xref: /dragonfly/sys/vfs/ufs/ffs_balloc.c (revision d600454b)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_balloc.c	8.8 (Berkeley) 6/16/95
34  * $FreeBSD: src/sys/ufs/ffs/ffs_balloc.c,v 1.26.2.1 2002/10/10 19:48:20 dillon Exp $
35  * $DragonFly: src/sys/vfs/ufs/ffs_balloc.c,v 1.14 2006/02/17 19:18:08 dillon Exp $
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/buf.h>
42 #include <sys/lock.h>
43 #include <sys/mount.h>
44 #include <sys/vnode.h>
45 
46 #include "quota.h"
47 #include "inode.h"
48 #include "ufs_extern.h"
49 
50 #include "fs.h"
51 #include "ffs_extern.h"
52 
53 /*
54  * Balloc defines the structure of filesystem storage
55  * by allocating the physical blocks on a device given
56  * the inode and the logical block number in a file.
57  *
58  * ffs_balloc(struct vnode *a_vp, ufs_daddr_t a_lbn, int a_size,
59  *	      struct ucred *a_cred, int a_flags, struct buf *a_bpp)
60  */
61 int
62 ffs_balloc(struct vop_balloc_args *ap)
63 {
64 	struct inode *ip;
65 	ufs_daddr_t lbn;
66 	int size;
67 	struct ucred *cred;
68 	int flags;
69 	struct fs *fs;
70 	ufs_daddr_t nb;
71 	struct buf *bp, *nbp, *dbp;
72 	struct vnode *vp;
73 	struct indir indirs[NIADDR + 2];
74 	ufs_daddr_t newb, *bap, pref;
75 	int deallocated, osize, nsize, num, i, error;
76 	ufs_daddr_t *allocib, *blkp, *allocblk, allociblk[NIADDR + 1];
77 	struct thread *td = curthread;	/* XXX */
78 	int unwindidx;
79 	int seqcount;
80 
81 	vp = ap->a_vp;
82 	ip = VTOI(vp);
83 	fs = ip->i_fs;
84 	lbn = lblkno(fs, ap->a_startoffset);
85 	size = blkoff(fs, ap->a_startoffset) + ap->a_size;
86 	if (size > fs->fs_bsize)
87 		panic("ffs_balloc: blk too big");
88 	*ap->a_bpp = NULL;
89 	if (lbn < 0)
90 		return (EFBIG);
91 	cred = ap->a_cred;
92 	flags = ap->a_flags;
93 
94 	/*
95 	 * The vnode must be locked for us to be able to safely mess
96 	 * around with the inode.
97 	 */
98 	if (VOP_ISLOCKED(vp, td) != LK_EXCLUSIVE) {
99 		panic("ffs_balloc: vnode %p not exclusively locked!", vp);
100 	}
101 
102 	/*
103 	 * If the next write will extend the file into a new block,
104 	 * and the file is currently composed of a fragment
105 	 * this fragment has to be extended to be a full block.
106 	 */
107 	nb = lblkno(fs, ip->i_size);
108 	if (nb < NDADDR && nb < lbn) {
109 		/*
110 		 * The filesize prior to this write can fit in direct
111 		 * blocks (ex. fragmentation is possibly done)
112 		 * we are now extending the file write beyond
113 		 * the block which has end of the file prior to this write.
114 		 */
115 		osize = blksize(fs, ip, nb);
116 		/*
117 		 * osize gives disk allocated size in the last block. It is
118 		 * either in fragments or a file system block size.
119 		 */
120 		if (osize < fs->fs_bsize && osize > 0) {
121 			/* A few fragments are already allocated, since the
122 			 * current extends beyond this block allocated the
123 			 * complete block as fragments are on in last block.
124 			 */
125 			error = ffs_realloccg(ip, nb,
126 				ffs_blkpref(ip, nb, (int)nb, &ip->i_db[0]),
127 				osize, (int)fs->fs_bsize, cred, &bp);
128 			if (error)
129 				return (error);
130 			if (DOINGSOFTDEP(vp))
131 				softdep_setup_allocdirect(ip, nb,
132 				    dbtofsb(fs, bp->b_bio2.bio_blkno),
133 				    ip->i_db[nb], fs->fs_bsize, osize, bp);
134 			/* adjust the inode size, we just grew */
135 			ip->i_size = smalllblktosize(fs, nb + 1);
136 			ip->i_db[nb] = dbtofsb(fs, bp->b_bio2.bio_blkno);
137 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
138 			if (flags & B_SYNC)
139 				bwrite(bp);
140 			else
141 				bawrite(bp);
142 			/* bp is already released here */
143 		}
144 	}
145 	/*
146 	 * The first NDADDR blocks are direct blocks
147 	 */
148 	if (lbn < NDADDR) {
149 		nb = ip->i_db[lbn];
150 		if (nb != 0 && ip->i_size >= smalllblktosize(fs, lbn + 1)) {
151 			error = bread(vp, lbn, fs->fs_bsize, &bp);
152 			if (error) {
153 				brelse(bp);
154 				return (error);
155 			}
156 			bp->b_bio2.bio_blkno = fsbtodb(fs, nb);
157 			*ap->a_bpp = bp;
158 			return (0);
159 		}
160 		if (nb != 0) {
161 			/*
162 			 * Consider need to reallocate a fragment.
163 			 */
164 			osize = fragroundup(fs, blkoff(fs, ip->i_size));
165 			nsize = fragroundup(fs, size);
166 			if (nsize <= osize) {
167 				error = bread(vp, lbn, osize, &bp);
168 				if (error) {
169 					brelse(bp);
170 					return (error);
171 				}
172 				bp->b_bio2.bio_blkno = fsbtodb(fs, nb);
173 			} else {
174 				error = ffs_realloccg(ip, lbn,
175 				    ffs_blkpref(ip, lbn, (int)lbn,
176 					&ip->i_db[0]), osize, nsize, cred, &bp);
177 				if (error)
178 					return (error);
179 				if (DOINGSOFTDEP(vp))
180 					softdep_setup_allocdirect(ip, lbn,
181 					    dbtofsb(fs, bp->b_bio2.bio_blkno),
182 					    nb, nsize, osize, bp);
183 			}
184 		} else {
185 			if (ip->i_size < smalllblktosize(fs, lbn + 1))
186 				nsize = fragroundup(fs, size);
187 			else
188 				nsize = fs->fs_bsize;
189 			error = ffs_alloc(ip, lbn,
190 			    ffs_blkpref(ip, lbn, (int)lbn, &ip->i_db[0]),
191 			    nsize, cred, &newb);
192 			if (error)
193 				return (error);
194 			bp = getblk(vp, lbn, nsize, 0, 0);
195 			bp->b_bio2.bio_blkno = fsbtodb(fs, newb);
196 			if (flags & B_CLRBUF)
197 				vfs_bio_clrbuf(bp);
198 			if (DOINGSOFTDEP(vp))
199 				softdep_setup_allocdirect(ip, lbn, newb, 0,
200 				    nsize, 0, bp);
201 		}
202 		ip->i_db[lbn] = dbtofsb(fs, bp->b_bio2.bio_blkno);
203 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
204 		*ap->a_bpp = bp;
205 		return (0);
206 	}
207 	/*
208 	 * Determine the number of levels of indirection.
209 	 */
210 	pref = 0;
211 	if ((error = ufs_getlbns(vp, lbn, indirs, &num)) != 0)
212 		return(error);
213 #ifdef DIAGNOSTIC
214 	if (num < 1)
215 		panic ("ffs_balloc: ufs_bmaparray returned indirect block");
216 #endif
217 	/*
218 	 * Get a handle on the data block buffer before working through
219 	 * indirect blocks to avoid a deadlock between the VM system holding
220 	 * a locked VM page and issuing a BMAP (which tries to lock the
221 	 * indirect blocks), and the filesystem holding a locked indirect
222 	 * block and then trying to read a data block (which tries to lock
223 	 * the underlying VM pages).
224 	 */
225 	dbp = getblk(vp, lbn, fs->fs_bsize, 0, 0);
226 
227 	/*
228 	 * Setup undo history
229 	 */
230 	allocib = NULL;
231 	allocblk = allociblk;
232 	unwindidx = -1;
233 
234 	/*
235 	 * Fetch the first indirect block directly from the inode, allocating
236 	 * one if necessary.
237 	 */
238 	--num;
239 	nb = ip->i_ib[indirs[0].in_off];
240 	if (nb == 0) {
241 		pref = ffs_blkpref(ip, lbn, 0, (ufs_daddr_t *)0);
242 		/*
243 		 * If the filesystem has run out of space we can skip the
244 		 * full fsync/undo of the main [fail] case since no undo
245 		 * history has been built yet.  Hence the goto fail2.
246 		 */
247 	        if ((error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize,
248 		    cred, &newb)) != 0)
249 			goto fail2;
250 		nb = newb;
251 		*allocblk++ = nb;
252 		bp = getblk(vp, indirs[1].in_lbn, fs->fs_bsize, 0, 0);
253 		bp->b_bio2.bio_blkno = fsbtodb(fs, nb);
254 		vfs_bio_clrbuf(bp);
255 		if (DOINGSOFTDEP(vp)) {
256 			softdep_setup_allocdirect(ip, NDADDR + indirs[0].in_off,
257 			    newb, 0, fs->fs_bsize, 0, bp);
258 			bdwrite(bp);
259 		} else {
260 			/*
261 			 * Write synchronously so that indirect blocks
262 			 * never point at garbage.
263 			 */
264 			if (DOINGASYNC(vp))
265 				bdwrite(bp);
266 			else if ((error = bwrite(bp)) != 0)
267 				goto fail;
268 		}
269 		allocib = &ip->i_ib[indirs[0].in_off];
270 		*allocib = nb;
271 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
272 	}
273 
274 	/*
275 	 * Fetch through the indirect blocks, allocating as necessary.
276 	 */
277 	for (i = 1;;) {
278 		error = bread(vp, indirs[i].in_lbn, (int)fs->fs_bsize, &bp);
279 		if (error) {
280 			brelse(bp);
281 			goto fail;
282 		}
283 		bap = (ufs_daddr_t *)bp->b_data;
284 		nb = bap[indirs[i].in_off];
285 		if (i == num)
286 			break;
287 		i += 1;
288 		if (nb != 0) {
289 			bqrelse(bp);
290 			continue;
291 		}
292 		if (pref == 0)
293 			pref = ffs_blkpref(ip, lbn, 0, (ufs_daddr_t *)0);
294 		if ((error =
295 		    ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred, &newb)) != 0) {
296 			brelse(bp);
297 			goto fail;
298 		}
299 		nb = newb;
300 		*allocblk++ = nb;
301 		nbp = getblk(vp, indirs[i].in_lbn, fs->fs_bsize, 0, 0);
302 		nbp->b_bio2.bio_blkno = fsbtodb(fs, nb);
303 		vfs_bio_clrbuf(nbp);
304 		if (DOINGSOFTDEP(vp)) {
305 			softdep_setup_allocindir_meta(nbp, ip, bp,
306 			    indirs[i - 1].in_off, nb);
307 			bdwrite(nbp);
308 		} else {
309 			/*
310 			 * Write synchronously so that indirect blocks
311 			 * never point at garbage.
312 			 */
313 			if ((error = bwrite(nbp)) != 0) {
314 				brelse(bp);
315 				goto fail;
316 			}
317 		}
318 		bap[indirs[i - 1].in_off] = nb;
319 		if (allocib == NULL && unwindidx < 0)
320 			unwindidx = i - 1;
321 		/*
322 		 * If required, write synchronously, otherwise use
323 		 * delayed write.
324 		 */
325 		if (flags & B_SYNC) {
326 			bwrite(bp);
327 		} else {
328 			if (bp->b_bufsize == fs->fs_bsize)
329 				bp->b_flags |= B_CLUSTEROK;
330 			bdwrite(bp);
331 		}
332 	}
333 
334 	/*
335 	 * Get the data block, allocating if necessary.  We have already
336 	 * called getblk() on the data block buffer, dbp.  If we have to
337 	 * allocate it and B_CLRBUF has been set the inference is an intention
338 	 * to zero out the related disk blocks, so we do not have to issue
339 	 * a read.  Instead we simply call vfs_bio_clrbuf().  If B_CLRBUF is
340 	 * not set the caller intends to overwrite the entire contents of the
341 	 * buffer and we don't waste time trying to clean up the contents.
342 	 *
343 	 * bp references the current indirect block.  When allocating,
344 	 * the block must be updated.
345 	 */
346 	if (nb == 0) {
347 		pref = ffs_blkpref(ip, lbn, indirs[i].in_off, &bap[0]);
348 		error = ffs_alloc(ip,
349 		    lbn, pref, (int)fs->fs_bsize, cred, &newb);
350 		if (error) {
351 			brelse(bp);
352 			goto fail;
353 		}
354 		nb = newb;
355 		*allocblk++ = nb;
356 		dbp->b_bio2.bio_blkno = fsbtodb(fs, nb);
357 		if (flags & B_CLRBUF)
358 			vfs_bio_clrbuf(dbp);
359 		if (DOINGSOFTDEP(vp))
360 			softdep_setup_allocindir_page(ip, lbn, bp,
361 			    indirs[i].in_off, nb, 0, dbp);
362 		bap[indirs[i].in_off] = nb;
363 		/*
364 		 * If required, write synchronously, otherwise use
365 		 * delayed write.
366 		 */
367 		if (flags & B_SYNC) {
368 			bwrite(bp);
369 		} else {
370 			if (bp->b_bufsize == fs->fs_bsize)
371 				bp->b_flags |= B_CLUSTEROK;
372 			bdwrite(bp);
373 		}
374 		*ap->a_bpp = dbp;
375 		return (0);
376 	}
377 	brelse(bp);
378 
379 	/*
380 	 * At this point all related indirect blocks have been allocated
381 	 * if necessary and released.  bp is no longer valid.  dbp holds
382 	 * our getblk()'d data block.
383 	 *
384 	 * XXX we previously performed a cluster_read operation here.
385 	 */
386 	if (flags & B_CLRBUF) {
387 		/*
388 		 * If B_CLRBUF is set we must validate the invalid portions
389 		 * of the buffer.  This typically requires a read-before-
390 		 * write.  The strategy call will fill in bio_blkno in that
391 		 * case.
392 		 *
393 		 * If we hit this case we do a cluster read if possible
394 		 * since nearby data blocks are likely to be accessed soon
395 		 * too.
396 		 */
397 		if ((dbp->b_flags & B_CACHE) == 0) {
398 			bqrelse(dbp);
399 			seqcount = (flags & B_SEQMASK) >> B_SEQSHIFT;
400 			if (seqcount &&
401 			    (vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
402 				error = cluster_read(vp, ip->i_size, lbn,
403 					    (int)fs->fs_bsize,
404 					    MAXBSIZE, seqcount, &dbp);
405 			} else {
406 				error = bread(vp, lbn, (int)fs->fs_bsize, &dbp);
407 			}
408 			if (error)
409 				goto fail;
410 		} else {
411 			dbp->b_bio2.bio_blkno = fsbtodb(fs, nb);
412 		}
413 	} else {
414 		/*
415 		 * If B_CLRBUF is not set the caller intends to overwrite
416 		 * the entire contents of the buffer.  We can simply set
417 		 * bio_blkno and we are done.
418 		 */
419 		dbp->b_bio2.bio_blkno = fsbtodb(fs, nb);
420 	}
421 	*ap->a_bpp = dbp;
422 	return (0);
423 fail:
424 	/*
425 	 * If we have failed part way through block allocation, we
426 	 * have to deallocate any indirect blocks that we have allocated.
427 	 * We have to fsync the file before we start to get rid of all
428 	 * of its dependencies so that we do not leave them dangling.
429 	 * We have to sync it at the end so that the soft updates code
430 	 * does not find any untracked changes. Although this is really
431 	 * slow, running out of disk space is not expected to be a common
432 	 * occurence. The error return from fsync is ignored as we already
433 	 * have an error to return to the user.
434 	 */
435 	(void) VOP_FSYNC(vp, MNT_WAIT, td);
436 	for (deallocated = 0, blkp = allociblk; blkp < allocblk; blkp++) {
437 		ffs_blkfree(ip, *blkp, fs->fs_bsize);
438 		deallocated += fs->fs_bsize;
439 	}
440 	if (allocib != NULL) {
441 		*allocib = 0;
442 	} else if (unwindidx >= 0) {
443 		int r;
444 
445 		r = bread(vp, indirs[unwindidx].in_lbn, (int)fs->fs_bsize, &bp);
446 		if (r) {
447 			panic("Could not unwind indirect block, error %d", r);
448 			brelse(bp);
449 		} else {
450 			bap = (ufs_daddr_t *)bp->b_data;
451 			bap[indirs[unwindidx].in_off] = 0;
452 			if (flags & B_SYNC) {
453 				bwrite(bp);
454 			} else {
455 				if (bp->b_bufsize == fs->fs_bsize)
456 					bp->b_flags |= B_CLUSTEROK;
457 				bdwrite(bp);
458 			}
459 		}
460 	}
461 	if (deallocated) {
462 #ifdef QUOTA
463 		/*
464 		 * Restore user's disk quota because allocation failed.
465 		 */
466 		(void) chkdq(ip, (long)-btodb(deallocated), cred, FORCE);
467 #endif
468 		ip->i_blocks -= btodb(deallocated);
469 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
470 	}
471 	(void) VOP_FSYNC(vp, MNT_WAIT, td);
472 
473 	/*
474 	 * Cleanup the data block we getblk()'d before returning.
475 	 */
476 fail2:
477 	brelse(dbp);
478 	return (error);
479 }
480 
481