xref: /dragonfly/sys/vfs/ufs/ffs_inode.c (revision 0bb9290e)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_inode.c	8.13 (Berkeley) 4/21/95
34  * $FreeBSD: src/sys/ufs/ffs/ffs_inode.c,v 1.56.2.5 2002/02/05 18:35:03 dillon Exp $
35  * $DragonFly: src/sys/vfs/ufs/ffs_inode.c,v 1.23 2006/05/26 17:07:48 dillon Exp $
36  */
37 
38 #include "opt_quota.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/mount.h>
43 #include <sys/proc.h>
44 #include <sys/buf.h>
45 #include <sys/vnode.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/vmmeter.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53 
54 #include "quota.h"
55 #include "ufsmount.h"
56 #include "inode.h"
57 #include "ufs_extern.h"
58 
59 #include "fs.h"
60 #include "ffs_extern.h"
61 
62 #include <vm/vm_page2.h>
63 
64 static int ffs_indirtrunc (struct inode *, ufs_daddr_t, ufs_daddr_t,
65 	    ufs_daddr_t, int, long *);
66 
67 /*
68  * Update the access, modified, and inode change times as specified by the
69  * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively.  Write the inode
70  * to disk if the IN_MODIFIED flag is set (it may be set initially, or by
71  * the timestamp update).  The IN_LAZYMOD flag is set to force a write
72  * later if not now.  If we write now, then clear both IN_MODIFIED and
73  * IN_LAZYMOD to reflect the presumably successful write, and if waitfor is
74  * set, then wait for the write to complete.
75  */
76 int
77 ffs_update(struct vnode *vp, int waitfor)
78 {
79 	struct fs *fs;
80 	struct buf *bp;
81 	struct inode *ip;
82 	int error;
83 
84 	ufs_itimes(vp);
85 	ip = VTOI(vp);
86 	if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0)
87 		return (0);
88 	ip->i_flag &= ~(IN_LAZYMOD | IN_MODIFIED);
89 	fs = ip->i_fs;
90 	if (fs->fs_ronly)
91 		return (0);
92 	/*
93 	 * Ensure that uid and gid are correct. This is a temporary
94 	 * fix until fsck has been changed to do the update.
95 	 */
96 	if (fs->fs_inodefmt < FS_44INODEFMT) {		/* XXX */
97 		ip->i_din.di_ouid = ip->i_uid;		/* XXX */
98 		ip->i_din.di_ogid = ip->i_gid;		/* XXX */
99 	}						/* XXX */
100 	error = bread(ip->i_devvp,
101 		      fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
102 		      (int)fs->fs_bsize, &bp);
103 	if (error) {
104 		brelse(bp);
105 		return (error);
106 	}
107 	if (DOINGSOFTDEP(vp))
108 		softdep_update_inodeblock(ip, bp, waitfor);
109 	else if (ip->i_effnlink != ip->i_nlink)
110 		panic("ffs_update: bad link cnt");
111 	*((struct ufs1_dinode *)bp->b_data +
112 	    ino_to_fsbo(fs, ip->i_number)) = ip->i_din;
113 	if (waitfor && !DOINGASYNC(vp)) {
114 		return (bwrite(bp));
115 	} else if (vm_page_count_severe() || buf_dirty_count_severe()) {
116 		return (bwrite(bp));
117 	} else {
118 		if (bp->b_bufsize == fs->fs_bsize)
119 			bp->b_flags |= B_CLUSTEROK;
120 		bdwrite(bp);
121 		return (0);
122 	}
123 }
124 
125 #define	SINGLE	0	/* index of single indirect block */
126 #define	DOUBLE	1	/* index of double indirect block */
127 #define	TRIPLE	2	/* index of triple indirect block */
128 /*
129  * Truncate the inode oip to at most length size, freeing the
130  * disk blocks.
131  */
132 int
133 ffs_truncate(struct vnode *vp, off_t length, int flags, struct ucred *cred)
134 {
135 	struct vnode *ovp = vp;
136 	ufs_daddr_t lastblock;
137 	struct inode *oip;
138 	ufs_daddr_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR];
139 	ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
140 	struct fs *fs;
141 	struct buf *bp;
142 	int offset, size, level;
143 	long count, nblocks, blocksreleased = 0;
144 	int i;
145 	int aflags, error, allerror;
146 	off_t osize;
147 
148 	oip = VTOI(ovp);
149 	fs = oip->i_fs;
150 	if (length < 0)
151 		return (EINVAL);
152 	if (length > fs->fs_maxfilesize)
153 		return (EFBIG);
154 	if (ovp->v_type == VLNK &&
155 	    (oip->i_size < ovp->v_mount->mnt_maxsymlinklen || oip->i_din.di_blocks == 0)) {
156 #ifdef DIAGNOSTIC
157 		if (length != 0)
158 			panic("ffs_truncate: partial truncate of symlink");
159 #endif /* DIAGNOSTIC */
160 		bzero((char *)&oip->i_shortlink, (uint)oip->i_size);
161 		oip->i_size = 0;
162 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
163 		return (ffs_update(ovp, 1));
164 	}
165 	if (oip->i_size == length) {
166 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
167 		return (ffs_update(ovp, 0));
168 	}
169 	if (fs->fs_ronly)
170 		panic("ffs_truncate: read-only filesystem");
171 #ifdef QUOTA
172 	error = ufs_getinoquota(oip);
173 	if (error)
174 		return (error);
175 #endif
176 	ovp->v_lasta = ovp->v_clen = ovp->v_cstart = ovp->v_lastw = 0;
177 	if (DOINGSOFTDEP(ovp)) {
178 		if (length > 0 || softdep_slowdown(ovp)) {
179 			/*
180 			 * If a file is only partially truncated, then
181 			 * we have to clean up the data structures
182 			 * describing the allocation past the truncation
183 			 * point. Finding and deallocating those structures
184 			 * is a lot of work. Since partial truncation occurs
185 			 * rarely, we solve the problem by syncing the file
186 			 * so that it will have no data structures left.
187 			 */
188 			if ((error = VOP_FSYNC(ovp, MNT_WAIT)) != 0)
189 				return (error);
190 		} else {
191 #ifdef QUOTA
192 			(void) ufs_chkdq(oip, -oip->i_blocks, NOCRED, 0);
193 #endif
194 			softdep_setup_freeblocks(oip, length);
195 			vinvalbuf(ovp, 0, 0, 0);
196 			vnode_pager_setsize(ovp, 0);
197 			oip->i_flag |= IN_CHANGE | IN_UPDATE;
198 			return (ffs_update(ovp, 0));
199 		}
200 	}
201 	osize = oip->i_size;
202 	/*
203 	 * Lengthen the size of the file. We must ensure that the
204 	 * last byte of the file is allocated. Since the smallest
205 	 * value of osize is 0, length will be at least 1.
206 	 */
207 	if (osize < length) {
208 		vnode_pager_setsize(ovp, length);
209 		aflags = B_CLRBUF;
210 		if (flags & IO_SYNC)
211 			aflags |= B_SYNC;
212 		error = VOP_BALLOC(ovp, length - 1, 1,
213 		    cred, aflags, &bp);
214 		if (error)
215 			return (error);
216 		oip->i_size = length;
217 		if (bp->b_bufsize == fs->fs_bsize)
218 			bp->b_flags |= B_CLUSTEROK;
219 		if (aflags & B_SYNC)
220 			bwrite(bp);
221 		else
222 			bawrite(bp);
223 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
224 		return (ffs_update(ovp, 1));
225 	}
226 	/*
227 	 * Shorten the size of the file. If the file is not being
228 	 * truncated to a block boundary, the contents of the
229 	 * partial block following the end of the file must be
230 	 * zero'ed in case it ever becomes accessible again because
231 	 * of subsequent file growth. Directories however are not
232 	 * zero'ed as they should grow back initialized to empty.
233 	 */
234 	offset = blkoff(fs, length);
235 	if (offset == 0) {
236 		oip->i_size = length;
237 	} else {
238 		lbn = lblkno(fs, length);
239 		aflags = B_CLRBUF;
240 		if (flags & IO_SYNC)
241 			aflags |= B_SYNC;
242 		error = VOP_BALLOC(ovp, length - 1, 1, cred, aflags, &bp);
243 		if (error) {
244 			return (error);
245 		}
246 		/*
247 		 * When we are doing soft updates and the UFS_BALLOC
248 		 * above fills in a direct block hole with a full sized
249 		 * block that will be truncated down to a fragment below,
250 		 * we must flush out the block dependency with an FSYNC
251 		 * so that we do not get a soft updates inconsistency
252 		 * when we create the fragment below.
253 		 */
254 		if (DOINGSOFTDEP(ovp) && lbn < NDADDR &&
255 		    fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize &&
256 		    (error = VOP_FSYNC(ovp, MNT_WAIT)) != 0) {
257 				return (error);
258 		}
259 		oip->i_size = length;
260 		size = blksize(fs, oip, lbn);
261 		if (ovp->v_type != VDIR)
262 			bzero((char *)bp->b_data + offset,
263 			    (uint)(size - offset));
264 		/* Kirk's code has reallocbuf(bp, size, 1) here */
265 		allocbuf(bp, size);
266 		if (bp->b_bufsize == fs->fs_bsize)
267 			bp->b_flags |= B_CLUSTEROK;
268 		if (aflags & B_SYNC)
269 			bwrite(bp);
270 		else
271 			bawrite(bp);
272 	}
273 	/*
274 	 * Calculate index into inode's block list of
275 	 * last direct and indirect blocks (if any)
276 	 * which we want to keep.  Lastblock is -1 when
277 	 * the file is truncated to 0.
278 	 */
279 	lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
280 	lastiblock[SINGLE] = lastblock - NDADDR;
281 	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
282 	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
283 	nblocks = btodb(fs->fs_bsize);
284 
285 	/*
286 	 * Update file and block pointers on disk before we start freeing
287 	 * blocks.  If we crash before free'ing blocks below, the blocks
288 	 * will be returned to the free list.  lastiblock values are also
289 	 * normalized to -1 for calls to ffs_indirtrunc below.
290 	 */
291 	bcopy((caddr_t)&oip->i_db[0], (caddr_t)oldblks, sizeof oldblks);
292 	for (level = TRIPLE; level >= SINGLE; level--)
293 		if (lastiblock[level] < 0) {
294 			oip->i_ib[level] = 0;
295 			lastiblock[level] = -1;
296 		}
297 	for (i = NDADDR - 1; i > lastblock; i--)
298 		oip->i_db[i] = 0;
299 	oip->i_flag |= IN_CHANGE | IN_UPDATE;
300 	allerror = ffs_update(ovp, 1);
301 
302 	/*
303 	 * Having written the new inode to disk, save its new configuration
304 	 * and put back the old block pointers long enough to process them.
305 	 * Note that we save the new block configuration so we can check it
306 	 * when we are done.
307 	 */
308 	bcopy((caddr_t)&oip->i_db[0], (caddr_t)newblks, sizeof newblks);
309 	bcopy((caddr_t)oldblks, (caddr_t)&oip->i_db[0], sizeof oldblks);
310 	oip->i_size = osize;
311 
312 	error = vtruncbuf(ovp, length, fs->fs_bsize);
313 	if (error && (allerror == 0))
314 		allerror = error;
315 
316 	/*
317 	 * Indirect blocks first.
318 	 */
319 	indir_lbn[SINGLE] = -NDADDR;
320 	indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
321 	indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
322 	for (level = TRIPLE; level >= SINGLE; level--) {
323 		bn = oip->i_ib[level];
324 		if (bn != 0) {
325 			error = ffs_indirtrunc(oip, indir_lbn[level],
326 			    fsbtodb(fs, bn), lastiblock[level], level, &count);
327 			if (error)
328 				allerror = error;
329 			blocksreleased += count;
330 			if (lastiblock[level] < 0) {
331 				oip->i_ib[level] = 0;
332 				ffs_blkfree(oip, bn, fs->fs_bsize);
333 				blocksreleased += nblocks;
334 			}
335 		}
336 		if (lastiblock[level] >= 0)
337 			goto done;
338 	}
339 
340 	/*
341 	 * All whole direct blocks or frags.
342 	 */
343 	for (i = NDADDR - 1; i > lastblock; i--) {
344 		long bsize;
345 
346 		bn = oip->i_db[i];
347 		if (bn == 0)
348 			continue;
349 		oip->i_db[i] = 0;
350 		bsize = blksize(fs, oip, i);
351 		ffs_blkfree(oip, bn, bsize);
352 		blocksreleased += btodb(bsize);
353 	}
354 	if (lastblock < 0)
355 		goto done;
356 
357 	/*
358 	 * Finally, look for a change in size of the
359 	 * last direct block; release any frags.
360 	 */
361 	bn = oip->i_db[lastblock];
362 	if (bn != 0) {
363 		long oldspace, newspace;
364 
365 		/*
366 		 * Calculate amount of space we're giving
367 		 * back as old block size minus new block size.
368 		 */
369 		oldspace = blksize(fs, oip, lastblock);
370 		oip->i_size = length;
371 		newspace = blksize(fs, oip, lastblock);
372 		if (newspace == 0)
373 			panic("ffs_truncate: newspace");
374 		if (oldspace - newspace > 0) {
375 			/*
376 			 * Block number of space to be free'd is
377 			 * the old block # plus the number of frags
378 			 * required for the storage we're keeping.
379 			 */
380 			bn += numfrags(fs, newspace);
381 			ffs_blkfree(oip, bn, oldspace - newspace);
382 			blocksreleased += btodb(oldspace - newspace);
383 		}
384 	}
385 done:
386 #ifdef DIAGNOSTIC
387 	for (level = SINGLE; level <= TRIPLE; level++)
388 		if (newblks[NDADDR + level] != oip->i_ib[level])
389 			panic("ffs_truncate1");
390 	for (i = 0; i < NDADDR; i++)
391 		if (newblks[i] != oip->i_db[i])
392 			panic("ffs_truncate2");
393 	if (length == 0 &&
394 	    (!RB_EMPTY(&ovp->v_rbdirty_tree) ||
395 	     !RB_EMPTY(&ovp->v_rbclean_tree)))
396 		panic("ffs_truncate3");
397 #endif /* DIAGNOSTIC */
398 	/*
399 	 * Put back the real size.
400 	 */
401 	oip->i_size = length;
402 	oip->i_blocks -= blocksreleased;
403 
404 	if (oip->i_blocks < 0)			/* sanity */
405 		oip->i_blocks = 0;
406 	oip->i_flag |= IN_CHANGE;
407 #ifdef QUOTA
408 	(void) ufs_chkdq(oip, -blocksreleased, NOCRED, 0);
409 #endif
410 	return (allerror);
411 }
412 
413 /*
414  * Release blocks associated with the inode ip and stored in the indirect
415  * block bn.  Blocks are free'd in LIFO order up to (but not including)
416  * lastbn.  If level is greater than SINGLE, the block is an indirect block
417  * and recursive calls to indirtrunc must be used to cleanse other indirect
418  * blocks.
419  *
420  * NB: triple indirect blocks are untested.
421  */
422 static int
423 ffs_indirtrunc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t dbn,
424 	       ufs_daddr_t lastbn, int level, long *countp)
425 {
426 	int i;
427 	struct buf *bp;
428 	struct fs *fs = ip->i_fs;
429 	ufs_daddr_t *bap;
430 	struct vnode *vp;
431 	ufs_daddr_t *copy = NULL, nb, nlbn, last;
432 	long blkcount, factor;
433 	int nblocks, blocksreleased = 0;
434 	int error = 0, allerror = 0;
435 
436 	/*
437 	 * Calculate index in current block of last
438 	 * block to be kept.  -1 indicates the entire
439 	 * block so we need not calculate the index.
440 	 */
441 	factor = 1;
442 	for (i = SINGLE; i < level; i++)
443 		factor *= NINDIR(fs);
444 	last = lastbn;
445 	if (lastbn > 0)
446 		last /= factor;
447 	nblocks = btodb(fs->fs_bsize);
448 	/*
449 	 * Get buffer of block pointers, zero those entries corresponding
450 	 * to blocks to be free'd, and update on disk copy first.  Since
451 	 * double(triple) indirect before single(double) indirect, calls
452 	 * to bmap on these blocks will fail.  However, we already have
453 	 * the on disk address, so we have to set the bio_offset field
454 	 * explicitly instead of letting bread do everything for us.
455 	 */
456 	vp = ITOV(ip);
457 	bp = getblk(vp, lblktodoff(fs, lbn), (int)fs->fs_bsize, 0, 0);
458 	if ((bp->b_flags & B_CACHE) == 0) {
459 		bp->b_flags &= ~(B_ERROR|B_INVAL);
460 		bp->b_cmd = BUF_CMD_READ;
461 		if (bp->b_bcount > bp->b_bufsize)
462 			panic("ffs_indirtrunc: bad buffer size");
463 		bp->b_bio2.bio_offset = dbtodoff(fs, dbn);
464 		vfs_busy_pages(vp, bp);
465 		/*
466 		 * Access the block device layer using the device vnode
467 		 * and the translated block number (bio2) instead of the
468 		 * file vnode (vp) and logical block number (bio1).
469 		 *
470 		 * Even though we are bypassing the vnode layer, we still
471 		 * want the vnode state to indicate that an I/O on its behalf
472 		 * is in progress.
473 		 */
474 		bio_start_transaction(&bp->b_bio1, &vp->v_track_read);
475 		vn_strategy(ip->i_devvp, &bp->b_bio2);
476 		error = biowait(bp);
477 	}
478 	if (error) {
479 		brelse(bp);
480 		*countp = 0;
481 		return (error);
482 	}
483 
484 	bap = (ufs_daddr_t *)bp->b_data;
485 	if (lastbn != -1) {
486 		MALLOC(copy, ufs_daddr_t *, fs->fs_bsize, M_TEMP, M_WAITOK);
487 		bcopy((caddr_t)bap, (caddr_t)copy, (uint)fs->fs_bsize);
488 		bzero((caddr_t)&bap[last + 1],
489 		    (uint)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t));
490 		if (DOINGASYNC(vp)) {
491 			bawrite(bp);
492 		} else {
493 			error = bwrite(bp);
494 			if (error)
495 				allerror = error;
496 		}
497 		bap = copy;
498 	}
499 
500 	/*
501 	 * Recursively free totally unused blocks.
502 	 */
503 	for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
504 	    i--, nlbn += factor) {
505 		nb = bap[i];
506 		if (nb == 0)
507 			continue;
508 		if (level > SINGLE) {
509 			if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
510 			    (ufs_daddr_t)-1, level - 1, &blkcount)) != 0)
511 				allerror = error;
512 			blocksreleased += blkcount;
513 		}
514 		ffs_blkfree(ip, nb, fs->fs_bsize);
515 		blocksreleased += nblocks;
516 	}
517 
518 	/*
519 	 * Recursively free last partial block.
520 	 */
521 	if (level > SINGLE && lastbn >= 0) {
522 		last = lastbn % factor;
523 		nb = bap[i];
524 		if (nb != 0) {
525 			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
526 			    last, level - 1, &blkcount);
527 			if (error)
528 				allerror = error;
529 			blocksreleased += blkcount;
530 		}
531 	}
532 	if (copy != NULL) {
533 		FREE(copy, M_TEMP);
534 	} else {
535 		bp->b_flags |= B_INVAL | B_NOCACHE;
536 		brelse(bp);
537 	}
538 
539 	*countp = blocksreleased;
540 	return (allerror);
541 }
542