xref: /dragonfly/sys/vfs/ufs/ffs_inode.c (revision 4d0c54c1)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_inode.c	8.13 (Berkeley) 4/21/95
34  * $FreeBSD: src/sys/ufs/ffs/ffs_inode.c,v 1.56.2.5 2002/02/05 18:35:03 dillon Exp $
35  */
36 
37 #include "opt_quota.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/mount.h>
42 #include <sys/proc.h>
43 #include <sys/buf.h>
44 #include <sys/vnode.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/resourcevar.h>
48 #include <sys/vmmeter.h>
49 
50 #include <vm/vm.h>
51 #include <vm/vm_extern.h>
52 
53 #include "quota.h"
54 #include "ufsmount.h"
55 #include "inode.h"
56 #include "ufs_extern.h"
57 
58 #include "fs.h"
59 #include "ffs_extern.h"
60 
61 #include <vm/vm_page2.h>
62 #include <sys/buf2.h>
63 
64 static int ffs_indirtrunc (struct inode *, ufs_daddr_t, ufs_daddr_t,
65 	    ufs_daddr_t, int, long *);
66 
67 /*
68  * Update the access, modified, and inode change times as specified by the
69  * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively.  Write the inode
70  * to disk if the IN_MODIFIED flag is set (it may be set initially, or by
71  * the timestamp update).  The IN_LAZYMOD flag is set to force a write
72  * later if not now.  If we write now, then clear both IN_MODIFIED and
73  * IN_LAZYMOD to reflect the presumably successful write, and if waitfor is
74  * set, then wait for the write to complete.
75  */
76 int
77 ffs_update(struct vnode *vp, int waitfor)
78 {
79 	struct fs *fs;
80 	struct buf *bp;
81 	struct inode *ip;
82 	int error;
83 
84 	ufs_itimes(vp);
85 	ip = VTOI(vp);
86 	if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0)
87 		return (0);
88 	ip->i_flag &= ~(IN_LAZYMOD | IN_MODIFIED);
89 	fs = ip->i_fs;
90 	if (fs->fs_ronly)
91 		return (0);
92 
93 	/*
94 	 * The vnode type is usually set to VBAD if an unrecoverable I/O
95 	 * error has occured (such as when reading the inode).  Clear the
96 	 * modified bits but do not write anything out in this case.
97 	 */
98 	if (vp->v_type == VBAD)
99 		return (0);
100 	/*
101 	 * Ensure that uid and gid are correct. This is a temporary
102 	 * fix until fsck has been changed to do the update.
103 	 */
104 	if (fs->fs_inodefmt < FS_44INODEFMT) {		/* XXX */
105 		ip->i_din.di_ouid = ip->i_uid;		/* XXX */
106 		ip->i_din.di_ogid = ip->i_gid;		/* XXX */
107 	}						/* XXX */
108 	error = bread(ip->i_devvp,
109 		      fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
110 		      (int)fs->fs_bsize, &bp);
111 	if (error) {
112 		brelse(bp);
113 		return (error);
114 	}
115 	if (DOINGSOFTDEP(vp))
116 		softdep_update_inodeblock(ip, bp, waitfor);
117 	else if (ip->i_effnlink != ip->i_nlink)
118 		panic("ffs_update: bad link cnt");
119 	*((struct ufs1_dinode *)bp->b_data +
120 	    ino_to_fsbo(fs, ip->i_number)) = ip->i_din;
121 	if (waitfor && !DOINGASYNC(vp)) {
122 		return (bwrite(bp));
123 	} else if (vm_page_count_severe() || buf_dirty_count_severe()) {
124 		return (bwrite(bp));
125 	} else {
126 		if (bp->b_bufsize == fs->fs_bsize)
127 			bp->b_flags |= B_CLUSTEROK;
128 		bdwrite(bp);
129 		return (0);
130 	}
131 }
132 
133 #define	SINGLE	0	/* index of single indirect block */
134 #define	DOUBLE	1	/* index of double indirect block */
135 #define	TRIPLE	2	/* index of triple indirect block */
136 /*
137  * Truncate the inode oip to at most length size, freeing the
138  * disk blocks.
139  */
140 int
141 ffs_truncate(struct vnode *vp, off_t length, int flags, struct ucred *cred)
142 {
143 	struct vnode *ovp = vp;
144 	ufs_daddr_t lastblock;
145 	struct inode *oip;
146 	ufs_daddr_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR];
147 	ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
148 	struct fs *fs;
149 	struct buf *bp;
150 	int offset, size, level;
151 	long count, nblocks, blocksreleased = 0;
152 	int i;
153 	int aflags, error, allerror;
154 	off_t osize;
155 
156 	oip = VTOI(ovp);
157 	fs = oip->i_fs;
158 	if (length < 0)
159 		return (EINVAL);
160 	if (length > fs->fs_maxfilesize)
161 		return (EFBIG);
162 	if (ovp->v_type == VLNK &&
163 	    (oip->i_size < ovp->v_mount->mnt_maxsymlinklen || oip->i_din.di_blocks == 0)) {
164 #ifdef DIAGNOSTIC
165 		if (length != 0)
166 			panic("ffs_truncate: partial truncate of symlink");
167 #endif /* DIAGNOSTIC */
168 		bzero((char *)&oip->i_shortlink, (uint)oip->i_size);
169 		oip->i_size = 0;
170 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
171 		return (ffs_update(ovp, 1));
172 	}
173 	if (oip->i_size == length) {
174 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
175 		return (ffs_update(ovp, 0));
176 	}
177 	if (fs->fs_ronly)
178 		panic("ffs_truncate: read-only filesystem");
179 #ifdef QUOTA
180 	error = ufs_getinoquota(oip);
181 	if (error)
182 		return (error);
183 #endif
184 	ovp->v_lasta = ovp->v_clen = ovp->v_cstart = ovp->v_lastw = 0;
185 	if (DOINGSOFTDEP(ovp)) {
186 		if (length > 0 || softdep_slowdown(ovp)) {
187 			/*
188 			 * If a file is only partially truncated, then
189 			 * we have to clean up the data structures
190 			 * describing the allocation past the truncation
191 			 * point. Finding and deallocating those structures
192 			 * is a lot of work. Since partial truncation occurs
193 			 * rarely, we solve the problem by syncing the file
194 			 * so that it will have no data structures left.
195 			 */
196 			if ((error = VOP_FSYNC(ovp, MNT_WAIT, 0)) != 0)
197 				return (error);
198 		} else {
199 #ifdef QUOTA
200 			(void) ufs_chkdq(oip, -oip->i_blocks, NOCRED, 0);
201 #endif
202 			softdep_setup_freeblocks(oip, length);
203 			vinvalbuf(ovp, 0, 0, 0);
204 			nvnode_pager_setsize(ovp, 0, fs->fs_bsize, 0);
205 			oip->i_flag |= IN_CHANGE | IN_UPDATE;
206 			return (ffs_update(ovp, 0));
207 		}
208 	}
209 	osize = oip->i_size;
210 
211 	/*
212 	 * Lengthen the size of the file. We must ensure that the
213 	 * last byte of the file is allocated. Since the smallest
214 	 * value of osize is 0, length will be at least 1.
215 	 *
216 	 * nvextendbuf() only breads the old buffer.  The blocksize
217 	 * of the new buffer must be specified so it knows how large
218 	 * to make the VM object.
219 	 */
220 	if (osize < length) {
221 		nvextendbuf(vp, osize, length,
222 			    blkoffsize(fs, oip, osize),	/* oblksize */
223 			    blkoffresize(fs, length),	/* nblksize */
224 			    blkoff(fs, osize),
225 			    blkoff(fs, length),
226 			    0);
227 
228 		aflags = B_CLRBUF;
229 		if (flags & IO_SYNC)
230 			aflags |= B_SYNC;
231 		/* BALLOC will reallocate the fragment at the old EOF */
232 		error = VOP_BALLOC(ovp, length - 1, 1, cred, aflags, &bp);
233 		if (error)
234 			return (error);
235 		oip->i_size = length;
236 		if (bp->b_bufsize == fs->fs_bsize)
237 			bp->b_flags |= B_CLUSTEROK;
238 		if (aflags & B_SYNC)
239 			bwrite(bp);
240 		else
241 			bawrite(bp);
242 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
243 		return (ffs_update(ovp, 1));
244 	}
245 
246 	/*
247 	 * Shorten the size of the file.
248 	 *
249 	 * NOTE: The block size specified in nvtruncbuf() is the blocksize
250 	 *	 of the buffer containing length prior to any reallocation
251 	 *	 of the block.
252 	 */
253 	allerror = nvtruncbuf(ovp, length, blkoffsize(fs, oip, length),
254 			      blkoff(fs, length), 0);
255 	offset = blkoff(fs, length);
256 	if (offset == 0) {
257 		oip->i_size = length;
258 	} else {
259 		lbn = lblkno(fs, length);
260 		aflags = B_CLRBUF;
261 		if (flags & IO_SYNC)
262 			aflags |= B_SYNC;
263 		error = VOP_BALLOC(ovp, length - 1, 1, cred, aflags, &bp);
264 		if (error)
265 			return (error);
266 
267 		/*
268 		 * When we are doing soft updates and the UFS_BALLOC
269 		 * above fills in a direct block hole with a full sized
270 		 * block that will be truncated down to a fragment below,
271 		 * we must flush out the block dependency with an FSYNC
272 		 * so that we do not get a soft updates inconsistency
273 		 * when we create the fragment below.
274 		 *
275 		 * nvtruncbuf() may have re-dirtied the underlying block
276 		 * as part of its truncation zeroing code.  To avoid a
277 		 * 'locking against myself' panic in the second fsync we
278 		 * can simply undirty the bp since the redirtying was
279 		 * related to areas of the buffer that we are going to
280 		 * throw away anyway, and we will b*write() the remainder
281 		 * anyway down below.
282 		 */
283 		if (DOINGSOFTDEP(ovp) && lbn < NDADDR &&
284 		    fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize) {
285 			bundirty(bp);
286 			error = VOP_FSYNC(ovp, MNT_WAIT, 0);
287 			if (error) {
288 				bdwrite(bp);
289 				return (error);
290 			}
291 		}
292 		oip->i_size = length;
293 		size = blksize(fs, oip, lbn);
294 #if 0
295 		/* remove - nvtruncbuf deals with this */
296 		if (ovp->v_type != VDIR)
297 			bzero((char *)bp->b_data + offset,
298 			    (uint)(size - offset));
299 #endif
300 		/* Kirk's code has reallocbuf(bp, size, 1) here */
301 		allocbuf(bp, size);
302 		if (bp->b_bufsize == fs->fs_bsize)
303 			bp->b_flags |= B_CLUSTEROK;
304 		if (aflags & B_SYNC)
305 			bwrite(bp);
306 		else
307 			bawrite(bp);
308 	}
309 	/*
310 	 * Calculate index into inode's block list of
311 	 * last direct and indirect blocks (if any)
312 	 * which we want to keep.  Lastblock is -1 when
313 	 * the file is truncated to 0.
314 	 */
315 	lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
316 	lastiblock[SINGLE] = lastblock - NDADDR;
317 	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
318 	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
319 	nblocks = btodb(fs->fs_bsize);
320 
321 	/*
322 	 * Update file and block pointers on disk before we start freeing
323 	 * blocks.  If we crash before free'ing blocks below, the blocks
324 	 * will be returned to the free list.  lastiblock values are also
325 	 * normalized to -1 for calls to ffs_indirtrunc below.
326 	 */
327 	bcopy((caddr_t)&oip->i_db[0], (caddr_t)oldblks, sizeof oldblks);
328 	for (level = TRIPLE; level >= SINGLE; level--)
329 		if (lastiblock[level] < 0) {
330 			oip->i_ib[level] = 0;
331 			lastiblock[level] = -1;
332 		}
333 	for (i = NDADDR - 1; i > lastblock; i--)
334 		oip->i_db[i] = 0;
335 	oip->i_flag |= IN_CHANGE | IN_UPDATE;
336 	error = ffs_update(ovp, 1);
337 	if (error && allerror == 0)
338 		allerror = error;
339 
340 	/*
341 	 * Having written the new inode to disk, save its new configuration
342 	 * and put back the old block pointers long enough to process them.
343 	 * Note that we save the new block configuration so we can check it
344 	 * when we are done.
345 	 */
346 	bcopy((caddr_t)&oip->i_db[0], (caddr_t)newblks, sizeof newblks);
347 	bcopy((caddr_t)oldblks, (caddr_t)&oip->i_db[0], sizeof oldblks);
348 	oip->i_size = osize;
349 
350 	if (error && allerror == 0)
351 		allerror = error;
352 
353 	/*
354 	 * Indirect blocks first.
355 	 */
356 	indir_lbn[SINGLE] = -NDADDR;
357 	indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
358 	indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
359 	for (level = TRIPLE; level >= SINGLE; level--) {
360 		bn = oip->i_ib[level];
361 		if (bn != 0) {
362 			error = ffs_indirtrunc(oip, indir_lbn[level],
363 			    fsbtodb(fs, bn), lastiblock[level], level, &count);
364 			if (error)
365 				allerror = error;
366 			blocksreleased += count;
367 			if (lastiblock[level] < 0) {
368 				oip->i_ib[level] = 0;
369 				ffs_blkfree(oip, bn, fs->fs_bsize);
370 				blocksreleased += nblocks;
371 			}
372 		}
373 		if (lastiblock[level] >= 0)
374 			goto done;
375 	}
376 
377 	/*
378 	 * All whole direct blocks or frags.
379 	 */
380 	for (i = NDADDR - 1; i > lastblock; i--) {
381 		long bsize;
382 
383 		bn = oip->i_db[i];
384 		if (bn == 0)
385 			continue;
386 		oip->i_db[i] = 0;
387 		bsize = blksize(fs, oip, i);
388 		ffs_blkfree(oip, bn, bsize);
389 		blocksreleased += btodb(bsize);
390 	}
391 	if (lastblock < 0)
392 		goto done;
393 
394 	/*
395 	 * Finally, look for a change in size of the
396 	 * last direct block; release any frags.
397 	 */
398 	bn = oip->i_db[lastblock];
399 	if (bn != 0) {
400 		long oldspace, newspace;
401 
402 		/*
403 		 * Calculate amount of space we're giving
404 		 * back as old block size minus new block size.
405 		 */
406 		oldspace = blksize(fs, oip, lastblock);
407 		oip->i_size = length;
408 		newspace = blksize(fs, oip, lastblock);
409 		if (newspace == 0)
410 			panic("ffs_truncate: newspace");
411 		if (oldspace - newspace > 0) {
412 			/*
413 			 * Block number of space to be free'd is
414 			 * the old block # plus the number of frags
415 			 * required for the storage we're keeping.
416 			 */
417 			bn += numfrags(fs, newspace);
418 			ffs_blkfree(oip, bn, oldspace - newspace);
419 			blocksreleased += btodb(oldspace - newspace);
420 		}
421 	}
422 done:
423 #ifdef DIAGNOSTIC
424 	for (level = SINGLE; level <= TRIPLE; level++)
425 		if (newblks[NDADDR + level] != oip->i_ib[level])
426 			panic("ffs_truncate1");
427 	for (i = 0; i < NDADDR; i++)
428 		if (newblks[i] != oip->i_db[i])
429 			panic("ffs_truncate2");
430 	if (length == 0 && !RB_EMPTY(&ovp->v_rbdirty_tree))
431 		panic("ffs_truncate3");
432 #endif /* DIAGNOSTIC */
433 	/*
434 	 * Put back the real size.
435 	 */
436 	oip->i_size = length;
437 	oip->i_blocks -= blocksreleased;
438 
439 	if (oip->i_blocks < 0)			/* sanity */
440 		oip->i_blocks = 0;
441 	oip->i_flag |= IN_CHANGE;
442 #ifdef QUOTA
443 	(void) ufs_chkdq(oip, -blocksreleased, NOCRED, 0);
444 #endif
445 	return (allerror);
446 }
447 
448 /*
449  * Release blocks associated with the inode ip and stored in the indirect
450  * block bn.  Blocks are free'd in LIFO order up to (but not including)
451  * lastbn.  If level is greater than SINGLE, the block is an indirect block
452  * and recursive calls to indirtrunc must be used to cleanse other indirect
453  * blocks.
454  *
455  * NB: triple indirect blocks are untested.
456  */
457 static int
458 ffs_indirtrunc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t dbn,
459 	       ufs_daddr_t lastbn, int level, long *countp)
460 {
461 	int i;
462 	struct buf *bp;
463 	struct fs *fs = ip->i_fs;
464 	ufs_daddr_t *bap;
465 	struct vnode *vp;
466 	ufs_daddr_t *copy = NULL, nb, nlbn, last;
467 	long blkcount, factor;
468 	int nblocks, blocksreleased = 0;
469 	int error = 0, allerror = 0;
470 
471 	/*
472 	 * Calculate index in current block of last
473 	 * block to be kept.  -1 indicates the entire
474 	 * block so we need not calculate the index.
475 	 */
476 	factor = 1;
477 	for (i = SINGLE; i < level; i++)
478 		factor *= NINDIR(fs);
479 	last = lastbn;
480 	if (lastbn > 0)
481 		last /= factor;
482 	nblocks = btodb(fs->fs_bsize);
483 	/*
484 	 * Get buffer of block pointers, zero those entries corresponding
485 	 * to blocks to be free'd, and update on disk copy first.  Since
486 	 * double(triple) indirect before single(double) indirect, calls
487 	 * to bmap on these blocks will fail.  However, we already have
488 	 * the on disk address, so we have to set the bio_offset field
489 	 * explicitly instead of letting bread do everything for us.
490 	 */
491 	vp = ITOV(ip);
492 	bp = getblk(vp, lblktodoff(fs, lbn), (int)fs->fs_bsize, 0, 0);
493 	if ((bp->b_flags & B_CACHE) == 0) {
494 		bp->b_flags &= ~(B_ERROR|B_INVAL);
495 		bp->b_cmd = BUF_CMD_READ;
496 		if (bp->b_bcount > bp->b_bufsize)
497 			panic("ffs_indirtrunc: bad buffer size");
498 		/*
499 		 * BIO is bio2 which chains back to bio1.  We wait
500 		 * on bio1.
501 		 */
502 		bp->b_bio2.bio_offset = dbtodoff(fs, dbn);
503 		bp->b_bio1.bio_done = biodone_sync;
504 		bp->b_bio1.bio_flags |= BIO_SYNC;
505 		vfs_busy_pages(vp, bp);
506 		/*
507 		 * Access the block device layer using the device vnode
508 		 * and the translated block number (bio2) instead of the
509 		 * file vnode (vp) and logical block number (bio1).
510 		 *
511 		 * Even though we are bypassing the vnode layer, we still
512 		 * want the vnode state to indicate that an I/O on its behalf
513 		 * is in progress.
514 		 */
515 		bio_start_transaction(&bp->b_bio1, &vp->v_track_read);
516 		vn_strategy(ip->i_devvp, &bp->b_bio2);
517 		error = biowait(&bp->b_bio1, "biord");
518 	}
519 	if (error) {
520 		brelse(bp);
521 		*countp = 0;
522 		return (error);
523 	}
524 
525 	bap = (ufs_daddr_t *)bp->b_data;
526 	if (lastbn != -1) {
527 		copy = kmalloc(fs->fs_bsize, M_TEMP, M_WAITOK);
528 		bcopy((caddr_t)bap, (caddr_t)copy, (uint)fs->fs_bsize);
529 		bzero((caddr_t)&bap[last + 1],
530 		    (uint)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t));
531 		if (DOINGASYNC(vp)) {
532 			bawrite(bp);
533 		} else {
534 			error = bwrite(bp);
535 			if (error)
536 				allerror = error;
537 		}
538 		bap = copy;
539 	}
540 
541 	/*
542 	 * Recursively free totally unused blocks.
543 	 */
544 	for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
545 	    i--, nlbn += factor) {
546 		nb = bap[i];
547 		if (nb == 0)
548 			continue;
549 		if (level > SINGLE) {
550 			if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
551 			    (ufs_daddr_t)-1, level - 1, &blkcount)) != 0)
552 				allerror = error;
553 			blocksreleased += blkcount;
554 		}
555 		ffs_blkfree(ip, nb, fs->fs_bsize);
556 		blocksreleased += nblocks;
557 	}
558 
559 	/*
560 	 * Recursively free last partial block.
561 	 */
562 	if (level > SINGLE && lastbn >= 0) {
563 		last = lastbn % factor;
564 		nb = bap[i];
565 		if (nb != 0) {
566 			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
567 			    last, level - 1, &blkcount);
568 			if (error)
569 				allerror = error;
570 			blocksreleased += blkcount;
571 		}
572 	}
573 	if (copy != NULL) {
574 		kfree(copy, M_TEMP);
575 	} else {
576 		bp->b_flags |= B_INVAL | B_NOCACHE;
577 		brelse(bp);
578 	}
579 
580 	*countp = blocksreleased;
581 	return (allerror);
582 }
583