xref: /dragonfly/sys/vfs/ufs/ffs_inode.c (revision ef2687d4)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ffs_inode.c	8.13 (Berkeley) 4/21/95
30  * $FreeBSD: src/sys/ufs/ffs/ffs_inode.c,v 1.56.2.5 2002/02/05 18:35:03 dillon Exp $
31  */
32 
33 #include "opt_quota.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mount.h>
38 #include <sys/proc.h>
39 #include <sys/buf.h>
40 #include <sys/vnode.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/vmmeter.h>
45 
46 #include <vm/vm.h>
47 #include <vm/vm_extern.h>
48 
49 #include "quota.h"
50 #include "ufsmount.h"
51 #include "inode.h"
52 #include "ufs_extern.h"
53 
54 #include "fs.h"
55 #include "ffs_extern.h"
56 
57 #include <vm/vm_page2.h>
58 #include <sys/buf2.h>
59 
60 static int ffs_indirtrunc (struct inode *, ufs_daddr_t, ufs_daddr_t,
61 	    ufs_daddr_t, int, long *);
62 
63 /*
64  * Update the access, modified, and inode change times as specified by the
65  * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively.  Write the inode
66  * to disk if the IN_MODIFIED flag is set (it may be set initially, or by
67  * the timestamp update).  The IN_LAZYMOD flag is set to force a write
68  * later if not now.  If we write now, then clear both IN_MODIFIED and
69  * IN_LAZYMOD to reflect the presumably successful write, and if waitfor is
70  * set, then wait for the write to complete.
71  */
72 int
73 ffs_update(struct vnode *vp, int waitfor)
74 {
75 	struct fs *fs;
76 	struct buf *bp;
77 	struct inode *ip;
78 	int error;
79 
80 	ufs_itimes(vp);
81 	ip = VTOI(vp);
82 	if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0)
83 		return (0);
84 	ip->i_flag &= ~(IN_LAZYMOD | IN_MODIFIED);
85 	fs = ip->i_fs;
86 	if (fs->fs_ronly)
87 		return (0);
88 
89 	/*
90 	 * The vnode type is usually set to VBAD if an unrecoverable I/O
91 	 * error has occured (such as when reading the inode).  Clear the
92 	 * modified bits but do not write anything out in this case.
93 	 */
94 	if (vp->v_type == VBAD)
95 		return (0);
96 	/*
97 	 * Ensure that uid and gid are correct. This is a temporary
98 	 * fix until fsck has been changed to do the update.
99 	 */
100 	if (fs->fs_inodefmt < FS_44INODEFMT) {		/* XXX */
101 		ip->i_din.di_ouid = ip->i_uid;		/* XXX */
102 		ip->i_din.di_ogid = ip->i_gid;		/* XXX */
103 	}						/* XXX */
104 	error = bread(ip->i_devvp,
105 		      fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
106 		      (int)fs->fs_bsize, &bp);
107 	if (error) {
108 		brelse(bp);
109 		return (error);
110 	}
111 	if (DOINGSOFTDEP(vp))
112 		softdep_update_inodeblock(ip, bp, waitfor);
113 	else if (ip->i_effnlink != ip->i_nlink)
114 		panic("ffs_update: bad link cnt");
115 	*((struct ufs1_dinode *)bp->b_data +
116 	    ino_to_fsbo(fs, ip->i_number)) = ip->i_din;
117 	if (waitfor && !DOINGASYNC(vp)) {
118 		return (bwrite(bp));
119 	} else if (vm_page_count_severe() || buf_dirty_count_severe()) {
120 		return (bwrite(bp));
121 	} else {
122 		if (bp->b_bufsize == fs->fs_bsize)
123 			bp->b_flags |= B_CLUSTEROK;
124 		bdwrite(bp);
125 		return (0);
126 	}
127 }
128 
129 #define	SINGLE	0	/* index of single indirect block */
130 #define	DOUBLE	1	/* index of double indirect block */
131 #define	TRIPLE	2	/* index of triple indirect block */
132 /*
133  * Truncate the inode oip to at most length size, freeing the
134  * disk blocks.
135  */
136 int
137 ffs_truncate(struct vnode *vp, off_t length, int flags, struct ucred *cred)
138 {
139 	struct vnode *ovp = vp;
140 	ufs_daddr_t lastblock;
141 	struct inode *oip;
142 	ufs_daddr_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR];
143 	ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
144 	struct fs *fs;
145 	struct buf *bp;
146 	int offset, size, level;
147 	long count, nblocks, blocksreleased = 0;
148 	int i;
149 	int aflags, error, allerror;
150 	off_t osize;
151 
152 	oip = VTOI(ovp);
153 	fs = oip->i_fs;
154 	if (length < 0)
155 		return (EINVAL);
156 	if (length > fs->fs_maxfilesize)
157 		return (EFBIG);
158 	if (ovp->v_type == VLNK &&
159 	    (oip->i_size < ovp->v_mount->mnt_maxsymlinklen || oip->i_din.di_blocks == 0)) {
160 #ifdef DIAGNOSTIC
161 		if (length != 0)
162 			panic("ffs_truncate: partial truncate of symlink");
163 #endif /* DIAGNOSTIC */
164 		bzero((char *)&oip->i_shortlink, (uint)oip->i_size);
165 		oip->i_size = 0;
166 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
167 		return (ffs_update(ovp, 1));
168 	}
169 	if (oip->i_size == length) {
170 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
171 		return (ffs_update(ovp, 0));
172 	}
173 	if (fs->fs_ronly)
174 		panic("ffs_truncate: read-only filesystem");
175 #ifdef QUOTA
176 	error = ufs_getinoquota(oip);
177 	if (error)
178 		return (error);
179 #endif
180 	if (DOINGSOFTDEP(ovp)) {
181 		if (length > 0 || softdep_slowdown(ovp)) {
182 			/*
183 			 * If a file is only partially truncated, then
184 			 * we have to clean up the data structures
185 			 * describing the allocation past the truncation
186 			 * point. Finding and deallocating those structures
187 			 * is a lot of work. Since partial truncation occurs
188 			 * rarely, we solve the problem by syncing the file
189 			 * so that it will have no data structures left.
190 			 */
191 			if ((error = VOP_FSYNC(ovp, MNT_WAIT, 0)) != 0)
192 				return (error);
193 		} else {
194 #ifdef QUOTA
195 			(void) ufs_chkdq(oip, -oip->i_blocks, NOCRED, 0);
196 #endif
197 			softdep_setup_freeblocks(oip, length);
198 			vinvalbuf(ovp, 0, 0, 0);
199 			nvnode_pager_setsize(ovp, 0, fs->fs_bsize, 0);
200 			oip->i_flag |= IN_CHANGE | IN_UPDATE;
201 			return (ffs_update(ovp, 0));
202 		}
203 	}
204 	osize = oip->i_size;
205 
206 	/*
207 	 * Lengthen the size of the file. We must ensure that the
208 	 * last byte of the file is allocated. Since the smallest
209 	 * value of osize is 0, length will be at least 1.
210 	 *
211 	 * nvextendbuf() only breads the old buffer.  The blocksize
212 	 * of the new buffer must be specified so it knows how large
213 	 * to make the VM object.
214 	 */
215 	if (osize < length) {
216 		nvextendbuf(vp, osize, length,
217 			    blkoffsize(fs, oip, osize),	/* oblksize */
218 			    blkoffresize(fs, length),	/* nblksize */
219 			    blkoff(fs, osize),
220 			    blkoff(fs, length),
221 			    0);
222 
223 		aflags = B_CLRBUF;
224 		if (flags & IO_SYNC)
225 			aflags |= B_SYNC;
226 		/* BALLOC will reallocate the fragment at the old EOF */
227 		error = VOP_BALLOC(ovp, length - 1, 1, cred, aflags, &bp);
228 		if (error)
229 			return (error);
230 		oip->i_size = length;
231 		if (bp->b_bufsize == fs->fs_bsize)
232 			bp->b_flags |= B_CLUSTEROK;
233 		if (aflags & B_SYNC)
234 			bwrite(bp);
235 		else
236 			bawrite(bp);
237 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
238 		return (ffs_update(ovp, 1));
239 	}
240 
241 	/*
242 	 * Shorten the size of the file.
243 	 *
244 	 * NOTE: The block size specified in nvtruncbuf() is the blocksize
245 	 *	 of the buffer containing length prior to any reallocation
246 	 *	 of the block.
247 	 */
248 	allerror = nvtruncbuf(ovp, length, blkoffsize(fs, oip, length),
249 			      blkoff(fs, length), 0);
250 	offset = blkoff(fs, length);
251 	if (offset == 0) {
252 		oip->i_size = length;
253 	} else {
254 		lbn = lblkno(fs, length);
255 		aflags = B_CLRBUF;
256 		if (flags & IO_SYNC)
257 			aflags |= B_SYNC;
258 		error = VOP_BALLOC(ovp, length - 1, 1, cred, aflags, &bp);
259 		if (error)
260 			return (error);
261 
262 		/*
263 		 * When we are doing soft updates and the UFS_BALLOC
264 		 * above fills in a direct block hole with a full sized
265 		 * block that will be truncated down to a fragment below,
266 		 * we must flush out the block dependency with an FSYNC
267 		 * so that we do not get a soft updates inconsistency
268 		 * when we create the fragment below.
269 		 *
270 		 * nvtruncbuf() may have re-dirtied the underlying block
271 		 * as part of its truncation zeroing code.  To avoid a
272 		 * 'locking against myself' panic in the second fsync we
273 		 * can simply undirty the bp since the redirtying was
274 		 * related to areas of the buffer that we are going to
275 		 * throw away anyway, and we will b*write() the remainder
276 		 * anyway down below.
277 		 */
278 		if (DOINGSOFTDEP(ovp) && lbn < NDADDR &&
279 		    fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize) {
280 			bundirty(bp);
281 			error = VOP_FSYNC(ovp, MNT_WAIT, 0);
282 			if (error) {
283 				bdwrite(bp);
284 				return (error);
285 			}
286 		}
287 		oip->i_size = length;
288 		size = blksize(fs, oip, lbn);
289 #if 0
290 		/* remove - nvtruncbuf deals with this */
291 		if (ovp->v_type != VDIR)
292 			bzero((char *)bp->b_data + offset,
293 			    (uint)(size - offset));
294 #endif
295 		/* Kirk's code has reallocbuf(bp, size, 1) here */
296 		allocbuf(bp, size);
297 		if (bp->b_bufsize == fs->fs_bsize)
298 			bp->b_flags |= B_CLUSTEROK;
299 		if (aflags & B_SYNC)
300 			bwrite(bp);
301 		else
302 			bawrite(bp);
303 	}
304 	/*
305 	 * Calculate index into inode's block list of
306 	 * last direct and indirect blocks (if any)
307 	 * which we want to keep.  Lastblock is -1 when
308 	 * the file is truncated to 0.
309 	 */
310 	lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
311 	lastiblock[SINGLE] = lastblock - NDADDR;
312 	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
313 	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
314 	nblocks = btodb(fs->fs_bsize);
315 
316 	/*
317 	 * Update file and block pointers on disk before we start freeing
318 	 * blocks.  If we crash before free'ing blocks below, the blocks
319 	 * will be returned to the free list.  lastiblock values are also
320 	 * normalized to -1 for calls to ffs_indirtrunc below.
321 	 */
322 	for (level = TRIPLE; level >= SINGLE; level--) {
323 		oldblks[NDADDR + level] = oip->i_ib[level];
324 		if (lastiblock[level] < 0) {
325 			oip->i_ib[level] = 0;
326 			lastiblock[level] = -1;
327 		}
328 	}
329 	for (i = 0; i < NDADDR; i++) {
330 		oldblks[i] = oip->i_db[i];
331 		if (i > lastblock)
332 			oip->i_db[i] = 0;
333 	}
334 	oip->i_flag |= IN_CHANGE | IN_UPDATE;
335 	error = ffs_update(ovp, 1);
336 	if (error && allerror == 0)
337 		allerror = error;
338 
339 	/*
340 	 * Having written the new inode to disk, save its new configuration
341 	 * and put back the old block pointers long enough to process them.
342 	 * Note that we save the new block configuration so we can check it
343 	 * when we are done.
344 	 */
345 	for (i = 0; i < NDADDR; i++) {
346 		newblks[i] = oip->i_db[i];
347 		oip->i_db[i] = oldblks[i];
348 	}
349 	for (i = 0; i < NIADDR; i++) {
350 		newblks[NDADDR + i] = oip->i_ib[i];
351 		oip->i_ib[i] = oldblks[NDADDR + i];
352 	}
353 	oip->i_size = osize;
354 
355 	if (error && allerror == 0)
356 		allerror = error;
357 
358 	/*
359 	 * Indirect blocks first.
360 	 */
361 	indir_lbn[SINGLE] = -NDADDR;
362 	indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
363 	indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
364 	for (level = TRIPLE; level >= SINGLE; level--) {
365 		bn = oip->i_ib[level];
366 		if (bn != 0) {
367 			error = ffs_indirtrunc(oip, indir_lbn[level],
368 			    fsbtodb(fs, bn), lastiblock[level], level, &count);
369 			if (error)
370 				allerror = error;
371 			blocksreleased += count;
372 			if (lastiblock[level] < 0) {
373 				oip->i_ib[level] = 0;
374 				ffs_blkfree(oip, bn, fs->fs_bsize);
375 				blocksreleased += nblocks;
376 			}
377 		}
378 		if (lastiblock[level] >= 0)
379 			goto done;
380 	}
381 
382 	/*
383 	 * All whole direct blocks or frags.
384 	 */
385 	for (i = NDADDR - 1; i > lastblock; i--) {
386 		long bsize;
387 
388 		bn = oip->i_db[i];
389 		if (bn == 0)
390 			continue;
391 		oip->i_db[i] = 0;
392 		bsize = blksize(fs, oip, i);
393 		ffs_blkfree(oip, bn, bsize);
394 		blocksreleased += btodb(bsize);
395 	}
396 	if (lastblock < 0)
397 		goto done;
398 
399 	/*
400 	 * Finally, look for a change in size of the
401 	 * last direct block; release any frags.
402 	 */
403 	bn = oip->i_db[lastblock];
404 	if (bn != 0) {
405 		long oldspace, newspace;
406 
407 		/*
408 		 * Calculate amount of space we're giving
409 		 * back as old block size minus new block size.
410 		 */
411 		oldspace = blksize(fs, oip, lastblock);
412 		oip->i_size = length;
413 		newspace = blksize(fs, oip, lastblock);
414 		if (newspace == 0)
415 			panic("ffs_truncate: newspace");
416 		if (oldspace - newspace > 0) {
417 			/*
418 			 * Block number of space to be free'd is
419 			 * the old block # plus the number of frags
420 			 * required for the storage we're keeping.
421 			 */
422 			bn += numfrags(fs, newspace);
423 			ffs_blkfree(oip, bn, oldspace - newspace);
424 			blocksreleased += btodb(oldspace - newspace);
425 		}
426 	}
427 done:
428 #ifdef DIAGNOSTIC
429 	for (level = SINGLE; level <= TRIPLE; level++)
430 		if (newblks[NDADDR + level] != oip->i_ib[level])
431 			panic("ffs_truncate1");
432 	for (i = 0; i < NDADDR; i++)
433 		if (newblks[i] != oip->i_db[i])
434 			panic("ffs_truncate2");
435 	if (length == 0 && !RB_EMPTY(&ovp->v_rbdirty_tree))
436 		panic("ffs_truncate3");
437 #endif /* DIAGNOSTIC */
438 	/*
439 	 * Put back the real size.
440 	 */
441 	oip->i_size = length;
442 	oip->i_blocks -= blocksreleased;
443 
444 	if (oip->i_blocks < 0)			/* sanity */
445 		oip->i_blocks = 0;
446 	oip->i_flag |= IN_CHANGE;
447 #ifdef QUOTA
448 	(void) ufs_chkdq(oip, -blocksreleased, NOCRED, 0);
449 #endif
450 	return (allerror);
451 }
452 
453 /*
454  * Release blocks associated with the inode ip and stored in the indirect
455  * block bn.  Blocks are free'd in LIFO order up to (but not including)
456  * lastbn.  If level is greater than SINGLE, the block is an indirect block
457  * and recursive calls to indirtrunc must be used to cleanse other indirect
458  * blocks.
459  *
460  * NB: triple indirect blocks are untested.
461  */
462 static int
463 ffs_indirtrunc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t dbn,
464 	       ufs_daddr_t lastbn, int level, long *countp)
465 {
466 	int i;
467 	struct buf *bp;
468 	struct fs *fs = ip->i_fs;
469 	ufs_daddr_t *bap;
470 	struct vnode *vp;
471 	ufs_daddr_t *copy = NULL, nb, nlbn, last;
472 	long blkcount, factor;
473 	int nblocks, blocksreleased = 0;
474 	int error = 0, allerror = 0;
475 
476 	/*
477 	 * Calculate index in current block of last
478 	 * block to be kept.  -1 indicates the entire
479 	 * block so we need not calculate the index.
480 	 */
481 	factor = 1;
482 	for (i = SINGLE; i < level; i++)
483 		factor *= NINDIR(fs);
484 	last = lastbn;
485 	if (lastbn > 0)
486 		last /= factor;
487 	nblocks = btodb(fs->fs_bsize);
488 	/*
489 	 * Get buffer of block pointers, zero those entries corresponding
490 	 * to blocks to be free'd, and update on disk copy first.  Since
491 	 * double(triple) indirect before single(double) indirect, calls
492 	 * to bmap on these blocks will fail.  However, we already have
493 	 * the on disk address, so we have to set the bio_offset field
494 	 * explicitly instead of letting bread do everything for us.
495 	 */
496 	vp = ITOV(ip);
497 	bp = getblk(vp, lblktodoff(fs, lbn), (int)fs->fs_bsize, 0, 0);
498 	if ((bp->b_flags & B_CACHE) == 0) {
499 		bp->b_flags &= ~(B_ERROR|B_INVAL);
500 		bp->b_cmd = BUF_CMD_READ;
501 		if (bp->b_bcount > bp->b_bufsize)
502 			panic("ffs_indirtrunc: bad buffer size");
503 		/*
504 		 * BIO is bio2 which chains back to bio1.  We wait
505 		 * on bio1.
506 		 */
507 		bp->b_bio2.bio_offset = dbtodoff(fs, dbn);
508 		bp->b_bio1.bio_done = biodone_sync;
509 		bp->b_bio1.bio_flags |= BIO_SYNC;
510 		vfs_busy_pages(vp, bp);
511 		/*
512 		 * Access the block device layer using the device vnode
513 		 * and the translated block number (bio2) instead of the
514 		 * file vnode (vp) and logical block number (bio1).
515 		 *
516 		 * Even though we are bypassing the vnode layer, we still
517 		 * want the vnode state to indicate that an I/O on its behalf
518 		 * is in progress.
519 		 */
520 		bio_start_transaction(&bp->b_bio1, &vp->v_track_read);
521 		vn_strategy(ip->i_devvp, &bp->b_bio2);
522 		error = biowait(&bp->b_bio1, "biord");
523 	}
524 	if (error) {
525 		brelse(bp);
526 		*countp = 0;
527 		return (error);
528 	}
529 
530 	bap = (ufs_daddr_t *)bp->b_data;
531 	if (lastbn != -1) {
532 		copy = kmalloc(fs->fs_bsize, M_TEMP, M_WAITOK);
533 		bcopy((caddr_t)bap, (caddr_t)copy, (uint)fs->fs_bsize);
534 		bzero((caddr_t)&bap[last + 1],
535 		    (uint)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t));
536 		if (DOINGASYNC(vp)) {
537 			bawrite(bp);
538 		} else {
539 			error = bwrite(bp);
540 			if (error)
541 				allerror = error;
542 		}
543 		bap = copy;
544 	}
545 
546 	/*
547 	 * Recursively free totally unused blocks.
548 	 */
549 	for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
550 	    i--, nlbn += factor) {
551 		nb = bap[i];
552 		if (nb == 0)
553 			continue;
554 		if (level > SINGLE) {
555 			if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
556 			    (ufs_daddr_t)-1, level - 1, &blkcount)) != 0)
557 				allerror = error;
558 			blocksreleased += blkcount;
559 		}
560 		ffs_blkfree(ip, nb, fs->fs_bsize);
561 		blocksreleased += nblocks;
562 	}
563 
564 	/*
565 	 * Recursively free last partial block.
566 	 */
567 	if (level > SINGLE && lastbn >= 0) {
568 		last = lastbn % factor;
569 		nb = bap[i];
570 		if (nb != 0) {
571 			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
572 			    last, level - 1, &blkcount);
573 			if (error)
574 				allerror = error;
575 			blocksreleased += blkcount;
576 		}
577 	}
578 	if (copy != NULL) {
579 		kfree(copy, M_TEMP);
580 	} else {
581 		bp->b_flags |= B_INVAL | B_NOCACHE;
582 		brelse(bp);
583 	}
584 
585 	*countp = blocksreleased;
586 	return (allerror);
587 }
588