482  */
1483 void
1484 ffs_blkfree_cg(struct fs * fs, struct vnode * i_devvp, cdev_t i_dev, ino_t i_number,
1485 	        uint32_t i_din_uid, ufs_daddr_t bno, long size)
1486 {
1487 	struct cg *cgp;
1488 	struct buf *bp;
1489 	ufs_daddr_t blkno;
1490 	int i, error, cg, blk, frags, bbase;
1491 	uint8_t *blksfree;
1492 
1493 	VOP_FREEBLKS(i_devvp, fsbtodoff(fs, bno), size);
1494 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1495 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1496 		kprintf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1497 		    devtoname(i_dev), (long)bno, (long)fs->fs_bsize, size,
1498 		    fs->fs_fsmnt);
1499 		panic("ffs_blkfree: bad size");
1500 	}
1501 	cg = dtog(fs, bno);
1502 	if ((uint)bno >= fs->fs_size) {
1503 		kprintf("bad block %ld, ino %lu\n",
1504 		    (long)bno, (u_long)i_number);
1505 		ffs_fserr(fs, i_din_uid, "bad block");
1506 		return;
1507 	}
1508 
1509 	/*
1510 	 * Load the cylinder group
1511 	 */
1512 	error = bread(i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1513 		      (int)fs->fs_cgsize, &bp);
1514 	if (error) {
1515 		brelse(bp);
1516 		return;
1517 	}
1518 	cgp = (struct cg *)bp->b_data;
1519 	if (!cg_chkmagic(cgp)) {
1520 		brelse(bp);
1521 		return;
1522 	}
1523 	cgp->cg_time = time_second;
1524 	bno = dtogd(fs, bno);
1525 	blksfree = cg_blksfree(cgp);
1526 
1527 	if (size == fs->fs_bsize) {
1528 		/*
1529 		 * Free a whole block
1530 		 */
1531 		blkno = fragstoblks(fs, bno);
1532 		if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1533 			kprintf("dev = %s, block = %ld, fs = %s\n",
1534 			    devtoname(i_dev), (long)bno, fs->fs_fsmnt);
1535 			panic("ffs_blkfree: freeing free block");
1536 		}
1537 		ffs_setblock(fs, blksfree, blkno);
1538 		ffs_clusteracct(fs, cgp, blkno, 1);
1539 		cgp->cg_cs.cs_nbfree++;
1540 		fs->fs_cstotal.cs_nbfree++;
1541 		fs->fs_cs(fs, cg).cs_nbfree++;
1542 		i = cbtocylno(fs, bno);
1543 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1544 		cg_blktot(cgp)[i]++;
1545 	} else {
1546 		/*
1547 		 * Free a fragment within a block.
1548 		 *
1549 		 * bno is the starting block number of the fragment being
1550 		 * freed.
1551 		 *
1552 		 * bbase is the starting block number for the filesystem
1553 		 * block containing the fragment.
1554 		 *
1555 		 * blk is the current bitmap for the fragments within the
1556 		 * filesystem block containing the fragment.
1557 		 *
1558 		 * frags is the number of fragments being freed
1559 		 *
1560 		 * Call ffs_fragacct() to account for the removal of all
1561 		 * current fragments, then adjust the bitmap to free the
1562 		 * requested fragment, and finally call ffs_fragacct() again
1563 		 * to regenerate the accounting.
1564 		 */
1565 		bbase = bno - fragnum(fs, bno);
1566 		blk = blkmap(fs, blksfree, bbase);
1567 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1568 		frags = numfrags(fs, size);
1569 		for (i = 0; i < frags; i++) {
1570 			if (isset(blksfree, bno + i)) {
1571 				kprintf("dev = %s, block = %ld, fs = %s\n",
1572 				    devtoname(i_dev), (long)(bno + i),
1573 				    fs->fs_fsmnt);
1574 				panic("ffs_blkfree: freeing free frag");
1575 			}
1576 			setbit(blksfree, bno + i);
1577 		}
1578 		cgp->cg_cs.cs_nffree += i;
1579 		fs->fs_cstotal.cs_nffree += i;
1580 		fs->fs_cs(fs, cg).cs_nffree += i;
1581 
1582 		/*
1583 		 * Add back in counts associated with the new frags
1584 		 */
1585 		blk = blkmap(fs, blksfree, bbase);
1586 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1587 
1588 		/*
1589 		 * If a complete block has been reassembled, account for it
1590 		 */
1591 		blkno = fragstoblks(fs, bbase);
1592 		if (ffs_isblock(fs, blksfree, blkno)) {
1593 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1594 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1595 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1596 			ffs_clusteracct(fs, cgp, blkno, 1);
1597 			cgp->cg_cs.cs_nbfree++;
1598 			fs->fs_cstotal.cs_nbfree++;
1599 			fs->fs_cs(fs, cg).cs_nbfree++;
1600 			i = cbtocylno(fs, bbase);
1601 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1602 			cg_blktot(cgp)[i]++;
1603 		}
1604 	}
1605 	fs->fs_fmod = 1;
1606 	bdwrite(bp);
1607 }
1608 
1609 struct ffs_blkfree_trim_params {
1610 	struct task task;
1611 	ufs_daddr_t bno;
1612 	long size;
1613 
1614 	/*
1615 	 * With TRIM,  inode pointer is gone in the callback but we still need
1616 	 * the following fields for  ffs_blkfree_cg()
1617 	 */
1618 	struct vnode *i_devvp;
1619 	struct fs *i_fs;
1620 	cdev_t i_dev;
1621 	ino_t i_number;
1622 	uint32_t i_din_uid;
1623 };
1624 
1625 
1626 static void
1627 ffs_blkfree_trim_task(void *ctx, int pending)
1628 {
1629 	struct ffs_blkfree_trim_params *tp;
1630 
1631 	tp = ctx;
1632 	ffs_blkfree_cg(tp->i_fs, tp->i_devvp, tp->i_dev, tp->i_number,
1633 	    tp->i_din_uid, tp->bno, tp->size);
1634 	kfree(tp, M_TEMP);
1635 }
1636 
1637 
1638 
1639 static void
1640 ffs_blkfree_trim_completed(struct bio *biop)
1641 {
1642 	struct buf *bp = biop->bio_buf;
1643 	struct ffs_blkfree_trim_params *tp;
1644 
1645 	tp = bp->b_bio1.bio_caller_info1.ptr;
1646 	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
1647 	tp = biop->bio_caller_info1.ptr;
1648 	taskqueue_enqueue(taskqueue_swi, &tp->task);
1649 	biodone(biop);
1650 }
1651 
1652 
1653 /*
1654  * If TRIM is enabled, we TRIM the blocks first then free them. We do this
1655  * after TRIM is finished and the callback handler is called. The logic here
1656  * is that we free the blocks before updating the bitmap so that we don't
1657  * reuse a block before we actually trim it, which would result in trimming
1658  * a valid block.
1659  */
1660 void
1661 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
1662 {
1663 	struct mount *mp = ip->i_devvp->v_mount;
1664 	struct ffs_blkfree_trim_params *tp;
1665 
1666 	if (!(mp->mnt_flag & MNT_TRIM)) {
1667 		ffs_blkfree_cg(ip->i_fs, ip->i_devvp,ip->i_dev,ip->i_number,
1668 		    ip->i_uid, bno, size);
1669 		return;
1670 	}
1671 
1672 	struct buf *bp;
1673 
1674 	tp = kmalloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
1675 	tp->bno = bno;
1676 	tp->i_fs= ip->i_fs;
1677 	tp->i_devvp = ip->i_devvp;
1678 	tp->i_dev = ip->i_dev;
1679 	tp->i_din_uid = ip->i_uid;
1680 	tp->i_number = ip->i_number;
1681 	tp->size = size;
1682 
1683 	bp = getnewbuf(0, 0, 0, 1);
1684 	BUF_KERNPROC(bp);
1685 	bp->b_cmd = BUF_CMD_FREEBLKS;
1686 	bp->b_bio1.bio_offset =  fsbtodoff(ip->i_fs, bno);
1687 	bp->b_bcount = size;
1688 	bp->b_bio1.bio_caller_info1.ptr = tp;
1689 	bp->b_bio1.bio_done = ffs_blkfree_trim_completed;
1690 	vn_strategy(ip->i_devvp, &bp->b_bio1);
1691 }
1692 
1693 #ifdef DIAGNOSTIC
1694 /*
1695  * Verify allocation of a block or fragment. Returns true if block or
1696  * fragment is allocated, false if it is free.
1697  */
1698 static int
1699 ffs_checkblk(struct inode *ip, ufs_daddr_t bno, long size)
1700 {
1701 	struct fs *fs;
1702 	struct cg *cgp;
1703 	struct buf *bp;
1704 	int i, error, frags, free;
1705 	uint8_t *blksfree;
1706 
1707 	fs = ip->i_fs;
1708 	if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1709 		kprintf("bsize = %ld, size = %ld, fs = %s\n",
1710 		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1711 		panic("ffs_checkblk: bad size");
1712 	}
1713 	if ((uint)bno >= fs->fs_size)
1714 		panic("ffs_checkblk: bad block %d", bno);
1715 	error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, dtog(fs, bno))),
1716 		      (int)fs->fs_cgsize, &bp);
1717 	if (error)
1718 		panic("ffs_checkblk: cg bread failed");
1719 	cgp = (struct cg *)bp->b_data;
1720 	if (!cg_chkmagic(cgp))
1721 		panic("ffs_checkblk: cg magic mismatch");
1722 	blksfree = cg_blksfree(cgp);
1723 	bno = dtogd(fs, bno);
1724 	if (size == fs->fs_bsize) {
1725 		free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1726 	} else {
1727 		frags = numfrags(fs, size);
1728 		for (free = 0, i = 0; i < frags; i++)
1729 			if (isset(blksfree, bno + i))
1730 				free++;
1731 		if (free != 0 && free != frags)
1732 			panic("ffs_checkblk: partially free fragment");
1733 	}
1734 	brelse(bp);
1735 	return (!free);
1736 }
1737 #endif /* DIAGNOSTIC */
1738 
1739 /*
1740  * Free an inode.
1741  */
1742 int
1743 ffs_vfree(struct vnode *pvp, ino_t ino, int mode)
1744 {
1745 	if (DOINGSOFTDEP(pvp)) {
1746 		softdep_freefile(pvp, ino, mode);
1747 		return (0);
1748 	}
1749 	return (ffs_freefile(pvp, ino, mode));
1750 }
1751 
1752 /*
1753  * Do the actual free operation.
1754  * The specified inode is placed back in the free map.
1755  */
1756 int
1757 ffs_freefile(struct vnode *pvp, ino_t ino, int mode)
1758 {
1759 	struct fs *fs;
1760 	struct cg *cgp;
1761 	struct inode *pip;
1762 	struct buf *bp;
1763 	int error, cg;
1764 	uint8_t *inosused;
1765 
1766 	pip = VTOI(pvp);
1767 	fs = pip->i_fs;
1768 	if ((uint)ino >= fs->fs_ipg * fs->fs_ncg)
1769 		panic("ffs_vfree: range: dev = (%d,%d), ino = %"PRId64", fs = %s",
1770 		    major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1771 	cg = ino_to_cg(fs, ino);
1772 	error = bread(pip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1773 		      (int)fs->fs_cgsize, &bp);
1774 	if (error) {
1775 		brelse(bp);
1776 		return (error);
1777 	}
1778 	cgp = (struct cg *)bp->b_data;
1779 	if (!cg_chkmagic(cgp)) {
1780 		brelse(bp);
1781 		return (0);
1782 	}
1783 	cgp->cg_time = time_second;
1784 	inosused = cg_inosused(cgp);
1785 	ino %= fs->fs_ipg;
1786 	if (isclr(inosused, ino)) {
1787 		kprintf("dev = %s, ino = %lu, fs = %s\n",
1788 		    devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1789 		if (fs->fs_ronly == 0)
1790 			panic("ffs_vfree: freeing free inode");
1791 	}
1792 	clrbit(inosused, ino);
1793 	if (ino < cgp->cg_irotor)
1794 		cgp->cg_irotor = ino;
1795 	cgp->cg_cs.cs_nifree++;
1796 	fs->fs_cstotal.cs_nifree++;
1797 	fs->fs_cs(fs, cg).cs_nifree++;
1798 	if ((mode & IFMT) == IFDIR) {
1799 		cgp->cg_cs.cs_ndir--;
1800 		fs->fs_cstotal.cs_ndir--;
1801 		fs->fs_cs(fs, cg).cs_ndir--;
1802 	}
1803 	fs->fs_fmod = 1;
1804 	bdwrite(bp);
1805 	return (0);
1806 }
1807 
1808 /*
1809  * Find a block of the specified size in the specified cylinder group.
1810  *
1811  * It is a panic if a request is made to find a block if none are
1812  * available.
1813  */
1814 static ufs_daddr_t
1815 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
1816 {
1817 	ufs_daddr_t bno;
1818 	int start, len, loc, i;
1819 	int blk, field, subfield, pos;
1820 	uint8_t *blksfree;
1821 
1822 	/*
1823 	 * find the fragment by searching through the free block
1824 	 * map for an appropriate bit pattern.
1825 	 */
1826 	if (bpref)
1827 		start = dtogd(fs, bpref) / NBBY;
1828 	else
1829 		start = cgp->cg_frotor / NBBY;
1830 	blksfree = cg_blksfree(cgp);
1831 	len = howmany(fs->fs_fpg, NBBY) - start;
1832 	loc = scanc((uint)len, (u_char *)&blksfree[start],
1833 		(u_char *)fragtbl[fs->fs_frag],
1834 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1835 	if (loc == 0) {
1836 		len = start + 1;	/* XXX why overlap here? */
1837 		start = 0;
1838 		loc = scanc((uint)len, (u_char *)&blksfree[0],
1839 			(u_char *)fragtbl[fs->fs_frag],
1840 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1841 		if (loc == 0) {
1842 			kprintf("start = %d, len = %d, fs = %s\n",
1843 			    start, len, fs->fs_fsmnt);
1844 			panic("ffs_alloccg: map corrupted");
1845 			/* NOTREACHED */
1846 		}
1847 	}
1848 	bno = (start + len - loc) * NBBY;
1849 	cgp->cg_frotor = bno;
1850 	/*
1851 	 * found the byte in the map
1852 	 * sift through the bits to find the selected frag
1853 	 */
1854 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1855 		blk = blkmap(fs, blksfree, bno);
1856 		blk <<= 1;
1857 		field = around[allocsiz];
1858 		subfield = inside[allocsiz];
1859 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1860 			if ((blk & field) == subfield)
1861 				return (bno + pos);
1862 			field <<= 1;
1863 			subfield <<= 1;
1864 		}
1865 	}
1866 	kprintf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1867 	panic("ffs_alloccg: block not in map");
1868 	return (-1);
1869 }
1870 
1871 /*
1872  * Update the cluster map because of an allocation or free.
1873  *
1874  * Cnt == 1 means free; cnt == -1 means allocating.
1875  */
1876 static void
1877 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
1878 {
1879 	int32_t *sump;
1880 	int32_t *lp;
1881 	u_char *freemapp, *mapp;
1882 	int i, start, end, forw, back, map, bit;
1883 
1884 	if (fs->fs_contigsumsize <= 0)
1885 		return;
1886 	freemapp = cg_clustersfree(cgp);
1887 	sump = cg_clustersum(cgp);
1888 	/*
1889 	 * Allocate or clear the actual block.
1890 	 */
1891 	if (cnt > 0)
1892 		setbit(freemapp, blkno);
1893 	else
1894 		clrbit(freemapp, blkno);
1895 	/*
1896 	 * Find the size of the cluster going forward.
1897 	 */
1898 	start = blkno + 1;
1899 	end = start + fs->fs_contigsumsize;
1900 	if (end >= cgp->cg_nclusterblks)
1901 		end = cgp->cg_nclusterblks;
1902 	mapp = &freemapp[start / NBBY];
1903 	map = *mapp++;
1904 	bit = 1 << (start % NBBY);
1905 	for (i = start; i < end; i++) {
1906 		if ((map & bit) == 0)
1907 			break;
1908 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1909 			bit <<= 1;
1910 		} else {
1911 			map = *mapp++;
1912 			bit = 1;
1913 		}
1914 	}
1915 	forw = i - start;
1916 	/*
1917 	 * Find the size of the cluster going backward.
1918 	 */
1919 	start = blkno - 1;
1920 	end = start - fs->fs_contigsumsize;
1921 	if (end < 0)
1922 		end = -1;
1923 	mapp = &freemapp[start / NBBY];
1924 	map = *mapp--;
1925 	bit = 1 << (start % NBBY);
1926 	for (i = start; i > end; i--) {
1927 		if ((map & bit) == 0)
1928 			break;
1929 		if ((i & (NBBY - 1)) != 0) {
1930 			bit >>= 1;
1931 		} else {
1932 			map = *mapp--;
1933 			bit = 1 << (NBBY - 1);
1934 		}
1935 	}
1936 	back = start - i;
1937 	/*
1938 	 * Account for old cluster and the possibly new forward and
1939 	 * back clusters.
1940 	 */
1941 	i = back + forw + 1;
1942 	if (i > fs->fs_contigsumsize)
1943 		i = fs->fs_contigsumsize;
1944 	sump[i] += cnt;
1945 	if (back > 0)
1946 		sump[back] -= cnt;
1947 	if (forw > 0)
1948 		sump[forw] -= cnt;
1949 	/*
1950 	 * Update cluster summary information.
1951 	 */
1952 	lp = &sump[fs->fs_contigsumsize];
1953 	for (i = fs->fs_contigsumsize; i > 0; i--)
1954 		if (*lp-- > 0)
1955 			break;
1956 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1957 }
1958 
1959 /*
1960  * Fserr prints the name of a filesystem with an error diagnostic.
1961  *
1962  * The form of the error message is:
1963  *	fs: error message
1964  */
1965 static void
1966 ffs_fserr(struct fs *fs, uint uid, char *cp)
1967 {
1968 	struct thread *td = curthread;
1969 	struct proc *p;
1970 
1971 	if ((p = td->td_proc) != NULL) {
1972 	    log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1973 		    p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1974 	} else {
1975 	    log(LOG_ERR, "system thread %p, uid %d on %s: %s\n",
1976 		    td, uid, fs->fs_fsmnt, cp);
1977 	}
1978 }
1979